Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Solute mixing in full-scale constructed wetlands: seasonal variation of vegetation & hydraulic performance

Tools
- Tools
+ Tools

Ioannidou, Vasiliki (2017) Solute mixing in full-scale constructed wetlands: seasonal variation of vegetation & hydraulic performance. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_Theses_Ioannidou_2017.pdf - Requires a PDF viewer.

Download (16Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b3141434~S1

Request Changes to record.

Abstract

Within the last decades the importance of sustainable treatment technologies, such as constructed wetlands (CWs) and vegetated ponds, has raised due legislation (e.g. WFD), directing toward green infrastructure to mitigate water pollution. The efficiency of pond and CW treatment systems depends on the internal hydrodynamics and mixing interactions between water and aquatic vegetation. In order to contribute to the current knowledge of how emergent real vegetation affects solute mixing, and physical flow characteristics in full-scale aqueous systems, an understanding and quantification of those processes and interactions was sought under the: i) natural seasonal vegetation and flow rate variation in two CWs, and ii) physical flow characteristics in overall six different full-size treatment units.

To address these issues, outdoor tracer field studies were undertaken in each treatment unit. Regarding the seasonal plant variation, an intelligent automated tracer injection system was developed to achieve autonomous remote measurements in two CWs, vegetated by Phragmites australis, in different seasons and flow rates. Experiments involved measurements of longitudinal mixing, physical flow characteristics and vegetation characteristics in different plant ages and various discharges.

It was shown that seasonal vegetation variation influences the longitudinal mixing coefficient by up to four times, and the physical flow characteristics by increasing the flow resistance and creating stagnant backwaters at the end of plant cycle, achieving reduction of the peak concentration by three times. Longitudinal mixing decreased with discharge in all plant ages. Furthermore, it was shown that internal design (i.e. bed topography or vegetation distribution) overwhelm the seasonal plant variation effects on mixing and flow characteristics. Moreover, relative comparison of outlet configuration, inflow conditions, and internal features, between the six different treatment units demonstrated an increase in residence time by up to three times. Results underlined the importance of investigating hydrodynamics and physics of flow in full-size units to enhance treatment efficiency and predictions of water quality models.

Item Type: Thesis (PhD)
Subjects: T Technology > TD Environmental technology. Sanitary engineering
Library of Congress Subject Headings (LCSH): Constructed wetlands., Water quality management., Water-supply., Water quality -- Measurement., Water quality monitoring stations., Water resources development -- Law and legislation.
Official Date: June 2017
Dates:
DateEvent
June 2017Submitted
Institution: University of Warwick
Theses Department: School of Engineering
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Pearson, Jonathan M.
Sponsors: University of Warwick
Extent: xxvii, 260 leaves : illustrations (some colour), (some black and white).
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us