Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Enhancing the conductivity of PEDOT:PSS on bulk substrates.

Tools
- Tools
+ Tools

Thompson, B. T. A. H. (2017) Enhancing the conductivity of PEDOT:PSS on bulk substrates. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_Theses_Thompson_2017.pdf - Submitted Version - Requires a PDF viewer.

Download (11Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b3157303~S15

Request Changes to record.

Abstract

PEDOT:PSS was investigated, using the dopants TWEEN 80 and MEK. The mixture was applied as a thin film on a PET substrate using three techniques, spincoating, dipcoating and spraycoating, with an aim to produce a bulk manufacturing conductive material. The dopants also improved the film forming of PEDOT:PSS.

There was a problem with adhesion and durability of the film to the substrate. Several different materials were investigated to solve this problem. The adhesion problem was solved by adding a layer of methyl cellulose between the substrate and the PEDOT:PSS layers which acted as an adhesion promotor.

One of the aims of this project was to determine a bulk manufacturing method which is viable for PEDOT:PSS. Three manufacturing techniques were investigated to see how this affected the film quality, film conductivity, thickness, orientation, and durability. Spincoating gave thinner films with a final thickness of 1- 2 µm and was more conductive than films manufactured using dipcoating or spraycoating.

Spincoated films made using the dopants enhanced the bulk conductivity of the starting material by two orders of magnitude from 1494 Ωcm for the 100 % PEDOT:PSS dispersion used as a starting material, to 25 Ωcm for the doped 97.22 % PEDOT:PSS. The dipcoated and spraycoated samples were enhanced by three orders of magnitude, although, overall the spincoated samples were the most conductive.

The enhanced 95 % to 98 % PEDOT:PSS dispersion with additives TWEEN 80 and MEK samples, remained more conductive than the starting material even after 62 weeks of storage under air. It was found that storage under air caused an increase in resistivity over the stored time period in doped PEDOT:PSS and 100% PEDOT:PSS films. High voltage studies up to 50V proved the material withstands repeated high voltage application over a period of 62 weeks.

The mechanism of charge transport in the 97 % and 98 % PEDOT:PSS samples was found, using UV, to be due to the formation of polarons. Polaron charge carriers were formed when the polymer became ionised, lost an electron, and formed a positive charge on the polymer chain. In order to stabilise this the PEDOT molecule changes shape from the aromatic to the quinoid conformation. The most conductive films were found to be predominantly in the quinoid form whereas the less conductive films were mainly aromatic.

Item Type: Thesis or Dissertation (PhD)
Subjects: T Technology > TP Chemical technology
Library of Congress Subject Headings (LCSH): Polythiophenes -- industrial applications, Electric conductivity, Semiconductors
Official Date: June 2017
Dates:
DateEvent
June 2017UNSPECIFIED
Institution: University of Warwick
Theses Department: Warwick Manufacturing Group
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Goodship, Vannessa
Extent: xx, 279 leaves : illustrations, charts.
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us