Original citation:

Permanent WRAP URL:
http://wrap.warwick.ac.uk/97994

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher’s statement:
© 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:
The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher’s version. Please see the ‘permanent WRAP url’ above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
Do cryptic reservoirs threaten gambiense-sleeping sickness elimination?

Accepted in Trends in Parasitology on 23rd January 2018

https://doi.org/10.1016/j.pt.2017.11.008

Informal expert group on gambiense HAT reservoirs *

*Correspondence: pbuscher@itg.be (P. Büscher)

Bart Jean-Mathieu PhD¹,²
Boelaert Marleen MD³
Bucheton Bruno PhD²
Büscher Philippe PhD⁴
Cecchi Giuliano PhD⁵
Chitnis Nakul PhD⁶,⁷
Courtin David PhD⁸
Figueiredo Luísa M PhD⁹
Franco José-Ramon MD¹⁰
Grébaut Pascal PhD²
Hasker Epco MD³
Ilboudo Hamidou PhD¹¹
Jamonneau Vincent PhD²
Koffi Mathurin PhD¹²
Lejon Veerle PhD²
MacLeod Annette PhD¹³
Masumu Justin PhD
Matovu Enock PhD
Mattioli Raffaele PhD
Noyes Harry PhD
Picado Albert PhD
Rock Kat S PhD
Rotureau Brice PhD
Simo Gustave PhD
Thévenon Sophie PhD
Trindade Sandra PhD
Truc Philippe PhD
Van Reet Nick PhD

1 Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Calle Sinesio Delgado 4, 28029 Madrid, Spain
2 INTERTRYP, IRD, CIRAD, Univ Montpellier, Montpellier, France
3 Department of Public Health, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
4 Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
5 Sub-regional Office for Eastern Africa, Food and Agriculture Organization of the United Nations, CMC Road, Bole Sub City, Kebele 12/13, P O Box 5536, Addis Ababa, Ethiopia
6 Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute,
Socinstrasse 57, Postfach, 4002 Basel, Switzerland
7 University of Basel, Switzerland
8 Université Paris Descartes, Institut de Recherche pour le Développement, Unité MERIT,
Mère et enfant face aux infections tropicales, 4 avenue de l’Observatoire, 75006 Paris,
France
9 Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida
Prof Egas Moniz, 1649-028 Lisboa, Portugal
10 Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management,
World Health Organization, Via Appia 20, 1202 Geneva, Switzerland
11 Institut de Recherche sur les Bases Biologiques de la Lutte Intégrée, Centre International
de Recherche-Développement sur l’Élevage en zone Subhumide, 01 BP 454 Bobo-Dioulasso
01, Burkina Faso
12 Université Jean Lorougnon Guédé, BP 150 Daloa, Côte d’Ivoire
13 Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow,
Henry Wellcome Building, 464 Bearsden Road, Glasgow, United Kingdom
14 Département de Parasitologie, Institut National de Recherche Biomédicale, Avenue de la
Démocratie, BP 1197 Kinshasa 1, République Démocratique du Congo
15 College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P
O Box 7062 Kampala, Uganda
16 Animal Production and Health Division, Food and Agriculture Organization of the United
Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy
17 Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
Human African trypanosomiasis (HAT) is caused by Trypanosoma brucei gambiense, which is endemic in West and Central Africa. Since 1990, the number of cases has been reduced significantly through large-scale screening of populations at risk, drug donations, and efforts by national and international stakeholders. The World Health Organization (WHO) has set the goals of elimination as a public health problem for 2020 and interruption of transmission to humans for 2030. However, challenges to sustained elimination include latent human infections and possible animal reservoirs, particularly among domestic animals.
Recent studies have increased our knowledge on both phenomena but it remains unknown whether they have an impact on the epidemiology of gambiense-HAT, and if they have, how important that impact is in view of the elimination goal. Here, we argue that a better understanding of the contribution of human and putative animal reservoirs to the gambiense-HAT epidemiology is required to inform elimination strategies.
Can cryptic reservoirs in humans and animals compromise the sustainable elimination of
gambiense-human African trypanosomiasis?

Human African trypanosomiasis (HAT) (see Glossary) is caused by two closely related
parasites that are transmitted by tsetse flies. *Trypanosoma brucei gambiense* is responsible
for the Western and Central African form of the disease and *Trypanosoma brucei rhodesiense* occurs in Eastern and Southern Africa - both forms of the disease are usually
fatal if untreated. Between 1990 and 2016, a total of 437,971 cases of gambiense-HAT were
reported, with a peak of 37,385 cases in 1998 (http://www.who.int/gho/neglected_diseases/human_african_trypanosomiasis/en/).

Thanks to large-scale deployment of a serological screening test (**CATT/T.b. gambiense**),
drug donations and intense efforts by national and international stakeholders, this epidemic
has been brought under control with fewer than 2200 cases reported in 2016. This
represents a marked reduction in human suffering caused by the disease. Inspired by this
progress, the World Health Organization (WHO) has set elimination of gambiense-HAT as a
target for the near future: elimination as a public health problem by 2020 and the

The rationale to shift from HAT control to elimination is based on several arguments, such as
the epidemiological vulnerability of gambiense-HAT as a presumed **anthroponotic** infection,
historic examples of elimination in several West African foci, the availability of medicines
and diagnostics, the political will of endemic countries and the commitment of national
control programs [1]. Furthermore, a drug donation agreement between pharmaceutical
companies and WHO has made treatment freely available to endemic countries.
Gambiense-HAT control classically relies on 3 pillars: vector control, diagnosis and treatment. HAT is a vector-borne disease, and the reduction of human-fly contact below a critical threshold would lead to zero transmission. Although vector control is critical to achieve the elimination/eradication goals, it will not be practical to sustainably control all tsetse fly populations in all endemic countries. Vector control being only part of the solution, gambiense-HAT control will continue to rely to a great extent on diagnosis and treatment, both for reducing transmission and for monitoring progress towards these goals.

The introduction of individual rapid diagnostic tests (RTDs) for gambiense-HAT may increase serological screening coverage, as they can be performed in remote dispensaries devoid of technical facilities. Thus, they facilitate integration of passive screening in the health system and assist in establishing a sustainable surveillance system. However, RTDs also have limitations - like CATT/T.b. gambiense, they only detect antibodies, and their specificity is not 100% [2]. As a consequence, given the adverse effects and logistic constraints of current treatment, individuals who test positive in an RTD or in CATT must undergo microscopic examination of blood or lymph node fluid to confirm the presence of the parasite, followed by a lumbar puncture for stage determination as different drugs are required to treat early and late stage disease [1]. In recent years, the highly toxic melarsoprol regimen, used to treat late stage disease, has been replaced by a safer though still rather complex treatment, requiring parenteral administration and hospitalisation. An oral treatment might become available in late 2018 and a single-dose treatment is entering phase III clinical trials (http://www.dndi.org/diseases-projects/hat/portfolio/).

Whereas HAT elimination as a public health problem by 2020 seems within reach, the sustained global elimination of HAT appears more challenging. Indeed, as long as the
knowledge gaps surrounding the reservoir of *T.b. gambiense* in inter-epidemic periods are not filled, the concept of eradication of gambiense-HAT cannot be considered. We present the current research evidence about potential human and animal *T.b. gambiense* reservoirs and discuss their importance in the light of the gambiense-HAT elimination goals.

Human reservoir

Mathematical models show that the sustained transmission of HAT can be explained if a fraction of the HAT cases are systematically missed by the screening operations [3]. Unfortunately, this is the case in many settings, as a number of *T.b. gambiense* infections remain undiagnosed for several reasons [4]. First, not all infected people are reached by screening activities. Second, actually applied diagnostic techniques do not pick up all *T.b. gambiense* infections due to lack of sensitivity of serological screening tests, molecular techniques or of the parasitological confirmation tests [5]. These undiagnosed, yet infected people, will act as a human reservoir of the parasite and might sustain transmission, forming a *maintenance population* [6]. Still another potential category of human reservoir may consist of *latent infections*, also called ‘healthy carriers’, who do not always progress to clinical disease, though the relative contribution of these individuals to parasite transmission still needs to be documented (BOX 1). These latently infected people may carry trypanosomes for years or even decades, as was first described half a century ago in West Africa and later in patients refusing treatment in Côte d’Ivoire [7,8]. More recently, a HAT case with a latent infection of at least 29 years was documented [9]. In Guinea, asymptomatic or latent infections were found to have consistently high titres in CATT/*T.b. gambiense* and to be positive in the *immune trypanolysis* test, although no parasites could
be detected in blood or lymph node fluid during a two-year follow-up period [10]. This observation is in line with the fact that trypanosomes can survive in the extravascular spaces of diverse organs such as the heart, the central nervous system and the skin [11-13]. Experimental infections in animals confirmed that parasites may be undetectable in the blood but hidden in different organs and tissues, [14-17] including the skin, from where they can be ingested by tsetse flies [18,19]. It is only recently that researchers began to investigate the underlying host-parasite interaction mechanisms responsible for those latent infections. Microsatellite profiles and genomic sequencing of parasites from latent infections and from clinical HAT patients are indistinguishable, suggesting that the latent infection phenotype is determined primarily by the host rather than by the parasite [20]. Studies on host genetic polymorphism show that TNFA-308 A, HLA-G UTR-2, APOL1 N264K and APOL1 G2 are associated with increased risk of infection or with disease progression, while IL10-592 A, IL6-4339, APOL1 G1 and other polymorphisms in HRP and APOL1 are associated with decreased risk of infection or with latent infection [21-26]. Other studies have found associations between the innate and the adaptive immune response and infection outcome, e.g. self-cure and high levels of IL8; latent infection and high levels of IL6 or specific IFNG producing T cells; disease progression and high levels of IL10, TNFA and sHLA-G [27-29]. In view of the global elimination of HAT, it is of utmost importance to clarify the extent to which these human reservoirs contribute to the transmission of the parasite and hence to gambiense-HAT persistence and potential resurgence.

Animal reservoir

Compared to latent infections in human, our current knowledge on *T.b. gambiense* infections in animals is very limited and fragmented. The presence of *T.b. gambiense* in
animals has been demonstrated in a number of studies (Figure 1) [30,31]. Several authors have suggested that animals can act as a reservoir for gambiense-HAT [32-41]. In rhodesiense-HAT, sustained parasite transmission cycles exist in both livestock and wildlife, from which the parasite can spill over to humans [42]. For *T. b. gambiense*, despite early data generated on its infectivity and transmissibility in animals, the epidemiological significance of any animal reservoir is not well understood and may depend on the specific ecosystem of the HAT focus. Even if the parasite can be transmitted to and from animals, factors such as the proportion of blood-feeding on that species by tsetse, will determine the epidemiological significance of the species to act as a maintenance population or part of a maintenance community. *T. b. gambiense* can infect a variety of domestic animals and wildlife as shown in Table 1. Following infection, most of these animals remain asymptomatic and generally show low to very low parasitaemia. For instance, in pigs infected with a *T. b. gambiense* strain isolated from a human patient, only xenodiagnosis and blood culture succeeded in revealing an infection but conventional microscopy failed to detect parasites [43-47]. Moreover, experimental studies have shown that human-derived *T. b. gambiense* strains that were cyclically transmitted by tsetse flies between animals for more than a year, remained transmissible to humans [44].

Studying natural *T. b. gambiense* infections in animals is challenging. Major drawbacks are the usually low parasitaemia and the necessity to distinguish *T. b. gambiense* from other trypanosome species such as *T. brucei brucei*, *T. congolense*, *T. vivax*, *T. suis*, and *T. simiae*. In particular, *T. b. gambiense* is morphologically identical to the non-human infective *T. b. brucei*. Among the molecular tests, only those targeting the single-copy TgsGP gene are *gambiense*-specific thus limiting its analytical sensitivity to >100 trypanosomes per ml of
blood [48,49]. Biochemical assays such as isoenzyme profiling are only applicable on parasite strains that have been isolated and adapted to laboratory rodents or to in vitro cultures [50-52] and phenotypic assays such as the **Blood Incubation Infectivity Test** are only readily applicable on isolated strains and are not fully *gambiense*-specific [53]. Tests that detect antibodies against *gambiense*-specific antigens such as the **Variant Surface Glycoproteins (VSG) LiTat 1.3 and LiTat 1.5** may be more useful in revealing *T. b. gambiense* infections in animals. However, the immune trypanolysis test (TL) which is considered 100% specific in humans still has to be validated in different species of animals. Ancillary information on the *T. b. gambiense* animal reservoir can be drawn from analysing *T. b. gambiense* infection in tsetse, in combination with its feeding behaviour to assess the vectorial transmission of the parasite from the animal reservoir to humans [54]. In summary, there is a need to further improve our tools and increase our understanding regarding the importance of an animal reservoir in gambiense-HAT epidemiology. If further evidence indicates that an animal reservoir may threaten gambiense-HAT elimination, synergy with the control of animal African trypanosomiasis should be considered [55].

Filling the knowledge gaps

The presence of a reservoir is a critical obstacle to the sustained elimination of any infectious agent [56]. For example, when the Guinea worm eradication programme was rolled out, the possibility of an animal reservoir was initially overlooked, but the recent finding of Guinea worm infections in dogs led to the hypothesis that dogs could have acted as a reservoir that caused the reappearance of human cases in Chad [57]. The existence of a human reservoir, in the form of post-kala-azar dermal leishmaniasis and possibly also latent infections, is a
major challenge for the sustained elimination of visceral leishmaniasis (VL) from the Indian subcontinent [58].

The importance of investigating how HAT can re-emerge in so-called silent foci is clearly illustrated by the fact that a nine-year old child was diagnosed with gambiense-HAT in Ghana in 2013, ten years after the last detected case [59]. Also, the finding of a *gambiense*-specific PCR positive squirrel in Equatorial Guinea on Luba island in 2014 where the last human HAT case was reported in 1995 is worrying [39]. Therefore, in the context of gambiense-HAT elimination, a key question is whether human and/or animal reservoirs are capable of maintaining transmission and causing resurgence of the disease in different geographical areas and epidemiological settings (see Outstanding Questions).

As with the mathematical modelling of other neglected tropical diseases [60], models on HAT epidemiology may help to improve our epidemiological knowledge and inform elimination strategies. Models can explore if, and how, animal and human reservoirs could sustain endemicity in HAT foci [61]. However, model predictions heavily depend on the availability of accurate information for their construction, parameterisation and fitting. To date, a few models have attempted to infer the contribution of reservoirs in gambiense-HAT transmission maintenance by fitting to human epidemiological data. Funk *et al.* [74] suggested that animals were necessary for persistent transmission in Bipindi focus in Cameroon. Studies of existing gambiense-HAT models in a few foci (i.e. D.R. Congo, Guinea and Chad) suggest that some type of additional infection reservoir is needed to match the observed dynamics of reported HAT cases [3,62,63]. This could arise from another human reservoir (including undiagnosed and latent infections), an animal reservoir and/or heterogeneities in human risk exposure and surveillance coverage. A different modelling
exercise considered the implications on transmission and control of whether animals
function as reservoirs or as zooprophylaxis but did not address which was more likely [64].
Due to the current lack of knowledge surrounding latently infected people (including their
frequency, disease progression, their relative infectivity to tsetse and the duration of this
infectious stage) modelling latent infections in humans is challenging, and these
uncertainties will impact the models’ predictions. In particular, latent infections have only
been explicitly incorporated in one gambiense-HAT model and the potential role of these
individuals in maintaining transmission or hindering elimination has yet to be fully analysed
[65]. Arguably long duration infections, which eventually progress to late stage disease, are
captured by the stage 1 exponential distributions used in many modelling frameworks, but
modifications could better represent self-cure and non-detection of latent infections in
active screening. Many recent modelling studies have concluded existing vector control
methods have the ability to quickly reduce transmission to and from tsetse to all hosts and
may be critical for elimination in regions where reservoirs exist [62-67].
New data and investigations into latent human infections and animal infections will help
shape the way in which future models are developed and parameterised by factoring in
improved biological evidence. Some key gaps in our knowledge, which influence modelling
choices, are shown in Figure 2, Key Figure. As well as refining formulation and
parameterisation of the existing deterministic models, it is also clear that a new generation
of models is needed. Stochastic models are better suited to capture the chance events that
determine the role of cryptic reservoirs and their implications for elimination. In conclusion,
Improved mathematical models on HAT epidemiology combined with additional field and
experimental data are needed to help understand the respective roles of these reservoirs.
Concluding remarks

We believe that attaining the elimination (zero transmission) target of gambiense-HAT by 2030 is feasible but, as observed for other neglected tropical diseases, latent infections - whether human or animal - may constitute cryptic parasite reservoirs and thus add another challenge to sustained elimination. To inform evidence-based elimination strategies, a better understanding of the contribution of these putative human and animal reservoirs on the epidemiology of gambiense-HAT is required, more in particular on (1) the frequency and duration of latent human infections and infections in animals, (2) the infectiveness of latent human infections and animal reservoirs to tsetse flies, (3) the ability of latent human infections or animal reservoirs to sustain transmission in inter-epidemic periods, and (4) the possible existence of an animal transmission cycle in the absence of human transmission and its ability to seed a new transmission cycle in humans. To investigate these issues, we urgently need to improve our toolbox for the identification of latent and self-cured infections, including prognostic and diagnostic markers. Also, more accurate and preferably high-throughput tests to detect and monitor *T. b. gambiense* infections in animals should be developed, along with improved mathematical models for exploration of epidemiological hypotheses.

Acknowledgments

This work was supported by a grant from the Bill & Melinda Gates Foundation (OPP 1150674). KSR gratefully acknowledges funding of the NTD Modelling Consortium by the Bill and Melinda Gates Foundation in partnership with the Task Force for Global Health under grant number OPP1053230. AML, BB, EM, GS, HI, MK, VJ and VL are supported by TrypanoGen funded by the Wellcome Trust (grant number 099310/Z/12/Z).
acknowledges funding from the Bill and Melinda Gates Foundation under grant OPP1156227. LMF is funded by Fundação para a Ciência e Tecnologia (IF/01050/2014). FAO contribution to this study was provided in the framework of the Programme against African Trypanosomosis (PAAT), and supported by the Government of Italy (FAO Project ‘Improving food security in sub-Saharan Africa by supporting the progressive reduction of tsetse-transmitted trypanosomosis in the framework of the NEPAD’, codes GTFS/RAF/474/ITA and GCP/RAF/502/ITA). The funders had no role in design, decision to publish, or preparation of the manuscript. The views, opinions, assumptions or any other information set out in this article are solely those of the authors.
References

14 Trindade, S. et al. (2016) *Trypanosoma brucei* parasites occupy and functionally adapt to the adipose tissue in mice. *Cell Host. Microbe* 19, 837-848

18 Capewell, P. et al. (2016) The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. *eLIFE* 10, 17716

23 Cuypers, B. et al. (2016) Apolipoprotein L1 variant associated with increased susceptibility to trypanosome infection. *MBio.* 7, e02198-15

26 Cooper, A. et al. (2017) APOL1 renal risk variants have contrasting resistance and susceptibility associations with African trypanosomiasis. *eLIFE* 6, e25461

28 Ilboudo, H. et al. (2014) Unravelling human trypanotolerance: IL8 is associated with infection control whereas IL10 and TNFalpha are associated with subsequent disease development. *PLoS Pathog.* 10, e1004469

31 Cecchi, G. et al. (2015) Developing a continental atlas of the distribution and trypanosomal infection of tsetse flies (Glossina species). Parasit Vectors 8, 284

35 Van Hoof, L. et al. (1937) Sur le rôle du porc comme réservoir de Trypanosoma gambiense. C. R. Soc. Biol. 126, 72-75

422 47 Wombou Toukam, C.M. et al. (2011) Experimental evaluation of xenodiagnosis to detect trypanosomes at low parasitaemia levels in infected hosts. *Parasite* 18, 295-302

63 Mahamat, M.H. et al. (2017) Adding tsetse control to medical activities contributes to decreasing transmission of sleeping sickness in the Mandoul focus (Chad). PLoS Negl. Trop Dis. 11, e0005792

65 Rock, K.S. et al. (2017) Data-driven models to predict the elimination of sleeping sickness in former Equateur province of DRC. Epidemics. 18, 101-112

77 Larivière, M. (1957) Réceptivité de *Cricetomys gambianus* au *Trypanosoma gambiense*. *C. R. Soc. Biol.* 151, 1349-1351
Table 1: Animals successfully infected with *T. b. gambiense* strains isolated from human patients.

<table>
<thead>
<tr>
<th>Animal species</th>
<th>Origin of trypanosome strain</th>
<th>Infectiveness to tsetse</th>
<th>Minimum observed duration of infection</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cat</td>
<td>Senegambia and Congo</td>
<td>Not tested</td>
<td>12 days</td>
<td>[68]</td>
</tr>
<tr>
<td></td>
<td>Free State</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattle</td>
<td>Nigeria</td>
<td>Yes</td>
<td>50 days</td>
<td>[69,70]</td>
</tr>
<tr>
<td>Chicken</td>
<td>Unknown</td>
<td>Not tested</td>
<td>75 days</td>
<td>[71]</td>
</tr>
<tr>
<td>Dog</td>
<td>Senegambia and Congo</td>
<td>Yes</td>
<td>109 days</td>
<td>[32,44,68]</td>
</tr>
<tr>
<td></td>
<td>Free State, Nigeria; Belgian Congo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donkey</td>
<td>Senegambia</td>
<td>Not tested</td>
<td>14 days</td>
<td>[68]</td>
</tr>
<tr>
<td>Goat</td>
<td>Senegambia, Nigeria, Belgian Congo</td>
<td></td>
<td></td>
<td>[44,68,69]</td>
</tr>
<tr>
<td>Horse</td>
<td>Senegambia</td>
<td>Not tested</td>
<td>5 months</td>
<td>[68]</td>
</tr>
<tr>
<td>Animal</td>
<td>Origin</td>
<td>Test Result</td>
<td>Incubation Period</td>
<td>References</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>-----------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Pig</td>
<td>Côte d’Ivoire, Congo, Belgian Congo, Nigeria</td>
<td>Yes</td>
<td>18 months</td>
<td>[43,47,72]</td>
</tr>
<tr>
<td>Sheep</td>
<td>Côte d’Ivoire</td>
<td>Not tested</td>
<td></td>
<td>[73]</td>
</tr>
<tr>
<td>Primates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agile mangabey (Cercocebus galeritus agilis)</td>
<td>Belgian Congo</td>
<td>Yes</td>
<td></td>
<td>[44]</td>
</tr>
<tr>
<td>Green monkey (Cercopithecus callitrichus, C. aethiops tantalus)</td>
<td>Congo Free State, Nigeria</td>
<td>Yes</td>
<td>3 months</td>
<td>[32,68]</td>
</tr>
<tr>
<td>Wolf’s mona monkey (Cercopithecus wolfi)</td>
<td>Congo Belge</td>
<td>Yes</td>
<td>15 days</td>
<td>[43]</td>
</tr>
<tr>
<td>Patas monkey (Erythrocebus patas)</td>
<td>Nigeria</td>
<td>Yes</td>
<td>3 months</td>
<td>[32,74]</td>
</tr>
<tr>
<td>Rhesus macaque (Macacus rhesus)</td>
<td>Senegambia and Congo, Free State</td>
<td>Not tested</td>
<td>1 month</td>
<td>[68]</td>
</tr>
<tr>
<td>Animal</td>
<td>Location</td>
<td>Tested</td>
<td>Time</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Chimpanzee (Pan satyrus, Pan troglodytes verus)</td>
<td>Senegambia, Nigeria</td>
<td>Not tested</td>
<td>17 months</td>
<td>[68,74,75]</td>
</tr>
<tr>
<td>Dwarf galago (Galagoides demidovii)</td>
<td>République populaire du Congo</td>
<td>Not tested</td>
<td>28 days</td>
<td>[76]</td>
</tr>
<tr>
<td>Ungulates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bay duiker (Cephalopus dorsalis)</td>
<td>Belgian Congo</td>
<td>Yes</td>
<td>24 months</td>
<td>[44]</td>
</tr>
<tr>
<td>Waterbuck (Kobus ellipsiprymnus)</td>
<td>Uganda</td>
<td>Not tested</td>
<td></td>
<td>[46]</td>
</tr>
<tr>
<td>Redbuck (Redunca redunca)</td>
<td>Uganda</td>
<td>Yes</td>
<td>15 months</td>
<td>[46]</td>
</tr>
<tr>
<td>Bushbuck (Tragelaphus spekei)</td>
<td>Uganda</td>
<td>Yes</td>
<td>22 months</td>
<td>[46]</td>
</tr>
<tr>
<td>Rodents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gambian pouch ed rat (Cricetomys gambianus)</td>
<td>République populaire du Congo</td>
<td>Yes</td>
<td>154 days</td>
<td>[33,76,77]</td>
</tr>
<tr>
<td>Thicket rat (Thamnomys rutilus), Jackson's prao mys (Praomys jacksoni), African marsh rat (Dasymys jacksoni)</td>
<td>République populaire du Congo</td>
<td>Not tested</td>
<td>131 days</td>
<td>[76]</td>
</tr>
</tbody>
</table>
incomus), Striped grass mouse

Lemniscomus striatus, Rusty-nosed rat

Cenomys hypoxanthus, African brush-tailed porcupine

Atherurus africanus

493 For reasons of traceability, we use the name of countries and the scientific name of animals as mentioned in the original publication: Senegambia = Senegal and The Gambia; Belgian Congo, Congo Free State and Congo Belge = Democratic Republic of the Congo; République populaire du Congo = Republic of the Congo.
Box 1: Diversity in outcomes of human *Trypanosoma brucei gambiense* infections

There is growing evidence that infection with *T.b. gambiense* does not always follow the classical course of the disease, i.e. a first haemo-lymphatic stage followed by a second stage with central nervous system involvement progressing to death if left untreated (see Figure I). These symptomatic HAT patients are characterised by the detection of parasites in any body fluid (P+), detection of specific antibodies against *T.b. gambiense* Variable Antigen Type LiTat 1.3 or LiTat 1.5 in immune trypanolysis (TL+), and the presence of clinical symptoms. However, long-term follow-up studies in West Africa have shown that a number of infected individuals do not develop the disease and can be classified as having latent infections (i.e. they are healthy carriers) [7]. They remain asymptomatic without detectable parasites (P-) for several years, although they are consistently positive in the immune trypanolysis test (TL+). Moreover, some of them may become immune trypanolysis negative (TL-) over time suggesting that they self-cured and therefore cannot transmit the parasite anymore.
Figure 1: *Trypanosoma brucei gambiense* in non-human mammals. Map showing gambiense-human African trypanosomiasis in endemic countries and sites where *T. b.* *gambiense* infection in non-human mammals has been investigated with direct and indirect methods. Circles represent direct or indirect evidence of presence (red) and of absence (green) of *T.b. gambiense* in the period 1990-2016. For this period, data are mapped at the village/site level. (Blue) stars represent presence of detection in the years prior to 1990. For this period, data are mapped at the country level. All source references are provided as Supplemental Information.
Figure 2, Key Figure: Unknown elements in human African trypanosomiasis progression and transmission. Solid lines represent progression between disease states, and dashed lines represent transmission of the parasites to and from the tsetse vector. Red boxes denote people or animals that may be infective to tsetse, with the darker shades denoting possible greater infectiveness. The figure highlights key unknown elements in disease progression and transmission including: (1) the probability of an infection leading to latent or stage 1 disease in humans; if, and how frequently, (2) self-cure of infected humans or (3) animals arises, (4) the duration of latent infection in humans or (5) any infections in animals,
and (6) the relative probability of transmission to tsetse from different types of infections (accounting for host feeding preferences).

**Figure I (Box 1): Outcomes of human infection with *Trypanosoma brucei gambiense*.

When naive persons (Uninfected), without specific antibodies (TL-) and without parasites (P-) get infected with *T. b. gambiense*, they undergo an early phase of the disease with detectable parasitaemia (P+) but without detectable specific antibodies. Thereafter, most of them develop the disease (HAT patient) and are characterised by specific antibodies (TL+) and detectable parasitaemia (P+). Some remain asymptomatic (Latent infection) with detectable specific antibodies but without detectable parasites (TL+, P-). Evidence for self-cure comes from asymptomatic people that also eventually become negative for specific antibodies (TL-, P-).
Glossary

Anthroponotic disease: an infectious disease typically transmitted from human to human (including through an insect vector).

Blood Incubation Infectivity Test: *T. b. gambiense* and *T. b. rhodesiense* have developed mechanisms to withstand lysis by normal human serum, in contrast with animal infective trypanosomes like *T. b. brucei*, *T. congoense*, *T. vivax*. To confirm that an animal is infected with *T. b. gambiense* or *T. b. rhodesiense*, its blood, or trypanosomes isolated from that animal, are incubated with human blood or serum where after this mixture is injected in a susceptible animal. Only human serum resistant trypanosomes will be able to initiate an infection in the susceptible animal.

CATT/T.b.gambiense: Card Agglutination Test for Trypanosomiasis is an agglutination test for detection of gambiense-specific antibodies in blood. It was the first field-applicable serological test introduced in the 1980s for large-scale screening of populations at risk for gambiense-HAT.

Deterministic mathematical model: Deterministic models ignore the impact of random events, instead capturing average disease dynamics, so that multiple simulations with the same parameter values and initial conditions will lead to exactly the same outcome.

Elimination of gambiense-HAT: Elimination is the reduction to zero of gambiense-HAT incidence in a defined area as a result of deliberate efforts; measures to prevent re-emergence are required.

Elimination of gambiense-HAT as a public health problem: 90% reduction in areas reporting more than 1 case in 10,000 compared to 2000-2004, and fewer than 2,000 annually reported cases globally.
Eradication of gambiense-HAT: Eradication is the permanent reduction to zero of the worldwide incidence of gambiense-HAT as a result of deliberate efforts; intervention measures are no longer needed.

HAT focus: A geographically defined zone where transmission of HAT occurs or has occurred, to which a geographical name is given (locality, region and river).

Immune trypanolysis: Highly accurate test for gambiense-specific antibodies, based on antibody-mediated complement lysis of trypanosomes exposing one single variant-specific antigen on their surface.

Latent infection: On-going infection not progressing to clinical disease, that may remain undiagnosed.

Maintenance community: One or more populations which can transmit the pathogen and, together, can maintain the pathogen

Maintenance population: Individual populations which can transmit the pathogen and can also maintain the pathogen in the absence of other reservoir populations.

Rapid diagnostic test (RDT): Serological antibody or antigen detection test, conditioned as individual test, compliant with the ASSURED criteria (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users); RDTs for gambiense-HAT detect antibodies against predominant gambiense-specific antigens.

Reservoir: Host where the pathogen can maintain itself and from where it can be transmitted to another host; a reservoir host is essential to sustain infection.

Self-cure: Infection that is cleared by the host without treatment.

Specificity: The specificity of a diagnostic test is the probability that the test result is negative when the test person is not infected. It is usually expressed as percentage and calculated by dividing the number of test negatives by the number of true negatives x 100.
Stage determination: HAT develops from an early stage with parasites in the peripheral tissues towards a late stage with parasite invasion into the central nervous system. Treatment is different for both stages, thus requiring stage determination before drug administration. Determination of the stage is achieved by examination of the cerebrospinal fluid for the presence of trypanosomes and the number of white blood cells.

Stochastic mathematical model: Stochastic models include chance events so that two simulations with the same parameter values and initial conditions may lead to different outcomes. Chance events become more important at very low prevalences such as in pre-elimination or re-emergent settings.

Variant Surface Glycoprotein (VSG): In the vertebrate host, the cell surface of trypanosomes is covered with a layer of identical VSGs of one particular variant antigen type (VAT), that protects the trypanosomes against innate immune defence mechanisms of the host; VSGs are highly immunogenic but periodic switches of the VAT of the VSG coat (antigenic variation) enable the trypanosome to escape the host humoral immune response; during the course of the infection, the host blood contains antibodies against a wide spectrum of different VATs.

Xenodiagnosis: Diagnostic method based on detection of the parasite in susceptible vectors after they were fed on an individual suspected of being infected with the parasite; in HAT, the vectors used are teneral tsetse flies.