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Accelerated path-integral simulations using ring-polymer interpolation
Samuel J. Buxton1 and Scott Habershon1, a)

Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry, CV4 7AL,
United Kingdom

Path-integral (PI) molecular simulations can be used to calculate exact quantum statistical mechanical prop-
erties for complex systems containing many interacting atoms and molecules. The limiting computational
factor in a PI simulation is typically the evaluation of the potential energy surface (PES) and forces at
each ring-polymer “bead”; for an n-bead ring-polymer, a PI simulation is typically n times greater than
the corresponding classical simulation. To address the increased computational effort of PI simulations, sev-
eral approaches have been developed recently, most notably based on the idea of ring-polymer contraction
(RPC) which exploits either the separation of the PES into short-range and long-range contributions or the
availability of a computationally-inexpensive PES which can be incorporated to effectively smooth the ring-
polymer PES; neither approach is satisfactory in applications to systems described by ab initio PESs. In
this Article, we describe a new method, ring-polymer interpolation (RPI), which can be used to accelerate
PI simulations without any prior assumptions about the PES. In simulations of liquid water under ambient
conditions, where quantum effects are known to play a subtel role in influencing experimental observables
such as diffusion coefficients and radial distribution functions, we find that RPI can accurately reproduce the
results of fully-converged PI simulations, albeit with far fewer PES evaluations; this approach therefore opens
up the possibility of large-scale PI simulations on ab initio PESs at lower computational effort than current
methods.

I. INTRODUCTION

Path-integral (PI) simulations enable the exact calcu-
lation of time-independent quantum properties in general
molecular systems.1–17 In the path integral formulation
of quantum statistical mechanics,1 each quantum particle
in the system is mapped onto a classical n-bead harmonic
ring-polymer; exploiting this isomorphism, sampling
the classical configurational space of the ring-polymer
by either Monte Carlo (PIMC) or molecular dynamics
(PIMD) enables determination of static properties such
that nuclear quantum effects such as zero-point energy
(ZPE) conservation and tunnelling are exactly accounted
for (at least in the n→∞ limit). PIMD simulations are
particularly appealing due to the fact that many of the
strategies developed to enable efficient sampling in clas-
sical MD simulations, including improved thermostats18

and multiple time-step methods,19,20 can be straight-
forwardly implemented within the PI framework. As
a result, PIMD simulations have been employed to in-
vestigate systems ranging from structure in liquid and
solid water phases13,16,17,21–27 to free energies in enzyme-
catalyzed proton transfer.28–31 More recently, PIMD-
based strategies have been proposed which enable calcu-
lation of approximate dynamic (time-dependent) prop-
erties; these approaches, including ring-polymer molec-
ular dynamics (RPMD16,25,26,29,32–41), centroid molecu-
lar dynamics (CMD22,42–47) and semiclassical instanton
theory48,49 now provide a useful toolbox for interrogating
the influence of quantum effects in complex condensed-
phase dynamics.

a)Electronic mail: S.Habershon@warwick.ac.uk

Computationally, the most demanding aspect of PI
simulations is the evaluation of the potential energy sur-
face (PES) and resultant forces at each configuration
around the n-bead ring-polymer; this usually results in a
computational expense which is n times greater than the
corresponding classical simulation. Although path inte-
gral simulations are formally exact in the n → ∞ limit,
in practice convergence of calculated properties is typi-
cally achieved by choosing the number of ring-polymer
“beads” such that βh̄ωmax/n � 1, where β = 1/(kBT )
and ωmax is the characteristic highest physical frequency
in the system. In liquid water at ambient temperature it
is common to select n = 32, reflecting the fact that the
high-frequency intramolecular O-H vibrations (ωmax '
3600 cm−1) have large ZPE relative to the available ther-
mal energy (kBT ' 200 cm−1 at T = 298 K).16,41

If the PES describing the system is computationally-
inexpensive (e.g. a simple empirical force-field and/or
a small system size), then the additional cost associated
with path integral simulations is of little consequence,
particularly if one can exploit the implicit parallelism of
path integral methods. However, when PES evaluation
is computationally-expensive (e.g. using ab initio meth-
ods such as density functional theory (DFT)), then the
associated cost of path integral simulations relative to
classical simulations can be prohibitive.

Several techniques have been developed to address
the challenge associated with the computational ex-
pense of PI simulations. The ring-polymer contraction
(RPC5,50) scheme, outlined in more detail below, ex-
ploits the separation of the PES into components which
have “high” and “low” associated frequencies; given that
the number of ring-polymer beads required to converge
quantum observables in path integral simulations de-
pends strongly on the frequencies of the associated mo-
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tions, as noted above, this separation allows one to em-
ploy different numbers of ring-polymer beads to evalu-
ate the different contributions to the PES. When ap-
plied to simple empirical force-fields, such the q-TIP4P/F
model16 employed below, this RPC scheme enables one
to use a “contracted” ring-polymer comprising a few (∼6)
ring-polymer beads to evaluate the “slow” long-range
PES components arising from Coulomb and Lennard-
Jones dispersion forces, whereas the full complement of
ring-polymer beads (∼32) must be used to assess the
PES component corresponding to the high-frequency in-
tramolecular motions. Importantly however, because the
evaluation of the long-range components of typical em-
pirical force-fields is the most time-consuming part of a
molecular simulation, this RPC scheme allows an overall
reduction in time required to evaluate forces in PIMD.
The original RPC scheme was further refined with the
introduction of electrostatic RPC,50 whereby the evalua-
tion of the Coulombic contribution to the empirical PES
was further accelerated by exploiting a range-separation
of the ring-polymer forces; this electrostatic RPC scheme
ultimately enables PIMD simulations which are only a
factor of around three slower than the corresponding clas-
sical MD simulation. A clear demonstration of the util-
ity of this methodology was in the determination of the
quantum-mechanical melting point of q-TIP4P/F water
in direct coexistence PIMD simulations; here, systems
comprising 696 molecules were simulated using PIMD for
time-periods of up to 10 ns.16

Unfortunately, both the original RPC scheme and its
electrostatic variant cannot be applied directly to more
general PESs such as those arising in DFT or other ab ini-
tio calculations, the reason being that both schemes rely
on the ability to decompose the PES into independent
contributions which can be identified as either “high” or
“low” frequency (or short-range and long-range); such
a separation is not straightforward in ab initio-based
PESs. As a result, Markland and Marsalek20 and, in-
dependently, Kühne and coworkers,51 have proposed a
RPC-like scheme which relies on the availability of a “ref-
erence” PES which is broadly similar to the PES un-
der direct investigation but much less computationally-
expensive to evaluate. Here, the reference PES is evalu-
ated on the entire n-bead ring-polymer while the “full”
PES of interest is evaluated on a contracted ring-polymer
with a smaller number of beads nc; the underlying as-
sumption at play is that the reference PES faithfully cap-
tures the rapidly-varying part of the full PES, such that
the slowly-varying remainder between the reference and
full PES can be evaluated using a reduced number of
beads. In the work of Markland and Marsalek, a density
functional tight binding (DFTB) model was employed as
the reference PES while DFT was employed as the full
PES to model liquid water; using n = 32 ring-polymer
beads to evaluate the reference DFTB PES, it was found
that correct reproduction of the expected DFT PIMD
properties, including radial distribution function (RDF)
and average proton kinetic energy, required a contracted

ring-polymer comprising around nc = 6 beads to evaluate
the full DFT PES, thereby representing a computational
saving of roughly a factor of five relative to a full n = 32
DFT PIMD simulation. However, in favourable cases,
this work also found that using nc = 1 contracted ring-
polymer beads for evaluation of the full DFT PES also
gave reasonably good reproduction of quantum proper-
ties, suggesting that this reference PES RPC scheme en-
ables quantum simulations at near-classical cost. A sim-
ilar conclusion was reached by Kühne and coworkers,51

although in this case the reference PES was selected to
be a simple fixed-charge empirical model, similar to q-
TIP4P/F,16 which was force-matched to a DFTB PES in
a preliminary step; this approach enables the reference
PES calculations to simultaneously exploit the original
and electrostatic RPC schemes.

While the two reference PES RPC schemes highlighted
above are undoubtedly successful in reducing the com-
putational cost relative to full PIMD simulation on ab
initio PESs, their reliance on the availability of an in-
expensive yet reasonably accurate reference model sug-
gests that there is room for further improvement. In this
Article, we describe a new method which circumvents
the necessity of a reference PES completely, enabling
direct PIMD simulations on generic PESs at a fraction
of the computational expense relative to the full PIMD
simulation. Our scheme, referred to as ring-polymer in-
terpolation (RPI), employs Gaussian process regression
(GPR52–59) to evaluate the forces and potential energy
on the n-bead ring-polymers using only a small number
of direct PES evaluations at each time-step; in this pa-
per, we show that our RPI scheme is trivial to implement
and systematically converges towards the exact PIMD
simulation results for test cases including liquid water un-
der ambient conditions16 and liquid para-hydrogen at low
temperatures.35 Overall, RPI provides a straightforward
approach to performing accurate and efficient PIMD sim-
ulations on arbitrary PESs without a reference PES.

The remainder of this Article is organized as follows.
First, we outline RPC schemes proposed to date and
detail our new RPI approach. Then, we compare and
contrast RPC methods and RPI in PIMD simulations of
liquid para-hydrogen and liquid water. Finally, we con-
clude by highlighting several routes available to further
improve our RPI scheme.

II. THEORY

In this Section, we briefly outline the PIMD simulation
approach for calculating static (time-independent) quan-
tum properties. To set the context for our new approach,
we then outline the original RPC approach and the recent
development of the reference PES RPC methodology. Fi-
nally, we describe our new RPI methodology for efficient
PIMD simulations on arbitrary PESs without the need
for a reference potential.
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A. Path-integral molecular dynamics

In the PI approach to quantum statistical mechanics,
each quantum particle is mapped onto a classical n-bead
ring-polymer; the classical statistical mechanics of the
ring-polymer corresponds exactly to the quantum sta-
tistical mechanics of the original system, enabling de-
termination of time-dependent properties while exactly
accounting for the role of quantum fluctuations.1,60,61

Here, we assume we have a system comprising N atoms
described by a Hamiltonian which is a sum of kinetic
and potential terms, Ĥ = T̂ + V̂ ; as is most common
in PI simulations, exchange effects are neglected. The
standard canonical PI approach begins with the quantum
thermal partition function,

Z = Tr
[
e−βĤ

]
, (1)

where β = 1/(kBT ), T is temperature, and Ĥ is the
Hamiltonian operator for the system of interest. By eval-
uating the trace of Eq. 1 in a basis of position eigenstates
and exploiting the well-known symmetric Trotter split-
ting,

e−βnĤ = lim
n→∞

e−βnV̂ /2e−βnT̂ e−βnV̂ /2 (2)

where βn = β/n, it is straightforward to show that the
quantum partition function can be written as,

Z = lim
n→∞

1

(2πh̄)f

∫
dfr dfp e−βnHn(r,p). (3)

Here, r and p are, respectively, the positions and mo-
menta of a set of N × n particles, f = 3Nn, and the
ring-polymer Hamiltonian Hn(r,p) is given by

Hn(r,p) = H0(r,p) +

n∑
i=1

V (r(i)), (4)

and the free ring-polymer Hamiltonian is

H0(r,p) =

n∑
i=1

N∑
j=1

[
|p(i)
j |2

2mj
+

1

2
mjω

2
n(r

(i)
j − r

(i−1)
j )2

]
.

(5)
In Eqs. 4 and 5, mj is the mass of particle j, ωn =

1/(βnh̄) and V (r(i)) is the PES of the system evaluated

on bead i. For clarity, note that r
(i)
j is the position of

particle j in the ith ring-polymer bead.

The ring-polymer Hamiltonian of Eq. 4 defines a sys-
tem in which each quantum particle has been replaced
by a classical P -bead ring-polymer; by sampling the ex-
tended phase-space of the classical system, quantum sta-

tistical properties may be evaluated according to,

〈A〉 = Tr
[
e−βĤÂ

]
= lim
n→∞

1

(2πh̄)f

∫
dfr dfp e−βnHn(r,p)An(r),

(6)

where the ring-polymer average of the operator Â is

An(r) =
1

n

n∑
i=1

A(r(i)). (7)

The Hamiltonian of Eq. 4 can be used to generate
equations-of-motion for the ring-polymer positions and
momenta, such that quantum thermal averages can be
calculated using Eq. 6; this is the basis of the PIMD ap-
proach to calculating quantum properties in complex sys-
tems. In passing, we note that PIMD is only applicable
in the calculation of static (time-independent) proper-
ties; however, the last two decades has witnessed the de-
velopment of PI-based methods, including ring-polymer
molecular dynamics (RPMD24,26,32–37,39,41,42,48,62), cen-
troid molecular dynamics (CMD43–47) and, most re-
cently, Matsubara dynamics42,63 which can be used to
approximate quantum-mechanical time-dependent prop-
erties such as time-correlation functions. Both the RPC
methodologies and our new RPI approach are, in general,
equally applicable to these dynamic simulation methods,
although we focus here on PIMD simulations for clarity
of presentation.

B. Ring-polymer contraction

At this point it is worth emphasising the additional
computational cost of PIMD relative to standard classi-
cal MD simulations. As shown above, PIMD requires n
evaluations of the PES at each time-step in order to de-
termine the forces acting on each of the n ring-polymer
beads representing the quantum particles; in the usual
case when evaluation of the PES and forces is the most
time-consuming part of the simulation, this suggests that
PIMD simulations are around a factor of n times more
computationally-expensive than classical MD. While par-
allel computing offers one route to minimizing the impact
of this additional expense, an alternative is to seek new
algorithms which exploit the underlying physical features
of the problem to reduce the number of force evaluations
at each time-step; RPC is one route to addressing this
goal.

The underlying assumption of the RPC scheme is that
the PES can be split into identifiable parts associated
with “low” and ”high” frequency motion:

V (r) = Vl(r) + Vh(r). (8)

As a result, the PES sampled by the ring-polymer in
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PIMD can be written as

n∑
i=1

V (r(i)) =

n∑
i=1

Vl(r
(i)) +

n∑
i=1

Vh(r(i)). (9)

As a concrete example, Vl(r) might correspond to the in-
termolecular component of a typical empirical force-field,
comprising Lennard-Jones and point-charge Coulomb in-
teractions, whereas Vh(r) might represent the intramolec-
ular PES, perhaps comprising bond-stretching and bond-
angle bending contributions; this decomposition has been
exploited in simulations of the SPC/F and q-TIP4P/F
water models.5,16

The characteristic vibrational frequency, ω, in a given
system provides a rule-of-thumb in determining the re-
quired number of ring-polymer beads required to ob-
tain converged quantum statistical-mechanical proper-
ties; typically, n is chosen such that βh̄ωmax/n � 1.
This immediately suggests that the low-frequency con-
tribution to the PES (Vl(r)) requires fewer ring-polymer
beads for converged evaluation than the high-frequency
contribution (Vh(r)). RPC exploits this fact by evalu-
ating Vl(r) on a “contracted” ring-polymer containing
n′ < n beads, rather than the full n-bead ring-polymer.
To achieve this the ring-polymer is first transformed into
a representation comprising the normal modes of the free
ring-polymer Hamiltonian of Eq. 5. Subsequently, the
n− n′ highest-frequency normal modes are removed and
the inverse Fourier transformation back to real-space is
performed, resulting in a n′-bead ring-polymer; the net
transformation is

r
(i′)
j =

n∑
i=1

Ti′ir
(i)
j , (10)

where r
(i′)
j is the position of particle j in replica i′ in the

contracted ring-polymer, and the elements Ti′i are known
functions arising from the normal-mode transformation
of the free ring-polymer Hamiltonian.5 Once the con-
tracted ring-polymer coordinates have been generated,
the contribution of Vl(r) to the total potential energy of
the full n-bead ring-polymer system is approximated as

n∑
i=1

Vl(r) ' n

n′

n′∑
i′=1

Vl(r
(i′)), (11)

while the forces on the full n-bead ring-polymer can be
recovered from the contracted PES by application of the
chain-rule. Importantly, the “low-frequency” contribu-
tion to the PES, most commonly identified as the long-
range intermolecular interaction terms, is usually the
most computationally-expensive to evaluate. As a result,
evaluating Vl(r) on a sub-set of the n ring-polymer beads
offers a direct improvement in computationally efficiency;
as one might expect, practical assessment of RPC demon-
strates that the resulting simulations are around a fac-
tor of n/n′ faster than the corresponding n-bead PIMD

simulation. Furthermore, the convergence of RPC with
respect to n′ has also been clearly demonstrated, for ex-
ample by analyzing quantum kinetic energies, potential
energies and structural properties for liquid water.5

To conclude this section, we note that RPC can be fur-
ther refined in systems containing point-charge or dipo-
lar electrostatic interactions.50,64 Here, the electrostatic
contributions are themselves “range-separated”, with the
short-range contribution typically evaluated on a small
number of ring-polymer beads while the long-range con-
tribution is evaluated only once, at the centroid (centre-
of-mass) of the ring-polymer. This general strategy has
been demonstrated for both the SPC/F empirical force-
field, containing point-charge Coulombic interactions,50

as well as the TTM3-F model,64, possessing Thole-type
polarisability; overall, this electrostatic RPC approach
enables PIMD simulations which are roughly a factor of
ten times faster than the standard n-bead PIMD simu-
lation.

C. Ring-polymer contraction with a reference potential

While RPC, as described above, is certainly successful
in reducing the computational cost of PIMD simulations,
it has one important disadvantage; RPC exploits the sep-
aration of the full PES V (r) into contributions which can
be identified as having slowly- and rapidly-varying com-
ponents. In the case of empirical force-fields, such as
SPC/F, q-TIP4P/F and TTM3-F water models, this de-
composition is straightforward. However, in the case of
PESs derived from ab initio simulations, such as density
functional theory (DFT), a trivial PES decomposition is
not immediately available.

To address this challenge, Markland and Marsalek20

and, independently, Kühne and coworkers,51 proposed a
scheme based on using a reference PES, Vref(r). In par-
ticular, one rewrites the potential energy contribution to
the ring-polymer Hamiltonian as

n∑
i=1

V (r(i)) =

n∑
i=1

[
V (r(i)) + Vref(r

(i))− Vref(r(i))
]
,

=

n∑
i=1

Vref(r
(i)) +

n∑
i=1

[
V (r(i))− Vref(r(i))

]
,

'
n∑
i=1

Vref(r
(i)) +

n

n′

n′∑
i′=1

[
V (r(i

′))− Vref(r(i
′))
]
,

(12)

The third line of Eq. 12 defines the key approximation in-
troduced in this reference-PES-based RPC scheme. Here,
the reference PES Vref(r) is evaluated on the full n-bead
ring-polymer; the difference term in Eq. 12 is, however,
evaluated on a n′-bead contracted ring-polymer, with the
coordinates of the contracted replicas determined in the
same manner as in the original RPC scheme.

The assumption which underlies this reference RPC
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(rRPC) scheme is that the difference potential V (r) −
Vref(r) is slowly-varying, in the same way that the inter-
molecular PES was assumed to be slowly-varying in the
original RPC scheme. The upshot of this rRPC scheme
is that the computationally-expensive full PES V (r) is
evaluated on just n′ < n ring-polymer beads while the
less demanding reference PES Vref(r) is evaluated on the
full n-bead ring-polymer. To date, simulations of liquid
water and the protonated water dimer, both described
using DFT to calculate the full PES, have demonstrated
the validity of this assumption, enabling PIMD simula-
tions for a fraction of the cost of the standard n-bead
approach.20

An important assumption of the rRPC methodology is
that a reference PES is available for the system at hand
which is simultaneously inexpensive to evaluate and pro-
vides a reasonable level of reproduction of the properties
of the system under investigation; in previous applica-
tions, both DFTB and a force-matched empirical PES
have been used as reference PESs with clear success.20,51

However, being tied to the availability of a reference PES
is clearly undesirable; for example, it adds another layer
of complexity to code management, with not one but
two PESs required for evaluation at different points, and
there is no guarantee that the reference PES will be suf-
ficiently accurate to model more complex chemical re-
actions. As a result, it is appealing to investigate al-
ternative strategies which circumvent the necessity of a
reference PES; the strategy we outline here aims to do
just this.

D. A new approach: ring-polymer interpolation

We now present a new approach to accelerating PIMD
simulations on general PESs; in particular, we do not
assume anything about the form of the underlying PES,
and neither do we rely on the availability of a reference
PES.

The underlying idea behind our approach is illustrated
in Fig. 1. Here, we show the (shifted) PES imaginary-
time autocorrelation function8,38,65 for a PIMD simula-
tion (n = 32) of liquid water at 298 K, described by the q-
TIP4P/F empirical force-field.16 The shifted imaginary-
time autocorrelation function can be defined as,

C im
j = 〈V1Vj〉 − 〈V1V(1+n

2 )〉, (13)

where

〈V1Vj〉 = lim
n→∞

1

(2πh̄)f

∫
dfr dfp e−βnHn(r,p)V (r(1))V (r(j)).

(14)
Here V (r(k)) refers to the value of the PES evaluated at
bead k; because this is a static property (independent of
real time), such imaginary-time correlation functions can
be calculated exactly in PIMD simulations. The function
C im
j expresses the average correlation in PES values as

one steps around the n-bead ring-polymer in the PIMD

0 5 10 15
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0.006

0.009
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FIG. 1

simulation, and is defined such that it approaches zero as
one steps towards the ring-polymer bead which sits dia-
metrically opposite a chosen reference bead (in the case
of an even number of ring-polymer beads, as considered
here, the index of the antipode bead is 1 + n

2 ). The key
observation which is relevant to this work is that there
is a significant degree of correlation in the PES values as
one steps around the ring; for example, we find that the
correlation function at j = 5 is still non-zero, indicating
that the PES value of this ring-polymer bead is corre-
lated (related to) the PES value at bead j = 1. This
suggests that it may not be necessary to perform inde-
pendent evaluations of the PES on all beads; instead,
the extent of correlation in PES values can be exploited.
This is the basis of our ring-polymer interpolation (RPI)
method.

Our approach employs the idea of interpolation to ap-
proximate the PES around the ring-polymers sampled
during PIMD simulations. Consider a PIMD simulation
sampling an n-bead ring-polymer in an 3N -dimensional
system; each of the n ring-polymer beads can be consec-
utively labelled by an integer 1 ≤ j ≤ n and, because of
the cyclic nature of the ring-polymer, any bead may be
selected as i = 1. From the n-bead ring-polymer beads, a
smaller subset n′ < n of ring-polymer beads are selected
and the full PES is evaluated on these n′ beads; the PES
and forces on the remaining n − n′ ring-polymer beads
can then be recovered by direct interpolation using the
known PES values at the n′ beadslambda. Based on the
results of Fig. 1, we note that this interpolation can be
performed in the one-dimensional space defined simply
by the bead indices.

In principle, any interpolation method can be used to
recover the PES on the n − n′ ring-polymer beads; in
this Article, we choose to use Gaussian Process regres-
sion (GPR57,59,66–68), primarily because of its simplic-
ity and flexibility. GPR is well-known to the machine-
learning community, and has found extensive use in com-
putational chemistry; for example, recent work has high-
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lighted development of accurate PESs by applying Gaus-
sian Process to ab initio electronic structure calculations
for systems such as bulk silicon58 and liquid water.57 In
the context of this work, we assume that we have eval-
uated full PES values at n′ selected beads; using these
values, the PES at any bead k in the ring-polymer is then
approximated in GPR as,

V (r(k)) '
n′∑
i=1

wie
−α(k−λi)

2

, (15)

where λi labels the ring-polymer indices of the selected
subset of n′ beads and α is a width parameter. The
expansion weights, wi, are determined by requiring that
the PES values are correctly reproduced at the n′ beads;
it is straightforward to show that this requires solution
of a n′ × n′ linear equation,

Aw = g, (16)

where

Aij = δijσ
2 + e−α(λi−λj)

2

, (17)

and

gi = V (r(i)), (18)

Here, σ2 can be viewed as either a regularisation param-
eter or as representing the error in the PES evaluations
at the n′ beads, and the vector g contains the n′ PES
values. Given the PES values at the n′ beads, solution of
Eq. 16 is straightforward using standard linear algebra
packages.69 Alternatively, from explicit inversion of A,
the set of required weights is given by

wi =

n′∑
m=1

A−1imV (rλm). (19)

From Eq. 15, we then have

V (r(k)) '
n′∑
i=1

n′∑
m=1

A−1ik V (rλm)e−α(k−λi)
2

'
n′∑
m=1

ω̄kmV (rλm),

(20)

where

ω̄km =

n′∑
i=1

A−1ik e
−α(k−λi)

2

. (21)

Using Eqs. 20 and 21, we see that we can then write down
the total potential energy of the full n-bead ring-polymer

as

Vn(r) =

n∑
k=1

V (r(k)) '
n∑
k=1

n′∑
m=1

ω̄kmV (rλm). (22)

To obtain the forces on each of the n ring-polymer beads
using the GPR interpolation PES of Eqs. 20 and 22, we
can use the chain rule as follows:

∂Vn
∂r(j)

=

n′∑
m=1

∂Vn
∂rλm

∂rλm

∂r(j)
,

=

n′∑
m=1

(
n∑
k=1

ω̄km
∂V (rλm)

∂rλm

)
∂rλm

∂r(j)
,

=

n′∑
m=1

Wm

(
∂V (rλm)

∂rλm

)(
∂rλm

∂r(j)

)
,

(23)

where

Wm =

n∑
k=1

ω̄km (24)

The final missing ingredient to obtain the required forces
is the determination of the derivative of the positions of
the selected n′ beads with respect to the positions of the
original n ring-polymer beads, as required in the final
line of Eq. 23. This problem can itself be solved by
using GPR, by expressing the position of each of the n′

reference beads as an interpolation of the positions of
the original n-bead ring-polymer. Noting that a separate
interpolation will be different for each degree-of-freedom,
we write

rλm
η =

n∑
j=1

yη,je
−γ(λm−j)2 , (25)

where η now defines the position component of GPR bead
labelled λm, yη,j is the associated GPR weight function
and γ is a further width parameter. As in Eq. 19, the
weights can be written in terms of the positions of the n
ring-polymer beads as

yη,j =

n∑
i=1

C−1ji r
(i)
η , (26)

where the kernel matrix C is of the same form as Eq. 17,
albeit with different associated parameters,

Cij = δijσ
2
r + e−γ(i−j)

2

, (27)

where σr is the assumed error parameter (or regulariza-
tion parameter) for interpolation of positions. Combining
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Eqs. 25 and 2, we then find

rλm
η =

n∑
k=1

Bmkr
(k)
η , (28)

where

Bmk =

n∑
j=1

C−1jk e
−γ(j−m)2 . (29)

As a result of this additional interpolation, we find that
the required derivative of the GPR bead positions with
respect to the full ring-polymer bead positions is given
as

∂rλm
η

∂r(j)
= Bmk. (30)

As a result, combining Eqs. 23 and 30, the forces on the
full n-bead ring-polymer can be calculated from the GPR
interpolation PES.

In summary, our RPI approach proceeds as follows at
each time-step of a PIMD simulation:

1. Select the indices of the n′ GPR reference points;
this can be done by simply evenly distributing the
n′ reference points around n-bead ring-polymer.

2. For each DOF, calculate the required GPR inter-
polation weights using Eq. and calculate the inter-
polated positions using Eq. 25.

3. Evaluate the full PES at the n′ GPR reference
points.

4. Use GPR to evaluate the total PES on the ring-
polymer (Eq. 22) and the forces on the n-bead
ring-polymer (Eqs. 23 and 30).

This completes our description of our RPI approach. It
is clear that RPI requires n′ evaluations of the full PES
at each PIMD time-step, compared to n evaluations re-
quired by full PIMD; as a result, one can expect that
the computational effort of a RPI simulation should be
roughly n′/n compared to that of full PIMD. RPI does
require additional matrix equations to be solved to de-
termine the weights for the PES and position interpo-
lation but we note that, in typical PIMD simulations,
the sizes of these matrices will typically be a few tens or
less. As a final point, we emphasize that, unlike RPC,
our RPI approach does not assume anything about the
underlying PES of the system (beyond the usual smooth-
ness assumption which is inherent to GPR); as a result,
RPI as described here is directly applicable to any PES,
including ab initio PESs and empirical force-fields.

III. RESULTS AND DISCUSSION

To assess the suitability of RPI as a method for accel-
erating PI simulations, we perform simulations of liquid

water at 298 K, as described by the empirical q-TIP4P/F
model.16 This system has been employed extensively as
a model for quantum effects in liquid water, ice and wa-
ter clusters. We particularly focus on the convergence of
quantum expectation values as a function of the number
of ring-polymer beads employed in RPI and RPC simu-
lations; comparison to full PIMD simulations provides a
route to assessing efficiency and accuracy. Furthermore,
RPC clearly represents the best current approach to ac-
celerating convergence in such systems, thereby providing
another convenient benchmark against which to assess
RPI.

Before presenting RPI results, we first highlight our
approach to determining the GPR parameters α and γ.
First, to simplify matters, we assume that γ = α, requir-
ing a simple optimization of a single variable; this may, of
course, not be the best choice in terms of ultimate accu-
racy, but a practical scheme for PI simulations should
not require complex optimization of multiple parame-
ters. Second, to determine the best α we adopt the sim-
ple approach of minimizing the root-mean-square error
(RMSE) between the PES values given by RPI and the
exact PES values on the full set of ring-polymer beads.
In the examples discussed here, this RMSE is evaluated
using 500 configurations taken from a short full PIMD
simulation for the target system; evaluating the RMSE
for different values of α enables one to select an appro-
priate value to perform larger RPI simulations.

In modelling liquid water, the same system set-up was
used for PIMD simulations (systematically increasing the
number of ring-polymer beads up to n = 32), RPI sim-
ulations (using a full set of n = 32 beads, but with
varying number of GPR reference beads) and RPC sim-
ulations (again, using a full set of n = 32 beads, but
varying the number of contracted beads). A system of
125 water molecules at a temperature of T = 298 K
and density of ρ = 0.997 g cm−3 was equilibrated (with
an Anderson thermostat) for ??? ps. After equilibra-
tion, static thermal averages were calculated in a fur-
ther constant-NVT simulation of ??? ps. Furthermore,
the quantum diffusion coefficient was calculated using
RPMD.16,25,26,29,32–41 Periodic boundary conditions were
implemented using the minimum-image convention. The
Ewald summation was used to calculate electrostatic in-
teractions, and a cut-off of 9 Å was employed in the calcu-
lation of the short-range contribution to the Ewald sum-
mation energy and the Lennard-Jones term. Properties
of interested were averaged over five independent calcu-
lations, providing error estimates.

The convergence of the thermally-averaged potential
energy calculated by RPI with respect to the number
of GPR reference beads is illustrated in Fig. 2; given
that the number of GPR reference beads represents the
number of full PES evaluations which must be performed
during each simulation timestep, it is desirable that av-
erage observable values converge quickly to the correct
result (here, taken to be the full PIMD simulation with
n = 32 beads) with as few GPR points as possible. In
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the case of the RPC method, we consider two alterna-
tives; in the first case, labelled RPC(EI), the intramolec-
ular interactions are calculated explicitly on all 32 ring-
polymer beads, whereas the intermolecular PES contri-
bution is calculated on the number of ring-polymer beads
referenced on the x-axis. This RPC(EI) method is the
original implementation of RPC, which exploits the fact
that, for simple potentials of the form considered here,
one can easily identify intramolecular and intermolecular
contributions, enabling this ‘trick’ to be implemented effi-
ciently; as we have noted above, this standard RPC(EI)
method cannot be applied to non-separable potentials
(e.g. DFT) without further modifications. The second
RPC method we consider here, labelled as RPC(full),
does not employ separation of intramolecular and in-
termolecular terms; instead, ring-polymer contraction is
simply applied to the total PES. This RPC(full) approach
is not condoned in any way, and is clearly not the way
in which RPC should be applied, but, by comparing the
convergence of RPC(full) and RPI, we can highlight the
fundamentally different approaches taken in these meth-
ods.

Figure 2 clearly demonstrates that the new RPI
method converges quickly on the correct thermally-
averaged value of the potential energy as the number of
GPR reference beads is increased; it is worth bearing in
mind that all RPI simulations used n = 32 ring-polymer
beads in total, and it is only the number of GPR refer-
ence beads which is increased in these RPI convergence
tests. We find that, once the number of GPR reference
beads, n′, is great than about 13, one obtains essentially
the exact, fully-converged n = 32-bead PIMD result for
the average potential energy; in other words, RPI re-
duces the number of PES and force evaluations required
to obtain exact results by a factor of around 2.5. This
convergence property is much faster than in a standard
PIMD simulation, where it is found that there is still a
significant error in the average PES value when one uses
n = 24 ring-polymer beads. Of course, the RPC(EI)
method very rapidly converges on the correct answer for
this potential, requiring only about seven ring-polymer
beads for evaluation of the intermolecular terms (noting
again that the intramolecular term is evaluated explicitly
on 32 ring-polymer beads). Finally, as expected, apply-
ing RPC to the full PES is not very successful, and it
is found that the convergence of the average potential
energy is worse than the standard PIMD case. This be-
haviour arises because one is using PES evaluations on a
contracted ring-polymer to approximate the PES on the
full ring-polymer; in contrast, the RPI approach, using
interpolation around the ring-polymer, is clearly capable
of sufficiently approximation the full ring-polymer PES
with just a few reference points.

The same trend in convergence of the different PIMD
acceleration methods is evident in Fig. 3, which shows
results for calculations of the average quantum ki-
netic energy of the system, calculated using the virial
estimator.70 As in Fig. 2, and as expected, RPC(EI)

8 16 24 32
Number of beads

-40

-30

-20

-10

V
 /
 k

J
 m

o
l-1

RPI

PIMD

RPC (EI)

RPC (full)

Exact

FIG. 2

converges on the corret results using n = 7 ring-polymer
beads for the intermolecular term and n = 32 beads for
the intramolecular term, whereas the RPC(full) method
again converges more slowly than even the standard
PIMD method. In the case of the kinetic energy ex-
pectation value, we find that the exact value is obtained
when using n′ ≥ 17, which is slightly worse than in the
case of the potential energy (Fig. 2), but still results
in a simulation which requires roughly half the number
of PES and force evaluations to obtain the exact results
when compared to PIMD. The difference in convergence
between Figs. 2 and 3 is most likely due to the fact that
potential energy values were used to optimize the value
of the GPR width-parameter γ = α, as described above,
and then the optimized values for each n′ were used to
calculate all other properties. It seems likely that, if one
were to optimise the GPR parameters to simultaneously
match both kinetic energy and potential energy for se-
lected configurations, the convergence of RPI illustrated
in Fig. 3 should improve. Nevertheless, the results of
both Figs. 2 and 3 clearly demonstrate that RPI can in-
deed converge on exact quantum result using around 50%
of the PES and forces evaluations required by standard
PIMD.

While calculating individual averaged values, such as
quantum potential or kinetic energy, is a good demon-
stration that RPI is converging on the correct PIMD
properties, a further test is in assessing whether the
larger-scale structural properties of the system are cor-
rect. Figure 4 shows the O−−H radial distribution func-
tion (RDF), gOH(r) calculated using RPI with increas-
ing numbers of GPR reference beads; we chose to illus-
trate this particular RDF because the O−−H distance
is strongly sensitive to the correct incorporation of nu-
clear quantum effects, so any errors in treatment of such
fluctuations in the RPI simulations should be evident.
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We find that the RDF calculated by RPI is essentially
converged using about n′ = 13 GPR reference beads,
with very small error relative to the exact PIMD result.
This simulation clearly demonstrates that the atomic-
level structure obtained in RPI simulations is the same
as that obtained in a full PIMD simulation.

The overall conclusion of the results of Figs. 2-4 is that
RPI can clearly converge on exact PIMD simulation re-
sults, yet reduces the number of required PES and force
evaluations by at least a factor of two relative to con-
verged PIMD. Perhaps more importantly, we emphasize
that RPI is directly applicable to more complex PESs,
including those generated by ab initio electronic struc-
ture methods. Compared to evaluation of the PES, the

additional computational overhead required for RPI is
very small, and the method itself only requires minor
modifications to any standard PIMD code. As a final
point, we note that RPI could also be used within the
context of other RPC methods, notably the reference-
potential based schemes proposed recently,20,51 providing
a hybrid method which simultaneously accelerates the
overall PIMD scheme and the evaluation of the reference
potential on the ring-polymer.

IV. CONCLUSIONS

In this Article, we have suggested a new approach to
accelerating path-integral simulations. Instead of rely-
ing on evaluating the PES and forces on a contracted
ring-polymer, as has been proposed previously, our RPI
method instead uses the idea of interpolating the PES
values around the ring-polymer, using PES evaluations
at just a few selected positions around the ring-polymer.
For liquid water at 298 K, described with the q-TIP4P/F
empirical water model, we have found that RPI converges
on exact PIMD results, but requires just around 50% of
the total PES and force evaluations. In contrast to RPC-
based methods, RPI is directly applicable to any PES, in-
cluding ab initio methods, and requires only small mod-
ifications to any existing PIMD code. As noted above,
we are now exploring how RPI could be combined with
existing RPC methods to further accelerate convergence
of properties in PIMD simulations.
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