Controlled oxide removal for the preparation of damage-free InAs(110) surfaces

T. D. Veal and C. F. McConville

Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom

(Received 7 April 2000; accepted for publication 18 July 2000)

Controlled oxide removal from InAs(110) surfaces using atomic hydrogen (H*) has been achieved by monitoring the contaminant vibrational modes with high resolution electron energy loss spectroscopy (HREELS). The contributing oxide vibrational modes of the partially H* cleaned surface have been identified. Following hydrocarbon desorption during preliminary annealing at 360 °C, exposure to atomic hydrogen at 400 °C initially removes the arsenic oxides and indium suboxides; complete indium oxide removal requires significantly higher hydrogen doses. After a total molecular hydrogen dose of 120 kL, a clean, ordered surface, exhibiting a sharp (1 × 1) pattern, was confirmed by low energy electron diffraction and x-ray photoelectron spectroscopy. Energy dependent HREELS studies of the near-surface electronic structure indicate that no residual electronic damage or dopant passivation results from the cleaning process. © 2000 American Institute of Physics. [S0003-6951(00)05537-6]

The preparation of clean, ordered, and stoichiometric III–V semiconductor surfaces is generally problematic without the extensive facilities available with molecular beam epitaxy (MBE). When these are unavailable, the standard method of in situ cleaning of polar InAs surfaces is cycles of low energy ion bombardment and annealing; however, this has been shown to cause severe structural damage, resulting in the introduction of defects, enhanced carrier concentrations, and reduced mobilities within the outermost 1000 Å of the material.1–3 Traditionally, the nonpolar (110) surfaces of III–V materials have been produced by cleaving in vacuum. However, from cleave to cleave large variations in the surface step densities result. These steps have been observed using scanning tunneling microscopy where (111), (112), and (110)-type steps have all been identified on InAs(110).4 The consequent modification of the surface, where the reactivity is likely to be dominated by the step density profile, will result in significant nonuniformity in the surface properties with each cleave. This is evident from photoemission studies, where the expected flat-band condition, with no electron accumulation, is rarely achieved for InAs(110). The surface electronic structure is extremely sensitive to the presence of cleave-induced steps, which result in downward band bending and accumulation layer formation.5 An alternative surface preparation technique, atomic hydrogen cleaning (AHC), offers an effective way of obtaining clean, undamaged InAs(110) surfaces with uniform step densities. This method has previously been shown to be an efficient, relatively low temperature technique for obtaining clean, well-ordered, damage-free GaAs and InP (001) surfaces.6,7

In this letter, the removal of oxide and hydrocarbon contamination from the InAs(110) surface by annealing under a flux of atomic hydrogen (H*) is reported. During AHC, the contaminant vibrational modes were identified and monitored by high resolution electron energy loss spectroscopy (HREELS). The near-surface electronic structure of the clean surface was also studied by HREELS, semiclassical dielectric theory simulations,8 and charge profile calculations.

Samples of S-doped InAs(110) wafers (n ≈ 4 × 10¹⁸ cm⁻³) were individually loaded into the ultrahigh vacuum HREELS spectrometer (base pressure ≈ 2 × 10⁻¹⁰ mbar) without any ex situ treatment. X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) were used to monitor the chemical composition and surface ordering, respectively, before, during, and after the cleaning process. Specular HREELS (θ₁ = θ₂ = 45°) was used to study the surface vibrational modes of the contaminants on the as-loaded and partially cleaned surfaces, and to probe the near-surface electronic structure of the clean surface. Molecular hydrogen was thermally cracked by the tungsten filament of an atomic hydrogen source (EPI Ltd., UK) held at ~ 2100 °C (as measured by an infrared pyrometer) with an estimated H₂—H* conversion efficiency of about 6%–7%.9 Hydrogen doses were measured in terms of molecular hydrogen exposures in kilo-Langmuirs (kL) (1 kL = 10⁻¹³ Torr s). During AHC, the chamber pressure was typically 3 × 10⁻⁶ mbar. Samples were degassed for one hour to 360 °C prior to AHC, and annealed to 400 °C during AHC by a combination of the atomic hydrogen source filament and the sample filament mounted behind. The surface temperature was measured by a chromel-alumel thermocouple in direct contact with the sample.

The as-loaded samples gave a very weak and broad specular elastic peak in HREELS, with an angular spread of 15° full width at half maximum (FWHM); they exhibited no ordered LEED pattern. Figure 1 shows specular HREEL spectra from an as-loaded sample, after annealing at 360 °C, and following total atomic hydrogen cleaning doses of 15, 30, and 60 kL. The as-loaded spectrum [Fig. 1(a)] features a peak at 106 meV—almost twice the width of the elastic peak. This is attributed to a combination of In–O and the As–O vibrational modes, known to exist at ~ 87 and ~ 118 meV, respectively.10 However, it is apparent that the broad...
The HREEL spectrum after a total of 30 kL of AHC [Fig. 1(d)] is essentially the same as after 15 kL, except that the intensity of the oxide vibration has decreased, suggesting that some In$_2$O$_3$ has been removed. After a total of 60 kL of AHC, the oxide peak in the HREEL spectrum [Fig. 1(e)] shifts to 87 meV, the position for the In–O vibration. There is no intensity in the As–O vibration region of this spectrum. This corresponds to the removal of As$_2$O$_3$ to below the detection limit of the technique (~0.1% of a monolayer), and indicates the presence of In$_2$O$_3$ as the only surface contaminant. At this stage, the partially clean surface gave a slightly more intense specular elastic peak in HREELS, with an angular spread of 8° FWHM, and a weak (1×1) LEED pattern with high background intensity. The intensity of all the peaks in the spectra of Fig. 1 decreased as the incident electron energy was increased, with the expected $E^{-1/2}$ dependence, confirming that they are due to vibrational modes and not collective excitations.

A clean surface was obtained after a total of 120 kL of AHC exhibiting a clear, sharp (1×1) LEED pattern and no residual carbon or oxygen as observed using XPS. Increased surface ordering was also apparent from the more intense specular elastic peak in HREELS with a much reduced angular spread (3° FWHM). HREEL spectra, with varying incident electron energy, are shown in Fig. 2 for the clean surface (dotted lines), along with simulations generated by semiclassical dielectric theory (solid lines). While the clean surface spectra shown do not extend to the loss energies of all the contaminant vibrational modes, it was independently confirmed that their intensities had been reduced to below the detection limit. Instead, two collective excitation features of the clean surface are revealed. In the 10 and 30 eV spectra, a loss feature at ~29 meV assigned to the Fuchs–GaAs, is observed during atomic hydrogen cleaning of GaAs. In the case of GaAs(100), it has been proposed that the removal of As$_2$O$_3$ occurs by the formation and desorption of AsH$_3$, while the oxygen generated in this process reacts with surface gallium to form more Ga$_2$O$_3$. A similar mechanism is proposed here, with the formation of more In$_2$O$_3$ explaining the increased intensity in the In–O vibrational mode observed in Fig. 1(c).

The energy loss spectrum in Fig. 2 shows that two collective excitation features are evident in the 10 eV spectrum, with a peak at 29 meV and a shoulder extending to ~150 meV. The high intensity of the 29 meV peak is consistent with the detection limit of the technique (~0.1% of a monolayer), and indicates the presence of In$_2$O$_3$ as the only surface contaminant. At this stage, the partially clean surface gave a slightly more intense specular elastic peak in HREELS, with a weak (1×1) LEED pattern with high background intensity. The intensity of all the peaks in the spectra of Fig. 1 decreased as the incident electron energy was increased, with the expected $E^{-1/2}$ dependence, confirming that they are due to vibrational modes and not collective excitations.

A clean surface was obtained after a total of 120 kL of AHC exhibiting a clear, sharp (1×1) LEED pattern and no residual carbon or oxygen as observed using XPS. Increased surface ordering was also apparent from the more intense specular elastic peak in HREELS with a much reduced angular spread (3° FWHM). HREEL spectra, with varying incident electron energy, are shown in Fig. 2 for the clean surface (dotted lines), along with simulations generated by semiclassical dielectric theory (solid lines). While the clean surface spectra shown do not extend to the loss energies of all the contaminant vibrational modes, it was independently confirmed that their intensities had been reduced to below the detection limit. Instead, two collective excitation features of the clean surface are revealed. In the 10 and 30 eV spectra, a loss feature at ~29 meV assigned to the Fuchs–GaAs, is observed during atomic hydrogen cleaning of GaAs. In the case of GaAs(100), it has been proposed that the removal of As$_2$O$_3$ occurs by the formation and desorption of AsH$_3$, while the oxygen generated in this process reacts with surface gallium to form more Ga$_2$O$_3$. A similar mechanism is proposed here, with the formation of more In$_2$O$_3$ explaining the increased intensity in the In–O vibrational mode observed in Fig. 1(c).
Klierwer surface optical phonon can be seen as a shoulder on the elastic peak. The intensity of this feature decays rapidly with increasing incident electron energy, and it is not present in the higher energy spectra. The higher loss energy peak is due to the conduction band surface plasmon excitations, and exhibits a downward dispersion with increasing incident electron energy, from 93 meV in the 10 eV spectrum to 89 meV at 100 eV.

The plasma dielectric function used in the simulations was based on the hydrodynamic model, with the plasma frequencies, plasmon lifetimes, and spatial dispersion coefficients as parameters. A three-layer model, consisting of a plasmon-free surface “dead” layer, accumulation layer, and a semi-infinite bulk, was used to simulate the experimental spectra across the entire incident electron energy range. The modified Thomas–Fermi approximation (MTFA) with a triangular potential well was used to estimate the layer thicknesses and the plasma parameters (except for the plasmon lifetimes). As we have previously discussed, for the purposes of comparison with histogram profiles derived from dielectric theory simulations of HREELS spectra, deviations between the profile calculated using a triangular potential well and the full classical potential are not significant. The calculated MTFA carrier density profile is shown in Fig. 3, with a corresponding histogram profile used in the dielectric theory simulations to give the best fit to the experimental spectra. Below the 35 Å dead layer, the 55 Å accumulation layer has a carrier concentration of 6.7 x 10^18 cm^-3 above a semi-infinite bulk, with a carrier concentration of 3.9 x 10^18 cm^-3. This is unchanged from the nominal bulk doping value, indicating that the AHC process does not introduce any detectable dopant passivation.

![Figure 3. The MTFA electron density profile for InAs(110) surfaces (n = 4 x 10^18 cm^-3) prepared by atomic hydrogen cleaning (dotted line) and the three-layer histogram profile used in the dielectric theory HREELS simulations (solid line). Note the shape of the profile is characteristic of heavily doped InAs.](image-url)

The spatial dispersion coefficient for the simulations was calculated using the random phase approximation (RPA), which gives a value of 0.43 x 10^10 m^-1 and successfully reproduces the observed plasmon peak dispersion in the experimental spectra. This indicates that AHC does not cause any subsurface damage: the spatial dispersion coefficients for IBA samples are significantly lower than those predicted by the RPA because of additional defect scattering. When the carrier mobility of the AHC-prepared InAs(110) surfaces is deduced from the plasmon lifetimes used in the simulations, the result is a factor of four higher than for samples from the same wafer subjected to grazing incidence IBA at 500 eV incident energy. This provides further evidence that AHC does not induce the same degree of electronic damage as surfaces subjected to low energy ion bombardment.

In conclusion, it has been demonstrated that clean, well ordered InAs(110) surfaces can be reproducibly obtained by exposure to atomic hydrogen at relatively low anneal temperatures. The removal of hydrocarbon contamination purely by annealing at 360 °C and controlled reduction of the surface have been achieved, and the vibrational modes of the component oxides identified. In the early stages of AHC (15–60 K) at 400 °C, the As_2O_3 and In suboxides are shown to be removed. A total molecular hydrogen dose of 120 K L is required to remove the In_2O_3 completely, including that generated during As_2O_3 removal. Semiclassical dielectric theory simulations successfully reproduce the experimental clean surface spectra over a wide incident electron energy range. These results indicate that no detectable electronic damage or dopant passivation is introduced in the near-surface region.

One of the authors (T. D. V.) would like to thank the Engineering and Physical Sciences Research Council, U.K. for the provision of a research studentship.