Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Browse by Warwick Author

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Official Date | Item Type | Funder | No Grouping
Jump to: 2013 | 2012 | 2011 | 2010 | 2009
Number of items: 12.

2013

Andersson, John (2013) Optimal Regularity and free boundary regularity for the Signorini problem. St. Petersburg Mathematical Journal, Volume 24 (Number 3). pp. 371-386. doi:10.1090/S1061-0022-2013-01244-1

Andersson, John, Lindgren, E. and Shahgholian, H. (2013) Optimal regularity for the no-sign obstacle problem. Communications in Pure and Applied Mathematics, Volume 66 (Number 2). pp. 245-262. doi:10.1002/cpa.21434

Andersson, John Erik, Shahgholian, Henrik and Weiss, Georg (2013) The singular set of higher dimensional unstable obstacle type problems. Rendiconti Lincei - Matematica e Applicazioni, Volume 24 (Number 1). pp. 123-146. doi:10.4171/RLM/648

2012

Andersson, John Erik, Shahgholian, Henrik and Weiss, Georg S. (2012) Double obstacle problems with obstacles given by non-C 2 Hamilton–Jacobi equations. Archive for Rational Mechanics and Analysis, Vol.206 (No.3). pp. 779-819. doi:10.1007/s00205-012-0541-4

Andersson, John and Mikayelyan, H. (2012) The zero level set for a certain weak solution, with applications to the Bellman equations. Transactions of the American Mathematical Society, 365 . pp. 2297-2316. doi:10.1090/S0002-9947-2012-05593-0

Andersson, John Erik, Shahgholian, Henrik and Weiss, Georg S. (2012) On the singularities of a free boundary through Fourier expansion. Inventiones Mathematicae, Vol.187 (No.3). pp. 535-587. doi:10.1007/s00222-011-0336-5

Andersson, John and Mikayelyan, Hayk (2012) On the non-tangential touch between the free and the fixed boundaries for the two-phase obstacle-like problem. Mathematische Annalen, Vol.352 (No.2). pp. 357-372. doi:10.1007/s00208-011-0647-2

2011

Andersson, John and Mikayelyan, H. (2011) C1, regularity for solutions to the p-harmonic thin obstacle problem. International Mathematics Research Notices, Vol.2011 (No.1). pp. 119-134. doi:10.1093/imrn/rnq061

2010

Andersson, John, Shahgholian, Henrik and Weiss, Georg S. (2010) Uniform regularity close to cross singularities in an unstable free boundary problem. Communications in Mathematical Physics, Vol.296 (No.1). pp. 251-270. doi:10.1007/s00220-010-1015-x

Andersson, J. (2010) Boundary regularity for a parabolic obstacle type problem. Interfaces and Free Boundaries, Vol.12 (No.3). pp. 279-291. doi:10.4171/IFB/235

Andersson, John, Shahgholian, H. and Weiss, G. S. (2010) Regularity below the C^2 threshold for a torsion problem, based on regularity for Hamilton-Jacobi equations. In: Arkhipova, Arina A. and Nazarov, Alexander I, (eds.) Nonlinear partial differential equations and related topics : dedicated to Nina N. Uraltseva. American Mathematical Society translations, Vol.229 . Providence, R.I. : American Mathematical Society, pp. 1-14. ISBN 9780821849972

2009

Andersson, John and Weiss, Georg S. (2009) A parabolic free boundary problem with Bernoulli type condition on the free boundary. Journal für die reine und angewandte Mathematik (Crelles Journal), Vol.2009 (No.627). pp. 213-235. doi:10.1515/CRELLE.2009.016

This list was generated on Sat Jan 23 00:22:07 2021 GMT.
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us