A non-local probabilistic method for modelling of crack propagation

Elia Gironacci\textsuperscript{1}, Mohaddeseh Mousavi Nezhad\textsuperscript{1}, Mohammad Rezania\textsuperscript{1}, Giovanni Lancioni\textsuperscript{2}

\textsuperscript{1}Computational Mechanics, Civil Research Group, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
\textsuperscript{2}Department of Civil Engineering and Architecture (DICEA), Polytechnic University of Marche (UNIVPM), Via Brecce Bianche, 60131, Ancona, Italy

\textbf{ABSTRACT}

Damage process in engineering systems is strongly affected by spatial heterogeneity and local discontinuities in the materials, which are significantly influencing the reliability and integrity of the systems. In this paper, we present a new stochastic approach as a tool for performing uncertainty quantification in simulating damage evolution in heterogeneous brittle materials. One of the advantages of the proposed method is its ability to capture the influence of uncertainty in the mechanical properties of whole simulation domain, not just the properties of the immediate neighbourhood around the crack tip, on direction of crack propagation. In fact, through this approach the direction of crack propagation at a specified point of localised damage can be probabilistically determined based on nonlocal mechanics theory, in which the influence of local discontinuities and weak points located at further distances from the crack tip, in addition to those located at the immediate neighbourhood of the local damage, are incorporated into the model. The reliability and performance of the methodology are examined through simulation of numerical examples and comparison with analytical results and experimental data. The case studies show how the crack initiation angle can be reasonably estimated with this methodology and how this approach provides realistic values of fracture toughness $K_{IC}$ and fracture energy $G_f$.

\textbf{Key Words:} stochastic crack initiation angle; fracture toughness; mixed-mode fracture; nonlocal approach; non-Gaussian random field
1. Introduction

In recent years, many researchers have focused on the problem of modelling heterogeneous material systems containing discontinuities. Numerous methodologies for inclusion of heterogeneity in numerical frameworks for simulating material failure behaviour have been developed, which can be grouped into two main categories: multi-scale models and stochastic approaches.

Multi-scale methods have offered a significant progress in explicitly describing local heterogeneities [1]. In fact, for the heterogeneous materials, like concrete, rocks or composites, often a local fine-scale definition of micro-structure of the materials that influence their macroscopic mechanical response is needed [2]. Developed understanding of multiple phase concepts is used in multi-scale techniques, where it is aimed to predict the joint multi-phase response of structures. Although multi-scale modelling has been proved to be a powerful method for incorporation of the heterogeneity, difficulties may arise when a detailed knowledge of the material micro-structure for identifying the representative elementary volume, is not available. For this reason, an increasing interest has now been directed towards stochastic approaches, as they allow probabilistic estimation of degree of heterogeneity in the materials by quantifying fluctuations of mechanical properties [3-6, 46].

The two main processes for brittle failure of materials are crack initiation and crack propagation. From a physical point of view, when a body is deformed, the corresponding stored strain energy increases. If there is a high enough imbalance in the energy of the system is high enough, fracturing occurs due to progressive degradation of material strength. The failure process can be therefore broken down into a number of steps based on the level of material degradation and stiffness softening. [7]. Within these steps, crack initiation denotes the stress level in which micro-fracturing is occurring [8]. Crack growth happens at the instance of critical energy release and lasts until when the micro-cracks have joined and the structure can no longer support an increase in the load.

One of the elements appreciably influenced by the material heterogeneity, is the crack initiation angle, in particular for those systems that are subjected to mixed-mode loading conditions [9-11]. In a recent work, Lin and his co-workers [12] proved, with experimental measurements on acoustic emissions of mortar materials, that the crack angle is correlated with the magnitude of the initiation and the failure stresses. The importance of crack initiation angle has also been
recognised by Park and Lange [13], in which a new fracture parameter, named critical crack opening angle, describing the crack opening resistance, has been introduced for cement-based materials. Yang et al. [14] studied the effect of loading type and heterogeneity on the crack geometry, initiation and propagation processes, and concluded that local stresses control crack initiation process, while the loading configuration is responsible for crack inclination and curving. Evangelatos and Spanos [15] used the peridynamic theory to study the effect of the inclination of crack initiation angle on the total energy of a system, estimation of its reliability and its probability of failure.

Another crucial material property, influencing crack initiation and propagation process, is fracture toughness, which represents the critical stress intensity factor (SIF) at crack tip, that can introduce catastrophic crack growth. Fracture toughness is a function of applied loading, crack size and structural geometry, and it is representative of the level of “stress” at the tip of the crack [11]. A high value of fracture toughness makes materials resistant to catastrophic crack extension; alternatively, it may be considered as requiring a large amount of strain energy to create new surfaces.

An accurate and rigorous evaluation of fracture toughness is therefore indispensable for application of fracture mechanics methods in structural integrity assessment. The American Society for Testing and Materials (ASTM) provides standard terminology and formulations with regards to experimental measurements of fracture toughness [16-17]. In parallel with the experimental methods, closed form solutions for analytical calculation of fracture toughness, for determined geometries and loading configurations, have also been developed, and they are expressed as linear combination of SIFs for different crack opening modes [18-24].

If for a given problem that has to be examined, no experimental measurement of fracture toughness is conducted, often values for fracture toughness are chosen from the literature. However, not necessarily a specific value can be used for specific case studies, as fracture toughness depends not only on the constituents of the material, but also on other factors such as geometrical configurations and loading conditions. This assumption may therefore lead to erroneous results and, possibly, to an overestimation of the material resistance.

One of the analytical criteria, which is most frequently used for investigating mixed mode fracture toughness, is the maximum tangential stress (MTS) criterion, where fracture toughness is explicitly expressed as a function of mode I and II SIFs and of the crack initiation angle. Several studies (e.g. [25-26]) revealed that this method, which considers the tangential stresses in the vicinity of the crack tip, especially in the case of mixed mode fracture may not provide reliable values of fracture toughness. Ayatollahi and Aliha [25], for example, conducted a
detailed study on this matter, reporting experimental values of fracture toughness of four different types of rock materials and comparing them with the analytical results from the MTS method; they showed that if the effect of a non-singular stress term, called \( T \)-stress, is considered, then a better agreement between analytical and experimental results can be achieved. This modified criterion, called generalised maximum tangential stress (GMTS) method, has been applied for several specimens subjected to mixed-mode loading, but none of them includes the effect of material heterogeneity in the calculation of the fracture toughness. The aim of this study is therefore to extend and implement the definition of the GMTS criterion for materials with heterogeneous structure.

The computational framework used in this study for extracting a probabilistic distribution of the crack initiation angle, employs a phase-field formulation [27], in which the initiation and evolution of crack are described by a scalar damage variable assuming values in the range \((0,1)\), where 1 means sound material, and 0 means totally broken material. The non-local analysis of the damage field evolution in an area in proximity of the crack initiation point allows to determine in which direction crack is most likely to propagate. Crack propagation direction is predicted using a probabilistic approach which includes a linear combination of different Probability Density Functions (PDF) of crack initiation angle.

Finally, in the context of stochastic modelling, energy release rate is defined as a function of the randomly variable fracture toughness and a probabilistic distribution of the damage initiation in the fracturing body is sought. Therefore, the damage state in proximity of the crack initiation point is considered to define realistic values of fracture toughness, which is a function of initial crack angle, loading condition and geometry. A probabilistic distribution for crack propagation direction is then defined and used for sampling the angle and calculating fracture toughness for the heterogeneous materials.

The main advantage of the method proposed in this work is the possibility to simply and practically quantify the uncertainty in the fracture toughness value evaluation as a function of other mechanical properties of the material which are directly introduced in a phase-field theory based framework for crack propagation. The material length scale, representative of the size of the damage zone, contributes in defining the degree of heterogeneity of the material. In this way, the statistical information (mean value, standard deviation and correlation length) needed for sampling random values for crack initiation angle will be automatically provided by the numerical simulations using the phase-field theory. Furthermore, it will be proved that the non-Gaussian nature of the fracture toughness and fracture energy can be automatically captured with this method using a Gaussian approach for the crack initiation angle, without the need to
any translation function for sampling random values of these material properties [4-5].

2. Fracture advancement methodology and damage state of the body

In this section, the basic ingredients of the phase-field model used to determine the initiation and propagation of fracture are presented. The variational model proposed in [27-28] is considered, where smeared fracture in an elastic body \( \Omega \) is described by means of a scalar damage field \( s \), which assumes values in the range \((0, 1)\); when \( s = 1 \) the material is sound, and, when \( s = 0 \), it is totally damaged. The internal energy assigned to \( \Omega \) is

\[
E(u,s) = \int_{\Omega} \left\{ k \frac{1}{2} \text{tr}^{-} (\nabla u)^2 + s^2 \left[ k \frac{1}{2} \text{tr}^{+} (\nabla u)^2 + \mu \left( \nabla u^2 - \frac{2}{3} \text{tr} (\nabla u)^2 \right) \right] \right\} dx \\
+ \frac{G_f}{2} \int_{\Omega} \left( \varepsilon \nabla s^2 + \frac{(1-s)^2}{\varepsilon} \right) dx \tag{1}
\]

which depends on the displacement field \( u \) and on the damage \( s \). The first integral in Eq. (1) represents the bulk energy, where \( k = \lambda + 2\mu/3 \) is the bulk modulus, \( \mu \) and \( \lambda \) are the Lame’s coefficients, and the decomposition \( \text{tr}^{+} (\nabla u) = \max(\text{tr}(\nabla u), 0) \) and \( \text{tr}^{-} (\nabla u) = \{\text{tr}(\nabla u), 0\} \) in positive and negative parts of the trace of \( \nabla u \) is used. The second integral is the fracture energy, which is the sum of a local and a non-local contributions. \( G_f \) is the unit fracture energy, and \( \varepsilon \) is an internal length associated to damage non-locality. The length \( \varepsilon \) is related to the size of the process zone, as discussed in the following. The energy (1) is minimised under the irreversibility condition \( \dot{s} \leq 0 \), introduced to forbid material self-healing.

By using the energy (1), different fracture processes are reproduced when tensile or compressive loadings are applied. Indeed, in regions of \( \Omega \) subjected to tensile states, where volume changes are positive, the opening and evolution of brittle fractures are allowed; while, in compressed regions, where volume changes are negative, cracks are partially forbidden, and only shear fractures can develop, when shear stresses are generated by compressive loadings.

When a fracture forms, the damage parameter \( s \) assumes the value \( s = 0 \) on the fracture surface, and it increases by moving away from that surface. The optimal profile of \( s \) in the direction normal to the fracture surface was determined in [29], and its expression is
\[ s(x) = 1 - e^{-\frac{|x-x_0|}{\varepsilon}}, \quad (2) \]

where \( x \) is the coordinate in the direction normal to the surface, and \( x_0 \) is the intersection point between the normal axis and the surface. From Eq. (2), at distances larger than \( 2.5\varepsilon \) from the surface \((|x-x_0| > 2.5\varepsilon)\), damage attains values \( s > 0.9 \), and the material can be considered practically sound. Thus the damaged band around the fracture surface has a thickness of about \( 5\varepsilon \), which represents the size of the process zone.

The functional (1) is numerically minimised by using the incremental procedure first proposed in [30], and described in the following. We denote with \( t \) the loading parameter of the problem (load or displacement applied on a portion of the body boundary), which is monotonically increased from 0 by means of finite increments. At each loading step, an iterative procedure is performed. Let \((u_{i-1}, s_{i-1})\) be the solution at the \((i-1)\)th loading step, the pair \((u_i, s_i)\) at the \(i\)th step is evaluated by solving the iterative double minimisation procedure shown below.

1. **Initiation.** Set \((u_i^0, s_i^0) = (u_{i-1}, s_{i-1})\)

2. **Iteration \(j\).** For given \((u_i^{j-1}, s_i^{j-1})\)
   - \(i\). compute \(u_i^j\) by minimizing \( E(\cdot, s_i^{j-1})\)
   - \(ii\). compute \(s_i^j\) by minimizing \( E(u_i^j, \cdot)\)
   - \(iii\). **Irreversibility condition:** set \(s_i^j(x) = \min\{ s_i^j(x), s_{i-1}(x) \}, x \in \Omega\)

3. Iterate step 2 until \(|s_i^j - s_i^{j-1}|_{L^\infty} < s_{\text{max}}\), with \(s_{\text{max}}\) being a fixed tolerance.

At the step \(i = 0\) it is set that \((u_0, s_0) = (0, 1)\), so the body is assumed undeformed and uncracked in the initial configuration.

The minimisations at steps \(i\) and \(ii\) are performed by finding the stationarity point of (1), keeping \( s \) and \( u \) fixed, respectively. The corresponding problems are linear elliptic and solutions are numerically found by means of the finite element method. Within the Matlab environment, an in-house code is developed based on triangular elements with affine shape functions. To improve the accuracy in the determination of the field \( s \), the program includes a mesh refinement algorithm, which automatically subdivides those elements at which the values of \( s \) become smaller than a given threshold. As a result, within each loading step, in the algorithm an iterative macro-scheme, which includes the process described above, allows for the mesh refinement. While the convergence of the developed algorithm has not been proven theoretically, however the numerical experiments show a fast convergence.
In the next sections, two dimensional simulations are performed by assuming the hypothesis of plane strain state.

3. Fracture toughness calculation: the GMTS criterion

In the context of linear elastic fracture mechanics, elastic stresses in proximity of the crack tip can be written as linear combinations of angular functions expanded according to infinite series [25]. Based on the GMTS criterion, for a brittle material, crack propagates radially and perpendicular to the direction of maximum tangential stress; the crack initiation point is where the tangential stress $\sigma_{\theta\theta}$ reaches its critical value, and along this direction crack initiates at $r_c$ defined as the critical distance from the crack tip. It is considered that $r_c$ is a constant material property; it is usually considered to be equal to the radius of the process zone. Several methods, both experimental and numerical, have been proposed to estimate the size of this zone for brittle materials [25, 31]. In this work, $r_c$ is considered to be compatible with the size of the process zone estimated on the basis of the theory discussed in the Section 2, therefore, equal to $5\varepsilon$. Formulation of the tangential stress in the vicinity of crack tip is therefore explicitly given as series expansion in [25] as

$$\sigma_{\theta\theta} = \frac{1}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left[ K_I \cos^2 \frac{\theta}{2} - \frac{3}{2} K_{II} \sin \theta \right] + T \sin^2 \theta + O(\sqrt{r})$$  \hspace{1cm} (3)

where $r$ and $\theta$ are the polar coordinates of a point with respect to the crack tip, $K_I$ and $K_{II}$ are the SIFs for mode I and II respectively and $T$ is the $T$-stress, which is a constant term defining the stress parallel to the crack and independent of $r$, the higher order term $O(\sqrt{r})$ of the expansion can be neglected in proximity of the crack tip.

Recalling that crack initiates and propagates in the direction of maximum tangential stress, the crack initiation angle $\theta_0$ (angle that indicates the direction with respect to the direction of the initial notch, where the maximum stresses are found) can be calculated by imposing the condition

$$\frac{\partial \sigma_{\theta\theta}}{\partial \theta} \bigg|_{\theta=\theta_0} = 0.$$  \hspace{1cm} (4)

The calculated angle is used for obtaining the value of the fracture toughness of mixed-mode fracture. Brittle failure happens when $\sigma_{\theta\theta}$ reaches its critical value $\sigma_{\theta\theta c}$. This condition
provides the following expression [25]
\[
\sqrt{2\pi r_c} \sigma_{\theta\theta c} = \cos \frac{\theta_0}{2} \left[ K_I \cos^2 \frac{\theta_0}{2} - \frac{3}{2} K_{II} \sin \theta_0 \right] + T \sin^2 \theta_0. \tag{5}
\]

If now the pure mode-I fracture case is considered, \( K_{II}, T \) and \( \theta_0 \) all become equal to zero. Therefore, when fracture occurs \( K_I \) reaches its critical value \( K_{Ic} \) which corresponds to the mode-I fracture toughness
\[
\sqrt{2\pi r_c} \sigma_{\theta\theta c} = K_{Ic}. \tag{6}
\]
Eq. (5) can be rewritten using Eq. (6) to obtain the value for fracture toughness \( K_{Ic} \)
\[
K_{Ic} = \cos \frac{\theta_0}{2} \left[ K_I \cos^2 \frac{\theta_0}{2} - \frac{3}{2} K_{II} \sin \theta_0 \right] + T \sin^2 \theta_0. \tag{7}
\]

The expression in Eq. (7) represents the final form of the GMTS criterion. Closed form solutions for \( K_I, K_{II} \) and \( T \) have been calculated for defined geometries and loading configurations [25-26, 32-37].

General expression for \( K_I \) and \( K_{II} \) takes the general form
\[
K_I = \sigma^* \sqrt{\pi a} F_I \left( \frac{a}{W} \right) \tag{8}
\]
\[
K_{II} = \sigma^* \sqrt{\pi a} F_{II} \left( \frac{a}{W} \right), \tag{9}
\]
where \( \sigma^* \) represents the stress field in correspondence of the crack tip, \( a \) provides information about the position and the length of the crack, \( W \) is a measure of the body geometry, \( F_I \left( \frac{a}{W} \right) \) and \( F_{II} \left( \frac{a}{W} \right) \) are dimensionless functions of the geometry of the notched body and of the experimental setup. For calculating the values for \( T \), one of the most common methods is based on its calculation from finite element analysis as shown by Ayatollahi et al. [26].

4. Uncertainty quantification: the spectral representation method

In this work, uncertainty is included in the model by sampling random values of \( \theta_0 \) using the
spectral representation method. With this method, a stochastic field of a two dimensional problem is expressed as [5]

\[
\theta_g^{(i)} (x,y) = \theta_0 + \sqrt{2} \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} \left[ A_{n_1n_2}^{(1)} \cos \left( \kappa_{1n_1} x + \kappa_{2n_2} y + \phi_{n_1n_2}^{(1)(i)} \right) 
+ A_{n_1n_2}^{(2)} \cos \left( \kappa_{1n_1} x - \kappa_{2n_2} y + \phi_{n_1n_2}^{(2)(i)} \right) \right]
\]

(10)

where \( \phi_{n_1n_2}^{(1)(i)} \) and \( \phi_{n_1n_2}^{(2)(i)} \) are the realisation for the \( i \)-th simulation of the independent random phase angles which follow a uniform distribution. Furthermore,

\[
A_{n_1n_2}^{(1)} = \sqrt{2S_{gg}(\kappa_{1n_1}, \kappa_{2n_2}) \Delta \kappa_1 \Delta \kappa_2}
\]

(11a)

\[
A_{n_1n_2}^{(2)} = \sqrt{2S_{gg}(\kappa_{1n_1}, -\kappa_{2n_2}) \Delta \kappa_1 \Delta \kappa_2}
\]

(11b)

\[
\kappa_{1n_1} = n_1 \Delta \kappa_1
\]

(12a)

\[
\kappa_{2n_2} = n_2 \Delta \kappa_2
\]

(12b)

\[
\Delta \kappa_1 = \kappa_{1u}/N_1
\]

(13a)

\[
\Delta \kappa_2 = \kappa_{2u}/N_2
\]

(13b)

with

\[
n_1 = 0, 1, ..., N_1 - 1; \quad n_2 = 0, 1, ..., N_2 - 1.
\]

(14)

\( N_1 \) and \( N_2 \) are the number of intervals where the wave number axes are split, \( \kappa_{1u} \) and \( \kappa_{2u} \) are defined as the upper cut-off wave numbers defining the active region of the spectral density function (SDF) \( S_{gg} \). Therefore, the effect of \( S_{gg} \) is operative only for the range

\[
-\kappa_{1u} \leq \kappa_1 \leq \kappa_{1u} \quad \text{and} \quad -\kappa_{2u} \leq \kappa_2 \leq \kappa_{2u};
\]

(15)

outside of this range, \( S_{gg} \) is assumed to be equal to 0.

In this work, the SDF takes the form of [5]
where $\sigma_g$ is the standard deviation of the field, while $b_1$ and $b_2$ represent the correlation length along the two dimensions.

5. PDF of the crack initiation angle $\theta_0$

The uncertainty in the material behaviour is related to heterogeneity of the materials strength that is modelled by defining a random distribution of damage inside of simulation domain. Therefore, similar to the work presented by Gutierrez and de Borst [45], damage parameter instead of material stiffness or fracture energy has been selected as a random parameter. However, due to lack of experimental data and information about the statistics of damage distribution throughout of the material, a computational model has been used to generate a hypothetical possible spatially random field for damage parameters associated to materials with different micro-structure and length scales. The random distribution of damage parameter is linked with the material length scale and particle size distribution (as an index of material heterogeneity) through specifying several threshold values for $\bar{s}$. This aspect also overcomes the issue of the mesh dependency, as the size of the mesh is directly connected to the material length scale as shown in Section 6 in the definition of the parameters for Eq. (1). Different threshold values for damage parameter $\bar{s}$ have been selected in a way to take into account both the influence of distribution of imperfection in the whole specimen and the possible variations in the size of the specimens. Without this, the approach would not be non-local, as it would consider only the damage in proximity of the crack tip.

Therefore, for a given body discretised in finite elements and for a given crack initiation point, positions of the finite element nodes with respect to the crack tip and associated values of $s$ are considered. In order to accurately take into account the contribution of the damage state of the body in the definition of $\theta_0$, the so-called fracture process zone (FPZ) should be adequately identified. The FPZ can be identified numerically with the phase-field theory described above. In fact, the damage will spread from the crack tip at a distance which will be included within typical FPZs identified by several works [25, 38-39].
The values for damage in each node provide information about the direction that the crack is most likely to initiate and propagate: in particular, it is likely that the crack spreads through those nodes with a lower value of damage. Therefore, the degree of damage that develops in the body is considered in the procedure formed by the following steps:

1. Calculate the values for damage parameter by using the iterative procedure described in Section 2;
2. For different threshold values \( \bar{s} \), select the nodes with \( s \leq \bar{s} \);
3. Calculate the polar coordinates with respect to the crack tip of the nodes selected in step 2;
4. Estimate mean value of \( \theta_0 \) for each threshold value \( \bar{s} \);
5. Calculate the overall mean value and the standard deviation of \( \theta_0 \) from the values estimated in step 4 for each \( \bar{s} \);
6. Sample values of \( \theta_0 \) using the spectral method described in Section 4 and calculate the corresponding values of \( K_Ic \) using Eq. (7).

Through this method, \( \theta_0 \) becomes the parameter with stochastic nature and can be then expressed as a vector \( \theta_{0g} = [\theta_{0g}^{(1)}, \theta_{0g}^{(2)}, \ldots, \theta_{0g}^{(n_{FE})}] \), with \( n_{FE} \) being the number of elements forming the finite element mesh that discretises the problem under investigation. Therefore, the probabilistic generalised maximum tangential stress (PGMTS) criterion can be achieved in terms of \( \theta_{0g} \) using Eq. (7) as

\[
K_{Ic}(\theta_{0g}) = \cos \frac{\theta_{0g}}{2} \left[ K_I \cos^2 \frac{\theta_{0g}}{2} - \frac{3}{2} K_{II} \sin \theta_{0g} \right] + T \sin^2 \theta_{0g}.
\]  
(17)

Finally, fracture energy \( G_f \) can also be calculated using the elastic crack-tip solution and a simple relationship between \( K_{Ic} \) and \( G_f \) as [40]:

\[
\frac{K_{Ic}^2}{E'} = G_f,
\]  
(18)

which is developed based on the theories of Griffith [7]. In the Eq. 18, \( E' = E \) for the plane stress conditions, and \( E' = E/(1 - \nu^2) \) for the plane strain conditions with \( E \) being Young’s modulus and \( \nu \) Poisson’s ratio.

6. Numerical analyses and discussion of the results
6.1. Notched concrete slab

In order to verify the proposed methodology, the first example considered in this study is a finite element model of a concrete slab with size of 500 mm x 400 mm (see Fig. 1). This example was also simulated by Huang et al. [41]. Young’s modulus $E$ and Poisson’s ratio $\nu$ are chosen equal to 25000 N/mm$^2$ and 0.18 respectively. An initial deterministic value for $G_J$ equal to 0.15 N/mm is assigned to the model [3]. A value of $\varepsilon = 8$ mm is selected, while the size of the mesh is chosen to be equal to 8 mm. The value for $\varepsilon$ is chosen, following the considerations listed in [29], on the basis of the average size of the material constituents; in particular, $\varepsilon$ is typically assumed to be 2-3 times the characteristic material length scale. As concrete is formed by constituents of different sizes, an average dimension of 4-5 mm is here considered and, consequently, the value of 8 mm for $\varepsilon$ is selected. An initial crack of dimension 4 x 40 mm is modelled in the middle of the specimen. In order to create a typical mixed mode crack condition, the inclination of the crack with respect to the distributed load is set to be 45º. The simulation is performed in quasi-static displacement-controlled condition.

In order to calculate $K_{IC}$ using Eq. (7), the value of $r_c$ has been selected according to the recommendations proposed in [25 and 38-39]. In [25] $r_c$ is calculated for the brittle materials as a function of $K_{IC}$ and a range of values between 45 and 60 N/mm$^{3/2}$ was assumed for $K_{IC}$, which gives a range of values between 35 and 45 mm for $r_c$, approximately. In [38] and [39] a combination of analytical and experimental investigations on concrete specimens subjected to both pure mode-I and mixed-mode loading provided a range of values for the size of FPZ, which vary from a minimum of 40 up to a maximum of 140 mm. Therefore, the value of $r_c$ for this example is chosen equal to 40 mm which is within the range proposed in the literature.

For this specific example, the explicit formulation of Eq. (8) and (9) are expressed, together with the explicit expression for $T$, as [32]

\begin{align}
K_I &= \sigma \sqrt{\pi a} \sin^2 \beta \quad \text{(19a)} \\
K_{II} &= \sigma \sqrt{\pi a} \sin \beta \cos \beta \quad \text{(19b)} \\
T &= \sigma \cos 2\beta \quad \text{(19c)}
\end{align}

where, $\sigma$ is applied stress to the body, $a$ is half length of the initial notch, and $\beta$ is inclination angle of the notch with respect to the loading direction. For this example $\sigma = 8.6$ N/mm$^2$, $a = 20$ mm and $\beta = 45^\circ$ [41].
Fig. 2 shows the evolution of the damage in proximity of the crack tip that has been taken into account to generate PDFs of $\theta_0$. For simplicity, only the upper half of the specimen is considered and presented in Fig. 2. The area where the damage spreads, is smaller than the size of FPZ considered in literature [38-39], which vary from a minimum of 40 mm up to a maximum of 140 mm for pure mode I failure.

Table 1 summarizes the values obtained for crack initiation angle with respect to the direction of the notch, considering different values of $\bar{s}$ together with the calculated mean value and standard deviation. In order to validate the result, the mean value is compared with the results from literature [41] and with the value calculated considering the condition [25]

$$[K_I \sin \theta_0 + K_{II} (3 \cos \theta_0 - 1)] - \frac{16}{3} T \sqrt{2\pi \gamma} \cos \theta_0 \sin \frac{\theta_0}{2} = 0$$

which is the explicit form of Eq. (4). For this example, Huang et al. [41] provided a value for crack initiation angle equal to 53.1°, while the result obtained using Eq. (20) is 52.7°. The summary of all the results can be found in Table 1. It can be observed that the value reported in [41] and the value calculated through the methodology proposed in this work differ about 4°.

The mean value and standard deviation shown in Table 1 are then considered as an estimate to sample random values for $\theta_0$ using the Gaussian process shown in Eq. (10).

In the first instance, a deterministic value of the fracture toughness is calculated using Eq. (7) and the mean value of $\theta_0$. The fracture toughness is therefore equal to 60.9 N/mm$^{3/2}$. Griffith’s Energy $G_f$ is then calculated as $G_f = 0.14$ N/mm, consistent with the range of values of $G_f$ for concrete found in literature [3, 42].

This example is one of those used in literature to study mixed-mode conditions for the materials. For this reason, this example has been used with the main purpose of comparing the crack initiation angle available in literature with the value crack initiation angle as mean value of the probabilistic distribution obtained.

With regards to the parameters involved in the stochastic approach described in section 4, the number of terms used for the spectral representation series is chosen as $N_1 = N_2 = 20$, the cut-off wave numbers $\kappa_{1u} = \kappa_{2u} = 2\pi$ and $b_1 = b_2 = 1$ [30]. Once the mean value and standard deviation for $\theta_0$ are defined, they are used to sample values of $\theta_0$ according to a Gaussian distribution, as shown in Fig. 3. This sample for $\theta_0$ is then substituted into the expression for $K_{lc}$ of Eq. (7), and a sample for $K_{lc}$ is then obtained as shown in Fig. 4. The sample shown has
a mean value of 60.5 N/mm$^{3/2}$. The calculated values of $K_{fc}$ can finally be used to get a
distribution, shown in Fig. 5, of the values for $G_f$ with mean value 0.14 N/mm and standard
deviation of approximately 5%. It is worth noting, as shown in the Figs. 4 and 5, that the values
of $K_{fc}$ and $G_f$ don’t follow the same Gaussian trend of $\theta_0$, but a non-Gaussian trend. In
particular, the probability functions plotted in the Figs. 4 and 5 follow a Weibull distribution.
This trend is consistent with the conclusion from several works [3, 5] that heterogeneous
distributions of $G_f$ follow a non-Gaussian (either lognormal or Weibull) distributions. This
results show that the proposed methodology is capable to automatically capture the non-
Gaussian distribution of a given normally-distributed statistical information (e.g. mean value,
standard deviation, correlations), using the translation field functions, which satisfy specific
constrains and compatibility conditions associated to the related random field [5]. In fact,
despite the simplicity of the Gaussian distributions for sampling from simple statistical
information, their use for creating a sample of fracture toughness may lead to the generation of
negative, and therefore physically meaningless, values. With the method proposed in this work,
we will be able to benefit from the simplicity of Gaussian field theory while generating a
realistic and physically meaningful distribution for $K_{fc}$.

6.2 The four-point Single-Edge Notched Shear (SENS) beam

The second example used in this study is the four-point SENS beam studied in [43]. This
benchmark is one of the most widely used to validate numerical models for simulating mixed-
mode crack propagation in concrete. A wide range of experimental data is available in
literature, and a satisfactory crack scatter is available and has been summed up in [44].
Specimen geometry, boundary conditions and material properties about this benchmark are
shown in Fig. 6. Young’s modulus $E$ is equal to 24800 N/mm$^2$, and Poisson’s ratio is equal to
0.18. Because also for this second case study a concrete specimen is considered, a value for
$\varepsilon = 8$ mm is again selected, while the size of the mesh is chosen equal to 5 mm. For the same
reason, the values for the parameters involved in the definition of the spectral representation
method are chosen as in the previous case study.

For this benchmark, the explicit form of Eq. (8) and (9) for $K_I$ and $K_{II}$ take the form [18]

$$K_I = \frac{F}{BW} \left(1 - \frac{d}{L}\right) F_I \sqrt{\pi a}$$

(21a)

$$K_{II} = \frac{F}{BW} \left(1 - \frac{d}{L}\right) F_{II} \sqrt{\pi a}$$

(21b)
where $F$ is the force applied to the specimen, and is selected equal to 132.2 kN, $B$ is the specimen thickness equal to 152 mm, $W$ is the specimen height equal to 306 mm, $d = 61$ mm is the distance from the middle of the specimen of the force applied and the pin, $L$ is half of the total length of the specimen equal to 458 mm and $a$ is the length of the initial notch equal to 82 mm. $F_I$ and $F_{II}$ are geometry functions depending on specimen geometry and their values for these two functions are available in [18]. Value for $T$ is equal to $-0.04$ N/mm$^2$, calculated in [35] from Finite Elements analysis. As discussed by Smith et al. [32], $T$ can have negative values.

For this example, from Eq. (21a) and (21b), $F_I = -0.1$ and $F_{II} = 1.12$. Mode-I and Mode-II SIFs can be hence calculated and they are equal to $-3.9$ N/mm$^{3/2}$ and $44.5$ N/mm$^{3/2}$. It is worth noticing that Mode-I SIF has also a negative value. This happens when (i) shear-mode is prevalent on opening-mode mechanisms and (ii) crack lips closure prevails over crack opening [35]; therefore, physically this means that mode-I opening mode has a very small influence of the fracturing process. With this regards, Fig. 7 shows the variation of $F_I$ over the variation of the ratio $d/W$ (as $d/W$ increases, the shear failure prevails over opening failure). It can be seen that when $d/W$ decreases, shear effect increases, making the value for $F_I$ smaller, until it disappears for $d/W > 1.5$.

Fig. 8 shows the evolution of damage in proximity of the initial notch, and it is considered for the generation of the mean value and standard deviation of $\theta_0$. As can be seen, also for this case study the area where the damage spreads is compatible with the size of FPZ considered in literature [25, 38-39].

Table 2 summarizes the values of crack initiation angle with respect to the direction of the initial notch, obtained considering different values of $\bar{s}$ together with the calculated mean value and standard deviation.

The obtained mean value of $\theta_0$ is equal to 74.1° with respect to the direction of the initial notch. The value of $\theta_0$ calculated using Eq. (20) is equal to 72.2°, which is in good agreement with the value obtained numerically. As for the previous example, the deterministic values of fracture toughness and fracture energy are first calculated: $K_{Ic}$ is equal to 48.1 N/mm$^{3/2}$ while Griffith’s Energy $G_f$ is then calculated as $G_f = 0.095$ N/mm.

Once the mean value and standard deviation for $\theta_0$ are defined as listed in Table 2, different values of crack initiation angle are sampled using the spectral approach, as shown in Figure 9. This sample is then used together with the expression for $K_{Ic}$ (i.e., Eq. (7)), and a sample for $K_{Ic}$ is then obtained as shown in Fig. 10. The sample has a mean value of 48.22 N/mm$^{3/2}$. The
calculated values of $K_{ic}$ is finally used to get a distribution of the values for $G_f$ which have mean value of 0.094 N/mm and standard deviation of approximately 4%. It is worth noting, as shown in Figs. 10 and 11, that also for this example $K_{ic}$ and $G_f$ follow a log-normal trend, consistent with the conclusion from the previous example and from literature [3,5] that heterogeneous distributions of $K_{ic}$ and $G_f$ follow a non-Gaussian trend.

7. Conclusions

A novel approach for uncertainty quantification of the random fields in the physical domains is presented. The uncertainty in the mechanical properties of the bodies subjected to damage is quantified by considering the damage state developed in the vicinity of the crack initiation points. Distribution of the damage, predicted using a phase-field model capable of reproducing mixed mode loading conditions, is then employed to estimate the mean value and the standard deviation for direction of crack evolution in the body. This statistical information is then used to create samples for the crack initiation angle by means of the Gaussian spectral representation approach. The calculated sample is finally used to calculate spatially-varying values of the fracture toughness, and consequently the fracture energy for the mixed-mode crack propagation conditions. In first instance, a concrete slab with an internal notch with an inclination of 45º and subjected to uniaxial traction is studied. Calculated mean value for the crack initiation angle (57.1º), is in a good agreement with value of the crack initiation angle found in literature (53.1º), with a difference of only 4º. The second example studied is the four-point bending beam, one of the examples most widely used to validate models considering the mixed-mode conditions. Also for this case study, the mean value for the crack initiation direction (74.1º with respect to the direction of the initial notch) is in very good agreement with the value calculated analytically (72.2º). For both examples, the calculated values of the fracture toughness and the fracture energy are in excellent agreement with values from literature. Furthermore, the most interesting aspect of this method is its capability, by using Gaussian-related statistical information, to capture the non-Gaussian nature of the statistical distribution of the fracture toughness and fracture energy for brittle materials.

Acknowledgement

This study was supported by EPSRC UK (No. EP/M506679/1).

References


Fig 1. Geometry and loading condition of the considered concrete panel with an inclined central notch.
Fig 2. Local area in proximity of the crack tip for the notched concrete panel: the effect of the damage influences the direction of crack initiation considering the damage state at the time step immediately before failure starts.
Fig 3. Sample for 350 values of $\theta_0$ (top) and PDF with Gaussian nature (bottom). The method shown in Eq. (10) is used to generate each sample.

Fig 4. Sample of $K_{IC}$ generated from the sample of crack initiation angle (top) and relative PDF (bottom): it can be observed that the PDF follows a non-Gaussian distribution, result consistent with assumptions from literature [3-5].
Fig 5. Sample of $G_f$ calculated from $K_{ic}$ (top) and relative Probabilistic distribution of one sample of $G_f$ it can be observed that its behaviour follows a lognormal distribution, behaviour consistent with the assumption that non-Gaussian distributions well describe the physical trend of brittle materials such as concrete. [3-5].
**Fig 6.** Geometry and load of the SENS beam.

**Fig 7.** Geometric function $F$ trend as function of $d/W$ for $L/W = 3.0$ and $a/W = 0.3$. $F$ has negative values for small values of $d/W$, and increases its values for increasing $d/W$. For larger values ($d/W > 1.5$) the contribution of mode I component vanishes.

**Fig 8.** Local area in proximity of the crack tip of the four point SENS beam: the effect of the damage influences also for this example the direction of crack initiation. Nodes close to the crack tip have a lower value of damage and therefore a higher influence for the determination of the crack initiation angle.
Fig 9. Sample for 2300 values of $\theta_0$ (top) and PDF with Gaussian nature (bottom). The method shown in Eq. (10) is used to generate each sample.
Fig 10. Sample of $K_{IC}$ generated from the sample of crack initiation angle (top) and relative PDF (bottom): the PDF follows also in this case a non-Gaussian distribution [3-5].
Fig 11. Sample of $G_f$ calculated from $K_{ic}$ (top) and relative Probabilistic distribution of one sample of $G_f$. Also in this example its behaviour follows a non-Gaussian trend, behaviour consistent with the assumption that non-Gaussian distributions well describe the physical trend of brittle materials such as concrete. [3-5].
### Table 1. Mean values for $\theta_0$ estimated in proximity of the crack tip for different threshold values of $\bar{s}$

<table>
<thead>
<tr>
<th>$\bar{s}$</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>Mean value $\theta_0$</th>
<th>Standard deviation</th>
<th>Crack initiation angle, [41]</th>
<th>Crack initiation angle, Eq (20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta_0$</td>
<td>45°</td>
<td>65.3°</td>
<td>60.3°</td>
<td>56.9°</td>
<td>58°</td>
<td>57.1°</td>
<td>7.5°</td>
<td>53.1°</td>
<td>52.7°</td>
</tr>
</tbody>
</table>

### Table 2. Values for $\theta_0$ estimated in proximity of the crack tip for different threshold values of $\bar{s}$

<table>
<thead>
<tr>
<th>$\bar{s}$</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>Mean value $\theta_0$</th>
<th>Standard deviation</th>
<th>Crack initiation angle, Eq (20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta_0$</td>
<td>89.7°</td>
<td>79.6°</td>
<td>72.6°</td>
<td>74.9°</td>
<td>63.6°</td>
<td>74.1°</td>
<td>10.8°</td>
<td>72.2°</td>
</tr>
</tbody>
</table>