Exploitation of Differential Electronic Densities for the Stereoselective Reduction of Ketones Bearing a Masked Amino Surrogate

Renta Jonathan Chew, ${ }^{\mathrm{a}, \mathrm{b}^{*}}$ Martin Wills ${ }^{\mathrm{b}^{*}}$
${ }^{\text {a }}$ A*STAR Graduate Academy (A*GA), Agency for Science Technology and Research (A*STAR), Singapore 138668, Singapore
${ }^{\mathrm{b}}$ Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom

Email: ${ }^{\text {a,b*}}$ chew0209@ntu.edu.sg/jonathan chew@scholars.a-star.edu.sg
b*m.wills@warwick.ac.uk

Supporting Information

Table of Contents

I. General Information S2
II. Experimental Section S3
III.NMR spectra

S30

I. General Information

Analytical grade solvents were used directly without further purification as purchased from commercial sources: chloroform, acetone and tetrahydrofuran from VWR Chemicals; toluene, acetonitrile and concentrated sulphuric acid from Fischer Scientific; dichloromethane and 1,2dichloroethane from Sigma Aldrich. Chiral tethered ruthenium catalyst (R, R)-1a supplied by Johnson Matthey and (S)-oxiranylanisole [97\% sum of enantiomers] and AD-mix- α from Sigma Aldrich was used directly without further purification. Flash chromatography on silica was conducted on Sigma Aldrich silica gel (technical grade, pore size 60Å, 230-400 mesh, 40-63 $\mu \mathrm{m}$ particle size). Room temperature is defined to be approximately $20^{\circ} \mathrm{C}$.

NMR spectra were recorded on Bruker Avance III HDF 400 and 500 spectrometers. ${ }^{1} \mathrm{H}$ NMR spectra chemical shifts were reported in $\delta \mathrm{ppm}$ relative to chloroform ($\delta=7.26 \mathrm{ppm}$) or tetramethylsilane (δ $=0.00 \mathrm{ppm}$). Multiplicities were given as: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). The number of protons (n) for a given resonance was indicated by nH while coupling constants were reported as J value in Hertz (Hz). ${ }^{13} \mathrm{C}$ NMR spectra chemical shifts were recorded relative to solvent resonance $\left(\mathrm{CDCl}_{3}: \delta=77.26 \mathrm{ppm}\right)$. Optical rotations of optically active alcohols were measured in the specified solution using a 2 dm cell with an Optical Activity Ltd. AA-1000 polarimeter. Chiral HPLC was performed on a Hewlett Packard 1050 HPLC machine incorporating a Diacel CHIRAPAK ${ }^{\circledR}$ IA, IC or Diacel CHIRALCEL OD-H column.

II. Experimental Section

Synthetic scheme for the preparation of α-phthalimyl- α^{\prime}-ketoethers 2

(1) General Procedure A: Preparation of aryl glycidyl ethers

Procedure is adapted and modified from Med. Chem. Res. 2004, 13, 631. Mixture of phenol (ca. 10.0 mmol, 1 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.2 equiv.) and epichlorohydrin (5 equiv.) was refluxed for 5 hours in a round bottom flask. Upon completion, mixture was filtered through Celite and the filter cake washed with excess ethyl acetate. The filtrate was washed with water, the organic layer dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then subject to rotary evaporation to give the crude product before purification by Kugelrohr distillation.

(2) General Procedure B: Epoxide ring opening with phthalimide

Procedure is adapted and modified from Tetrahedron: Asymmetry 2008, 17, 1898. To a solution of the epoxide (ca. $10.0 \mathrm{mmol}, 1$ equiv.), phthalimide (1.2 equiv.) and isopropyl alcohol (ca. 201 mL ; toluene for alkyl ethers) was added catalytic amount of pyridine (0.05 equiv.) before refluxing for 2 hours. The solution was subject to solvent strip under reduced pressure then the residue purified by flash chromatography on silica to afford the desired alcohols.

(3) General Procedure C: Preparation of α-phthalimyl- α^{\prime}-ketoethers 2

Procedure is adapted and modified from Tetrahedron: Asymmetry 2007, 18, 1202. A solution of the alcohol (ca. $3.44 \mathrm{mmol}, 1$ equiv.) in acetone (5.2 mL) was cooled in an ice-water bath before the dropwise addition of a solution of chromic acid [prepared from CrO_{3} ($4.89 \mathrm{mmol}, 1.45$ equiv.), concentrated sulfuric acid $(0.08 \mathrm{~mL})$ and water $(0.6 \mathrm{~mL})]$. Mixture was removed from the ice bath then stirred at room temperature for 1 hour before dropwise addition of isopropyl alcohol to quench the reaction. The mixture was filtered through Celite and the filter cake washed with excess acetone before subjecting the filtrate to rotary evaporation. The residue obtained is subsequently purified by flash chromatography on silica to give the desired ketone.

(4) General Procedure D: Epoxide ring opening with alkyl alcohols

Procedure was adapted and modified from Patent number: CN105218324 A. To a round bottom flask containing the alcohol (ca. $10 \mathrm{mmol}, 1$ equiv.) and dichloromethane (20 mL ; when $\mathrm{R}=\mathrm{Me},{ }^{\mathrm{i}} \mathrm{Pr}$, neat conditions) was cooled to $0{ }^{\circ} \mathrm{C}$ before the addition of catalytic amounts of $\mathrm{BF}_{3} \bullet \mathrm{OEt}_{2}$ (0.01 equiv.). Epichlorohydrin (1.5 equiv.) was subsequently added dropwise over 5 minutes and was allowed to stir for 20 hours at rt. Upon completion, solution was subjected to rotary evaporation to remove volatiles before purification of the crude product by Kugelrohr distillation.

(5) General Procedure E: Preparation of α-phthalimyl- α^{\prime}-alkyloxy alcohols

A mixture of halohydrin (ca. $6 \mathrm{mmol}, 1$ equiv.), tetrabutylammonium bromide (0.5 equiv.), saturated sodium hydroxide (1 equiv.) and toluene (ca. 15 mL) was stirred at $80^{\circ} \mathrm{C}$ for 1.5 hours. Additional toluene (50 mL) was added before charging with phthalimide (1 equiv.) and the solution refluxed overnight. Upon completion, the solution was subject to solvent strip under reduced pressure then the residue purified by flash chromatography on silica to afford the desired alcohols.

(6) Preparation of 2-(3-chloro-2oxopropyl)isoindoline-1,3-dione $5 \&$ rac-halohydrin 6 from epichloridrin

Gen. Proc. B Gen. Proc. C

5 and $\mathbf{6}$ are prepared in accordance to General Procedure \mathbf{C} and \mathbf{B} respectively from epichlorohydrin instead of the glycidyl ethers.

(7) General Procedure F: Chiral tethered Ru/TsDPEN 1a catalyzed asymmetric transfer

 hydrogenation of 2 and 5

To a nitrogen flushed Schlenk tube was charged with ketone 2,5 (0.10-0.20 mmol) and catalyst (R, R)1a ($3 \mathrm{~mol} \%$) before the addition of equivalent volumes of chloroform and 5:2 formic acid/triethylamine solution (TEAF) such that the total concentration of the ketone is $1 M$ (unless otherwise stated). Reaction is allowed to stir overnight ($>15 \mathrm{hrs}$) at room temperature (ca. $20^{\circ} \mathrm{C}$)
before quenching with excess saturated sodium bicarbonate solution and subsequently extracting the mixture with ethyl acetate ($2 \times 3 \mathrm{~mL}$). The combined organic layers were concentrated then purified by flash chromatography on silica to afford the desired chiral alcohols.

(8A) Characterization of compounds - Ketones

2a
Prepared in accordance to General Procedure A-C (white solid, $134 \mathrm{mg}, 48 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $4.72(\mathrm{~s}, 2 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.05(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.90(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ (jmod) ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 45.26$ (1C), 72.43 (1C), 114.78 (2C), 122.47 (1C), 123.84 (2C), 130.12 (2C), $132.35(2 \mathrm{C}), 134.45$ (2C), 157.63 (1C), 167.89 (2C), 200.29 (1C); Melting range: $164-166{ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]^{-}: 294.0772$, found 294.0782.

2b
Prepared in accordance to General Procedure A-C (white solid, $28.6 \mathrm{mg}, 28 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $4.84(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 7.14-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{t}, 1 \mathrm{H}, J=7 \mathrm{~Hz}), 7.49(\mathrm{t}, 1 \mathrm{H}, J=7 \mathrm{~Hz})$, 7.74-7.90 (m, 7H); ${ }^{13} \mathrm{C}$ (jmod) ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta 45.30$ (1C), 72.47 (1C), 107.46 (1C), 118.46 (1C), 123.86 (2C), 124.66 (1C), 127.04 (1C), 127.28 (1C), 127.95 (1C), 129.80 (1C), 130.33 (1C), 132.35 (2C), 134.46 (2C), 134.59 (1C), 155.53 (1C), 167.89 (2C), 200.12 (1C); Melting range: $195-198^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 368.0893 , found 368.0892.

2c
Prepared in accordance to General Procedure A-C (white solid, $267 \mathrm{mg}, 45 \%$): ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $2.31(\mathrm{~s}, 3 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 6.85(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.14(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.74-7.89(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ (jmod) ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta 20.75$ (1C), 45.27 (1C), 72.65 (1C), 114.60 (2C), 123.82 (2C), 130.52 (2C), 131.80 (1C), 132.35 (2C), 134.42 (2C), 155.58 (1C), 167.89 (2C), 200.57 (1C); Melting range: 166-169 ${ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 332.0893, found 332.0896.

2d
Prepared in accordance to General Procedure A-C (white solid, $38.5 \mathrm{mg}, 26 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $3.79(\mathrm{~s}, 3 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 4 \mathrm{H}), 7.74-7.89(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}(\mathrm{jmod})\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta$ 45.26 (1C), 55.96 (1C), 73.26 (1C), 115.19 (2C), 115.84 (2C), 123.84 (2C), 132.36 (2C), 134.44 (2C), 151.81 (1C), 155.06 (1C), 167.90 (2C), 200.58 (1C); Melting range: $132-134{ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NO}_{5}[\mathrm{M}-\mathrm{H}]:$: 324.0877 , found 324.0879 .

2e
Prepared in accordance to General Procedure A-C (white solid, $43.0 \mathrm{mg}, 7 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $3.82(\mathrm{~s}, 3 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 6.52-6.53(\mathrm{~m}, 2 \mathrm{H}), 6.60-6.62(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.24(\mathrm{~m}, 1 \mathrm{H}$, coincide with $\left.\mathrm{CHCl}_{3}\right), 7.74-7.89(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ (jmod) $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 45.25$ (1C), 55.63 (1C), 72.48 (1C), 101.44 (1C), 106.59 (1C), 108.17 (1C), 123.85 (2C), 130.58 (1C), 132.35 (2C), 134.45 (2C), 158.85 (1C), 161.31 (1C), $167.88(2 \mathrm{C}), 200.21(1 \mathrm{C})$; Melting range: $156-158^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 348.0842, found 348.0839.

$2 f$
Prepared in accordance to General Procedure A-C (white solid, $85.2 \mathrm{mg}, 10 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $3.91(\mathrm{~s}, 3 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 6.93-6.97(\mathrm{~m}, 3 \mathrm{H}), 7.04-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.89(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}(\mathrm{jmod})$ $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 45.35$ (1C), 55.95 (1C), 74.93 (1C), 112.55 (1C), 116.50 (1C), 121.24 (1C), 123.74 (1C), 123.77 (2C), 132.43 (2C), 134.37 (2C), 147.54 (1C), 150.32 (1C), 167.96 (2C), 201.16 (1C); Melting range: $170-173{ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 348.0842 , found 348.0842 .

Prepared in accordance to General Procedure A-C (white solid, $107 \mathrm{mg}, 26 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $3.90(\mathrm{~s}, 6 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 6.61(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.04(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 7.73-7.89(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ (jmod) ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta 45.69$ (1C), 56.17 (2C), 78.30 (1C), 105.21 (2C), 123.66 (2C), 124.55 (1C), 132.55 (2C), 134.26 (2C), 137.34 (1C), 152.96 (2C), 168.12 (2C), 202.26 (1C); Melting range: 135-136 ${ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 378.0948$, found 378.0949.

2h
Prepared in accordance to General Procedure A-C (white solid, $372 \mathrm{mg}, 63 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $4.71(\mathrm{~s}, 2 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 6.92-7.34(\mathrm{~m}, 9 \mathrm{H}), 7.75-7.90(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}(\mathrm{jmod})\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 45.22$ (1C), 73.01 (1C), 115.99 (2C), 118.27 (2C), 121.04 (2C), 123.09 (1C), 123.85 (2C), 129.95 (2C), 132.33 (2C), 134.47 (2C), 151.85 (1C), 153,76 (1C), 158.22 (1C), 167.88 (2C), 200.13 (1C); Melting range: 133$136{ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 410.0999$, found 410.0997.

$2 i$
Prepared in accordance to General Procedure A-C (white solid, $182 \mathrm{mg}, 82 \%$): ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $4.70(\mathrm{~s}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.45(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.75-7.90(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}(\mathrm{jmod})\left(\mathrm{CDCl}_{3}\right.$, $126 \mathrm{MHz}): \delta 45.14$ (1C), 72.51 (1C), 114.84 (1C), 116.60 (2C), 123.88 (2C), 132.30 (2C), 132.97 (2C), 134.51 (2C), 156.73 (1C), 167.85 (2C), 199.57 (1C); Melting range: $165-166^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NO}_{4} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+}: 395.9846,397.9828$, found $395.9842,397.9823$.

2j
Prepared in accordance to General Procedure D,E,C (white solid, $443 \mathrm{mg}, 83 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$): $\delta 3.49(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 7.73-7.88(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}(\mathrm{jmod})\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 44.88(1 \mathrm{C})$, 59.87 (1C), 77.01 (1C, coincide with CDCl_{3} signal), 123.78 (2C), 132.37 (2C), 134.38 (2C), 167.93 (2C), 201.42 (1C); Melting range: $82-85{ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 256.0580$, found 256.0572.

2k
Prepared in accordance to General Procedure D,E,C (white solid, $628 \mathrm{mg}, 72 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: $\delta 1.24(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 3.67-3.72(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 7.73-7.88(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}(\mathrm{jmod})\left(\mathrm{CDCl}_{3}\right.$, 126 MHz): $\delta 22.06$ (2C), 45.23 (1C), 73.11 (1C), 73.41 (1C), 123.74 (2C), 132.41 (2C), 134.33 (2C), 168.01 (2C), 202.39 (1C); Melting range: 59-61 ${ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]:$: 260.0928 , found 260.0927.

21
Prepared in accordance to General Procedure D,E,C (white solid, $142 \mathrm{mg}, 43 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: $\delta 4.12(\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{dd}, 1 \mathrm{H}, J=1,11 \mathrm{~Hz}), 5.36(\mathrm{dd}, 1 \mathrm{H}, J=1,17 \mathrm{~Hz})$, 5.90-5.97 (m, 1H), 7.72-7.88 (m, 4H); ${ }^{13} \mathrm{C}$ (jmod) ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 45.10(1 \mathrm{C}), 72.91(1 \mathrm{C}), 74.46$ (1C), 118.73 (1C), 123.78 (2C), 132.39 (2C), 133.59 (1C), 134.38 (2C), 167.96 (2C), 201.56 (1C); Melting range: $84-86{ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 260.0917$, found 260.0917.

2m
Prepared in accordance to General Procedure D,E,C (white solid, $352 \mathrm{mg}, 76 \%)$: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$): $\delta 2.55(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=3 \mathrm{~Hz}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=3 \mathrm{~Hz}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 7.73-7.88(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}(\mathrm{jmod})$ $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 45.09$ (1C), 59.11 (1C), 73.79 (1C), 76.51 (1C), 78.35 (1C), 123.77 (2C), 132.35 (2C), 134.38 (2C), 167.89 (2C), 200.73 (1C); Melting range: $98-101{ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}{ }_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 280.0580$, found 280.0583.

2n
Prepared in accordance to General Procedure D,E,C (white solid, $293 \mathrm{mg}, 39 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$): $\delta 4.21(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 7.34-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.73-7.88(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}(\mathrm{jmod})\left(\mathrm{CDCl}_{3}, 126\right.$ MHz): $\delta 45.12$ (1C), 74.03 (1C), 74.50 (1C), 123.79 (2C), 128.23 (2C), 128.51 (1C), 128.90 (2C), 132.38
(2C), 134.38 (2C), 136.94 (1C), 167.95 (2C), 201.39 (1C); Melting range: $100-102{ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 332.0893$, found 332.0897.

20
Prepared in accordance to General Procedure D,E,C (pale yellow oil, $148 \mathrm{mg}, 14 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 4.20(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 6.38-6.40(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1 \mathrm{~Hz}), 7.73-7.88(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ (jmod) ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta 45.04(1 \mathrm{C}), 65.49(1 \mathrm{C}), 74.07(1 \mathrm{C}), 110.71(1 \mathrm{C}), 110.84(1 \mathrm{C}), 123.77$ (2C), 132.38 (2C), 134.36 (2C), 143.72 (1C), 150.51 (1C), 167.92 (2C), 201.33 (1C); HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 322.0686$, found 322.0688 .

5
Prepared in accordance to General Procedure C,B (white solid, $160 \mathrm{mg}, 42 \%$): ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ 4.22 (s, 2H), 4.77 (s, 2H), 7.75-7.90 (m, 4H); ${ }^{13} \mathrm{C}$ (jmod) ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 44.93$ (1C), 46.42 (1C), 123.93 (2C), 132.22 (2C), 134.57 (2C), 167.67 (2C), 195.70 (1C); Melting range: $141-145^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{NO}_{3} \mathrm{CINa}[\mathrm{M}+\mathrm{Na}]^{+}$: 260.0085, 262.0055, found 260.0085, 260.0056.

(8B) Characterization of compounds - Optically active alcohols

(R)-3a

Prepared in accordance to General Procedure F except that [2a]=0.5M, v/v TEAF: $\mathrm{CHCl}_{3}=1: 3$ (white solid, $44.1 \mathrm{mg}, 91 \%$, ee $=73 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 3.94-4.09(\mathrm{~m}, 4 \mathrm{H}), 4.29-$ $4.33(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 7.26-7.30\left(\mathrm{~m}, 2 \mathrm{H}\right.$, coincide with CHCl_{3} signal), 7.72-7.89 (m, 4H); ${ }^{13} \mathrm{C}$ (jmod) (CDCl $\left.{ }_{3}, 126 \mathrm{MHz}\right): \delta 41.52$ (1C), 69.13 (1C), 69.86 (1C), 114.85 (2C), 121.60 (1C), 123.75 (2C), 129.78 (2C), 132.20 (2C), 134.43 (2C), 158.58 (1C), 169.02 (2C); Melting range: 121$123^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]:$: 296.0928, found 296.0922; HPLC (Diacel IC column, Hexane:IPA = 82:18, detection wavelength: $\lambda=254 \mathrm{~nm}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}): \mathrm{t}_{1}=27.5 \mathrm{~min}, \mathrm{t}_{2}=37.1$ $\min ;[\alpha]_{\mathrm{D}}{ }^{27}=+28.32^{\circ}\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right)$.

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Height } \\ {[\%]} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Wos } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{gathered} \text { Compound } \\ \text { Name } \end{gathered}$
1	27.516	802.504	15.805	49.7	57.7	0.77	
2	36.704	812.321	11.604	50.3	42.3	1.07	
	Total	1614.824	27.408	100.0	100.0		

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & {[\%]} \\ & \hline \end{aligned}$	Height [\%]	$\begin{gathered} \mathrm{wo5} \\ {[\mathrm{~min}]} \end{gathered}$	Compound Name
1	27.532	1755.485	33.803	86.6	89.3	0.78	
2	37.084	271.368	4.031	13.4	10.7	1.06	
	Total	2026.853	37.834	100.0	100.0		

$(R)-\mathbf{3 b}$
Prepared in accordance to General Procedure F except that [2b]=0.066M, v/v TEAF: $\mathrm{CHCl}_{3}=1: 28$ (white solid, $24.6 \mathrm{mg}, 92 \%$, ee $=76 \%)$: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 2.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 4.00-4.21(\mathrm{~m}, 4 \mathrm{H}), 4.36-$ $4.40(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.89(\mathrm{~m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{C}$ (jmod) $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 41.58$ (1C), 69.12 (1C), 69.92 (1C), 107.21 (1C), 118.86 (1C), 123.77 (2C), 124.13 (1C), 126.71 (1C), 127.08 (1C), 127.89 (1C), 129.46 (1C), 129.80 (1C), 132.20 (2C), 134.45 (2C), 134.63 (1C), 156.52 (1C), 169.05 (2C); Melting range: 164-167 ${ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 370.1050, found 370.1044; HPLC (Diacel IC column, Hexane:IPA = 82:18, detection wavelength: $\lambda=254 \mathrm{~nm}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}): \mathrm{t}_{1}=32.9 \mathrm{~min}, \mathrm{t}_{2}=56.2$ $\min ;[\alpha]_{\mathrm{D}}^{32}=+17.30^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{gathered} \text { Area } \\ {[\%]} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Height } \end{aligned}$ $[\%]$	$\begin{aligned} & \text { WO5 } \\ & {[\mathrm{min}]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Compound } \\ \text { Name } \end{gathered}$
1	32.408	1390.672	22.512	49.9	64.6	0.93	
2	56.228	1397.182	12.335	50.1	35.4	1.70	
	Total	2787.854	34.846	100.0	100.0		

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height	$\begin{aligned} & \text { Area } \\ & {[\%]} \end{aligned}$	Height	$\begin{aligned} & \text { W05 } \\ & {[\mathrm{min}]} \end{aligned}$	Compound Name
1	32.876	4556.694	72.846	87.9	92.6	0.93	
2	56.244	627.922	5.829	12.1	7.4	1.63	
	Tot	5184.616	78.67	100.0	100.0		

(R)-3c

Prepared in accordance to General Procedure F (off-white solid, $31.6 \mathrm{mg}, 95 \%$, ee $=78 \%$): ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 3.93-4.06(\mathrm{~m}, 4 \mathrm{H}), 4.27-4.31(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $9 \mathrm{~Hz}), 7.07(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.73-7.88(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}(\mathrm{jmod})\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 20.72(1 \mathrm{C}), 41.52(1 \mathrm{C})$, 69.12 (1C), 70.07 (1C), 114.72 (2C), 123.73 (2C), 130.20 (2C), 130.86 (1C), 132.21 (2C), 134.40 (2C), 156.50 (1C), $169.00(2 \mathrm{C})$; Melting range: $108-109{ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 334.1050, found 334.1051; HPLC (Diacel IC column, Hexane:IPA $=82: 18$, detection wavelength: $\lambda=$ 254 nm , flow rate $=1 \mathrm{~mL} / \mathrm{min}): \mathrm{t}_{1}=29.0 \mathrm{~min}, \mathrm{t}_{2}=43.5 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{26}=+22.84^{\circ}\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right)$.

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \end{aligned}$	Height [\%]	$\begin{gathered} \mathrm{WO5} \\ {[\mathrm{~min}]} \end{gathered}$	$\begin{gathered} \text { Compound } \\ \text { Name } \end{gathered}$
1	27.972	2534.781	48.245	50.4	62.5	0.78	
2	40.784	2493.115	28.924	49.6	37.5	1.30	
	Total	5027.897	77.168	100.0	100.0		

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ \text { [mV.s] } \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & {[\%]} \\ & \hline \% \end{aligned}$	Height	$\begin{aligned} & \text { wos } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{gathered} \text { Compound } \\ \text { Name } \end{gathered}$
1	28.968	735.236	13.398	89.2	92.7	0.82	
2	43.520	88.863	1.057	10.8	7.3	1.29	
	Total	824.099	14.455	100.0	100.0		

(R)-3d

Prepared in accordance to General Procedure F (white solid, $38.9 \mathrm{mg}, 88 \%$, ee $=75 \%$): ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 2.81(\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.93-4.05(\mathrm{~m}, 4 \mathrm{H}), 4.26-4.29(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{q}, 4 \mathrm{H}, J=9 \mathrm{~Hz})$, 7.73-7.88 (m, 4H); ${ }^{13} \mathrm{C}$ (jmod) ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta 41.51$ (1C), 55.96 (1C), 69.16 (1C), 70.72 (1C), 114.92 (2C), 115.92 (2C), 123.73 (2C), 132.21 (2C), 134.41 (2C), 152.76 (1C), 154.51 (1C), 169.01 (2C); Melting range: $144-147{ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{5}[\mathrm{M}-\mathrm{H}]:$: 326.1034 , found 326.1035 ; HPLC (Diacel IC column, Hexane:IPA = 82:18, detection wavelength: $\lambda=254 \mathrm{~nm}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{1}=44.3 \mathrm{~min}$, $\mathrm{t}_{2}=64.2 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{27}=+18.31^{\circ}\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right)$.

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \end{aligned}$	$\begin{gathered} \text { Height } \\ {[\%]} \\ \hline \end{gathered}$	$\begin{aligned} & \text { W05 } \\ & {[\mathrm{min}]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Compound } \\ \text { Name } \end{gathered}$
1	44.296	866.546	9.944	87.6	90.9	1.32	
2	64.192	122.383	0.999	12.4	9.1	1.91	
	Total	988.929	10.942	100.0	100.0		

(R)-3e

Prepared in accordance to General Procedure F except that $[\mathbf{2 e}]=0.5 \mathrm{M}, \mathrm{v} / \mathrm{v}$ TEAF: $\mathrm{CHCl}_{3}=1: 3$ (pale brown viscous oil, $30.4 \mathrm{mg}, 88 \%$, ee $=71 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 2.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5 \mathrm{~Hz}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 3.94-4.07 (m, 4H), 4.30(m, 1H), 6.47-6.54 (m, 3H), 7.17 (t, 1H, J = 8Hz), 7.73-7.88 (m, 4H); ${ }^{13} \mathrm{C}(\mathrm{jmod})$ $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 41.54(1 \mathrm{C}), 55.55$ (1C), 69.08 (1C), 69.95 (1C), 101.36 (1C), 106.84 (1C), 107.31 (1C), 123.75 (2C), 130.21 (1C), 132.20 (2C), 134.43 (2C), 159.83 (1C), 161.08 (1C), 169.01 (2C); HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 350.0999, found 350.1007; HPLC (Diacel IC column, Hexane:IPA = 82:18, detection wavelength: $\lambda=254 \mathrm{~nm}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}): \mathrm{t}_{1}=51.6 \mathrm{~min}, \mathrm{t}_{2}=104.7 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{26}=$ $+17.47^{\circ}\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right)$.

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & {[\%]} \end{aligned}$	Height [\%]	$\begin{aligned} & \text { Wo5 } \\ & {[\mathrm{min}]} \end{aligned}$	Compound Name
1	52.012	3008.489	26.539	49.9	68.5	1.70	
2	102.176	3022.801	12.184	50.1	31.5	3.74	
	Total	6031.290	38.723	100.0	100.0		

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height	$\begin{aligned} & \text { Area } \\ & {[\%]} \end{aligned}$	Height [\%]	$\begin{gathered} \mathrm{WO5} \\ {[\mathrm{~min}]} \end{gathered}$	Compound Name
1	51.580	5568.857	43.571	85.6	90.8	1.92	
2	104.684	934.783	4.426	14.4	9.2	3.15	
	Total	6503.640	47.997	100.0	100.0		

(R)-3f

Prepared in accordance to General Procedure F (white solid, $40.3 \mathrm{mg}, 92 \%$, ee $=82 \%)$: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 3.28(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5 \mathrm{~Hz}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.89-4.14(\mathrm{~m}, 4 \mathrm{H}), 4.28-4.29(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.97(\mathrm{~m}, 4 \mathrm{H}), 7.71-$ $7.87(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ (jmod) ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 41.15$ (1C), 56.04 (1C), 68.93 (1C), 72.97 (1C), 112.32 (1C), 116.45 (1C), 121.28 (1C), 122.87 (1C), 123.62 (2C), 132.26 (2C), 134.28 (2C), 148.32 (1C), 150.86 (1C), 168.86 (2C); Melting range: $109-111^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 350.0999$, found 350.1000; HPLC (Diacel IC column, Hexane:IPA $=82: 18$, detection wavelength: $\lambda=254 \mathrm{~nm}$, flow rate $=$ $1 \mathrm{~mL} / \mathrm{min}): \mathrm{t}_{1}=46.2 \mathrm{~min}, \mathrm{t}_{2}=62.4 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{29}=+12.35^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ \text { [mV.s] } \end{gathered}$	$\begin{gathered} \text { Height } \\ {[\mathrm{mV}]} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Area } \\ & {[\%]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Height } \\ {[\%]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { WO5 } \\ & {[\mathrm{min}]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Compound } \\ \text { Name } \end{gathered}$
1	47.780	2803.701	28.250	49.8	58.9	1.50	
2	64.916	2831.774	19.740	50.2	41.1	2.16	
	Total	5635.475	47.990	100.0	100.0		

Result Table (Uncal - C: IClarity IWORK2IDA TA|RUCI23_O3_2017[ATH 3\% Cat in CHCIB] PhthNH OH OAr, Ar=2-OMe 18\% IPA, IC -

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Height } \\ {[\%]} \\ \hline \end{gathered}$	$\begin{aligned} & \text { wos } \\ & {[\mathrm{min}]} \end{aligned}$	Compound Name
1	46.240	999.882	11.300	90.8	92.9	1.34	
2	62.384	101.544	0.869	9.2	7.1	1.81	
	Total	1101.425	12.169	100.0	100.0		

(R) -3 g

Prepared in accordance to General Procedure F (white solid, $45.4 \mathrm{mg}, 93 \%$, ee $=90 \%$): ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 3.76-4.20(\mathrm{~m}, 5 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 4.14(\mathrm{brs}, 1 \mathrm{H}), 6.58(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.00(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.70-$ $7.86(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ (jmod) ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 40.56$ (1C), 56.35 (1C), 68.89 (1C), 76.66 (1C), 105.45 (2C), 123.55 (2C), 124.31 (1C), 132.40 (2C), 134.15 (2C), 137.35 (1C), 153.39 (2C), 168.75 (2C); Melting range: $145-148{ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 380.1105$, found 380.1108 ; HPLC (Diacel IC column, Hexane:IPA = 82:18, detection wavelength: $\lambda=254 \mathrm{~nm}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}): \mathrm{t}_{1}=83.4 \mathrm{~min}$, $\mathrm{t}_{2}=96.0 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{24}=-22.64^{\circ}\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right)$.

Result Table (Uncal - C: IClarity IWORK2|DATA|RJC|29_03_2017 [racemic] PhthNH OH OAr, Ar=2,6-OMe 18\% IPA, IC - U-PAD2-

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & \text { \% \% } \end{aligned}$	Height [\%]	$\begin{aligned} & \text { W05 } \\ & {[\mathrm{min}]} \end{aligned}$	Compound Name
1	84.692	1169.967	6.940	50.2	55.3	2.56	
2	99.196	1160.975	5.617	49.8	44.7	3.12	
	Total	2330.942	12.557	100.0	100.0		

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Height } \\ {[\%]} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{WO5} \\ & {[\mathrm{~min}]} \\ & \hline \end{aligned}$	Compound Name
1	83.376	139.912	0.764	5.2	6.1	2.65	
2	95.952	2538.803	11.727	94.8	93.9	3.24	
	Total	2678.715	12.491	100.0	100.0		

Prepared in accordance to General Procedure F except that [2h]=0.5M, v/v TEAF: $\mathrm{CHCl}_{3}=1: 3$ (off-white solid, $35.3 \mathrm{mg}, 89 \%$, ee $=66 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.84(\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz}), 3.95-4.08(\mathrm{~m}, 4 \mathrm{H}), 4.29-$ $4.33(\mathrm{~m}, 1 \mathrm{H}), 6.88-7.32(\mathrm{~m}, 9 \mathrm{H}), 7.73-7.89(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ (jmod) $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 41.50(1 \mathrm{C}), 69.13$ (1C), 70.51 (1C), 115.97 (2C), 117.98 (2C), 120.99 (2C), 122.81 (1C), 123.76 (2C), 129.88 (2C), 132.19 (2C), 134.45 (2C), 151.01 (1C), 154.83 (1C), 158.53 (1C), 169.02 (2C); Melting range: $98-101{ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 412.1155$, found 412.1159; HPLC (Diacel OD-H column, Hexane:IPA = 92:8, detection wavelength: $\lambda=254 \mathrm{~nm}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}): \mathrm{t}_{1}=83.2 \mathrm{~min}, \mathrm{t}_{2}=92.8$ $\min ;[\alpha]_{D}{ }^{28}=+12.44^{\circ}\left(c=1.01, \mathrm{CHCl}_{3}\right)$.

	Reten. Time $[\mathrm{min}]$	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & \text { [\% } \end{aligned}$	$\begin{gathered} \text { Height } \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{WO5} \\ {[\mathrm{~min}]} \end{gathered}$	$\begin{gathered} \text { Compound } \\ \text { Name } \end{gathered}$
1	- 81.796	3745.029	18.471	49.7	53.9	3.06	
2	95.300	3793.142	15.786	50.3	46.1	3.57	
otal		7538.171	34.258	100.0	100.0		

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mV] } \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Height } \\ {[\%]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { WO5 } \\ & {[\mathrm{min}]} \\ & \hline \end{aligned}$	Compound Name
1	83.204	2085.416	11.459	17.1	24.1	2.78	
2	92.760	10143.610	36.137	82.9	75.9	4.14	
	Total	12229.026	47.596	100.0	100.0		

(R)-3i

Prepared in accordance to General Procedure F except that $[\mathbf{2 i}]=0.25 \mathrm{M}$, v/v TEAF: $\mathrm{CHCl}_{3}=1: 7$ (white solid, $48.7 \mathrm{mg}, 95 \%$, ee $=58 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 2.84(\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz}), 3.94-4.05(\mathrm{~m}, 4 \mathrm{H}), 4.28-$ $4.30(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.74-7.88(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}(\mathrm{jmod})\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$: $\delta 41.46$ (1C), 69.05 (1C), 70.17 (1C), 113.83 (1C), 116.64 (2C), 123.79 (2C), 132.15 (2C), 132.60 (2C), 134.50 (2C), 157.71 (1C), 169.03 (2C); Melting range: $163-166{ }^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{BrNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 397.9998,399.9980$, found 398.0001, 399.9981; HPLC (Diacel OD-H column, Hexane:IPA = 88:12, detection wavelength: $\lambda=254 \mathrm{~nm}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}): \mathrm{t}_{1}=33.0 \mathrm{~min}, \mathrm{t}_{2}=39.2 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{28}=$ $+13.49^{\circ}\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right)$.

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \\ & \hline \end{aligned}$	Height [\%]	$\begin{aligned} & \mathrm{WO5} \\ & {[\mathrm{~min}]} \end{aligned}$	Compound Name Name
1	33.460	761.107	9.588	49.1	60.1	1.19	
2	38.496	788.846	6.363	50.9	39.9	1.82	
	Total	1549.953	15.951	100.0	100.0		

Result Table (Uncal - C: IClarity|WORK2IDA TA|RUC|16_03_2017 [ATH 3\% Cat in CHCl3] PhthNH OH OAr, Ar=4-Br 12\% IPA, OD-H

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	$\begin{gathered} \text { Height } \\ \text { [mV] } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \end{aligned}$	$\begin{gathered} \text { Height } \\ {[\%]} \end{gathered}$	$\begin{aligned} & \mathrm{WO5} \\ & {[\mathrm{~min}]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Compound } \\ \text { Name } \end{gathered}$
1	33.032	1041.399	12.8	78.	83.3	1.21 .21	
2	39.204	279.755	2.566	21.2	16.7	1.62	
	tal	1321	15.3	100.0	100.0		

(R)-3j

Prepared in accordance to General Procedure F (viscous colourless oil, $31.2 \mathrm{mg}, 90 \%$, ee $=77 \%$): ${ }^{1} \mathrm{H}$ $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 2.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.91(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.72-7.87 (m, 4H); ${ }^{13} \mathrm{C}$ (jmod) ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta 41.40$ (1C), 59.54 (1C), 69.19 (1C), 74.47 (1C), 123.66 (2C), 132.25 (2C), 134.32 (2C), 168.96 (2C); HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 258.0737, found 258.0737; HPLC (Diacel IC column, Hexane:IPA = 85:15, detection wavelength: $\lambda=254 \mathrm{~nm}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}): \mathrm{t}_{1}=35.5 \mathrm{~min}, \mathrm{t}_{2}=42.1 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{27}=+18.80^{\circ}\left(\mathrm{c}=0.99, \mathrm{CHCl}_{3}\right)$.

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	$\begin{gathered} \text { Height } \\ \text { [mV] } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Area } \\ & {[\%]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Height } \\ {[\%]} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{WO5} \\ & {[\mathrm{~min}]} \\ & \hline \end{aligned}$	Compound Name
1	35.776	948.102	15.368	50.3	54.5	0.94	
2	41.424	937.264	12.807	49.7	45.5	1.11	
	Total	1885.366	28.174	100.0	100.0		

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \\ & \hline \end{aligned}$	Height $[\%]$	$\begin{aligned} & \mathrm{WO5} \\ & {[\mathrm{~min}]} \end{aligned}$	$\begin{gathered} \text { Compound } \\ \text { Name } \end{gathered}$
1	35.500	6172.639	80.418	88.3	88.3	1.16	
2	42.096	817.133	10.641	11.7	11.7	1.18	
	Total	6989.773	91.059	100.0	100.0		

(R)-3k

Prepared in accordance to General Procedure F (pale brown oil, $37.7 \mathrm{mg}, 76 \%$, ee $=79 \%$): ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 1.14(\mathrm{~d}, 6 \mathrm{H}, J=6 \mathrm{~Hz}), 2.70(\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz}), 3.42-4.04(\mathrm{~m}, 6 \mathrm{H}), 7.71-7.86(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}(\mathrm{jmod})$ $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 22.16$ (1C), 22.24 (1C), 41.57 (1C), 69.26 (1C), 69.92 (1C), 72.60 (1C), 123.58 (2C), 132.30 (2C), 134.24 (2C), 168.94 (2C); HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]:$: 262.1085, found 262.1080; HPLC (Diacel IC column, Hexane:IPA $=82: 18$, detection wavelength: $\lambda=254 \mathrm{~nm}$, flow rate $=$ $1 \mathrm{~mL} / \mathrm{min}): \mathrm{t}_{1}=17.8 \mathrm{~min}, \mathrm{t}_{2}=19.6 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{26}=+21.16^{\circ}\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right)$.

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & {[\%]} \\ & \hline \end{aligned}$	Height [\%]	$\begin{gathered} \mathrm{WO5} \\ {[\mathrm{~min}]} \\ \hline \end{gathered}$	Compound Name
1	17.540	4081.560	123.656	49.8	54.0	0.50	
2	19.548	4112.538	105.529	50.2	46.0	0.59	
	Total	8194.098	229.186	100.0	100.0		

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \end{aligned}$	Height [\%]	$\begin{aligned} & \text { wos } \\ & {[\mathrm{min}]} \end{aligned}$	Compound Name
1	17.780	197.481	6.884	10.6	12.7	0.45	
2	19.644	1663.910	47.131	89.4	87.3	0.5	
	Total	861.3	54.016	100.0	100.0		

(R)-3I

Prepared in accordance to General Procedure F except that [2I]=0.5M, v/v TEAF: $\mathrm{CHCl}_{3}=1: 3$ (pale yellow oil, $33.1 \mathrm{mg}, 84 \%$, ee $=78 \%):{ }^{1} \mathrm{H}^{\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): ~} \delta 2.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 3.46-4.08(\mathrm{~m}, 7 \mathrm{H})$, 5.16 (dd, $1 \mathrm{H}, J=1,11 \mathrm{~Hz}$), $5.25(\mathrm{dd}, 1 \mathrm{H}, J=1,17 \mathrm{~Hz}), 5.83-5.90(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.85(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}(\mathrm{jmod})$ $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 41.47(1 \mathrm{C}), 69.17(1 \mathrm{C}), 72.00(1 \mathrm{C}), 72.62(1 \mathrm{C}), 117.60(1 \mathrm{C}), 123.59(2 \mathrm{C}), 132.22(2 \mathrm{C})$, 134.26 (2C), 134.50 (1C), 168.90 (2C); HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 262.1074 , found 262.1075; HPLC (Diacel IA column, Hexane:IPA =97:3, detection wavelength: $\lambda=254 \mathrm{~nm}$, flow rate $=$ $1 \mathrm{~mL} / \mathrm{min}): \mathrm{t}_{1}=53.2 \mathrm{~min}, \mathrm{t}_{2}=61.5 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{31}=+13.44^{\circ}\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right)$.

Result Table (Uncal - C: IClarity|WORK2IDATA|RUCI30_O5_2017 [racemic] PhthNH OH OR, R=CH2-CH=CH2 3\% IPA, IA - U-PAD2-

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mV}]} \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Height } \\ & {[\% \%]} \end{aligned}$	$\begin{gathered} \mathrm{WO5} \\ {[\mathrm{~min}]} \end{gathered}$	Compound Name
1	51.628	1912.296	14.875	49.7	59.5	1.94	
2	61.224	1931.904	10.122	50.3	40.5	2.86	
	Total	3844.200	24.997	100.0	100.0		

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	$\begin{gathered} \text { Height } \\ {[\mathrm{mV}]} \end{gathered}$	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \\ & \hline \end{aligned}$	Height [\%]	$\begin{gathered} \text { WO5 } \\ {[\mathrm{min}]} \end{gathered}$	Compound Name
1	53.216	339.078	2.805	11.2	17.3	1.86	
2	61.520	2677.518	13.407	88.8	82.7	2.96	
	Total	3016.595	16.211	100.0	100.0		

$(R)-3 \mathrm{~m}$
Prepared in accordance to General Procedure F except that $[2 m]=0.5 \mathrm{M}, \mathrm{v} / \mathrm{v}$ TEAF: $\mathrm{CHCl}_{3}=1: 3$ (white solid, $34.7 \mathrm{mg}, 89 \%$, ee $=81 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.43(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2 \mathrm{~Hz}), 2.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 3.57-$ $4.12(\mathrm{~m}, 5 \mathrm{H}), 4.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2 \mathrm{~Hz}), 7.72-7.88(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}(\mathrm{jmod})\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 41.45(1 \mathrm{C}), 58.94$ (1C), 69.20 (1C), 71.74 (1C), 75.23 (1C), 79.42 (1C), 123.68 (2C), 132.25 (2C), 134.34 (2C), 168.97 (2C); Melting range: $120-123^{\circ} \mathrm{C}$; HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 282.0737, found 282.0737; HPLC (Diacel IC column, Hexane:IPA =84:16, detection wavelength: $\lambda=254 \mathrm{~nm}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$): $\mathrm{t}_{1}=40.1 \mathrm{~min}, \mathrm{t}_{2}=53.7 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{30}=+19.97^{\circ}\left(\mathrm{c}=0.99, \mathrm{CHCl}_{3}\right)$.

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \\ & \hline \end{aligned}$	Height $[\%]$	$\begin{aligned} & \text { WO5 } \\ & {[\mathrm{min}]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Compound } \\ \text { Name } \end{gathered}$
1	40.272	1919.255	26.368	49.9	58.8	1.09	
2	52.348	1925.475	18.457	50.1	41.2	1.56	

Result Table (Uncal - C: IClarity IWORK2IDATA|RUCIO9-05_2017[ATH 3\% Cat in CHCI3] PhthNH OH OR, $\mathrm{R}=\mathrm{CHz-C=-CH16} \mathrm{\%} \mathrm{IPA}$,

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ \text { [mV.s] } \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & {[\%]} \end{aligned}$	Height	$\begin{aligned} & \text { WO5 } \\ & {[\mathrm{min}]} \end{aligned}$	Compound
1	40.116	5984.035	73.649	90.7	92.0	1.22	
2	53.728	615.811	6.432	9.3	8.0	1.46	
	Total	6599.846	80.081	100.0	100.0		

(R)-3n

Prepared in accordance to General Procedure F except that $[\mathbf{2 n}]=0.5 \mathrm{M}$, v/v TEAF: $\mathrm{CHCl}_{3}=1: 3$ (viscous colourless oil, $32.8 \mathrm{mg}, 99 \%$, ee $=76 \%):{ }^{1} \mathrm{H}_{\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 2.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.51-4.11(\mathrm{~m}, 5 \mathrm{H}), 4.56}$ ($\mathrm{s}, 2 \mathrm{H}$), 7.27-7.7.35 ($\mathrm{m}, 5 \mathrm{H}$, coincide with CDCl_{3} signal), 7.71-7.86 ($\mathrm{m}, 4 \mathrm{H}$); ${ }^{13} \mathrm{C}(\mathrm{jmod})\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$: $\delta 41.52$ (1C), 69.27 (1C), 72.06 (1C), 73.80 (1C), 123.63 (2C), 128.02 (2C), 128.05 (1C), 128.69 (2C), 132.25 (2C), $134.29(2 \mathrm{C}), 137.94(1 \mathrm{C}), 168.96(2 \mathrm{C})$; $\mathrm{HRMS}(E S I)$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 334.1050, found 334.1053; HPLC (Diacel OD-H column, Hexane:IPA $=92: 8$, detection wavelength: $\lambda=$ 254 nm , flow rate $=1 \mathrm{~mL} / \mathrm{min}): \mathrm{t}_{1}=36.5 \mathrm{~min}, \mathrm{t}_{2}=41.5 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{27}=+14.24^{\circ}\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right)$.

	$\begin{aligned} & \text { Reten. Time } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	$\begin{gathered} \text { Height } \\ {[\mathrm{mV}]} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \\ & \hline \end{aligned}$	Height $[\%]$	$\begin{gathered} \text { WO5 } \\ {[\mathrm{min}]} \end{gathered}$	$\begin{gathered} \text { Compound } \\ \text { Name } \end{gathered}$
1	36.968	2144.013	27.600	49.7	55.6	1.18	
2	42.956	2167.726	22.024	50.3	44.4	1.48	
	Total	4311.739	49.624	100.0	100.0		

Result Table (Uncal - C: IClarity IWORK21DATA|RIC123_O5_201才[ATH 3\% Cat in CHCI3] PhthNH OH OR, R=Bn B\% IPA, OD-H -

	Reten. Time $[\mathrm{min}]$	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	$\begin{gathered} \text { Height } \\ \text { [mV] } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Height } \\ & \hline \end{aligned}$ $[\%]$	$\begin{aligned} & \text { Wos } \\ & {[\mathrm{min}]} \\ & \hline \end{aligned}$	Compound Name
1	36.468	499.787	7.122	12.0	17.1	1.08	
2	41.504	3674.849	34.584	88.0	82.9	1.60	
	Total	4174.637	41.706	100.0	100.0		

(R)-30

Prepared in accordance to General Procedure F except that [20]=0.5M, v/v TEAF: $\mathrm{CHCl}_{3}=1: 3$ (pale
 3.76-3.91 (m, 2H), 4.05-4.08 (m, 1H), 4.50 (s, 2H), 6.31-6.32 (m, 2H), $7.37(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.85(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ (jmod) ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta 41.42$ (1C), 65.45 (1C), 69.17 (1C), 71.83 (1C), 109.86 (1C), 110.52 (1C), 123.61 (2C), 132.24 (2C), 134.26 (2C), 143.16 (1C), 151.16 (1C), 168.91 (2C); HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 324.0842, found 324.0838; HPLC (Diacel IC column, Hexane:IPA = 82:18, detection wavelength: $\lambda=254 \mathrm{~nm}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}): \mathrm{t}_{1}=39.4 \mathrm{~min}, \mathrm{t}_{2}=60.8 \mathrm{~min} ;[\alpha]_{D^{27}}=+16.09^{\circ}$ ($\mathrm{c}=1.02, \mathrm{CHCl}_{3}$).

	Reten. Time $[\mathrm{min}]$	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	$\begin{gathered} \text { Height } \\ {[\mathrm{mV}]} \\ \hline \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \text { Height } \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \text { W05 } \\ {[\mathrm{min}]} \\ \hline \end{gathered}$	Compound Name
1	39.400	11050.228	104.490	92.1	93.0	1.61	
2	60.768	952.291	7.903	7.9	7.0	1.82	
	Total	12002.519	112.394	100.0	100.0		

(R) -6

Prepared in accordance to General Procedure F except that [5] $=0.5 \mathrm{M}$, v/v TEAF: $\mathrm{CHCl}_{3}=1: 3$ (white solid, $26.9 \mathrm{mg}, 92 \%$, ee $=28 \%):{ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.81(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 3.60-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.87-4.00(\mathrm{~m}$, $2 \mathrm{H}), 4.15-4.20(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.89(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ (jmod) (CDCl $\left.{ }_{3}, 126 \mathrm{MHz}\right): \delta 41.83(1 \mathrm{C}), 47.53(1 \mathrm{C}), 70.03$ $(1 \mathrm{C}), 123.83(2 \mathrm{C}), 132.09(2 \mathrm{C}), 134.54(2 \mathrm{C}), 168.92(2 \mathrm{C})$; HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}_{3} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 262.0241, 263.0273, found 262.0242, 263.0278; Melting range $=105-106^{\circ} \mathrm{C}$; HPLC (Diacel IC column, Hexane:IPA = 88:12, detection wavelength: $\lambda=254 \mathrm{~nm}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}): \mathrm{t}_{1}=25.0 \mathrm{~min}, \mathrm{t}_{2}=29.1$ $\min ;[\alpha]_{\mathrm{D}}{ }^{30}=+6.12^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mV}]} \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \\ & \hline \end{aligned}$	Height	$\begin{aligned} & \mathrm{WO5} \\ & {[\mathrm{~min}]} \end{aligned}$	Compound Name
1	24.500	556.384	12.698	49.8	53.4	0.66	
2	28.556	560.862	11.062	50.2	46.6	0.78	
	Total	1117.246	23.760	100.0	100.0		

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & {[\%]} \\ & \hline \end{aligned}$	Height $[\%]$	$\begin{aligned} & \mathrm{WO5} \\ & {[\mathrm{~min}]} \end{aligned}$	$\begin{gathered} \text { Compound } \\ \text { Name } \end{gathered}$
1	24.976	468.414	10.732	63.8	67.1	0.66	
2	29.052	266.006	5.257	36.2	32.9	0.78	
	Total	734.420	15.989	100.0	100.0		

(9) Deprotection of phthalimyl alcohol (S)-3a

Phthalimyl alcohol (S)-3a ($294 \mathrm{mg}, 0.99 \mathrm{mmol}, 1$ equiv.), hydrazine hydrate ($0.29 \mathrm{~mL}, 5.94 \mathrm{mmol}, 6$ equiv.) was added to ethanol (40 mL) and the solution refluxed for 2 hours. Consequently, the setup was cooled in ice water and white solid formed were filtered off by Celite and the cake washed with excess ethyl acetate. The filtrate was subject to solvent strip under reduced pressure and the residue purified by Kugelrohr distillation to afford (S)-4a (white solid, $142 \mathrm{mg}, 86 \%$). Characterization data is consistent with reported literature: Bioorg. Med. Chem. 2012, 20, 5787.

As it was difficult to separate 4a on HPLC, a tert-butyloxycarbonyl (Boc) group was introduced to 4a before attempting to resolve the enantiomers. Procedure for the preparation of 7 a is adopted from Tetrahedron Lett. 2016, 57, 4807. HPLC analysis (Diacel IC column, Hexane:IPA = 82:18, detection wavelength: $\lambda=254 \mathrm{~nm}, \mathrm{t}_{1}=9.6 \mathrm{~min}, \mathrm{t}_{2}=11.3 \mathrm{~min}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$) revealed that deprotection of (S)-3a did not affect the optical purity of the derived amino alcohol (S)-4a.

(S)-4a
(S)-7a

	Reten. Time [min]	$\begin{aligned} & \text { Area } \\ & \text { [mv.s] } \end{aligned}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \end{aligned}$	$\begin{gathered} \text { Height } \\ {[\%]} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{wO5} \\ & {[\mathrm{~min}]} \end{aligned}$	Compound Name
1	11.376	2275.251	$\begin{array}{r} 89.684 \\ \hline 89.684 \end{array}$	100.0	100.0	0.39	
	Total		89.684		100.0		

(10) Determination of absolute configuration (for selected alcohols)

Enantiopure (S)-3a was prepared according to General Procedure B from commercially available (S)-2-oxiranylanisole before analysis by HPLC (Diacel IC column, Hexane:IPA = 82:18, detection wavelength: $\lambda=254 \mathrm{~nm}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$)

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{gathered} \text { Area } \\ {[\%]} \\ \hline \end{gathered}$	Height [\%]	$\begin{gathered} \mathrm{WO5} \\ {[\mathrm{~min}]} \end{gathered}$	Compound Name
1	35.612	2675.080	37.187	100.0	100.0	1.08	
	Total	2675.080	37.187	100.0	100.0		

From the ATH reaction, confirms major enantiomer possess an R configuration.

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \end{aligned}$	Height [\%]	$\begin{gathered} \text { W05 } \\ {[\mathrm{min}]} \end{gathered}$	Compound Name
1	27.532	1755.485	33.803	6.6	89.	78	
2	37.084	271.368	4.031	13.4	10.7	1.06	
	Total	2026.853	37.834	100.0	100.0		

Procedure for the Sharpless dihydroxylation of the aromatic allyl ethers is adopted and modified from Tetrahedron Lett. 1993, 34, 2267, and the subsequent ring closing to give the optically active epoxides follows Tetrahedron 1992, 48, 10515.

- For alcohol 3 f ($\mathrm{R}=\mathbf{2 - O M e}$)

- Derived from the Sharpless pathway

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ \text { [mV.s] } \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \\ & \hline \end{aligned}$	Height	$\begin{gathered} \text { W05 } \\ {[\mathrm{min}]} \\ \hline \end{gathered}$	$\begin{gathered} \text { Compound } \\ \text { Name } \end{gathered}$
1	41.908	1502.193	19.092	75.7	81.0	1.19	
2	56.100	483.346	4.485	24.3	19.0	1.60	
	Total	1985.539	23.578	100.0	100.0		

- Derived from the ATH reaction, confirms major enantiomer possess an R configuration.

- For alcohol $3 g(R=2,6-O M e)$

- Derived from the Sharpless pathway

Result Table (Uncal - C: IClarity IWORK2IDATA|RUCI29_O6 2017 [Sharpless] (R)-PhthNH OH OAr, Ar=2,6-OMe 18\% IPA, IC -

	Reten. Time [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	Height [mV]	$\begin{aligned} & \text { Area } \\ & {[\%]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Height } \\ {[\%]} \\ \hline \end{gathered}$	$\begin{gathered} \text { W05 } \\ {[\mathrm{min}]} \end{gathered}$	Compound Name
1	86.480	444.266	2.621	30.6	34.5	2.54	
2	100.012	1008.281	4.973	69.4	65.5	3.03	
	Total	1452.547	7.594	100.0	100.0		

- Derived from the ATH reaction, confirms major enantiomer possess an R configuration.

	Reten. Time $[\mathrm{min}]$	$\begin{gathered} \text { Area } \\ {[\mathrm{mV} . \mathrm{s}]} \end{gathered}$	$\begin{gathered} \text { Height } \\ {[\mathrm{mV}]} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Area } \\ & \text { [\%] } \end{aligned}$	$\begin{gathered} \text { Height } \\ {[\%]} \\ \hline \end{gathered}$	$\begin{aligned} & \text { wos } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{gathered} \text { Compound } \\ \text { Name } \end{gathered}$
1	83.376	139.912	0.764	5.2	6.1	2.65	
2	95.952	2538.803	11.727	94.8	93.9	3.24	
	Total	2678.715	12.491	100.0	100.0		

III. NMR Spectra

 $\stackrel{\text { n }}{\stackrel{\sim}{\sim}}$

$\begin{array}{lllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70\end{array}$


```
\(\begin{array}{ll}\stackrel{\circ}{n} \\ \stackrel{\rightharpoonup}{\circ} \\ \dot{1} & \stackrel{\rightharpoonup}{+} \\ i\end{array}\)
```


2e

		¢	¢
	\|	¢	\|

	구융	$\stackrel{\square}{+}$
$\underbrace{\text { i-riviriainijio }}$	¢	

21

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

		呂号皆
－ivivirir	｜ゾザ	Vั่

	®్ర్ర్ర్ర్ర
-irivinijirion	Vij

(R)-3a

$\begin{array}{lllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70\end{array}$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
응

(R)-3i

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

$(R)-3 \mathbf{k}$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathbf{p p m}\end{array}$

$(R)-3 I$

(R)-30

(R)-6

