Optical Spectra and Energy Levels of
Divalent Ytterbium and Samarium
Ions in Some Alkali Halides

by

Ihebrodike Maurice Mejeha

A thesis submitted to
the University of Warwick
for admission to the degree of
Doctor of Philosophy

Department of Physics

January 1988
Declaration

This thesis is submitted to the University of Warwick in support of my application for admission to the degree of Doctor of Philosophy. It contains an account of my own research work carried out at the University of Warwick under the general supervision of Dr M.J.A. Smith from October 1983 to September 1987. No part of it has previously been used in a degree thesis submitted to this or any other University. The work described in this thesis are the result of my own independent research except where specifically acknowledged in the text.

January 1988
Ihebrodiike M. Majeha
To my father

The late Mazi Mejeha Innocent (Nwoeke) Obila

who motivated my quest for learning
Summary

This study is concerned with the measurement and analysis of the optical absorption spectra of divalent samarium (Sm\(^{2+}\)) and ytterbium (Yb\(^{2+}\)) ions in potassium and rubidium halide crystals. To incorporate the ions into the crystals, the latter were heated in (the appropriate) metal vapour. The optical absorption spectra of the impurity-doped crystals were measured and are ascribed to \(4f^{N+1} \rightarrow 4f^N 5d\) electronic transitions. For the first time, the optical spectra of Sm\(^{2+}\) and Yb\(^{2+}\) ions in RbBr and Rbl crystals are reported.

In the case of Yb\(^{2+}\) ions in RbX, \((X = Cl, Br, I)\) crystals, intermediate coupling calculations using \(J\_J\)-coupled basis functions give a satisfactory agreement between experimental and theoretical energy levels of the ions, by assuming that the effective site symmetry of the substitutional impurity ions is octahedral. However, the Slater-Condon and spin-orbit parameters that give the best fit between theory and experiment are reduced by up to 44% from the free-ion values.

In the case of Sm\(^{2+}\) ions in KX and RbX crystals, theoretical calculation of the energy levels (assuming octahedral approximation) was based on a model in which the \(4f^3\) core electron states, best described in terms of \(LS\)-coupled basis functions, are coupled to the \(5d\) electron states which are strongly perturbed by the crystal field. In this model, the agreement between theoretical and experimental energy levels is also quite satisfactory.

Also found, are sets of absorption bands whose spectral positions and behaviour can best be explained by assuming electronic transitions from the ground states of the ions to the bonding molecular orbitals formed by the overlap of the 6s atomic orbitals of the impurity ions and the \((n+1)s\) atomic orbitals of the ligand ions.

Preliminary investigations of the effect of thermal ageing on the optical spectra of RbBr : Yb\(^{2+}\) crystals suggest that the Yb\(^{2+}\) ions exist in three separate phases (in the crystals) among which is the Suzuki phase.
Acknowledgements

I would like to put on record, my indebtedness and gratitude to Dr M. J.A. Smith, my supervisor, for the invaluable guidance, encouragement and support he gave me during the period this research was carried out. Also I would like to thank Mr Cliff Randle, who gave me a lot of technical assistance and masterfully constructed many of the pieces of apparatus used in the study.

The illuminating discussions I held with Dr J. M. Dixon on the theoretical models adopted in the analysis of the experimental data and with Dr S. W. Bland on some of the experimental techniques cannot go unappreciated. My gratitude also goes to the academic and technical staff of the Department of Physics for various types of assistance and encouragement at one time or another. In particular, I would like to thank Dr H. Mykura and Mr Roy McLeod. The latter carefully prepared most of the diagrams and photographs.

It would have been very difficult for me to do the theoretical analysis reported here were it not for the assistance I received from the Computing Services Centre of the University of Warwick. In this respect, I register my gratitude to Dr R. Parkins, Messrs. J. M. Hicks and Bal Dhesi who started me off on the use of the IBM 4381 mainframe computer. Dr Parkins' immense help at the production stage of this thesis is highly appreciated. I would also like to thank Mrs G. Buxton who skillfully typed the thesis.

It was the Scholarship Division of the Federal Ministry of Education, Lagos, Nigeria that provided me with financial support. Financial assistance also came from the Peter MacMillan Fund and the Department of Physics. To these, as well as the Anambra State College of Education, Awka, Nigeria, that granted me study leave for purpose this work, my immense gratitudes go.

Finally, I would like to thank my wife and children who patiently endured my long absence from home and who together with my mother, brothers and sisters gave me encouragement and support throughout the period of study.

January 1988

Ihebrodiike M. Mejeha
## Contents

1 Introduction 1
   1.1 General Introduction ................................................................. 1
      1.1.1 Rare-earth metal ions ............................................................. 1
      1.1.2 Rare earth ions in crystalline environments ......................... 3
   1.2 Preliminary comments on $Yb^{2+}$ and $Sm^{2+}$ ions in crystals ..... 7
      1.2.1 Ytterbium ions in crystals .................................................. 7
      1.2.2 Samarium ions in crystals .................................................... 9
   1.3 Structural imperfections in alkali halides .................................. 12
      1.3.1 Alkali halides ...................................................................... 12
      1.3.2 Intrinsic point defects in alkali halides ................................ 12
      1.3.3 Electron- and hole- excess centres ........................................ 13
      1.3.4 Impurity defect structures .................................................... 14
      1.3.5 Precipitate phases of divalent impurity ions in alkali halide single crystals ......................................................... 15
   1.4 Statement of the problem ............................................................. 17

2 Theoretical Background and Computational Techniques. 18
   2.1 Introduction .................................................................................... 18
   2.2 Theory of rare-earth ions in crystalline environment .................... 19
      2.2.1 System Hamiltonian ................................................................ 19
      2.2.2 Basis functions ...................................................................... 21
      2.2.3 Matrix elements of perturbation interaction operators ............ 23
   2.3 Introductory comments on computational techniques ...................... 24
2.4 Calculation of energy matrices

2.4.1 Introduction

2.4.2 Calculation of the 3n-j symbols, and block coefficients \( W[j], \)
\( S[j] \) and \( X[j] \)

2.4.3 Calculation of elements of energy matrices

2.5 Determination of eigenvalues of composite energy matrices

2.5.1 Introduction

2.5.2 Tridiagonalisation of a real symmetric matrix

2.5.3 Determination of eigenvalues of a symmetric tridiagonal matrix

2.6 Determination of eigenvectors of the composite energy matrix

2.6.1 Introduction

2.6.2 Eigenvectors of coefficient matrix

2.6.3 Eigenfunctions of total perturbation Hamiltonian

2.7 Minimisation of experimentally observed parameters

2.8 The Computer Programs

2.8.1 Introduction

2.8.2 Program design, development and testing strategies

2.8.3 Program for the determination of eigenvalues and eigenvectors
of composite matrix

2.8.4 Programs for minimisation interaction parameters

3 Experimental Methods

3.1 Introduction

3.2 Incorporation of ions into crystals

3.2.1 Introduction

3.2.2 Design features of primary and secondary diffusion ampoules

3.2.3 Characteristics of the high temperature furnace

3.2.4 Diffusion procedure

3.3 Thermal Bleaching

3.4 Optical absorption measurements

3.4.1 Introduction

3.4.2 Design features of the variable temperature optical cell
5.2.1 The states of the $4f^2(4F)5d$ sub-configuration of $Sm^{2+}$ ions in octahedral crystal field ........................................ 84

5.2.2 Calculation of matrix elements of electrostatic Hamiltonian $H_{el}(f, f)$ .................................................................................................................. 85

5.2.3 Matrix elements of electrostatic interaction Hamiltonian $H_{el}(f, d)$ ................................................................. 86

5.2.4 Matrix elements of spin–orbit interaction Hamiltonians ......................................................................................... 87

5.2.5 Matrix elements of crystal field interaction Hamiltonians $H_{CF}(d)$ and $H_{el}(f)$ .................................................. 88

5.3 Theoretical energy levels ................................................................................................................................. 89

5.3.1 Relative transition intensities ......................................................................................................................... 89

5.3.2 Main features of theoretical energy spectrum ............................................................................................... 91

5.4 Absorption Spectra of $Sm^{2+}$ ions in potassium and rubidium halide crystals ................................................. 94

5.5 Fitting of experimental and theoretical energy levels .......................................................................................... 96

5.6 Discussion .......................................................................................................................................................... 98

5.6.1 The $4f^2(4F)5d$ sub-configuration of $Sm^{2+}$ ions and the optical absorption spectra of $KX:Sm^{2+}$ and $RbX:Sm^{2+}$ crystals ............................ 98

5.6.2 The $G$ and $E$ Absorption bands .................................................................................................................. 103

5.6.3 Adequacy of the theoretical analysis ............................................................................................................. 106

5.6.4 Crystal field effects ....................................................................................................................................... 110

5.6.5 Slater-Condon and spin orbit parameters ..................................................................................................... 111

5.7 Conclusions ........................................................................................................................................................ 113

6 The Effect of Thermal Annealing on the Absorption Spectra of $RbBr:Yb^{2+}$ Crystals .......................................... 115

6.1 Introduction ........................................................................................................................................................ 115

6.2 Background to heat treatment experiments ...................................................................................................... 116

6.2.1 High temperature spectra of $RbBr:Yb^{2+}$ crystals ....................................................................................... 116

6.2.2 Interpretation and discussion of the results of the high temperature measurements ........................................................................................................ 118

6.3 Precipitate formation and dissolution kinetics .................................................................................................. 120

6.3.1 Introduction .................................................................................................................................................. 120
6.3.2 Experiments on formation of precipitate structures ........................................... 120
6.3.3 Experiments on dissolution of precipitate structures ........................................... 122
6.4 Interpretation of results and discussion ..................................................................... 123
6.5 Conclusions ................................................................................................................ 128
7 Concluding Remarks and Summary ............................................................................. 130
  7.1 Introduction .................................................................................................................. 130
  7.2 Incorporation of $Sm^{3+}$ and $Yb^{2+}$ ions into $KX$ and $RbX$ crystals ................ 130
      7.2.1 Thermal Bleaching Mechanism ........................................................................ 131
  7.3 Summary ...................................................................................................................... 132
      7.3.1 Energy level structure of $4f^{N}5d$ configurations of $Sm^{3+}$ and
          $Yb^{2+}$ ions in $RbX$ and $KX$ crystals ................................................................. 132
      7.3.2 $4f^{N+1} \rightarrow 4f^{5}6s$ transitions in $RbX : Yb^{2+}$, $RbX : Sm^{2+}$ and
          $KX : Sm^{2+}$ crystals ............................................................................................ 134
      7.3.3 Precipitate complexes in thermally annealed crystals of $RbBr : Yb^{2+}$ .... 135
  7.4 Calculation of Vector Coupling Coefficients ............................................................ 136
      7.4.1 $(\Gamma_{i} \Gamma_{f} \Gamma_{p} \Gamma_{q} \Gamma_{s} \mid \Gamma_{i} \Gamma_{f})$, $j = 6, 7, 8$, $i = 1, 2, ..., 5$, $\Gamma_{p} = \Gamma_{6}, \Gamma_{7}, \Gamma_{8}$ 136
  7.5 References .................................................................................................................... 138
### List of Figures

<table>
<thead>
<tr>
<th>Fig No</th>
<th>Figure</th>
<th>Following Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Distribution of radial density ( R^2(r) ) for the ( 4f, 5s, ) ( 5p, 5d, 6s, ) and ( 6p ) electrons of ( \text{CaI} ) as a function of radial extension ( r ) (after Goldschmidt [29])</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Theoretical and experimental energy levels of ( 4f^5 ) configuration of ( \text{Sm}^{2+} ) ions.</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>Energy level scheme for ( 4f^6 ) configuration of ( \text{Sm}^{2+} ) ions in some alkali halide crystals developed from fluorescence data. (after Guzzi and Baldini [69])</td>
<td>10</td>
</tr>
<tr>
<td>1.4(a)</td>
<td>Schematic representation of the relative positions of some electron-excess colour centre bands in the absorption spectrum of a typical alkali halide crystal containing these centres.</td>
<td>13</td>
</tr>
<tr>
<td>1.4(b)</td>
<td>Schematic representation of the relative positions of some absorption bands in the spectrum of hole-excess centres in a typical alkali halide crystal.</td>
<td>13</td>
</tr>
<tr>
<td>1.5</td>
<td>Schematic illustration of a divalent metal impurity ion at a cation site in an alkali halide crystal and in which it enters into association with a cation vacancy situated in one of the twelve possible nearest neighbour cation sites.</td>
<td>15</td>
</tr>
<tr>
<td>1.6</td>
<td>Arrangement of ions in the ((100)) plane of the unit cell of the Suzuki phase of ( \text{NaCl} : \text{CeCl}_2 ) solid solution.</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Vapour pressure of rare earth metals as function of temperature.</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Primary diffusion ampoule (PDA)</td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>Secondary diffusion ampoule (SDA)</td>
<td>43</td>
</tr>
<tr>
<td>Fig No</td>
<td>Figure</td>
<td>Following Page</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------------------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3.4</td>
<td>Variation of temperature of interior of secondary diffusion ampoule with depths at a temperature controller setting of 450°C with back-off unit on</td>
<td>43</td>
</tr>
<tr>
<td>3.5</td>
<td>Variation with time of temperature at depths of 25.7 cm within the furnace tube.</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>Furnace assembly during doping</td>
<td>44</td>
</tr>
<tr>
<td>3.7</td>
<td>Variable temperature optical cell (body and sample holder)</td>
<td>46</td>
</tr>
<tr>
<td>3.8</td>
<td>Sample holder of optical cell</td>
<td>47</td>
</tr>
<tr>
<td>3.9</td>
<td>Cell jacket of variable temperature optical cell.</td>
<td>47</td>
</tr>
<tr>
<td>3.10</td>
<td>Optical cell set up for high temperature measurement.</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Variation of $\Gamma_4u$ energy levels of $Yb^{2+}$ ions with $D_q$ in octahedral crystal field. $F_2, F_4, G_1, G_3, G_5, C_4f$ and $C_{5d}$ are set at free ion values.</td>
<td>58</td>
</tr>
<tr>
<td>4.2</td>
<td>Variation of $\Gamma_4u$ energy levels of $Yb^{2+}$ ions with $D_q$ in cubic crystal field. $F_2, F_4, G_1, G_3, G_5, C_4f$ and $C_{5d}$ are set at free ion values.</td>
<td>58</td>
</tr>
<tr>
<td>4.3</td>
<td>Variation of $\Gamma_4u$ energy levels of $Yb^{2+}$ ions with $D_q$ in octahedral crystal field. $F_2, F_4, G_1, G_3, G_5, C_4f$ and $C_{5d}$ are all set to zero.</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>Variation of $\Gamma_4u$ energy levels of $Yb^{2+}$ ions with $D_q$ in octahedral crystal field. $C_4f$ is set at free ion value with $F_2, F_4, G_1, G_3, G_5$ and $C_{5d}$ all set to zero.</td>
<td>60</td>
</tr>
<tr>
<td>4.5</td>
<td>Variation of $\Gamma_4u$ energy levels of $Yb^{2+}$ ions with $D_q$ in octahedral crystal field. $C_4f$ and $C_{5d}$ are set at free ion values with $F_2, F_4, G_1, G_3$, and $G_5$ all set to zero.</td>
<td>60</td>
</tr>
<tr>
<td>Fig No</td>
<td>Figure</td>
<td>Following Page</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>4.6</td>
<td>Variation of $\Gamma_{4a}$ energy levels of $Yb^{2+}$ ions with $D_q$ in octahedral crystal field. $\zeta_4$, $\zeta_6$, $F_2$, and $F_4$ are set at free ion values with $G_1$, $G_3$, and $G_5$ set to zero.</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>Variation of $\Gamma_{4a}$ energy levels of $Yb^{2+}$ ions with $D_q$ in octahedral crystal field. $\zeta_4$, $\zeta_6$, $G_1$, $G_3$, and $G_5$ are set at free ion values with $G_1$, $G_3$, and $G_5$ set to zero.</td>
<td>60</td>
</tr>
<tr>
<td>4.8</td>
<td>Optical absorption spectra of $Yb^{2+}$ ions in Rbl crystals at room and liquid nitrogen temperatures.</td>
<td>61</td>
</tr>
<tr>
<td>4.9</td>
<td>Second derivative (absorption) spectrum of $Yb^{2+}$ ions in crystals of Rbl at liquid nitrogen temperature.</td>
<td>61</td>
</tr>
<tr>
<td>4.10</td>
<td>Theoretical energy level scheme for $4f^{12}5d$ configuration of $Yb^{2+}$ ions in high octahedral crystal field.</td>
<td>66</td>
</tr>
<tr>
<td>4.11</td>
<td>Theoretical energy level scheme for $4f^{12}5d$ configuration of $Yb^{2+}$ ions in high cubic crystal field.</td>
<td>66</td>
</tr>
<tr>
<td>4.12</td>
<td>Theoretical and experimental energy level structure of $Yb^{2+}$ ions in rubidium halide crystals.</td>
<td>67</td>
</tr>
<tr>
<td>4.13</td>
<td>Relationship between Log $D_q$ and Log $d$ for $Yb^{2+}$ ions in in RbX (X = Cl, Br, I) crystals.</td>
<td>70</td>
</tr>
<tr>
<td>4.14</td>
<td>A schematic representation the formation of bonding and antibonding molecular orbitals for $Yb^{2+}$ ions octahedrally co-ordinated to various halogen ions.</td>
<td>76</td>
</tr>
<tr>
<td>5.1</td>
<td>Variation of $\Gamma_{4a}$ energy levels of Sm$^{2+}$ ions with $D_q$ in octahedral crystal field. $F_2$, $F_4$, $G_1$, $G_3$, $G_5$, $\zeta_4$, and $\zeta_6$ are set at estimated free ion values.</td>
<td>92</td>
</tr>
<tr>
<td>5.3(a)</td>
<td>Variation of Group 1 of $\Gamma_{4a}$ energy levels of Sm$^{2+}$ ions with $D_q$ in octahedral crystal field. $F_2$, $F_4$, $G_1$, $G_3$, $G_5$, $\zeta_4$, and $\zeta_6$ are set at estimated free ion values.</td>
<td>92</td>
</tr>
<tr>
<td>5.3(b)</td>
<td>Variation of Group 2 of $\Gamma_{4a}$ energy levels of Sm$^{2+}$ ions with $D_q$ in octahedral crystal field. $F_2$, $F_4$, $G_1$, $G_3$, $G_5$, $\zeta_4$, and $\zeta_6$ are set at estimated free ion values.</td>
<td>92</td>
</tr>
<tr>
<td>Fig No</td>
<td>Figure</td>
<td>Following Page</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>5.3(c)</td>
<td>Variation of Group 3 of $\Gamma_4$, energy levels of $\text{Sm}^{2+}$ ions with $D_q$ in octahedral crystal field. $F_2$, $F_4$, $G_1$, $G_3$, $G_5$, $\zeta_{af}$ and $\zeta_{ad}$ are set at estimated free ion values.</td>
<td>92</td>
</tr>
<tr>
<td>5.3(d)</td>
<td>Variation of Group 4 of $\Gamma_4$, energy levels of $\text{Sm}^{2+}$ ions with $D_q$ in octahedral crystal field. $F_2$, $F_4$, $G_1$, $G_3$, $G_5$, $\zeta_{af}$ and $\zeta_{ad}$ are set at estimated free ion values.</td>
<td>92</td>
</tr>
<tr>
<td>5.3(e)</td>
<td>Variation of Group 5 of $\Gamma_4$, energy levels of $\text{Sm}^{2+}$ ions with $D_q$ in octahedral crystal field. $F_2$, $F_4$, $G_1$, $G_3$, $G_5$, $\zeta_{af}$ and $\zeta_{ad}$ are set at estimated free ion values.</td>
<td>92</td>
</tr>
<tr>
<td>5.3(f)</td>
<td>Variation of Group 6 of $\Gamma_4$, energy levels of $\text{Sm}^{2+}$ ions with $D_q$ in octahedral crystal field. $F_2$, $F_4$, $G_1$, $G_3$, $G_5$, $\zeta_{af}$ and $\zeta_{ad}$ are set at estimated free ion values.</td>
<td>92</td>
</tr>
<tr>
<td>5.3(g)</td>
<td>Variation of Group 7 of $\Gamma_4$, energy levels of $\text{Sm}^{2+}$ ions with $D_q$ in octahedral crystal field. $F_2$, $F_4$, $G_1$, $G_3$, $G_5$, $\zeta_{af}$ and $\zeta_{ad}$ are set at estimated free ion values.</td>
<td>92</td>
</tr>
<tr>
<td>5.3(h)</td>
<td>Variation of Group 8 of $\Gamma_4$, energy levels of $\text{Sm}^{2+}$ ions with $D_q$ in octahedral crystal field. $F_2$, $F_4$, $G_1$, $G_3$, $G_5$, $\zeta_{af}$ and $\zeta_{ad}$ are set at estimated free ion values.</td>
<td>92</td>
</tr>
<tr>
<td>5.4</td>
<td>Optical absorption spectra of $\text{Sm}^{2+}$ ions in $\text{RbBr}$ crystals at room and liquid nitrogen temperatures.</td>
<td>94</td>
</tr>
<tr>
<td>5.5</td>
<td>Second derivative (absorption) spectrum of $\text{Sm}^{2+}$ ions in $\text{RbBr}$ crystals at liquid nitrogen temperature.</td>
<td>94</td>
</tr>
<tr>
<td>5.6</td>
<td>Theoretical energy level scheme for $4f^6(4PFF)5d$ sub-configuration of $\text{Sm}^{2+}$ ions in octahedral crystal field.</td>
<td>101</td>
</tr>
<tr>
<td>5.7</td>
<td>Experimental energy level structure of the $4f^6(4PFF)5d$ and $4f^6(5FF)6s$ sub-configurations of $\text{Sm}^{2+}$ ions in KX and $\text{RbX}$ ($X = \text{Cl, Br, I}$) crystals.</td>
<td>102</td>
</tr>
<tr>
<td>Fig No</td>
<td>Figure</td>
<td>Following Page</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>5.8</td>
<td>Relationship between Log $D_q$ and Log $d$ for Sm$^{2+}$ ions in KX and RbX (X = Cl, Br, I) crystals.</td>
<td>111</td>
</tr>
<tr>
<td>6.1</td>
<td>Optical absorption spectra of RbBr : Yb$^{3+}$ crystals at elevated different temperatures.</td>
<td>117</td>
</tr>
<tr>
<td>6.2</td>
<td>Room temperature optical absorption spectra of a sample of RbBr : Yb$^{3+}$ crystal slowly cooled from (b) 252° C (c) 354° C (a) is room temperature spectrum of freshly doped sample</td>
<td>117</td>
</tr>
<tr>
<td>6.3</td>
<td>Optical absorption spectrum at liquid nitrogen temperature of a RbBr : Yb$^{3+}$ crystal at slow cooled from 354° C to room temperature.</td>
<td>117</td>
</tr>
<tr>
<td>6.4</td>
<td>Room temperature optical absorption spectra of RbBr : Yb$^{3+}$ crystals quenched from different annealing temperatures.</td>
<td>121</td>
</tr>
<tr>
<td>6.5</td>
<td>Liquid nitrogen temperature optical absorption spectra of RbBr : Yb$^{3+}$ crystals quenched from different annealing temperatures.</td>
<td>121</td>
</tr>
<tr>
<td>6.6</td>
<td>Absorption spectrum measured at liquid nitrogen temperature of a RbBr : Yb$^{3+}$ crystal annealed at and quenched from 500° C to room temperature.</td>
<td>121</td>
</tr>
<tr>
<td>6.7</td>
<td>Variation of the spectral position of the A2-band at room temperature in the spectra of RbBr : Yb$^{3+}$ crystals quenched from different annealing temperatures.</td>
<td>122</td>
</tr>
<tr>
<td>6.8</td>
<td>Absorption spectra measured at liquid nitrogen temperature of a RbBr : Yb$^{3+}$ crystal slow cooled from doping temperature and annealed at and quenched from different elevated temperatures.</td>
<td>122</td>
</tr>
<tr>
<td>Fig No</td>
<td>Figure</td>
<td>Following Page</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>6.9</td>
<td>Variation of the spectral position of the A2-band (measured at room temperature) in the spectra of a sample of RbBr: Yb²⁺ crystal slow cooled from doping temperature but annealed and quenched from different temperatures.</td>
<td>123</td>
</tr>
<tr>
<td>6.10</td>
<td>Absorption spectra a sample of RbBr: Yb²⁺ crystal stored under laboratory conditions for 23 months.</td>
<td>124</td>
</tr>
<tr>
<td>A5.1</td>
<td>Plots of values of $C_{df}$ and $C_{sd}$ against $N$, the number of equivalent electrons, for $4f^N$ configurations of 6 divalent rare-earth ions in free state.</td>
<td>137</td>
</tr>
<tr>
<td>A5.2</td>
<td>A plot of values of $F_1$ against $N$, the number of equivalent electrons, for $4f^N$ configurations of 6 divalent rare-earth ions in free state.</td>
<td>137</td>
</tr>
<tr>
<td>A5.3</td>
<td>A plot of values of $F_2$ against $N$, the number of equivalent electrons, for $4f^N$ configurations of 6 divalent rare-earth ions in free state.</td>
<td>137</td>
</tr>
<tr>
<td>A5.4</td>
<td>A plot of values of $G_1$ against $N$, the number of equivalent electrons, for $4f^N$ configurations of 6 divalent rare-earth ions in free state.</td>
<td>137</td>
</tr>
<tr>
<td>A5.5</td>
<td>A plot of values of $G_2$ against $N$, the number of equivalent electrons, for $4f^N$ configurations of 6 divalent rare-earth ions in free state.</td>
<td>137</td>
</tr>
<tr>
<td>A5.6</td>
<td>A plot of values of $G_3$ against $N$, the number of equivalent electrons, for $4f^N$ configurations of 6 divalent rare-earth ions in free state.</td>
<td>137</td>
</tr>
</tbody>
</table>
**List of Tables**

<table>
<thead>
<tr>
<th>Table No</th>
<th>Table</th>
<th>Following Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Incorporation of $Sm^{2+}$ and $Yb^{2+}$ ions into potassium and rubidium halide crystals: Some thermodynamic information.</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Reduction of the direct products $\Gamma_i \times \Gamma_j$ ($i, j = 1, 2, ..., 5$) of the irreducible representations of cubic group, $O$ into the irreducible representation of the same group.</td>
<td>52</td>
</tr>
<tr>
<td>4.2(a)</td>
<td>Experimental and theoretical energy levels and relative transition intensities of $Yb^{2+}$ ions in $RbI : Yb^{2+}$ crystals.</td>
<td>64</td>
</tr>
<tr>
<td>4.2(b)</td>
<td>Experimental and theoretical energy levels and relative transition intensities of $Yb^{2+}$ ions in $RbBr : Yb^{2+}$ crystals.</td>
<td>64</td>
</tr>
<tr>
<td>4.2(c)</td>
<td>Experimental and theoretical energy levels and relative transition intensities of $Yb^{2+}$ ions in $RbCl : Yb^{2+}$ crystals.</td>
<td>64</td>
</tr>
<tr>
<td>4.3</td>
<td>Optimised energy parameters $F_2(f, d), G_1(f, d), \zeta_{bf}$ and $D_q$ for $Yb^{2+}$ ions in rubidium halide crystals and associated nephelauxetic ratios $\beta$</td>
<td>64</td>
</tr>
<tr>
<td>4.4</td>
<td>Reduction of the direct products $\Gamma_i \times \Gamma_j$ ($i, j = 1, 2, ..., 4$) of the irreducible representations of orthorhombic $C_{2v}$ point group into irreducible representation of the same group.</td>
<td>74</td>
</tr>
<tr>
<td>4.5</td>
<td>Spectral positions and relative intensities $E_1$- and $E_2$- bands in the absorption spectra of $RbX : Yb^{2+}$ ($X = Cl, Br, I$) crystals at room and liquid nitrogen temperatures.</td>
<td>76</td>
</tr>
<tr>
<td>5.1</td>
<td>Table of coefficients $Y_{kr}$ and $Z_{kr}$</td>
<td>86</td>
</tr>
<tr>
<td>5.2</td>
<td>Reduced matrix elements of unit tensor operators $U^{(r)}$ between $LS$ coupled states of $f^{5}(dFH)$ subconfiguration.</td>
<td>86</td>
</tr>
<tr>
<td>5.3</td>
<td>Reduced matrix elements of double tensor operators $V^{(1r)}$ between $LS$ coupled states of $f^{5}(dFH)$ sub-configuration.</td>
<td>87</td>
</tr>
</tbody>
</table>
Table No | Table | Following Page
--- | --- | ---
5.4 | Composition factors $\xi_{\tau s}$ for the states \(|(\frac{3}{2}, 3, L_{1}, \Gamma_{d}, \Delta m, \Gamma_{\alpha \tau s})|, L_{1} = 3, 5, \Gamma_{d} = \Gamma_{3}, \Gamma_{5} \rangle | 91
5.5 | Free ion energy parameters values for $4f^{N}5d$ configuration of some divalent rare earth ions. | 91
5.6(a) | Spectral positions of main bands in the absorption spectra of $KX : Sm^{2+} (X = Cl, Br, I)$ crystals at room and liquid nitrogen temperatures. | 95
5.6(b) | Spectral positions of main bands in the absorption spectra of $RbX : Sm^{2+} (X = Cl, Br, I)$ crystals at room and liquid nitrogen temperatures. | 95
5.7 | Separation of the same selected absorption bands in the spectra of $KX : Sm^{2+}$ and $RbX : Sm^{2+} (X = Cl, Br, I)$ crystals at liquid nitrogen temperature. | 96
5.8 | Optimised energy parameters $F_{3}(f, d)$, $G_{3}(f, d)$, $\zeta_{4f}$, $\zeta_{5d}$ and $D_{q}$ for $Yb^{2+}$ ions in potassium and rubidium halide crystals. | 97
5.9 | Spectral positions and relative intensities of E-bands in the absorption spectra of $KX : Sm^{2+}$ and $RbX : Sm^{2+} (X = Cl, Br, I)$ crystals at liquid nitrogen temperatures. | 106
6.1 | Spectral positions of $A_{2}$, $A_{6}$, and $C_{4}$-bands of $Yb^{2+}$ ions in $RbBr : Yb^{2+}$ crystal matrix at different elevated temperatures. | 118
6.2 | Positions of absorption bands of $Yb^{2+}$ ions in a sample of $RbBr : Yb^{2+}$ crystal slow cooled from $282^\circ C$ and $254^\circ C$ measured at room and liquid nitrogen temperatures. | 118
<table>
<thead>
<tr>
<th>Table No</th>
<th>Table</th>
<th>Following Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Spectral positions of A2 and C4 bands at room and liquid nitrogen temperatures for different annealing temperatures in the formation kinetics experiments.</td>
<td>122</td>
</tr>
<tr>
<td>6.4</td>
<td>Spectral positions of A2 band at room and liquid nitrogen temperatures for different annealing temperatures in the dissolution kinetics experiments.</td>
<td>123</td>
</tr>
<tr>
<td>A5.1-A5.6</td>
<td>Vector coupling coefficients $\langle \Gamma_i e \Gamma_j \Phi | \Gamma_i e \rangle$, $j, j' = 6, 7, 8$, $i = 1, 2, ..., 5$ for double cubic basis functions.</td>
<td>137</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 General Introduction

1.1.1 Rare-earth metal ions

Ytterbium and samarium are rare-earth metals. The rare-earths form two series of metallic elements in the periodic table. Starting with cerium, with atomic number $Z = 58$, the first series ends with lutecium ($Z = 71$). They are known as the lanthanides. Metallic elements lying between and including thorium ($Z = 90$) and lawrencium ($Z = 103$) constitute the second series known as the actinides [1,2].

A neutral lanthanide atom has an electronic configuration of the form $(Xe)f^N6s^2$ or $(Xe)f^N5d6s$ where $(Xe)$ refers to the electronic configuration of the xenon atom and $1 \leq N \leq 14$. Configurations with $5d$ subshells include those of cerium, gadolinium ($Z = 64$) and lutecium. In the case of actinides, the electronic configuration of a neutral atom is of the form $(Rn)5f^N7s^2$ or $(Rn)5f^N8d7s^2$ where $(Rn)$ is the electronic structure of the radon atom ($Z = 86$). It should be noted however that normal thorium atom has completely empty $5f$ subshell.

Evidently, the two elemental series are similar in having partially filled $4f$ or $5f$ subshells, the electrons of which are shielded by the outer shell electrons owing to the contraction of the $f$ subshells [2]. It is this remarkable similarity, with its attendant consequences on the properties of these elements, and their compounds that has prompted the classification of the two groups of elements as rare-earths. Many authors [3-6] have tended to regard the lanthanides as the true rare-earths.
In this work, whenever reference is made to rare-earths it shall be understood as elements in the lanthanide series.

The lanthanides exhibit appreciable similarity in their chemical, magnetic and some other physical properties such as specific heats. In general there is a tendency for them to form trivalent compounds. However samarium (Z = 62), europium (Z = 63) and ytterbium (Z = 70) easily exist also in the divalent state. For the last two elements, this tendency has been explained by the assumption that at the ground state, both are S-state ions, because of the half-filled (as in the case of divalent europium Eu²⁺ (4f¹)) or completely filled (as in the case of divalent ytterbium Yb²⁺ (4f¹⁴)) nature of the 4f subshells. The above explanation cannot however apply to the case of divalent samarium, Sm²⁺, with 4f⁶ subshell. Nevertheless, the other lanthanides can be made to exist in the divalent state under specially arranged conditions [7-13]. The rare-earths appear to be strongly paramagnetic at low temperatures and some are ferromagnetic or antiferromagnetic [3].

Many of the properties of the rare-earths either in solid or ionised state, or in combination with other elements as in compounds of rare-earths or in crystals as impurities have been ascribed to the small radial extension of the 4f subshell in comparison with the 5s,5p,5d or 6s subshells. It is this comparatively small spatial extension of the radial part of the wavefunctions of the 4f electrons as seen in Fig 1.1, that causes the shielding of the 4f electrons from the environment by the electrons of the outer 5s, 5p and 6s atomic orbitals.

In an isolated free rare-earth ion, the 4f electrons exhibit strong mutual repulsion and considerable magnetic interaction between the magnetic dipole associated with spin angular momentum and the magnetic field resulting from their motion around the nucleus (spin-orbit interaction). Consequently, there exists in typical rare earth ions a very large number of quantum states. Excitations of these ions cause electronic transitions from the ground state to these quantum states resulting in very weak and sharp absorption. The observed absorption lines are weak because the transitions are not allowed on grounds of parity selection rule. This rule, due to Laporte, says that electronic transitions, under electric dipole approximation, are forbidden between quantum states of same parity [30]. Therefore 4fⁿ → 4fⁿ
Fig 1.1 Distribution of radial density $R_n^2(r)$ for the $4f, 5s, 5p, 5d, 6s,$ and $6p$ electrons of CeI as a function of radial extension $r$ (after Goldschmidt [20])
transitions are parity forbidden.

Electronic transitions from the ground state to low-lying excited configurations such as $4f^N5d$ and $4f^N6s$ are parity allowed although transitions to the latter configuration are forbidden on grounds of a different selection rule. The resulting absorption lines are generally strong in intensity. These configurations are more complex because of the additional interactions such as Coulomb and exchange interactions between the $4f^N$ core electrons and the single electron in an outer orbital. In many cases, the number of resulting energy levels run into thousands. Indeed, the observed optical spectra of various rare-earth ions in triply or doubly ionised state show in some cases thousands of sharp lines, interpretation to which becomes very difficult. The task of interpreting the observed spectra often becomes complicated by the fact that electronic states belonging to different configurations do sometimes overlap, resulting in the mixing of states from different configurations (configuration interaction). Inclusion of considerations of this kind in doing energy level calculations have greatly improved the fit between the experimentally observed spectra and theoretically computed energy levels [31-37].

1.1.2 Rare earth ions in crystalline environments

For many decades, there have been intensive and extensive studies of the optical, electrical, paramagnetic and magnetic properties of rare-earth ions in crystalline solids. One strategy has been to investigate the properties of rare-earth compounds where available [38,51-58] while another has been to introduce rare-earth ions into crystals [9 - 28, 39-50,59-70]. In many of these studies, optical (both absorption and fluorescence) spectroscopy has proved a very powerful tool in obtaining experimental data, analyses of which have led to a deeper understanding of the optical properties of the ions. Because many of the ions are paramagnetic, electron spin resonance (ESR) technique and Zeeman spectroscopy have also proved very useful in gathering data on the paramagnetic and magnetic behaviour of the ions. Among the many objectives of these studies is the understanding of the precise nature of the perturbation interactions that determine the observed physical properties. For instance, as has earlier been pointed out, in free ion state, the structure of the
energy levels of rare-earth ions is determined by electrostatic interactions between pairs of optically active electrons as well as by spin-orbit interaction. What then is the role of these interactions in determining the structure of the energy levels of ions in crystalline environment? Equally important are the class of interactions between the rare-earth ions in crystals (which are here perceived as occupying substitutional lattice sites and regarded as central ions) and the surrounding ligand ions. Again, what is the effect of this latter class of interactions on the structure of the energy levels and paramagnetic properties of the rare-earth ions in crystals? Answers to questions such as these make possible a clear understanding of the properties of these ions and the possible use to put them to.

Correlation of the observed energy levels of rare-earth ions in crystals as determined from the optical absorption and fluorescence spectra of crystals containing these ions with the emission spectra of the same ions in free space has led to an understanding of the effect of crystalline environment on the electronic states of the low-lying configurations. As an example, the weak, sharp spectral lines exhibited by many trivalent and divalent rare-earth ions in crystals in both absorption, and fluorescence resemble very closely in energy levels positions the spectral lines characteristic of $4f^N \cdot 4f^N$ transitions of free rare-earth ions [38,59,61- 69,73]. This has led to the conclusion that the interaction between $4f$ electrons and the ligand ions is weak compared with inter-electronic interactions within the $4f^N$ electron system. In fact, for some rare earth ions, the known free ion energy levels of the $4f^N$ configuration are inferred from studies of the ions in crystals [72,74].

Direct correlation between the free ion energy levels of mixed configurations such as $4f^N5d$ or $4f^N6s$ with observed optical spectra of rare-earth ions in crystals is more difficult to make. In the first place, optical spectra of rare-earth ions in crystals ascribable to $4f^{N+1} \rightarrow 4f^N5d$ transitions usually consist of strong broad bands. For divalent rare-earth ions, the optical absorption spectra generally extend from the infra-red to the ultra-violet, the onset of absorption beginning at energies characteristic of each rare-earth ion [6 - 10,40 - 43,62,75 - 89], while for the trivalent ions, the spectral bands are generally located in the vacuum ultra-violet [79].

One of the difficulties in the direct correlation pertains to the broad nature of
the spectral bands, the half-width of which sometimes is as large as 2000 cm\(^{-1}\),
even at low temperatures [62]. The broadening of the bands can be explained by
assuming that the states of the outer 5d or 6s (optically active) electron are more
easily perturbed by the charge distribution of the ligand ions since electrons in these
outer subshells extend further into space than electrons in the 4f subshell. In other
words, the 5d or 6s electrons are more strongly coupled to the ligand ions than the 4f
electrons. In any theoretical analysis of the observed spectra therefore, the relative
magnitudes of the interactions within the system of optically active electrons on the
one hand and between them and the ligand ions on the other become of paramount
importance. Another aspect of the problem presented by the large width of the
bands is that usually, the 4f\(^{N}\)5d configuration consists of very large number of
quantum states which may be very close in energy terms. Most of the observed
absorption bands of some rare-earth ions in crystals may in fact be connected to
overlap of bands connected to states of different multiplets of the free ion.

In the analysis of the observed 4f\(^{N}\)(5d + 6s) spectra of rare-earth ions in crys-
talline environments, some approximations become inevitable. Some investigators
have tended to ignore the effect of the interaction between the 4f\(^{N}\) electrons and
the ions in the crystal lattice while others work on the model that the direct Coulomb
and exchange interactions between the 4f\(^{N}\) electrons and the outer 5d or 6s electron
can be ignored [10,70,80,90]. Authors like Eremin [91], Piper and his collaborators
[86] and Yanase and Kasuya [92] see no point in making the latter assumption, since
in their view many of these interactions are of comparable magnitude. If issues such
as this are to be resolved, a large number of experimental data on rare-earth ions
in a wide variety of crystalline solids and theoretical analyses of these is required.
Admittedly, a large amount of experimental data on the optical spectra ascribable
to 4f\(^{N+1}\) \rightarrow 4f\(^{N}\)5d electronic transitions of rare-earth ions exist [10,40 - 43,78 - 92]
but there are only a comparatively few detailed theoretical analyses of these spectra
[6,76,77,86,91,92,228].

Whatever the assumptions and (or) approximations used in studying the inter-
communications, through electronic transitions, between the ground and excited
configurations of rare-earth ions in crystals, there are some strategies and techniques
central to most approaches. Firstly, the energy level structure of the free ions has
to be clearly understood. This requires an adequate understanding of the theory
of complex spectra. Among of the most powerful tools in studying complex atomic
spectra are the Racah's tensor operator techniques [93 - 95] and are very commonly
used by many investigators. Secondly, the influence of the crystalline environment
on the free ion energy levels is considered. In this respect, the application of the
theory of finite groups to the problem of the splitting of the free ion energy levels
as the ion enters a crystalline environment has proved very useful. It was Bethe
[96] who first explained how the splitting of energy levels of a free ion introduced
into a crystal depends on the symmetry of the site occupied by the ion and on the
magnitude of the electrostatic interaction between the ion and the ligand ions.

Successful as Bethe's theory has been in offering a qualitative (and to some extent
quantitative) understanding of the experimental data for ions in ionic crystals, a rival
molecular orbital (MO) theory exists which explains the situation in covalent crystals
[97, 98]. Essentially, the latter theory applies the same basic symmetry principles
as Bethe's theory but proposes that atomic orbitals of both the central and ligand
ions overlap to form molecular orbitals (MO's). The degree of overlap determines
the extent of the splitting of the energy levels of the central ions.

This study is concerned, in the main with the optical properties of $Sm^{2+}$ and
$Yb^{2+}$ ions in potassium and rubidium halide crystals. In particular, measurements
of optical absorption spectra of the crystals containing these ions will be made and
analysed. The high ionicity of alkali halides and the high symmetry of the cation site
of their crystals make them attractive hosts for substituting the ions being studied.
As a result, the basic symmetry principles embodied in Bethe's crystal field theory
can be readily applied to the problem. All these considerations also necessitate
short reviews of the properties of ytterbium and samarium ions in crystals which
are included in a later section of this chapter.

Since a variety of crystal imperfections can easily be introduced into alkali halide
crystals during the process of incorporating the intentional impurity ions a short
review of the major structural defects in alkali halide crystals is also given. The ob­
jective is to keep these imperfections and their optical properties in focus throughout
the investigations.

In the first part of Chapter 2 of this work are introduced the theoretical formulations essential for calculating the energy levels of free rare-earth ions in crystalline environments, the major tools being quantum mechanical and group theoretical principles and Racah's tensor operator techniques. Because all the computer programs and subroutines used in calculating the energy levels of the ions being studied were designed, developed and tested by the author, it is instructive to discuss the major computational strategies and algorithms adopted in doing these tasks. Such a discussion constitutes the second and larger part of Chapter 2. Application of the major concepts introduced in that chapter to the problem of \( \text{Yb}^{3+} \) and \( \text{Sm}^{2+} \) ions in alkali halide crystals is detailed in two separate chapters; (Chapters 4 and 5). Finally, the main findings of this work and the conclusions are summarised in Chapter 7.

1.2 Preliminary comments on \( \text{Yb}^{3+} \) and \( \text{Sm}^{2+} \) ions in crystals

1.2.1 Ytterbium ions in crystals

A neutral ytterbium atom has the electronic structure \((\text{Xe})4f^{14}6s^2\). In vacuum ytterbium can exist quite easily in triply ionised (\( \text{Yb}^{IV} \)) doubly ionised (\( \text{Yb}^{III} \)) or singly ionised (\( \text{Yb}^{II} \)) states. \( \text{Yb}^{IV} \) (or \( \text{Yb}^{3+} \) ion) has a ground configuration of \( 4f^{13} \) while \( \text{Yb}^{III} \) (or \( \text{Yb}^{2+} \) ion) has ground configuration of \( 4f^{14} \). The free ion spectra of these ions have been investigated both experimentally and theoretically [99]. One notable result of the study is the strong spin-orbit interactions that perturb the states of the \( 4f \) electrons. Thus in considering electronic transitions from the ground configuration \( 4f^{14} \) to an excited configuration such as \( 4f^{13}5d \) of \( \text{Yb}^{3+} \) (or \( 4f^{12}6s6p \) of \( \text{Yb}^{+} \)) ions, spin-orbit interaction within the states of \( 4f^{13} \) core over-rides the electrostatic interaction between the \( 4f^{13} \) electrons and the outer \( 5d \) (or \( 6p \)) electron in importance. As will be made clear in a latter chapter, it is the relative strength of these perturbation interactions that determine the choice of wavefunctions with which to describe the electronic states of the free ions. Another important result is that the energy levels of free \( \text{Yb}^{3+} \) ions ascribable to \( 4f^{13} - 4f^{12}5d \) -electronic
transitions are higher than the corresponding $4f^{14} - 4f^{13}5d$ of free $Yb^{3+}$ ions.

On incorporating $Yb^{3+}$ ions into crystals of well-defined point symmetry, the various features of the energy levels of the ions can be studied by an analysis of optical absorption and emission spectra of the ions in crystals, and ESR studies. These studies reveal that although the electronic levels of the $4f^{12}5d$ configuration are lowered by the crystal field they are located at spectral positions greater than 50 000 cm$^{-1}$ above the ground state of $Yb^{3+}$ ions and therefore outside the region of optical transparency of most alkali halide crystals. Also revealed in these studies is the fact that the spin-orbit split $^2F$ term of $4f^{13}$ configuration couple weakly to the crystal field levels. Electronic transitions between the energy levels of this configuration are parity forbidden and optical absorption and emission measurements show that the spectra consist of weak but sharp bands, the spectral energies being located in the infra-red [100].

Divalent ytterbium ions in crystals on the other hand do not show corresponding low-lying levels since the ground configuration consists of a single $^1S_0$ state. However inter-communication through electronic transitions between the $4f^{14}$ configuration and the first excited configuration $4f^{13}5d$ is possible since it is parity allowed. A number of studies have shown that in crystals of CaF$_2$ structure which contain $Yb^{3+}$ ions, such transitions are manifested in a number of strong broad absorption bands located mainly in the ultra violet or in broad emission bands in the visible region [42]. Theoretical studies of the energy level structure based on these experimental findings have been limited in their success. Two most widely quoted studies were done by Piper, Brown and McClure [80] and Eremin [91]. These authors rightly acknowledge the relative importance of the main perturbation interactions operative on the electronic states of the ions but proceed to assume that the best description of the states of the ions consists in coupling the total spin ($S$) and total orbital ($L$) angular momenta to obtain the total angular momenta ($J$) of the electrons. Such a description, even though it could give reasonably good energy level structure, gives incorrect wavefunctions for the ions since it ignores the fact that spin orbit interaction within the states of the $4f^{13}$ core is far more important than the electrostatic interaction between the core electrons and the outer 5d electron.
In their study of electronic states of \( \text{Yb}^{3+} \) ions in potassium and sodium halides, Bland and Smith [101] acknowledge the drawback in the above-mentioned studies and use \( J_{ij} \) coupling scheme which more closely describes the physical coupling situation between \( 4f \) and \( 5d \) electrons in \( \text{Yb}^{3+} \) ions. In the next chapter, the important features of these coupling schemes will be more fully explained. Also revealed in these later studies is the fact that electrostatic coupling (both the Coulomb and exchange type) between the \( 4f^{13} \) and \( 5d \) electrons is an important interaction to consider in determining the energy levels of \( \text{Yb}^{3+} \) ions in crystals, although the coupling strength is reduced from free ion values.

One remarkable aspect of the Bland and Smith study is that \( \text{Yb}^{3+} \) ions were incorporated into the crystals by vapour phase diffusion technique in which the crystals were heated in ytterbium metal vapour. It was the first time such a technique has been successfully used for implanting \( \text{Yb}^{3+} \) ions in potassium and sodium halide crystals.

It will be interesting therefore to extend the study to \( \text{Yb}^{3+} \) ions in rubidium halide crystals and using the same doping technique. As far as the author knows, optical studies of \( \text{RbX:Yb}^{3+} (X = \text{Cl, Br, I}) \) systems have not previously been reported. The only study done with a rubidium halide crystal system was done with RbCl host [64]. In that study, attention was focussed on vibronic transitions involving the lowest energy band of the \( 4f^{13}5d \) configuration at 4.2 K. It is reasonable, therefore, to assume that the experimental and theoretical studies of the \( 4f^{13}5d \) configuration of \( \text{Yb}^{3+} \) ions in \( \text{RbX} \) crystals have not been done before. This is one of the tasks undertaken in this study.

### 1.2.2 Samaruium ions in crystals

The electronic configuration of a neutral samaruium atom is \((\text{Xe})4f^66s^2\). For the free trivalent samaruium ion \((\text{Sm}^{3+})\), it is \(4f^6\) while that of the doubly ionised free ion, \((\text{Sm}^{4+})\) is \(4f^5\). Most of what is known about the free ion states of \(\text{Sm}^{3+}\) comes from comparisons of experimental data obtained in the study of optical absorption and fluorescence spectra of \(\text{Sm}^{3+}\) ions in \(\text{LaCl}_3\) crystals [74]. Results of the studies show that the lowest energy levels originate from the multiplets \(6F\) and
are separated from the next higher groups of energy levels by about $12000 \text{ cm}^{-1}$ as shown in Fig 1.2. The energy levels of the free $\text{Sm}^{2+}$ ions, on the other hand, have been obtained experimentally by identification, characterisation and analysis of the spark emission spectra of the ions by Dupont [102]. His analysis shows that the $4f^6$ configuration of $\text{Sm}^{2+}$ comprises a ground multiplet $^7F$ term, separated from the next higher multiplet, $^5D$ by about $18000 \text{ cm}^{-1}$ which in turn is fairly well separated from the 230 multiplet terms above it. These latter group of levels are characterised by admixed wavefunctions.

However, the high purity of the $^7F$ and $^5D$ multiplet levels of the $4f^6$ configuration makes fairly easy the theoretical analysis of the experimental data corresponding to the lower energy levels of $\text{Sm}^{2+}$ ions in crystalline environments. Many of such studies exist [62,64,67,71,140]. As a result of these studies the energy level structure of the $4f^6$ configuration of $\text{Sm}^{2+}$ ions in alkali halide crystals is now well understood. Fig 1.3 shows the energy level structure developed using data obtained by analysing the fluorescence spectra of $\text{Sm}^{2+}$ ions in these crystals.

The free ion states of the first excited configuration of $\text{Sm}^{2+}$ ions are equally complex. An analysis of this configuration by Dupont [102] who incorporates the preliminary calculations by Becher [103] gives rise to the identification by most of the energy levels originating from $4f^5(^9PFH)5d$ sub-configuration. Identified levels lie in the energy range $26283.55 - 55149.58 \text{ cm}^{-1}$ above the ground state of the $4f^6$ configuration. In crystalline environment, the centre of gravity of the $4f^55d$ configuration is lowered relative to the ground state of $4f^6$ configuration. Evidence of this is provided by the observation that the absorption spectra of $\text{Sm}^{2+}$ ions in alkaline-earth fluorite and alkali halide crystals consist of strong broad bands in both the visible and ultra-violet, the lowest of these lying between 15380 and 16420 cm$^{-1}$ in $\text{CaF}_2: \text{Sm}^{2+}$ crystals at 4.2 K [43,63]. The location of corresponding band in other alkaline fluorite and alkali halide crystals containing $\text{Sm}^{2+}$ are not markedly different [62,80,64].

What is of interest in the present study is that despite the large amount of experimental data on the properties of $\text{Sm}^{2+}$ ions in various crystals, not much interest has been shown on the theoretical analysis of the structure of the $4f^55d$ configuration.
Fig 1.2 Theoretical and experimental energy levels of $4f^2$ configuration of $Sm^{3+}$ ions. Experimental levels were obtained from studies of trivalent samarium salts. (after Wybourne [74])
Fig 1.3 Energy level scheme for the $4f^6$ configuration of $\text{Sm}^{2+}$ ions in some alkali halide crystals developed from fluorescence data. (after Guzzi and Baldini [60])
tion of the ions in crystals. It is true however that there have been some attempts at qualitative and semi-quantitative assignments of the observed energy bands in the absorption spectra of Sm\(^{2+}\) ions ascribable to this configuration through recourse to group theory [62,80]. The only attempt at a detailed calculation up to date was made by Yanase [104]. In it he tries to fit the coarse structure of the experimentally determined spectra of \(CaF_2: Sm\)\(^3\) crystals to theoretical energy levels based on a coupling scheme suggested by Yanase and Kasuya [92]. The coupling formalism assumes that even though the 5d electron states are strongly perturbed by the crystal field, the total angular momentum J obtained by the coupling of total spin angular momentum S and orbital angular momentum L derived from the 4f\(^3\) configuration is still a good quantum number. In order to explain the main features of the absorption spectra of Sm\(^{2+}\) ions in alkali halide crystals, it appears reasonable to apply the above coupling scheme in the calculation of the energy levels of the ions.

Worthy of note is the fact that absorption spectra, in the visible and ultraviolet, of Sm\(^{2+}\) ions in potassium halide and rubidium chloride crystals have earlier, been reported [50,64,80] but that those of the ions in rubidium bromide and iodide crystals have not. In some reported cases, the spectra were measured at room, liquid nitrogen and liquid helium temperatures but only room temperature spectra were published, except for \(KCl: Sm\)\(^{2+}\) spectrum at 10K. In all these studies, the doping techniques adopted are the conventional methods in which a trivalent samarium salt is added to the host crystal in molten form and the \(Sm\)\(^{3+}\) ions reduced to the divalent state. Single crystals of the solid solution is then grown using one of the standard methods such as the Bridgman, Kroopolous or Czochralski techniques [15-17,64,84-86]. It will be interesting to see if Sm\(^{2+}\) ions could be implanted into potassium and rubidium halide crystals through vapour phase diffusion process as has been successfully done for \(Yb\)\(^{2+}\) ions [6,101].
1.3 Structural imperfections in alkali halides

1.3.1 Alkali halides

Alkali halides are chemical compounds of alkali metals and halogens. They can be represented in the form MX, with M denoting an alkali metal ion (cation) and X, a halogen ion (anion). Alkali halides are ionic and sixteen of the twenty salts crystallize in the sodium chloride structure with each cation co-ordinated with six ions of opposite kind. Cesium halides (excepting the fluoride) are different in that they form crystals in which the cations experience eight-fold co-ordination [105,121]. This study shall be concerned only with alkali halides that crystallise in sodium chloride structure.

Halides of alkali metals are wide band gap materials and are optically transparent, exhibiting a wide range of spectral transparency. The absorption spectra of pure crystals of these materials occur generally in the infra-red (corresponding to lattice vibrational spectra) and in the far end of the ultra-violet (corresponding to electronic transitions from the valence band to the conduction band) [105,121]. It is this property of alkali halides, together with high symmetry of the lattice sites that make them attractive as host materials for the study of impurity ions in solids. The optical properties of impurity defects and other absorbing centres in alkali halides whose spectral energies fall within the region of optical transparency can easily be studied.

1.3.2 Intrinsic point defects in alkali halides

Ideal crystalline solids are thought of as consisting of periodic array of identical unit cells. Normal solids however depart from this idealised structure. Thermodynamic considerations establish the hypothesis that there arise in crystals which are in thermodynamic equilibrium vacant lattice sites. In ionic solids, intrinsic lattice vacancies consist of equal numbers of cation and anion vacancies. They could be Frenkel type or Schottky type defects [106].

Apart from these point defects and the possibilities of their aggregation, some extended defects such as dislocation lines, grain boundaries and even internal cracks
and surfaces could exist in alkali halide crystals [140]. These other defect structures are not of immediate interest in this work.

### 1.3.3 Electron- and hole- excess centres

Another class of point defects in alkali halides are electron-excess centres. The most important of this is formed when a halogen ion vacancy, which has an effective positive charge traps an electron to form an electrically neutral entity known as the F-centre [106]. The presence of the electron could result from an irradiation of the crystal with energetic photons such as X-rays or γ-rays or with fast moving particles such as electrons or protons [113,115,121]. In these processes not only are electrons and holes injected into the crystals, lattice vacancies are created as well. Other methods of defect structure formation include electrolytic injection of electrons and holes and chemical addition [6,113,115,121,130].

The F-centre is a highly localized point defect and its presence in alkali halide crystals makes available localized energy levels in the band gap region of the crystals. The electron of the F-centre can absorb a characteristic photon energy and make a transition from the 1s-like ground state of the centre to the 2p-like excited state. Thus the presence of F-centres in an alkali halide crystal is made manifest by the occurrence of a broad intense band in the optical absorption spectrum of the crystal. This strong optical absorption at a frequency characteristic of the host crystal gives the crystal a characteristic colouration. The broad nature of the F-centre absorption band is attributed to the interaction of the F-centre with surrounding ions of the crystal [107,108].

On the high energy side of the F-band, there could arise some broad low intensity bands which are attributed to transitions of the F-centre electron to higher excited states. These bands include the K,L1, L2 and L3 bands [115-116]. Other absorption bands associated either with an F-centre linked with other defect centres or F-centre aggregates include the β- and α- bands on the long wavelength tail of the fundamental absorption edge of the crystal and the F', R1, R2, M and N- bands on the low energy side of the F-band. Fig 1.4(a) illustrates the relative spectral positions of these bands.
Fig 1.4(a) Schematic representation of the relative positions of some electron-excess colour centre bands in the absorption spectrum of a typical alkali halide crystal containing these centres.

Fig 1.4(b) Schematic representation of the relative positions of some absorption bands in the spectrum of hole-excess centres in a typical alkali halide crystal.
Hole-excess centres belong to another category of point imperfections that occur in alkali halide crystals. In the absorption spectrum of an alkali halide crystal, bands due to hole trapping centres generally occur to the short wavelength side of the F-band. The best understood of these centres is the V*— and H-centres [115,119 - 121]. In Fig 1.4(b) the positions of the absorption bands due to these centres relative to the F-band are shown.

1.3.4 Impurity defect structures

Appreciable quantities of hydroxyl (OH−) and hydride (H−) ions can easily be incorporated into the alkali halide crystals during preparation. These impurities give rise to definite defect centres some of which are now well understood. Among these are the U-,U1- and U2- centres which are associated with characteristic absorption bands in various host crystals, usually occurring in the ultra violet [123-125].

Certain categories of impurity centres give rise to perturbed F-centres. If an alkali impurity ion is introduced into a crystal of a halide of a different metal, the impurity ion occupies a substitutional lattice site thereby distorting the symmetry at the site of any of the nearest neighbour halogen ions. A perturbation of the electronic states of the F-centre results if a substitutional impurity is situated adjacent to the F-centre. Owing to the lowering of symmetry at the site of the F-centre, there arise a splitting of the energy levels of the centre. In the case of monovalent impurity ions, additional absorption bands known as the $F_{A1}$- and $F_{A2}$- bands arise [126,127].

Similarly divalent impurities situated at lattice sites close to F-centres or other electron-excess centres could cause some perturbation in the energy states of these centres. There are many types of centres in this category and are known as the Zi-centres (i=1,2,...) [128 - 131].

Substitutional cation impurities in alkali halide crystals could be isolated from other point defects. Excitation of these impurities cause electronic transitions as manifested in characteristic absorption and emission bands obtained in optical studies of alkali halide crystals doped with these ions [132-133]. In the cases where atomically dispersed divalent cation impurities occupy substitutional sites in alkali halides cation vacancies are introduced at a next nearest neighbour lattice point in
a < 110 > direction in order to maintain the local charge neutrality in the neighbour¬
ourhood of the cation impurity site. The creation of the impurity-vacancy complex
lowers the local point symmetry at the site of the impurity ion from the octahedral
\((O_h)\) to orthorombic \((C_{hv})\) symmetry. Fig 1.5 schematically illustrates an isolated
divalent metal ion in association with a cation vacancy in an alkali halide crystal.
This model has been established with data obtained from dielectric loss measure-
ments [134 - 137], optical and electron spin resonance (ESR) studies [134,138-143] of
alkali halide doped with divalent cation impurities. As a result of the lowering of the
point symmetry at the site of the impurity ion, it is expected that those impurity en-
ergy levels which exhibit some degeneracy (with the exception of cases of Kramer’s
degeneracy) will be split. Consequently many more spectral bands characteristic of
the impurity ions could be observed in absorption and luminescence studies of these
impurity-doped crystals.

1.3.5 Precipitate phases of divalent impurity ions in alkali halide
single crystals

The presence of divalent impurity cations have other effects in the properties of
host crystals than those mentioned above. There could occur precipitate structures
which vary in size, morphology, or complexity depending on the history of the doped
crystals. A wide range of data about the formation kinetics, phase transformations,
microstructural compositions and attendant effects on the electrical, paramagnetic,
optical and mechanical properties of the host crystals have accumulated over the
years. Dielectric loss and ionic thermoconductivity measurements [134 - 137], ESR
and optical spectroscopic studies (140 - 144) and X-ray diffraction and electron mi-
croscopy [143-153] have added to the understanding of the nature of the precipitate
structures.

To appreciate how the precipitate structures and other complexes identified in
alkali halide crystals containing divalent impurity ions arise, it is important to note
that the formation of divalent impurity–cation vacancy complex (which is dipolar
in nature and therefore known as 1-V dipole) in the nearest neighbour cation site
is only one of the many possible mechanisms of charge compensation. As has been
Fig 1.5 Schematic illustration of a divalent metal impurity ion at a cation site in an alkali halide crystal and in which it enters into association with a cation vacancy situated in one of the twelve possible nearest neighbour cation sites.
pointed out by Watkins [134], the cation vacancies which are created to maintain the charge neutrality of the crystal system could even occupy next nearest neighbour (nnn) cation sites. Results of dielectric loss measurements on NaCl:CaCl₂ and KCl : SrCl₂ solid solutions, suggest that two, three or more dipoles could aggregate to form dimers, trimers or higher order complexes respectively [135,137].

Another possibility is that the divalent impurity ions and the cation vacancies could exist independent of each other. In this latter case divalent ions could form solid solutions of dihalide of the impurity ions [MeHal₂, Me = divalent impurity, Hal = halide ion] within the host crystal matrix. This is the situation in NaCl:CaCl₂ crystal system in which small metastable plate-like precipitates called plate zones and made up of smaller units known as platelets are observed to be formed parallel to the (111) and (310) planes of the crystal matrix [145,146]. According to Suzuki [146] who, with Miyake, first observed the above precipitation phenomenon, using X-ray diffraction techniques, the arrangement of the Ca²⁺ ions in the platelets is similar to that expected for the crystal structure of CaCl₂. However in this model, layers of vacancies are thought to exist within the platelets. Also found in the same crystal matrix are stable precipitates identified as CaCl₂, which have grown out of the metastable (111) plate zones after some heat treatment of the crystal sample. Precipitation of stable crystallites of the dihalides of divalent impurities has been reported in other crystal systems such as NaCl : SrCl₂ [151], LiF : MgF₂ [149], NaF : Eu²⁺, NaF : Yb²⁺ [6], NaCl : EuCl₂ [153], KBr : EuBr₂ [154], NaBr : EuCl₂ [157,155].

Interestingly, X-ray diffraction analysis also reveals that precipitate structures which are metastable and known as the Suzuki phase, exist in NaCl : CdCl₂ solid solutions [148]. Structurally and compositionally, the Suzuki phase is fairly complex since it is built up from super unit cells having face-centred cubic (fcc) structure but a lattice constant almost twice that of the host crystal. The most suitable model of the structure assumes stoichiometry to be 6NaCl : CdCl₂, with four of these chemical units in a unit cell. However, the arrangement of the ions in the unit cell is such that the 4 Cd²⁺ ions, and the 24 Na⁺ ions occupy normal cation sites; the 32 Cl⁻ ions occupy anion sites but slightly displaced towards the positive ions while the
remaining 4 cation sites are vacant. Fig 1.6 illustrates schemically the arrangement of the ions in a two-dimensional plane. Suzuki phase precipitates have also been identified in a number of alkali halide solid solutions including $NaCl : MgCl_2$, $NaCl : MnCl_2$, $LiF : MgF_2$, $RbBr : EuBr_2$, $KBr : EuBr_2$, $RbCl : EuCl_2$ and $KCl : EuCl_2$.

The results of these studies underlie the need for care in handling impurity-doped crystals and in interpreting data from studies made with them. Their relevance is appreciated in the thermal annealing experiments reported in Chapter 6 of this work.

1.4 Statement of the problem

The main objective of this study is to construct the energy level scheme for divalent samarium, $Sm^{2+}$ and ytterbium $Yb^{2+}$ ions in some alkali halide crystals. To do this use will be made of optical absorption spectra of these ions in alkali halide hosts. Since Bland and Smith [101] have developed the energy level structure of $Yb^{2+}$ ions in potassium and sodium halides attention will be concentrated on $Yb^{2+}$ ions in rubidium chloride, bromide, and iodide crystals. Host crystals for $Sm^{2+}$ ions shall be restricted to the chlorides, bromides and iodides of potassium and rubidium.

The problem is therefore divided into the following stages:

(a) measurement of optical absorption spectra of $Yb^{2+}$ and $Sm^{2+}$ ions in the host crystals (b) identification of the origin of the observed absorption bands, (c) theoretical calculation of the energy levels of the ions in crystals of appropriate point symmetry and (d) parametrisation the observed crystal energy levels by the process of fitting these energy levels with the theoretically predicted ones.
Fig 1.6 Arrangement of ions in the (100) plane of the unit cell of the Suzuki phase of NaCl : CdCl₂ solid solution. Small solid circle circles are Cd²⁺ ions, open circles Na⁺ ions, and large open circles Cl⁻ ions. Vacancies are shown in crosses. Arrows indicate the displacement of Cl⁻ ions. (after Suzuki [148])
Chapter 2

Theoretical Background and Computational Techniques.

2.1 Introduction

A systematized procedure for calculating the energy level of free rare-earth ions has evolved over the years through the efforts of Slater [159,160], Condon and Shortley [30] and Racah [93 - 95,161 - 163]. Racah’s irreducible tensor operator techniques (which have been elaborated by Judd [165-171], Wybourne [172 -176] and Fano and Racah [197]) together with concepts from the theory of finite groups [96 - 98,202 - 207,215,318,324] shall be used in this work to construct the energy matrices of the major interactions perturbing the electronic states of rare-earth ions in crystalline environments. In this chapter, therefore, a short statement on how this is done shall be given. In addition, the chapter contains an elaboration of the computational techniques employed in obtaining the energy levels as well as the wavefunctions of \( \text{Yb}^{2+} \) and \( \text{Sm}^{2+} \) ions in octahedral crystals field.
2.2 Theory of rare-earth ions in crystalline environment

2.2.1 System Hamiltonian

For a system of N+1 optically active electrons in the excited configuration nl'n'l'
of an ion in a crystalline environment, the Hamiltonian can be written as

\[ H = H_0 + H'_0 + H_{el} + H_{so} + H_{cr} \]  \hspace{1cm} (2.1)

where \( H_0 \) is the central field Hamiltonian under the central field approximation
[1,29,30,159,160] and \( H'_0 \) is an interaction term which makes no contribution to the
energy level structure of the electronic configuration. \( H_{el} \) represents the electrostatic
interaction between pairs of electrons in the system, \( H_{so} \) is the spin–orbit interaction
Hamiltonian while \( H_{cr} \) represents the electrostatic interaction between the N+1
electrons of the ion and those of the ligand ions. Some other interactions such as
configuration interaction, spin–other–orbit and spin–spin interactions [1,186] have
been neglected since their effects are small in comparison to those of the interactions
listed above. Use of the central field approximation ignores all interaction terms in
Eqn. (2.1) except \( H_0 \) and solution of the Schrödinger's equation \( H_0 \Psi = E_0 \Psi \) yields
the energy levels, \( E_0 \), of the electronic configurations and zero–order wavefunctions,
\( \Psi \), which are seen to be perturbed by a composite perturbation interaction \( H' \). For
an analysis of the energy level structure of a given configuration, \( H' \) is usually taken
to be the sum of \( H_{el}, H_{so} \) and \( H_{cr} \).

Each component of \( H' \) can be partitioned to reflect the subspace of the electronic
wavefunctions on which they act. In this connection \( H_{el} = H_{el}(I,I) + H_{el}(I,I') \). The
first term to the right of the expression is the electrostatic interaction between pairs
of electrons in the core configuration \( I^N \) while the second refers to that between the
lone electron in the \( n'l' \) outer subshell and the electrons in the \( nl^N \) core subshell.
Also the expression \( H_{so} = H_{so}(I) + H_{so}(I') \) in which the argument \( (I) \) or \( (I') \) indicates
the orbits of the electrons, is valid. In a similar manner, the operator \( H_{cr} \) consists of
two the components \( H_{cr}(I) \) and \( H_{cr}(I') \). The precise definitions of these operators in
terms of electron co-ordinates and charge distribution within the system have been
well documented [1,2,29,30,93 - 95,159,160,165,223 - 225].

It is possible to express some of these operators in terms of linear combinations of functions which have the same transformation properties with respect to rotation and inversion operations as spherical harmonic functions $Y^j(M)$ and hence as angular momentum operators $J_x, J_y, L_x, L_y$ and so on [2,29,165,178,183,197]. For example, $H_{ul}(l, l')$ can be written as

$$H_{ul}(l, l') = \sum_{k=0}^{\infty} \left[ O_{ul}(l, l') F_{k}(nl, n'l') + O_{uk}(l, l') G_{k}(nl, n'l') \right]$$

(2.2)

where $F_{k}(nl, n'l')$ and $G_{k}(nl, n'l')$ are Slater integrals [1,2,29,30,93,159,160] and $O_{ul}(l, l')$ and $O_{uk}(l, l')$ are respectively the effective direct Coulomb and exchange interaction operators acting between pairs of electrons in the $nl$ and $n'l'$ subshells. They can be shown to be [2]

$$O_{ul}(l, l') = (-1)^{l-l'} [l, l'] \left( \begin{array}{cccc} l & k & l' & l' \\ 0 & 0 & 0 & 0 \end{array} \right) \left( \begin{array}{cccc} 0 & 0 & 0 & 0 \end{array} \right) \left( \begin{array}{cccc} u_{l}^{(k)}, u_{l'}^{(k)} \end{array} \right)$$

(2.3)

and

$$O_{uk}(l, l') = \frac{1}{2} [l, l'] \left( \begin{array}{cccc} l & k & l' & l' \\ 0 & 0 & 0 & 0 \end{array} \right)^2 \sum_{m=0}^{\min(2l,2l')} (-1)^{m} [l, l'] \left( \begin{array}{cccc} l & l & l' & l' \\ 0 & 0 & 0 & 0 \end{array} \right) \left( \begin{array}{cccc} u_{l}^{(k)} \right)$$

$$\times \left( v_{l}^{(1)}, v_{l'}^{(1)} \right) + 4 v_{l}^{(1)}, v_{l'}^{(1)} \right)$$

(2.4)

where the symbol $[a,b,...]$ represents $(2a+1)(2b+1)...$ and the symbols with six arguments enclosed in parenthesis () and curly brackets { } are respectively the the 3-j and 6-j symbols of Wigner [1,2,165]. Their symmetry and orthogonality properties have been well documented [2,165,177 - 182] and their values tabulated [179]. The operator $U_{l}^{(r)}$ with $(2q + 1)$ components $U_{l}^{(r)}$ is a multi-electron unit irreducible tensor operator acting on the electrons in the $nl$ subshell [2,29,165,287]. If $u_{l}^{(r)}$ is the unit irreducible tensor operator acting on an electron in the $nl$ subshell, then $U_{l}^{(r)} = \sum_{i=1}^{2q+1} u_{l}^{(r)}(i)$ where the summation is over all the electrons in the subshell. Analogously if $U_{l}^{(r)}$ is the many-electron unit double tensor operator acting on the $N$ equivalent electrons of the $nl^N$ subshell, its $(2q + 1)(2q + 1)$ components can be defined as [2] $V_{l}^{(r)} = \sum_{i=1}^{N} v_{l}^{(r)}(i)$ where $v^{(1r)} = s^{(1)}u^{(r)}$ is the unit double tensor operator for a single electron and $s^{(1)}$ is its spin angular momentum operator.
For the $H_{el}(l,l)$ operator and in the case of $4f^N$ configuration, Racah [96] using some generalised tensor operators has shown that the electrostatic energy can be written as

$$ E = \sum_{k=0}^{3} c_k E^k \quad (2.5) $$

where $c_k$ are the linear combination of scalar operators of the form $u_f^{(k)}, v_f^{(k)}$ and $E^k$ can be shown to be linear combinations of $F_3(f,f)$ or $F_4(f,f)$ integrals [1,95,166,196].

The spin–orbit operators $H_{so}(l)$ and $H_{so}(l')$ can, in fact, be connected to the unit double tensor operators $V^{(11)}_l$ and $V^{(11)}_{l'}$ respectively [1,2,165]. However, $H_{so}(l)$ and $H_{so}(l')$ under the point–ion crystal field model [1,3,4,209,220,223 - 226,228 - 230] are conveniently expressed in terms of irreducible tensor operators $\Theta^{(k)}$ which transform as the irreducible representation, $\Gamma$, of the point group symmetry of the site of the ion [6,71,206,224,228]. In the particular case of rare–earth ions in octahedral crystal field in which the electronic states of the $4f^N5d$ configuration are being perturbed, $\Theta^{(k)}$ are linear combinations of the operators $U^{(k)}$ which transform as the identity representation, $\Gamma_1$, of the octahedral ($O_h$) point group [6,71,91,228]. It can be shown [6] that

$$ H_{so}(d) = 6 \sqrt{30 D q} \Theta^{(4)}_1 \quad (2.6) $$

$$ H_{so}(f) = 16 \sqrt{\frac{5}{11}} B_4^2 \Theta^{(4)}_1 + 320 \sqrt{\frac{14}{429}} B_6^2 \Theta^{(6)}_1 \quad (2.7) $$

where $D_q$ is the crystal parameter which represents the strength of splitting of the $d$–electron states by the crystal field. More specifically, in an octahedral or cubic crystal field, the states of a single $d$–electron are split into $\gamma_3$ and $\gamma_5$ states and the energy separation between the crystal levels associated with them is given by $10D_q [97,204,207 - 209,228,229]$. The other parameters $B_k^2 \ (k = 4,6)$ are the fourth and sixth order crystal field parameters for electrons in the $4f^N$ subshell [6,10,26,59,101,165,206,221,224,228 - 230].

2.2.2 Basis functions

As has been pointed out [86,91], for the $4f^N5d$ configurations of the rare–earth ions in crystal field, the interactions $H_{el}, H_{so}$ and $H_{cr}$ are best treated on the same footing in any perturbation calculation scheme since their energies are generally of
the same order of magnitude. In calculating the perturbation interaction matrices for \( \text{Yb}^{2+} \) and \( \text{Sm}^{2+} \) ions, therefore, intermediate coupling scheme is preferred \([1,6,76,86,91,101,228,271]\). The problem revolves around the choice of starting set of basis functions which best describe the electronic states of the ions.

One variant of the intermediate coupling scheme applies to divalent rare-earth ions towards the end of the lanthanide series, particularly \( \text{Tm}^{2+} \) and \( \text{Y}^{2+} \) ions for which spin–orbit interaction within the \( 4f^N \) subshell is about as large as the crystal field splitting of the \( 5d \)-electron states \([2,6,82,86,101]\). From the point of view of the physical coupling of the electronic states, it is more realistic to choose \( J_{1j} \)-coupled basis functions \([1,6,99,162,170]\) of the form

\[
|\psi_{J_1, J_2, M_2, \gamma_1}\rangle
\]

In Eqn. (2.8), \( \psi J_1 \) \( = \tau S_1 L_1 J_1 \) represents a set of angular momentum quantum numbers that uniquely defines the states of the \( 4f^N \) electrons in the \( LS \) coupling scheme \([1,6,170]\). The arguments \( s_l j' \) are the set of quantum numbers that describe the coupling of the states of the \( 5d \) electron, \( J_2, M_2 \) refer to the coupled states of the \( 4f^N 5d \) configuration while \( \Gamma_1 \) is a quantum number indicating that the coupled basis functions have the same transformation properties as the irreducible representation \( \Gamma_1 \) of the point group symmetry at the site of the ion \([206,209,215,228]\). \( \alpha_2 \) is an index that differentiates between irreducible representations of the same type but associated with the same \( J_2 \) while \( \gamma_1 \) identifies the row of the irreducible representation to which the basis function belongs.

Another variant of the intermediate coupling scheme pertains to those divalent rare-earth ions for which the effect of \( H_{so}(f) \) (although large enough to play a significant role in determining the energy level structure of the ions) is not as large as that of \( H_{so}(d) \). In this latter case, the coupling of the low-lying states of the \( 4f^N \) configuration approximates to \( LS \) coupling. These electronic states then couple to the strongly perturbed \( 5d \)-electron states, definable in terms of crystal wavefunctions, \( |\Gamma_{5d}\rangle \), which reflect the point group symmetry of the site of the ion \([75,76,82,104,217,218]\). Accordingly, Yanase and Kasuya \([92]\) suggest the above coupling scheme for \( \text{Eu}^{2+} \) ions in \( \text{EuF}_3 \) crystals. Hence the basis functions describing
electronic states coupled in such a manner are of the form \[75,76,104\]

\[ \left| f^N(S_zS_\ell L_z)_J_V \right| \]

(2.9)

In the case of rare-earth ions in an octahedral or cubic crystal field, \( \Gamma_r = \Gamma_d = \Gamma_3, \Gamma_1 \) and \( \Gamma_i = \Gamma_i (i = 1,2,\ldots,5) \). This coupling scheme referred to in this work as the Yanase – Kasuya coupling scheme has been applied with some measure of success to the problem of Eu\(^{2+}\) ions in alkaline earth chalcogenides \[76,219\] and to the low-lying states of Sm\(^{2+}\) ions in some alkaline earth halide crystals \[104\].

### 2.2.3 Matrix elements of perturbation interaction operators

In order to calculate the matrix elements of the perturbation operators between the basis functions defined by Eqns. (2.8) and (2.9) some recoupling of the basis functions is necessary. For example, the basis function (2.8) can be expanded into the sum of products of the coefficients \( (J_2M_2 | \alpha_1 \Gamma_1) \) and the \( J_1J \)-coupled basis functions for free ions \( \left| \psi_1J_1, \ell_1j_1, M_1 \right| > \). The matrix elements of \( H_{\text{df}}(1,l'), H_{\text{df}}(l) \) and \( H_{\text{df}}(l') \) between the basis functions (2.8) are the same as would be obtained if the calculation were done as for free ions. The procedure for doing this has been clearly explained by Judd \[170\]. For the case of Yb\(^{2+}\) ions, the problem is simplified by noting that the \( 4f^{13}5d \) configuration can be regarded as a two electron system \[6,86,99,101,228\]. To construct the crystal field energy matrices for Yb\(^{2+}\) ions, the matrix elements of the operators \( \Theta_{\ell_1, J_1}^{(a)} \) have to be taken between basis functions (2.8). This is achieved by the application of the Wigner–Eckart theorem \[2,165,182\] and the repeated use of Eqns. (11.38) and/or (11.39) of the book by Cowan \[2\] to simplify the resulting reduced matrix element, RME. As a consequence of the processes, a generalised Clebsch–Gordon (CG) or vector coupling coefficients, designated as \( \langle k\Gamma_1, J_2^{\ell+} \Gamma_j | J_2^{\ell-} \Gamma_j \rangle \) appear in the result \[71,91,228\]. Their values have been tabulated for integral \[228\] and half-integral \[71\] \( J \)-values.

Yanase \[104\] and Asano \[75\] have elaborated on the procedures for obtaining the matrix elements of the major perturbation operators between basis functions (2.9). The method adopted in this study follows closely those of Asano. As shown by the latter author, the matrix elements of the scalar operators \( \mathbf{U}_i^{(r)}, \mathbf{U}_v^{(r)} \) and \( \mathbf{V}_i^{(r)}, \mathbf{V}_v^{(r)} \)
involve the block coefficients \( W[ ] \) (= \( W[\Gamma_\rho J_\rho J_\rho J_\rho ; \Gamma_\rho \Gamma_\rho \Gamma_\rho \Gamma_\rho ] \)). In calculating the matrix elements of \( H^iV^j \) between the basis functions (2.9), it is necessary to introduce the block coefficients \( S[ ] \) (= \( S[\Gamma_\rho J_\rho J_\rho J_\rho ; \Gamma_\rho \Gamma_\rho \Gamma_\rho \Gamma_\rho ] \)) which are analogous to the block coefficients \( W[ ] \) defined by Eqn. (31) of reference [75]. In a similar way, the matrix elements of the irreducible operators, \( \Theta_1^{(a)} \) associated with crystal field have block coefficients \( X[ ] \) (= \( X[\Gamma_\rho J_\rho J_\rho J_\rho ; \Gamma_\rho \Gamma_\rho \Gamma_\rho \Gamma_\rho ] \)). Although analogous to the \( Y \)-coefficients of Asano [75], the \( X[ ] \) coefficients differ from the latter through a set of expansion factors \( (\hbar q, \Gamma_1 a) \) consistent with the definitions of \( \Theta_1^{(a)} \).

By applying the above techniques to the case of \( 4f^N5d \) configurations of rare-earth ions it was possible to express the elements of the energy matrices of the major perturbation interactions in terms of energy parameters. For example, the matrix elements of \( H^iV^j \) were expressed in terms of sum of the products: \( f^iV^j \) of \( F_k^i(f, d) \) and \( g^k(f, d) \) are the angular parts of the matrix elements of the direct Coulomb and exchange interaction energy matrices respectively (they are real numbers) while \( F_k^i(f, d) \) (= \( F_k^i(f, d) \)) and \( G_k^i(f, d) \) (= \( G_k^i(f, d) \)) are Slater–Condon parameters [30]. \( D_k \) are denominators introduced by Condon and Shortley [30]. (In the above definitions, the \( n \) and \( n' \) in \( F_k^i(nl, n'l') \) and \( G_k^i(nl, n'l') \) are ignored since it is understood the case at hand is the \( 4f^N5d \) configuration). Similarly, the spin–orbit energy matrices are expressed in terms of products of angular parts (real numbers) and radial parts (the spin–orbit parameters \( \zeta_{np} \) and \( \zeta_{np} \)) while the crystals field energy matrices are in terms of the parameters \( D_q \) (in the case of \( H^iV^j \)) and \( B_q^i \) and \( B_q^j \) (in the case of \( H^iV^j \)).

### 2.3 Introductory comments on computational techniques

The composite energy matrix for each of the systems studied is simply the sum of the various perturbation energy matrices. It was there an easy matter to set up secular equations of the type

\[
\det[(\Psi | H^j | \Psi) - E_n] = 0
\]

2.10

Solution of such equations gives the eigenvalues of the matrix and its eigenvectors can then be determined.
To do these tasks, it was found necessary to design, develop and test a self-contained set of libraries of computer program units or subroutines modelled to the problems. Each library of subroutines was designed for specific aspects of the problems. There resulted therefore specialised libraries for the calculation of elements of the interaction matrices and of the commonly re-occurring quantities such as the $3n\cdot j$ symbols, the generalised CG or vector coupling coefficients and the block coefficients encountered in the last section. In the remaining sections of this chapter, the computational techniques and algorithms adopted for the different tasks will be highlighted.

There are a number of algorithms which can be used in developing the subroutines for solving the secular equations and for determining the eigenvectors of the composite matrices. But the requirements of numerical stability, efficiency and speed demand very careful choice of algorithms. For this reason, the algorithms used in developing the eigenvalue subroutines shall be discussed and their unique properties highlighted. In the last section of the chapter, the inter-relationship between one subroutine and another will be specified.

In addition to these, there was developed a procedure for fitting the experimentally observed energy levels with the theoretically determined ones with a view to minimising the differences between them. The theoretical basis for the procedure is included in this chapter together with elements of the computer program and subroutines that execute the minimisation process.

### 2.4 Calculation of energy matrices

#### 2.4.1 Introduction

The calculation of the energy matrices for the $4f^{13}5d$ configuration of $Yb^{2+}$ ions was done by free hand and the elements expressed in terms of energy parameters $F_k(f, d), G_k(f, d), C_{nm}$ and $B_k$. But free hand calculation of the elements of the energy matrices for $4f^{4}5d$ configuration of $Sm^{2+}$ ions was not feasible. Besides many coefficients such as the $W[ ]$, $S[ ]$ and $X[ ]$ block coefficients, which in themselves are very difficult to calculate by hand, were involve in the calculation of the matrix
elements.

In view of the above, two stages were adopted in calculating the energy matrices. The first stage consists in computing the \(3n-j\) and block coefficients while the second is the actual calculation of the matrix elements.

2.4.2 Calculation of the \(3n-j\) symbols, and block coefficients \(W[], S[], X[]\)

It is well known that tables of \(3-j\) and \(6-j\) symbols exist but to knowledge of the author, tables of \(W[], S[], X[]\) block coefficients are not available in literature. The use of available tables of \(3-j\) and \(6-j\) symbols was considered infeasible, however since an extremely large number of such quantities was involved in the calculation. Use of those tables would therefore require keying in the whole tables into the computer. For this reason, a library of subroutines was designed, developed and thoroughly tested for the calculation of the \(3-j\) and \(6-j\) symbols. In all cases tested, the values returned by the computer were exactly the same as the values in tables by Rotenberg and his co-workers[179].

One formidable problem encountered in calculating either the block coefficients or the \(3n-j\) symbols was that of computational precision. An early decision was taken to use integer arithmetic for the computing task in order to retain their exact values at that computational stage. However, this could not be done by using straightforward arithmetical procedure. The strategy adopted is to express the square of each of the numbers involved in the calculation as the product of a phase factor \(p\), an integer array \((a_j), (i = 1, 2, 3, ..., j = 1, 2, ..., 12)\) of the exponents of the first twelve prime numbers, \(a_j, (j = 1, 2, ..., 12)\) and a positive integral factor, \(b\). Therefore any non-decimal real number can be expressed as the product

\[
(p) \sqrt{\prod_{j=1}^{12} a_j^{a_j^2 b}}
\]

with \(p = 0, \pm 1\).

Another library of subroutines was developed for computing the block coefficients in integer arithmetic. Results obtained were also expressed in terms of \(p, a_j\) and \(b\) factors and constituted into \((n \times 14)\) matrices where \(n\) could be as large as 900,
depending on the rank $r$ (or $k$) of the tensor operator associated with the block matrix. The important point is that each row of such a matrix represents an exact number, the single coefficient being calculated. The matrices were stored in the computer from where they were later accessed.

Two advantages were gained by adopting the above arithmetic strategy. Firstly, the often encountered problem of dealing with very large integers which cannot be accurately stored in the computer was avoided. For the computer system used, IBM 4381, the maximum integer number that can be stored accurately is in the order of $2.2 \times 10^9$. Secondly, a system of checks built into the subroutines that detected when two unequal surds were being added helped to locate either incorrect input numbers or errors in the computer subroutines.

2.4.3 Calculation of elements of energy matrices

A library of computer subroutines was developed for the purpose of calculating the elements of the energy matrices. Some of the subroutines were specifically designed to access specific block coefficients required in the calculation. In order to minimise computational errors, the calculations were done in integer arithmetic but the elements were converted to double precision quantities at the final stage of the computation.

Energy matrices corresponding to each of the parameters $F_6(f,d)$, $G_4(f,d)$, $\zeta_{af}$, $\xi_{bd}$, $D_q$ and $B^q_D$ were then constructed and their elements stored as sixteen digit numbers in the computer work disk from where they were accessed when required.

2.5 Determination of eigenvalues of composite energy matrices

2.5.1 Introduction

The composite energy matrix for each of the systems is real and symmetric. In order to solve the secular equations (2.10), it is advantageous to reduce the matrix to a tridiagonal form so that all its elements excepting the diagonal, subdiagonal and super-diagonal elements are zero. Tridiagonalisation of the matrices was
achieved through a sequence of Householder orthogonal similarity transformations. The eigenvalues of the resulting tridiagonal matrices were determined by using the Sturm sequence property and the method of bisection. In this section, the algorithms for these processes will be highlighted.

2.5.2 Tridiagonalisation of a real symmetric matrix

Householder orthogonal transformations have been acknowledged as being numerically very stable and computationally economical [236-237]. Given a real symmetric matrix $A$ of order $n$, a sequence of orthogonal similarity transformations can be used to reduce $A$ to a tridiagonal form such that

$$a_{ii} = a_i$$

$$a_{i,i+1} = a_{i+1,i} = b_i$$

$$a_{ij} = 0, \ j \neq i, i+1 \quad (2.11)$$

To do this, a set of $n-2$ real symmetric matrices $P_1, P_2, \ldots, P_{n-2}$ can be defined such that they are connected to the $n-1$ matrices $A_r = A_0, A_1, A_2, \ldots, A_{n-2}$ through the similarity transformation of the form [236]

$$A_r = P_r A_{r-1} P_r^T$$

$$= P_r A_{r-1} P_r \quad (2.12)$$

where

$$P_r = I - 2w_r w_r^T \quad (2.13)$$

and $w_r$ are $n$-component unit vectors defined by

$$w_r^T w_r = 1 \quad (2.14)$$

$P_r^T$ and $w_r^T$ are the respective transpose of $P_r$ and $w_r$. The matrices $P_r$ are Householder matrices and Equation 4.2 is a statement of the Householder transformations. The vectors $w_r$ are chosen so that at the $r^{th}$ step in the reduction process, zeros are introduced into the $r^{th}$ row and column of $A_{r-1}$. In so doing however, the zeros introduced in the preceding steps are left intact. To accomplish this, $w_r$ are
defined such that the first $r$ elements are zero. The rest of the problem reduces to that of suitably defining $w_r$. How this is done has been discussed by many authors [236-239].

However, the symmetry of the problem can be exploited so as to reduce computational errors, computation time and storage space requirements by using a strategy suggested by Wilkinson [236]. This consists on redefining the matrices $P_r$ in terms of vectors $u_r$. Thus

$$P_r = I - \frac{u_r u_r^T}{2K_r^2} \quad (2.15)$$

where $u_r$ are $n$-component vectors whose elements are:

$$u_{r} = 0, \quad j = 1, 2, \ldots, r$$

$$u_{r+1} = a_{r+1}^{-1} S_2^j$$

$$u_{jr} = a_{r+1}^{-1}, \quad j = r + 2, r + 3, \ldots, n \quad (2.16)$$

where

$$2K_r^2 = S_r + a_{r+1}^{-1} S_2^j \quad (2.17)$$

Using these definitions, Eqn (4.2) becomes

$$A_r = (I - \frac{u_r u_r^T}{2K_r^2}) A_{r-1} (I - \frac{u_r u_r^T}{2K_r^2})$$

Defining the vectors

$$p_r = A_r \frac{u_r^T}{2K_r^2}$$

$$q_r = p_r - \frac{1}{2} u_r \left(\frac{u_r^T P_r}{2K_r^2}\right) \quad (2.18)$$

one obtains [236]

$$A_r = A_{r-1} - u_r q_r^T - q_r u_r^T \quad (2.19)$$

The use of the last set of definitions (2.18)-(2.19) reduces the number of computational operations. They constitute the set of equations for writing the program subroutine used in this work to obtain the final tridiagonal matrix $A_{n-2}$.

Since matrices connected by similarity transformations are similar, the matrices $A_r \quad (r = 0, 1, 2, n-2)$ are similar and therefore have the same eigenvalues. This also means that the traces of the matrices are equal. One strategy adopted in the design
of the program unit to tridiagonalise the energy matrices was to compare the traces of the matrices $A_r$ for equality at each stage of the reduction process.

As will be realised later, the matrices $P_r$ will be needed for the determination of the eigenvectors of $A$. Even though a record of $P_r$ is required, it was enough to record the elements of the vectors $u_r$ and the numbers $2k_r^2$, with which $P_r$ could be reconstructed, at the appropriate stage.

### 2.5.3 Determination of eigenvalues of a symmetric tridiagonal matrix

Determination of the eigenvalues of the matrix $A$ therefore reduces to that of evaluating the eigenvalues of the tridiagonal matrix $A_{n-2}$. The secular equations can be rewritten as

$$\det|A_{n-2} - \lambda I| = 0$$

(2.20)

where $\lambda_i$ are the roots of the characteristic equation. Solution of the latter equation proceeds by constructing a sequence of recurrence relations known as the Sturm sequence which connect the polynomial $p_i(\lambda)$. These polynomials are defined as [236-238]

$$
\begin{align*}
p_0(\lambda) &= 1 \\
p_1(\lambda) &= a_1 - \lambda \\
p_i(\lambda) &= (a_i - \lambda)p_{i-1}(\lambda) - b_{i-1}p_{i-2}(\lambda), \quad i = 2, 3, ..., n
\end{align*}
$$

(2.21)

In order to find the roots of the characteristic polynomial $p_n(\lambda)$ (and hence the eigenvalues of $A_{n-2}$), use is made of the Sturm sequence property. This means that if $\lambda'$ is some value in the interval within which the roots of $p_n$ are located, the number of agreements in sign $s(\lambda')$ between consecutive terms in the sequence

$$p_0(\lambda'), p_1(\lambda'), p_2(\lambda'), ..., p_n(\lambda')$$

is the number of roots of $p_n(\lambda)$ equal to or greater than $\lambda'$. Therefore $s(\lambda')$ corresponds to the number of eigenvalues of $A$ greater than $\lambda'$. Overflow and underflow problems do sometimes result in the calculation of the polynomials $p_i(\lambda')$, particularly for large matrices. To ameliorate this difficulty, it is instructive to define the
The number of non-negative terms in the sequence $r_1(\lambda), r_2(\lambda), \ldots, r_n(\lambda)$ is equal to $w(\lambda)$ [237]. This feature of the Sturm sequence which enables the roots of the characteristic equation to be separated is known as the Sturm sequence property.

The actual isolation of the roots of $p_n(\lambda)$ is achieved by the method of bisection. Suppose $[l, u]$ is the interval within which all the eigenvalues of $A_{n-2}$ lie. In this case, $l$ and $u$ are the lower and the upper bounds of the interval respectively. Both are real numbers. Again, suppose $\eta_1$ is the midpoint of the interval. The procedure is to compute $w(\eta_1)$, the number of roots of $p_n(\lambda)$ in the interval $[\eta_1, u]$. If we are interested in computing the $r$th eigenvalue and $w(\eta_1) \geq r$, then $\lambda_r \in [\eta_1, u]$, otherwise $\lambda_r \in [l, \eta_1]$. Suppose actually $\lambda_r \in [\eta_1, u]$, the mid-point of the new interval is taken as trial eigenvalue and $w(\eta_1)$ is computed. Again if $w(\eta_1) \geq r$, then the eigenvalue is within a new interval $\lambda_r \in [\eta_2, u]$, otherwise $\lambda_r \in [l, \eta_2]$. This procedure is continued with the objective of locating and narrowing the interval within which $\lambda_r$ is contained. However, the process is terminated if the interval length $(u - l)/2^k$ is as small as we wish, $k$ being the number of bisections. In this work, the minimum interval length is chosen to be $\| A_{n-2} \|_\infty \times 10^{-13}$ where $\| A_{n-2} \|_\infty$ is the row (or infinity) norm and $10^{-13}$ is the smallest double precision number exactly representable by the computer system used in this work. Actually the initial bound is chosen to be $l = -\| A_{n-2} \|_\infty$ and $u = \| A_{n-2} \|_\infty$ where

$$\| A_{n-2} \|_\infty = \max_j \sum_j |a_{ij}|$$

This follows from the known fact [237,238] that any norm of a matrix defines the interval within which all the eigenvalues of the matrix can be located.

The eigenvalues determined using the above computational procedures are obtained from the computer in descending order of magnitude. They are not exact but
can be made as close to the exact eigenvalues as the machine can allow. The method of bisection incorporated into the procedures is numerically very stable [237] and by its use, it is possible, as has been demonstrated by Wilkinson [238], to separate eigenvalues (of a matrix) that are so close that they agree up to 15 significant decimals.

2.6 Determination of eigenvectors of the composite energy matrix

2.6.1 Introduction

In order to determine the eigenvalues of the real symmetric matrix $A$, it was necessary to transform it into a tridiagonal matrix $A_{n-2}$. But the required eigenvectors are those of $A$ and not of $A_{n-2}$. However they are related through the expression

$$y = P_1 P_2 \ldots P_{n-2} x$$

$$= (I - 2 \frac{u_1 u_1^T}{2K_1})(I - \frac{u_2 u_2^T}{2K_2}) \ldots (I - 2 \frac{u_n u_n^T}{2K_n}) x$$

where $x$ is the eigenvector of $A_{n-2}$, corresponding to an eigenvalue $\lambda$ and $y$ is the eigenvector of $A$ corresponding to the same eigenvalue.

The task at hand then reduces to that of finding the eigenvectors of $A_{n-2}$. Since the eigenvalues $\lambda$ are not exact, instead of solving the system of homogeneous linear equations

$$(A_{n-2} - \lambda I)x = 0$$

(2.25)

a system of equations in which the zero vector 0 is replaced by $b$ is solved. Thus $b$ is an arbitrary vector chosen so that each of its components is equal to unity [237-239].

One highly recommended strategy for solving Eqns (2.25) is to decompose the coefficient matrix $(A - \lambda I)$ into a lower triangular matrix $L$ and an upper unit triangular matrix $U$ [237-239]. Thereafter, equations of the type

$$Lx = Pb$$

(2.27)

$$= b$$

(2.28)

$$Ux = z$$
are solved. P is a permutation matrix. Its structure and construction as well as the procedure for the LU decomposition of a real matrix are described in references [237,239]. In this section are discussed the algorithm for the computation of the final vector x assuming that LU decomposition of $A_{n-2}$ has been achieved.

2.6.2 Eigenvectors of coefficient matrix

Equations (2.27) and (2.28) are used to find the intermediate and final eigenvectors $z$ and $x$ respectively. From the structure of $L$, it is easy to show that

$$x_i = \frac{z_i - \sum_{j=1}^{i-1} L_{ij} x_j}{L_{ii}} \quad (2.29)$$

This corresponds to forward substitution in the conventional Gauss elimination procedure. For back substitution and considering Eqn (2.28), with due regard to the structure of $U$, the elements of $x$ are given by

$$x_i = z_i - \sum_{j=i+1}^{n} U_{ij} x_j \quad (2.30)$$

The inner products in Eqs (2.29) and (2.30) were accumulated in quadrupole precision but stored as double precision quantities.

Because of the tendency for the computed $x_i$ to be very large, they were normalised so that the largest element (in absolute magnitude) has a value of unity. As a strategy for refining the computed $x_i$, they are transformed into $b_i$ and the whole process of forward and back substitution repeated. (This is equivalent to going through entire LU decomposition process down to the computation of $x_i$.) In this work, a four-fold iteration routine was adopted for refining the eigenvectors.

2.6.3 Eigenfunctions of total perturbation Hamiltonian

The $n$ eigenvectors of the type $x$ correspond to each of the eigenvalues of the total energy matrix as described in the preceding section. It is a simple matter to transform them into the eigenvectors of the matrix through relations of type indicated in Eqn (2.24). The vectors $u_i$ and quantities $2K_i^2$ are derived from the tridiagonalisation routine. The eigenvectors so obtained were normalised so that each of the vectors would have a length of one. This set of eigenvectors constitute the eigenfunctions of the total perturbation Hamiltonian $H''$. 
2.7 Minimisation of experimentally observed parameters

In the previous chapters, it was seen that the various interaction energies were expressed in terms of energy parameters. The values of the parameters are to be determined experimentally. Nevertheless, it was necessary to optimise the values of these interaction parameters to get a better fit between theoretically determined and experimentally observed energy levels. The conventional way of doing this would be to use the least-square method. However, since it was not possible to express the theoretical energy levels as analytical functions of the interaction parameters, a modified procedure was adopted. In this section, is described details of the procedure.

The technique consists in inducing shifts in the theoretical energy levels by changing the trial parameters by small amounts one at a time. Comparison of the shifted energy levels with those obtained using some set of trial parameters values on the one hand, and of the energy levels obtained using the trial parameter values and the experimentally observed energy levels on the other, generates a quantity which can easily be optimised. This leads to a system of equations linear in parameter shifts.

Suppose the trial parameters are \( P_1^{(0)}, P_2^{(0)}, \ldots, P_n^{(0)} \). Eigenvalues of the system were obtained using this set of parameters. Then, the parameter \( P_1^{(0)} \) was changed by a small amount while keeping the rest constant and the energy levels \( E_1^{(0)} \) obtained using methods previously described. The value of \( P_1^{(0)} \) was restored to its previous value and \( P_1^{(0)} \) was then shifted by a small amount to generate another set of eigenvalues \( E_{12} \). Restoring \( P_2^{(0)} \) to its previous value, the process is repeated with \( P_2^{(0)} \) and so on.

It is possible therefore to obtain the sum of squares of the deviation \( D \) of the calculated energy levels from the experimental ones. The minimisation of \( D \) leads to a better estimate of the parameters which are then refined by an iterative process.

If it is supposed that the iteration process is at its \( k^{th} \) stage, then representing the \( (i^{th}) \) energy level of the various sets of eigenvalues as \( E_{1i}^{(k)}, E_{2i}^{(k)}, \ldots, E_{ni}^{(k)} \), the theoretical energy level in the neighbourhood of the points \( P_1^{(k)}, P_2^{(k)}, \ldots, P_n^{(k)} \) can
be written as

\[ E_i^{(k)} = E_i^{(k)} + (E_i^{(k)} - E_i^{(k)})\Delta P_1^{(k)} + (E_i^{(k)} - E_i^{(k)})\Delta P_2^{(k)} + \ldots \]
\[ + (E_i^{(k)} - E_i^{(k)})\Delta P_m^{(k)} \]  

(2.31)

where the superscript \( k \) on the \( P_j \) indicate the index of iteration. \( E_i^{(k)} \) are the theoretical energy levels obtained using unshifted trial parameter values at the \( k \)th iteration. \( m \) is the number of parameters. \( k \) can be ignored since no confusion shall result in so doing. The deviation \( \delta_i \) of \( E_i \) from experimentally observed \( i^{th} \) level, \( E_{ie} \), is

\[ \delta_i = E_{ie} - E_i \]
\[ = (E_{ie} - E_i) + (E_i - E_m)\Delta P_1 + (E_i - E_m)\Delta P_2 + \ldots \]
\[ + (E_i - E_m)\Delta P_j + \ldots + (E_i - E_m)\Delta P_m \]  

(2.32)

Defining the quantity

\[ D = \sum_{i=1}^{n} \delta_i \]  

(2.33)

where \( n \) is the number of experimentally observed energy levels. Minimising \( D \), one obtains

\[ \frac{\partial D}{\partial \Delta P_j} = \sum_{i=1}^{n} \sum_{i=1}^{m} (E_i - E_m)(E_i - E_m)\Delta P_j + \sum_{i=1}^{n} (E_i - E_m)(E_i - E_m) \]
\[ = 0 \]  

(2.34)

Hence

\[ \sum_{i=1}^{n} \sum_{i=1}^{m} (E_i - E_m)(E_i - E_m)\Delta P_j = \sum_{i=1}^{n} (E_i - E_m)(E_i - E_m) \]  

(2.35)

which is a system of equations with \( m \) unknowns, and can be represented as

\[ M\Delta P = \xi \]  

(2.36)

\( j = 1, 2, \ldots, m \). \( M \) is a square symmetric matrix of order \( m \) and \( \xi \) is a vector. They are defined as

\[ M_{ij} = \sum_{i=1}^{n} (E_i - E_m)(E_i - E_m) \]  

(2.37)

\[ \xi_j = \sum_{i=1}^{n} \Delta E_i(E_i - E_m) \]  

(2.38)
\[ \Delta E_i \text{ being the difference between experimental and theoretical } \ell^{\text{th}} \text{ energy level.} \]

Solution of Eqs (2.35) yields values for \( \Delta P_{ij} \). Thus the trial values of the parameters were adjusted and the improved values are

\[ P_j = P_j^{(i)} + \Delta P_j^{(i)} \quad (2.39) \]

The improved values were then used in the \((k + 1)^{\text{th}}\) iteration. The iteration process was terminated when adequate convergence of the parameters are obtained.

The above procedure incorporates some features of the techniques used by Eremin and Maryakhina [33] and Nara and Schlesinger [247].

In spite of adopting these procedures there could still remain some discrepancy between observed and theoretically predicted energy levels. A measure of this discrepancy is the mean error defined as

\[ \mu = \sqrt{\frac{\delta_i^2}{n - m}} \quad (2.40) \]

where \( \delta_i \) is the deviation of the theoretically predicted \( \ell^{\text{th}} \) level from the experimental, \( m \) is the number of free ion parameters and \( n \) is the number of observed energy levels [1,37].

### 2.8 The Computer Programs

#### 2.8.1 Introduction

Many computer programs were written to handle different aspects of the problems being investigated. There were two main categories of programs/subroutines. One category has to do with the programs/subroutines that are specific to a particular ion. The programs and subroutines developed for the calculation of the matrix elements of the energy matrices of \( Sm^{2+} \) ions and the \( W[ ] \), \( S[ ] \), and \( X[ ] \) block coefficients fall into this category. Also in this category are the subroutines defining the elements of the energy matrices of \( Yb^{2+} \) ions. Since these are specific, and above all, very large in number, details of them will not be given. The other category involves those subroutines that have greater applicability. In this group are subroutines for determining the eigenvalues and eigenvectors of the composite energy matrices and
those for fitting the experimental and theoretical energy levels. A little more will be said about programs/subroutines in the latter category. All the computer programs and subroutines developed in this work, together with tables of \( W[ ] \), \( S[ ] \) and \( X[ ] \) coefficients are available for inspection under a separate cover. The programming language used is Standard Fortran 77.

### 2.8.2 Program design, development and testing strategies

In the design of the programs, the top-down design approach was adopted. This consists in splitting the problem into its logical parts or modules, each of which was dealt with as a separate entity. Each of the modules was further split into smaller modules until more manageable units were obtained. Programs were written based in these small units and they constitute the subroutines or subprogram of the main programs.

A subroutine or subprogram merely processes an input data (which may be derived from subroutine and produces an output which may be used in another subroutine). Accordingly, each subroutine was tested independently using various driver programs and well-designed data at different stages of constructing the programs.

The system of subroutines were interfaced by means of well-chosen arguments. This intercommunication was done in stages and a testing procedure carried out at each stage.

Eventually the entire system of subroutines were tested together. In the case of subroutines for eigenvalue problems square symmetric matrices of known eigenvalues and/or eigenvectors were used in the tests. Numerous matrices of variable sizes used were obtained from standard textbooks in numerical analysis [236-244]. Excellent agreements were obtained with results stated in textbooks. In cases where the eigenvalues and eigenvectors were not known different forms of checks on the results obtained were done as will be indicated later.

It has to be noted that nearly all computations were done in double precision arithmetic. With IBM 4381 model digital computer double double precision numbers can be held accurately up to sixteen decimal digits. In the determination of residual vectors used in the iterative refinement of parameter shifts, however, quadrupole
2.8.3 Program for the determination of eigenvalues and eigenvectors of composite matrix

The task was divided into three main modules each of which was broken into fairly large constituent modules. The three major modules are (a) construction of the composite perturbation energy matrix (b) evaluation of eigenvalues of the matrix (c) determination of eigenvectors of the matrix. Each of these will be briefly described below. Subroutines/subprograms performing various tasks are indicated. Their arguments are omitted for brevity.

(i) Construction of the composite energy matrix: Composite energy matrices were constructed in either of two ways, depending on the electronic configuration involved. For the 4f^{13}5d configuration of Yb^{2+} ions, the composite matrix was constructed within the main program YBF13D. Subroutines which define the values of the relevant coefficients of F_{6}(f,d), G_{6}(f,d), \zeta_{6}, D_q and B_{6}^{p} parameters were called by YBF13D and the elements of the matrices computed and summed. In the case of 4f^{5}5d configuration of Sm^{2+} ions, the composite matrix was also constructed within the main program SMF55D and stored values of coefficients of F_{6}(f,f), F_{6}(f,d), G_{6}(f,d), \zeta_{6}, D_q and B_{6}^{p} were accessed from the computer.

(ii) Evaluation of eigenvalues of composite matrix: As earlier indicated, the matrix was first reduced to a tridiagonal form before the eigenvalue evaluation. HOTRED reduces the energy matrix to tridiagonal form. In testing HOTRED, the trace of the original matrix A_{0} was compared with the trace A for equality.

EIGVAL actually evaluates the eigenvalues of the tridiagonal matrix. EIGVAL calls an important subroutine BISECT. The latter executes the bisection process as indicated in Section 2.5.3. To do this, it calls STURMS and some other subroutines. STURMS determines the number of agreements in sign between consecutive terms of the Sturm sequence. All these subroutines, at various stages, call the subroutine DPSORT which is a sorting routine that arranges double precision numbers in descending order of magnitude.

Two important strategies adopted in checking the eigenvalues obtained using
the above system of subroutines are as follows: Firstly, the sum of the eigenvalues obtained was compared with the trace of the original composite energy matrix. They must be equal if the evaluation was correctly carried out. Secondly, and as a further check, the product of the eigenvalues was compared with the determinant of the original matrix. The magnitudes must be equal. Difference in sign could arise because of the way the determinant was computed. In this case, the original matrix was decomposed into LU factors [237,239]. The determinant of the original matrix is simply $\pm \det L$ since $\det U = 1$. The plus sign is operative if an even number of row permutations occurred in computing $L$, otherwise the minus sign is operative [245]. But $\det L$ is the product of all the diagonal elements of $L$. The latter strategy was used during the preparation and testing stages of the programs. The results of these comparisons were excellent and they tended to inspire a lot of confidence as to the effectiveness of the procedures and efficacy of the subroutines.

(ii) Determination of eigenvectors of composite matrix: The main subroutine that performs this task is EIGVEC. Within it, the coefficient matrix is constructed. It then calls other subroutines indicated below.

CRALGO is called by EIGVEC. It factorises the coefficient matrix into a unit upper triangular matrix and a lower triangular matrix. As a check on the effectiveness of the subroutines, the relation $PA = LU$ [239] was verified during the program developmental and testing stages. It calls a specialised subroutine CSORT.

FOWBAK performs the forward and back substitution indicated in Section 2.6.3 in order to obtain the eigenvectors of the tridiagonal matrix. TRAVEC determines the eigenvectors of the composite matrix. It makes use of the output of FOWBAK and the transformation matrices $P_i$ derived from HOTRED.

Each of the above subroutines at some stage calls the subroutine NUSORT which is a sorting routine that returns the largest of a set of absolute numbers. CSORT compares two sets of numbers and its result determines which rows of the coefficient matrix are to be interchanged.
2.8.4 Programs for minimization interaction parameters

PAROPT is a program based on the main ideas of Section 2.7, designed to minimize the square of the difference between experimental and theoretical energy levels. It calls EGPROB which outputs the eigenvalues of the composite matrix generated with trial parameter values supplied by PAROPT. The latter also calls SIMLEQ which is a subroutine that solves a set of simultaneous linear equations generated by PAROPT and whose coefficients are passed on to it. SIMLEQ also incorporates an iterative refinement of solutions of the equations. It calls FOWBAK, and passes on its output to PAROPT.
Chapter 3

Experimental Methods

3.1 Introduction

Single crystals of rubidium chloride, bromide and iodide were doped with divalent ytterbium (Yb$^{2+}$) ions using vapour phase diffusion technique. The same method was also used in incorporating divalent samarium (Sm$^{2+}$) ions into crystals of rubidium and potassium chloride, bromide and iodide. Optical absorption spectra of these ions in the crystals were then measured and analysed. In this chapter, a description of the design features of the apparatus used and the various techniques adopted to obtain the spectra are discussed. Special comments will later be made about heat treatment procedures adopted.

3.2 Incorporation of ions into crystals

3.2.1 Introduction

The single crystals of potassium halides used in this study were obtained from Harshaw Chemical Company, Cleveland, USA while the rubidium halides were supplied by BDH Chemicals Ltd, Poole, England. Metallic ytterbium and samarium were obtained from Rare Earth Products Ltd, Cheshire, a Division of Johnson and Matthey Chemicals Ltd, London. Certified purity level of each sublimed metal ingot was 99.99 %. As a matter of routine, the metal ingots and the crystals were stored in a glove box continuously flushed with a slow stream of dry nitrogen.
Metallic ytterbium and samarium have appreciable vapour pressure (0.00031 — 0.6455 torr) in the temperature range 600° C to 900° C, in which the melting points of alkali halides lie. This suggests that under suitably arranged thermodynamic conditions, it is possible to incorporate some ytterbium and samarium ions into alkali halide crystals by a vapour phase diffusion process. Table 3.1 shows some of their relevant thermodynamic properties together with those europium and the halides of rubidium and potassium, while Fig 3.1 shows the vapour pressure of all rare earth metals as a function of temperature [5,6,252,253].

Conventional methods of obtaining single crystals of alkali or alkaline earth halides doped with divalent rare-earth ions \((RE^{2+})\) consists in incorporating some quantities of trivalent rare-earth metal \((RE^{3+})\) halide into the melt of the desired host crystal. By some reduction process the \(RE^{3+}\) ions are converted to the divalent state. Single crystals are then grown from melt using any of the common crystal growing techniques such as the Czochralski [17,84,116], Kyropoulos [16,20,64,255-257] and the Bridgman [15,86,254,258] methods. As far as this author knows, this is the first time the vapour phase diffusion technique has successfully been used to incorporate \(Yb^{2+}\) ions into single crystals of rubidium halides. This is the first time \(Sm^{2+}\) ions have been incorporated into crystals of rubidium and potassium halides by this method. Bland and Smith [101] and Bland [6] were the first to successfully incorporate \(Yb^{2+}\) ions into crystals of sodium and potassium halides using the above method. However, there has been a previous mention of it [130] in literature as it regards the implantation of \(Yb^{2+}\) ions into alkali halides. Apparently, the attempt was not successful because the spectrum identified as \(Yb^{2+}\) spectrum in KBr crystals has no obvious resemblance to the usual spectrum of \(Yb^{2+}\) ions in octahedral environment. Moreover, the structure of that spectrum appears to be similar to that associated in the same study with \(Eu^{2+}\) ions in NaCl crystals.

3.2.2 Design features of primary and secondary diffusion ampoules

The primary diffusion ampoule (PDA) [in Fig 3.2] was made of a special type of stainless steel known as Immaculate V (Chromium 24–26 %, Nickel 19–22 %, Carbon
Table 3.1 Incorporation of Sm²⁺ and Yb²⁺ Ions into Potassium and Rubidium Halide Crystals: Some Thermodynamic Information

<table>
<thead>
<tr>
<th>Host Material</th>
<th>Melting Point of Host Material (°C)</th>
<th>Doping Temperature (°C)</th>
<th>Metal Vapour Pressure at Doping Temperature (torr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>790</td>
<td>760</td>
<td>0.0148</td>
</tr>
<tr>
<td>KBr</td>
<td>730</td>
<td>705</td>
<td>0.0038</td>
</tr>
<tr>
<td>KI</td>
<td>722</td>
<td>700</td>
<td>0.0034</td>
</tr>
<tr>
<td>RbCl</td>
<td>715</td>
<td>680</td>
<td>0.0020</td>
</tr>
<tr>
<td>RbBr</td>
<td>682</td>
<td>655</td>
<td>0.0011</td>
</tr>
<tr>
<td>RbI</td>
<td>642</td>
<td>610</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Data on melting point of alkali halides was obtained from the American Institute of Physics Handbook [270] while vapour pressure data were interpolated from tables by Honig [326].
Fig 3.1 Vapour pressure of rare earth metals as function of temperature. (after Hultgren et. al. [253], Bland [8])
Fig 3.2 Primary diffusion ampoule (PDA)
0.12 % max, Balance Iron) which can withstand a continuous exposure to temperatures up to 1100° C for long periods of time, without being degraded. It consists of a body which is a cylindrical container closed at one end, and a top. As shown in Fig 3.3, the top is made up of a hollow cylindrical part (threaded on both the inside and outside) and a truncated conical end with an overlapping metal flap. Both the open end of the body and the conical end of the top are finely machined to form a conical joint. This feature, together with the threaded needle through which the PDA is evacuated constitute the most important features of the device. Provided a rubber ‘O’ ring with a threaded retain cap are used), the PDA assembly can be evacuated to a pressure as low as 10^-6 torr. The ‘O’ ring and its retainer cap are usually removed before the PDA is lowered into the furnace.

The secondary diffusion ampoule (SDA) also consists of a long cylindrical tube closed at one end. At the top part of the SDA there is a water jacket for cooling purposes, and a pumping access. It is made of conventional stainless steel. Its top is a circular stainless steel plug with a central hole which can be sealed by means of ‘O’ rings and glass-to-metal seal system. Fig 3.3 shows the SDA and its top with a thermocouple passing through the central holes. The thermocouple could be replaced by a stainless steel rod from which is suspended the PDA during doping process.

3.2.3 Characteristics of the high temperature furnace

The furnace is an upright tube furnace which can operate at temperatures up to 1000° C, and is connected to a temperature controller (Ether ‘Mini’ Type 17-90B) capable of holding the temperature constant within ±3° C. Also, in communication with the furnace through a thermocouple sensor is a back off unit which is connected to the temperature controller. The back off unit raises the upper temperature limit of the controller from its original 600° C to 1000° C.

Fig 3.4 shows a typical variation of temperature of the interior of secondary diffusion ampoule with depths of immersion of thermocouple taken with temperature controller set at 450° C and back off unit switched on. The best position for crystals to be placed during doping is within the region of lowest temperature gradient.
Fig 3.3 Secondary diffusion ampoule (SDA)
Variation of temperature with time at a point 27.7 cm below the top of the SDA, was also measured for different temperature controller settings. A typical result is shown in Fig 3.5 and was taken with temperature controller set at 450°C, the back off unit being on. Measurements were made at fifteen minute intervals over six and half hours duration. Temperature stabilization of the system was good at such a high temperature as 809.1°C, the range being 6.1°C.

3.2.4 Diffusion procedure

A specimen (10 x 6 x 5 mm) of the desired alkali halide crystal host was cleaved off a cuboid of crystals and placed in the PDA while being supported on a molybdenum boat containing about 25 mg of the dopant. The crystals were cleaved in air but all other procedures were carried out in the glove box. Before being lowered into the the SDA which was already being heated (in the furnace) to a constant (doping) temperature, the PDA was evacuated using a diffusion pump. The upper section of the SDA was cooled by means of running water through the water jacket while dry nitrogen gas was used to flush the SPD and the glove box enclosing the furnace for a brief period before they were evacuated by means of a rotary pump. During doping and as long as the SDA is hot, the rotary pump was left to run continuously.

Fig 3.6 shows the furnace assembly during doping.

The temperature at which diffusion took place was chosen to be 25° – 50° C below the melting point of the intended host crystal. For most halides, diffusion times ranging from 4 hours to 6 hours were used but for rubidium iodide doping was continued for up to 8 hours. This is because the doping temperature for Rbl crystals was relatively low (610°C). After doping, the PDA was lowered into a dewar of liquid nitrogen. Within three minutes, the PDA had attained the liquid nitrogen temperature (LNT). Quenching of the crystals was considered necessary because it enabled the crystal to cool fast enough to ensure that the impurity ions and other defect centres in the doped crystal were atomically dispersed and uniformly distributed.

Different PDA's were used for different dopants. After each doping session the PDA was cleaned using abrasives and deionised water. A point to note is that the
Fig 3.5 Variation of temperature at 27.7cm below the top of secondary diffusion ampoule with time.

Max. temp. 815.2°C
min. temp. 809.1°C
mean. temp. 812.3°C
std. deviation 1.4°C
range 6.1°C
Fig 3.6 Furnace assembly during doping
temperature of the SDA (bottom region) was measured before and after each doping session.

### 3.3 Thermal Bleaching

Doped samples of crystals obtained using the method just described were usually coloured, except for RbI : Yb$^{2+}$. For the case of RbCl : Yb$^{2+}$ and RbBr : Yb$^{2+}$ samples, the colouration could be heavy, with crystals acquiring deep blue colour. When the optical absorption spectrum of a heavy coloured sample was measured, the F-band was usually limiting and the K- and L$_1$-bands tended to overlap the low energy bands of Yb$^{2+}$ spectrum. This was particularly critical for RbCl : Yb$^{2+}$ spectrum. On the high energy side and close to the fundamental absorption edge of the spectrum of the crystals and particularly for RbCl : Yb$^{2+}$ system, the Yb$^{2+}$-bands tended also to overlap with colour centre bands.

For the spectra of samarium-doped crystals, a different kind of problem was encountered. The low energy bands of Sm$^{2+}$ were completely enveloped by the F- and K-bands of the F-centre spectrum. In many cases, prominent bands due to F-centre aggregates appear on the long wavelength side of the F-band. To ameliorate these problems, thermal bleaching technique was incorporated into the standard procedures for handling the crystals.

A freshly doped crystal was first cleaned and cleaved into two portions. One half was then placed in a molybdenum boat in a PDA, the latter being securely screwed up and evacuated. The PDA was then lowered into the SDA, preheated to a constant doping temperature. After a duration ranging from 1 to 2 hours, (the longer duration being for RbCl : Yb$^{2+}$ and RbBr : Yb$^{2+}$ systems) the sample was quenched as indicated above.

After thermal bleaching, RbBr : Yb$^{2+}$ samples would be colourless while those of RbCl : Yb$^{2+}$ crystals would be less heavily coloured. The Sm$^{2+}$ doped crystals assume violet to light brown colouration. The most important result however was that except for RbCl : Yb$^{2+}$ samples, the colour centre–bands in the visible and near UV regions would disappear. For samarium doped samples, the low-energy bands of Sm$^{2+}$ ions would be completely exposed, whereas for RbCl : Yb$^{2+}$, the
L₁-band would completely disappear and the F- and K-bands together with other colour centre bands would be highly reduced in intensity. Fortuitously their peak positions become well separated from the Y₁3⁺ bands. No difference was found between the spectral positions of well-defined impurity bands before and after thermal bleaching. Previously overlapped bands became well-defined and could be identified unambiguously.

3.4 Optical absorption measurements

3.4.1 Introduction

Optical absorption spectra of all the systems studied were recorded using the Varian DMS-90 UV-Visible spectrophotometer, with wavelength range 190 nm to 900 nm. Whenever possible, second derivative absorption spectra were also measured. At high and liquid nitrogen temperatures (LNT) a variable temperature optical cell was used. In the next subsection, the design features of the latter will be discussed.

3.4.2 Design features of the variable temperature optical cell

The optical cell consists mainly of the body, the specimen holder and the cell jacket. Fig 3.7 shows the body and the sample holder. The body is a cylindrical tube open at the top end and made of stainless steel. Near its top is a moveable brass plug which fits into the outwardly extending lip of the cell jacket (vide, Fig 3.9) and prevented from making contact with it by means of 'O' ring. Three thermocouples pass through the plug. Screwed to it also is a clipping system which prevents the cylindrical body from slipping down under gravity or reduced pressure, when the cell is being evacuated, and by means of which the vertical position of the sample holder can be raised or lowered. The clipping system consists of a short brass cylinder with an overlapping flap on its top on which the C-shaped brass clip stand. Separating the brass cylinder and the plug is a rubber 'O' ring.

The sample holder is cut from a solid cylinder of Immaculate V stainless steel. Its top part has four grooves while the lower part is cut into a slotted half-cylinder to which three E-shaped knife-edges are screwed (one on either side of the slot and
Fig 3.7 Variable temperature optical cell (body and sample holder).
one on the top section). At the bottom section is screwed an down-turned E-shaped stand on which the sample could be made to stand. The knife edges are used to adjust the size of the beam slot, so that samples of various sizes could be used for measurement. A gravity holder, suspended from the top end of the half-cylinder holds the sample in place, without obstructing the path of the beam of radiation. With this set up, the sample has the minimum possible constraint so that it can expand and contract without being damaged. Fig 3.8 shows an enlarged photograph of the sample holder. The stainless steel rails serve as a guide for the slotted copper heat shield (vide Fig 3.7) while the copper rods which actually make contact with the main body of the cell, conducts heat into it and away from the heat shield. Another heat shield made from a short cylinder of stainless steel tube is slotted and covers most of the sample holder as well as the copper shield when it is screwed to the top of the holder. Two of the slots are for thermocouple access while two are the beam slots (vide, Fig 3.7). Two thermocouples were arranged so that their junctions make contact with the crystal, while the third, which is connected to the top region of the sample holder serves as a sensor for the temperature controller. The junction of the bottom thermocouple is separated from the metal frame of the sample holder by means of thin mica sheets and ceramic washers.

The cell jacket (vide Fig 3.9) consists of a cylindrical tube of brass joined to a hollow rectangular box, also made of brass. On opposite faces of the box are two quartz (spectrosil) windows through which radiation beam passes. On another face is welded a tube which serves as a pumping access. Four water channels bored into the base of cell jacket and connected to a copper coil form an integral part of the water cooling system. On the upper part of the cell jacket is a brass tube with a valve and is an inlet for dry nitrogen. A set of two brass plates to which the cell jacket can easily be screwed onto serves as base adapter for the spectrophotometer.

### 3.4.3 Recording the spectra

Optical absorption spectrum of any sample was measured within two hours of quenching from high temperatures after thermal bleaching. This measure was considered necessary because after 24 hours, the low energy spectral bands tended to
Fig 3.8 Sample holder of optical cell.
Fig 3.9 Cell jacket of variable temperature optical cell.
shift to lower energies. No such shifts were observed within the first ten hours of quenching of samples.

In order to record the spectrum of a doped sample at room or liquid nitrogen temperatures, the variable temperature optical cell was set up as shown in Fig 3.10, except that the heating coil was replaced by liquid nitrogen. Also, the mica sheet was removed. In all cases, the cell jacket was evacuated by means of diffusion pump. It was necessary to pass water at room temperature round the water cooling system to prevent moisture from condensing onto the quartz spectrosil windows. Usually, room temperature spectrum was recorded before and after measurement at liquid nitrogen temperatures. This check was to ensure that the crystal had undergone no irreversible crystallographic or other forms of transformation during the period of measurement. Peak positions of absorption bands were read off from the corresponding second derivative spectra (where measured). In all cases it was possible to measure spectral positions to within ±0.25 Å. This means that in the spectral range 16 129 - 20 00 cm⁻¹ (620 - 500 nm) the error, \( \mu_r \), in measured spectral position is of the order of ±17 cm⁻¹. Whereas in the spectral range 22 222 - 33 333 cm⁻¹ (450 - 300 nm) \( \mu_r \) is in the order of ± 40 cm⁻¹, it is about ± 83 cm⁻¹ in the spectral range 33 333 - 50 00 cm⁻¹ (300 - 200 nm).

For high temperature measurements, the set up was as in Fig 3.10. Mica sheets separated the heating element from the bottom of the cell tube. In order to retain most of the generated heat within the lower section of the tube, some ceramic balls were poured into it (tube) and glass fibres used to stuff it up. Electric current was supplied to heat element through a 12 V Variac stepdown transformer which was connected to a temperature controller. Before any high temperature was made, the sample cavity was flushed with dry oxygen-free nitrogen and the chamber then evacuated. Cold water was usually pumped from a bath through the water cooling system.

Because of the irregular response of the photodetector of the spectrophotometer at 350 nm at sample temperatures of about 400° C and above, absorption spectra of samples could not be recorded at temperatures beyond 380.0° C. The irregular behaviour was attributed to the emission of infra-red radiation by the sample and
Fig 3.10 Optical cell setup for high temperature measurement.
the body frame of the sample holder. Unfortunately, optical filters which could absorb infra-red radiation and which at the same time are transparent to radiations with wavelengths in the 190-900 nm range could not be found.
Chapter 4

Divalent Ytterbium Ions in Rubidium Halide Crystals

4.1 Introduction

The ground configuration of a Yb$^{2+}$ ion is $4f^{14}$ and is characterised by a single spherically symmetric $^1S_0$ state. When excited however, Yb$^{2+}$ ions exhibit other configurations, the low-lying ones of which include (in increasing order of energy) $4f^{13}5d$, $4f^{12}6s$ and $4f^{13}6p$. As has been shown experimentally [99], there are intercommunications among states of these configurations through electronic transitions of Yb$^{2+}$ ions in free space on the event of these ions absorbing photon energies.

In the present study, attention is focussed on the manifestations of electric dipole transitions in Yb$^{2+}$ ions from the ground $4f^{14}(^1S_0)$ state to states of other excited configurations. Such transitions are allowed to the states of $4f^{13}5d$ configuration both on grounds of parity and orbital quantum number selection rules ($\Delta l = \pm 1$). But $4f^{14} \rightarrow 4f^{12}6s$ transitions are not allowed on the grounds of the second section rule. Also forbidden but on account of parity selection rule are $4f^{14} \rightarrow 4f^{13}6p$ electric dipole transitions. In crystalline environment, therefore $4f^{14}(^1S_0) \rightarrow 4f^{12}(6s+6p)$ transitions are unlikely to be strongly manifested through measurements of absorption and/or emission spectrum of Yb$^{2+}$ ions. Nevertheless Bland [6] has suggested that the influence of the ligand ions on Yb$^{2+}$ ions in crystals could lead to some form of transition involving states formed by the interaction of
states of $4f^{13}6s$ configuration with the states of the ligand ions.

Most of the experimentally observed energy bands in the absorption spectra of $\text{Yb}^{2+}$ ions in crystals of $\text{RbX}$, ($X = \text{Cl}, \text{Br}, \text{I}$) are therefore ascribed to parity allowed $4f^{14}(1S_0) \rightarrow 4f^{13}5d$ electronic transitions. In this chapter will be discussed the results of the calculations of the energy level structure of $4f^{13}5d$ configuration of $\text{Yb}^{2+}$ ions in octahedral environment and its correspondence or otherwise with the experimentally observed energy levels of $\text{Yb}^{2+}$ ions in RbX crystals.

A particularly important point to note is that the site symmetry of these ions in RbX crystals is orthorhombic (point symmetry $C_{2v}$), since the cubic site occupied by the ion is distorted by the formation of $\text{Yb}^{2+}$-cation vacancy complex, with the vacancy in the $<110>$ direction. But as a first order approximation, an octahedral symmetry is assumed in this study. Later in this chapter the adequacy of this approximation shall be examined in the light of experimental data.

As has earlier been noted, this part of the project is an extension of the experimental and theoretical investigation of the energy level structure of $\text{Yb}^{2+}$ ions in alkali halides started by Bland and Smith [101]. The theoretical calculations of the energy levels of $\text{Yb}^{2+}$ ions in RbX crystals is reported for the first time. Also reported for the first time are the absorption spectra of $\text{RbBr} : \text{Yb}^{2+}$ and $\text{RbI} : \text{Yb}^{2+}$ systems. That of $\text{RbCl} : \text{Yb}^{2+}$ crystals has been recorded before [257] but never published.

### 4.2 Matrix elements of perturbation operators

#### 4.2.1 States of the $4f^{13}5d$ configuration

The predominant interactions that perturb the states of the $4f^{13}5d$ states of $\text{Yb}^{2+}$ ions in crystals are Coulomb and exchange, spin-orbit and crystal field interactions. The relative magnitudes of these interactions determine the type of vector coupling scheme by which wavefunctions of the system can be characterised. For the case at hand, the most appropriate scheme is the $J_J$ coupling scheme. Accordingly, in free space, the $4f^{13}5d$ configuration of $\text{Yb}^{2+}$ ions (which is equivalent to a hole in the $4f$ subshell and a single $5d$ electron and consequently can be regarded as
a two electron system) is characterised by four free-ion energy terms of the form \[ \{ F_{FJ}, 5d_{J'} \} \] where \( J_1 = \frac{1}{2}, \frac{3}{2} \) and \( J' \) could take integral values from 0 to 6. In all, 20 free-ion energy levels result.

In octahedral crystal field, however, these 20 energy levels are split into 58 crystal field energy levels, which can be associated with functions which transform as the irreducible representations \( \Gamma_i (i = 1, \ldots, 5) \) of \( O_h \) point group. Of these, 6 transform a \( \Gamma_1 \), 5 as \( \Gamma_2 \), 12 as \( \Gamma_3 \), 18 as \( \Gamma_4 \) and 17 as \( \Gamma_5 \). Functions describing the states associated with these levels are of odd parity and each of the irreducible representations \( \Gamma_i \) should have a subscript \( \mu \). The crystal field energy matrix of order 58 therefore decomposes into five submatrices each of which can be separately diagonalised.

However, it is not actually necessary to diagonalise all five submatrices since electric dipole approximation only allows electronic transitions between the ground state \( ^1S_0(\Gamma_{1g}) \) to the \( 18 \Gamma_{4u} \) states of \( 4f^{13}5d \) configuration. This is a consequence of the fact that the electric dipole operator \( D \) transforms as the irreducible representation \( \Gamma_{4u} \) of \( O_h \) point group. For \( D \) to connect the ground state and a state transforming as \( \Gamma_i \) (\( i = 1, 2, \ldots, 5 \)) of \( O_h \), the product \( \Gamma_{4u} \times \Gamma_i \) must contain the identity representation \( \Gamma_{1g} \) at least once. From Table 4.1 it is clear that only states transforming as \( \Gamma_{4u} \) irreducible representation of \( O_h \) point group satisfy this requirement. Therefore electric dipole transitions from the \( ^1S_0(\Gamma_{1g}) \) ground state are allowed only to the \( 18 \Gamma_{4u} \) states of \( 4f^{13}5d \) configuration of \( Yb^{2+} \) ions in octahedral environment.

It is instructive to find out the distribution of these 18 \( \Gamma_{4u} \) states among the four energy terms. One method of doing this is first to obtain the Kronecker product of the form

\[
D^{(J_1)} \times D^{(J')} = \sum_{J=|J_1-J'|}^{J_1+J'} D^{(J)}
\]  

(4.1)

and to use Table 3 in reference [318] to obtain the decomposition of \( D^{(J)} \), the irreducible representations of the rotation-inversion group \( O(3) \) into the irreducible representations \( \Gamma_i \) of \( O_h \) point group. From that table, it can be seen that \( \Gamma_{4u} \) states are not present in the decomposition of \( D^{(0)} \) and \( D^{(2)} \). Accordingly, in all calculations involving \( Yb^{2+}(4f^{13}5d) \) states in octahedral crystal field, states characterised by \( J = 0 \) and 2 were left out.
Table 4.1 Reduction of the Direct Product of $\Gamma_i \times \Gamma_j$ ($i, j = 1, 2, 3, 4$) of Irreducible Representation of $O$ Point Symmetry Group into the Irreducible representation of the same Point Group **

<table>
<thead>
<tr>
<th>$\Gamma_i$</th>
<th>$\Gamma_1$</th>
<th>$\Gamma_2$</th>
<th>$\Gamma_3$</th>
<th>$\Gamma_4$</th>
<th>$\Gamma_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma_1$</td>
<td>$\Gamma_1$</td>
<td>$\Gamma_2$</td>
<td>$\Gamma_3$</td>
<td>$\Gamma_4$</td>
<td>$\Gamma_5$</td>
</tr>
<tr>
<td>$\Gamma_2$</td>
<td>$\Gamma_1$</td>
<td>$\Gamma_3$</td>
<td>$\Gamma_4$</td>
<td>$\Gamma_5$</td>
<td>$\Gamma_4$ + $\Gamma_5$</td>
</tr>
<tr>
<td>$\Gamma_3$</td>
<td>$\Gamma_1$ + $\Gamma_2$ + $\Gamma_3$</td>
<td>$\Gamma_4$ + $\Gamma_5$</td>
<td>$\Gamma_4$ + $\Gamma_5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Gamma_4$</td>
<td>$\Gamma_1$ + $\Gamma_2$ + $\Gamma_3$ + $\Gamma_4$</td>
<td>$\Gamma_2$ + $\Gamma_3$ + $\Gamma_4$ + $\Gamma_5$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Gamma_5$</td>
<td>$\Gamma_1$ + $\Gamma_3$ + $\Gamma_4$ + $\Gamma_5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Only the upper half of the table is shown since $\Gamma_i \times \Gamma_j = \Gamma_j \times \Gamma_i$. For $O_4$ point group, a subscript $g$ or $u$ is attached to the irreducible representation depending on whether $\Gamma_i$ and $\Gamma_j$ transform as even or odd parity functions according to the following rules:

$$g \times g = g$$
$$g \times u = u$$
$$u \times u = g$$

(After Schläfer and Gliemann [204])
The above considerations give rise to the following sets of crystal wavefunctions.

\[
\begin{align*}
&\left| Pf_{1/2}d_{1/2},JM^{\text{gs}}\Gamma_{\alpha}\right\rangle, J = 6, 5, 4, 3, 1 \\
&\left| Pf_{1/2}d_{3/2},JM^{\text{gs}}\Gamma_{\alpha}\right\rangle, J = 5, 4, 3, 1 \\
&\left| Pf_{3/2}d_{3/2},JM^{\text{gs}}\Gamma_{\alpha}\right\rangle, J = 5, 4, 3 \\
&\left| Pf_{3/2}d_{1/2},JM^{\text{gs}}\Gamma_{\alpha}\right\rangle, J = 4, 3, 1 \\
\end{align*}
\]

(4.2)

These wavefunctions are of the type described by Eqn 2.8. The \( u \) subscript on \( \Gamma_{\alpha} \) has been dropped since it shall be understood that the states are of odd parity.

4.2.2 Matrix elements of electrostatic Hamiltonian \( H_d(f,d) \)

The relevant electrostatic interaction to be considered in the case of \( Yb^{2+}(4f^{13}5d) \) system are those between the \( 4f^{13} \)-core states and the states of \( 5d \) electron. Matrix elements of \( H_d(f,d) \) are therefore to be taken between the states described by Eqn (4.2). To do this, the angular parts, \( f_k^s \) (\( k = 0, 2, 4 \)), of the matrix elements, of the direct Coulomb interaction operators were calculated first in \( LS \) coupled basis using procedures outlined in reference \([2,170]\). In this connection, it was possible to write down the ten terms of the \( 4f^{12}5d \) configuration as \( ^1P_{DFGH} \). However, note has to be taken of the fact that the configuration can be likened to a system of two non-equivalent electron complimentary to the \( fd \) configuration. Because of this, the procedures referenced cannot be used to calculate the \( g_k^s \)'s, the angular parts of the matrix elements of the exchange interaction operators.

For configurations of almost filled subshells, such as \( 4f^{13}5d \), the non-vanishing \( g_k^s \)'s are those for which \( k = L \), that is, for singlet states of the configurations. In general, the \( g_k^s \)'s are given by \([192]\).

\[
\begin{align*}
\mathcal{g}_k = 0, S = 1 \text{ or } k \neq L \\
\mathcal{g}_k(=L) = \frac{2(2l+1)(2l'+1)}{2L} \left( \begin{array}{ccc} l & l' & L \\ 0 & 0 & 0 \end{array} \right)^2, S = 0 \\
\end{align*}
\]

(4.3)

The calculated term energies, which are expressed in terms of \( F_k \) and \( G_k \) integrals are:
\[ E^{(1)H} = -F_0 - 10F_2 - 3F_4 \]
\[ E^{(2)H} = -F_0 - 10F_2 - 3F_4 + 420G_3 \]
\[ E^{(3)G} = -F_0 + 15F_2 + 22F_4 \]
\[ E^{(1)G} = -F_0 + 15F_2 + 22F_4 \]
\[ E^{(1)F} = -F_0 + 11F_2 - 66F_4 \]
\[ E^{(3)F} = -F_0 + 11F_2 - 66F_4 + 120G_3 \]
\[ E^{(2)D} = -F_0 - 6F_2 + 99F_4 \]
\[ E^{(1)D} = -F_0 - 6F_2 + 99F_4 \]
\[ E^{(3)P} = -F_0 - 24F_2 - 66F_4 \]
\[ E^{(1)P} = -F_0 - 24F_2 - 66F_4 + 70G_3 \]

With the converted integrals being given as \( F_b \) and \( G_b \), their coefficients in the above equations are designated as \( f^b \) and \( g^b \) respectively. The values of \( f^b \) obtained here differ from those for normal \( f^d \) configuration by a multiplicative factor -1. These results agree with those obtained by Condon and Shortley \([30]\) by an entirely different method, and to those of Bland \([6]\). The 3-j and 6-j symbols used in the calculation were obtained from the book by Rotenberg and his colleagues \([179]\), while the \( D_b \)'s were obtained from Condon and Shortley's book \([30]\).

Transformation of the matrix elements above into those of \( H_{\alpha}(f, d) \) in \( J_{\alpha}J \) coupling scheme was achieved through the use of the recoupling relations given by Judd \([170]\). The values of 0-j symbols used in the computations were obtained from Arima et. al. \([184]\). As a check, the results of the calculations were compared with the tables of matrix elements for \( d^{13}f \) or \( f^{13}d \) configuration obtained by Shortley and Fried \([191]\) by a completely different procedure. The two results are identical.

### 4.2.3 Matrix elements of spin–orbit operators \( H_{\alpha}(f) \) and \( H_{\alpha}(d) \)

The wavefunctions \((4.2)\) and the methods described in reference \([170]\) were used to calculate the matrix elements of \( H_{\alpha}(f) \) and \( H_{\alpha}(d) \). Since the 4\(f^{13}d \) configuration is complementary to the \( fd \) configuration, the substitution \((\psi_J) = |Jl_j\rangle\) was made
so that the results were reduced to

\[
\langle \alpha l j_1, \alpha l' j', J_2 M_2^a \Gamma_4 | H_\text{cf} (l) + H_\text{cf} (l') | \alpha l j_2, \alpha l' j'', J_4 M_4^a \Gamma_4 \rangle \tau \tau'
\]

\[
= \delta (\Gamma_4, \Gamma_4) \delta (\alpha_1, \alpha_2) \delta (\tau, \tau') \delta (J_2, J_4) \delta (M_2, M_4) \delta (j_1, j_2) \delta (j', j'')
\]

\[
\times \frac{1}{2} \zeta_{4d} \left[ l(l+1) + \frac{3}{4} - j_1(j_1+1) \right] + \frac{1}{2} \zeta_{3d} [j'(j'+1) - \frac{3}{4} - l'(l'+1)] \quad (4.5)
\]

Note that for the above results are similar to those of the normal \( fd \) configuration except that the spin-orbit splitting of the states of \( f \) subshell is inverted with respect to that of that configuration [2]. Since \( H_\omega \) is not only diagonal in \( J \) and \( M \) but also in \( J_1 \) and \( j' \), only four distinct term energies result. For \( 4f^{12}5d \) configuration, therefore

\[
E[^2P_1, 5d_\downarrow] = -\frac{3}{2} \zeta_{4d} + \zeta_{3d}
\]

\[
E[^2P_1, 5d_\uparrow] = -\frac{3}{2} \zeta_{4d} - \frac{3}{2} \zeta_{3d}
\]

\[
E[^2P_3, 5d_\downarrow] = 2 \zeta_{4d} + \zeta_{3d}
\]

\[
E[^2P_3, 5d_\uparrow] = 2 \zeta_{4d} - \frac{3}{2} \zeta_{3d} \quad (4.6)
\]

4.2.4 Matrix elements of crystal field interaction Hamiltonians \( H_\text{cf}(d) \) and \( H_\text{cf}(f) \)

The matrix elements of \( H_\text{cf}(d) \) between the basis functions of Eqn (4.2) were calculated as indicated in subsection 2.2.3. They were expressed in terms of \( Dq \) and tabulated as \( DQ \) matrix. \( H_\text{cf}(f) \) interactions matrices \( B04 \) and \( B06 \) matrices, whose elements were expressed respectively in terms of fourth order \( B_0^4 \) and sixth order \( B_0^6 \) crystal field parameters. The generalised CG coefficients \( k \Gamma_1, J_2^a \Gamma_4 | J_2^a \Gamma_4 \) involved in the calculation were obtained from the article by Eremin [228].

Quite remarkably, the results of the above calculations are identical to those obtained by Bland [6] who used an entirely different expression in his computations. On checking the matrices using the procedures adopted by Eremin [228] and Bland [6], a very satisfactory agreement with these earlier works was obtained. For example, on diagonalising the \( DQ \) matrix, with \( Dq \) set to 1, the values obtained were 6 and -4. For \( B04 \) matrix and with \( B_0^4 = 1 \), the eigenvalues were 1.454545, -0.484848 and -2.909090 while for \( B06 \) matrix, and also with \( B_0^4 = 1 \), the diagonalisation
process gave 8.951045, 3.729603 and -6.713284. These results provided a further ev­
idence of the effectiveness of the computer programs used for the evaluation process.

4.3 Theoretical energy levels of $\text{Yb}^{2+}$ ions in octahedral
and cubic crystal fields

4.3.1 Introduction
The procedures by which the theoretical energy levels and wavefunctions of the system were obtained have been outlined in Chapter Two. What remains to be done is a description of the various features of the theoretical energy level structure. In this section, such a task is undertaken. Before doing that, however, it is found necessary to indicate how the relative transition intensities were calculated.

4.3.2 Transition intensities
Considerations of the nature of wave functions of an atomic system and the external perturbations applied to it give rise to the selection rules for electronic transitions [98,186,206]. Since the ground state is expressed in $LS$-coupled functions, it is advisable also to describe the states of the excited configuration in similar basis set. Under the electric dipole approximation, the parity selection rule as well as the $\Delta J = 0,\pm 1$, (in which transitions from $J = 0$ to $J = 0$ is forbidden), $\Delta M = 0,\pm 1$, $\Delta l = \pm 1$, and the $\Delta S = 0$ selection rules predict that electronic transitions take place only to the $^1P_1$ state of the $4f^{14}(1S_0)$ ground state. However, by turning on the spin-orbit interaction operator, states with the same $J$-values are mixed. Such a mixing results in more than one energy level having appreciable transition intensity. For $\text{Yb}^{2+}$ ions in free space, there are three such states, namely: $^1P_1, ^3P_1$, and $^3D_1$. Under such a circumstance the energy levels corresponding to, say, $^3P_1$ is no longer a pure state. Rather it has a function of the character $^1P_1$ admixed into it. The strength of the transition depends strongly on the coefficient of the admixed function $^1P_1$. If $\kappa_i$ is the coefficient in front of wavefunction $^1P_1$ in the $i^{th}$ state of the system, the probability of transition to that state, represented by the transition intensity is proportional to $\kappa_i^2$. 56
The above exposition merely illustrates the principle. However, since it is more appropriate to describe the states of $4f^{13}5d$ configuration of $Yb^{2+}$ ions in $J_1J$-coupled basis functions, a slightly different procedure was adopted. This consists in transforming the $^1P_1$ wavefunction into $J_1J$-coupled wavefunctions, through Eqn (2.58). The result which corresponds to that in reference 6 is

\[ |^1P\rangle = \sqrt{\frac{7}{10}} |F_\frac{3}{2}, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}\rangle + \sqrt{\frac{1}{35}} |F_\frac{1}{2}, \frac{1}{2}, 1, 1\rangle + \sqrt{\frac{2}{5}} |F_\frac{1}{2}, \frac{1}{2}, 1, 1\rangle \]  

(4.7)

It is convenient to redefine $|^1P\rangle$ thus

\[ |^1P\rangle = \alpha |a\rangle + \beta |b\rangle + \gamma |c\rangle \]  

(4.8)

where $|a\rangle$, $|b\rangle$ and $|c\rangle$ are respectively the $J_1J$-coupled basis functions of Eqn (4.7) and $\alpha$, $\beta$ and $\gamma$ are corresponding coefficients. To obtain the appropriate transition intensity, it has to be noted that crystal field interaction produces an additional admixing of the states. This results in a considerable redistribution of intensities. Thus the wavefunction of each energy level has to be 'searched' to identify the amount of the $|a\rangle$, $|b\rangle$ and $|c\rangle$ functions admixed to it. The coefficients $\alpha$, $\beta$ or $\gamma$, then squared before being multiplied by $(\Omega)^2$. The results are then summed to obtain the relative transition intensity corresponding to the $i^{th}$ state of the system. These relative transition intensities are to be compared with those obtained from actual experiments. Similar procedures are widely used in literature [6,86,228,101].

4.3.3 Main features of theoretical energy spectrum

As has been pointed out, the elements of the various energy matrices were expressed in terms of adjustable parameters $F_\theta$ ($\theta = 0, 2, 4$), $G_k$ ($k = 1, 3, 5$), $\zeta_f$, $\zeta_m$, $D_q$ and $B_{2q}^\pm$ ($k = 4, 6$). $F_0$ was eventually left out of the calculations since it does not contribute to the structure of the energy levels of the system. Its overall effect is to raise each level by the same amount. Moreover it cannot be reliably calculated. Following Bland and Smith [101] and Bland [6] it was replaced by a quantity $\Delta$ which is a measure of the difference between the centre of the $\Gamma_{4e}$ levels of the $4f^{13}5d$ configuration and the ground state, $^1S_0(\Gamma_{1g})$, of $Yb^{2+}$ ion in octahedral crystal field. More will be said about it in a later section.
In order to calculate the energy levels, values were assigned to these parameters and the matrices summed into a composite matrix which was then diagonalized to obtain its eigenvalues (corresponding to energy levels) and eigenvectors (corresponding to eigenfunctions) of the system. To this end, the computer programs described in Chapter Two were used.

For a start, the Slater-Condon and spin-orbit parameters were assigned the free-ion values obtained by Bryant [99] and shown in Table 5.5. Values of crystal field parameters for the system under study were not known. The strategy adopted was to vary them so as to see how the energy level structure would develop. Because of the apparent connections through crystal field theory, between $Dq$ and $B^0$, on the one hand and between $B^0$ and $B^\infty$ on the other, it becomes attractive to seek to connect them in one way or another, so that only one of them can be varied at a time. Bland [6] and Bland and Smith [101] owing to a survey of some published work involving both $RE^{2+}$ and $RE^{3+}$ ions in octahedral crystal field find it necessary to make the following approximations:

\[ \frac{B^0}{B_{\text{cubic}}} = -0.20 \]  \hspace{1cm} (4.9)

\[ \frac{B^0}{B_{\text{oct.}}} = 0.075 \]  \hspace{1cm} (4.10)

\[ B^0 = \pm(100 + 0.05|Dq|) \]  \hspace{1cm} (4.11)

where in Eqn (4.11) the plus sign applies to the octahedral case and the minus sign to the cubic case.

Using the above approximations and with the Slater-Condon and spin-orbit parameters fixed at their free-ion levels, $Dq$ was varied over a wide range of values in order to find out how the energy levels develop. Fig 4.1 shows the behaviour of the energy levels of the $T_{2g}$ symmetry species derived from $4f^{13}5d$ configuration of $Yb^{2+}$ ions in octahedral environment. The case of cubic environment is shown in Fig 4.2 for completeness. In both figures, the relative transition intensities corresponding to the energy levels at some selected $Dq$ values were indicated as numbers.

It is obvious from the two figures that variations in $Dq$ cause considerable redistribution of transition intensities among the various energy levels. In fact at very low crystal field, $Dq < 200$ cm$^{-1}$, most of the lines with high transition intensities
Fig 4.1 Variation of $\Gamma_4$ energy levels of $Y^{3+}$ ions with $Dq$ in octahedral crystal field. $F_2, F_4, G_3, G_5, C_{4v}$ and $C_{3d}$ are set at free ion values.
Fig 4.2 Variation of $\Gamma_{4e}$ energy levels of $Yb^{2+}$ ions with $D_q$ in cubic crystal field. $F_2$, $F_4$, $G_{11}$, $G_{31}$, $G_6$, $C_4$, and $C_m$ are set at free ion values.
are located at higher energies. This is expected since two of the three energy levels (those with \( J = 1 \)) to which electronic transitions are possible at zero crystal field are located at higher energies \([99]\). However, at intermediate and higher crystal fields (\( 800 < Dq < 1400 \text{ cm}^{-1} \)) the intensities become liberally spread throughout the entire spectrum. Interestingly at high crystal fields (\( Dq > 1400 \text{ cm}^{-1} \)) four groups of bands are predicted for \( \text{Yb}^{2+} \) ions in octahedral or cubic environments.

Bland \([6]\) has studied the effect of the variation of the other adjustable parameters on the energy level structure of the \( 4f^{12}5d \) configuration of \( \text{Yb}^{2+} \) ions in octahedral crystal field. The conclusion arrived at was that variations of \( B^5_2 \) and \( B^5_4 \) do not affect the energy levels considerably but cause an appreciable redistribution of transition intensities. He also finds that reduction by various amounts of \( F_k \) and \( G_k \) (done independently at fixed values of \( Dq \)) results in slight variations in the energy level structure but appreciable intensity redistribution among the energy levels of the system. However, it was decided to study the effect of these parameters on the energy level structure by adopting a different approach.

The procedure consists of assuming a hypothetical situation where only the crystal field interaction was made to bear on the states of the \( \text{Yb}^{2+} \) ions, the other perturbation interactions being assumed to be effectively zero. These interactions are then 'switched' on, one after the other while \( Dq \) was allowed to vary freely. In switching on the Coulomb, exchange, and spin-orbit interactions, the free ion parameters \( F_k, G_k, C_{4f} \) and \( C_m \) were used to calculate the appropriate energy levels. As will be seen later, this strategy has the advantage of offering a qualitative picture of the influence of the individual perturbations at different values of crystal field. The insight gained in such a study is particularly valuable in the process of fitting the experimental and theoretical energy levels.

Fig 4.3 shows the variation of the \( \Gamma_{4m} \) energy levels as \( Dq \) is varied and when \( F_k, G_k, C_{4f} \) and \( C_m \) are all set to zero. The crystal field operators have been allowed to act on the \( f \)-electron states by including \( B^5_2 \) and \( B^5_4 \) through Eqns (4.9 - 4.11). There are two groups of energy levels, each consisting of three closely spaced levels. The two groups correspond to the splitting by the crystal field of the states of the \( 5d \) electron into \( \Gamma_3 \) and \( \Gamma_5 \) states, while the fine structure is provided by the
Fig 4.3 Variation of $\Gamma_{4\alpha}$ energy levels of $Yb^{2+}$ ions with $Dq$ in octahedral crystal field. $F_2$, $F_4$, $G_1$, $G_3$, $G_5$, $\zeta_f$ and $\zeta_{4d}$ are all set to zero.
splitting of \( f \)-electron states into three states, \( \Gamma_3, \Gamma_4 \) and \( \Gamma_5 \). Considerations of the distribution of relative transition intensities (not indicated in the figures) suggest that if only crystal field interactions were acting on the system of electrons, the optical absorption spectrum of the system would consist of two strong, and possibly structured bands.

However by switching on the spin-orbit interaction within the electronic states the \( 4f \) subshell, one obtains Fig 4.4. Ten energy levels result and they are segregated into groups of two's and three's. Some of the levels are degenerate. It is expected that over a wide range of \( Dq \), optical absorption measurement would yield at least four broad absorption bands (except at \( Dq \approx 1100 \text{ cm}^{-1} \) about which there would be three) most of which would be structured. On adding the spin–orbit interaction energy between \( d \)-electron states, the degeneracy of some of the levels are lifted resulting in fourteen levels. The situation is more complicated as can be seen in Fig 4.5. Basically, there appears to be two MAIN groups of energy levels, each of which is connected to one of the components of the spin–orbit split \( f \)-electron states, admixed with the two \( d \)-electron states (as in Fig 4.4). The inclusion of spin–orbit interaction of \( d \)-electron states results in three subgroups (instead of the previous two) of energies within each main energy group. This strongly suggests that the lower parallel groups of levels within each main energy group depends on \( H^\ast \Omega(d) \). Instead of four structured bands, there would be at least five (but maximum of six) phonon-broadened absorption bands each of which could be structured, if optical absorption measurement of the system were done. Comparison of Fig 4.1 and 4.5 clearly shows that the general underlying trend and to some extent the limits of the energy level structure of \( Yb^{2+} \) ions in octahedral environment are set principally by spin–orbit and crystal field interactions.

It appears that the contributions of the Coulomb and exchange interactions to the energy level structure is to spread the energy levels within the confines almost entirely defined by spin–orbit and crystal field interactions. Suggestions of this nature are afforded by examining Figs 4.6 and 4.7. This spreading effect which results in a general increase in the separation between energy levels within a group and a decrease in inter-groups separation energy is more powerfully demonstrated
Fig 4.4 Variation of $I_{em}$ energy levels of $Yb^{2+}$ ions with $Dq$ in cubic crystal field. $\zeta_f$ is set at free ion value with $F_2$, $F_4$, $G_1$, $G_3$, $G_5$ and $\zeta_d$ all set to zero.
Fig 4.5 Variation of F-po energy levels of Yb$^{3+}$ ions with Dq in octahedral crystal field. C_{4f} and C_{6d} are set at free ion values with F_2, F_4, G_1, G_3, and G_5 all set to zero.
Fig 4.6 Variation of $\Gamma_{\text{en}}$ energy levels of $Yb^{2+}$ ions with $D_q$ in octahedral crystal field. $C_1, C_3, F_2$, and $F_4$ are set at free ion values with $G_3, G_5$, and $G_6$ set to zero.
Fig 4.7 Variation of energy levels of $Yb^{2+}$ ions with $D_q$ in octahedral crystal field. $c_{4f}$, $c_{6d}$, $G_1$, $G_3$, and $G_5$ are set at free ion values with $G_1$, $G_3$, and $G_5$ set to zero.
in the case where exchange interaction is totally excluded (vide Fig 4.6). It is also interesting to note that the inclusion of either one or both of Coulomb and exchange interactions results in the removal of all degeneracies of the $\Gamma_4$ levels.

As will be illustrated later, the insight gained in the above study greatly simplified the grouping of the observed energy levels and the subsequent parameterisation of the systems being studied.

4.4 Optical absorption spectra of $\text{Yb}^{2+}$ ions in rubidium halide crystals

Divalent ytterbium ions, incorporated substitutionally into cation lattice site in single crystals of rubidium halides absorb photons of characteristic frequencies which lie within the region of optical transparency of the crystals. These frequencies are host dependent. Fig 4.8 which shows the optical absorption spectra of $\text{Yb}^{2+}$ ions in Rbl crystals at room and liquid nitrogen (LNT) temperatures. Full line shows the LNT spectrum while the broken trace is the room temperature spectrum. Fig 4.9 shows the second derivative spectrum of the ions in the same host crystals. Measurement of second derivative spectra helps to locate the peak positions of absorption bands more precisely. The absorption and second derivative spectra of $\text{Yb}^{2+}$ ions in RbCl and RbBr crystals have essentially the same structure as the corresponding spectra in Figs 4.8 and 4.9, although the spectral location of corresponding bands vary from host to host. For brevity, they are not shown here.

Following Bland and Smith [101] and Bland [6] and in correspondence with the classification of the theoretical energy levels into groups (vide Fig 4.1) the absorption bands in Fig 4.8 have been categorised into four groups, A, B, C and D in order of increasing energies. Numbers are attached to each alphabetic label to identify the order of each band within a group, the numbering being from the lowest energy level in each group. For instance, A2 band corresponds to the second energy level in the lowest energy group in Fig 4.1, while A6 corresponds to the sixth (and last) energy level in that group (group A). This assignment is justified in that A2 band is the most prominent of the observed bands (in all the systems) in the low energy side of
Fig 4.8 Optical absorption spectrum of $Yb^{2+}$ ions in RbI crystals at room and liquid nitrogen temperatures.
Fig 4.9 Second derivative (absorption) spectrum of \( Yb^{2+} \) ions in RbI crystals at liquid nitrogen temperature.
the spectrum while A6 is the next in intensity in both experimental and theoretical spectra.

From comparison of the optical absorption spectra of Yb$^{2+}$ ions in these crystals certain general features clearly emerge. Each spectrum consists of a number of broad absorption bands which maintain discernable relationships with one another in terms of relative energy positions, energy separations and relative transition intensities. The A2 bands in general tend to start from about 25 000 cm$^{-1}$ (400 nm) and could extend to about 27 778 cm$^{-1}$ (360 nm). One interesting feature of these bands is that their peak positions tend to decrease in wave number with increase in cation-anion separation of the host material. These positions are 25 907 cm$^{-1}$ (386 nm) for Rbl$^+:$ Yb$^{2+}$, 26 473 cm$^{-1}$ (377.75 nm) for RbBr$^+:$ Yb$^{2+}$ and 26 543 cm$^{-1}$ (376.75 nm) for RbCl$^+:$ Yb$^{2+}$. On the other hand, the peak positions of the strongest energy bands (in the case of Rbl$^+:$ Yb$^{2+}$, it is the band labelled C3 for reasons to be explained later) shift to lower energies with increasing cation-anion separation.

In all the spectra, the intensities of bands A2 and A6 relative to each other follow the same trend, with A2 always stronger in intensity than A6, while the separations between them are fairly constant. They are 2989, 2983 and 2953 cm$^{-1}$ for RbCl$^+:$ Yb$^{2+}$, RbBr$^+:$ Yb$^{2+}$ and Rbl$^+:$ Yb$^{2+}$ crystal systems respectively. This fact suggests that A2 and A6 bands belong to the lowest group of levels since Fig 4.1 shows that for Dq values above 600 cm$^{-1}$, the separation of any two energy levels in the lowest group of energy levels is nearly constant as Dq increases. In general, the B bands tend to be weaker than either the A or C-bands. The latter bands are the strongest in general. In all cases, the D-bands were not observed. It is likely that these bands overlap with the conduction bands of the host crystals or are masked by the tail of the intrinsic absorption edge of the crystals.

Another interesting feature of the spectra is that at LNT all the bands become sharper and the A-bands shift to lower energies while the B-bands shift to higher energies. For the C-bands, the matter is more complicated. In the case of RbCl$^+:$ Yb$^{2+}$, they shift to high energy side of the spectrum where as for Rbl$^+:$ Yb$^{2+}$ the C3-band shifts to the lower energy side.

It is known that most crystals contract on cooling, causing a decrease in their
lattice parameter, d. The dependence of $D_q$ on $d$ suggests that $D_q$ should increase when $d$ decreases. Fig 4.1 predicts that A-bands should shift to lower energies while C-bands to higher energies at $D_q \geq 1100 \text{ cm}^{-1}$. This suggests that $D_q$ for $\text{RbCl} : Yb^{3+}$ will likely be in that range. Such characteristics of Fig 4.1, as well as the various features of the spectra already mentioned were used as guide in all identifications of the bands and subsequent estimates of values of $D_q$.

No mention has yet been made of the bands labelled E1 and E2. As for the spectra of sodium and potassium halide crystals containing $Yb^{3+}$ ions [6], these bands are assigned to absorption by $Yb^{3+}$ ions but their behaviour is different from those of the other bands. Like all other bands in the spectra, they become sharper on cooling the crystal but they shift to higher energies, the shifts generally being larger than those exhibited by the other bands. But the most important feature is that their relative intensities increase as in the series $\text{Cl} < \text{Br} < \text{I}$. For the E2 band, its relative intensity in $\text{RbBr} : Yb^{3+}$ is less than in $\text{RbI} : Yb^{3+}$. E2 band was not identified in $\text{RbCl} : Yl^{2+}$ spectrum, probably because it could overlap with the stronger C-bands.

4.5 Fitting of experimental and theoretical energy levels

The experimentally observed energy bands A-D were ascribed to $4f^{14}(^{1}S_0) \rightarrow 4f^{13}5d$ Laporte-allowed electric dipole transitions of $Yb^{3+}$ ions in octahedral crystal field. An attempt was made to fit the peak energies of these bands to the theoretical levels depicted in Fig 4.1. With the aid of the observed characteristics of the bands for any one host and making reference to Fig 4.1 an initial estimate of $D_q$ was made. To do this the separation between A6 and the strongest of the high energy bands which belong to group C energy levels was equated to 10 $D_q$. It was found that some considerable discrepancies existed between observed energy levels and those predicted by theory. A decision to vary the energy parameters $F_b, G_a, C_{af}$ and $C_{44}$ was made. A drawback of this strategy is that these parameters outnumber the observed energy levels. To overcome the drawback some approximations were
made. The approximations depend on the assumption that ratios such as $\frac{F_2}{G_1}$ and $\frac{G_3}{G_5}$ are quite insensitive to changes in the shape of the wavefunctions [1,3] and therefore fixed at free-ion values. Thus the approximations are $F_4 = \frac{0.070236}{2} \frac{F_2}{G_1}$, $G_3 = \frac{0.127432}{2} G_1$, $G_5 = \frac{0.021733}{2} G_1$ and $\zeta_{ef} = \frac{0.410481}{2} C_{4f}$. By this means, the number of adjustable parameters was reduced to four, namely $F_2, G_1, \zeta_{ef}$ and $D_q$. Approximations such as these are widely used in atomic and crystal spectroscopy [1, 6, 10, 26, 260].

The study done in subsection 4.3.3 suggests that the separation between $A_2$- and $A_6$-bands depends on $F_2, G_1$ and $\zeta_{ef}$ (through $\zeta_{ef}$) while the separation of $B$-bands depend mainly on $F_3$ and $G_1$. Crystal field parameter $D_q$ and spin-orbit parameter $\zeta_{ef}$ mainly determine the separations between $A$- and $C$-bands. The procedure for fitting the experimental and theoretical levels revolves on two main steps. Firstly, the adjustable parameters were systematically varied so that the experimentally observed separations between the energy bands and the theoretically determined ones agree as closely as possible.

Secondly, the values of the parameters so determined were used as trial parameters in a computer program designed to minimise the square of the difference between experimental and theoretical energy levels. The design of the program and the computer subroutines used have already been described in Chapter Two. Results obtained for the three systems are shown in Table 4.3.

It is with these optimised parameter values that the theoretical energy levels of the systems were calculated. They are shown in Tables 4.2(a)-(c). To calculate the (experimental) relative transition intensities, the transition intensity of $A_2$-band was normalised to 100. Evidently, there is a very satisfactory fit between the theoretical and experimental energy levels. However some difference could be observed between the predicted and observed relative transition intensities of some of the energy levels. In the next section, these results will be discussed.
Table 4.2(a): Experimental and Theoretical Energy Levels and Relative Transition Intensities of Yb³⁺ Ions in RbI:Yb³⁺ Crystal Matrix. Error is the Difference between Experimental and Theoretical Levels.

<table>
<thead>
<tr>
<th>Spectral Band</th>
<th>Experimental Energy Level Positions ( E ) (( \text{cm}^{-1} ))</th>
<th>Relative Intensity</th>
<th>Theoretical Energy Level Positions ( E ) (( \text{cm}^{-1} ))</th>
<th>Relative Intensity</th>
<th>Error ( \delta ) (( \text{cm}^{-1} ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>38 462 38 314</td>
<td>434</td>
<td>38 083 38 308</td>
<td>1105</td>
<td>+ 6</td>
</tr>
<tr>
<td>B5</td>
<td>36 697 36 765</td>
<td>85</td>
<td>36 493 36 766</td>
<td>5</td>
<td>- 1</td>
</tr>
<tr>
<td>B3</td>
<td>-- 36 364</td>
<td>29</td>
<td>36 382 36 493</td>
<td>23</td>
<td>- 18</td>
</tr>
<tr>
<td>B1</td>
<td>-- 34 483</td>
<td>24</td>
<td>34 487 35 296</td>
<td>11</td>
<td>- 4</td>
</tr>
<tr>
<td>A6</td>
<td>28 902 28 860</td>
<td>78</td>
<td>28 868 28 016</td>
<td>159</td>
<td>- 8</td>
</tr>
<tr>
<td>A2</td>
<td>26 042 25 907</td>
<td>100</td>
<td>25 907 26 407</td>
<td>173</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 4.2(b) : Experimental and Theoretical Energy Levels and Relative Transition Intensities of Yb2+ Ions in RbBr:Yb2+ Crystal Matrix. Error is the Difference Between Theoretical and Experimental Levels.

<table>
<thead>
<tr>
<th>Spectral Band</th>
<th>Experimental</th>
<th>Theoretical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy Level Positions</td>
<td>Energy Level Positions</td>
</tr>
<tr>
<td></td>
<td>E (cm⁻¹)</td>
<td>RT</td>
</tr>
<tr>
<td>C4</td>
<td>40 000</td>
<td>40 000</td>
</tr>
<tr>
<td></td>
<td>48 773</td>
<td>48 421</td>
</tr>
<tr>
<td>C2</td>
<td>39 139</td>
<td>39 063</td>
</tr>
<tr>
<td>B3</td>
<td>-----</td>
<td>37 313</td>
</tr>
<tr>
<td>B2</td>
<td>36 164</td>
<td>36 430</td>
</tr>
<tr>
<td>B1</td>
<td>35 273</td>
<td>35 398</td>
</tr>
<tr>
<td>A6</td>
<td>29 542</td>
<td>29 477</td>
</tr>
<tr>
<td>A2</td>
<td>26 560</td>
<td>26 473</td>
</tr>
<tr>
<td></td>
<td>25 848</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 4.2(c): Experimental and Theoretical Energy Levels and Relative Transition Intensities of Yb\(^{2+}\) Ions in RbCl:Yb\(^{2+}\) Crystal Matrix. Error is the Difference Between Experimental and Theoretical Levels.

<table>
<thead>
<tr>
<th>Spectral Band</th>
<th>Experimental Energy Level Positions</th>
<th>Theoretical Energy Level Positions</th>
<th>Relative Intensity at LNT</th>
<th>Error ( \Delta )</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>Low</td>
<td>High</td>
<td>RT</td>
<td>Low</td>
</tr>
<tr>
<td>C3</td>
<td>53.126(1)</td>
<td>44.101(1)</td>
<td>6.130</td>
<td>18</td>
</tr>
<tr>
<td>B5</td>
<td>39.216(1)</td>
<td>39.139(1)</td>
<td>10.16</td>
<td>-24</td>
</tr>
<tr>
<td>B2</td>
<td>36.866(1)</td>
<td>36.900(1)</td>
<td>8.1</td>
<td>-33</td>
</tr>
<tr>
<td>B1</td>
<td>35.746(1)</td>
<td>35.810(1)</td>
<td>5.1</td>
<td>47</td>
</tr>
<tr>
<td>A6</td>
<td>29.630(1)</td>
<td>29.532(1)</td>
<td>5.1</td>
<td>40</td>
</tr>
<tr>
<td>A2</td>
<td>26.649(1)</td>
<td>26.543(1)</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>( d ) (( \AA ))</td>
<td>3.927</td>
<td>3.953</td>
<td>3.977</td>
<td>3.991</td>
</tr>
<tr>
<td>Energy Parameter (( \text{cm}^{-1} ))</td>
<td>(</td>
<td>E_{\text{eff}}(c,d')</td>
<td>)</td>
<td>( A )</td>
</tr>
</tbody>
</table>

Note: The parameters and lattice constants are included in Column 6. The table lists the parameters and associated energy values.

Table 4.3: Optimized Energy Parameters, \( F(c,d') \), \( G(c,d') \), and \( D_y \) for...
4.6 Discussion

4.6.1 The $4f^{13}5d$ configuration of $\text{Yb}^{2+}$ in $\text{RbX} : \text{Yb}^{2+}$ systems and optical absorption spectrum

All along, it has been assumed that the observed absorption bands can be ascribed to $4f^{14} \rightarrow 4f^{13}5d$ electronic transitions of $\text{Yb}^{2+}$ ions in crystals of rubidium halides. Such an assumption stems from a definite correspondence between experimentally observed energy bands and the theoretical energy levels of the $4f^{13}5d$ configuration of $\text{Yb}^{2+}$ ions in octahedral environment. It has also been shown that the theoretical energy levels can be classified into four groups and that the lower three of these correspond to three groups of the observed energy bands. The fourth group of bands could not be observed, possibly because the levels are either masked by the onset of intrinsic absorption edge of the crystals or located in their conduction bands.

The separation of the theoretical energy levels into four distinct groups, particularly at $Dq \geq 1400 \text{ cm}^{-1}$ has been a matter of speculation [6,86,101]. In that range of crystal field, the energy levels within the highest as well as within the lowest energy groups maintain constant separations among themselves as $Dq$ is increased. Within that $Dq$ regime also, and for octahedral spectrum $\frac{\Delta E}{\Delta Dq}$ is $+5.82 \pm 0.03$ for the highest group of energy levels and $-3.88 \pm 0.05$ for the lowest group. In the cubic case, it is $3.89 \pm 0.03$ for the highest group and $-5.87 \pm 0.04$ for the lowest.

For a system where the crystal field interaction on the $d$-electron is the most dominant interaction, two energy bands are expected and the corresponding values of $\Delta E$ being +6 and -4 for the octahedral case and +4 and -6 for the cubic case [97, 204, 210]. Similar results [6, 86, 101] have prompted the suggestion that the system behaves as if the states of the 5$d$-electron are strongly split by the crystal field and then coupled to the states of the $f$ hole of the $4f^{13}$ configuration. Equivalent models have also been used to explain the broad absorption bands in the spectra of some divalent rare-earth ions in both cubic (8-fold coordinated) and octahedral (6-fold coordinated) environments [75,76,79,81,84,88-90,104,206,261-263]. In such cases the $4f^{13}$ core states is replaced by the states of $4f^N$ core appropriate to the ion being discussed. For example, the two-band structure of the spectrum of diva-
lent europium ($\text{Eu}^{2+}$) ions in octahedral or cubic crystal field makes the model very attractive, since that is what it predicts. The $\Gamma_3$ and $\Gamma_5$ states of the 5d-electron are thought of as being coupled to the $^7F$ of the $4f^6$ core sub-configuration of the excited $\text{Eu}^{2+}(4f^65d)$ ion [84,85,90,259,261,262]. As has been pointed out however [80,87] the use of such a model has to be done with care since it only explains the gross features of the observed spectra.

Application of the model to the $4f^{12}5d$ configuration of $Yb^{2+}$ ions in a high octahedral or cubic crystal field gives the same qualitative result as obtained in the theoretical analysis provided the roles of spin-orbit interaction within the $d$-electron states and Coulomb and exchange interactions between the $4f^{12}$ and 5d electrons are included. The states of the $4f^{13}$ sub-configuration denoted by the lone term $^2F$ are split into two multiplets $^2F_{7/2}$ and $^2F_{5/2}$ by spin-orbit interaction while the 5d electron states are split by the octahedral crystal field into two levels, $\Gamma_3$ and $\Gamma_5$. However, these crystal states are further perturbed by $H_{\text{so}}(d)$ before being coupled to the states of the $4f^{13}$ core via Coulomb and exchange interactions. These ideas are schematically illustrated by Figs 4.10 and 4.11. It is clear that in octahedral crystal field, the model predicts four groups of $\Gamma_4$ levels, the middle two of which could be close to each other. The groups are labelled $A'$, $B'$, $C'$ and $D'$, from the lowest group upwards in that order. Group theoretical considerations predict that there are six $\Gamma_4$ levels in group $A'$, five in group $B'$, four in $C'$ and three in $D'$. Considering group $A'$, levels, the states $^2F_{7/2}$ in crystal field decomposes into the doublets $r^6$, $r^7$ and the quartet $r^{10}$. Therefore the products

\[
(\Gamma_6 + \Gamma_7 + \Gamma_8) \times \Gamma_7 = \Gamma_1 + \Gamma_2 + 2\Gamma_4 + 2\Gamma_5
\]

\[
(\Gamma_6 + \Gamma_7 + \Gamma_8) \times \Gamma_8 = \Gamma_1 + \Gamma_2 + 3\Gamma_3 + 4\Gamma_4 + 4\Gamma_5
\]

(4.12)

give 6 $\Gamma_4$ levels. Analogous operations for groups $B'$, $C'$ and $D'$ yield results indicated already. For the cubic case, the number of $\Gamma_4$ levels in groups $A'$, $B'$, $C'$ and $D'$ are 4, 3, 6 and 5 respectively. All these results agree with the grouping of the energy levels as shown in Figs 4.1 and 4.2. It is no coincidence that this model predicts six energy bands if the Coulomb and exchange interactions were switched off. This prediction is in complete agreement with the result of section 4.3.3, shown in Fig 4.5, in which all other interactions but these two were included. Their inclu
Fig 4.10 Theoretical energy level scheme for $4f^{13}5d$ configuration of $Y^{3+}$ ions in high octahedral crystal field. (a) $H_{so}(f)$: Spin-orbit interaction within $4f$ subshell. (b) $H_{cf}(d)$: Crystal field interaction on $5d$ states. (c) Spin-orbit interaction within $5d$ subshell. (d) $H_{cex}(f, d)$: Direct Coulomb and exchange interactions between $4f^{13}$ core electrons and the $5d$ electron. (Only $\Gamma_a$ levels are indicated).
Fig 4.11 Theoretical energy level scheme for $4f^{12}5d$ configuration of Yb$^{3+}$ ions in high cubic crystal field. (a) $H_{so}(f)$: Spin–orbit interaction within $4f$ subshell. (b) $H_{cf}(d)$: Crystal field interaction on $5d$ states. (c) Spin–orbit interaction within $5d$ subshell. (d) $H_{ud}(f, d)$: Direct Coulomb and exchange interactions between $4f^{12}$ core electrons and the $5d$ electron. (Only $\Gamma_{1u}$ levels are indicated).
sion however tends to spread the energy levels and make the agreement between the model and the results of theoretical calculations complete.

This considerable effect of the operator $H_{ad}(f,d)$ on the eigensystem of the 4$f^{13}5d$ configuration of Yb$^{2+}$ ions in an octahedral crystal explains the multiplicity of experimentally observed optical absorption bands and fine structure of some of them as observed by some earlier workers [6,83,86,88,89,101].

In spite of these, a lot of care has to be exercised in applying the model to systems for which $Dq < 1400$ cm$^{-1}$. Under such a circumstance, the states of the 5d-electron can no longer be unambiguously expressed in terms of quantum numbers $\Gamma_i$, owing to the closeness of the energy levels in group $B'$ and $C'$, and the possibility of the admixing of the associated wavefunctions. This further justifies the use of free-ion d-electron wavefunctions in the description of the coupling of the 5d-electrons states to the 4$f^{13}$ core states in the computational process.

Nevertheless, using the model, it is easy to appreciate that the initial estimate of $Dq$ can be made with reference to absorption bands in groups A and C or groups B and D, if the latter had been accessible. It therefore serves as a useful guide in the identification of the energy bands. Based on these ideas, the energy level scheme shown in Fig 4.12, is proposed for Yb$^{2+}$ ions in RbX crystals. Intermediate crystal field ($800 \leq Dq \leq 1400$ cm$^{-1}$) is assumed. The last three columns show the experimental energy level structure of the ions in RbX : Yb$^{2+}$ crystal systems.

It has to be remarked that in the model description, perturbation of the f-states by the crystal field has not been explicitly included. Its inclusion will only alter the energy level positions very slightly [6,101]. Insight into this model (which closely agrees with an earlier scheme proposed by Johnson and Sandoe [80] but wrongly attributed to 4$f^{13}5d$ configuration in octahedral crystal field) was obtained from the theoretical analysis of Section 4.3.3.

As has already been noted, there was a satisfactory fit between the experimental and theoretical energy levels. The largest mean error of 180 cm$^{-1}$ was observed for RbBr : Yb$^{2+}$ system. However, there was some noticeable discrepancy between the observed and predicted relative transition intensities. This is particularly so for bands A6 whose observed relative intensity was less than predicted by about
Fig 4.12 Theoretical and experimental energy level structure of $Yb^{+}$ ions in rubidium halide crystals. (a) Calculated energy levels in RbBr crystals. (b) Corresponding free-ion states. (c) Last three columns show the observed energy levels in the crystal hosts indicated.
a factor of 3 in two the systems studied and about a factor of 2 in one of them. This same trend has been previously observed for \( \text{Yb}^{2+} \) in sodium and potassium halides \([6,101]\). As noted in that study also, the experimental relative transition intensities of that band varies as in the spectro-chemical series \( \text{Cl}^- < \text{Br}^- < \text{I}^- \).

For some other bands, the predicted relative transition intensities were smaller than the experimental ones. However, the agreement between predicted and observed relative transition intensity is particularly good for \( \text{C3} \) band in \( \text{RbCl : Yb}^{2+} \) system.

The discrepancies between predicted and observed relative transition intensities of some bands do not constitute a big surprise since system wavefunctions may not be as accurate as would be desired because of the various approximations made. Prominent among them is the octahedral approximation in which the distortion of the site symmetry of a \( \text{Yb}^{2+} \) ion by the presence of a charge-compensating cation vacancy in \( <110> \) direction was ignored. As will be argued in a later section, this may result in some redistribution of transition intensities in the system.

### 4.6.2 Crystal field parameter \( D_q \)

It is interesting to observe that the values of \( D_q \) obtained for \( \text{RbX : Yb}^{2+} \) crystal systems in this study follow the spectro-chemical series of ligand ions: \( I^- < \text{Br}^- < \text{Cl}^- \), as was found by other researchers working on \( \text{Eu}^{2+} \) and \( \text{Yb}^{2+} \) ions in alkali halide crystals \([85,101]\). Earlier, Schaffer and Jorgenson \([263]\) have demonstrated with numerous experimental data involving transition metal ions in molecular complexes and crystals that for a given metal ion \( D_q \) increases as in the spectrochemical series

\[
I < \text{Br} < \text{Cl} < S < F < O < N < C
\]  

(4.15)

Other workers have demonstrated the same trend for transition metal complexes \([264]\). Incidentally, lattice parameter, \( d \) for \( \text{RbX} \) crystals follows the reverse sequence. Therefore another way of interpreting the results is to say that \( D_q \) decreases with increasing \( d \), a trend expected on account of the point ion model of crystal field splitting.

However, the value of \( D_q \) obtained from \( \text{RbCl : Yb}^{2+} \) matrix was large in comparison with those obtained for \( \text{KCl : Yb}^{2+} \) and \( \text{NaCl : Yb}^{2+} \) crystals \([6]\). It is
expected that $D_q$ for that system would be smaller than in the other alkali chlorides since $d$ for RbCl crystal is larger than those of KCl and NaCl crystals. Reasons were sought for this apparent discrepancy.

One point that comes to mind is that RbCl crystal undergoes a structural transition from sodium chloride to cesium chloride structure at $-190^\circ C$ [270]. This would mean that cation-anion separation would decrease leading to an increased crystal field interaction. Evidence of such a transition does not seem to exist for the following reasons. The observed spectrum has the features of that of $Yb^{2+}$ ions at sites where they are coordinated with six chloride ions. In cesium chloride structure, the $Yb^{2+}$ ions would be coordinated with eight chloride ions. In such a set up, band $A_6$ would be absent, but more importantly the room temperature spectrum would be markedly different in structure from the spectrum at LNT. The main differences observed are the sharpening of the bands and shifts in spectral positions of the bands when the crystal goes from room to liquid nitrogen temperatures. These changes are expected and the other systems studied show the same changes (vide Section 4.4).

A more attractive point of view is that $Yb^{2+}$ ions in substitutional sites are separated from the chloride ions by a significantly shorter distance than rubidium ions are from the anions. This is because the radius of $Rb^+$ ion is 1.47 Å while that of $Yb^{2+}$ ion is 0.93 Å [252]. On substitution therefore, the six ligand anions will have to adjust their positions to accommodate the new neighbour, resulting in a reduction of the effective cation-anion distance, $R$, and hence in an increase in the crystal field interaction. However, the value of $R$ is also influenced by the presence of charge-compensating vacancy [64,273] thereby making matters more complex. An objection to the above view, is that the values of $D_q$ for $RbBr : Yb^{2+}$ and $Rbi : Yb^{3+}$ would also be very large in comparison to $Yb^{2+}$ ions in other bromides and iodides. But it has to be remembered that the radius of chloride ion is 1.81 Å as compared with 1.95 and 2.2 Å for bromide and iodide ions respectively. Any local contraction at the site of $Yb^{2+}$ in these crystals will definitely be much smaller than in RbCl crystals. Nevertheless, the possibility of local contraction or expansion of cation impurity-anion distance in some crystals has often been evoked by many workers to
explain observed effects related to crystal field interaction [64,75,134,274-278].

In spite of the trend shown above for $Dq$ values obtained for $Yb^{2+}$ in RbX crystals, there is a marked departure from the expected proportionality expected between $Dq$ and $R^{-5}$, on the basis of the point-ion model of crystal field theory. A plot of $\log Dq$ against $\log d$ shows a big scatter around a straight line. However, it is recognised that $d$ is not an adequate approximation to $R$. But no estimate has yet been made for $R$ for $Yb^{2+}$ ions in alkali halide crystals. Ruiz-Mejia C, and his colleagues [273,306] have calculated $R$ for $Eu^{2+}$ in alkali halides. They find that $R$ is less than $d$ by $0.167d_{RbCl}$, $0.147d_{RbBr}$, and $0.124d_{Rbl}$ in $RbCl$ : $Eu^{2+}$, $RbBr$ : $Eu^{2+}$ and $Rbl$ : $Eu^{2+}$ systems respectively where $d_{RbX}$ are lattices parameters of RbX crystals. (vide Table 4.3). Allowing for similar same percentage reductions, the effective $Yb^{2+}$-anion distances, of $2.74$, $2.932$, $3.209$ Å were estimated for $RbCl$ : $Yb^{2+}$, $RbBr$ : $Yb^{2+}$ and $Rbl$ : $Yb^{2+}$ respectively. Despite this adjustment (as shown in Fig 4.13) the large scatter was only slightly reduced. But if one assumes a reduction in $Yb^{2+}$-anion distance for only $RbCl$ : $Yb^{2+}$ system to the degree indicated above while ignoring possible reductions in $R$ for the other systems, a good fit is obtained. The straight line has a gradient of $-1.80 \pm 0.02$ which is small in magnitude compared with the expected value of $-5$ on the basis of point ion model. This result however has to be viewed with extreme caution because there is no reason to believe that $R$ and $d$ will have the same value for $RbBr$ : $Yb^{2+}$ and $Rbl$ : $Yb^{2+}$ systems, even though they are expected to differ very much for $RbCl$ : $Yb^{2+}$ crystal matrix.

The deviation of experimental data from the predictions of point ion model of crystal field theory is not surprising since the inadequacy of the theory has long been recognised [279]. Numerous experimental results involving transition metal ions with $nd^{N}$ open shells ($n=3,4,5$) indicate that covalency and the exchange forces due to the charge clouds of the central ion and those of the ligand ions make important contributions to the value of $Dq$ [223,281–287].

In the case of rare-earth metal ions, with partially filled $4f^{N}$ subshells, it has been shown [4,75,288-292] that covalency (which involves transfer of some charge from the ligands to the rare earth metal ions), overlap of $4f^{N}$ orbitals with like-spin
ligand orbitals and also of the orbitals of 5p^6s^2 subshells and those of ligands, make important contributions to crystal field splitting of free ion levels of ions in crystalline environment. Such contributions are however less than observed for transition metal ions in molecular complexes or crystal matrix, owing to the extra shielding of the 4f^N subshell afforded by the 5p^6s^2 subshells. It will be expected that the energy levels of the 4f^{15}d configuration of Yb^{2+} ions in crystalline environment will be definitely affected by these factors too and hence the deviations of the measured Dq-values from the point-ion crystal field model. This deviation has also been found for Eu^{2+} and Yb^{2+} in some alkali halides [6,85,101].

The comments above, however do not invalidate the results obtained in this study. This is because as Anderson [293] and Hüfner [4] point out, even though Eqn (3.32) does not represent all the major interactions involved in crystal field splitting, the parametrisation scheme ensures that the other interactions such as covalency, overlap and electrostatic shielding are taken up into Dq, B\% and B_\%.

Another parameter determined in this work which has to do with crystal field interaction is \( \Delta \) (vide Table 4.3). Using the values of \( \Delta \) for the systems studied, it was found that the depression of the centre of gravity of the \( \Gamma_{\text{ts}} \) levels of 4f^{15}d configuration as the ions go into crystals is 7 802 cm\(^{-1}\) for RbCl:Yb^{2+}, 9 693 cm\(^{-1}\) for RbBr:Yb^{2+} and 10 807 cm\(^{-1}\) for RbI:Yb^{2+}. Again these quantities follow the spectro-chemical series of ligand ions

\[ \text{Cl}^- < \text{Br}^- < I^- \]

Incidentally these depressions increase as lattice parameter \( d \) increases. It appears that the depressions are connected with the spectral displacements to lower energies of the A_2- and A_6- bands with increase in \( d \).

Bland [6] and Bland and Smith [101] find a linear dependence of \( \Delta \) on \( d \) for Yb^{2+} ions in sodium and potassium halides. No such dependence was found in this study for the same reasons that Log Dq deviates from a proportionality relationship with Log d.
4.6.3 Reduction of free-ion parameters

The values obtained for \( F_2, G_1 \) and \( \zeta_{4f} \) as shown in Table 4.3 are smaller than the free-ion values obtained by Bryant [99]. Many research workers [6,82,101,259,294] who have studied the excitation of \( RE^{2+} \) ions (in crystals) involving states of \( 4f^N 5d \) configurations have found it necessary to use \( F_k, G_k \) and \( \zeta_{4f} \) values smaller than free-ion estimates. Wealkiem [259] uses electrostatic parameters 50% of their free-ion values in order to obtain a fit between theory and experiment in his study of \( CaF_2 : Eu^{2+} \) system while Alig and his colleagues [82] use \( F_6 \) and \( G_6 \) values 60% of their free-iron values for \( SrCl_2 : Tm^{2+} \) system. Bland [6] and Bland and Smith [101] use Slater-Condon parameters, \( F_2 \) and \( G_1 \) and spin-orbit parameters ranging in value from 0.86 to 0.91% of free-ion values for \( Yb^{2+} \) ions in sodium and potassium halides. Much less reduction in free-ion \( F_k \) and \( \zeta_{4f} \) parameters have been found for some \( RE^{3+} \) ions in crystals, in which excitations involving \( 4f^N \leftrightarrow 4f^N \) transitions were studied [285-288].

An explanation to these results could be obtained from the conclusions drawn from many studies on optical absorption of transition metal complexes. In these works and reviews of them, it has been observed that theoretical results could only be fitted with experimental spectra if the free-iron values of Slater-integrals (\( F_k \)) or Racah parameters \( [B,C] \) were assumed to be reduced sometimes by as much as 50% [263,264,280–285].

This reduction in electrostatic parameters of transition metal ions in molecular complexes or crystals below their free-iron values is known as nephelauxetic (cloud-expanding) effect [263]. It is assumed that since the partly filled \( 3d^N \) orbitals of the transition metal ions are unshielded from the surrounding ligand ions, two types of covalency are possible. One type, central-field covalency, concerns the expansion of the radial wavefunctions of the \( 3d^N \) electrons owing to the presence of the ligands. This leads to shifts in the charge clouds from ligand to central ion and vice-versa. As a result there is a reduction in the effective positive charge of the atomic core and hence a reduction in the oxidation number of the central ion.

The second type, symmetry-restricted covalency has to do with the delocalization of the partly filled \( 3d^N \) orbitals of the central ion. These orbitals interact with
those of the ligand ions, forming molecular orbitals. In this respect, only orbitals of the same symmetry type interact [283-286,290]. Both types of covalency lead to changes in the charge density of the central ion / ligand ions complex and an overall decrease in Coulomb energy of the central ion. This is reflected in smaller \( F_a \) or \( B \) and \( C \) values, than in free ion states.

Schäffer and Jorgensen [263] have defined the nephelauxetic ratio \( \beta \) as the ratio of a phenomenological electrostatic (inter- electronic) parameter for a central iron in a molecular complex to its free- ion value. They have developed an empirical sequence regarding the value of \( \beta \) for the same ion in different bonding environments. The sequence of ligands in decreasing order of \( \beta \) is [283]

\[
\text{no ligand} > F^- > H_2O > Cl^- > Br^- > I^- > 0^{2-}
\] (4.14)

This is known as the nephelauxetic series. Incidentally, the values of \( \beta \) calculated for each of the parameters \( F_2, G_1 \) and \( \zeta_\phi \) follow the sequence \( Cl^- > Br^- > I^- \), which agrees with the series (Eqn 4.14) above.

### 4.6.4 Adequacy of octahedral approximation

It has been mentioned that the \( Yb^{2+} \) ions are incorporated substitutionally into the cation sublattice and that this requires cation vacancies to be associated with them on a one-to-one basis in order to balance the local charge at the vicinity of the \( Yb^{2+} \) ions. The assumption has been that for a \( Yb^{2+} \) ions at a substitutional site, the charge compensating vacancy is located at a nearest neighbour cation site. Fig 1.5 shows that there are twelve such inequivalent sites. As far as the author knows, there is no direct evidence in literature to confirm this assumption. But results of studies involving other divalent ions in crystals of sodium chloride structure tend to strengthen it. ESR involving \( Mn^{2+} \) ions in NaCl crystals [134] and of \( Eu^{2+} \) ions in a variety of alkali halide crystals [15,16,20,300-305] have shown that the most preferred mode of charge compensation is the association of the divalent impurity ion with an alkali-ion vacancy at the nearest neighbour cation site in \(< 110 > \) direction. It has also been found that the emitting state of \( Sm^{2+} \) ions in many alkali halides crystals are those of substitutional \( Sm^{2+} \) ions at orthorhombic sites [64,69,140,307-309]. The site symmetry of the impurity is therefore taken to be
orthorhombic point symmetry ($C_{2h}$).

Corroborative as these results are to earlier dielectric loss and ionic conductivity studies of a variety of divalent ions in alkali halides which lead to the strong suggestions that the formation of divalent ion–cation vacancy is the major charge compensating mechanism [135–137, 309–312], it appears reasonable to assume that the same model is applicable to $Yb^{2+}$ ions in alkali halides. However one must not lose sight of the observation by Brown and his colleagues [276] that for $RE^{3+}$ ions in alkali-earth fluorides, the site of the charge compensating defect (in this case $F^-$ ion) in the crystal lattice depends on the difference between the radii of the substitutional $RE^{3+}$ ion and the host ion. The larger this difference the more remote the location of the charge compensator would be from the $RE^{3+}$ ion, and hence the lower the symmetry at the site of the impurity ion. Applying this to the case of $Yb^{2+}$ ions in alkali halide crystals, one is tempted to accept the possibility that the compensating positive-ion vacancy may be far removed from the site of the $Yb^{2+}$ ion particularly as the difference between the radii of $Yb^{2+}$ and $Rb^+$ is large (0.54 Å). However the structure of the optical absorption spectra of $Yb^{2+}$ ions in RbX crystals do not in any fundamental way differ from those of $Yb^{2+}$ ions in sodium and potassium halide crystals [6], the host cations of which have radii that do not differ very much from that of $Yb^{2+}$ ions. The temptation is stronger therefore to assign the same site symmetry to $Yb^{2+}$ ions in crystals of all alkali halides studied. An orthorhombic ($C_{2h}$) symmetry is therefore assumed for $Yb^{2+}$ ions in RbX crystals.

The most direct way of testing this assumption would be an electron spin resonance study but incidentally, $Yb^{2+}$ ion is diamagnetic.

Working on the above assumption, group theoretical arguments suggest that the 58 crystal field levels of $4f^{12}5d$ configurations of $Yb^{2+}$ ion in $C_{2h}$ crystal field will be split into 140 levels classified into four symmetry species ($\Gamma_i$, $i = 1, 2, 3, 4$) each of which consists of 35 levels. The ground state $^{1}S_{0}(4f^{12})$ would transform as $\Gamma_1$, the identity representation of $C_{2h}$ point group. Electric dipole transitions are possible from the ground $^{1}S_{0}(\Gamma_1)$ state to each of the $\Gamma_1$, $\Gamma_3$, and $\Gamma_4$ states, giving a total of 105 spectral lines as can be deduced from Table 4.4. But these large numbers of spectral lines (bands) were not observed.
Table 4.4 Reduction of the Direct Product of $\Gamma_i \times \Gamma_j$ ($i, j = 1, 2, 3, 4$) of Irreducible Representation of $C_{2h}$ Point Symmetry Group into the Irreducible representation of the same Point Group **

<table>
<thead>
<tr>
<th>$\Gamma_i$</th>
<th>$\Gamma_1$</th>
<th>$\Gamma_2$</th>
<th>$\Gamma_3$</th>
<th>$\Gamma_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma_1$</td>
<td>$\Gamma_1$</td>
<td>$\Gamma_2$</td>
<td>$\Gamma_3$</td>
<td>$\Gamma_4$</td>
</tr>
<tr>
<td>$\Gamma_2$</td>
<td>$\Gamma_1$</td>
<td>$\Gamma_4$</td>
<td>$\Gamma_3$</td>
<td>$\Gamma_2$</td>
</tr>
<tr>
<td>$\Gamma_3$</td>
<td>$\Gamma_1$</td>
<td>$\Gamma_2$</td>
<td>$\Gamma_3$</td>
<td>$\Gamma_4$</td>
</tr>
<tr>
<td>$\Gamma_4$</td>
<td>$\Gamma_1$</td>
<td>$\Gamma_3$</td>
<td>$\Gamma_2$</td>
<td>$\Gamma_4$</td>
</tr>
</tbody>
</table>

** Only one half of the table is shown since $\Gamma_i \times \Gamma_j = \Gamma_j \times \Gamma_i$. Odd and even parity assignment rules indicated in Table 6.1 also apply here. In $C_{2h}$ symmetry, the electric dipole moment transforms as $\Gamma_{1e}$, $\Gamma_{3e}$ or $\Gamma_{4e}$. So electric dipole transitions from $^1S_0(\Gamma_{1g})$ ground state is possible only to $\Gamma_{1e}$, $\Gamma_{3e}$ or $\Gamma_{4e}$ state.
One explanation for this is that the orthorhombic distortion of the site symmetry of $Yb^{2+}$ in the crystal do produce actual splitting of the lines but that the splittings are so small that they become obscured by the broad spectral envelope of the bands due to octahedral splittings. If this suggestion is correct, one is then surprised at the largely symmetric nature of the observed bands, particularly the low energy bands. It is expected that if the perturbation potential contribution due to the orthorhombic distortions were big enough to cause some splitting, the wave functions should have changed significantly enough to redistribute the transitive intensities among the spectral components of individual bands. Such redistribution of intensities could have produced structured bands. However, the fact that the charge compensating vacancies randomly occupy the 12 inequivalent nearest neighbour cation sites could play some part in neutralising the effect such asymmetric distribution of spectral transition intensities. Consequently what is observed is largely an octahedral optical absorption spectrum.

In view of the argument above and of the fact that there was a significantly satisfactory agreement between the theoretically predicted energy levels and experimentally observed spectra, one is convinced that to a first order, the octahedral approximation is adequate for the systems studied. This approximation has in the past been successfully used for spectra of $Eu^{2+}$ in alkali halides [84-85] and of $Yb^{2+}$ in sodium and potassium halides [6,101].

4.6.5 Additional Remarks

It has already been mentioned that $E1$- and $E2$- bands are associated with photon absorption by $Yb^{2+}$ ions in the crystals. However as has been satisfactorily explained by Bland [6], these bands are not ascribed to $4f^{13}5d$ configuration. Rather, they are thought to arise from electronic transitions to molecular orbitals (MO's) formed from $(4f^{13}6s)$ configuration of $Yb^{2+}$ ions and the $(n + 1)s$, $(n = 3, 4, 5$, for $Cl^-$, $Br^-$, $I^-$ ions respectively) orbitals of halide ions, co-ordinated to the substitutional $Yb^{2+}$ ions. In this model, the $6s$ atomic orbitals are conceived as being much more susceptible to the perturbing influence of the ligand ions than the $4f^{13}$ states which are strongly split by spin-orbit interaction. As a result, whereas the $4f^{13}$
states remain largely unperturbed by the crystalline environment, the 6s atomic orbitals overlap with the unoccupied \((n + 1)s\) orbitals of the ligand ions in a \(\sigma\)-type interaction to form bonding \((\sigma)\) and anti-bonding \((\sigma^*)\) MO's as depicted in Fig 4.14.

As a rule, the \(n^N\) orbitals of either the central or ligand ions in an octahedral environment transform as \(\Gamma_{1g}\), the irreducible representation of the \(O_h\) point group, while the electron orbitals of \(np^N\), and \(d^N\) subshells transform as \(\Gamma_{4e}\), and \(\Gamma_{3g} + \Gamma_{5g}\) respectively. The \(6s(\Gamma_{1g})\) orbitals of \(Yb^{2+}\) ions are more likely to interact with the \((n + 1)s(\Gamma_{1g})\) orbitals of the ligand ions since they are of the same symmetry specie and also closer together in energy terms, than the rest of the ligand orbitals. As a result, a \(\sigma\)-type bonding occurs. In this connection two sets of bonding MO's are expected, namely \(4f^{13}(^5F_{7/2})6s\sigma(\Gamma_{1g})\) and \(4f^{13}(^5F_{5/2})6s\sigma(\Gamma_{1g})\) orbitals, with the latter being located at higher energies.

It is the electronic transitions to these bonding MO's that give rise the E1- and E2- bands. Since this type of interaction is thought of as overlap or mixing of wavefunctions in such a way as to modify the character of the basic eigenstates, it is possible that the selection rules for electronic transition from the ground states of the \(4f^{14}\) configuration of \(Yb^{2+}\) ions become relaxed particularly as the octahedral sites of the ions are distorted. If this is so, the degree of overlap (or mixing) of the wavefunctions will to some extent determine the strength of electronic transition to the admixed orbitals.

The above model reasonably explains the observations made in this study. Firstly electronic transitions to bonding MO's are expected to anion dependent. Implied in this statement is the suggestion that the more covalent the complex, \(YbX_3\), the stronger will be the overall transition strength. Indeed it was found that for any of the bands, say E1-band, the transition intensity relative to A2-band in all the spectra of the systems studied varies in the accordance with the spectro-chemical series of ligand ions \(Cl^- < Br^- < I^-\) This means that the electronic transitions to the more covalent complexes are much more enhanced than in the less covalent complexes. Table 4.5 shows the energy level positions of the E1- and E2- bands both at RT and LNT. E2-band was not observed in \(RbCl : Yb^{3+}\) crystals. The last column gives the separation between E1 and E2 bands measured at LNT. In the
Fig 4.14 A schematic representation of the formation of bonding and antibonding molecular orbitals for Yb$^{2+}$ ions octahedrally co-ordinated to various halogen ions. (after Bland [6])
Table 4.5 Spectral Positions and Relative Transition Intensities of E1- and E2-Bands in the Absorption Spectra of RbX : Yb²⁺ (X = Cl, Br, I) Crystals at RT and LNT. \( V(E_1, E_2) \) is the Separation between E1- and E2-bands at LNT.

<table>
<thead>
<tr>
<th>Crystal</th>
<th>E- Band</th>
<th>E- Band</th>
<th>( V(E_1, E_2) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>Spectral Position (cm⁻¹)</td>
<td>Relative Intensity at LNT</td>
<td>Spectral Position (cm⁻¹)</td>
</tr>
<tr>
<td>RbI</td>
<td>31 496</td>
<td>100</td>
<td>–</td>
</tr>
<tr>
<td>RbBr</td>
<td>30 912</td>
<td>36</td>
<td>41 667</td>
</tr>
<tr>
<td>RbCl</td>
<td>31 056</td>
<td>28</td>
<td>–</td>
</tr>
</tbody>
</table>

RT | LNT | RT | LNT | RT | LNT | (cm⁻¹) |
table, the relative intensities recorded were calculated relative to the A2-band of the relevant spectra. Thus the entry against E1-band for the host crystal RbBr refers to the intensity of that band relative to A2-band of RbBr : Yb2+ spectrum measured at LNT. This makes comparison across spectra easy.

Secondly, the calculated spectral positions of the $^2F_{7/2}$ and $^2F_{5/2}$ energy terms of the $4f^{13}6s$ configuration of Yb2+ ions are comparable to the spectral positions of E1 and E2-bands. In this respect, it can noted that the $J_{i,j}$-coupled states $(^2F_{7/2}, ^2J_2, ^2J_2)$ are located at 35 033 and 34 660 cm$^{-1}$ respectively above the ground state of the $4f^{14}$ configuration while the states $(^2F_{5/2}, ^2J_2, ^2J_2)$ are located respectively at 44 388 and 45 157 cm$^{-1}$ [99]. When compared with spectral locations of the E-bands, one can appreciate the relation between the latter and the free ion energy levels of the $4f^{13}6s$ configuration if about 3000 cm$^{-1}$ is subtracted from free ion level positions. Such depressions in free ion levels as Yb2+ ions enter substitutional lattice sites are attributable to crystal field effects or effects of the co-ordinating environment. More remarkably, the separation between the gravimetric centre of the two high lying doublets and that of the low-lying states is 10 161 cm$^{-1}$ which is comparable to the separation of the E-bands. This strengthens the assignment of the E1-band to the orbital $4f^{13}(^2F_{7/2})6s(\Gamma_1\delta)$ and E-2 band to $4f^{13}(^2F_{5/2})6s(\Gamma_1\delta)$ orbital.

Related to these is the anion dependence of the separation between E1 and E2 bands. As can be seen from Table 4.5, it is greater for RbBr : Yb2+ spectrum than for Rbl : Yb2+ spectrum. However it is difficult to make the comparisons across the RbX : Yb2+ series since that for RbCl : Yb2+ spectrum could not be measured.

It is worth commenting on the bands labelled I in Fig 4.8 and 4.9. The band is also present in the spectrum of RbCl : Yb2+ crystals. In the case of RbCl : Yb2+ system, the I-band is located at 40 816 cm$^{-1}$ (254 nm) while in the case of Rbl : Yb2+ crystals it is located at 35 524 cm$^{-1}$ (281.5 nm). Whereas in the latter system, the I-band is due to an unknown impurity present in the nominally pure crystal of Rbl, its real origin in the former system is not certain. To start with, in the absorption spectrum of the nominally pure crystal of RbCl, there is a broad though weak impurity band at 40 984 cm$^{-1}$ (245.0 nm) at LNT. It may be misleading to
ascribe the I-band to whatever impurity is present in the nominally pure crystal for the following reasons. The I-band in the RbCl : Yb$^{3+}$ spectrum is much more intense than the 244 nm band in the nominally pure crystal of RbCl. The spectra of RbCl : Eu$^{2+}$ and RbCl : Sm$^{3+}$ at LNT were examined to find out whether absorption bands occurred at 244 nm. In the case of RbCl : Eu$^{2+}$ spectrum, the band, if present, would be completely enveloped by the broad structured high energy bond of Eu$^{2+}$ ions in the crystal. However, what can be called a 'blip' at 245 nm was identified. Nevertheless, it is difficult to attach any serious importance to it since no absorption band was found at about 244 nm in the RbCl : Sm$^{3+}$ spectrum. It appears therefore that the 244 nm band in RbCl spectrum is due to an unstable impurity to which the I-band of RbCl : Yb$^{3+}$ may not be directed ascribed. In spite of this, the behaviour of that band under different conditions suggests that it may still be linked with the impurity causing the 244 nm band in nominally pure RbCl crystal. The intensity of the I-band relative to either the A2- or C3- bands in the RbCl : Yb$^{3+}$ spectra at RT and LNT varies from sample to sample. The relative intensity is greater in the spectra of samples that are heavily coloured than in the spectra of those that are lightly coloured. In this respect, attention has to be drawn to the fact that all attempts at obtaining RbCl : Yb$^{3+}$ crystals with acceptable level of concentration of Yb$^{3+}$ ions resulted in crystal samples attaining deep blue colouration. The absorption spectra of such samples consist of a variety of colour centre bands in near-infra red, visible and ultra violet. By a process of thermal bleaching, most of the colour centre bands, except the F-, K- and those close to the absorption edge of the crystal were removed. The remaining colour centre bands were reduced in intensity, including the I-band. It was not possible to bleach the colour centres completely as was done for other crystal systems studied, including RbCl : Sm$^{2+}$. Because of this, it was very difficult to unequivocally establish the identity of the I-band in RbCl : Yb$^{3+}$ spectrum.

The high colourability of RbCl crystals in ytterbium atmosphere and the difficulty of thermally bleaching the colour centres in RbCl : Yb$^{3+}$ crystals suggests the possibility of a reaction between some of the Yb$^{3+}$ ions and the unknown unintentional impurity. Another possibility is an association between the Yb$^{3+}$ ions and the
unknown impurity in RbCl crystals. A common impurity in synthetic single crystals of alkali halides is the hydroxyl (OH\(^-\)) ion. Etzel and Patterson [314] and Etzel [315] have demonstrated conclusively that the colourability and optical properties of synthetic alkali halide crystals are affected (though to varying degrees) by the concentration of OH\(^-\) ions in the crystals. Consequently, some absorption bands in the ultra violet have been ascribed to OH\(^-\) ions in sodium and potassium halide crystals, while some others have been ascribed to \(H^-\)-centres which result from a reaction between the intentionally introduced cation impurities with the OH\(^-\) ions (giving rise to the U-bands).

It is here suggested that the 244.0 nm band in RbCl crystals may be due to OH\(^-\) ions which greatly enhance the colourability of the crystals in ytterbium atmosphere. The difficulty of bleaching the colour centres by a thermal process suggests that the OH\(^-\) ions may be associated with some of the Yb\(^{2+}\) ions in some way, the number being in association, getting reduced by thermal bleaching. This is a possible explanation for the observed reduction in the relative transition intensity of the I-band in RbCl : Yb\(^{2+}\) crystals.

### 4.7 Conclusions

In this study, it has been shown that it is possible to incorporate Yb\(^{2+}\) ions into RbX (X = Cl, Br, I) crystals by heating the crystals in ytterbium atmosphere at elevated temperatures. The broad absorption bands of Yb\(^{2+}\) ions in the crystals are ascribed to electric dipole transitions from the ground state \(1S_0(\Gamma_{\text{sp}})\) of the 4f\(^{14}\) configuration to the 18\(\Gamma_4\) levels of 4f\(^{13}5d\) configuration of the ions in octahedral environment.

Using \(j\)–\(j\)-coupled basis functions for the 4f\(^{13}5d\) configuration, intermediate coupling calculations demonstrate that there is a satisfactory fit between experimental and theoretical spectra of Yb\(^{2+}\) in these crystals by assuming that Yb\(^{2+}\) ions occupy substitional lattice sites of effective octahedral symmetry. However, the Slater–Condon \(F_a\), and \(G_b\) parameters as well as the spin–orbit parameters \(\zeta_{4f}\) and \(\zeta_{5d}\) (through \(\zeta_{4f}\)) needed to obtain satisfactory fit were observed to be less than the free-ion parameter values determined by Bryant [99]. The reduction in these
values is thought to be due to nephelauxetic effects associated with the presence of co-ordinating ligands. This is more so as the nephelauxetic ratios determined for each of the parameters $F_2$, $G_1$ and $\zeta_4$ follow the nephelauxetic series of Schäffer and Jorgensen.

Computer experiments on the evolution of the $\Gamma_{4u}$ levels of the $4f^{13}5d$ configuration of $Yb^{2+}$ ions in octahedral crystal field suggests that the contribution of the electrostatic (direct Coulomb and exchange) interactions to the energy level structure is to spread the energy levels within the confines almost entirely determined by the spin-orbit and crystal field interactions. As the model description of the interaction scheme based on the above result and groups theoretical considerations emphasize, the role of direct Coulomb and exchange interactions is very important in the low and intermediate crystal field ($D_q < 1400 \text{ cm}^{-1}$) regimes.

Quite interesting is the observation that the depression of the centre of gravity of the free ion levels that giving rise to the $\Gamma_{4u}$ levels of $Yb^{2+}$ ions in the rubidium halide series follows a spectro-schemical series ($\text{Cl}^- < \text{Br}^- < \text{I}^-$) of ligand ions. An equally interesting observation is that in the same halide series, the experimentally determined values of $D_q$ follow the above series in reverse direction, namely: $\text{Cl}^- > \text{Br}^- > \text{I}^-$. In addition to the $4f^{13}5d$ absorption bands of $Yb^{2+}$ ions, a pair of bands was observed in the spectra of each of $\text{RbBr : Yb}^{2+}$ and $\text{Rbl : Yb}^{2+}$ crystals and one in $\text{RbCl : Yb}^{2+}$ crystals, which have been ascribed to electronic transitions to bonding molecular orbitals formed by the mixing of the $4f^{13}5s$ wavefunctions and the $(n+1)s$ orbitals of the ligand ions. In fact the observed relative transition intensities of any of the bands pairs depends on the degree of covalency of the host material being larger in more covalent halide hosts than in the more ionic crystals.
Chapter 5

Divalent Samarium Ions in Potassium and Rubidium Halide Crystals

5.1 Introduction

Divalent samarium ions, as has been pointed out, show two distant spectra both in absorption and fluorescence when incorporated into substitutional lattice sites in crystals. The more widely studied of these series consists of weak intense bands which have been attributed to parity-forbidden $4f^6 \rightarrow 4f^6$ transitions Sm$^{2+}$ ions. In free space, the ground manifold of the $4f^6$ configuration is $^7F_J$ ($J = 0, 1, \ldots, 6$), the lowest being the state with $J = 0$. In cubic crystalline environment this ground state is a singlet $\Gamma_{1g}(^7F_0)$ and the next excited state is a triplet $\Gamma_{4e}(^7F_1)$. The rest of the levels of the manifold are however split into several crystal levels.

If however the Sm$^{2+}$ ions occupy substitutional lattice sites with point symmetry lower than octahedral or cubic, as is the case with the application of uniaxial stress on CaF$_2$: Sm$^{2+}$ crystals or with a change compensating cation vacancy in the nearest neighbour or next nearest neighbour position as in the case of KCl : Sm$^{2+}$ system, many more energy levels are observed experimentally [275,64]. The multiplicity of levels is due to further splitting of the crystal field levels at lower symmetry.
It is the parity-allowed electronic transitions from the $^7F_J$ manifold of levels of the $4f^6$ configuration to the first excited $4f^{5}5d$ configuration that give rise to the second series of bands, that is, the strong broad absorption bands observed, in the visible and ultraviolet region, in the spectra of $Sm^{2+}$ ions in crystals. Because of the complexity of the $4f^{5}5d$ configuration, only a single fairly detailed theoretical calculation of the energy levels of $Sm^{2+}$ ions in crystals exists \[104\]. As far as the author knows, up to date, there is no comprehensive theoretical analysis of the free ion spectra of SmIII leading to proper parametrisation of the observed spectra. What exist are estimates of Slater-Condon parameters $S_k(f,d), S_k(f,d), G_k(f,d)$ and spin-orbit parameters $\zeta_{nl}(n = 4,5,l = f,d)$ through interpolation from values of these parameters for other ions. From the foregoing, it is clear that detailed theoretical analysis of the energy levels of the $4f^{5}5d$ configuration of $MeX:Sm^{2+}$ ($Me = K, Rb, X = Cl, Br, I$) systems has not been reported before. In this chapter, therefore, are presented, details of such a calculation, undertaken with the hope of obtaining a theoretical spectrum that reproduces the gross features of the absorption spectra of $MeX:Sm^{2+}$ systems. Outlined in the next section are details of the assumptions and the approximations made in the study.

Reported also are the absorption spectra of $MeX:Sm^{2+}$ crystals. The spectra of $RbBr:Sm^{2+}$ and $RbI:Sm^{2+}$ are reported for the first time. Interestingly, the incorporation of $Sm^{2+}$ ions into the crystals was successfully done through a vapour phase diffusion process. The spectra presented here are so far the only ones reported for alkali halide crystals doped with $Sm^{2+}$ ions using this technique.

### 5.1.1 Assumptions and approximations made in the theoretical calculation

Inevitably, certain assumptions and approximations have to be made in a calculation involving a system as complex as the one under study. Among the assumptions are that the most prominent bands observed in the absorption spectra of $MeX:Sm^{2+}$ crystals are due to electric dipole transitions from the ground state of $Sm^{2+}$ ions in the crystals to $4f^{5}(^6FH)5d$ sub-configuration, and that $LS$ coupling scheme is
valid among states of terms with highest spin multiplicity (i.e. $^6FH$) of the $4f^6$
configuration. The first assumption not only leads to a truncation of the $4f^55d$
configuration so that attention is confined not only to the states derived from the
sextets terms of $4f^5$ configuration but also enables the program of calculation to
ignore states derived from $4f^5(^6P)$ sub-configuration. The neglect of the $^6P$ term in
the calculation is justified on the grounds that the free ion assignment of the states of
$4f^5(^6P)5d$ sub-configuration shows that the lowest of the states is located at 51 160.8
above the ground state of the $4f^6$ configuration [102]. Having noted that, the point
has to be acknowledged that the crystal field interaction may not only lower states
of the sub-configuration thereby making them accessible for observation in the ultra
violet region of the spectra but also cause a mixing of those states with the lower
lying states. Nevertheless, it is hoped that such a sub-configuration mixing would
be minimal. The second assumption makes possible the use of the Yanase-Kasuya
coupling scheme for rare-earth ions in crystal field in the calculation program.

Another of the important approximations is that the electrostatic interaction
between the odd-parity $4f^5d$ and $4f^6d$ configurations could be neglected. The
justification for this comes from the fact that such an interaction is a second-order
effect, being much smaller than crystal field, spin-orbit and direct electrostatic and
exchange interactions which are the principal perturbation interactions that deter-
mine the energy levels of $Sm^{2+}$ ions in the crystals. In addition to this, the inclusion
of configuration interaction will not only increase considerably the size of the energy
matrices but also introduce multiple interaction parameters whose values have to
be determined. Unavoidably the model proposed makes use of 13 energy param-
eters including $F_k(f,d), G_k(f,d), \zeta_{mi}, Dq$ and $B^2_0$ parameters. Increasing
the number of energy parameters in a situation where there are comparatively few
observed absorption bands makes reliable determination of parameter values very
difficult. Practical considerations therefore dictate that configuration interaction
should be included when refinement of the calculation becomes necessary.

Equally important is the approximation based on a model of $Sm^{2+}$ ions occupy-
ing substitutational lattice sites in alkali halide crystals with the site symmetry being
distorted by the presence of an alkali ion vacancy in the $< 110 >$ direction. In this
connection, the octahedral approximation made earlier in respect of $Yb^{2+}$ ions in $\text{RbX : Yb}^{2+}$ crystals is applicable. The orthorhombic distortion is therefore assumed to produce only slight shifts in energy level positions of the $\text{Sm}^{2+}$ ions.

5.2 Matrix elements of interaction Hamiltonians

5.2.1 The states of the $4f^{5}(6FH)5d$ sub-configuration of $\text{Sm}^{2+}$ ions in octahedral crystal field

In free space, the $4f^{5}(6FH)5d$ sub-configuration of $\text{Sm}^{2+}$ ions gives rise to 20 energy multiplets in the $LS$ coupling scheme. These are $^{57}FGHIK$ from $4f^{5}(6H)5d$ sub-configurations, and $^{5}DGH$ from $4f^{5}(6F)5d$ sub-configuration. In all, these give rise to 112 theoretical energy levels.

The situation is different however when the ion situates in crystals. Under such a circumstance, and following Yanase-Kasuya coupling formalism, the 5d electron states are thought to split into crystal states describable in terms of the irreducible representations, $\Gamma_d$, of the symmetry of $H_d$. Thus in octahedral environment, these states are described by the irreducible representations $\Gamma_3$ and $\Gamma_5$ of $O_h$ point group as quantum numbers. The core electron states couple with $\Gamma_3$ and $\Gamma_5$ states giving rise to the final crystal states denoted by the irreducible representations $\Gamma_i$ ($i = 1, 2, \ldots, 5$) of $O_h$ point group. Group theory predicts that of the 450 crystal levels derived from the sub-configuration under study, 45 each transform as $\Gamma_{1u}$ and $\Gamma_{2u}$, 90 as $\Gamma_{3u}$ and 135 each as $\Gamma_{4u}$ and $\Gamma_{5u}$ functions. To arrive at this, use was made of the definition of the basis functions as in expression 2.9 as well as Table 3 in reference [318] and Table 4.1 of this work.

In the Yanase-Kasuya coupling scheme and by the definition 2.9, it is easy to derive the values of the quantum numbers as follows: $S_2 (= S_1 + s)$ takes values 2 or 3 since $S_1 = 5/2$ for the sub-configuration terms. $L_1$ could take values 3 or 5. Therefore, for final crystal functions transforming according to the irreducible representations $\Gamma_i$ of $O_h$ there can be described 8 groups of basis functions categorised as...
In all cases $\Gamma_d = \Gamma_3, \Gamma_5$.

The assumption that only electric dipole transitions from the ground state $\Gamma_{1g}$ are permitted reduces the size of the energy matrices from 450 to 135 since such transitions can only terminate at the $135\Gamma_{4e}$ levels.

5.2.2 Calculation of matrix elements of electrostatic Hamiltonian $H_{el}(f, f)$

The matrix elements of the electrostatic interaction Hamiltonian between the 4$f^8$ core configuration were obtained from tables by Nielson and Koster [196] and checked with that from Wybourne [173]. The term energies are given as in Equation (2.5).

Hence

\[ E^{[0]} = 10E^0 \]  
\[ E^{[3]} = -15F_3(f, f) - 18F_4(f, f) + 27F_6(f, f) \]  

The $10E^0$ is common to all energy terms of the 4$f^{10}$ configuration and makes no contribution to the structure of the configuration. As a result, it is dropped from the calculation. $E^3$ has been expressed in terms of $F_n(f, f)$ by Racah [95]. Using the inter-conversion expressions, the term energies can be written as

\[ E^{[0]} = 0 \]  
\[ E^{[3]} = -15F_3(f, f) - 18F_4(f, f) + 27F_6(f, f) \]
5.2.3 Matrix elements of electrostatic interaction Hamiltonian

\( H_{el}(f, d) \)

The effective Hamiltonian for direct Coulomb and exchange interaction defined by Eqn (2.2) can be rewritten for the case of \( 4f^5 5d \) configuration of \( Sm^{2+} \) ions as

\[
H_{el}(f, d) = \sum_k [O^{f^k}(f, d)P_k(4f, 5d) + O^{g^k}(f, d)G_k(4f, 5d)]
\]

where

\[
O^{f^k}(f, d) = D_k O_{f^k}(f, d)
\]

\[
O^{g^k}(f, d) = D_k O_{g^k}(f, d)
\]

are the effective operators. The operators \( O_{f^k} \) and \( O_{g^k} \) are defined by Eqns (2.3) and (2.4) and \( D_k \) values by Condon and Shortley [30] for \( fd \) configuration. In particular

\[
O^{f^2}(f, d) = 70\sqrt{6}U_{1}^{(2)}u_{d}^{(2)}
\]

\[
O^{f^4}(f, d) = 126\sqrt{55}U_{1}^{(4)}u_{d}^{(4)}
\]

\[
O^{g^k}(f, d) = -\frac{1}{2}D_k \sum_{r=0}^{4} [Y_r U_{1}^{(r)} u_{d}^{(r)} + Z_r V_{1}^{(r)} v_{d}^{(r)}]
\]

where \( Y_r \) and \( Z_r \) are coefficients. If the matrix elements of the scalar operator \( U_{1}^{(r)}u_{d}^{(r)} \) between the basis functions (7.1) are denoted as \( Q_r \), and those of \( V_{1}^{(r)}v_{d}^{(r)} \) as \( Q_{1r} \). The coefficients of \( G_k \) in the energy matrices can be written as

\[
g^k(f, d) = -\frac{1}{2} \sum_{r=0}^{4} [Y_{1r} Q_r + Z_{1r} Q_{1r}]
\]

with the coefficients \( Y_{1r} = D_k Y_r, Z_{1r} = D_k Z_r \) are shown in Table 5.1. The last row in the table headed by index \( m_r \) gives the multiplicative constants with which each element of each column has to be multiplied to get the actual \( Y_{1r} \) and \( Z_{1r} \) coefficients. Entries in this and subsequent tables are read as follows: each negative entry is preceded by a minus sign. All numbers (or factors) enclosed in parenthesis ( ) should have their square root taken. Thus \( Y_{33} = -77\sqrt{15} \) while \( Z_{31} = 36\sqrt{70} \).

In order to calculate \( Q_r \) and \( Q_{1r} \), the methods of reference [75] were used. Values of the reduced matrix elements, RME, \( (\psi_1 || U_{1}^{(r)} || \psi_1) \) were obtained from tables by
Table 5.2  Table of Coefficients $Y_{kr}$ and $Z_{kr}$

<table>
<thead>
<tr>
<th></th>
<th>$D_k Y_r = Y_{kr}$</th>
<th>$D_k Z_r = Z_{kr}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2  6  3  1</td>
<td>4  8  24  12  4</td>
</tr>
<tr>
<td>3</td>
<td>3 -11 -8 4</td>
<td>16 12 -44 -32 16</td>
</tr>
<tr>
<td>5</td>
<td>-33 55 -11 1</td>
<td>88 -132 220 -44 4</td>
</tr>
<tr>
<td>$m_r$</td>
<td>3(70) 5(6) 7(15) 9(55)</td>
<td>3(35) 3(70) 5(6) 7(15) 9(55)</td>
</tr>
</tbody>
</table>
Table 5.2  Reduced Matrix Elements of Unit Tensor Operator $U^{(r)}$ Between Coupled States

of $f \{FH\}$ Sub_configuration **

<table>
<thead>
<tr>
<th>Tensor Operators $U$</th>
<th>$U$</th>
<th>$U$</th>
<th>$U$</th>
<th>$U$</th>
<th>$U$</th>
<th>$U$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupled States $S \ L$</td>
<td>$(1)$</td>
<td>$(2)$</td>
<td>$(3)$</td>
<td>$(4)$</td>
<td>$(5)$</td>
<td>$(6)$</td>
</tr>
<tr>
<td>$1 \ 1$</td>
<td>$\frac{1}{3}$</td>
<td>$-1$</td>
<td>$\frac{1}{3}$</td>
<td>$1$</td>
<td>$\frac{1}{3}$</td>
<td></td>
</tr>
<tr>
<td>$3 \ 3$</td>
<td>$0$</td>
<td>$-\frac{1}{21}$</td>
<td>$\frac{1}{7}$</td>
<td>$-\frac{1}{21}$</td>
<td>$0$</td>
<td>$\frac{1}{3}$</td>
</tr>
<tr>
<td>$1 \ 1$</td>
<td>$\frac{1}{14}$</td>
<td>$-\frac{1}{42}$</td>
<td>$0$</td>
<td>$\frac{1}{21}$</td>
<td>$-\frac{1}{7}$</td>
<td>$\frac{1}{21}$</td>
</tr>
<tr>
<td>$3 \ 3$</td>
<td>$\frac{1}{14}$</td>
<td>$-\frac{1}{42}$</td>
<td>$0$</td>
<td>$\frac{1}{21}$</td>
<td>$-\frac{1}{7}$</td>
<td>$\frac{1}{21}$</td>
</tr>
</tbody>
</table>

** After Nielsen and Koster (196). Only upper triangle of the $U^{(r)}$ matrix is given above for reflected cases, values are the same both in magnitude and sign.
Nielson and Koster's tables [196]. In available literature, no tables of the RME's $\langle \psi_i | V^{(1r)} | \psi_f \rangle$ seem to exist for $N = 5, l = 3, r = 2, 3, 4$. Using Eqn (2.101) in reference [1], therefore, the RME of $V^{(1r)}$ between basis functions characterised by the quantum numbers $S_1 = 5/2, L_1, L_2 = 3, 5$ were calculated. The coefficients of fractional parentage (cfp) used in these calculations were obtained from the tables of Nielson and Koster [196]. Results of the calculation are shown in Table 5.3.

Inevitably, the $W[ ]$ block coefficients involved in the calculation of $Q_r$ and $Q_{1r}$ were calculated using integer arithmetic and stored in the computer. Their calculation involves vector coupling coefficients $(\Gamma_i \gamma_i \Gamma_j \gamma_j)^{(a)} \Gamma_k \gamma_k$, $i, j = 1, 2, ..., 5$ and the transformation coefficients $< J_2 M_2 | \Gamma_i \gamma_i >$ and $< \text{Im} | \Gamma_i \gamma_i >$. The former were obtained from tables by Griffith [215] while the latter set from tables by Leushin [214]. As earlier noted in Chapter 4, the 3-j symbols were obtained using a library of computer subroutines. In all, there are three main categories of $W[ ]$ coefficients corresponding to

$$W[d(\Gamma_2) J_2, d(\Gamma_3) J_4 : \alpha \beta \Gamma_4 r] \quad r = 0, 1, ..., 4, J_2, J_4 = 1, 2, ..., 8$$
$$W[d(\Gamma_3) J_2, d(\Gamma_3) J_4 : \alpha \beta \Gamma_4 r] \quad r = 1, ..., 4, J_2, J_4 = 1, 2, ..., 8$$
$$W[d(\Gamma_3) J_2, d(\Gamma_3) J_4 : \alpha \beta \Gamma_4 r] \quad r = 0, 1, ..., 4, J_2, J_4 = 1, 2, ..., 8 \quad (5.8)$$

Each of the first and last categories consists of five different tables while the remaining category contains four. These tables are presented in a separate cover because of their bulk. Eventually five energy matrices respectively expressed in terms of $F_k (k = 2, 4)$ and $G_k (k = 1, 3, 5)$ resulted and were stored in the computer.

5.2.4 Matrix elements of spin–orbit interaction Hamiltonians

In order to obtain the matrix elements of $H_{so}(f)$ and $H_{so}(d)$, the procedures of reference [75] were also closely followed. In the case of the matrix elements of $H_{so}(d)$, the $S[ ]$ block coefficients had to be calculated. Note has to be taken, however, that the spin orbitals are characterised by half-integral $J_2$-values in the range $\frac{1}{2} - \frac{1}{2}$. By implication, $\Gamma_{J_2}$ are the doubly-valued irreducible representations $\Gamma_j (j = 6, 7, 8)$ of the octahedral double group. Whereas the transformation coefficients $< J_1 M_1 | \Delta J_2, \gamma_{J_2} >$ were obtained from tables by Leushin [214], the vector
Table 5.6

Reduced Matrix Elements of Double Tensor Operator V (lr) Between Coupled States

of f (fn) Sub_configuration *

<table>
<thead>
<tr>
<th>Double Tensor Operators</th>
<th>V (10)</th>
<th>V (11)</th>
<th>V (12)</th>
<th>V (13)</th>
<th>V (14)</th>
<th>V (15)</th>
<th>V (16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupled States</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 F 6</td>
<td>1(210)</td>
<td>1(210)</td>
<td>1(210)</td>
<td>-1(210)</td>
<td>1(210)</td>
<td>1(210)</td>
<td>1(210)</td>
</tr>
<tr>
<td>6 F 6</td>
<td>0</td>
<td>0</td>
<td>-1(330)</td>
<td>1(330)</td>
<td>-32(78)</td>
<td>2(78)</td>
<td>13(15)</td>
</tr>
<tr>
<td>6 F 6</td>
<td>1(330)</td>
<td>1(330)</td>
<td>1(2145)</td>
<td>0</td>
<td>1(390)</td>
<td>-1(390)</td>
<td>53(102)</td>
</tr>
</tbody>
</table>

* Only upper triangle of V (lr) matrix is given above. Reflected elements of lower triangle are equal to corresponding elements in the upper triangle.
coupling coefficients \( < \Gamma_f \gamma \mid \Gamma_i \gamma \rangle \) are not available in the same quantisation scheme adopted in this study. Accordingly, they were calculated using the isomorphic correspondence between crystal wave functions characterised by \( \Gamma_j \) and spherical harmonics.

The principle of isomorphism used here rests on the premise that crystal wave functions characterised by the irreducible representation \( \Gamma \) of the point group symmetry of the crystal field Hamiltonian can be connected on one to one basis to wave functions (expressible in spherical harmonics) of the ions in free space. As Abragam and Pryce [317] point out, in \( O_h \) point symmetry \( \Gamma_4 \) functions are \( p \)-like since they behave like the \( p^N \) functions of the free ion or atom. Implied in the above statement is the correspondence between the components of \( \Gamma_4 \) functions to the components of the orbital angular momentum \( l \). It was Dixon [316] who first drew attention of the author to the possible use of the isomorphic principle to connect the doubly-valued functions \( \Gamma_6 \) and \( \Gamma_7 \) to spherical harmonic functions of half integral order. Details of how this was achieved, the calculation of the vector coupling coefficients and the resulting tables are presented in Appendix A.

The resulting \( S[ \] block coefficients were grouped into three main categories, namely:

\[
S(\Gamma_7 \gamma \Gamma_6 \gamma \Gamma_4 \gamma \Gamma_4 \gamma) \quad J_1 = \frac{1}{2}, \frac{3}{2}, ..., \frac{15}{2} \\
S(\Gamma_6 \gamma \Gamma_6 \gamma \Gamma_6 \gamma \Gamma_4 \gamma) \quad J_1 = \frac{1}{2}, \frac{3}{2}, ..., \frac{15}{2} \\
S(\Gamma_5 \gamma \Gamma_7 \gamma \Gamma_4 \gamma \Gamma_4 \gamma) \quad J_1 = \frac{1}{2}, \frac{3}{2}, ..., \frac{15}{2} \\
\]

(5.9)

In all cases, \( J_2 = 1, 2, ..., 8 \). Making use of an equation analogous to Eqn (30) of reference [78], and the \( S[ \] block coefficients, the matrix elements of \( H_{cr}(d) \) were calculated.

### 5.2.5 Matrix elements of crystal field interaction Hamiltonians \( H_{cr}(d) \) and \( H_{cr}(f) \)

In the Yanase-Kasuya coupling scheme, the matrix elements of \( H_{cr}(d) \) are not only independent of the quantum numbers \( L_1, L_2, L_3, J_2 \) and \( J_4 \) but also diagonal
in \( \Gamma_d \). The matrix elements of \( H_{\sigma}(d) \) between the basis functions (5.1) reduce to

\[
< \Gamma_3 | H_{\sigma}(d) | \Gamma_2 > = 6D_q \\
< \Gamma_3 | H_{\sigma}(d) | \Gamma_0 > = -4D_q
\]

(5.10)

in the case of Sm\(^{2+}\) ions in octahedral crystal field. For cubic crystal field (with 8-fold co-ordinated ligand ions) the signs in the equations above are reversed.

In octahedral or cubic crystal fields \( H_{\sigma}(f) \) can be partitioned into two effective operators \( \Theta_{\Gamma_1}^{(k)} \) \((k = 4, 6)\). The matrix elements of these operators between the basis functions (5.1) involve the \( X[ ] \) block coefficients. Whereas the transformation coefficients, \( \langle kq | \Gamma_1 \sigma_1 \rangle \), appearing in the definition of \( X[ ] \) block coefficients were obtained from Eqns (2.6) and (2.7), the rest of the coefficients were obtained from sources cited as for \( W[ ] \) and \( S[ ] \) block coefficients. Two classes of \( X[ ] \) block coefficients, each consisting of two tables, result. They include

\[
X[J_2J_4(\Gamma_3) : k\gamma \Gamma_1 \mathfrak{r} \Gamma_4] , \ k = 4, 6 \\
X[J_2J_4(\Gamma_3) : k\gamma \Gamma_1 \mathfrak{r} \Gamma_4] , \ k = 4, 6
\]

(5.11)

In each case \( J_2, J_4 = 1, 2, ..., 8 \). The coefficients were stored in the computer from where they were later accessed.

It was possible, therefore, to construct two matrices, one each in terms of \( B^0_\gamma \) parameters \((k = 4, 6)\) which were then stored in the computer.

5.3 Theoretical energy levels

5.3.1 Relative transition intensities

In order to calculate the relative transition intensities of the spectral bands, it is important to look closely at the electric dipole selection rule for transition between the terminal eigenstates in the Yanase-Kasuya coupling scheme. The wavefunctions describing the eigenstates of the ground manifold of the \( 4f^{N+1} \) configuration can then be written as

\[
| 4f^{N+1}(S_y L_y)J_y \Gamma_\mu > = \sum_{M_y = -J_y}^{J_y} (J_y M_y \Gamma_\mu) | 4f^{N+1}(S_y L_y)J_y M_y > \]

(5.12)
while the perturbed eigenstates of the \(4f^N5d\) configuration in crystal environment have as wavefunctions, the linear combinations of the basis functions defined in expression (2.9). However, Yanase [104] and Asano [75] have shown that the matrix element of the electric dipole moment between an eigenstate of the ground manifold and an eigenstate of an excited configuration is given

\[
\langle 4f^{N+1}(S_g L_g)J_g | (-e \sum_{i=1}^{N+1} (x_i \eta_i) | 4f^N((S_1 L_1)J_2, \Gamma_f.) \gamma \Gamma\rangle \\
= \delta(S_g, S_f)(-e)(4f\|5d)(L_g, J_g)3^{1/2}N^{3/2}(f^{N+1}S_g L_g)(4f^N(S_1 L_1)f S_g L_g) \\
\times (-1)^{S_g+J_g+L_g+J_f} \begin{pmatrix} J_2 & J_g \\ S_g & L_g \end{pmatrix} \\
\times \sum_{M_2 m_f m_f} (-1)^{J_2+M_g+m_f} \begin{pmatrix} J_2 & 3 & J_g \\ M_2 & m_f & -M_g \end{pmatrix} \begin{pmatrix} 2 & 1 & 3 \\ m_f & \eta & -m_f \end{pmatrix} \\
\times \langle \Gamma_f J_2 M_2 | \gamma \Gamma \rangle \langle J_g M_g | \gamma \Gamma \rangle \tag{5.13}
\]

where

\[
\langle \Gamma_f J_2 M_2 | \gamma \Gamma \rangle = \sum_{\gamma_f \gamma_f} \langle \Gamma_f \gamma_f | \gamma \Gamma \rangle \langle J_2 M_2 | \gamma_2 \gamma_2 \rangle \\
\times \langle \Gamma_2 \gamma_2 | \gamma \Gamma \rangle \tag{5.14}
\]

\(\eta = 0, \pm 1\) is the component of light polarization and

\[
(x_{\pm 1})_i = \frac{1}{\sqrt{2}} (x_i \pm iy_i) \\
(x_0)_i = z_i
\]

\((x_i, y_i, z_i)\) being the cartesian co-ordinates of the \(i^{th}\) electron. The sixth factor to the right of Eqn (5.13) is the coefficient of fractional parentage and the RME

\[
\langle 4f\|r\|5d = \langle 3\|C^{(1)}\|2 \rangle \int_0^\infty \langle R_{4f}(r) | R_{5d}(r) \rangle r^3 dr
\]

is the radial part of the transition matrix element.

For Eqn (5.13) not to vanish, the inequalities

\[
|J_2 - J_g| \leq 3 \leq J_2 + J_g \tag{5.15}
\]

must be satisfied as can be deduced from the triangular condition on the 6-j symbol [104]. Since the ground state of \(Sm^{2+} (4f^N)\) ions is characterised by \(J_g = 0\),
electronic transitions from the ground state are permitted only to states with \( J_\| = 3 \). Additionally, the selection rule \( \Delta S = 0 \) is implied in the delta function in Eqn (5.13). Using these selection rules, the relative transition intensities for the spectral lines were calculated as outlined below.

Electric dipole transitions take place to eigenstates admixed to the functions

\[
|((S_\|)3, L_\|)3, \Gamma_d, \Gamma_47) , L_\| = 3, 5, \Gamma_d = \Gamma_3, \Gamma_5
\]

The transition probability for any level is not only proportional to the square of the coefficient appearing in the linear combination of admixed functions but also to the square of the matrix elements of the electric dipole moment. The admixed coefficients are obtained from the calculated system of eigenvectors of the composite matrix. For each of the admixed basis functions noted above, a composition factor \( \chi_{T_e} \) was determined using Eqn (5.13). These factors are shown in Table 5.4. It is possible therefore to obtain the product \( 50\chi_{T_e} \) which gives the amount of the basis functions characterised by \( J = 3, S = 3 \) admixed with a given eigenstate. The relative transition intensity for a given level then is the number \( (50\chi_{T_e})^2 \) as was done in the study of \( \text{RbX}:Yb^{2+} \) systems.

5.3.2 Main features of theoretical energy spectrum

A procedure analogous to that described in section 4.3.3 was adopted in calculating the energy levels of \( \text{Sm}^{2+} \) ions in octahedral and cubic crystal fields. Because up to date, no consistent estimates of the set of parameters \( F_\| (f,d), G_\| (f,d), \zeta_{sd} \) and \( \zeta_{sd} \) exist, their values were interpolated from those of seven doubly ionised rare earth metals obtained from various sources. Table 5.5 indicates the seven ions their free-ion parameters, and the sources from which they were obtained. Graphs from which the estimates of the parameter values for \( \text{Sm}^{2+} \) ions were interpolated are shown in Figs A.1 - A.6 in Appendix A. In those graphs, the Slater-Condon and spin–orbit parameters for six divalent rare–earth ions in free space were plotted against the number of optically active electrons, \( N \), in the core sub–configuration, \( 4f^N \). Since for \( \text{Sm}^{2+} N = 5 \), it was an easy matter to estimate the values of these parameters for the ion through interpolation from the graphs.
Table 5.4 Composition Factors $\chi_{\Gamma_4}$ for the States $|(3, \frac{3}{2})3, L_1, \Gamma_4, \Gamma_{6m}|$.

$L_1 = 3, 5; \Gamma_4 = \Gamma_3, \Gamma_5$.

<table>
<thead>
<tr>
<th>Geneology of Eigenstate</th>
<th>Composition factor $\chi_{\Gamma_4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4f– Electron Sub-space $(L_1 = 3, 5)$</td>
<td>5d– Electron Sub-space $\alpha_2$</td>
</tr>
<tr>
<td>$\Gamma_4$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>$\Gamma_3$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

$6^P$

| $6^H$ | 1 | 0.3214851 |
| 2 | 0.2516096 |
| 3 | 0.4546628 |
| $\Gamma_3$ | 1 | 0.431331 |
| | 2 | 0.2273312 |
Table 5.5: Free Ion Parameter Values for 4f-5d Configuration of some Divalent Rare Earth Ions. Values are in cm\(^{-1}\).

<table>
<thead>
<tr>
<th>Free Ion N</th>
<th>F (f,d) (k)</th>
<th>G (f,d) (k)</th>
<th>(\epsilon_{G})</th>
<th>(\epsilon_{d})</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce(^{2+})</td>
<td>1 185.0 22.7</td>
<td>303.4 34.8 4.50</td>
<td>637.0 656.0</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Pr(^{2+})</td>
<td>2 182.0 21.4</td>
<td>283.0 32.6 4.35</td>
<td>767.0 734.0</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Eu(^{2+})</td>
<td>6 182.2 17.7</td>
<td>222.3 24.4 4.61</td>
<td>1181.0 898.0</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Tb(^{2+})</td>
<td>8 193.0 17.1</td>
<td>171.6 22.9 3.20</td>
<td>1549.0 1033.0</td>
<td>327</td>
<td></td>
</tr>
<tr>
<td>Er(^{2+})</td>
<td>11 195.4 20.1</td>
<td>213.1 25.9 3.43</td>
<td>2383.0 1089.8</td>
<td>328</td>
<td></td>
</tr>
<tr>
<td>Tm(^{2+})</td>
<td>12 195.0 18.6</td>
<td>216.5 31.5 5.27</td>
<td>2639.4 1131.0</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Yb(^{2+})</td>
<td>13 186.8 14.4</td>
<td>193.2 24.6 4.11</td>
<td>1950.2 1211.0</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Sm(^{2+})</td>
<td>5 181.6 18.3</td>
<td>236.0 26.3 3.73</td>
<td>1060.0 860.0</td>
<td>* *</td>
<td></td>
</tr>
</tbody>
</table>

** Estimates obtained
However direct Slater-Condon integrals $F_{ij}(s,t)$ for the $4f^5$ configuration of $Sm^{2+}$ ions were obtained from Wybourne [1]. They are $F_{2} = 370.0$ cm$^{-1}$, $F_{4} = 51.08$ cm$^{-1}$, $F_{6} = 5.591$ cm$^{-1}$. Approximations similar to those leading to Eqn 4.9 give the ratio $(B'^{2}/B'^{2})_{obs}$ as 0.25. Consequently

$$\left( \frac{B'^{2}}{B'^{2}} \right)_{obs} = 0.094$$

Eqn (4.11) was used to connect $Dq$ and $B'^{2}$ parameters.

By varying $Dq$ over a large range of values while keeping the other energy parameters constant at their estimated free-ion values, it was possible to study the evolution of the $\Gamma_{4u}$ energy levels of $4f^5(\text{d}^5_{FH})5d$ sub-configuration of $Sm^{2+}$ ions. Fig 5.1 shows that the energy levels are very closely spaced and that at any of the two extremes of the theoretical spectrum, the levels are parallel even at low $Dq$ values ($Dq < 600$ cm$^{-1}$). At $Dq$ values of about 1600 cm$^{-1}$ two groups of parallel levels emerge, each group diverging from the other. Evidently, the energy levels at such high $Dq$ regime appear to be predominantly determined by the crystal field. The quantity $\delta_{4u}$ is about $-3.98 \pm 0.01$ for the lower group of parallel levels and $5.97 \pm 0.01$ for the upper group. These values compare favourably with the expected values of $-4$ and $+6$ respectively.

More information could have been obtained from Fig 5.1 if the distribution of relative transition intensities among the energy levels were indicated. Because of this, the figure was divided into eight units based on the following procedure. Although each of the energy levels for a given $Dq$, value is described by a wavefunction which is a linear combination of basis functions such as given in Eqn (5.1), the classification of the levels is based on the groupings indicated therein. Thus eight groups of energy levels emerge since for each of the four groups of functions, there are two subgroups corresponding to $\Gamma_{d} = \Gamma_{4}, \Gamma_{5}$. For ease of identification, therefore, the groups of energy levels are labelled 1 to 8, starting with the lowest group. Figs 5.3(a)–5.3(h) show these groups of energy levels for the octahedral crystal field. In all the figures, the numbers indicated the relative transition intensities for the levels indicated.

An inspection of these figures indicates that at any $Dq$ value, four sets of 'clustered' levels characterised by high relative transition intensities can be observed. As
Fig 5.1 Variation of $\Gamma_{4s}$ energy levels of $Sm^{2+}$ ions with $Dq$ in octahedral crystal field. $F_2$, $F_4$, $G_1$, $G_3$, $G_5$, $\zeta_f$ and $\zeta_d$ are set at estimated free ion values.
PAGINATION ERROR
Fig 5.3(a) Variation of Group 1 of $E_{4u}$ energy levels of $Sm^{2+}$ ions with $D_q$ in octahedral crystal field. $F_2, F_4, G_1, G_3, G_5, \zeta_a, \zeta_d$ are set at estimated free ion values.
Fig 5.3(b) Variation of Group 2 of $\Gamma_4$ energy levels of $Sm^{2+}$ ions with $D_q$ in octahedral crystal field. $F_2$, $F_4$, $G_1$, $G_3$, $G_5$, $\zeta_f$, and $\zeta_d$ are set at estimated free ion values.
Fig 5.3(c) Variation of Group 3 of $\Gamma_{4w}$ energy levels of $Sm^{2+}$ ions with $Dq$ in octahedral crystal field. $F_2, F_4, G_1, G_3, G_5, C_{4f}$ and $C_{4d}$ are set at estimated free ion values.
Fig 5.3(d) Variation of Group 4 of $\Gamma_{4s}$ energy levels of $Sm^{2+}$ ions with $Dq$ in octahedral crystal field. $F_3$, $F_4$, $G_1$, $G_2$, $G_3$, $\zeta_f$, and $\zeta_d$ are set at estimated free ion values.
Fig 5.3(e) Variation of Group 5 of \( \Gamma_{4u} \) energy levels of \( Sm^{2+} \) ions with \( D_q \) in octahedral crystal field. \( F_2, F_4, G_1, G_3, G_5, G_7 \) and \( G_9 \) are set at estimated free ion values.
Fig 5.3(f) Variation of Group 6 of $I_{6b}$ energy levels of $Sm^{2+}$ ions with $D_q$ in octahedral crystal field. $F_2, F_4, G_3, G_5, \zeta_1, \zeta_4$, and $\zeta_6$ are set at estimated free ion values.
Fig 5.3(g) Variation of Group 7 of $T_{4u}$ energy levels of $Sm^{2+}$ ions with $D_q$ in octahedral crystal field. $F_2, F_4, G_3, G_5, \zeta_4$, and $\zeta_6$ are set at estimated free ion values.
Fig 5.3(h) Variation of Group 8 of $\Gamma_4$ energy levels of $Sm^{3+}$ ions with $Dq$ in octahedral crystal field. $F_2$, $F_4$, $G_1$, $G_3$, $G_4$, $\zeta_f$, and $\zeta_m$ are set at estimated free ion values.
an illustration, at intermediate crystal fields (800 < \(D_q\) < 1400 cm\(^{-1}\)) the first three sets are located in groups 1–3 of energy levels (vide Figs 5.3(a)–5.3(c)). At \(D_q = 1300\) cm\(^{-1}\), part of the third set is located among group 4 energy levels. The fourth set of levels of high transition intensities are found partly in group 5 and partly in group 6 at \(D_q = 900\) cm\(^{-1}\) but in group 6 at \(D_q = 1300\) cm\(^{-1}\). Clearly indicated in these figures is the redistribution of transition intensities with changes in \(D_q\). Remarkably, the redistribution appears to be in form of shifts in the upper clusters to higher energies as \(D_q\) increases with little spreading of intensities among the energy levels.

Obviously, the clustering of energy levels with high relative transition intensities into four sets indicates that if an optical absorption spectrum of \(Sm^{2+}\) in an octahedral environment were measured, four groups of energy bands are expected. As a result of the small separations of some of the energy levels, some of the observable levels would overlap giving rise to broad structured absorption bands. In fact, throughout the entire range of \(D_q\) values, the four classes of bands would be evident. What is different though are the relative positions and separations of the hypothetical bands. For example, at \(D_q = 500\) cm\(^{-1}\) (low \(D_q\) regime), the strongest of the lowest energy levels is separated from the strongest of the third set of energy levels of high transition intensities by about 7300 cm\(^{-1}\) while at \(D_q = 900\) cm\(^{-1}\) (intermediate \(D_q\) regime) the separation is about 10 000 cm\(^{-1}\). At \(D_q = 1300\) cm\(^{-1}\), this separation is about 13 250 cm\(^{-1}\). However at intermediate and high \(D_q\) regimes, the separation between the strongest of the lowest group of energy levels and the centre of the second set of ‘clustered’ levels with high relative transition intensities is fairly constant at about 7500 cm\(^{-1}\).

From this point, the sets of ‘clustered’ energy levels of high relative transition intensities shall be designated as \(A', B', C'\) and \(D'\) sets of energy levels in order of increasing energy. Continuing with the description of the characteristics of the theoretical spectrum, an interesting feature that can be observed throughout the entire range of \(D_q\) values is the considerable concentration of relative transition intensity in the \(A'\) group of bands. Indications are that in the hypothetical absorption spectrum of \(Sm^{2+}\) ions in octahedral crystal field, at least two distinctively separate
5.4 Absorption Spectra of $Sm^{2+}$ ions in potassium and rubidium halide crystals

The absorption spectra of $Sm^{2+}$ ions in rubidium bromide crystals at room and liquid nitrogen temperatures are shown in Fig. 5.4. Full line shows the spectrum recorded at LNT while broken line shows RT spectrum. Fig. 5.5 on the other hand shows the second derivative spectrum of the same crystals. The absorption spectra as well as the second derivative spectra of $Sm^{2+}$ ions in potassium and rubidium chloride and iodide and in potassium bromide resemble very closely those shown in Figs 5.4 and 5.5. An inspection of the absorption spectra indicates that they consist of intense broad bands located in the visible and ultra-violet. Even at RT, six groups of bands are identifiable for chloride and bromide host crystals while for the iodides, the resolution of the second RT band into two clear bands at LNT makes the similarity between the spectra very clear. The term group of bands is used deliberately because the B, C, D and G bands, which are structured, can be decomposed into component bands. Hence the labels $B_1, B_2, ..., D_1, D_2, ...$. By measuring the second derivative spectra of the crystals, it was possible to locate the positions of the component bands. The RT spectra resemble very closely those (also recorded at RT) of $KX : Sm^{2+}$ ($X = Cl, Br, I$) systems obtained by Karapetyan et al [317] and of $KCl : Sm^{2+}, KBr : Sm^{2+}$ and $RbCl : Sm^{2+}$ systems obtained by Johnson and Sandoe [80].

As can be seen from Fig 5.4, the absorption bands sharpen considerably and the groupings of the bands become more evident when the crystals are cooled to LNT. The resolution of the fine structure of the bands permit a convenient labeling procedure which consists in attaching a number to alphabets A, B, C, D, G, E to identify prominent peaks or sufficiently resolved shoulders of the bands. One remarkable observation is that in both the potassium and rubidium halide series, the low temperature fine structure of the high energy bands (particularly the C
Fig 5.4 Optical absorption spectrum of Sm$^{2+}$ ions in RbBr crystals at room and liquid nitrogen temperatures.
Fig 5.5 Second derivative (absorption) spectrum of $Sm^{2+}$ ions in RbBr crystals at liquid nitrogen temperature.
and D-bands become more pronounced in the progression from chlorides through bromides to iodides. In general, A-bands are located in the spectral region 14 706 cm⁻¹ (640 nm) to 20 833 cm⁻¹ (480 nm) while the B-bands commence at about 21 739 cm⁻¹ (480 nm) and terminate at about 26 316 cm⁻¹ (380 nm). The rest of the bands in the spectra lie in the ultra violet.

Apart from the narrowing of the width of the various bands in each of the spectra as a consequence of cooling the crystal, other interesting behaviours were observed. On cooling the crystals to LNT from RT, the spectral positions of the A- and B-bands shift to lower energies (longer wavelengths) whereas C and D bands in general shift to higher energies (shorter wavelengths).

Another aspect of the displacement behaviour of the spectral positions relates to the relative sensitivity of the A-bands to temperature change. Clearly indicated in Figs 5.5 is the fact that A1-bands undergo a greater spectral displacement than A2-bands as the crystals cool, which leads to a net increase in the separation of the two bands. Although temperature induced shifts of the spectral positions of the G1-band is only slight for the chlorides and bromides, they are more substantial for the iodides. The shifts are towards lower energies as the crystal is cooled from RT to LNT.

In each spectrum of the entire series, the intensity of a given band, say A1, relative to another, say B1 remains fairly the same throughout, with C2- and/or C4-bands being always the strongest. A striking feature is that at RT, band A2 is slightly more intense than band A1 but at LNT, the reverse is the case. All these observations are summarised in Tables 5.6(a) and 5.6(b) for the spectra of KX : Sm²⁺ and RbX : Sm²⁺ crystals respectively.

Quite remarkably, for a given cation series (i.e. KX : Sm²⁺ or RbX : Sm²⁺), the A-, B- and G-bands shift towards lower energies with increase in lattice parameter d. For example, an A-band in KCl : Sm²⁺ system is located at higher energies than the corresponding band in KBr : Sm²⁺ system while the same band in the latter system is located at higher energies than the corresponding A-band in KI : Sm²⁺ system. Also the displacement of the higher energy bands (C- and D-bands) with increase in d follows the same trend. In this regard notice has to be taken that for
<table>
<thead>
<tr>
<th>Host Crystal</th>
<th>Spectral Position (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KCl</td>
</tr>
<tr>
<td>Band</td>
<td>RT</td>
</tr>
<tr>
<td>A1</td>
<td>16 502</td>
</tr>
<tr>
<td>A2</td>
<td>18 484</td>
</tr>
<tr>
<td>A3</td>
<td>20 121</td>
</tr>
<tr>
<td>B1</td>
<td>-</td>
</tr>
<tr>
<td>B2</td>
<td>24 810</td>
</tr>
<tr>
<td>B3</td>
<td>-</td>
</tr>
<tr>
<td>C1</td>
<td>-</td>
</tr>
<tr>
<td>C2</td>
<td>29 155</td>
</tr>
<tr>
<td>C3</td>
<td>29 762</td>
</tr>
<tr>
<td>C4</td>
<td>30 581</td>
</tr>
<tr>
<td>C5</td>
<td>31 646</td>
</tr>
<tr>
<td>D1</td>
<td>34 364</td>
</tr>
<tr>
<td>D2</td>
<td>-</td>
</tr>
<tr>
<td>D3</td>
<td>36 496</td>
</tr>
<tr>
<td>D4</td>
<td>37 313</td>
</tr>
<tr>
<td>D5</td>
<td>-</td>
</tr>
<tr>
<td>G1</td>
<td>40 161</td>
</tr>
<tr>
<td>G2</td>
<td>-</td>
</tr>
<tr>
<td>E1</td>
<td>-</td>
</tr>
<tr>
<td>E2</td>
<td>44 298</td>
</tr>
</tbody>
</table>
Table 5.6(b) Spectral Positions of Main Bands in the Absorption Spectra of RbX<sub>2</sub> Sm<sup>2+</sup> (X = Cl, Br, I) Crystals at Room and Liquid Nitrogen Temperatures

<table>
<thead>
<tr>
<th>Host Crystal</th>
<th>Spectral Position (cm&lt;sup&gt;-1&lt;/sup&gt;)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RbCl</td>
</tr>
<tr>
<td></td>
<td>RT</td>
</tr>
<tr>
<td>A1</td>
<td>16 611</td>
</tr>
<tr>
<td>A2</td>
<td>18 657</td>
</tr>
<tr>
<td>A3</td>
<td>-</td>
</tr>
<tr>
<td>B1</td>
<td>-</td>
</tr>
<tr>
<td>B2</td>
<td>24 631</td>
</tr>
<tr>
<td>B3</td>
<td>-</td>
</tr>
<tr>
<td>C1</td>
<td>-</td>
</tr>
<tr>
<td>C2</td>
<td>29 326</td>
</tr>
<tr>
<td>C3</td>
<td>-</td>
</tr>
<tr>
<td>C4</td>
<td>30 395</td>
</tr>
<tr>
<td>C5</td>
<td>31 250</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>-</td>
</tr>
<tr>
<td>D2</td>
<td>-</td>
</tr>
<tr>
<td>D3</td>
<td>36 101</td>
</tr>
<tr>
<td>D4</td>
<td>36 969</td>
</tr>
<tr>
<td>D5</td>
<td>38 023</td>
</tr>
<tr>
<td>G1</td>
<td>40 404</td>
</tr>
<tr>
<td>G2</td>
<td>-</td>
</tr>
<tr>
<td>E1</td>
<td>-</td>
</tr>
<tr>
<td>E2</td>
<td>44 248</td>
</tr>
</tbody>
</table>
any alkali halide series of $d_{C1} < d_{Br} < d_f$ (where the subscripts indicate the halide crystal referred to) and that for any anion series $d_{Na} < d_{K} < d_{Rb}$ [121, 270].

On the other hand, for any halide series, A-, B- and G- bands shift to higher energies, while C- and D- bands shift to lower energies with increase in lattice constant. Thus a given A-band in $RbCl : Sm^{2+}$ spectrum is located at a higher energy than the corresponding band in $KCl : Sm^{2+}$ spectrum, whereas a given C- or D- band is located at lower energies in $RbCl : Sm^{2+}$ spectrum than in $KCl : Sm^{2+}$ spectrum. To enhance comparison of a spectrum in the two series with another, the separations of the major experimentally observed bands have been compiled in Table 5.7. The findings noted above are in complete agreement the reported structure and behaviour of the spectra of $KX : Sm^{2+}$ and $NaX : Sm^{2+}$ crystal systems [50, 63], although the behaviour of the D and G bands was never noted.

Some comments must be made, however, about the low temperature second derivative spectra recorded for $KCl : Sm^{2+}$, $KBr : Sm^{2+}$ and $RbCl : Sm^{2+}$ crystal systems. The unresolved structure of the A1- and A2- bands show clearly in the spectra of $KCl : Sm^{2+}$ while in that of $RbCl : Sm^{2+}$ and $KBr : Sm^{2+}$ crystals, the unresolved structure of the A1-band of the absorption spectra manifests itself. This behaviour was only observed, however, in those crystal samples with substantially high concentration of $Sm^{2+}$ ions. Since there was no attempt to measure the concentration of the ions in each sample, the relative concentration could only be judged by the relative intensities of a given band, say A1-band, in the spectra produced for the samples being compared. A close look at A1-band recorded for $KCl : Sm^{2+}$ reveals that the low energy side of the band is not smooth and could be made up of a superposition of many unresolved bands.

### 5.5 Fitting of experimental and theoretical energy levels

Working on the assumption that the experimental absorption spectra of $KX : Sm^{2+}$ and $RbX : Sm^{2+}$ crystals can be ascribed to $4f^6 \rightarrow 4f^5d$ transitions of $Sm^{2+}$ ions, attempts were made to fit the experimental energy levels to the theoretical ones.
Table 5.7 Separation of Some Selected Absorption Bands in the Spectra of $KX : Sm^{2+}$ and $RbX : Sm^{2+}$ ($X = Cl, Br, I$) Crystals at Liquid Nitrogen Temperatures

<table>
<thead>
<tr>
<th>Host Crystal</th>
<th>Band Pairs</th>
<th>Spectral Position (cm$^{-1}$)</th>
<th>KCl</th>
<th>KBr</th>
<th>KI</th>
<th>RbCl</th>
<th>RbBr</th>
<th>Rbl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1,A2</td>
<td>2 076</td>
<td>2 076</td>
<td>2 140</td>
<td>2 160</td>
<td>2 080</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1,A3</td>
<td>3 482</td>
<td>3 515</td>
<td>3 513</td>
<td>3 527</td>
<td>3 582</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1,B1</td>
<td>6 755</td>
<td>6 765</td>
<td>6 687</td>
<td>6 782</td>
<td>6 836</td>
<td>6 675</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1,B2</td>
<td>7 815</td>
<td>7 937</td>
<td>7 996</td>
<td>7 943</td>
<td>7 997</td>
<td>7 974</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1,C2</td>
<td>13 628</td>
<td>11 657</td>
<td>10 291</td>
<td>13 183</td>
<td>11 501</td>
<td>10 093</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A2,C4</td>
<td>12 496</td>
<td>10 679</td>
<td>9 170</td>
<td>11 902</td>
<td>10 391</td>
<td>8 848</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1,D2</td>
<td>11 742</td>
<td>10 742</td>
<td>10 369</td>
<td>11 313</td>
<td>10 173</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1,D3*</td>
<td>13 670</td>
<td>11 501</td>
<td>10 117</td>
<td>12 837</td>
<td>11 134</td>
<td>9 747</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B2,D4</td>
<td>13 439</td>
<td>11 501</td>
<td>10 117</td>
<td>12 785</td>
<td>11 134</td>
<td>9 747</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2,D2</td>
<td>6 624</td>
<td>6 765</td>
<td>6 687</td>
<td>6 686</td>
<td>6 580</td>
<td>6 788</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2,D3*</td>
<td>7 353</td>
<td>6 536</td>
<td>6 536</td>
<td>6 536</td>
<td>6 536</td>
<td>6 536</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C3,D3</td>
<td>6 690</td>
<td>6 686</td>
<td>6 686</td>
<td>6 686</td>
<td>6 686</td>
<td>6 686</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C4,D4</td>
<td>6 682</td>
<td>6 686</td>
<td>6 686</td>
<td>6 686</td>
<td>6 686</td>
<td>6 686</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1,G1</td>
<td>23 700</td>
<td>23 724</td>
<td>23 741</td>
<td>23 876</td>
<td>23 848</td>
<td>23 734</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1,G1</td>
<td>16 945</td>
<td>16 959</td>
<td>17 054</td>
<td>17 094</td>
<td>17 012</td>
<td>17 059</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E1,E2</td>
<td>-</td>
<td>-</td>
<td>6 724</td>
<td>-</td>
<td>-</td>
<td>6 780</td>
<td></td>
</tr>
</tbody>
</table>

* D3-bands in the chlorides series correspond to D2 bands in the bromide and iodide series
This consists in seeking agreement between the spectral positions of $A', B', C'$ and $D'$ sets of theoretical energy levels (bands) and experimental groups of bands $A$, $B$, $C$ and $D$.

To do this, numerical experiments were performed using computer with a view to finding the dependence of $A', B', C'$ and $D'$ groups of energy levels on variations of the energy parameters $F_h(f,d), G_h(f,d), C_f$ and $C_m$. It was found that the separations of $A'$ group of levels depend critically on $C_f$ but slightly on $C_m, G_h(f,d)$ and $F_h(f,d)$. However the separations of $A'$ and $B'$ levels depend critically on both $F_h(f,d)$ and $G_h(f,d)$ which also determine the separations of $C'$ and $D'$ groups of levels. As for the separations between $A'$ and $C'$ as well as between $B'$ and $D'$ groups of levels, they depend mainly on $D_q$ and $C_f$.

The same procedure of keeping $F_h(f,d)$ and $G_h(f,d)$ ratios constant at their estimated free ion values, as was done for $4f^{13}5d$ configuration, was used so as to reduce the number of adjustable parameters. Thus $F_h(f,d) = 0.1007709F_0(f,d)$, $G_3(f,d) = 0.1114406G_1(f,d)$ and $G_3(f,d) = 0.011805G_1(f,d)$ with $E^0_2$ and $E^0_3$ connected to $D_q$ through Eqs (4.11) and (5.16). Consequently the five parameters $F_h(f,d), G_1(f,d), C_f, C_m$ and $D_q$ were varied in order to obtain a satisfactory fit between theoretical and experimental energy levels.

Using the established dependence of the theoretical energy levels on these parameters as a guide, it was possible to systematically vary the latter so that the separations of the individual energy levels are as close as possible to the separations of corresponding energy bands. In this way, a set of trial parameters were obtained for each of the crystal systems. The trial parameters were then used in the set of FORTRAN computer programs designed to minimise the squares of the differences between the experimental and theoretical energy levels. The set of optimised parameter values for each crystal system is given in Table 5.8. Theoretical energy levels were calculated using these parameters. Tables of calculated energy levels and relative transition intensities for the systems studied cannot be presented here because of their bulk. For most of the observed energy levels in all the systems studied, the deviation of the theoretical from the experimental spectral energies were in the range $0 - 400 \text{ cm}^{-1}$. There were, however, a few energy levels for which deviations
Table 5.8 Optimised Energy Parameters $F_2(f,d)$, $G_1(f,d)$, $\zeta_{af}$, $\zeta_{sd}$ and $Dq$ for $Sm^{2+}$ Ions in Potassium and Rubidium Halide Crystals. Parameter $\Delta_{Sm}$ and Lattice Constant $d$ are included.

<table>
<thead>
<tr>
<th>Crystal Host</th>
<th>Energy Parameters (cm$^{-1}$)</th>
<th>Lattice Constant $d$ (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>256.7 $263.6$ $1172.4$ $953.5$ $1320.2$ $34 264$</td>
<td>3.146</td>
</tr>
<tr>
<td>KBr</td>
<td>255.6 $254.7$ $1171.8$ $980.0$ $1158.8$ $33 425$</td>
<td>3.300</td>
</tr>
<tr>
<td>KI</td>
<td>245.6 $250.0$ $1170.4$ $970.1$ $989.0$ $32 171$</td>
<td>3.533</td>
</tr>
<tr>
<td>RbCl</td>
<td>256.2 $257.8$ $1174.5$ $1005.9$ $1267.4$ $34 095$</td>
<td>3.291</td>
</tr>
<tr>
<td>RbBr</td>
<td>254.8 $255.4$ $1177.4$ $952.8$ $1109.6$ $33 369$</td>
<td>3.427</td>
</tr>
<tr>
<td>RbI</td>
<td>254.2 $248.6$ $1178.3$ $963.8$ $954.7$ $32 238$</td>
<td>3.671</td>
</tr>
</tbody>
</table>
as large as 800 cm$^{-1}$ occurred. This is particularly so for D2 and D5 bands in the spectrum of RbBr : Sm$^{2+}$ crystals. The mean errors ($\mu'$, as defined in section 2.8) were calculated and they are 367 cm$^{-1}$, 294 cm$^{-1}$, and 423 cm$^{-1}$ for KCl : Sm$^{2+}$, KBr : Sm$^{2+}$ and KI : Sm$^{2+}$ systems respectively. For the rubidium halide series, they are 284 cm$^{-1}$, 464 cm$^{-1}$ and 382 cm$^{-1}$ respectively for RbCl : Sm$^{2+}$, RbBr : Sm$^{2+}$ and Rbl : Sm$^{2+}$ system.

On the whole, the agreement between the experimental and calculated energy level positions is quite satisfactory. This can be viewed against the background that the theory of atomic spectra applied in this work is an approximation which introduces an inherent uncertainty of 100—200 cm$^{-1}$ into the results [1,86]. Additional error could also be introduced by the crystal field theory. Nevertheless, for some of the energy level assignments, discrepancies exist between the calculated and observed relative transition intensities.

5.6 Discussion

5.6.1 The 4f$^3(4FH)5d$ sub-configuration of Sm$^{2+}$ ions and the optical absorption spectra of KX : Sm$^{2+}$ and RbX : Sm$^{2+}$ crystals

All the optical absorption bands observed in the spectra of KX : Sm$^{2+}$ and RbX : Sm$^{2+}$ crystals are ascribed to photon absorption by Sm$^{2+}$ ions. Each spectrum consists of six groups of bands labelled A-, B-, C-, D-, E- and G- bands. Furthermore the structure of the spectra are alike and corresponding bands behave in a similar way on cooling. To further strengthen the conclusion that the spectra are of common origin, attention is drawn to the striking similarity between the separation of any given pair of bands in one spectrum and of corresponding bands in the other spectra. Across the entire series, and as clearly illustrated in Table 5.7, the separations between a given pair of A-bands are nearly similar. The same can be said of the following band pairs: (A1,B1), (A1,B2), (C2,D2), (C4,D4) and (B1,G1).

In the theoretical study of the 4f$^3(4FH)5d$ sub-configuration of Sm$^{2+}$ ions in octahedral crystal field, four sets of clustered energy levels which have high relative transition intensities were predicted. Consequently, it was concluded that the
absorption spectrum corresponding to that sub-configuration would consist of four groups of bands, some of which would be structured. In pursuance of that prediction, the experimental A-bands are here assigned to the lowest set of theoretical bands (that is, the $A'$ group of levels) while the B-bands are assigned to the next higher set, the $B'$ group of levels. To justify this assignment, it can be noticed that the separation between the strongest of the $A'$ bands and the gravimetric centre of the $B'$ group of bands is between 7300 cm$^{-1}$ (for $Dq = 900 $cm$^{-1}$) and 7500 cm$^{-1}$ (for higher $Dq$ values). These values compare favourably with the separations of A1- and B- bands shown in Table 5.7, if it is borne in mind that the comparison is only a rough one. A more direct comparison would involve obtaining the centre of the B-bands first before calculating the separation. However this was not done since more detailed fitting of the energy bands to the theoretical spectrum was carried out.

Continuing with the band assignments one again has to recognise the similarity between the separation of the theoretical $A'$ and $C'$ bands on the one hand and the experimental A and C bands on the other. As mentioned in Section 5.3.2, for the theoretical energy spectrum and at $Dq = 900 $cm$^{-1}$, this separation is about 10 000 cm$^{-1}$ while it is about 13 250 cm$^{-1}$ at $Dq = 1300 $cm$^{-1}$. Again, these values compare favourably with the separations of the band pairs (A1, C2) on the one hand and (A2, C4) on the other (vide Table 5.7). The increase in the separation of the theoretical bands with increase in $Dq$ can be likened to the increase in the separations of A- and C- bands with decrease in lattice parameter $d$.

Because of these and the fact that in general A-bands shift to lower energies and C-bands to higher energies as the crystals are cooled from RT to LNT (such displacements being attributed to increased $Dq$ owing to reduction in $d$), it is attractive to assign the C-bands to the of theoretical $C'$ group of energy bands. Also, in view of the similarity between the separations of the B- and D-bands on the one hand and of the $B'$ and $D'$ on the other, the latter being assigned to the experimental D-bands.

A question arises as to the precise way the groups of experimentally observed bands are related to the components of $4f^{8}5d$ configuration of $Sm^{2+}$ ions in octa-
hedral environment. The answer is sought in the correspondence already established between these groups of bands and the theoretically predicted $A', B', C'$, and $D'$ bands of the $4f^{14} (5p^55d$ sub-configurations. Evidently, the observed $A$, $B$, $C$, and $D$-bands are connected with that sub-configuration. To further buttress the connection, recourse is made to the coupling scheme used in the theoretical calculation. The lowest group of experimental bands, the $A$-bands can be assigned to the states
$$\left|\frac{1}{2}, L_1 = 5, J_2 = 3, \Gamma_z, \Gamma_{3T} \right\rangle, \alpha_2 = 1, 2, 3$$

while the $C$-bands can be assigned to states
$$\left|\frac{3}{2}, L_1 = 5, J_2 = 3, \Gamma_z, \Gamma_{3T} \right\rangle, \alpha_2 = 1, 2.$$  

By these assignments it is never suggested that these bands are characterised only by these pure basis functions. Rather, the idea being conveyed is that functions of this type contribute most to the characteristics of the bands, particularly, their spectral positions. Definitely, the bands depict the energy level positions characterised by linear combinations of pure basis functions. Other basis functions most likely to contribute to the spectral positions and intensities of the $A$- and $C$-bands through admixing by spin-orbit interactions and possibly the odd components of the crystal field potential operators are those for which $S_z = 2$ replaces $S_z = 3$ in the expressions above. It is possible therefore to obtain a rough estimate of the value of $10Dq$ for any of the crystal systems studied. On the average, this is given by the separation of the gravimetric centres of the $A$-bands and $C$-bands.

Following a similar argument the other groups of experimental bands can be assigned to states for which $L_1 = 3$ replaces $L_1 = 5$ in expression (5.17) (for $B$-bands) and expression (5.18) (for $D$-bands). The separation of the centres of gravity of $B$- and $C$- bands gives another rough estimate of $10Dq$. In general, the two estimates of $10Dq$ are not the same although, they are of the same order of magnitude as have previously been indicated by Johnson and Sandoe [80] in their semi-quantitative study of RT spectra of some alkali halides doped with $Sm^{2+}$. For each crystal system, the two estimates are different. However they indicate a range of values within or close to which the true $10Dq$ value can be located. An important inference to be drawn from the different $10Dq$ estimates is that inter-electronic interactions are
An additional justification for assigning the B-bands to states derived from \(4f(6F)5d\) sub-configuration comes from the evidence that in trivalent samarium salts, the spectral positions of states of predominantly \(6F\) (90% or above) in character are located in energy terms, at 5767 cm\(^{-1}\), 6305 cm\(^{-1}\), 7049 cm\(^{-1}\), 8001 cm\(^{-1}\), 9078 cm\(^{-1}\) and 10 469 cm\(^{-1}\) above \(4f^5(6H_5/2)\) ground state of \(4f^6\) configuration of \(Sm^{3+}\) ions. A simple average puts the centre of gravity of the observed \(4f^5(6F)\) states at 7778 cm\(^{-1}\) above the \(4f^5(6H_5/2)\) ground state. This value compares well with the separation of the B-bands from A1- band as indicated in Table 5.7. Moreover, the study by Nara and Schlesinger [67] indicates that the lowest observed groups of levels of the \(6F_J\) multiplets of \(Sm^{3+}\) ions in \(CaF_2\) are located at between 6357 and 6757 cm\(^{-1}\) above the \(6H_5/2\) ground state. Band assignments analogous to the ones made here have previously been made for the first three bands in the absorption spectra of \(Sm^{3+}\) ions in \(CaF_2\), \(SrF_2\) and \(BaF_2\) crystals by Yanase [104].

With observed absorption bands assigned in this way to the \(4f^5(6FH)5d\) sub-configuration of \(Sm^{2+}\) ions, a clear picture emerges. The electronic states of the \(4f^5(6FH)\) core sub-configuration are seen to couple through electrostatic interaction (of direct Coulomb and exchange type) to the states \(\gamma_3, \gamma_5\) of the 5d electron, which are strongly perturbed by the octahedral crystal field. The grouping of the energy bands (and hence observed energy levels) is determined mostly by the electrostatic interaction between pairs of electrons in the \(4f^5\) core electron system and crystal field interaction. The spreading out of the energy levels and hence the occurrence of many absorption bands result from the direct Coulomb and exchange interactions between the \(4f^6\) core electrons and the lone 5d electron as well as spin orbit interactions within the electron systems of the two sub-shells. This is depicted schematically in Fig 5.6 for the octahedral crystal field. Because of the very large number of states and also because spin-orbit and direct Coulomb and exchange interactions are of the same order of magnitude, their effects are grouped together in the schematic diagram. In the above representations attempts were made to reflect the fact that the theoretical energy levels do in fact overlap. Obviously there are many
Fig 5.6 Theoretical energy level scheme for $4f^2(^6PFH)5d$ sub-configuration of $Sm^{2+}$ ions in octahedral crystal field. Effects of various perturbation interactions are illustrated. (a) Electrostatic interaction within $4f^6$ electron system, $H_{\omega}(f, f)$, (b) Crystal field perturbation on $d$-electron states $H_{\omega}(d)$, (c) Combined effects of direct Coulomb, exchange and spin-orbit interactions, $H_{\omega}(f, d) + H_{\omega}(nl)$. 
more energy levels than indicated in the last but one column. The last column
depicts the typical structure of an experimental spectrum. The suffix 2 on \( I_3 \) or
\( I_5 \) only indicates that the functions are characterised by spin half associated with
the 5\( d \) electron. Johnson and Sandoe [80] do in fact suggest an analogous scheme
for the \( 4f^5(\bar{g}FH)5d \) sub-configuration of \( Sm^{2+} \) ions in \( CaF_2 \) crystals. The scheme
suggested here is more extensive than those of the authors referred to above because
of the inclusion of the \( 4f^4(\bar{e}P)5d \) sub-configuration. The justification for including
the latter will be given in the next subsection.

Of the 450 energy levels predicted with the aid of the above model and group
theory, symmetry selection rule permits electronic transitions to only 135\( F_{6g} \) levels
from the \( 7F_0(I_3g) \) ground state of \( 4f^6 \) configuration. Even at that, only a few of
these can be observed because of the additional selection rules discussed in section
5.3.1. (vide Eqn 5.15). Fig 5.7 shows the experimental energy level structure of the
\( 4f^3(\bar{e}FH)5d \) and \( 4f^2(\bar{g}FH)6s \) sub-configurations of \( Sm^{2+} \) in \( KX : Sm^{2+} \) and
\( RbX : Sm^{2+} \) crystals. As will be made clear later, the levels labelled E1 and E2 are
ascribed to the latter sub-configuration while the rest of the levels belong to the
former.

The theoretical calculations done in this study were based on the above model.
Judging from the correspondence so far established between the theoretical spectrum
of the \( 4f^2(\bar{g}FH)5d \) sub-configuration and the observed absorption spectra of \( Sm^{2+} \)
ions in the six alkali halide crystals, it is evident that the model successfully explains
the gross features of the observed spectra in spectral regions below 40 000 cm\(^{-1}\).
Having said that, it is instructive to comment on the occurrence of three well resolved
absorption bands in the lower regions of the spectrum. It has been suggested by
some authors [63,80] that the resolution of these bands (the A-bands) into three
and the elaborate fine structure of the other bands are evidence of crystal field
splitting due to the orthorhombic distortion of the octahedral symmetry at the site
of the \( Sm^{2+} \) ions arising from the charge compensating vacancies. In other words,
the octahedral approximation usually applied to \( 4f^65d \) configurations of rare earth
ions in alkali halide crystals may break down in the instance of \( Sm^{2+} \) ions. That the
multi-band nature of the lower part of the spectrum is expected from the theoretical
Fig 5.7 Experimental energy level structure of the $\ell_f^{10}(^6P^F^H)\ell_d$ and $\ell_f^{10}(^4F^H)\ell_s$ sub-configurations of $Sm^{2+}$ ions in KX and RbX ($X = Cl, Br, I$) crystals. Levels labeled E1 and E2 correspond to electronic transitions to states of $\ell_f^{10}(^4F^H)\ell_s$ sub-configuration from the $^1F_0(4f^3)$ ground state while the rest correspond to transitions to the states of the $\ell_f^{10}(^6P^F^H)\ell_d$ sub-configuration. (See text.)
analysis is very evident. What is not expected however is that A2-band would have a comparable transition intensity as A1-band. Theory predicts that levels corresponding to A2-band would have relative transition intensities about one-third in magnitude of that of a level corresponding to A1-band. The possible reasons for such a discrepancy between predicted and observed spectral intensities will be discussed in a later section. Judging from the closeness of the predicted energy levels with high relative intensities, it is expected that in the high energy region of the spectrum, structured absorption bands would be obtained experimentally. The observed structure of the experimental spectra are therefore predicted by theory based on the octahedral approximation.

Attention may now be drawn to the fine structure exhibited by the A1-band and A2-bands in the second derivative spectra of KCl : Sm2+ and A1 band in the those of KBr : Sm2+ and RbCl : Sm2+ crystals. They are interpreted as due to vibronic interactions. Although the temperature at which measurements were made was too high for the vibronic bands to appear in the absorption spectra, evidence of their occurrence was picked up in the second derivative spectra. Earlier observation of elaborate vibronic spectra of Sm2+ ions in alkali halide crystals have been made at 10 K [64] and 4.2 K [63]. It is not possible at this stage for further interpretation to be given to the fine structure bands since they were not observed in the absorption spectra.

5.6.2 The G and E Absorption bands

In previous studies of optical absorption by Sm2+ ions in some alkali halide crystals absorption bands corresponding to those labelled G1 have not been positively identified even though they may be present in the spectra studied [50,80]. The insight gained through studying their behaviour across the two alkali series at room and liquid nitrogen temperatures has made possible their identification as Sm2+ bands. Obviously they do not belong to the 4f2(4F 3/2)5d sub-configuration of Sm2+ ions. Nevertheless, they are ascribed to 4f2(4P)5d sub-configuration for the following reasons. Throughout the two alkali series, the intensity of the G1-band relative to that of the nearby C- and D-bands is nearly constant indicating that they are Sm2+.
bands. Although the temperature induced displacements of the G1-band is small for a few of the crystal systems the trend for all the systems studied is towards lower energies as the crystal is cooled from RT to LNT. Moreover, the G1 bands as well as the G2-bands share with the A-bands and to some extent the B-bands the trend towards lower spectral energies with increase in d for any given alkali series. Also illuminating is the fact that as with the A- and B-bands, the G-bands lie at higher energies in \( RbX : Sm^{2+} \) systems than in corresponding halide host among \( KX : Sm^{2+} \) systems.

All these suggest that G1-bands may be the lowest band of the \( 4f^5(6P)5d \) sub-configuration of \( Sm^{2+} \) ions in the crystals. In free space, the lowest observed energy level of \( 4f^5(6H)5d \) sub-configuration is located at 26 283.55 cm^{-1} relative to the ground state of the \( 4f^6 \) configuration [102]. But in the crystal series studied, the lowest energy bands observed experimentally lie at energies ranging from 15 785 cm^{-1} (for \( KI : Sm^{2+} \) crystals) to 16 447 cm^{-1} (for \( RbCl : Sm^{2+} \) crystals). This means that crystal field effects cause a depression of the centre of the sub-configuration by an amount in the order of 10 160 cm^{-1}. Allowing for a depression of such a magnitude for the \( 4f^5(6P)5d \) sub-configuration (although it is recognised that there may be differential sub-configurational shifts), one would expect the lowest energy level of that sub-configuration in alkali halide crystals to be at about 41 000 cm^{-1} since it is at 51 160.8 cm^{-1} in free space [102,72]. Considering the approximations made, this value compares well with the spectral positions of the G1-bands relative to the ground state of the \( 4f^6 \) configuration (vide Tables 5.8(a), (b)).

A search for an additional justification was, however, made. Wybourne [74], using experimental data from various sources, on the absorption and fluorescence spectra of trivalent samarium salts measured at liquid helium temperatures identifies an energy level of \( Sm^{2+} \) ions located at 23 780 cm^{-1} above the lowest energy level of \( 4f^5(6H) \) sub-configuration. The wave functions describing that level comprises a linear combination of LS-coupled basis functions whose components include 35\% \( ^6P_{3/2} \) multiplet. A next higher level predicted to be located at 25 035 cm^{-1} above the \( 4f^5(^6H_{5/2}) \) ground state and which is strongly \( ^6P_{3/2} \) (65\%) in character was not experimentally observed. The similarity between the separations of the G1-
band from A-band with the energy level of Sm$^{2+}$ ion lying at 23 780 cm$^{-1}$ above the ground state of the $4f^6$ configuration further justifies this assignment of the G-bands.

The G-bands can therefore be associated with basis functions of the form

$$l((\frac{5}{2})S_2 = 3, l_1 = 1)j_2 = 3, \Gamma_5; \Gamma_4 \gamma), \alpha_2 = 1, 2, 3 \quad (5.19)$$

The bands corresponding to the states

$$l((\frac{5}{2})S_2 = 3, l_1 = 1)j_2 = 3, \Gamma_3; \Gamma_4 \gamma), \alpha_2 = 1, 2 \quad (5.20)$$

were not observed experimentally. They are likely to lie in the vacuum ultra violet.

Because E2 band is present in all the spectra of the crystals studied and also because in any given host crystal, its transition intensity bears a constant relation to any of the other bands, it is here associated with photon absorption by Sm$^{2+}$ ions in the crystals. The spectral position of the band is host dependent. In general, its position is displaced to lower energies as d increases, a trend also exhibited by A-, B-, and G-bands. (Notice however that the trend is disrupted in RbX : Sm$^{2+}$ series by E2 band in RbBr : Sm$^{2+}$ system lying at slightly higher energies than in RbCl : Sm$^{2+}$ system: vide Table 5.6(b)). In spite of this, it does not share with these other groups of bands the temperature induced displacement towards lower energies as the crystal is cooled from RT to LNT. Rather, in all cases, the E2 bands are displaced to higher energies in such circumstances. This may be indicative of the sensitivity of the E2 band to changes in the crystal field potential.

The puzzle of the origin of the band is sought in the occurrence in the spectra of Sm$^{2+}$ in the iodide crystals of a band labelled E1. The separations of this band from E2 in the spectra of Sm$^{2+}$ ions in the iodide series are comparable to the separations of A1- and B1-bands in these spectra. (vide Table 5.7). Unless this comparability is a coincidence, it strongly suggests that the E-bands have some connection with the $6FH$ energy terms $4f^5$ configuration. One way this can occur is through the $4f^56s$ configuration. Nominaly, electric dipole transition to states of this configuration from the ground configuration, $4f^6$ is forbidden on the grounds of the $\Delta l = \pm 1$ selection rule. As pointed out in the discussion on the $4f^{12}6s$ configuration of Yb$^{2+}$ (subsection 4.6.5) this selection rule may break down owing to the orthorhombic
distortion of the octahedral symmetry at the site of the $\text{Sm}^{2+}$ ions. It was observed that the relative transition intensity of an E2 band occurring in the spectrum of an iodide host crystal when compared with A1-band is greater than that of any E2 band in spectrum of either the bromide or chloride hosts crystals. In $KX : \text{Sm}^{2+}$ series, the relative intensities of the E2 bands follow the spectro-chemical series of ligand ions:

$$Cl < Br < I$$

This points to a possibility of covalency playing a central role in the occurrence of the E-bands. If this is the case, a model analogous to that used to explain their occurrence in the spectra of $\text{Yb}^{2+}$ ions in $\text{RbX}$ crystals is proposed here.

Following the arguments of subsection 4.6.5, the 6$s$ atomic orbitals of $\text{Sm}^{2+}$ ions are thought to form bonding ($\sigma$) and anti-bonding ($\sigma^*$) MO’s with the $(n+1)s$ atomic orbitals of the ligand halogen ions. The only difference in the details of the interactions involving $\text{Sm}^{2+}$ and $\text{Yb}^{2+}$ ions comes through the sub-states of the $4f^N$ core configuration. In the case of $\text{Sm}^{2+}$ ions, the $^6H_J(J_1 = 5/2, 7/2, ..., 15/2)$ and $^4F_J(J_1 = 1/2, 3/2, ..., 11/2)$ core multiplets couple with bonding MO’s to form the bonding states $4f^2(6H)6s\sigma(\Gamma_1\sigma)$ and $4f^2(6F)6s\sigma(\Gamma_1\sigma)$. It is the electronic transitions to these states that cause the absorption experimentally observed. On this model it is expected that the E-bands will exhibit greater relative intensity in the more covalent crystals than in the more ionic ones. For the $KX : \text{Sm}^{2+}$ crystals, this was observed as noted earlier. In the case of $\text{RbX : Sm}^{2+}$ systems however, the E2-band shows the greatest relative transition intensity in $\text{RbI : Sm}^{2+}$ crystals but its intensity in the spectrum of $\text{RbBr : Sm}^{2+}$ is slightly less than that $\text{RbCl : Sm}^{2+}$ crystal system. Table 5.9 illustrates these points. Unfortunately the E1-band was not identified in the spectra of chloride and bromide host crystals. If the model proposed is correct, they are expected to lie within the D-bands in these spectra and their transition intensities are expected to be low.

5.6.3 Adequacy of the theoretical analysis

Having established a qualitative and semi-quantitative agreement between the proposed model and the experimental spectra, it remains to examine the results of the
Table 5.9 Spectral Positions and Relative Transition Intensities of E1- and E2- Bands in the Absorption Spectra of KX : Sm\textsuperscript{2+} and RbX : Yb\textsuperscript{2+} (X = Cl, Br, I) Crystals at RT and LNT. \( V(E1, E2) \) is the Separation Between E1- and E2- bands at LNT.

<table>
<thead>
<tr>
<th>Crystal</th>
<th>E- Band</th>
<th>E- Band</th>
<th>( V(E1, E2) )</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spectral Position (cm(^{-1}))</td>
<td>Relative Intensity at LNT</td>
<td>Spectral Position (cm(^{-1}))</td>
</tr>
<tr>
<td>Host</td>
<td>RT</td>
<td>LNT</td>
<td></td>
</tr>
<tr>
<td>KCl</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KBr</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KI</td>
<td>30 864</td>
<td>31 299</td>
<td>48</td>
</tr>
<tr>
<td>RbCl</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RbBr</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rbl</td>
<td>-</td>
<td>30 395</td>
<td>42</td>
</tr>
</tbody>
</table>
detailed theoretical analysis of the spectra of $KX:Sm^{2+}$ and $RbX:Sm^{2+}$ crystals. It has already been noted that a satisfactory agreement was found between calculated and experimental energy levels of $Sm^{2+}$ ions in the entire crystal series. In extreme cases deviations of up to 800 cm$^{-1}$ were found. For systems of this type involving broad absorption bands the deviations are not adverse. Considering that the mathematical techniques adopted in the calculation procedures are approximate, with inherent errors associated with them as mentioned in section 5.5, the agreement is good.

It is in no way being suggested however that such inherent errors can explain all the observed deviations as well as the discrepancies between the predicted and observed relation transition intensities of some of the bands. In all the crystals, the most intense absorption bands were observed among the C-bands. Predicted spectra for the chloride crystal systems show that the theoretical level corresponding to C2-band is the strongest. In all the other crystal systems, the predicted relative transition intensity of the theoretical level corresponding to A1-band is the most intense.

Recalling the approximations and assumptions made in the theoretical calculations, it can be easily appreciated that the truncation of the $4f^55d$ configuration may in part account for the deviations and discrepancies. It is quite possible for the wavefunctions of electrons in the higher lying levels of the configuration to be admixed to the wave functions of those in the $4f^5(6FH)5d$ sub-configuration. Since it has been shown that the G-bands can be ascribed to the $5f^5(6P)5d$ sub-configuration, it is natural to expect that the wavefunction of electrons in those sub-levels may overlap or mix with those of electrons in the lower states. Such mixing could result in some shifts in energy level positions and also some changes in the distribution of transition intensities. This is more so for the upper levels of the $4f^5(6FH)5d$ sub-configuration.

In his analysis of the spectra of trivalent samarium salts, Wybourne[74] identifies some higher-lying quartets $^4DFGH$ terms of $4f^5$ configuration admixed with those of the lowest sextets $^6FH$. Because the admixed wavefunctions are small, they are unlikely to introduce any serious limitations to the model adopted in this study.
However, their influence could result in small modifications in the observed transition intensities since the latter are very sensitive to wave function distortions. Also identified in that study some quartets, $^4FGI$, lying below the $^4F_J$ manifold, but over 8000 cm$^{-1}$ above the highest level of the $^4F_J$ manifolds. Inclusion of the states of these multiplets will greatly complicate the problem but it is not difficult to appreciate that the coupling of any of these quartet states to the states of the 6$d$-electron in a crystal results in wavefunctions of the type expressed in Eqn (5.1), with $S_2 = 1, 2$. Electric dipole transition to such states from the ground state of the $4f^8$ configuration are forbidden in view of the $\delta(S_2, S_2)$ selection rule.

What could happen, however, is that the states of these sub-configurations could become admixed with the states of interest through spin-orbit interaction. Such a mixing could also result from the orthorhombic distortion of the octahedral site symmetry of the $Sm^{2+}$ ions. Considering the extent of agreement between experimental and theoretical energy level positions, it appears that the most likely effect of the $4f^8(^4FGI)$ sub-configuration could be some redistribution of transition intensities. Any changes in energy level positions resulting from such a may not be significant.

Another facet of the problem relates to the fact that the absorption spectra were obtained at LNT. But the calculation scheme assumes that the observed spectra result from electronic transitions from the $^7F_0$ ground state of $Sm^{2+}$ ions. Fluorescence spectroscopic studies reveal that the ground states is separated from the next excited state, $^7F_1$, by about 261.0 cm$^{-1}$ in $RbBr : Sm^{2+}$ [89], 288.1 cm$^{-1}$ in $KCl : Sm^{2+}$, 288.9 cm$^{-1}$ in $KBBr : Sm^{2+}$, 287.6 cm$^{-1}$ in $RbCl : Sm^{2+}$ [64] crystals. It is possible that at LNT, the $^7F_1$ level of $Sm^{2+}$ ions in these crystals become thermally populated. Thermal population of a state of energy $E_n$ follows the Boltzmann law: $\exp(-E_n/kT)$ and if $E_n < kT$, occupation of levels of energy $E_n$ becomes possible. Using the value of $k$ given by Dieke [3] it can be seen that at energy levels of 54 cm$^{-1}$ or smaller above the ground state could be occupied at 77 K. It is, therefore, 'unsafe' to assume that all the observed $4f^8 \rightarrow 4f^85d$ transitions originate from the $^7F_0$ ground state. Experimental observations have shown that some absorption bands in $CaF_2 : Sm^{2+}$ become slightly more intense with increase temperature while some others diminish in intensity [62]. Indeed, similar observations were made in respect
of the A1- and A2- bands since as noted earlier, A2 bands tend to be slightly more intense than A1 bands at RT while at LNT, the reverse is the case.

These facts do not however invalidate the model used in the calculation and the assignments of bands made for the following reasons. Group theoretical analysis shows that electric dipole transitions originating from the \( \tilde{F}_1(\Gamma_{\omega}) \) state of Sm\(^{2+} \) ions in octahedral environment are allowed to the

\[
35\Gamma_{10} + 90\Gamma_{30} + 135\Gamma_{40} + 135\Gamma_{50}
\]

states of the \( 4f^{4}(^{6}F)5d \) sub-configuration. Consideration of such transitions into the theoretical calculations introduces formidable difficulties. However, not much will be gained by their inclusion since the basic structure of all the spectra at RT are maintained at LNT. Moreover, Dieke[3], points out that for an electronic transition from a thermally populated level about 246.4 cm\(^{-1} \) above the ground state of an ion, the transition intensity measured at LNT is about \( 10^{-2} \) times what it should have been if the transitions had taken place from the ground state. This is corroborated by the evidence that the spectral intensity of the 14 118 cm\(^{-1} \) fluorescence line in the spectrum of Ca\(_F\)\(_2\) : Sm\(^{2+} \) crystals was reduced by a factor of \( 10^2 \) and that the 14 353 cm\(^{-1} \) line in Sr\(_F\)\(_2\) : Sm\(^{2+} \) spectrum by a factor of 11, when the sample temperatures were increased from 4.2 K to 77 K [62].

In view of the above, one can conclude that at LNT transitions originating from the thermally populated energy levels will be weak. Their most likely effect will be a modification of the distribution of transition intensities from what they would have been if those levels were depopulated.

Using the octahedral approximation, it has been established that the multi-band structure of the spectra of Sm\(^{2+} \) ions in alkali halide crystals is expected. Also predicted by theory are the observed band groupings. It appears unnecessary therefore to invoke the orthorhombic distortion of the octahedral symmetry at the site of the ions to explain any of the main features of the spectra. However, because of the very large number of quantum states of the \( 4f^{4}(^{6}F)5d \) sub-configuration which happen to lie close to each other, it cannot be ruled out that crystal field potentials of odd order associated with the \( C_{3v} \) point group could modify the wave functions of the electrons in these states [318]. A possible consequence of the admixing of wave
functions associated with these states is a re-distribution of transition intensities of the various energy levels. The contention here is that the effect of the orthorhombic distortion on the energy level positions of \( \text{Sm}^{2+} \) ions in these crystals will likely be slight. The major influence may consist in some intensity re-distribution according to the degree of overlap of the wavefunctions of the optically active electrons.

### 5.6.4 Crystal field effects

Some explanation is hereby sought for the observed spectral displacement of the A-, B- and G-band to lower energies as the lattice parameter d increases for a given alkali metal series. It can be recalled that a similar observation was made in respect of A2- and A6-bands in the spectra of \( RX : Yb^{2+} \) crystals. In that case, it was possible to obtain the difference between the centre of gravity of the free-ion states giving rise to the \( \Gamma_{4u} \) crystal levels and the centre of gravity of these levels in the crystals. Such a quantity constitutes a configurational depression since the centre of gravity of the levels in a crystal is lower. Results indicate that configurational depression increases as d increases. The conclusion reached was that the differential configurational shift may be connected with spectral displacements of the A2- and A6-bands in the spectra of \( Yb^{2+} \) ions as d increases.

Although the gravimetric centres of levels of \( \text{Sm}^{2+} \) ions in each of the crystal systems were obtained, such a direct connection as above could not be established in the case of \( \text{Sm}^{2+} \) spectra since the actual centre of gravity of the \( 4f^1(6Fj)5d \) subconfiguration of free \( \text{Sm}^{2+} \) ions is not known. However, if the conclusion in respect of \( Yb^{2+} \) ions is correct, one is lead to suggest that the same trend as it regards configurational depression may apply in the case of \( \text{Sm}^{2+} \) ions in the crystals studied.

Also found was that for a given anion series, an opposite effect takes place. In general, spectra displacement of A-, B- and G-bands to higher energies with increase in d was observed. This evidently complicates the picture and suggests that configurational depression may have no simple relationship with d. Ivoilova and Leushin [321] conclude from results of their analytical studies that exchange interactions between the \( 4f^{13}5d \) electrons of \( Yb^{2+} \) ions and those the ligand fluoride...
ions account partly for the observed dependence of shifts in the centre of gravity of the $4f^{15}5d$ configuration of $Yb^{2+}$ ions in $MeF_2$ crystals ($Me = Ca, Sr, Ba$). This is indirectly linked with an earlier suggestion that the observed spectral displacements of the low energy bands of $Sm^{2+}$ ions in KX and NaX crystals with changes in $d$ may be connected with covalency effects [63].

For any of the alkali series, the value of $Dq$ obtained in respect of $Sm^{2+}$ ions follows the spectro-chemical series already established for $Yb^{2+}$ ions in RbX crystals in subsection 4.6.2. Plots of Log $Dq$ against Log $d$ show a linear relationship between the two quantities for each alkali series as shown in Fig 5.8. From these graphical representations, it was concluded that $Dq \propto d^r$ where $r_p$ is $-2.428 \pm 0.005$ for the potassium series and $-2.424 \pm 0.004$ for the rubidium series. These $r_p$ power laws deviate he expected proportionality of $Dq$ with $d^{-5}$ on account of the point ion model crystal field theory. In subsection 4.6.2, some reasons were adduced for the failure of that model to predict the values of $Dq$ for the $4f^{15}5d$ configuration of $Yb^{2+}$ ions in RbX crystals. Similar explanations apply in the case of $Dq$ values for the $4f^{15}5d$ configuration of $Sm^{2+}$ ions in KX and NaX crystals.

5.6.5 Slater-Condon and spin orbit parameters

The values of the energy parameters $F_2, G_1, \zeta_{ef}$ and $\zeta_{sd}$ that give the best fit between theoretical and experimental energy levels for each of the crystal systems (as shown in Table 5.8) are host dependent. In general, the $F_2$ and $G_1$ values follow the familiar spectrochemical series of ligand ions but in reverse order. Thus $Cl > Br > I$. No clear trend was however obtained for the values of $\zeta_{ef}$ and $\zeta_{sd}$. In the past, the dependence of the values of these parameters on crystal host has manifested itself in the form of differential reduction of their values from what they are known to be in free space. As discussed in subsection 4.6.3 in respect of $Yb^{2+}$ ions in RbX crystals, such reductions have been attributed to nephelauxetic effect. Although the values of these parameters depend on host in the case of $Sm^{2+}$ ions, they are in general greater than the interpolated estimates attributable to free $Sm^{2+}$ ions. It is acknowledged that those estimates serve only as trial parameters and that it is not strictly correct to regard them as the free ion values. Nonetheless, the values obtained for them in

111
the parametrisation process are in the range expected for Sm$^{2+}$ ions in free space. On the basis of this, it is a matter for speculation to suggest that the up to 40% reduction in Slater-Condon parameters observed for $4f^{13}5d$ configuration of Y$^{3+}$ in this study and for corresponding mixed configurations of Y$^{2+}$, Eu$^{3+}$ and Tm$^{2+}$ ions in other studies [6,82,101,259] as these ions enter a crystal, have not been observed for Sm$^{2+}$ ions. Such a speculation is fraught with some difficulties, particularly as it has been shown that the parameter values are host dependent.

In their discussions of the electronic states of Eu$^{2+}$ ions in CaF$_2$ crystals, Yanase and Kasuya [92] and Asano and Nakao [76] find no need to make allowance for reduction in $F_k$ and $G_k$ parameters owing to nephelauxetic effect. In those studies as well as in that of Yanase [104] in which he discusses the coarse structure of the spectra of Sm$^{2+}$ ions in CaF$_2$ crystals, the assumption is made that the main contribution of the operator $H_{al}(f,d)$ to the energy of the system is through the isotropic exchange interaction. This results via the double tensor operator $V_f^{(10)}$. The anisotropic exchange interaction (contributed through the double tensor operators $V_f^{(10)} (k = 1,...,4)$) is believed to partially cancel the contribution by the direct Coulomb interaction. It is to this partial cancellation that the previously observed reduction in $G_k$ and $F_k$ parameter values are ascribed. Even though in this study, the Yanase-Kasuya model was used in defining the basis functions describing the states of $4f^{13}5d$ configuration of Sm$^{2+}$ ions, there was no explicit assumption that such a partial cancellation mechanism is operative. The analysis of the spectra follows a different procedure to those of the other authors.

Having noted that, the possibility of the nephelauxetic reduction of $F_k$, $G_k$ and $\zeta_{5d}$ values being absorbed in the calculation procedure cannot be overlooked. This follows from the fact that any element of an energy matrix consists of two parts, the radial and angular parts. $F_k$, $G_k$, $\zeta_{5f}$ and $\zeta_{5d}$ parameters are among the radial parts of interest. Attention is here drawn to the fact that the calculation procedure involves the introduction of the generalised $W[\ ]$ and $S[\ ]$ coefficients in order to reflect the coupling of the 5d electron states to the crystal lattice. Because these coefficients are in general less than unity, the angular components of the matrix elements of the direct and exchange interaction matrices as well as of $H_{al}(d)$ matrix
will be smaller than what they would have been if the calculations were done in pure \(LS\) coupling scheme. As a result, optimised values of \(F_k, G_k\) and \(C_m\) may not reflect any significant reduction due to nephelauxetic effect as is the case in those studies cited above.

### 5.7 Conclusions

Apparently for the first time, \(Sm^{2+}\) ions have been successfully incorporated into \(KX\) and \(RbX\) crystals by diffusing samarium vapour into the crystals at high temperatures. Each \(Sm^{2+}\) ions occupies a substitutional lattice site which is distorted from octahedral symmetry by the presence of a charge compensating cation vacancy in the \(< 110 >\) direction.

Excitation of the \(Sm^{2+}\) ions in these crystals with radiation in the visible and ultraviolet range leads to absorption spectra consisting of six groups of broad bands. By defining the electronic states of the \(4f^{2}(^{6}FH)5d\) sub-configuration of \(Sm^{2+}\) ions in the Yanase-Kasuya coupling scheme, theoretical analysis of these spectra which ignores the orthohombic distortion of the site symmetry of the \(Sm^{2+}\) ions establishes a correspondence between the predicted groups of energy levels and the experimental spectra. On the basis of this the first four groups of bands in each of these spectra were ascribed to electronic transitions from the \(^{7}F_0\) ground state of \(4f^6\) configuration to the states of \(4f^5(^{6}FH)5d\) sub-configuration. Also predicted by the theoretical calculations is the multi-band nature of the absorption spectra. A model was proposed which satisfactorily explains the gross features of the observed spectra and further extends the band assignments to the higher lying G-bands which are ascribed to \(4f^8(^{7}F_0) \rightarrow 4f^5(^{6}F)5d\) transitions.

Even though \(4f^6 \rightarrow 4f^5 6s\) electronic transitions are not allowed, in the electric dipole approximation they could become allowed through the distortion of the site symmetry of the \(Sm^{2+}\) ions and/or through a mechanism in which the states of the \(6s\) electron are strongly perturbed by the crystalline environment. The occurrence in the spectra of the E-bands is attributed to this type of mechanism. A model which adequately explains this conceives the \(6s\) atomic orbitals as overlapping with the \((n+1)s\) atomic orbitals of the ligand ions resulting in the formation of \(\sigma\) bonding...
and $\sigma^*$ anti-bonding MO's.

Detailed analysis of the absorption spectrum of each of the crystal systems shows a satisfactory agreement between the predicted and observed energy level positions. Discrepancies between the calculated and observed relative transition intensities are explained on the basis of the approximations and assumptions made in the theoretical calculations. It is believed that better agreement between theory and experiment could be obtained if the electronic states of the $4f^6(6^F)5d$ sub-configuration were included in the calculation. As a refinement to this work, this is suggested for future work. For more significant improvement to be obtained, a reliable way of estimating the effect of the orthohombic distortion on intensity distribution has to be devised. Further refinement could be achieved if the absorption spectra are measured at temperatures lower than 77 K, preferably 4.2 K. This will eliminate the chance of higher levels of the $^7F_J$ manifold of the $4f^6$ configuration being thermally populated.

The values of $Dq$ obtained for $Sm^{3+}$ ions in the crystals not only show a dependence on the nature of the anions of the host crystal but also follows an $r_p^n$ power relationship with lattice parameter $d$, for a given alkali metal series, $r_p$ being $-2.428 \pm 0.005$ for the potassium series and $-2.424 \pm 0.004$ for the rubidium series.

Equally host dependent are the values of Slater-Condon and spin orbit parameters that give the best fit between experiment and theory for each of the crystal hosts. The values of $F_2$ and $G_3$ follow the same spectrochemical series as $Dq$. 
Chapter 6

The Effect of Thermal Annealing on the Absorption Spectra of $RbBr : Yb^{2+}$ Crystals

6.1 Introduction

All along, the orthorhombic distortion of the octahedral crystal field at the site of the substitutional $Yb^{2+}$ ions has been ignored. It has been found that the octahedral approximation used is quite reasonable. But at a point during the study, it was considered worthwhile to check out this approximation using a certain procedure.

When a crystal is doped at a high temperature and then quenched, it is assumed that the incorporated impurity ions are frozen in at that state and at the sites in which they were at doping temperature. Consequently they are assumed to be atomically dispersed within the crystal, each impurity ion being out of range of the influence of the others.

However, it is now clear that in the case of a divalent impurity ion in an alkali halide crystal, at room and lower temperatures, a cation vacancy is needed most probably at a cation lattice site close to the site of the substitutional impurity ion so as to preserve local charge neutrality. But at high temperatures (about 300 °C) it has been shown [301] that for $Eu^{2+}$ in $KCl : Eu^{2+}$ system, any charge
compensation need not be localized and that the effective local symmetry of the substitutional impurity ion is octahedral. The vacancies are conceived as moving in such a manner that they are not attached to any particular impurity ion. Using the above experimental evidence as a guide, it was decided to check the possibility of obtaining the high temperature spectra of $RbX : Yb^{2+}$ ($X=I, Br, Cl$) crystals and of comparing them with those of quenched crystals measured at room and liquid nitrogen temperatures. While in pursuit of this idea, it was recognised that the effect of thermal broadening of the absorption bands could obscure the weak bands, particularly the B-bands. Nevertheless, it was hoped that the high temperature spectra could be detailed enough to make comparison possible.

Although the results of the high temperature measurements that followed were inconclusive, the chance finding that the room temperature spectrum of $RbX : Yb^{2+}$ crystal cannot be recovered after measurements were done at temperatures above $200^0 C$ opened up new grounds for investigation. Indeed, there was evidence that $Yb^{2+}$ ions exist in different phases in these crystals at different elevated temperatures.

In this chapter, therefore the background to this evidence is reported and the results of subsequent experiments performed using $RbBr : Yb^{2+}$ single crystals subjected to a variety of heat treatments are also reported and discussed.

6.2 Background to heat treatment experiments

6.2.1 High temperature spectra of $RbBr : Yb^{2+}$ crystals

The high temperature experiments were designed to measure the absorption spectra of $Yb^{2+}$ ions in $RbX : Yb^{2+}$ crystals using the optical absorption cell already described. It was hoped that the site symmetry of the $Yb^{2+}$ ions would approximate more closely to the octahedral symmetry assumed in the calculations. Incidentally, the room temperature spectrum of the crystals changed after measurements at temperatures above $200^0 C$. Further measurements became difficult because on subsequent measurements, previous high temperature spectra could not be recovered. It was suspected therefore that the crystals could have changed in form as
the temperature was being raised. A decision was taken to obtain spectra at high enough temperature as 550°C since the same situation as that noted above was observed at about 350°C.

Unfortunately, the absorption spectra of the crystals at temperatures above 375°C could not be measured using the Varian DMS-90 UV-visible spectrophotometer. This was because infra-red radiation was emitted by both the framework of the optical cell and the sample and this made the response of the photo cell of the spectrophotometer unreliable. There was also prospects of damage to the machine. However, the high temperature spectra of RbBr : Yb²⁺ crystals are reported below.

As the temperature of the crystal was being raised, A2 and A6-bands of Yb²⁺ in RbBr : Yb²⁺ crystals started to shift to shorter wavelengths while the C4 band started to shift to longer wavelengths. The B-bands however became enveloped within the long wavelength edge of the C-bands. But the phenomenon of interest started at about 200°C at which temperature the A-bands started to shift to longer wavelengths and this latter trend continued until a temperature of 358°C was reached. Above this temperature no further measurements were taken for reasons already explained. Fig 6.1 shows the spectra of a RbBr : Yb²⁺ crystal at four different temperatures. It illustrates clearly the points previously made. Another interesting finding is that when the spectrum of a sample cooled slowly from a temperature above 200°C to room temperature was measured, the original room temperature spectrum (vide Fig 6.1, trace (a)) could not be reproduced. Fig 6.2 illustrates this point. It shows the spectra of the sample of RbBr : Yb²⁺ cooled to room temperature from 252°C and 354°C. It can be seen that the same bands appear as in the original room temperature spectrum but that these bands are shifted in position. For example the A-bands shift to longer wavelengths while E-bands to shorter wavelengths with the B-bands becoming better resolved. But when the spectrum of the sample was measured at LNT after being slowly cooled from 354°C, the difference between the spectrum of the quenched crystal and that of the slow cooled sample becomes more striking. To illustrate this, Fig 6.3 shows the spectrum of the slow cooled sample recorded at LNT. Evidently additional absorption bands have appeared. In fact each of the bands A2, A6, E1 and E2 appears to have a
Fig 6.1 Optical absorption spectra of \( \text{RbBr : Yb}^{2+} \) crystals at different temperatures.
Fig 6.2 Room temperature optical absorption spectra of a RbBr : Yb$^{2+}$ crystal slowly cooled from (b) 287°C (c) 354°C. (a) is room temperature spectrum of a freshly doped sample.
Fig 6.3 Optical absorption spectrum at liquid nitrogen temperature of a RbBr : Yb²⁺ crystal at slow cooled from 354⁰ C to room temperature.
companion band designated as U2, U6, W1 and W2 in Fig 6.3. The dotted traces in the figure show the decomposed low energy bands if the background absorption is subtracted. An estimate of the intensity of U6 band relative to U2 band gives values of 43 and 100 which are comparable to values of 49 and 100 for A6 and A2 bands respectively, in the spectrum of the quenched crystal. Quite remarkably, for the spectrum in Fig 6.3, the intensity of A2-band relative to U2-band is 100:42 while that of A6-band relative to A2-band is 100:42 also.

Tables 6.1 and 6.2 summarise the highlights of the results of this section. Included for comparison are columns for positions of bands in the spectra of quenched crystals at both RT and LNT. The last column in Table 6.1 give the separation of the A2 and C4 bands and is denoted by the parameter \( \nabla \). The same parameter values are given in the last row of Table 6.2. It is worth noting that when the slow cooled sample was heated to 600\(^\circ\) C for two hours and quenched, the original room and liquid nitrogen temperature spectra were reproduced.

6.2.2 Interpretation and discussion of the results of the high temperature measurements

It has been noted that at temperatures below 200\(^\circ\) C but above room temperature, there is a compression of the \( \text{Yb}^{2+} \) bands in the spectra of \( \text{RbBr : Yb}^{2+} \) as evidenced by relative shifts in A- and C- bands in opposite directions. Heating a sample of the crystal causes an increase in its lattice parameter \( d \) and hence the crystal field strength \( 10Dq \) is expected to decrease. Taking a hint from the coupling scheme schematically represented by Fig 4.10, the parameter \( \nabla \) is seen to be related to \( 10Dq \) in the sense that the two parameters change in the same direction. In the temperature range mentioned above, \( 10Dq \) is therefore expected to have decreased. Thus the decrease in the value of \( \nabla \) reported in the last section is expected.

But the increase in \( \nabla \) at temperatures above 200\(^\circ\) C to values above its room temperature value runs against this line of reasoning since it is expected to decrease further. One explanation for this could be that the oxidation state of the ytterbium ions could have changed. The fact that the basic structure of the spectrum of \( \text{Yb}^{3+} \) ions in octahedral environment was still observed eliminates this possibility. A more
Table 6.1 Spectral Positions of A2-, A6- and C4-Bands of Yb$^{2+}$ Ions in RbBr : Yb$^{2+}$ Crystal Matrix at Different Elevated Temperatures.

Last column gives values of $\nabla$ Parameter.¹

<table>
<thead>
<tr>
<th>Measurement Temperature °C</th>
<th>A2-band</th>
<th></th>
<th>A6-band</th>
<th></th>
<th>C4-band</th>
<th></th>
<th>$\nabla$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wavelength (Å) Spectral Energy (10$^{-3}$ cm$^{-1}$)</td>
<td></td>
<td>Wavelength (Å) Spectral Energy (10$^{-3}$ cm$^{-1}$)</td>
<td></td>
<td>Wavelength (Å) Spectral Energy (10$^{-3}$ cm$^{-1}$)</td>
<td></td>
<td>(10$^{-3}$ cm$^{-1}$)</td>
</tr>
<tr>
<td>RT</td>
<td>375.5</td>
<td>26 631</td>
<td></td>
<td>337.0</td>
<td>29 674</td>
<td></td>
<td>251.0</td>
</tr>
<tr>
<td>165</td>
<td>372.0</td>
<td>26 882</td>
<td></td>
<td>336.0</td>
<td>29 762</td>
<td></td>
<td>251.0</td>
</tr>
<tr>
<td>235</td>
<td>377.0</td>
<td>26 525</td>
<td></td>
<td>341.0</td>
<td>29 326</td>
<td></td>
<td>252.0</td>
</tr>
<tr>
<td>252</td>
<td>377.0</td>
<td>26 525</td>
<td></td>
<td>341.0</td>
<td>29 326</td>
<td></td>
<td>252.0</td>
</tr>
<tr>
<td>354</td>
<td>380.0</td>
<td>26 316</td>
<td></td>
<td>341.5</td>
<td>29 283</td>
<td></td>
<td>252.0</td>
</tr>
</tbody>
</table>

¹Spectral positions were not obtained from second derivative spectra.
Table 6.2 Positions of Absorption Bands of Yb$^{2+}$ ions in a sample of RbBr:Yb$^{2+}$ Crystals Slow Cooled from 252°C and 354°C and Measured at Room and Liquid Nitrogen Temperatures. ¹

<table>
<thead>
<tr>
<th>Band</th>
<th>Room Temperature Spectrum</th>
<th>Liquid Nitrogen Temperature Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QSDT</td>
<td>SCS252</td>
</tr>
<tr>
<td></td>
<td>Wavelength</td>
<td>Spectral Energy $\lambda$ (nm) $e \text{ cm}^{-1}$</td>
</tr>
<tr>
<td>A2</td>
<td>375.5</td>
<td>26 631</td>
</tr>
<tr>
<td>U2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>A6</td>
<td>337.0</td>
<td>29 674</td>
</tr>
<tr>
<td>U6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>E1</td>
<td>321.0</td>
<td>31 153</td>
</tr>
<tr>
<td>W1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>B1</td>
<td>281.0</td>
<td>35 587</td>
</tr>
<tr>
<td>B2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C4</td>
<td>251.0</td>
<td>39 841</td>
</tr>
<tr>
<td>W2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>E2</td>
<td>240.0</td>
<td>41 667</td>
</tr>
</tbody>
</table>

KEY: QSDT Sample quenched from doping Temperature
SCS252 Same sample heated to 252°C and slow cooled to room temperature
SCS354 Same sample heated to 354°C and slow cooled to room temperature

¹No second derivative spectra were measured for this sample.
likely explanation seems to be that the co-ordination environment of the Yb$^{3+}$ ions at these elevated temperatures could have changed to a lattice configuration not very different from their co-ordination environment when the crystal was quenched from doping temperature. In this respect, the increase in V shows that the co-ordinating ions may be separated from the substitional ion by a smaller distance. A possible test of this idea would be to cool the sample to room temperature and again observe the spectrum, hoping that whatever changes that had taken place would still be stable. That the original room temperature spectrum was not recovered when the sample was cooled from 356°C to room temperature strengthens the above model. There exists the possibility, therefore, that precipitates of YbBr$_2$ crystals or crystallites or some other precipitate complexes involving association of Yb$^{3+}$, Br$^-$ or even Rb$^+$ ions could have been formed. In whatever association Yb$^{3+}$ ions must have entered, one point seems to be evident, and that is, that at least some of the Yb$^{3+}$ ions occupy an environment that is effectively octahedral since the basic octahedral spectrum is still observed.

The additional energy bands observed in the LNT spectrum (vide Fig 6.3) of the slow cooled sample suggests that the Yb$^{3+}$ ions could exist in two separate co-ordination environments. The positions of U2, U6 and W1 bands are almost the same as those of A2, A6 and E1 - bands in the LNT spectrum of a quenched crystal. That the B and C bands do not have obvious ‘comparison’ bands could be because the possible companion bands are overlapped by them. If the above proposition is correct, the U- and W- bands are then very likely to be due to Yb$^{3+}$ ions in a co-ordinating environment similar to that of Yb$^{3+}$ ions in quenched samples, while the other bands now labelled A2, A6, E1 and so on are due to Yb$^{3+}$ ions in a different co-ordination environment.

To further this view is the fact that on heating the same slow cooled RbBr : Yb$^{3+}$ crystal sample to a temperature of 600°C, for two hours and quenching it, the original spectra both at RT and LNT are recovered. It can be argued that at 600°C, the Yb$^{3+}$ ions have again got dispersed within the crystal and that at some temperature the precipitate structures or complexes giving rise to the spectra shown in Fig 6.3 become unstable. The above propositions motivated the experiments
reported in the next section.

6.3 Precipitate formation and dissolution kinetics

6.3.1 Introduction

The exposition made in the last section strongly suggests the possibility of $Yb^{2+}$ ions existing in two separate phases in the sample of $RbBr : Yb^{2+}$ cooled slowly from 354°C. To test this proposition two different types of experiments were undertaken. One type attempts to answer the question as to whether it is the slow-cooling process that caused the formation of what is now suspected to be precipitate complexes and whether at temperatures below 600°C such structures/complexes could still be formed even if the crystal sample is quenched. The other experiment was designed to answer the question as to the temperature range outside which the complexes or precipitate structures become unstable and so dissolve.

In this section, the procedure for carrying out these experiments and the results obtained are outlined.

6.3.2 Experiments on formation of precipitate structures

In line with question one raised above, the following experimental procedure was adopted. A sample of $RbBr : Yb^{2+}$ crystal quenched from doping temperature was heated for two hours at a chosen temperature in the range 50°C – 550°C and quenched again. The spectrum of the sample was recorded at both RT and LNT. The same sample was again heated for two hours at the doping temperature before being quenched again, the idea being to dissolve any precipitates or complexes formed. Room and liquid nitrogen temperature spectra of the quenched sample were again taken. Using the same sample the procedure was repeated at different annealing temperatures in the range already indicated. However there was one difficulty with this method. A sample used in this way tends to lose some of the $Yb^{2+}$ ions particularly during annealing at doping temperatures. To ameliorate this problem, a large sample was doped and cleaved into two along its length. Each half was used separately as described above. The order of doing the experiments was
such that each sample was used for temperature within the upper and lower halves of the temperature range.

Results of the experiments show that the structure of the spectrum of $RbBr : Yb^{2+}$ crystal and the positions of the absorption bands depend on annealing temperature. Fig 6.4 indicates the room temperature spectra of the $RbBr : Yb^{2+}$ twin samples at five different annealing temperatures. In all, the experiments were done at thirteen different annealing temperatures. Choice of the spectra in Fig 6.4 depends on whether they are representative of those at temperatures close to the annealing temperature at which it was produced or whether it provides a new information. The main feature depicted is the high sensitivity of the A2 and A6-bands to annealing temperatures. Whereas for an annealing temperature of $150^\circ$ C, A2 band is displaced to lower energies by $298\, \text{cm}^{-1}$ from its position for freshly doped crystal, it is displaced also to lower energies by $723\, \text{cm}^{-1}$ for annealing temperature of $325^\circ$ C. The A6 band also experiences appreciable displacements to the red at these temperatures. Other features include the shift of E1 band to higher energies and the change in the structure of the high energy bands at annealing temperatures above $300^\circ$ C.

However, the LNT spectra of the same samples annealed at temperatures indicated in Fig 6.4 reveal a lot more of what structural changes have taken place in the spectra as a result of thermal ageing of the crystal. These are clearly illustrated in Fig 6.5. Evidently, the most striking structural changes start to occur at an annealing temperature of $325^\circ$ C. At that temperature, apart from an increased shift in the positions of A- and E1- bands, the companion U- and W- bands appear. In fact, thereafter, there is a progressive increase in the intensities of the U2, U6 and W1-bands, relative to A2, A6 and E1 bands respectively as annealing temperature increases. The spectrum at $450^\circ$ C annealing temperature attests to this fact. To illustrate this point further, Fig 6.6 shows the LNT spectrum of a sample annealed at $500^\circ$ C. Clearly, the intensities of the A- and E-bands are comparable to those of the companion U- and W- bands respectively.

Another point emerging from these results is that at an annealing temperature of $550^\circ$ C, the spectrum (either at room or liquid nitrogen temperature) is restored
Fig 6.4 Room temperature optical absorption spectra of RbBr : Yb\(^{3+}\) twin crystals quenched from different annealing temperatures. Crystals were quenched from (a) Doping temperature (b) 150\(^\circ\) C (c) 300\(^\circ\) C (d) 325\(^\circ\) C (e) 450\(^\circ\) C (f) 550\(^\circ\) C.
Fig 6.5 Liquid nitrogen temperature optical absorption spectra of RbBr: Yb²⁺ twin crystals quenched from different annealing temperatures. Crystals were quenched from (a) Doping temperature (b) 150° C (c) 300° C (d) 325° C (e) 450° C (f) 550° C.
Fig 6.6 Absorption spectrum measured at liquid nitrogen temperature of a RbBr : Yb²⁺ crystal annealed at and quenched from 500°C to room temperature.
to that of a freshly doped sample. This can be seen by comparing traces (f) and (a) in Fig 6.5.

Table 6.3 shows the positions of A2 and C4-bands at various annealing temperatures while Fig 6.7 depicts graphically the spectral positions of the A2-band of the room temperature spectra at these temperatures. The positions marked x and connected to other points by broken lines are not experimental points. Their significance will be discussed in the section on discussion.

6.3.3 Experiments on dissolution of precipitate structures

The second type of experiment was carried out as follows. A sample of $RbBr : Y^{2+}$ crystal quenched from doping temperature was again heated at doping temperature for one hour and slowly cooled to room temperature. Slow cooling consists in lowering the temperature of the furnace to $500^\circ C$ at a rate of $50^\circ C$/hour. After two hours at that temperature, the furnace was switched off and allowed to cool to room temperature. This took about fourteen hours. The sample of crystal was then heated to a chosen temperature in the range $50^\circ - 550^\circ C$ for two hours and quenched. Measurement absorption spectra at RT and LNT were then made and the procedure repeated for another annealing temperature. Only one sample was used throughout. The recorded LNT absorption spectra are displayed in Fig 6.8 for fair representative annealing temperatures. The figure includes the spectrum of the slow cooled sample.

Obviously there is a remarkable similarity between the spectrum of the sample slow cooled from doping temperature and that slow cooled from $354^\circ C$ obtained during the high temperature measurements. The main difference between them, however, is that the companion bands observed in the latter case are much more pronounced than in the former. From Fig 6.8, it appears that constant temperature annealing at temperatures of $250^\circ C$ and below does not affect the structure of the bands and that there are only minor shifts in the positions of the A- and E-bands. At an annealing temperature of $300^\circ C$, a real change appears at the U2-, U6- and W1-bands gain in intensity at the expense of the A2-, A6- and E1-bands. This trend continues until a temperature of $550^\circ C$ is reached at which the normal $Y^{2+}$
Fig 6.7 Variation of the spectral position of the A2-band at room temperature in the spectra of RbBr : Yb³⁺ crystals quenched from different annealing temperatures.
Fig 6.8 Absorption spectra measured at liquid nitrogen temperature of a RbBr:Yb$^{3+}$ crystal slow cooled from doping temperature and annealed at and quenched from different elevated temperatures.
Table 6.3 Spectral Positions of A2 and C4 Bands at Room and Liquid Nitrogen Temperatures for Different Annealing Temperatures in the Formation Kinetics Experiments

<table>
<thead>
<tr>
<th>Annealing Temperature °C</th>
<th>Spectral Positions</th>
<th>( \gamma ) at LNT ( \times 10^3 \text{cm}^{-1} )</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RT</td>
<td>LNT</td>
</tr>
<tr>
<td></td>
<td>( \times 10^2 \text{cm}^{-1} )</td>
<td>( \times 10^3 \text{cm}^{-1} )</td>
</tr>
<tr>
<td>20</td>
<td>26.60</td>
<td>26.47</td>
</tr>
<tr>
<td>50</td>
<td>26.56</td>
<td>26.49</td>
</tr>
<tr>
<td>100</td>
<td>26.28</td>
<td>26.25</td>
</tr>
<tr>
<td>150</td>
<td>26.30</td>
<td>26.20</td>
</tr>
<tr>
<td>200</td>
<td>26.25</td>
<td>26.16</td>
</tr>
<tr>
<td>300</td>
<td>26.25</td>
<td>26.04</td>
</tr>
<tr>
<td>325</td>
<td>25.87</td>
<td>25.79</td>
</tr>
<tr>
<td>350</td>
<td>25.87</td>
<td>25.77</td>
</tr>
<tr>
<td>400</td>
<td>25.87</td>
<td>25.74</td>
</tr>
<tr>
<td>450</td>
<td>25.89</td>
<td>25.72</td>
</tr>
<tr>
<td>500</td>
<td>25.87</td>
<td>25.69</td>
</tr>
<tr>
<td>550</td>
<td>26.58</td>
<td>26.53</td>
</tr>
</tbody>
</table>
spectrum of a freshly doped sample of RbBr: Yb$^{2+}$ crystal is recovered (compare Figs 6.8(a) and 6.8(f)).

Table 6.4 gives the positions of the A2-band at both RT and LNT for the spectra corresponding to various annealing temperatures; while Fig 6.9 graphically illustrates the shifts in the spectral position, measured at RT, of the A2-band at these temperatures. As in Fig 6.7, the points marked x and connected by broken lines are not experimental points.

6.4 Interpretation of results and discussion

The results of the last section indicate that thermal ageing of a sample of RbBr: Yb$^{2+}$ crystal causes changes in the absorption spectrum of the crystal and that the structural change in the spectrum depends on the annealing temperature. Four temperature zones can clearly be identified; namely from room temperature to 30$^\circ$ C, 100$^\circ$ - 300$^\circ$ C, 325$^\circ$ - 500$^\circ$ C and 550$^\circ$ C - doping temperatures. Since the spectra obtained for the two temperature ranges RT - 50$^\circ$ C and 500$^\circ$ C - doping temperatures are similar it can be assumed that the Yb$^{2+}$ ions experience the same type of coordination environment in both temperature ranges. In this case the Yb$^{2+}$ ions are assumed to be dispersed within the crystal and are associated with cation vacancies to form I-V dipoles. It is also possible that some of the dipoles form aggregates in pairs or higher order aggregates like trimers. However, Yb$^{2+}$ ions in dispersed state corresponds to the model used for the computation and the effective symmetry suggested by the results of the computation is octahedral. Divalent ytterbium ions in this type of lattice configuration in which they are dispersed within the crystal shall be designated as type I complex.

In the temperature range 100$^\circ$ - 300$^\circ$ C Yb$^{2+}$ ions very likely experience a coordination environment different from that of type I complex. Evidence of this comes from the finding that the A2- and A6- bands of the spectrum of RbBr: Yb$^{2+}$ crystal annealed at a temperature in this range shift to longer wavelengths with small shifts of C4-band, resulting in an increase in $\nabla$. As previously explained an increase in $\nabla$ is indicative of an increase in $10Dq$. However, the overall structure of the spectrum is still preserved which means that the effective site symmetry of the
Table 6.4 Spectral Positions of A2 Band at Room and Liquid Nitrogen Temperatures for Different Annealing Temperatures in the Dissolution Kinetics Experiments

<table>
<thead>
<tr>
<th>Annealing Temperature °C</th>
<th>Spectral Positions</th>
<th>RT</th>
<th>LNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wavelength λ (nm)</td>
<td>Spectral Energy ε(cm⁻¹)</td>
<td>Wavelength λ (nm)</td>
</tr>
<tr>
<td>20</td>
<td>385.25</td>
<td>25 957</td>
<td>387.75</td>
</tr>
<tr>
<td>50</td>
<td>385.00</td>
<td>25 974</td>
<td>387.50</td>
</tr>
<tr>
<td>100</td>
<td>385.00</td>
<td>25 974</td>
<td>385.50</td>
</tr>
<tr>
<td>150</td>
<td>385.50</td>
<td>25 940</td>
<td>386.50</td>
</tr>
<tr>
<td>200</td>
<td>385.25</td>
<td>25 957</td>
<td>385.50</td>
</tr>
<tr>
<td>250</td>
<td>385.50</td>
<td>25 940</td>
<td>386.25</td>
</tr>
<tr>
<td>300</td>
<td>385.50</td>
<td>25 940</td>
<td>387.75</td>
</tr>
<tr>
<td>350</td>
<td>385.50</td>
<td>25 873</td>
<td>388.50</td>
</tr>
<tr>
<td>400</td>
<td>385.50</td>
<td>25 873</td>
<td>388.50</td>
</tr>
<tr>
<td>450</td>
<td>386.00</td>
<td>25 907</td>
<td>389.00</td>
</tr>
<tr>
<td>500</td>
<td>386.00</td>
<td>25 907</td>
<td>389.00</td>
</tr>
<tr>
<td>550</td>
<td>376.00</td>
<td>26 631</td>
<td>376.50</td>
</tr>
</tbody>
</table>
Fig 6.9 Variation of the spectral position of the A2-band (measured at room temperature) in the spectra of sample of $RbBr : Yb^{2+}$ crystal slow cooled from doping temperature but annealed and quenched from different temperatures.
$Yb^{2+}$ ions could approximate to octahedral.

Further evidence in support of the proposition that some form of precipitation takes place when the sample is heated in this temperature regime comes from the fact that the absorption spectra obtained for this temperature range (vide Figs 6.4 and 6.5) are very similar both in structure and band positions to that of a time-aged sample of $RbBr : Yb^{2+}$ kept under laboratory conditions for 23 months. Fig 6.10 clarifies this point. The time-aged sample had no previous thermal history. Within a time scale of 23 months $Yb^{2+}$ ions could move in the crystal by a diffusive process during which some form of aggregation of the ions in the crystal could take place. The precipitate structure or complex formed in this temperature regime shall be designated as type II complex.

What really are type II complexes? A promising candidate for consideration is the Suzuki phase of $Yb^{2+}$ ions in $RbBr$. Firstly, like the dihalide-type plate-like precipitate phase, it is metastable and can even be formed at room temperature over a period of time. Secondly, Sors and Lilley [151] have established that a condition for the formation of the Suzuki phase of a divalent impurity cation in an alkali halide crystal is that the ratio of the radius $R^{2+}$ of the divalent impurity ion to $R^{+}$ that if the alkali ion be less than or equal 1.2. For the case at hand, the ratio is less than unity. Insufficient as the above condition may be, the model is further strengthened by the evidence that the parameter $V$ is larger than for the $Yb^{2+}$ ions dispersed in the crystal. For Suzuki phase precipitates, the separation between the divalent impurity ion and an anion is smaller than in the host crystal matrix since the anions in the unit cell are displaced towards the cations. Actually, it has been found experimentally that for the case of LiF:MgF$_2$ system, the displacement, $\delta$ of $F^-$ ions towards the $Mg^{2+}$ is 0.01d [149] while for NaCl : CdCl$_2$ system $\delta = 0.014d$ [319]. Moreover, although less importantly, the formation of Suzuki phase of Eu$^{2+}$ in RbBr crystals has been reported.

Finally the octahedral structure of the spectrum is preserved in this annealing temperature regime. In the Suzuki phase, the $Yb^{2+}$ ions are each coordinated to six bromide ions as in $RbBr : Yb^{2+}$ crystal system with no precipitates. The unit cell of the stiochiometric unit $6RbBr : YbBr_2$ is basically face centred cubic. In other
Fig 6.10 Absorption spectra of a sample of RbBr : Yb$^{2+}$ crystal stored under laboratory conditions for 23 months. (a) Room temperature spectrum. (b) Liquid nitrogen spectrum.
words, the site symmetry of a divalent impurity ion in the Suzuki phase is effectively octahedral.

It is the view of the present author, therefore, that the formation of the Suzuki phase of $Yb^{2+}$ in $RbBr : Yb^{2+}$ crystals could be responsible for the absorption spectra observed in the temperature 100° - 300° C. However, this assignment is tentative and needs confirmation through further investigation.

In the 325° - 500° C temperature regime, results of the thermal ageing experiments show that the parameter $\nabla$ is further increased indicating that there is an increase in the value of $10Dq$. Although the overall structure of the octahedral spectrum is preserved when the $U$- and $W$- bands are subtracted from the spectrum, the increase in $\nabla$ is suggestive of change in the environment of the $Yb^{2+}$ ions. The likely conclusion is that after thermal annealing in this temperature range, some of the $Yb^{2+}$ ions are coordinated in an environment that is close to octahedral symmetry but in which the $Yb^{2+}$ ions are separated from the $Br^-$ ions by a distance smaller than $\frac{d}{2}$ ($d = 6.854$ Å). Divalent ytterbium ions are therefore, considered to be involved in some form of precipitate state which shall be designated as type III complex. Interpreting the $U$- and $W$- companion bands as being due to type I complexes then completes the proposition that the spectra of $RbBr : Yb^{2+}$ system produced this range of annealing temperatures are due to $Yb^{2+}$ ions in two separate phases.

The model therefore envisages that type III complex is a stable phase in the temperature range 300° - 300° C as can be deduced from the results of the dissolution experiments. In that temperature range, most of the $Yb^{2+}$ ions in the slow cooled sample are in the stable phase and only show signs of dissolution at about 300° C. As was found that at this latter temperature, the $U$- and $W$- companion bands start to appear and grow in intensity progressively with temperature increase until a temperature of 500° C at which their intensities become comparable to those of the $A_2$, $A_6$- and $E_1$- bands. At 550° C and above, the spectrum of type I complex is reproduced, and in this case the $A$- and $E$- bands can be said to be coincident with the companion bands.

Looking at the model from the point of view of formation kinetics, it can be
said that type III complex could not be formed at temperatures below 300° C. Being a stable structure, it probably requires higher activation energy for formation than could be thermally generated at those temperatures. At about 325° C the increased displacement of \( A_2^-\) and \( A_6^-\) bands and the appearance of the \( U^-\) and \( W^-\) companion bands suggest a phase transition which indeed is sharp. This means a sudden transformation in the precipitate phase of the \( Yb^{2+}\) ions from a type II complex to type III complex. However increase in 'formation' temperature causes fewer \( Yb^{2+}\) ions to be in type III complex since the intensities of \( U^-\) and \( W^-\) bands relative to \( A^-\) and \( E_1^-\) bands respectively increase with temperature. At 550° C there appears to be little chance of type III complex forming. In the 325° – 500° C temperature range therefore, type III complex is unstable. These two viewpoints are consistent with the model of type III complex as a stable precipitate at temperatures below 300° C which coexist with type I complex structures in the temperature range 300° – 500° C.

It is being suggested that type III complex is a small precipitate involving \( Yb^{2+}\) ions, in which these ions experience a coordination environment that is effectively octahedral. In addition, the separation of \( Yb^{2+}\) and \( Br^-\) ions in this complex would be smaller than that between the same ions in type I complex.

The question arises as to what type of precipitates type III complexes are. A likely response is that they probably consist of \( YbBr_2\) precipitates. Generally dihalides of divalent metal ions are known to be stable substances. Knowledge of the crystal structure and lattice parameters of \( YbBr_2\) could have been of great help in proposing a definitive model. Unfortunately, the information is not available as noted earlier. Judging by the sizes of \( Yb^{2+}\) and \( Br^-\) ions, the Wyckoff radius ratio \( \frac{\text{radius}}{\text{radius}}\) ( \( \left( \frac{0.477}{0.41} \right) \) ) is greater than 0.41 which is the minimum value of the ratio of oppositely charged ions to be 6-fold coordinated in a crystal matrix [320]. It is therefore quite possible that \( YbBr_2\) has crystal structure which is a distorted form NaCl structure. For obvious reasons of charge balance, \( YbBr_2\) may not be isomorphic with NaCl.

However, this dilemma can only be resolved by studying the morphology of the precipitates using optical or electron microscopy in conjunction with X-ray diffraction techniques. It must be noted that attempts were made to obtain micrographs...
of the precipitate structures in the samples studied using the ultra-fot microscope. The precipitates could not be identified. One difficulty in this regard was that the process of cleaning and polishing the samples interfered with the results. Doping of samples using the metal-vapour phase diffusion technique as done in this study has the advantage that the ions do not diffuse far into the bulk of the crystal. From the point of view studying precipitate structures using X-ray diffraction technique or microscopy this is a disadvantage. Absorption spectra of well polished doped samples only showed very weak bands, indicating that most of the $Yb^{2+}$ ions had been removed during the polishing process.

It is, therefore, suggested that any further study of the precipitate structures of $Yb^{2+}$ in alkali halide crystals should employ bulk doping techniques so that optical or electron microscopy and X-ray diffraction techniques can easily be incorporated into the study design.

In line with the models discussed above, some picture can now be created of the kinetic processes involving $Yb^{2+}$ ions in $RbBr : Yb^{2+}$ crystal during the high temperature measurements. Increased temperature of the crystal causes motion of the lattice ions, including the $Yb^{2+}$ ions. Although $Yb^{2+}$ ions are heavy, diffusion can be facilitated through jumps to cation vacancy sites. At temperatures in the range $100^\circ$ - $300^\circ$ type II complexes are easily formed. Being identified as Suzuki phase of $Yb^{2+}$ ions in $RbBr : Yb^{2+}$ which are metastable, type II complexes offer a fairly easy route to the aggregation of $Yb^{2+}$ ions to a more stable structure which would probably require higher activation energy to form. For the Suzuki phase of $Yb^{2+}$ ions to form, only some rearrangement of the cations (both host and impurity) and the extrinsic cation vacancies was required. This would more easily be achieved than a dissociation of cation vacancies and an aggregation of $Yb^{2+}$ and $Br^{-}$ ions to form a more stable structure.

At higher temperatures however, this becomes possible. The Suzuki phase was no longer a necessary route. This Suzuki phase was no longer a necessary route. This explains why high temperature annealing of a freshly doped sample at temperatures above $325^\circ$ C followed by quenching produced the same effect on the absorption spectrum as cooling the sample slowly from $354^\circ$ C. Slow cooling process, there-
fore was not the cause of the change in the spectrum of the sample used for the high temperature measurement. Samples quenched from comparable temperatures gave the same result. To obtain high temperature spectrum corresponding to \( Yb^{2+} \) was dispersed in substitutional lattice sites, it would have been necessary to do measurements at temperatures of 550°C or above.

6.5 Conclusions

Divalent ytterbium ions exist in three separate phases in \( RbBr : Yb^{2+} \) crystals, in the temperature range 20°C - 500°C. These phases are designated as type I, type II and type III complexes. In type I complex, ytterbium ions are dispersed in the crystal lattice and occupy substitutional cation sites. Each \( Yb^{2+} \) ion is in association with a cation vacancy in a nearest neighbour or next nearest neighbour cation site, thereby forming a I-V dipole. Type II complex is tentatively identified as the metastable Suzuki phase of \( Yb^{2+} \) ions in the \( RbBr : Yb^{2+} \) crystal system. Anticipating that the effective local symmetry of \( Yb^{2+} \) ions in the crystal of \( YbBr_2 \) is octahedral or distorted octahedral, type III complex is tentatively assigned as a precipitate of \( YbBr_2 \) in \( RbBr : Yb^{2+} \) system. An additional proviso is that the separation of \( Yb^{2+} \) and \( Br^- \) ions be smaller in \( YbBr_2 \) crystals than in \( RbBr : Yb^{2+} \) system.

Slow cooling of a sample of \( RbBr : Yb^{2+} \) crystal from doping temperature to room temperature results in the formation of a precipitate structure of type III. But when a freshly doped sample of \( RbBr : Yb^{2+} \) is heated to a temperature of about 354°C and cooled slowly to room temperature the formation of type I and type III complexes result, the two phases of \( Yb^{2+} \) ions co-existing in the crystal.

Constant temperature annealing for a two hour period, of the sample of \( RbBr : Yb^{2+} \) at a temperature range of 100°C - 300°C produces a precipitate structure identified as type II complex. But in the temperature regime 300°C - 500°C thermal annealing process for the same duration causes the formation of two separate phases of \( Yb^{2+} \) ions, in \( RbBr : Yb^{2+} \). The two co-existing phases are type I and type III complexes.

When a sample of \( RbBr : Yb^{2+} \) crystal slow cooled from any temperature below
and including the doping temperature or a freshly doped sample of the same crystal is heated to a temperature of 550°C or above, and quenched, only type I complex results. Type III complexes are stable structures at temperatures below 300°C. In the temperature regime 300°C-500°C however some can be converted to type I complexes, the amount being converted depending on the annealing temperature.

From the foregoing, it can be concluded that any high temperature absorption spectrum at temperatures above 50°C and below 500°C will not represent that of Yb²⁺ ions dispersed in substitutional lattice sites. Rather it will represent that of Yb²⁺ ions in association with other ions and lattice vacancies in the crystal in form of type II or type III complexes noted above.
Chapter 7

Concluding Remarks and Summary

7.1 Introduction

This chapter contains some remarks on the kinetics of the formation of rare-earth impurity centres and the associated colour centres in alkali halide crystals. Since thermal bleaching procedure was adopted to eliminate the colour centres, a possible bleaching mechanism is suggested. The chapter concludes with a summary of the main findings of this work.

7.2 Incorporation of $\text{Sm}^{2+}$ and $\text{Yb}^{2+}$ ions into $\text{KX}$ and $\text{RbX}$ crystals

The doping process consists in heating the host crystals to temperatures between 25° - 50° C below their melting points in metal vapour. At such temperatures it is easy for the rare earth metal (RE) atoms to be deposited on the surface of the crystals. A chemical process ensures during which the RE atom is ionised by losing two electrons. Thus

$$RE_{\text{atom}} = RE^{2+} + 2e^- \quad (7.1)$$

The ion then diffuses into the crystal to occupy a substitutional cation site. At the same time, the electrons injected into the crystal diffuse further into the bulk of
the crystal. A number of possible processes may take place. Normally at elevated
temperatures, intrinsic cation and anion vacancies are formed in equal numbers
within the crystal [106,121]. The thermal process may be represented as

\[ MeX = Me^{+} + X^{-} + \Box + \bigcirc \]  

(7.2)

where \( \Box \) and \( \bigcirc \) are cation and anion vacancies respectively. The alkali (\( Me^{+} \)) and
halogen (\( X^{-} \)) ions which have left the lattice sites diffuse within the crystal. They
could take up appropriate vacancy sites and some could diffuse to the surface and
recombine.

With the introduction of a \( RE^{2+} \) into the crystal extra cation and anion vacan-
cies are created as it takes up a cation site. As a result there are a large number of
both intrinsic and extrinsic vacancies. The electrons injected into the crystal easily
become trapped at the site of the anion vacancies to form F-centres. Thus

\[ \bigcirc + e^{-} = \# \]  

(7.5)

where \( \# \) represents the F-centre

Since two electrons are injected for every rare earth atom that becomes ionised,
many more F-centres are likely to be formed than RE impurity centres. The latter
are very heavy and can diffuse only a short distance (0.5mm to 1.0mm) [6] into the
crystal during doping while the electrons, being light, can easily diffuse into the bulk
regions of the crystal.

At elevated temperatures, the impurity ions as well as the F-centres are dispersed
within the crystal. In order to maintain the local charge balance at the site of a \( RE^{2+} \)
impurity ion, a cation vacancy is proposed to situate at the nearest or next nearest
neighbour cation site [134 142]. On quenching the crystals to RT, the impurity and
colour centres are frozen in at their sites at high temperatures.

7.2.1 Thermal Bleaching Mechanism

Heating doped crystals of \( RbBr : Yb^{3+} \), \( Rbl : Yb^{3+} \), \( RbX : Sm^{2+} \) and \( KX : Sm^{2+} \)
to doping temperatures destroys the F-centres and other colour centres in these
crystals. The concentration of colour centres in \( RbCl : Yb^{3+} \) crystals is considerably
reduced by such a process. At such temperatures, thermal generation of cation and anion vacancies again takes place. It is possible that an F-centre dissociates into an anion vacancy and an electron according to the reverse reaction indicated in Eqn (7.3). The vacancy can be reoccupied by a halogen ion thereby destroying the defect centre at that locality while the electron can easily reduce an alkali ion by the latter capturing it. This is more likely to take place in regions close to the surface or close to an internal crack or surface. In fact a doped coloured crystal which has been heated for a few minutes (about 20 minutes) shows a large clear zone and a receding inner coloured bulk region. The reduced ion can then be deposited in the surface as an atom which again could inject an electron into the crystal and re-enters the crystal. Whichever of the two processes (reduction and re-oxidation) predominates determines the degree and effectiveness of the bleaching procedure. The reduction and re-oxidation process can be represented as

\[ Me^+ + e^- = Me_{atom} \]  

(7.4)

Such a mechanism as this still maintains the charge balance within the crystal.

It is also possible for some of the \( RE^{2+} \) ions to become reduced by capturing two electrons. This probably explains the reduced relative intensity of the absorption bands due to \( RE^{2+} \) ions after thermal bleaching since such a reduction is indicative of reduced impurity ion concentration. However during the short periods of thermal bleaching it seems that the reduction of the alkali ions predominates.

### 7.3 Summary

#### 7.3.1 Energy level structure of \( 4f^N5d \) configurations of \( Sm^{2+} \) and \( Yb^{3+} \) ions in RbX and KX crystals

In the main, the broad absorption bands in the spectra of \( RbX : RE^{2+} \) (\( RE^{2+} = Yb^{2+}, Sm^{3+} \)) and \( KX : Sm^{3+} \) crystals are ascribed to \( 4f^{N+1} \rightarrow 4f^N5d \) (\( N = 5 \) for \( Sm^{2+}, N = 13 \) for \( Yb^{3+} \)) transitions of the \( RE^{2+} \) ions in the crystal. Although the \( RE^{2+} \) ions occupy cation lattice sites, whose symmetry is \( C_{3v} \), it can be assumed that the effective symmetry at the site is octahedral, \( O_h \), with an orthorhombic
distortion. Using such an approximation and two different models for the coupling of the wavefunctions of the electrons of $\text{Yb}^{2+}$ and $\text{Sm}^{2+}$ ions, it was possible to establish a satisfactory fit between experiment and theory.

In the case of $\text{Yb}^{2+}$ ions, $J_{ij}$-coupled basis functions were used for the theoretical calculations and the results demonstrate conclusively that the multi–band structure of the experimental spectra are due to spin–orbit, direct Coulomb and exchange perturbation interactions acting on the electron system of the $\text{Yb}^{2+}$ ions. The reduced numerical value of the energy integrals $F_{ij}$, $G_{ij}$ and $\zeta_{ij}$ associated with these interactions when compared with the free ion values are explained as due to nephelauxetic effect. This is an interaction model which adduces a certain degree of delocalization of the electrons of the central ion with the consequential overlap of their wavefunctions with those of the ligand ions. Implied in this model is the role covalency and the overlap processes which are expected to be more important in less ionic crystals than the more ionic ones. Incidentally, the observed reductions follow the nephelauxetic series proposed by Schr"{a}ffer and Jorgenson [262] and further supports the explanation.

It was possible to establish a definite correspondence between the spectra of $\text{RbX : Sm}^{2+}$ and $\text{KX : Sm}^{2+}$ crystals and a theoretical spectrum computed using a model suggested by Yanase and Kasuya [92] for $\text{Eu}^{2+}$ ions in $\text{CaF}_2$ crystals. Assumed to be strongly perturbed by the crystal field in this model, the 5d electron states are better described in terms of crystal wavefunctions $\gamma_3$ and $\gamma_5$ which then couple with the electronic states of the $4f^5$ core configuration with the highest multiplicity. The coupling is through the direct Coulomb and exchange interactions. It is the strong crystal field interaction and the electrostatic interaction $H_{\text{el}}(f,f)$ however that define the observed groups of bands. Nevertheless, it was found that the structure of the band groups in the experimental spectra are due to the effects of spin–orbit interactions $H_{\text{so}}(f)$ and $H_{\text{so}}(d)$ as well as direct Coulomb and exchange interactions $H_{\text{el}}(f,d)$.

On the whole the detailed calculations for each of the crystal systems show reasonably good agreement with the experimental data. There are however, explainable discrepancies between the computed and observed relative transition intensities of
some of the assigned bands. The discrepancies are attributed to the effects of some of the approximations made in the calculation.

For any given alkali metal series, the $D_q$ values obtained for the $4f^N5d$ configurations of $Sm^{2+}$ and $Yb^{2+}$ ions in the crystal systems studied decrease as the ionicity of the crystal host decreases; that is, according to the sequence $Cl > Br > I$. When viewed from the point of view of lattice parameter $d$, $D_q$ values for the two electronic systems increase as $d$ decreases. In the case of crystals containing $Sm^{2+}$ ions, a definite $r^d_p (p = K, Rb)$ power law: $D_q \propto d^r$ was established for each alkali metal series, with $r_K = -2.428 \pm 0.005$ and $r_Rb = -2.424 \pm 0.004$. Also found is the fact that the centre of gravity of the $4f^{13}5d$ configuration of $Yb^{2+}$ ions shifts to lower energies as the ion enters the crystals. For $RbX : Yb^{2+}$ crystals, the established configurational depression increases as $d$ increases. Although it was not possible to estimate the depressions of the centre of the $4f^6(6FH)5d$ sub-configuration of $Sm^{2+}$ ions in the crystals, indications are that a similar relationship exists between sub-configurational depressions and $d$

7.3.2 $4f^{N+1} \rightarrow 4f^6s$ transitions in $RbX : Yb^{2+}$, $RbX : Sm^{2+}$ and $KX : Sm^{2+}$ crystals

Observed also in the optical spectra of $Sm^{2+}$ and $Yb^{2+}$ ions in the $RbX$ and $KX$, crystals are additional absorption bands whose behaviour is anion dependent. For example, their transition intensities relative to any given band in the spectra increases as the degree of covalency of the host crystal increases for any given alkali metal series. In other words the relative intensities follow spectro-chemical sequence: $Cl < Br < I$. To explain the occurrence and behaviour of these bands, attention is called to the possibility of the $6s$ atomic orbitals of the $RE^{2+}$ ions overlapping with the $(n+1)6s$ atomic orbitals of the ligand ions to form bonding ($\sigma$) and anti-bonding ($\sigma^*$) MO's which couple with the substates of the $4f^N$ configuration. Electronic transitions to the bonding MO's are possible on the grounds that the electric dipole selection rules could break down owing to the orthorhombic distortion of the site symmetry of the $RE^{2+}$ ions.
7.3.3 Precipitate complexes in thermally annealed crystals of RbBr : Yb²⁺

Divalent ytterbium ions were found to exist in RbBr crystals in three separate phases. One phase corresponds to Yb²⁺ ions dispersed within the crystal with each ion associated with a cation vacancy. They are referred to as type I complex and are produced when the doped crystal is quenched from a temperature greater than 550°C. On the other hand, when a crystal containing type I complexes is heated at a temperature below and including 300°C and then quenched, type II complex structures result. The latter is tentatively identified as the Suzuki phase of Yb²⁺ ions in RbBr crystals, which is a metastable precipitate phase of a fairly complex stiochiometry.

At temperatures above 325°C but below 550°C a precipitate structure designated as type III is formed. Dissolution experiments show that type III complex is a stable precipitate at temperatures below 300°C. However above that temperature, it starts to dissolve giving rise to type I complex with which it co-exists and which grows in at its (type II complex's) expense until a temperature of 550°C is reached. Complete dissolution of type III complex phase is achieved at this temperature. It is possible that type III complex is a precipitate of YbBr₂ formed during thermal annealing at the temperature ranges indicated. Confirmatory identification of the precipitate structures however require some microstructural or crystallographic studies of thermally annealed RbBr : Yb²⁺ crystals. The study could also be extended to other RbX : Yb²⁺ crystals.
Appendix A

Calculation of Vector Coupling Coefficients

\[
\langle \Gamma_j \gamma_l \Gamma_\epsilon \gamma_r | \rho \Gamma_f \gamma_s \rangle, \quad j = 6, 7, 8, \quad i = 1, 2, ..., 5, \quad \Gamma_f = \Gamma_e, \Gamma_7, \Gamma_8
\]

The calculation of the vector coupling (overlap) coefficients rests on the premise that there is an isomorphic correspondence between crystal wavefunctions characterised by the irreducible representations, \( \Gamma_j \), of the cubic double group \( (O') \) and spherical harmonic functions of half-integral order. Abragam and Pryce [317] point out that in the cubic or octahedral symmetry, the \( r^4 \) functions transform as the \( p^N \) functions of the free atom or ion. Accordingly, the following correspondences can be made between the components of \( \Gamma_4 \) functions and the components of the orbital angular momentum, \( l \) \((l = 1)\), of an electron in the \( p \) orbit:

\[
\begin{align*}
| \Gamma_41 \rangle & \sim | p1 \rangle \\
& = | 11 \rangle \\
| \Gamma_40 \rangle & \sim | p0 \rangle \\
& = | 10 \rangle \\
| \Gamma_4 - 1 \rangle & \sim | p - 1 \rangle \\
& = | 1 - 1 \rangle
\end{align*}
\]

Similarly isomorphic correspondences have been established between the \( \Gamma_3 \) and \( \Gamma_5 \) functions of the describing the motion of a single \( d \) electron in cubic, octahedral crystal fields [215, 318, 323]. Dixon [316] drew the attention of the author to the possibility of using the isomorphic principle to connect the doubly valued functions \( \Gamma_6 \) and \( \Gamma_8 \) to spherical harmonics of half-integral order. The following correspondences were therefore made:

\[
\begin{align*}
| \Gamma_6 \alpha' \rangle & \sim | \frac{11}{22} \rangle \\
| \Gamma_6 \beta' \rangle & \sim | \frac{1}{2} \frac{1}{2} \rangle
\end{align*}
\]

(A.1) 

(A.2)
It was possible therefore to couple the functions

\[ | J_1 M_1 \rangle \langle J'_1 M'_1 | = \sum_{M} (J_1 J'_1 M_1 M'_1 | J_1 J'_1 J M) | J M \rangle \]  

(A.4)

The coefficients under summation sign are Clebsch–Gordon (CG) coefficients which are connected to 3-\(j\) symbols of Wigner [2, 185]. For the purpose of this calculation, values of the CG coefficients were obtained from the book by Heine [324]. From a comparison of the linear combination of these functions and the definitions of the \( | \Gamma_1 \rangle \) (\( i = 1, 2, ..., 5 \)) functions in terms of spherical harmonics, the vector coupling coefficients

\[ \langle \Gamma_1 \Gamma_2 | \Gamma_3 \rangle \langle | \Gamma_4 \rangle \]  

\( (i = 6, 7, 8, i = 1, 2, ..., 5, \Gamma' = \Gamma_6, \Gamma_7, \Gamma_8) \), were written down. Results of the calculations are shown in Tables A5.1 - A5.6.

Quite interestingly, the entries in these tables agree in every case with the values (but not always with the phase factor) of the coefficients derived from the tables by Koster, et. al. [215]. In the latter tables, a system of quantisation in which the components of the \( \Gamma_1 \) functions are expressed in cartesian co-ordinates was used. For conversion to the system of quantisation used in this study, the following relations were used [215]:

\[ | \Gamma_4 \rangle \begin{array}{c} 1 \rangle \\ 0 \rangle \end{array} \begin{array}{c} = \frac{-i}{\sqrt{2}} (\Gamma_4 x + i \Gamma_4 y) \\ = i \Gamma_4 z \\ = \frac{i}{\sqrt{2}} (\Gamma_4 x - i \Gamma_4 y) \end{array} \]  

(A.5)

The sign differences in the results arise from the difference in the sign conventions used in the computations. However, these latter tables were not used in this work. Tables A5.1 - A5.6 were used instead.
Table A5.1 Vector Coupling Coefficients $< \Gamma_6 \Gamma_6 | \Gamma_i \sigma >$, $\Gamma_i = \Gamma_1, \Gamma_4$

<table>
<thead>
<tr>
<th>$\Gamma_6 \times \Gamma_6$</th>
<th>$\Gamma_1$</th>
<th>$\Gamma_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma' \sigma'$</td>
<td>0</td>
<td>1 0 -1</td>
</tr>
<tr>
<td>$\beta' \sigma'$</td>
<td>0 $\frac{1}{2}(2)$ 0 0</td>
<td></td>
</tr>
<tr>
<td>$\beta' \sigma'$</td>
<td>0 $\frac{1}{2}(2)$ 0 0</td>
<td></td>
</tr>
<tr>
<td>$\beta'$</td>
<td>0 0 1</td>
<td></td>
</tr>
</tbody>
</table>

Table A5.2 Vector Coupling Coefficients $< \Gamma_6 \Gamma_7 | \Gamma_i \sigma >$, $\Gamma_i = \Gamma_2, \Gamma_3$

<table>
<thead>
<tr>
<th>$\Gamma_6 \times \Gamma_7$</th>
<th>$\Gamma_2$</th>
<th>$\Gamma_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha' \alpha'$</td>
<td>0</td>
<td>1 0 -1</td>
</tr>
<tr>
<td>$\beta' \alpha'$</td>
<td>0 $\frac{1}{2}(2)$ 0 0</td>
<td></td>
</tr>
<tr>
<td>$\beta' \alpha'$</td>
<td>0 $\frac{1}{2}(2)$ 0 0</td>
<td></td>
</tr>
<tr>
<td>$\beta'$</td>
<td>0 0 1</td>
<td></td>
</tr>
</tbody>
</table>
Table A5.3 Vector Coupling Coefficients $< \Gamma_6 \Gamma_5 | \Gamma_i c >$, $\Gamma = \Gamma_3, \Gamma_4, \Gamma_5$

<table>
<thead>
<tr>
<th>$\Gamma_6 \times \Gamma_5$</th>
<th>$\Gamma_3$</th>
<th>$\Gamma_4$</th>
<th>$\Gamma_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha'$ $\kappa$</td>
<td>$0$</td>
<td>$\frac{1}{2}(2)$</td>
<td>$0$</td>
</tr>
<tr>
<td>$\lambda$</td>
<td>$0$</td>
<td>$0$</td>
<td>$-\frac{1}{2}$</td>
</tr>
<tr>
<td>$\mu$</td>
<td>$\frac{1}{2}(2)$</td>
<td>$0$</td>
<td>$0$</td>
</tr>
<tr>
<td>$\nu$</td>
<td>$0$</td>
<td>$0$</td>
<td>$0$</td>
</tr>
<tr>
<td>$\alpha''$ $\kappa$</td>
<td>$0$</td>
<td>$0$</td>
<td>$\frac{1}{2}(3)$</td>
</tr>
<tr>
<td>$\lambda$</td>
<td>$\frac{1}{2}(2)$</td>
<td>$0$</td>
<td>$\frac{1}{2}(2)$</td>
</tr>
<tr>
<td>$\mu$</td>
<td>$0$</td>
<td>$0$</td>
<td>$0$</td>
</tr>
<tr>
<td>$\nu$</td>
<td>$0$</td>
<td>$\frac{1}{2}(2)$</td>
<td>$0$</td>
</tr>
</tbody>
</table>

Table A5.4 Vector Coupling Coefficients $< \Gamma_7 \alpha \Gamma_7 | \Gamma_i c >$, $\Gamma_i = \Gamma_1, \Gamma_4$

<table>
<thead>
<tr>
<th>$\Gamma_7 \times \Gamma_7$</th>
<th>$\Gamma_1$</th>
<th>$\Gamma_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha''$ $\alpha''$</td>
<td>$0$</td>
<td>$1$</td>
</tr>
<tr>
<td>$\beta'$ $\beta''$</td>
<td>$\frac{1}{2}(2)$</td>
<td>$0$</td>
</tr>
<tr>
<td>$\beta''$ $\alpha''$</td>
<td>$-\frac{1}{2}(2)$</td>
<td>$0$</td>
</tr>
<tr>
<td>$\beta''$ $\beta''$</td>
<td>$0$</td>
<td>$0$</td>
</tr>
</tbody>
</table>
Table A5.8 Vector Coupling Coefficients $< \Gamma_7; \Gamma_8; \delta | \Gamma_3; \epsilon >$, $\Gamma_3 = \Gamma_2, \Gamma_4, \Gamma_5$

<table>
<thead>
<tr>
<th>$\Gamma_7 \times \Gamma_8$</th>
<th>$\Gamma_3$</th>
<th>$\Gamma_4$</th>
<th>$\Gamma_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta$</td>
<td>$\epsilon$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\alpha^\gamma$</td>
<td>$\kappa$</td>
<td>$\frac{1}{2}(2)$</td>
<td>0</td>
</tr>
<tr>
<td>$\lambda$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\mu$</td>
<td>0</td>
<td>$-\frac{1}{2}(2)$</td>
<td>0</td>
</tr>
<tr>
<td>$\nu$</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>$\beta^\gamma$</td>
<td>$\kappa$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\lambda$</td>
<td>0</td>
<td>$-\frac{1}{2}(2)$</td>
<td>0</td>
</tr>
<tr>
<td>$\mu$</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}(3)$</td>
</tr>
<tr>
<td>$\nu$</td>
<td>$\frac{1}{2}(2)$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>


Table A5.6 Vector Coupling Coefficients $< \Gamma_a \Gamma_b | \Gamma_c >$, $\Gamma_i = \Gamma_1, \Gamma_2, \Gamma_3$

<table>
<thead>
<tr>
<th>$\Gamma_a \times \Gamma_b$</th>
<th>$\Gamma_1$</th>
<th>$\Gamma_2$</th>
<th>$\Gamma_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\kappa \times \kappa$</td>
<td>$a_1$ 0</td>
<td>$a_2$ 0</td>
<td>$\delta$ 0 $\epsilon$ 0</td>
</tr>
<tr>
<td>$\lambda \times \kappa$</td>
<td>$a_1$ 1/2</td>
<td>$a_2$ 1/2</td>
<td>$-1/2$ 0</td>
</tr>
<tr>
<td>$\mu \times \kappa$</td>
<td>0 0</td>
<td>$a_2$ 0</td>
<td>0 0</td>
</tr>
<tr>
<td>$\tau \times \kappa$</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>$\lambda \times \lambda$</td>
<td>0 0</td>
<td>$a_2$ 0</td>
<td>0 0</td>
</tr>
<tr>
<td>$\mu \times \tau$</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>$\mu \times \lambda$</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>$\tau \times \lambda$</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>$\mu \times \mu$</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>$\tau \times \tau$</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>$\lambda \times \mu$</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>$\mu \times \tau$</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>$\tau \times \lambda$</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>$\mu \times \mu$</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>$\tau \times \tau$</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>
Table A5.6 (contd.) Vector Coupling Coefficients $< \Gamma_4^a \Gamma_4^b | \Psi \Gamma_4^c >$.

$\Psi \Gamma_4 = \frac{1}{2} \Gamma_4, 3 \Gamma_4$

<table>
<thead>
<tr>
<th>$\Gamma_4 \times \Gamma_4$</th>
<th>$^1\Gamma_4$</th>
<th>$^2\Gamma_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\kappa \kappa$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\lambda$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\mu$</td>
<td>$\frac{1}{10}(30)$</td>
<td>0</td>
</tr>
<tr>
<td>$\nu$</td>
<td>0</td>
<td>$\frac{3}{10}(5)$</td>
</tr>
<tr>
<td>$\lambda \kappa$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\mu$</td>
<td>$-\frac{1}{2}(10)$</td>
<td>0</td>
</tr>
<tr>
<td>$\nu$</td>
<td>0</td>
<td>$-\frac{1}{10}(5)$</td>
</tr>
<tr>
<td>$\nu \kappa$</td>
<td>$\frac{1}{10}(30)$</td>
<td>0</td>
</tr>
<tr>
<td>$\lambda$</td>
<td>0</td>
<td>$-\frac{1}{10}(5)$</td>
</tr>
<tr>
<td>$\mu$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\nu$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\nu \kappa$</td>
<td>0</td>
<td>$\frac{3}{10}(5)$</td>
</tr>
<tr>
<td>$\lambda$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\mu$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\nu$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table A5.6 (contd.) Vector Coupling Coefficients $< \Gamma_9 \Gamma_9 | \Phi \Gamma_{c} >$.

$\Gamma_i = \frac{1}{4} \Gamma_8, \frac{3}{2} \Gamma_5$

<table>
<thead>
<tr>
<th>$\Gamma_9 \times \Gamma_9$</th>
<th>$^1\Gamma_5$</th>
<th>$^2\Gamma_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 0 -1</td>
<td>1 0 -1</td>
</tr>
<tr>
<td>$\kappa \kappa$</td>
<td>0 0 0</td>
<td>$-\frac{1}{4}(6)$ 0 0</td>
</tr>
<tr>
<td>$\lambda \kappa$</td>
<td>0 $\frac{1}{2}$ 0</td>
<td>0 $\frac{1}{2}$ 0</td>
</tr>
<tr>
<td>$\mu \kappa$</td>
<td>0 0 $-\frac{1}{2}(2)$</td>
<td>0 0 $\frac{1}{2}(2)$</td>
</tr>
<tr>
<td>$\nu \kappa$</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>$\lambda \kappa$</td>
<td>0 $-\frac{1}{2}$ 0</td>
<td>0 $\frac{1}{2}$ 0</td>
</tr>
<tr>
<td>$\lambda \lambda$</td>
<td>0 0 0</td>
<td>0 0 $\frac{1}{4}(6)$</td>
</tr>
<tr>
<td>$\mu \lambda$</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>$\nu \lambda$</td>
<td>$\frac{1}{2}(2)$ 0 0</td>
<td>$\frac{1}{2}(2)$ 0 0</td>
</tr>
<tr>
<td>$\mu \mu$</td>
<td>0 0 $\frac{1}{2}(2)$</td>
<td>0 0 $\frac{1}{2}(2)$</td>
</tr>
<tr>
<td>$\nu \mu$</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>$\nu \nu$</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>$\lambda \mu$</td>
<td>$-\frac{1}{2}(2)$ 0 0</td>
<td>$\frac{1}{2}(2)$ 0 0</td>
</tr>
<tr>
<td>$\lambda \nu$</td>
<td>0 $\frac{1}{2}$ 0</td>
<td>0 $\frac{1}{2}$ 0</td>
</tr>
<tr>
<td>$\nu \nu$</td>
<td>0 0 0</td>
<td>0 $-\frac{1}{2}(6)$</td>
</tr>
</tbody>
</table>
Fig A5.1 A plot of values of $\zeta_f$ and $\zeta_m$ against $N$, the number of equivalent electrons, for $4f^{n}5d$ configuration of 6 divalent rare-earth ions in free state. Interpolated values of $\zeta_f$ and $\zeta_m$ for free $Sm^{2+}$ ($N = 6$) ions are respectively 1060 cm$^{-1}$ and 860 cm$^{-1}$. 
Fig A5.2 A plot of values of $F_2$ against $N$, the number of equivalent electrons, for $4f^{n}5d$ configuration of 6 divalent rare-earth ions in free state. Interpolated value of $F_2$ for free Sm$^{2+}$ ($N = 6$) ions is 181 cm$^{-1}$. 
Fig A5.3 A plot of values of $F_4$ against $N$, the number of equivalent electrons, for $4f^N5d$ configuration of 6 divalent rare-earth ions in free state. Interpolated value of $F_4$ for free $Sm^{2+}$ ($N = 5$) ions is 18.3 cm$^{-1}$. 
Fig A5.4 A plot of values of $G_i$ against $N$, the number of equivalent electrons, for $4f^{n}5d$ configuration of 6 divalent rare-earth ions in free state. Interpolated value of $G_i$ for free $Sm^{2+}$ ($N = 5$) ions is 236.0 cm$^{-1}$. 
Fig A5.5 A plot of values of $G_3$ against $N$, the number of equivalent electrons, for $4f^N5d$ configuration of 6 divalent rare-earth ions in free state. Interpolated value of $G_3$ for free $Sm^{2+}$ ($N = 5$) ions is 26.3 cm$^{-1}$. 
Fig A5.6 A plot of values of $G_j$ against $N$, the number of equivalent electrons, for $4f^{N-5}d$ configuration of 6 divalent rare-earth ions in free state. Interpolated value of $G_j$ for free $Sm^{2+}$ ($N = 5$) ions is $3.73 \text{ cm}^{-1}$. 
2 References

1 Wybourne, B. G., 'Spectroscopic Properties of the Rare Earths', John Wiley and Sons Inc. N.Y. (1968)


3 Dieke, G. H. 'Spectra and Energy Levels of Rare Earth Ions in Crystals' John Wiley and Sons Inc N.Y. (1968)


11 Kiss, Z. J. and Yocom, P. N., J. Chem. Phys. 41 1511 (1964)

12 Sabisky, E. S., J. Chem Phys. 41 892 (1964)


18 Low, W. Phys. Rev. 118 1608 (1960)


23 Shen, Y. R. and Bloemberger, Phys Rev. 133 (1964)


33 Eremin, M. V. and Maryakhina, O. I., Optics and Spectroscopy 26 479 (1969)


38 Freed, S. Phys Rev. 33 2122 (1931)
39 Freed, S. and Katcoff S. Physics 15 17 (1948)
40 Butement, F. D. S. Transo Faraday Soc. (London) 44 617 (1948)
41 Feofilov, P. P., Optics and Spectroscopy 2 150 (1959)
42 Kaplyanskii, A. A. and Feofilov, P. P., Optics and Spectroscopy 13 129 (1962)
43 Feofilov, P. P. and Kaplyanskii, A. A., Optics & Spectroscopy 12 272 (1962)
44 Low, W., J. Chem. Phys. 37 30 (1962)
47 Rabbiner, N. Phys. Rev. 130 502 (1963a)
48 Rabbiner, N. Phys. Rev. 132 224 (1963b)
49 Kaplyanskii, A.A., et al., Optics and Spectroscopy 14 351 (1963)
50 Karapetyan, V.E., et al., Optics and Spectroscopy 14 236 (1963)
51 Hoogschagen, J. and Gorter, C. J., Physica 14 197 (1948)
60 Loh, E., Phys. Rev. 147 332 (1966)
63 Kapiyanskii, A. A. and Feofilov, P. P., Optics and Spectroscopy 16, 144 (1964)
68 Loh, E. Phys Rev. 154 270 (1967a)
69 Loh, E. Phys Rev. 158 273 (1967b)
73 Guzzi, M. and Baldini, G., J. Luminescence 6 270 (1973)
78 Axe, J. D. and Sorokin, P. P. Phys Rev 130 945 (1963)
79 Loh, E. Phys Rev 175 533 (1968)
81 Reisfeld, R. and Glasner, A. J. Opt Soc. Am. 54 5830 (1964)
87 Kialisk, P., et. al, Phys. Rev. 171 336
88 Loh, E. Phys Rev. 124 348 (1969)
89 Loh, E. Phys Rev. 137 1846 (1973)
91 Eremin, M. V., Optics and Spectroscopy 26 317 (1969)
93 Racah, G., Phys. Rev. 62 438 (1942)
94 Racah, G., Phys. Rev. 63 367 (1943)
95 Racah, G., Phys. Rev. 76 1352 (1949)
100 Kirton, J. and McLaughan, S. D., Phys. Rev. 155 279 (1967)


107 Konitzer, J. D. and Markham, J. J., Phys Rev. 107, 685 (1957)


109 Pick, H. Nuovo Cimento Suppl. 10 498 (1958)

110 Hutchinson, C. A., Phys Rev 75 1769 (1949)

111 Hutchinson, C. A. and Noble, G. A., Phys Rev. 87 1128 (1952)


118 Fuch, D. Phys Rev. 111 387 (1958)


122 Jawad, K. I. and Smith, M. J. A. Phil Mag., B37 585 (1978)


128 Seitz, F., Phys Rev 82 134 (1954)

129 West, E. J. and Compton, W. D., Phys Rev 108 (1957)


133 W. Maenhout van der Verst, Physica 24 996 (1958)

134 Watkins, G. D, Phys Rev 112 79 (1958)


138 Pascual, J. L. et al, J. Luminescence 17 325 (1978)
139 Kynew, K. and Tabakova V., Optics and Spectroscopy 32 288 (1974)


147 Suzuki, K. J., Phys Soc Japan 13 179 (1958)


149 Lilley, E. and Newkirk J. P., J. Material Science 2 587 (1967)


159 Slater, J. C., Phys. Rev. 34 1293 (1929)

161 Racah, G. Phys Rev 61 186 (1942)

162 Racah, G. and Stein J., Phys. Rev. 156 58 (1967)


170 Judd, B. R., Phys Rev 125 613 (1962)


175 Wybourne, B. G., J. Chem. Phys. 40 1457 (1964)

176 Wybourne, B. G., Phys Rev. 137 A364 (1965)


178 Messiah, A. 'Quantum Mechanics' (Translated by) J. Potter, North Holland Publishing Company, Amsterdam (1965)


Arima, A., et al., Progress of Theoretical Physics vol II 143 (1954)

Matsunobu, H. and Takebe H., Progress in Theoretical Physics 14 589 (1955)


Smith, K. and Stephenson, J. W., Argonne National Laboratory Reports ANL-5776 (1957) and ANL-5860 (1958)

Koozekanani, S. H., '9j Symbols' (Engineering Publications, Ohio State University), Columbus (1972)

Racah, G. J., Optical Society of America 59 408 (1960)


Shortley, G. H. and Fried, B., Phys. Rev. 54 739 (1938)

Shortley, G. H. and Fried B., Phys Rev 54 749 (1938)

Racah, G. Physica 10 651 (1950)

Racah, G. Phys. Rev. 91 537 (1942)


197 Fano, U. and Racah, G. 'Irreducible Tensorial Set' Academic Press Inc. N.Y. 1959

198 Tress, R. E. Phys Rev 83 756 1951


200 Rajnak, K., J. Chem. Phys 43 8 1965


208 Drushinin, V. V., Optics and Spectroscopy 22 446 (1967)

209 Drushinin, V.V. et al., Soviet Physics - Solid State 7 2023 (1966)


211 Bell, D. G., Rev. Mod Phys 26 311 (1954)


213 Altmann, S., L. and Cracknell, Revs. of Mod. Phys. 37 (1965)


217 Starostin, N. V., Optics and Spectroscopy 22 280 (1967)


221 Nara, H. and Schlesinger M. Phys Rev B5 58 (1971)


224 Vetri, G. and Bassani, F., Nuovo Cimento 55B 504 (1968)


226 Biedenbarni, L. C., J. Math. and Phys. 31 287 (1952)


228 Eremin, M. V., Optics and Spectroscopy 29 53 (1970)


246 Eremin, M. V. and Maryakhina, O. I., Optics and Spectroscopy 25 479 (1969)


267 Wagner, M. and Bron W. E., Phys. Rev. 139 A223 (1965)


269 Weakliem, H. A., Phys Rev. B8 2743 (1972)


273 Schäfer, C. F. and Jorgensen C. K., J. Inorganic and Nuclear Chemistry 8 143 (1958)


151


277 Schöffer, C. E., J. Inorganic and Nuclear Chemistry 8 149 (1958)

278 Kiss, Z. J., Phys Rev. 137 A1749 (1965)


281 Tanabe, Y. and Sugano S., Phys Soc. Japan 11 884 (1956)


284 Jorgenson, C. K., Progress in Inorganic Chem. 4, 73 (1962)

285 Jorgenson, C. K., Progress in Inorganic Chem. 4, p73 (1962)


299 Alig, R. C., R.C.A. Review 36 125 (1975)
300 Rohrig, R., Phys. Lett. 146 20 (1965)
Defects in Crystalline Solids held at University of Bristol by Physical Society
(1954)
311 Lidiard, A. B., Phys. Rev. 94, 29 (1954)
312 Baasani, F. and Fumi F. G., Phil. Mag. 45, 228 (1954)
313 Etsel, H. W. and Patterson, D. A., Phys. Rev. 112 1112 (1958)
314 Etsel, H. W., Phys. Rev. 118 1150 (1960)
316 Dixon, J. M., Private Communication


322 Donnay, J. D. H. and Donnay, Gabrielle, 'Crystal Data: Determinative Tables', Published by American Crystallographic Association (1963)


325 Honig, R. E., R C A Review, 23 567 (1962)

326 Meiders, Th A. M. van Kleef and Wyart, J. F., Physica 61 443 (1972)

Optical Spectra and Energy Levels of Divalent Ytterbium and Samarium Ions in Some Alkali Halides

Ibebrodike Maurice Mejeha

the University of Warwick 1988

Attention is drawn to the fact that the copyright of this thesis rests with its author.
This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no information derived from it may be published without the author's prior written consent.