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Abstract: Background: To evaluate vitamin B12 and folate status in pregnancy and their relationship
with maternal obesity, gestational diabetes mellitus (GDM), and offspring birthweight. Methods:
A retrospective case-control study of 344 women (143 GDM, 201 no-GDM) attending a district general
hospital and that had B12 and folate levels measured in the early 3rd trimester was performed.
Maternal history including early pregnancy body mass index (BMI) and neonatal data (birthweight,
sex, and gestational age) was recorded for all subjects. Results: 26% of the cohort had B12 levels
<150 pmol/L (32% vs. 22% in the two groups respectively, p < 0.05) while 1.5% were folate deficient.
After adjusting for confounders, 1st trimester BMI was negatively associated with 3rd trimester B12
levels. Women with B12 insufficiency had higher odds of obesity and GDM (aOR (95% CI) 2.40
(1.31, 4.40), p = 0.004, and 2.59 (1.35, 4.98), p = 0.004, respectively), although the latter was partly
mediated by BMI. In women without GDM, the lowest quartile of B12 and highest quartile of folate
had significantly higher adjusted risk of fetal macrosomia (RR 5.3 (1.26, 21.91), p = 0.02 and 4.99
(1.15, 21.62), p = 0.03 respectively). Conclusion: This is the first study from the UK to show that
maternal B12 levels are associated with BMI, risk of GDM, and additionally may have an independent
effect on macrosomia. Due to the increasing burden of maternal obesity and GDM, longitudinal
studies with B12 measurements in early pregnancy are needed to explore this link.
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1. Introduction

The burden of maternal obesity (defined as body mass index (BMI) greater than 30 kg/m2) is
rapidly increasing, affecting nearly 20% of pregnant women in the UK [1]. High BMI is associated with
adverse pregnancy outcomes including recurrent miscarriages and maternal deaths [2]. In parallel,
the incidence of gestational diabetes mellitus (GDM) has also risen affecting 5%–18% of all pregnancies
depending on the diagnostic criteria applied [3,4].

Vitamin B12 (B12) and folate are essential micronutrients required for the synthesis of DNA,
protein, and lipids, in a series of cellular reactions collectively known as one-carbon metabolism [5,6].
One step in this process is the conversion of homocysteine (Hcy) to a methyl donor, methionine,
for which B12 and folate are necessary cofactors. Additionally, the mitochondrial conversion of
methylmalonyl-CoA to succinyl-CoA requires B12 as a coenzyme and in its absence, accumulation
of the former compound inhibits fatty acid oxidation, thereby promoting lipogenesis [7,8]. Therefore
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it can be postulated that low B12, at a cellular level, may be linked to adipocyte dysfunction and
obesity-related complications by modulating lipid metabolism, cellular inflammation [9], and causing
hypomethylation of cholesterol biosynthesis pathways [10].

A recent systematic review showed that B12 insufficiency among pregnant women across the
world was common in all trimesters (20%–30%) [11]. Low B12 during pregnancy has implications for
materno-fetal health including maternal adiposity, maternal and offspring insulin resistance [12–14],
and adverse lipid profile in neonates [10,15]. The first two observations were replicated in a cohort of
women without GDM from South West England [16] but there are no data available on the role of B12
in GDM in the UK.

Low B12 can have an impact on fetal birthweight by influencing placental development [17],
although evidence for association with low birthweight (LBW) is equivocal [18–20]. At the other end of
the spectrum, maternal obesity and insulin resistance are well-known to be associated with higher fetal
birthweight [21,22]. Since B12 may be inversely associated with maternal BMI [12,16], it is possible
that B12 is an independent mediator or a confounder for high birthweight.

The primary aim of our study is to investigate the B12 and folate status of pregnant women in the
UK and their relationship with obesity and GDM, and secondarily to assess their relationship with
fetal birthweight.

2. Methods

A retrospective case-control study of pregnant women attending the antenatal clinic in a district
general hospital in the West Midlands, UK, between 2010 and 2013 was conducted. Using the
hospital information database which had routine materno-fetal records of all deliveries during
this period, we identified women who had a diagnosis of GDM and those who did not (labelled
as no-GDM) and had their B12 levels measured in the 2nd or 3rd trimesters of their pregnancies.
The no-GDM group consisted predominantly of women attending the medical obstetrics clinic for
varying medical conditions. B12 and folate levels were measured routinely for screening for anaemia
by the medical obstetric lead (VP), in addition to haemoglobin and ferritin. The physician (PS) running
the antenatal-diabetes clinic measured these micronutrient levels for similar reasons in their first visit
after the diagnosis of GDM. The following women were excluded from our analysis: pre-gestational
diabetes (Type 1 and 2), multiple pregnancies, and those on vitamin B12 supplements at the time of
blood sampling.

Clinical information about the women including medical and pregnancy history, smoking
status, and BMI at booking was recorded from the database. Fetal outcomes such as birthweight,
sex, and gestation were obtained for the secondary outcome analysis. Analysis of glucose
was done by a hexokinase enzymatic method in the hospital laboratory and serum B12 and
folate by an electrochemiluminescent immunoassay using a Roche Cobas immunoassay analyser
(Roche Diagnostics UK, Burgess Hill, UK).

2.1. Definitions

A selective screening approach was used to screen high-risk women for GDM according to
the National Institute for Health and Care Excellence (NICE) guidelines [23] (i.e., BMI > 30 kg/m2,
previous GDM, previous macrosomia, first degree relative with diabetes, and ethnic minority race).
This consisted of a 2-h 75 g glucose tolerance test (GTT) between 26 and 28 weeks of gestation.
The modified World Health Organisation (WHO) 1999 criteria was used to diagnose GDM (fasting
glucose ≥ 6.1 mmol/L or 2-h glucose ≥ 7.8 mmol/L) during the study period. The reference range for
serum B12 was 150–489 pmol/L and for serum folate was 7.0–42.4 nmol/L, respectively. Insufficiency of
the two micronutrients were defined as <150 pmol/L and <7 nmol/L, respectively [12,16]. Birthweight
percentiles and z-scores were calculated using gestational age at delivery and sex-specific reference
standards published by the Intergrowth calculator 21st Project [24]. Macrosomia was defined as
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birthweight > 4000 g, large for gestational age (LGA) as >90th percentile for sex and gestational age,
LBW as <2500 g, and small for gestational age (SGA) as <10th percentile for sex and gestational age.

2.2. Statistical Analysis

Based on the pilot data, the required sample size in each group to demonstrate a 15% difference
in mean B12 with 90% power and at 5% significance was calculated to be 144. Statistical analysis
was performed using SPSS version 22.0 [25]. Since BMI, serum B12, and folate were not normally
distributed, they were log-transformed for statistical purposes. For comparison of GDM and no-GDM
mothers, the Student’s t-test was used for continuous variables (e.g., B12, folate, and BMI) and the
Chi-square test for categorical variables. Stepwise multiple linear regression was performed with B12
and folate as the dependent variables with the predictors entered or removed from the model according
to the following criteria: Probability-of-F-to-enter ≤ 0.050, Probability-of-F-to-remove ≥ 0.100. Logistic
regression was performed to determine the odds of maternal obesity and GDM according to B12/folate
insufficiency status and the risk of macrosomia, LGA, LBW, and SGA according to quartiles of
B12/folate. The regression models included the following co-variates: age, parity, ethnic origin,
smoking, gestation of bloods, BMI, B12, and folate (where appropriate). For macrosomia and LBW,
sex and gestational age were additionally added to the models.

Our institution has obtained ethics approval to collect B12 and folate data from pregnant women
in an anonymised form (NHS ethics committee reference number 12/LO/0239).

3. Results

Out of approximately 8400 deliveries in the hospital between 2010 and 2013 that were screened,
344 women (143 GDM, 201 no-GDM) who met the inclusion criteria and had B12 levels measured in
the 3rd trimester of pregnancy were included. The clinical characteristics of the whole cohort and by
GDM status are provided in Table 1. Of the 201 no-GDM women, 45% had GTT as per NICE selective
screening criteria [23] and the characteristics of these women are summarised in the Supplementary
Materials Table S1.

Table 1. Maternal characteristics according to GDM status.

Variables Total GDM No GDM

Number (%) 344 (100) 143 (41.6) 201 (58.4)
Age (years) 30.3 ± 5.88 31.4 + 5.8 29.6 ± 5.9 **,a

BMI (kg/m2) § 28.8 ± 7.46 31.7 ± 7.0 26.7 ± 7.1 ***
Obesity (BMI > 30 kg/m2) (%) 38.0 60.6 22.0 ***

Current smokers (%) 18.7 15.2 19.9
Parity 1.1 ± 1.18 1.2 ± 1.18 1.0 ± 1.18

Ethnicity (%)
European 86.9 86.0 87.6

South Asian 9.3 11.2 8.0
Afro-Caribbean 1.2 0.7 1.5

Other 1.2 1.4 1.0

Gestation of GTT (weeks) b 26.6 ± 3.95 26.4 ± 4.40 26.8 ± 3.10
Mean fasting glucose (mmol/L) § 4.9 ± 1.01 5.2 ± 1.15 4.4 ± 0.39 ***

Mean 2 h glucose (mmol/L) § 7.5 ± 1.94 8.7 ± 1.26 5.6 ± 1.13 ***
Gestation of B12 bloods (weeks) 26.9 ± 5.3 28.0 ± 4.3 26.2 + 5.7 **

Vitamin B12 (pmol/L) § 187.5 (146.9, 235.4) 169.0 (140.2, 217.7) 195.6 (157.9, 244.6) **
Vitamin B12 deficiency (<150 pmol/L), n (%) 90 (26.2) 46 (32.2) 44 (21.9) *

Serum folate (nmol/L) § 21.3 (14.0, 34.4) 21.5 (13.5, 34.5) 20.8 (14.5, 34.4)
Serum folate deficiency (<7 nmol/L), n (%) 5 (1.5) 3 (2.1) 2 (1.0)

Folic acid supplements taken (%) 91.4 90.9 91.5

Continuous variables are mean ± SD (or median (IQR)), categorical variables are percentages; a p-value as
compared to the GDM group, * p < 0.05, ** p < 0.01, *** p < 0.001; b GTT results available in 90/201 (44.8%) of
no-GDM women; § Log-transformed for statistical comparison, GDM: gestational diabetes mellitus, BMI: body
mass index, GTT: glucose tolerance test.
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For the whole cohort, the mean gestation of serum vitamin B12 and folate measurements was at
26.9 weeks and GTT was at 26.6 weeks. B12 levels were lower in women with GDM (169.0 vs.
195.6 pmol/L, p < 0.001) and a significantly higher proportion of women with GDM had B12
insufficiency compared to non-GDM (Table 1). Folate deficiency was rare and 91% of the whole
cohort was taking folate supplements. Serum folate levels were not different in the two groups.

3.1. Vitamin B12, Folate Status, Maternal BMI, and GDM

Women with B12 insufficiency had higher 1st trimester BMI than those without (30.9 ± 7.56 vs.
28.0 ± 7.30 kg/m2, p < 0.05). After adjusting for age, parity, ethnicity, smoking status, and gestation of
blood tests, BMI was a significant negative predictor of B12 (β coefficient −0.21; 95% CI: −0.47, −0.13;
p = 0.001) whilst serum folate showed a positive association with B12 (Table 2, Figure 1). BMI was
also negatively associated with serum folate after adjustment although the strength of association was
weaker (β coefficient −0.12; 95% CI: 0.00, 0.33; p = 0.05). Third trimester vitamin B12 insufficiency was
additionally associated with a 2.4 times higher odds of first trimester obesity (Table 3).

Table 2. Predictors of vitamin B12 and folate.

Variables
Serum B12 § Serum Folate §

β-Coefficient p-Value β-Coefficient p-Value

Age - NS 0.32 <0.001
Parity - NS −0.24 <0.001
BMI § −0.21 0.001 −0.12 0.05

Ethnicity - NS - NS
Smoking - NS - NS

Gestation of B12/folate bloods - NS −0.28 <0.001
Serum B12 § 0.12 0.05

Serum folate § 0.23 <0.001
Folic acid supplements - NS - NS

§ Log-transformed for statistical calculations; NS: non-significant.
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Table 3. Relationship of maternal B12 and folate with obesity and gestational diabetes.

n (%) Obesity, n (%) GDM, n (%)

Vitamin B12 deficiency

Yes 90 44 (49.4) 46 (51.1)
No 254 86 (34.0) 97 (38.2)

Model 1 OR (95% CI) a 2.40 (1.31, 4.40) 2.59 (1.35, 4.98)
adjusted p 0.004 0.004

Model 2 OR (95% CI) b N/A 2.05 (1.03, 4.10)
adjusted p N/A 0.042

Folate deficiency

Yes 5 4 (80.0) 3 (60.0)
No 332 125 (37.9) 139 (41.9)

Model 1 OR (95% CI) a 6.29 (0.48, 82.79) 1.93 (0.17, 22.23)
adjusted p NS NS

Model 2 OR (95% CI) b N/A 0.89 (0.07, 11.38)
adjusted p N/A NS

Table showing the proportions and odds ratio of obesity and development of GDM according to the thresholds
of B12 and folate (reference categories are ‘No B12/folate deficiency’); a Model 1 adjusted for age, parity, ethnic
origin, smoking, gestation of bloods, and serum folate (or B12, respectively); b as for Model 1 plus gestational
BMI; N/A: not applicable; NS: non-significant.

B12 deficient women were at 2.59-times higher odds of having a diagnosis of GDM after adjusting
for age, parity, ethnic origin, smoking, gestation of bloods, and serum folate (Table 3). The effect size
was weaker when maternal BMI was added into the model (aOR 2.05, p = 0.04). Folate deficiency was
not significantly associated with a risk of GDM. There was also no association seen between folate
thresholds and obesity.

3.2. Vitamin B12, Folate, and Birth Outcomes

Birth outcome data were available in 335 women (97% of total cohort) and one baby born at
less than 32 weeks gestation was excluded from this analysis. 54.5% of the babies were male and the
mean birthweight was 3353 g. GDM women delivered 10 days earlier than no-GDM women and their
mean offspring birthweight was 180 g lower (3250 vs. 3428 g, p < 0.01) (Supplementary Materials
Table S2). Due to the likely confounding effects of treatment in GDM women, the relationship between
maternal B12 and folate and birth outcomes were analysed only in no-GDM women (Table 4). Women
in the lowest quartile of B12 had higher rates of macrosomic babies compared to the highest quartile
(22.9% vs. 8.0%) (Table 4). After adjustment for age, parity, ethnicity, smoking, serum folate, gestation of
B12 bloods, and newborn sex and gestational age, the relative risk (RR) of fetal macrosomia was higher
in women in the lowest quartile (RR 5.26, 95% CI: 1.26, 21.91, p = 0.02). The significance was attenuated
when gestational BMI was added to the model (Table 4). A similar trend for the risk of LGA was
observed although the result did not reach statistical significance. There was no association between
B12 thresholds and the outcomes of LBW or SGA. The impact of serum folate on fetal macrosomia
showed the reverse pattern for all of these outcome measures. Women in the highest quartile of folate
had significantly higher risk of fetal macrosomia compared to those in the lowest quartile (RR 4.99,
95% CI: 1.15, 21.62, p = 0.03), which remained significant after adjusting for maternal BMI (RR 6.60,
95% CI: 1.42, 30.71, p = 0.02) (Table 4).



Nutrients 2016, 8, 768 6 of 10

Table 4. Relationship between maternal B12 on birth outcome measures in no-GDM women.

n Range of
Values (pmol/L) Macrosomia, n (%) LGA, n (%) LBW, n (%) SGA, n (%)

Vitamin B12
(quartiles)

1 48 71.6, 157.2 11 (22.9) 12 (25.0) 1 (2.1) 4 (8.3)
2 48 158.7, 195.6 10 (20.8) 12 (25.0) 2 (4.2) 2 (4.2)
3 47 196.3, 244.3 9 (19.1) 10 (21.3) 3 (6.4) 3 (6.4)
4 50 245.0, 512.2 4 (8.0) 5 (10.0) 3 (6.0) 5 (10.0)

Relative risk
(95% CI) a 5.26 (1.26, 21.91) 3.18 (0.96, 10.56) 0.10 (0.002, 5.75) 1.35 (0.28, 6.47)

p b 0.02 0.06 0.27 0.71
p c 0.05 0.13 0.37 0.52

Folate
(quartiles)

1 44 4.5, 14.3 5 (11.4) 7 (15.9) 4 (9.1) 4 (9.1)
2 47 14.5, 20.6 7 (14.9) 9 (19.1) 1 (2.1) 2 (4.3)
3 48 20.8, 34.2 11 (22.9) 10 (20.8) 1 (2.1) 3 (6.3)
4 48 34.4, 45.3 10 (20.8) 12 (25.0) 3 (6.3) 5 (10.4)

Relative risk
(95% CI) a 4.99 (1.15, 21.62) 2.32 (0.74, 7.34) 0.21 (0.01, 9.64) 1.52 (0.26, 8.93)

p b 0.03 0.15 0.42 0.64
p c 0.02 0.06 0.41 0.90
a Relative risk of birthweight outcome in quartile 1 vs. quartile 4 of B12 and quartile 4 vs. quartile 1 of folate; b

adjusted for age, parity, ethnic origin, smoking, gestation of bloods, and serum folate (or B12, respectively),
plus sex and gestational age for macrosomia and LBW; c as for Model b plus gestational BMI; LGA: large for
gestational age; LBW: low birthweight; SGA: small for gestational age.

4. Discussion

Our study, although retrospective in nature, showed three key findings. Firstly, it is the first study
to show that low B12 status in pregnancy is associated with a higher risk of GDM in a UK population.
Secondly, higher first trimester BMI was an independent predictor of later B12 insufficiency. Thirdly,
low B12 levels were associated with macrosomia in the subgroup of no-GDM women, which seems to
be partly mediated by maternal BMI.

The only other study that examined the link between B12 and GDM by Krishnaveni et al. was in
an Indian cohort [12]. The magnitude of association found in that study was similar to ours, but the
significance was lost after adjusting for maternal BMI. In our study, although the effect size was reduced
when adjusted for BMI (aOR 2.59 vs. 2.05; Table 3), the significance persisted, suggesting a potential
independent effect of B12. Higher numbers of women with GDM in our cohort and a ‘case-control’
design might explain the larger effect size. The recent finding by Knight et al., albeit in no-GDM
women, also supports the inverse link between B12 levels and insulin resistance in pregnant White
Caucasian women [16]. Indeed, higher insulin resistance in the context of low B12 has been shown
by other authors in obese adolescents [26], non-pregnant adults [27,28], as well as in women with
polycystic ovarian syndrome [28]. Prospective longitudinal studies are needed to investigate whether
the presence of low B12 status in early pregnancy independently increases the risk of incident GDM.

The aetiology of the inverse relationship between B12 and BMI found in our study is an intriguing
one. While confounding factors such as dietary habits, socioeconomic status, and hemodilution may
be present, other studies that have corrected for these still show an independent link between B12
and BMI [12,16]. Interestingly, the frying and roasting of meat products reduces the bioavailability of
B12 by 20%–40% [29], so higher consumption of processed foods may increase the risk of both B12
insufficiency and metabolic diseases. Additionally, B12 has been shown to be negatively associated
with other markers of obesity such as triglycerides [7], blood pressure [30], and the metabolic
syndrome [31], which lends support to a possible pathological association between them. In one
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trial, the supplementation of B12 and folate in adults with metabolic syndrome improved insulin
resistance by ameliorating endothelial dysfunction, providing further insight into how these conditions
may be linked [32]. Further studies are needed to determine the direction of association and a potential
reverse causality.

This is the first study that has demonstrated a relationship between maternal B12 and macrosomia,
which seem to be mediated in part by maternal obesity. We demonstrated this only in no-GDM women
as the treatment of GDM is a major confounder for macrosomia. Unfortunately, we did not have
adiposity measures or a bigger sample size to assess the interactions between B12 status and maternal
BMI/adiposity with offspring size and adiposity.

The rates of B12 insufficiency observed in our no-GDM population was similar to that observed
by Knight et al. [16] (22% vs. 20%), suggesting that such higher rates of insufficiency are not limited to
Indian populations [11]. It must be noted that a fall in B12 during pregnancy may be physiological
due to a decrease in the fraction bound to inactive haptocorrin [33], but the evidence is equivocal with
regards to whether there is also a fall in the active form, holotranscobalamin [34,35]. In the absence of
specific cut-off values to define B12 deficiency in pregnancy, we used the non-pregnant reference range
(<150 pmmol/L). It is noteworthy that associations with adverse maternal metabolic outcomes [12]
and elevation in Hcy during pregnancy [36] were found by other authors at B12 thresholds similar
to this.

It was reassuring to see that folate deficiency was rare, albeit in this selected hospital-based
cohort. However, the combination of low B12 and high folate has been shown to be associated
with lower neonatal birthweight [37] as well as central adiposity and insulin resistance in 6-year old
offspring [14]. Whilst our sample size was not large enough to perform a detailed subgroup analysis,
we observed that women in the lowest quartile of B12 and highest quartile of folate had similar
risks of macrosomia (aRR of 5.3 and 4.99; Table 4). Therefore, it is possible that the women with
such a B12-folate imbalance are particularly at high risk of having larger babies. This phenomenon
(high folate/low B12), is increasingly common in populations with mandatory folic acid fortification
such as in the USA and Canada [38,39], and is related to adverse clinical outcomes in the elderly
population [40].

Although we have identified associations between B12, maternal obesity, risk of GDM, and
fetal macrosomia, our study does not prove causation or the direction of the relationship between
these factors. Some of the important limitations were that this was a single-centre, retrospective
study involving pregnant women attending a hospital clinic. Therefore it was not possible to obtain
early pregnancy B12/folate levels. We adjusted for the gestation of bloods in all the regression
analyses, to reduce some of the bias due to longitudinal changes in B12 during pregnancy. We did
not have markers of adiposity, and therefore it was not possible to study the potential differential
association of low B12 status with obesity and adiposity in pregnant women as well as their offspring.
Lack of functional measures of B12 insufficiency, such as Hcy and methylmalonic acid (MMA),
or holotranscobalamin, which is the active fraction of B12 available for uptake by tissues, limits
the ability to study the thresholds of B12 sufficiency during pregnancy and should be measured in
future studies.

5. Conclusions

We have shown for the first time in a UK population that B12 deficiency in pregnancy is
common particularly in obese women, is independently associated with GDM, and may contribute
to macrosomia. As the prevalence of maternal obesity and GDM is rapidly increasing, our findings
warrant longitudinal cohort studies to understand the interplay between B12 and these outcomes.
If early pregnancy B12 status is found to be independently predictive of incident GDM, such findings
could potentially offer simple interventions to improve the metabolic health of pregnant women and
their offspring.



Nutrients 2016, 8, 768 8 of 10

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/8/12/768/s1,
Table S1: Table of characteristics of no-GDM women who did and did not undergo GTT, Table S2: Table of birth
outcomes of offspring according to maternal GDM status.

Acknowledgments: The authors would like to acknowledge Paul Rushton (IT Site coordinator and Information
Manager, Pathology, George Eliot Hospital) and Sonia Hayre (Maternity Data Clerk, George Eliot Hospital) who
helped with collating the anonymous data from routinely collected maternity records.

Author Contributions: V.P. and P.S. conceptualised the study and reviewed the manuscript for intellectual content;
N.S. collected the data, performed the statistical analysis, and wrote the manuscript; H.V., S.W., I.G. and S.S.
contributed to data collection. All authors approved the final manuscript as submitted. P.S. is the guarantor of
this work and had full access to all the data presented in the study and takes full responsibility for the integrity
and the accuracy of the data analysis.

Conflicts of Interest: This research received no specific grant from any funding agency in the public, commercial,
or not-for-profit sectors. PS is partly supported by a project grant from MRC (Grant Ref: MR/J000094/1) which is
designed to assess the impact of B12 levels in early pregnancy on gestational diabetes.

References

1. Heslehurst, N.; Rankin, J.; Wilkinson, J.R.; Summerbell, C.D. A nationally representative study of maternal
obesity in England, UK: Trends in incidence and demographic inequalities in 619,323 births, 1989–2007. Int. J.
Obes. (Lond.) 2010, 34, 420–428. [CrossRef] [PubMed]

2. Lewis, G. The Confidential Enquiry into Maternal and Child Health (CEMACH). In Saving Mothers’ Lives:
Reviewing Maternal Deaths to Make Motherhood Safer—2003–2005. The Seventh Report on Confidential Enquiries
into Maternal Deaths in the United Kingdom; CEMACH: London, UK, 2007.

3. Buckley, B.S.; Harreiter, J.; Damm, P.; Corcoy, R.; Chico, A.; Simmons, D.; Vellinga, A.; Dunne, F.; DALI Core
Investigator Group. Gestational diabetes mellitus in Europe: Prevalence, current screening practice and
barriers to screening. A review. Diabet. Med. 2012, 29, 844–854. [CrossRef] [PubMed]

4. Cundy, T.; Ackermann, E.; Ryan, E.A. Gestational diabetes: New criteria may triple the prevalence but effect
on outcomes is unclear. BMJ 2014, 348, g1567. [CrossRef] [PubMed]

5. Saravanan, P.; Yajnik, C.S. Role of maternal vitamin B12 on the metabolic health of the offspring: A contributor
to the diabetes epidemic? Br. J. Diabetes Vasc. Dis. 2010, 10, 109–114. [CrossRef]

6. Finer, S.; Saravanan, P.; Hitman, G.; Yajnik, C. The role of the one-carbon cycle in the developmental origins
of type 2 diabetes and obesity. Diabet. Med. 2014, 31, 263–272. [CrossRef] [PubMed]

7. Adaikalakoteswari, A.; Jayashri, R.; Sukumar, N.; Venkataraman, H.; Pradeepa, R.; Gokulakrishnan, K.;
Anjana, R.M.; McTernan, P.G.; Tripathi, G.; Patel, V.; et al. Vitamin B12 deficiency is associated with adverse
lipid profile in Europeans and Indians with type 2 diabetes. Cardiovasc. Diabetol. 2014, 13, 129. [CrossRef]
[PubMed]

8. Brindle, N.P.; Zammit, V.A.; Pogson, C.I. Regulation of carnitine palmitoyltransferase activity by
malonyl-CoA in mitochondria from sheep liver, a tissue with a low capacity for fatty acid synthesis. Biochem. J.
1985, 232, 177–182. [CrossRef] [PubMed]

9. Kumar, K.A.; Lalitha, A.; Pavithra, D.; Padmavathi, I.J.; Ganeshan, M.; Rao, K.R.; Venu, L.; Balakrishna, N.;
Shanker, N.H.; Reddy, S.U.; et al. Maternal dietary folate and/or vitamin B12 restrictions alter body
composition (adiposity) and lipid metabolism in wistar rat offspring. J. Nutr. Biochem. 2013, 24, 25–31.
[CrossRef] [PubMed]

10. Adaikalakoteswari, A.; Finer, S.; Voyias, P.D.; McCarthy, C.M.; Vatish, M.; Moore, J.; Smart-Halajko, M.;
Bawazeer, N.; Al-Daghri, N.M.; McTernan, P.G.; et al. Vitamin B12 insufficiency induces cholesterol
biosynthesis by limiting s-adenosylmethionine and modulating the methylation of SREBF1 and LDLR
genes. Clin. Epigenet. 2015, 7, 14. [CrossRef] [PubMed]

11. Sukumar, N.; Rafnsson, S.B.; Kandala, N.B.; Bhopal, R.; Yajnik, C.S.; Saravanan, P. Prevalence of vitamin
B-12 insufficiency during pregnancy and its effect on offspring birth weight: A systematic review and
meta-analysis. Am. J. Clin. Nutr. 2016, 103, 1232–1251. [CrossRef] [PubMed]

12. Krishnaveni, G.V.; Hill, J.C.; Veena, S.R.; Bhat, D.S.; Wills, A.K.; Karat, C.L.; Yajnik, C.S.; Fall, C.H. Low
plasma vitamin B12 in pregnancy is associated with gestational ‘diabesity’ and later diabetes. Diabetologia
2009, 52, 2350–2358. [CrossRef] [PubMed]

http://www.mdpi.com/2072-6643/8/12/768/s1
http://dx.doi.org/10.1038/ijo.2009.250
http://www.ncbi.nlm.nih.gov/pubmed/20029373
http://dx.doi.org/10.1111/j.1464-5491.2011.03541.x
http://www.ncbi.nlm.nih.gov/pubmed/22150506
http://dx.doi.org/10.1136/bmj.g1567
http://www.ncbi.nlm.nih.gov/pubmed/24618099
http://dx.doi.org/10.1177/1474651409358015
http://dx.doi.org/10.1111/dme.12390
http://www.ncbi.nlm.nih.gov/pubmed/24344881
http://dx.doi.org/10.1186/s12933-014-0129-4
http://www.ncbi.nlm.nih.gov/pubmed/25283155
http://dx.doi.org/10.1042/bj2320177
http://www.ncbi.nlm.nih.gov/pubmed/4084227
http://dx.doi.org/10.1016/j.jnutbio.2012.01.004
http://www.ncbi.nlm.nih.gov/pubmed/22703962
http://dx.doi.org/10.1186/s13148-015-0046-8
http://www.ncbi.nlm.nih.gov/pubmed/25763114
http://dx.doi.org/10.3945/ajcn.115.123083
http://www.ncbi.nlm.nih.gov/pubmed/27076577
http://dx.doi.org/10.1007/s00125-009-1499-0
http://www.ncbi.nlm.nih.gov/pubmed/19707742


Nutrients 2016, 8, 768 9 of 10

13. Stewart, C.P.; Christian, P.; Schulze, K.J.; Arguello, M.; LeClerq, S.C.; Khatry, S.K.; West, K.P., Jr. Low maternal
vitamin B-12 status is associated with offspring insulin resistance regardless of antenatal micronutrient
supplementation in rural Nepal. J. Nutr. 2011, 141, 1912–1917. [CrossRef] [PubMed]

14. Yajnik, C.S.; Deshpande, S.S.; Jackson, A.A.; Refsum, H.; Rao, S.; Fisher, D.J.; Bhat, D.S.; Naik, S.S.; Coyaji, K.J.;
Joglekar, C.V.; et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the
offspring: The pune maternal nutrition study. Diabetologia 2008, 51, 29–38. [CrossRef] [PubMed]

15. Adaikalakoteswari, A.; Vatish, M.; Lawson, A.; Wood, C.; Sivakumar, K.; McTernan, P.G.; Webster, C.;
Anderson, N.; Yajnik, C.S.; Tripathi, G.; et al. Low maternal vitamin B12 status is associated with lower
cord blood HDL cholesterol in white caucasians living in the UK. Nutrients 2015, 7, 2401–2414. [CrossRef]
[PubMed]

16. Knight, B.A.; Shields, B.M.; Brook, A.; Hill, A.; Bhat, D.S.; Hattersley, A.T.; Yajnik, C.S. Lower circulating B12
is associated with higher obesity and insulin resistance during pregnancy in a non-diabetic white British
population. PLoS ONE 2015, 10, e0135268. [CrossRef] [PubMed]

17. Koukoura, O.; Sifakis, S.; Spandidos, D.A. DNA methylation in the human placenta and fetal growth (review).
Mol. Med. Rep. 2012, 5, 883–889. [PubMed]

18. Hogeveen, M.; Blom, H.J.; van der Heijden, E.H.; Semmekrot, B.A.; Sporken, J.M.; Ueland, P.M.; den Heijer, M.
Maternal homocysteine and related B vitamins as risk factors for low birthweight. Am. J. Obstet. Gynecol.
2010, 202, 572. [CrossRef] [PubMed]

19. Muthayya, S.; Kurpad, A.V.; Duggan, C.P.; Bosch, R.J.; Dwarkanath, P.; Mhaskar, A.; Mhaskar, R.; Thomas, A.;
Vaz, M.; Bhat, S.; et al. Low maternal vitamin B12 status is associated with intrauterine growth retardation in
urban south Indians. Eur. J. Clin. Nutr. 2006, 60, 791–801. [CrossRef] [PubMed]

20. Sukumar, N.; Adaikalakoteswari, A.; Venkataraman, H.; Maheswaran, H.; Saravanan, P. Vitamin B12 status
in women of childbearing age in the UK and its relationship with national nutrient intake guidelines: Results
from two national diet and nutrition surveys. BMJ Open 2016, 6, e011247. [CrossRef] [PubMed]

21. Gaudet, L.; Ferraro, Z.M.; Wen, S.W.; Walker, M. Maternal obesity and occurrence of fetal macrosomia:
A systematic review and meta-analysis. BioMed Res. Int. 2014, 2014, 640291. [CrossRef] [PubMed]

22. He, X.J.; Qin, F.Y.; Hu, C.L.; Zhu, M.; Tian, C.Q.; Li, L. Is gestational diabetes mellitus an independent risk
factor for macrosomia: A meta-analysis? Arch. Gynecol. Obstet. 2015, 291, 729–735. [CrossRef] [PubMed]

23. National Institute for Health and Care Excellence. Diabetes in pregnancy: Management of diabetes and its
complications from pre-conception to the postnatal period. In NICE Clinical Guideline 63; National Institute
for Health and Care Excellence: Manchester, UK, 2008; pp. 1–42.

24. Villar, J.; Cheikh Ismail, L.; Victora, C.G.; Ohuma, E.O.; Bertino, E.; Altman, D.G.; Lambert, A.;
Papageorghiou, A.T.; Carvalho, M.; Jaffer, Y.A.; et al. International standards for newborn weight, length, and
head circumference by gestational age and sex: The newborn cross-sectional study of the intergrowth-21st
project. Lancet 2014, 384, 857–868. [CrossRef]

25. IBM Corp. IBM Spss Statistics for Windows, version 22.0; IBM Corp: Armonk, NY, USA, 2013.
26. Ho, M.; Halim, J.H.; Gow, M.L.; El-Haddad, N.; Marzulli, T.; Baur, L.A.; Cowell, C.T.; Garnett, S.P. Vitamin

B12 in obese adolescents with clinical features of insulin resistance. Nutrients 2014, 6, 5611–5618. [CrossRef]
[PubMed]

27. Baltaci, D.; Kutlucan, A.; Turker, Y.; Yilmaz, A.; Karacam, S.; Deler, H.; Ucgun, T.; Kara, I.H. Association of
vitamin B12 with obesity, overweight, insulin resistance and metabolic syndrome, and body fat composition;
primary care-based study. Med. Glas. (Zenica) 2013, 10, 203–210. [PubMed]

28. Kaya, C.; Cengiz, S.D.; Satiroglu, H. Obesity and insulin resistance associated with lower plasma vitamin
B12 in PCOS. Reprod. Biomed. Online 2009, 19, 721–726. [CrossRef] [PubMed]

29. United States Department of Agriculture. USDA Table of Nutrient Retention Factors, Release 6.
Available online: https://www.ars.usda.gov/ARSUserFiles/80400525/Data/retn/retn06.pdf (accessed
on 5 November 2016).

30. Karatela, R.A.; Sainani, G.S. Plasma homocysteine in obese, overweight and normal weight hypertensives
and normotensives. Indian Heart J. 2009, 61, 156–159. [PubMed]

31. Guven, A.; Inanc, F.; Kilinc, M.; Ekerbicer, H. Plasma homocysteine and lipoprotein (a) levels in Turkish
patients with metabolic syndrome. Heart Vessels 2005, 20, 290–295. [CrossRef] [PubMed]

http://dx.doi.org/10.3945/jn.111.144717
http://www.ncbi.nlm.nih.gov/pubmed/21865563
http://dx.doi.org/10.1007/s00125-007-0793-y
http://www.ncbi.nlm.nih.gov/pubmed/17851649
http://dx.doi.org/10.3390/nu7042401
http://www.ncbi.nlm.nih.gov/pubmed/25849948
http://dx.doi.org/10.1371/journal.pone.0135268
http://www.ncbi.nlm.nih.gov/pubmed/26288227
http://www.ncbi.nlm.nih.gov/pubmed/22294146
http://dx.doi.org/10.1016/j.ajog.2010.01.045
http://www.ncbi.nlm.nih.gov/pubmed/20400059
http://dx.doi.org/10.1038/sj.ejcn.1602383
http://www.ncbi.nlm.nih.gov/pubmed/16404414
http://dx.doi.org/10.1136/bmjopen-2016-011247
http://www.ncbi.nlm.nih.gov/pubmed/27519920
http://dx.doi.org/10.1155/2014/640291
http://www.ncbi.nlm.nih.gov/pubmed/25544943
http://dx.doi.org/10.1007/s00404-014-3545-5
http://www.ncbi.nlm.nih.gov/pubmed/25388922
http://dx.doi.org/10.1016/S0140-6736(14)60932-6
http://dx.doi.org/10.3390/nu6125611
http://www.ncbi.nlm.nih.gov/pubmed/25486369
http://www.ncbi.nlm.nih.gov/pubmed/23892832
http://dx.doi.org/10.1016/j.rbmo.2009.06.005
http://www.ncbi.nlm.nih.gov/pubmed/20021721
https://www.ars.usda.gov/ARSUserFiles/80400525/Data/retn/retn06.pdf
http://www.ncbi.nlm.nih.gov/pubmed/20039500
http://dx.doi.org/10.1007/s00380-004-0822-4
http://www.ncbi.nlm.nih.gov/pubmed/16314912


Nutrients 2016, 8, 768 10 of 10

32. Setola, E.; Monti, L.D.; Galluccio, E.; Palloshi, A.; Fragasso, G.; Paroni, R.; Magni, F.; Sandoli, E.P.; Lucotti, P.;
Costa, S.; et al. Insulin resistance and endothelial function are improved after folate and vitamin B12 therapy
in patients with metabolic syndrome: Relationship between homocysteine levels and hyperinsulinemia.
Eur. J. Endocrinol. 2004, 151, 483–489. [CrossRef] [PubMed]

33. Koebnick, C.; Heins, U.A.; Dagnelie, P.C.; Wickramasinghe, S.N.; Ratnayaka, I.D.; Hothorn, T.; Pfahlberg, A.B.;
Hoffmann, I.; Lindemans, J.; Leitzmann, C. Longitudinal concentrations of vitamin B(12) and vitamin
B(12)-binding proteins during uncomplicated pregnancy. Clin. Chem. 2002, 48, 928–933. [PubMed]

34. Greibe, E.; Andreasen, B.H.; Lildballe, D.L.; Morkbak, A.L.; Hvas, A.M.; Nexo, E. Uptake of cobalamin and
markers of cobalamin status: A longitudinal study of healthy pregnant women. Clin. Chem. Lab. Med. 2011,
49, 1877–1882. [CrossRef] [PubMed]

35. Murphy, M.M.; Molloy, A.M.; Ueland, P.M.; Fernandez-Ballart, J.D.; Schneede, J.; Arija, V.; Scott, J.M.
Longitudinal study of the effect of pregnancy on maternal and fetal cobalamin status in healthy women and
their offspring. J. Nutr. 2007, 137, 1863–1867. [PubMed]

36. Guerra-Shinohara, E.M.; Morita, O.E.; Peres, S.; Pagliusi, R.A.; Neto, L.F.S.; D’Almeida, V.; Irazusta, S.P.;
Allen, R.H.; Stabler, S.P. Low ratio of S-adenosylmethionine to S-adenosylhomocysteine is associated with
vitamin deficiency in Brazilian pregnant women and newborns. Am. J. Clin. Nutr. 2004, 80, 1312–1322.
[PubMed]

37. Gadgil, M.; Joshi, K.; Pandit, A.; Otiv, S.; Joshi, R.; Brenna, J.T.; Patwardhan, B. Imbalance of folic acid and
vitamin B12 is associated with birth outcome: An Indian pregnant women study. Eur. J. Clin. Nutr. 2014, 68,
726–729. [CrossRef] [PubMed]

38. Ray, J.G.; Vermeulen, M.J.; Langman, L.J.; Boss, S.C.; Cole, D.E. Persistence of vitamin B12 insufficiency
among elderly women after folic acid food fortification. Clin. Biochem. 2003, 36, 387–391. [CrossRef]

39. Wyckoff, K.F.; Ganji, V. Proportion of individuals with low serum vitamin B-12 concentrations without
macrocytosis is higher in the post folic acid fortification period than in the pre folic acid fortification period.
Am. J. Clin. Nutr. 2007, 86, 1187–1192. [PubMed]

40. Morris, M.S.; Jacques, P.F.; Rosenberg, I.H.; Selhub, J. Folate and vitamin B-12 status in relation to anemia,
macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. Am. J.
Clin. Nutr. 2007, 85, 193–200. [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1530/eje.0.1510483
http://www.ncbi.nlm.nih.gov/pubmed/15476449
http://www.ncbi.nlm.nih.gov/pubmed/12029010
http://dx.doi.org/10.1515/cclm.2011.682
http://www.ncbi.nlm.nih.gov/pubmed/21875397
http://www.ncbi.nlm.nih.gov/pubmed/17634256
http://www.ncbi.nlm.nih.gov/pubmed/15531681
http://dx.doi.org/10.1038/ejcn.2013.289
http://www.ncbi.nlm.nih.gov/pubmed/24448492
http://dx.doi.org/10.1016/S0009-9120(03)00061-4
http://www.ncbi.nlm.nih.gov/pubmed/17921401
http://www.ncbi.nlm.nih.gov/pubmed/17209196
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Definitions 
	Statistical Analysis 

	Results 
	Vitamin B12, Folate Status, Maternal BMI, and GDM 
	Vitamin B12, Folate, and Birth Outcomes 

	Discussion 
	Conclusions 

