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ABSTRACT: Spontaneous decidualization of the endometrium in response to progesterone signaling is confined to
menstruating species, including humans and other higher primates. During this process, endometrial stromal cells
(EnSCs) differentiate into specialized decidual cells that control embryo implantation. We subjected undifferen-
tiated and decidualizing human EnSCs to an assay for transposase accessible chromatin with sequencing (ATAC-
seq) to map the underlying chromatin changes. A total of 185,084 open DNA loci were mapped accurately in EnSCs.
Altered chromatin accessibility upon decidualization was strongly associated with differential gene expression.
Analysis of 1533 opening and closing chromatin regions revealed over-representation of DNA binding motifs for
known decidual transcription factors (TFs) and identified putative new regulators. ATAC-seq footprint analysis
provided evidence of TF binding at specific motifs. One of the largest footprints involved the most enriched
motif—basic leucine zipper—as part of a triple motif that also comprised the estrogen receptor and Pax domain
binding sites. Without exception, triple motifs were located within Alu elements, which suggests a role for this
primate-specific transposable element (TE) in the evolution of decidual genes. Although other TEs were generally
under-represented inopenchromatin of undifferentiatedEnSCs, several classes contributed to the regulatory DNA
landscape that underpins decidual gene expression.—Vrljicak, P., Lucas, E. S., Lansdowne, L., Lucciola, R., Muter,
J., Dyer, N. P., Brosens, J. J., Ott, S. Analysis of chromatin accessibility in decidualizing human endometrial stromal
cells. FASEB J. 32, 2467–2477 (2018). www.fasebj.org

KEY WORDS: endometrium • decidualization • gene regulation • open chromatin • transposable elements

INTRODUCTION

Decidualization of the endometrium occurs in all mam-
mals in which the implanting embryo breaches the lumi-
nal endometrial epithelium and the trophoblast invades
the maternal tissues (1). This process—defined by the

transformation of endometrial stromal cells (EnSCs) into
epithelioid decidual cells—occurs in concert with the
secretory transformation of uterine glands, vascular
remodeling, and influx of specialist immune cells, espe-
cially uterine NK cells (2). In pregnancy, decidual cells form
a protective and nutritive matrix around the early con-
ceptus that enables controlled trophoblast invasion and
confers maternal immune tolerance of the antigenically
distinct fetus (3–5).

In most mammals, decidualization is triggered by the
implanting embryo; however, in a few species—that is,
higher primates, 4 species of bats, the elephant shrew,
and the common (Cairo) spiny mouse—decidualization is
spontaneous, meaning that it is initiated during the mid-
luteal phase of each cycle, independently of an implanting
embryo (6, 7). Sustained progesterone signaling is essential
to maintain the decidual phenotype of differentiated
EnSCs (8). In the absence of pregnancy, falling ovarian
progesterone production triggers a cascade of inflamma-
tory events in the decidualizing endometrium that, upon
recruitment and activation of leukocytes, becomes irrevo-
cable and leads to partial tissue destruction, bleeding, and
menstrual shedding (9). Recent studies have shown that
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the inextricable coupling of cyclic decidualization to men-
struation and tissue repair bequeaths the uterus with ad-
ditional reproductive traits, including the ability to reject
invasive, but developmentally impaired embryos and to
adapt to reproductive failure (10, 11).

Primary human EnSCs readily decidualize in culture in
response to cAMP and progestin signaling in a manner
that recapitulates closely the in vivo situation (12, 13). This
model system has been used extensively to characterize
the signaling pathways, downstream transcription factors
(TFs), histone and DNA modifications, and gene networks
that regulate this differentiation process [reviewed in de-
tail in Gellersen et al. (2)]. Furthermore, DNase-seq has
been used to map open chromatin regions, indicative of
regulatory DNA, in decidualized EnSCs (14), but the dy-
namic changes in the chromatin landscape that underpin
the transition of undifferentiated EnSCs to specialized
decidual cells have not yet been characterized.

In this study, we used an assay for transposase acces-
sible chromatin with sequencing (ATAC-seq) to profile the
chromatin landscapes of primary human EnSCs in their
undifferentiated state and upon decidualization. ATAC-
seq utilizes the highly active transposase, Tn5, to in-
terrogate the accessibility of the genome and map open
chromatin regions. These putative cis-regulatory DNA re-
gions can be additionally explored for footprints of TF
binding (15). Footprints are small regions of tens of base
pairs that are relatively resistant to transposase activity
inside an otherwise highly accessible locus. We have gen-
erated a comprehensive map of chromatin regions that
change dynamically upon decidualization, determined the
TF binding motifs that are most enriched upon the opening
orclosingof chromatin, and interrogated footprints thatare
indicative of TF binding to cis-regulatory sequences in
decidualizing EnSCs. Analysis of a conspicuous footprint
that is indicative of the binding of a large protein complex
led to the discovery of an abundant triple motif that con-
sists of estrogen receptor (ESR), basic leucine zipper (bZIP),
and Pax domain binding sequences in Alu elements, the
most abundant transposable elements (TEs) in the human
genome. We explored whether specific triple motifs could
have been co-opted to regulate decidual gene expression
in menstruating primates and examined the involve-
ment of other TEs in the cis-regulatory landscape of
differentiating human EnSCs.

MATERIALS AND METHODS

Ethical approval and sample collection

The study was approved by the National Health Service (NHS)
National Research Ethics-Hammersmith and Queen Charlotte’s
and Chelsea Research Ethics Committee (1997/5065). Endome-
trial biopsies were obtained from women who attended the Im-
plantation Clinic, a dedicated research clinic at University
Hospitals Coventry and Warwickshire National Health Service
Trust. Timed midsecretory-phase biopsies were obtained using a
Wallach Endocell endometrial sampler with written informed
consent in accordance with the Declaration of Helsinki. ATAC-
seq analysis was performed on undifferentiated and decidual-
izing EnSC cultures that were established from 1 nulliparous
patient awaiting in vitro fertilization treatment and 2 recurrent

miscarriage patients. Biopsies were obtained between 5 and
10 d after LH surge. None of the patients received hormonal
therapy for at least 2 cycles before the biopsy cycle.

Primary culture

Endometrial biopsies were collected in DMEM-F12 media that
was supplemented with 10% dextran-coated charcoal (DCC)–
stripped FBS and processed for primary EnSC culture as pre-
viously described (16). For decidualization studies, confluent
monolayers of human EnSCs were incubated overnight at 37°C
with 5% CO2 in phenol red–free DMEM/F-12 that contained 2%
DCC with antibiotic/antimycotic and L-glutamine (2% medium).
To induce differentiation, cells were treated in 2% DCC with
0.5 mM 8-bromoadenosine-cAMP (Sigma-Aldrich, Poole, United
Kingdom) and 1 mM medroxyprogesterone acetate (MPA;
Sigma-Aldrich) for the indicated time points. Control cultures
were incubated in media that was supplemented with 2% DCC.
Primary cultures were subjected to ATAC-seq at passage 2.

ATAC-seq libraries

ATAC-seq was performed as previously described (15, 17), with
some modifications. In brief, EnSCs (n = 3) were grown in 35-mm
diameter tissue culture dishes. Confluent monolayers were
washed with cold Dulbecco’s PBS, then lysed using ice-cold EZ
lysis buffer (Sigma-Aldrich). Cells were scraped, then transferred
to chilled prelabeled nuclease-free 1.5-ml microcentrifuge tubes.
Samples were vortexed, left on ice for 5 min, then pelleted in a
fixed-angle refrigerated benchtop centrifuge. The supernatant
was carefully removed, and the pellet was washed once in EZ
lysis buffer. The nuclear pellet was resuspended in the trans-
posase reaction mix that contained 25 ml Tagment DNA buffer,
5 ml Tagment DNA enzyme, and 20 ml nuclease-free water (Nex-
tera DNA Sample Preparation Kit; Illumina, Cambridge, United
Kingdom). The transposition reaction was carried out for either
45 or 90 min at 37°C. Samples were purified using a Zymo DNA
Clean and Concentrator-5 Purification Kit according to manu-
facturer instructions. In brief, DNA-binding buffer was added to
the 50-ml sample that was then mixed and transferred to the
column. Samples were centrifuged at 17,000 g for 30 s at room
temperature. Flow-through was discarded, 200 ml DNA wash
buffer added, and columns were centrifuged as described above.
The wash and centrifugation steps were repeated twice. After
removing the residual liquid, 23 ml prewarmed elution buffer
was added to the columns. Samples were incubated for 2 min at
room temperature, then centrifuged for 2 min to elute DNA. After
purification, a 20 ml sample was added to a 0.2-ml PCR tube that
contained the following reagents (Nextera DNA Sample Prepa-
ration Kit and Nextera Index Kit; Illumina): 5 ml index 1, 5 ml
index 2, 15 ml Master mix, and 5 ml Primer Cocktail. Amplification
was performed in a Veriti 96-Well Thermal Cycler (Applied
Biosystems, Foster City, CA, USA) using the following PCR
conditions: 72°C for 3 min, 98°C for 30 s, then 15 cycles of 98°C for
10 s, 63°C for 30 s, and 72°C for 1 min. Libraries were purified
using AMPure XP beads according to the Illumina Nextera Kit
recommended protocol. Amplified libraries were quantified us-
ing Qubit HS DNA Assay on a Qubit 2.0 Fluorometer (Thermo
Fisher Scientific, Paisley, United Kingdom) according to the
manufacturer’s instructions. Library sizes were assessed on an
Agilent Technologies 2100 Bioanalyzer using the High Sensitivity
DNA chip (Agilent Technologies, Santa Clara, CA, USA).

Bioinformatic analysis

ATAC-seq libraries were sequenced with 100-bppaired ends on a
HiSeq 2500 (Illumina) and mapped to the hg19 human genome
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assembly using bowtie2-2.2.6 (18) and samtools-1.2.0 (19). Peaks
were called on a merged mapped file using MACS-2.1.0 (20),
which led to the identification of 202,169 peaks. Of these peaks,
185,087 were deemed high confidence (q , 1 3 1024) and were
used for additional analysis. To determine differential chromatin
opening, we used HTSeq-0.6.1 (21) to assign reads to peaks, and
DESeq2 (22) was used to identify differential peaks. Peaks were
then ranked according to their P value, taking into account the
direction of the fold change, such that lower-rank values repre-
sent peaks that open upon decidualization, whereas high-rank
values represent closing regions of chromatin. Data have been
submitted to Gene Expression Omnibus (GEO; accession num-
ber: GSE104720).

Comparison of peak data with other data sets

ATAC-seq data were compared with other available chromatin
binding and accessibility data sets using BEDTools (23). Chro-
matin immunoprecipitation followed by sequencing (ChIP-seq)
data sets from decidualizing stromal cells were obtained from
the GEO for the following TFs: progesterone receptor (PGR;
GSM1703567), Fos-like antigen (FOSL2; GSM1703568), and
forkhead box O1 (FOXO1; GSM1703607). Formaldehyde-assisted
isolation of regulatory elements with sequencing data for whole
endometrium and DNaseI hypersensitivity data for decidualized
EnSCs were obtained from GEO accession numbers GSM1011119
and GSE61793, respectively, whereas the Encyclopedia of DNA
Elements (ENCODE; Stanford University, Stanford, CA, USA)
DNaseI hypersensitivity data for 125 human cell and tissue types
were obtained from the University of California, Santa Cruz
(UCSC; Santa Cruz, CA, USA) genome browser track (24–26).

Differential expression of proximal genes

ENCODE DNaseI hypersensitivity data were used to associate
open chromatin regions and gene promoters with high confi-
dence (25). A distal open chromatin region was deemed to be
associated with a gene promoter if it was shown to physically
interact and the distance was no more than 10 kb. Gene expres-
sion profiles of undifferentiated and decidualizing EnSCs were
obtained by performing RNA-seq analysis on 3 independent
samples (GEO accession number: GSE104721).

Motif discovery and identification

Differentially opening chromatin regions were interrogated for
enriched short-sequence motifs using HOMER v.4.8 (27). Back-
ground sets were generated from random genomic sequences of
selected size near the transcription start site (TSS) of genes (650kb),
matching the GC/CpG distribution of the input. To additionally
investigate the context of informative motifs, 50-bp sequences that
surround enriched motifs were searched with Multiple Em for
Motif Elicitation (MEME) and compared with motif databases
using TomTom (28). Sequence conservation at each nucleotide
position was calculated using WebLogo v.3 (29). Find Individual
Motif Occurrences (FIMO) was used to identify instances of the
triple motif sequence across the whole human genome (30). These
locations were intersected with the RepeatMasker database re-
trieved via the UCSC Table Browser. Average ATAC-seq profiles
and footprinting analysis were performed with Wellington (31).

Conservation of Alu elements in primate genomes

To examine Alu conservation, Alu elements in the human ge-
nome were mapped to other primate species using blastn (32).
We examined for conservation a total of 7120 Alu elements of

.280 bp in length and overlapping gene-linked ATAC-seq
peaks. Nucleotide sequences of 100 bp in length that spanned the
59 and 39 ends and surrounding sequences were mapped to other
primate genomes. Alu loci for which orthologous loci in other
primates that could not be established with confidence were ex-
cluded from the analysis. For remaining loci, the presence or
absence of specific Alu elements at the orthologous loci was
computed (see examples in Supplemental Fig. 7).

RESULTS

Altered chromatin accessibility
upon decidualization

To map dynamic chromatin changes upon decidualiza-
tion, nuclei that were isolated from EnSC cultures, either
untreated or decidualized with 8-bromoadenosine-cAMP
and MPA for 4 d, were processed for ATAC-seq. This
analysis accurately mapped the open chromatin regions in
both cellular states. For example, expression of prolactin
(PRL), a major decidual marker gene, is initiated in the
endometrium at an alternative start site located at an ad-
ditional noncoding exon, exon 1a, ;6-kb upstream of the
pituitary-specific TSS (33). As shown in Fig. 1A (upper
panel), ATAC-seq analysis revealed selective chromatin
opening immediately upstream of the nonpituitary PRL
TSS in response to treatment with 8-bromoadenosine-
cAMP and MPA, which confirmed that cells responded to
deciduogenic signals. Another cardinal decidual marker
gene is IGFBP1 (IGF binding protein-1), and, again, chro-
matin opening across the proximal promoter region was
apparent in differentiating EnSCs (Fig. 1A, lower panel).
Additional regions of chromatin opening at the IGFBP1
locus were mapped upstream of the TSS and downstream
of the termination site.

The density of mapped ATAC-seq peaks as a function
of genomic position provides a quantitative measure of
chromatin accessibility. A total of 185,084 regions of ac-
cessible chromatin were mapped in EnSCs and ranked by
the extent of opening or closing upon decidualization
(Supplemental Table 1). On the basis of a stringent crite-
rion (Bonferroni adjusted P , 0.05), 1225 and 278 loci
opened or closed upon decidualization, respectively. The
majority of these loci (55%) fell into gene introns, and 27%
were found within 10 kb upstream of TSSs. Next, we ex-
amined the overlap in accessible chromatin regions that
were identified by ATAC-seq and existing chromatin
profiling data obtained either by DNaseI-seq analysis of
decidualized EnSCs or by formaldehyde-assisted isolation
of regulatory elements with sequencing analysis of whole
endometrial tissue (14). More than 80% of open chromatin
regions that were identified in this study were not mapped
previously in either cultured decidual cells or whole en-
dometrium (Supplemental Fig. 1); however, .95% of the
open chromatin regions in EnSCsoverlapped with DNaseI
hypersensitive sites that were identified by DNaseI-seq
analysis of 125 human cell and tissue types in the
ENCODE project (25), which indicates that our analysis
captured bona fide regulatory DNA regions.

The gain or loss of ATAC-seq peaks upon deciduali-
zation indicates altered TF binding that drives differential
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gene expression; however, both activating and repressive
TFscanpotentiallybindatdifferent regulatorysites,which
renders it challenging to confidently predict gene expres-
sion from dynamic chromatin changes at specific loci
alone. Nevertheless, analysis of 100 genes that are associ-
ated with either the most induced or repressed ATAC-seq
peaks—within 10 kb of the promoter—revealed a strong,
though not fully predictive, association with increased or
decreased expression upon decidualization (P = 2.65 3
1029, Student’s t test; Fig. 1B).

Motif discovery and footprint analysis

To gain insight into TFs that govern decidual gene ex-
pression, we performed de novo short-sequence motif en-
richment analysis on the 1255 opening and 278 closing
chromatin regions. This annotation revealed 17 signif-
icantly over-represented motifs in opening peaks (des-
ignated opening motifs 1–17) and 7 over-represented
motifs in closing motifs 1–7 (Fig. 2A, and Supplemental
Fig. 2, and Supplemental Table 2). Of note, these motifs
were associated strongly with the opening or closing of
chromatin, not only in the subset of peaks used for motif
discovery, but over the full set of peaks (Fig. 2B and
Supplemental Fig. 3).

Binding of TFs to open chromatin should result in
an ATAC-seq footprint. To examine the occupancy of
informative binding sites, we calculated the average
ATAC-seq signal centered on each motif (Fig. 2C and
Supplemental Fig. 4). At the center of these plots, con-
served motif sequences are reflected by spikes that re-
sult from the sequence-specific cutting bias of the Tn5
transposase. TF occupancy of a motif protects the DNA
from transposase activity, which causes relative enrich-
ment of reads across the binding site. This gives rise to
the conspicuous pattern of excess positive and negative
strand reads at 59 and 39 flanking regions of the motif,

respectively. Footprint analysis indicated TF binding to
cis-regulatory elements in all enriched motifs, except for
opening motif 10 and closing motif 2. Next, we matched
the motifs against known TF binding databases and
examined the gene expression of the putative binding
TFs in decidualizing EnSCs (Supplemental Fig. 5 and
Supplemental Table 3). CCAAT/enhancer binding
protein b and d, FOSL2 (or FRA2), FOXO1, PGR, and
signal transducer and activator of transcription 3 and
5 are essential TFs for decidualization (34–37), whereas
TEA domain transcription factor 1 has been shown to
repress decidualization (38). Of note, our top motifs
in enriched ATAC-seq peaks corresponded to high-
affinity binding sites for key decidual TFs (Fig. 2A).
Furthermore, the most enriched motif in closing regions
binds TEA domain transcription factor 1. We also com-
pared ATAC-seq regions with existing ChIP-seq binding
data for FOXO1 (GSM1703607), PGR (GSM1703567),
and FOSL2 (GSM1703568) in differentiating EnSCs
(39). FOXO1 and PGR binding was enriched in regions
of opening chromatin (P , 1 3 1024 and P , 1 3 10215,
respectively; Fisher’s exact test for 1000 opening and
closing peaks), which is consistent with their role as
core decidual TFs (Supplemental Fig. 6). Of interest,
the presence of both PGR and FOSL2 binding sites
within a chromatin region correlated with chromatin
opening upon decidualization, whereas the presence
of FOSL2 in the absence of PGR binding correlated
with chromatin closure.

Next, we mined our RNA-seq data to identify novel
decidual TFs that may bind other motifs in opening
chromatin. This exercise yielded several candidate TFs
that were not yet implicated in the promotion of decidu-
alization, including RAR-related orphan receptor A, aryl
hydrocarbon receptor nuclear translocator like, and Meis
homeobox 1. Conversely, down-regulation of runt-related
transcription factor 1 and 2, SRY-box 12, transcription fac-
tor 3, and ETS Proto-Oncogene 1 upon decidualization
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motif across bins of 10,000 ATAC-seq peaks that are ranked on the x axis from the most opening (1) to the most closing peak
(185,084). Nonshaded bars indicate expected frequency on the basis of genomic background frequency. C) Footprint analysis.
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may account for the loss of chromatin accessibility in dif-
ferentiating EnSCs. Taken together, our ATAC-seq data
capture known modulators of decidualization, identify
their putative target loci, and suggest novel TFs.

Triple motif and Alu repeats

Footprints around bZIP motifs (e.g., opening motif 1) were
noticeably wider thanaroundother motifs (Fig. 2C), which
suggests binding of multimeric complexes at these sites.
Additional short-sequence motif analysis on 50-bp win-
dows around these putative TF binding sites in opening
motif 1 resulted in the discovery of an over-represented
triple motif that consisted of ESR, bZIP, and Pax domain
binding sequences in close proximity (Fig. 3A). This triple
motif occurs 47,499 times in open chromatin regions. A
genome-wide search revealed that triple motifs over-
lap invariably with the 39 end of Alu repetitive element
sequences (Fig. 3B). Dimeric Alu elements are unique to
primates and are classified into subfamilies according to
their relative ages (40, 41). Triple motifs were found in all
subfamilies of Alu elements, including the oldest, Alu J.
Whereas they share the same level of sequence conserva-
tion with other Alu regions (Fig. 3C), triple motifs were
much more dynamically regulated upon decidualization
(Fig. 3D). Indeed, the 39 end of Alu elements overlaps
ATAC-seq peaks more frequently than does the 59 end
(P = 2.2 3 10216, binomial test; Fig. 3E).

Next, we identified 7120 Alu elements that overlap with
open chromatin regions that are associated with genes and
examined their conservation in menstruating primates.
Menstruation is well documented in Catarrhines (humans,
apes, and Old World monkeys), but is absent in Strepsir-
rhines (e.g., bushbabies/galagos). The prevalence of
menstruation in Platyrrhini (New World monkey) is much
less clear, with conflicting observations reported for cer-
tain species (7, 42). As shown in Fig. 4, the level of con-
servation of informative Alu was high in Catarrhines,
but not in Strepsirrhines. An intermediate level of con-
servation was observed in Platyrrhini, including squirrel
monkey (Saimiri) and marmoset (Callithrix), 2 reportedly
nonmenstruating primates. To confirm these findings, we
examined a set of genes that were differentially expressed
upon decidualization that are putatively regulated by Alu
elements in opening or closing ATAC-seq peaks (Supple-
mental Table 4). Of interest, among these genes are several
that encode key decidual TFs—for example, CEBPD and
WT1 (Wilms tumor 1)—and signal intermediates, such as
PROK1 (prokineticin 1) and SGK1 (serum/glucocorticoid
regulated kinase 1) (13, 43, 44). Taken together, these ob-
servations suggest that the triple motif in Alu elements
contributes to the cis-regulatory landscape that governs

the spontaneous decidualization and menstruation in the
primate lineage; however, there was no evidence that Alu
repeats in dynamic vs. nondynamic chromatin regions in
decidualizing EnSCs were evolutionarily more conserved
(Fig. 4).

Contribution of other TEs

To determine the involvement of other TEs in the open
chromatin landscape of human EnSCs, we overlapped
ATAC-seq data with repetitive elements that were iden-
tified by RepeatMasker. In 5 of 6 of the most abundant
repetitive families, the frequency of overlap with ATAC-
seqpeakswas lower thanexpectedbychance(P,1310215,
Fisher’s exact test). Only one family—chicken repeat 1
elements—demonstrated a higher frequency than expec-
ted (P , 1 3 10215, Fisher’s exact test; Fig. 5A). Next, we
examined the contribution of TEs to the dynamic chro-
matin changes in decidualizing cells by examining their
frequency in opening peaks. This analysis identified ad-
ditional exapted TEs, including the Eutherian-specific
hAT-Charlie DNA transposon that has been previously
shown to confer cAMP and progesterone responsiveness
in decidualizing EnSCs (45). Other notable TEs included
Line1 and the exogenous retroviral-derived ERVL (Fig. 5B
and Supplemental Fig. 8). Of interest, low complexity
and simple repeats were more likely to close during
decidualization (Supplemental Fig. 8). Finally, chroma-
tin accessibility was predominantly unchanged upon
decidualization in regions of Satellite and ERVK se-
quences. Thus, whereas repetitive elements are generally
under-represented in open chromatin in EnSCs, they
nevertheless function frequently as part of the regulatory
landscape that renders EnSCs responsive to cAMP and
progestin signaling.

DISCUSSION

Decidualization of human EnSCs depends on the
convergence of the cAMP and progesterone signaling
pathways as well as the induction and/or activation of
core decidual TFs (2, 12). Here, we present the first
characterization of the changes in chromatin accessibility
upon differentiation of human EnSCs into decidual cells.
Opening ATAC-seq peaks result from the cooperative
binding of TFs in place of a canonical nucleosome.
Congruently, the most highly enriched cis-regulatory
motifs upon decidualization represent high-affinity
binding sites for core decidual TFs, including C/EBPs,
FOXO1, signal transducers and activators of transcrip-
tion, PGR, and members of the activator protein-1 family

Average ATAC-seq signals were calculated within 200-bp windows that were centered on enriched motifs in opening and closing
ATAC-seq peaks. Red and blue indicate positive and negative strand cuts, respectively. A deep notch in the aggregated ATAC-seq
signal at the motif, together with increased positive and negative strand reads at the 59 and 39 �anking regions, respectively,
indicates occupancy by a DNA-binding factor. Footprints were present at all motifs, with the exception of closing motif 1 (M1).
CEBP, CCAAT/enhancer binding protein; STAT3, signal transducer and activator of transcription; RUNX, runt-related
transcription factor; SOX, SRY-box 12; TCF, transcription factor 3; TEAD, TEA domain transcription factor.
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of transcription factors, most prominently FOSL2 (2, 34).
Although multiple TFs can potentially bind a given motif,
the mining of published ChIP-seq data confirms increased
binding of both FOXO1 and PGR to opening chromatin
regions in decidualizing cells (34, 39). Several studies
have reported that cooperation between core decidual
TFs, which is often mediated via direct protein-protein
interaction, modifies the transcription output of indi-
vidual TFs (46–48). A case in point is FOSL2, which has
been identified as a putative PGR coregulator in a ChIP-
seq analysis of the PGR, cistrome, in decidualizing EnSCs
(34). Our data demonstrate that the presence of both PGR
and FOSL2 binding sites within a DNA region correlates
with increased chromatin accessibility upon decidualiza-
tion, whereas sites with only FOSL2 motifs were more
likely to close. We identified a total of 17 enriched motifs in
opening chromatin, all of which, bar one (opening motif
10), demonstrated evidence of TF binding in ATAC-seq
footprints. Cross-referencing of these binding motifs
against TFs that are up-regulated at the mRNA level upon
decidualization identified several putative novel decidual
transcriptional regulators, including RAR-related orphan
receptor A, aryl hydrocarbon receptor nuclear translocator
like, and Meis homeobox 1. Reduced chromatin accessi-
bility was equally associated with the loss of binding
motifs for TFs that are repressed upon decidualization,
most notably, runt-related transcription factor 1 and 2,
SRY-box 12, transcription factor, and ETS Proto-Oncogene
1. Whereas gene expression was not fully predicted by
chromatin changes at specific loci, overall, the changes
in chromatin accessibility—leading to either the loss or
enrichment of cis-regulatory DNA elements in both
promoters and at distal sites—correlated strongly with
differential gene expression in decidualizing cells.

There is compelling evidence that the emergence of
decidual cells in Eutherian (placental) mammals was

driven by large-scale integration of numerous TEs that
contributed cis-regulatory elements that were coopted by
EnSC-specific TFs to drive decidual gene expression (14).
Most families of repetitive elements, including Alu and L1
elements, are under-represented in the open chromatin
landscape of EnSCs, which suggests active repression;
however, several families of TEs were over-represented in
opening chromatin upon decidualization, which supports
the notion that they contributed essential functional DNA
sequences that enabled the endometrium to accommodate
an invasive placenta. Among Eutherian mammals, spon-
taneous decidualization coupled with menstruation is a
rare phenomenon, with higher primates accounting for
93% of all known menstruating species (6, 7). A striking
observation in this study was the discovery of a singular
triple TF binding motif, embedded in primate-specific
dimeric Alu elements, that was not only linked strongly
to chromatin opening upon decidualization, but that
also was conserved in menstruating but not in non-
menstruating primates. The precise nature of the TF
complex that binds this triple motif, which consists of
contiguous ESR, bZIP, and Pax domain binding se-
quences, requires additional investigation, although ESR
sites in Alu sequences have been shown previously to be
bound in vivo (49, 50). As estradiol is not part of our dif-
ferentiation protocol, our findings potentially point to a
role for the unliganded ESR in regulating decidual gene
expression, a phenomenon that has already been de-
scribed for PGR and androgen receptor (12, 51). Triple
motifs in Alu elements are abundant throughout the
genome, which indicates that the binding of a multimeric
transcriptional complex upon decidualization is likely
dependent on the local chromatin context. Whereas our
observations are intriguing, it is possible that the emer-
gence of Alu triple motif and menstruation in primates
may not be functionally linked, but merely reflects the
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co-occurrence of two evolutionary events with similar
timing.

Although spontaneous decidualization in primates
and other species evolved independently, menstruat-
ing mammals share a number of reproductive features,
including spontaneous ovulation, a deeply invading
hemochorial placenta, and few well-developed offspring.
The convergence of these reproductive traits suggests
an adaptive value for species that possess them (7);
however, the reproductive advantage of menstruation
has been the subject of intense controversy (7, 52–54),

especially in view of the health burden associated with
abnormal menstruation and menstruation-associated
disorders, such as endometriosis (2). Furthermore, over-
whelming evidence indicates that aberrant decidualiza-
tion causes a spectrum of clinical disorders, including
implantation failure and recurrent pregnancy loss
(11, 13, 55). By mapping the dynamic changes in the
chromatin landscape in differentiating human EnSCs,
our work constitutes a step toward the full elucidation of
the regulatory networks that drive decidualization, which
ultimately may contribute to the development of more
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targeted approaches for the treatment of reproductive
failure.
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