Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Advanced glycation endproducts in the pathogenesis of chronic kidney disease

Tools
- Tools
+ Tools

Rabbani, Naila and Thornalley, Paul J. (2018) Advanced glycation endproducts in the pathogenesis of chronic kidney disease. Kidney International, 93 (4). pp. 803-813. doi:10.1016/j.kint.2017.11.034

[img]
Preview
PDF
WRAP-advanced-glycation-endproducts-pathogenesis-chronic-kidney-Rabbani-2018.pdf - Accepted Version - Requires a PDF viewer.
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0.

Download (773Kb) | Preview
Official URL: http://doi.org/10.1016/j.kint.2017.11.034

Request Changes to record.

Abstract

Advanced glycation endproducts (AGEs) are stable post-translational modifications of proteins formed by the spontaneous reaction with glucose and related metabolites. Important AGEs quantitatively are methylglyoxal (MG)-derived hydroimidazolone MG-H1, Nε- carboxymethyl-lysine (CML) and glucosepane. They contribute to the development of chronic kidney disease (CKD). Cellular proteolysis of AGE-modified proteins forms AGE free adducts, glycated amino acids, which are cleared by the kidneys and excreted in urine. Dietary AGEs mainly supplement the endogenous flux of AGE free adduct formation. AGE free adducts accumulate markedly in plasma with decline in glomerular filtration rate. A key precursor of AGEs is the dicarbonyl metabolite, MG, which is metabolised by glyoxalase 1 (Glo1) of the cytoplasmic glyoxalase system. Proteins susceptible to MG modification are called collectively the “dicarbonyl proteome”. Abnormal increase of MG “dicarbonyl stress” and is a characteristic of CKD, driven by down regulation of renal Glo1, increasing flux of MG-H1 formation. Protein inactivation and dysfunction linked to the dicarbonyl proteome contributes to CKD development. The receptor for AGEs, RAGE, is important in development of CKD but its interaction with AGEs in vivo remains enigmatic; other ligands and ternary complexation may be influential. Prevention of diabetic kidney disease (DKD) by overexpression of Glo1 in transgenic animal models has stimulated the development of small molecule inducers of Glo1 expression, “Glo1 inducers”, to prevent AGE formation. trans- Resveratrol-hesperetin combination therapy is a Glo1 inducer. In clinical trial it gave a profound improvement in insulin resistance and vascular inflammation. It may find future therapeutic application for treatment of DKD.

Item Type: Journal Article
Subjects: R Medicine > RC Internal medicine
Divisions: Faculty of Medicine > Warwick Medical School > Biomedical Sciences
Faculty of Medicine > Warwick Medical School > Biomedical Sciences > Translational & Experimental Medicine
Faculty of Medicine > Warwick Medical School
Library of Congress Subject Headings (LCSH): Chronic renal failure -- Pathogenesis, Metabolites, Glyoxalase
Journal or Publication Title: Kidney International
Publisher: Elsevier Inc.
ISSN: 0085-2538
Official Date: April 2018
Dates:
DateEvent
April 2018Published
22 February 2018Available
9 November 2017Accepted
Volume: 93
Number: 4
Page Range: pp. 803-813
DOI: 10.1016/j.kint.2017.11.034
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access
Adapted As:
Related URLs:
  • Publisher

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us