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Abstract

The paper examines contests where players perceive ambiguity about their opponents’strate-

gies and determine how perceptions of ambiguity and attitudes to ambiguity affect equilib-

rium choice. Behaviour in our contest is affected by pessimistic and optimistic traits. Which

of these traits dominates determines the relationship between the equilibrium under ambigu-

ity and behaviour where contenders have expected utility preferences. Our model can explain

experimental results such as overbidding and overspreading relative to Nash predictions.
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1



‘Events, dear boy, events.’

Response to the question what does a prime minister most fear? Attributed to

Harold Macmillan.

1 Introduction

The quote above illustrates how political life can be affected by unexpected shocks. Many

uncertainties in the political arena arise from the strategic behaviour of political actors. A

notable example of such interactions are electoral competitions which are often modelled as

contests (Tullock, 1980). This paper studies how contests are affected by the possibility of

unusual events, which we model by assuming that participants’beliefs about the behaviour

of others are ambiguous. Ambiguity refers to uncertainties for which it is impossible or

diffi cult to assign precise probabilities.

Many important economic interactions can be represented as contests where participants

expend resources to obtain a single or multiple prizes and both winners and losers forfeit the

resources expended during the competition. The relevant resources in the case of a political

election are the campaign expenditures. Success is more likely the greater the amount

that a candidate spends. However, it is a decreasing function of campaign expenditures

by his/her opponents. Theoretical and empirical advances in the literature have led to a

better understanding of the strategic forces and trade-offs in these and other contest-like

environments and to recommendations for improving upon economic, political, and social

outcomes. However, there is a stark dissonance between a number of standard theoretical

results and the evidence which jeopardises the practical import of the theory.

We propose that these phenomena may be a response to ambiguity. Specifically we argue

that participants in a contest may perceive ambiguity about their opponents’actions and

study how perceptions of ambiguity and attitudes to ambiguity affect equilibrium behaviour.

In his pioneering study, Ellsberg (1961) argued that individuals will exhibit behaviour that

reveals preferences which differentiate between risk (known probabilities) and ambiguity

(unknown probabilities). The prevalence of Ellsberg-type behaviour in experimental and

naturally occurring settings has stimulated efforts to develop and axiomatise alternative

models of decision-making.1

Our primary motivation is that it may be intrinsically diffi cult for contest participants

1For reviews of the literature on ambiguity, see Etner et al. (2012) and Trautmann et al. (2015).
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to attach unique probabilities to the behaviour of other contenders. In other words, partic-

ipants in many real-world contests may perceive ambiguity about their opponents’choices.

Thus, we argue that the new explanation is plausible and, hence, modeling of these types

of contests should reflect sensitivity of participants to ambiguity. Moreover, understanding

how ambiguity affects behaviour sheds new light on actual expenditure and winning patterns

in contest-like environments.

Ambiguity is likely when the resolution of uncertainty depends on:

• rare events for which little or no historical data is available;

• the behaviour of other people, which is intrinsically diffi cult to predict;

• new or advanced technology.

Some or all of these factors are present in many of the situations in which contest theory is

applied as the following examples illustrate. For all of these and other real-world situations,

no two contests are exactly alike and consequently any information about past behaviour is

a very imperfect predictor of actions in future contests. Thus, one might expect ambiguity

to persist over time.

1.1. Research and Development All of these factors can be present in patent races.

Research and development, almost by definition, involves discovering something which was

previously unknown. Thus historical data is at most of limited help. The outcome will often

depend on complex and/or advanced technology and finally it relies on human beings having

good ideas.

1.2. Political Campaigns Politics is frequently upset by unusual developments as the

opening quotation illustrates. The outcome of electoral competitions depends on the behav-

iour of other people and upsets are not infrequent. These may be both from external events,

the behaviour of opponents, or even actions taken by allies.2 Historical data may be of little

use if new parties or issues have emerged since the last election.3

2In the case of the 2016 US presidential election, there was substantial ambiguity in the beginning and
midst of the campaign about the positions and actions that Donald Trump would be taking.

3For instance, international terrorism was not a prominent issue in elections in western countries before
2001.
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Consider a competition where multiple candidates expend resources to win a political

offi ce. A candidate will condition her/his actions to win the election on expectations of what

her/his opponents might do. The standard approach to analyzing this strategic environment

hinges upon the assumption that each contender’s strategy is conditioned on predictions

of the opponents’ choices represented by a unique probability distribution and that the

equilibrium beliefs are correct. That is, contestants are assumed to behave according to the

prescriptions of Nash equilibrium. In reality, a contender may entertain multiple scenarios

about the strategies that will be employed by her political opponents. For example, under

one scenario a contestant’s opponents pursue a relatively negative campaign with a relatively

large likelihood while under a different scenario the likelihood of a negative campaign by the

opponents is relatively small. In other words, a contender may be unable to assign a unique

probability to each course of action by her/his opponents.4

1.3. War and Conflict Military conflict is also highly ambiguous. Wars can often be

viewed as unique events, since they have numerous idiosyncratic features. The outcome de-

pends on human behaviour. A collapse in morale can result in a large army being defeated by

a weaker opponent. New technology is frequently an important factor in war. Commanders

often have imperfect information about the progress of a battle. Offensive actions are much

more likely to succeed if they contain a large element of surprise. This creates considerable

ambiguity for the other side.

1.4. Litigation Consider a litigation process where the opposing sides spend resources to

affect the outcome in their favour. Does a party to a litigation process have a ‘clear’idea,

in probabilistic sense, about the strategy that will be followed by the opponent? For many

cases that are not settled prior to going to court and are not commonplace, a considerable

amount of ambiguity may be present about strategies that will be followed by the opposing

side and this is likely to affect the litigating sides’actual behaviour.5

4In addition to predicting the opponents’ behaviour, candidates also need to take into account the
behavior of potential voters. This may also involve considerable degree of ambiguity from the perspective of
contenders and pundits alike. Although we don’t explicitly model this type of ambiguity, the techniques in
the present paper can be rather easily extended to address this scenario.

5The probability of a favourable verdict may also be ambiguous because the litigating parties are likely
to have little information about the disposition of the judicial body rendering the verdict.
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We develop a model where contenders perceive ambiguity about strategies that are used

by their opponents. We prove existence of equilibrium, following which we study the compar-

ative statics of ambiguity and ambiguity-attitude. Comparative statics results are important

since they enable us to find out what difference ambiguity makes. On a technical level, our

paper contributes to the literature on monotone comparative statics since we extend the pre-

vious literature to games that have neither strategic substitutes nor strategic complements

(Milgrom and Roberts, 1990). The paper also investigates how equilibrium under ambiguity

is related to behaviour where contenders have expected utility preferences.

1.5. Organization of the paper The following section reviews the experimental evidence

on contests. Our model is introduced in section 3. In Section 5 we specialise to the case

of two types of players, which enables us to perform detailed comparative statics. Finally

Section 6 concludes. The appendix contains proofs of those results not proved in the text.

2 Experimental Evidence

Recent experimental research on contests reveals that average expenditure to win the prize

is significantly higher than the Nash prediction (commonly referred to as overbidding) and

the variance of expenditure across experimental subjects is considerable (over-spreading).6

In some experiments, the extent of overbidding is so prominent that the average earnings

are negative.7 A number of possible rationalizations have been put forth. Explanations of

overbidding include hypotheses that experimental subjects

• derive a non-monetary utility from winning, on top of monetary incentives to win a
prize (Sheremeta, 2010, Chen et al., 2011),

• exhibit behaviour sensitive to the experimental design (Chowdhury et al., 2017),

• have spiteful preferences and inequality aversion (Herrmann and Orzen, 2008; Bartling
et al., 2009),

• have a predisposition to make mistakes (Potters et al., 1998, Lim et al., 2014),

6See Dechenaux et al. (2015) for an extensive survey of the experimental research on contests.
7There are, however, a couple of exceptions to overbidding (Shupp et al., 2013, Godoy et al., 2015). We

relate some of these experimental results to our theoretical predictions after introducing the latter.
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• rely on non-linear probability weighting to make their bids (Baharad and Nitzan, 2008,
Duffy and Matros, 2012), and

• exhibit loss aversion (Kong, 2008).

Differences in these behavioural traits can also explain, at least in theory, a part of

the large variation in expenditure of experimental subjects. The overspreading has also been

linked to variation in risk aversion and demographic characteristics of experimental subjects.

We believe that ambiguity may be relevant for explaining experimental research on con-

tests. Consider a typical experiment testing predictions for a game where experimental

subjects acquire lottery tickets and a participant’s probability of winning is equal to the

ratio of the number of tickets (s)he has purchased to the total number of tickets sold. A

subject in this type of experiment is likely to be uncertain about the number of lottery tickets

that will be purchased by the other participants. (S)he may entertain a range of possibilities

for the number of tickets that are bought by her opponents. Furthermore, it is not at all

clear that (s)he will assign a unique probability to each of these possibilities. (S)he may very

well contemplate a set of likelihoods for some of the prospects. In other words, the subject’s

beliefs may be ambiguous. The subjects may not only perceive ambiguity about the oppo-

nents’possible play but may also exhibit sensitivity to this ambiguity. An optimistic player

(or, equivalently, an ambiguity-loving decision-maker) will expect her opponents to buy a

relatively small number of tickets. In contrast, a pessimist (or an ambiguity-averse decision-

maker) will expect her opponents to buy a relatively large number of tickets. As a result,

an increase in the magnitude of ambiguity may have very different effects on pessimistic and

optimistic contenders. The model in the present paper can explain overbidding and over-

spreading, relative to the Nash prediction, which are commonly observed in experimental

studies of contests.

3 The model

Consider a contest with n ≥ 2 players. To improve her chances of winning the prize each

contestant i ∈ {1, 2, ..., n} chooses action xi ∈ Xi = [xi, x̄i] , where xi ≥ 0 and ∞ > x̄i > 0.

On occasion, we will refer to these actions as effort or expenditure invested in the contest.
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The bounds on effort levels may reflect institutional constraints. For example, in many

presidential elections candidates receive public funds to compete. These serve as a lower

bound on the amount that the candidates will spend on their election campaigns. The bounds

may also be subjective where they represent the opponents’beliefs about a player’s potential

choices, rather than physical restrictions on the permissible values of contest expenditures.8

For many competitive environments, it is sensible to expect that players will not anticipate

that all of their opponents will choose zero effort; xi > 0 for some or even all i. Thus, even

though zero bids are allowed players may believe that their opponents will choose strictly

positive expenditure levels.

It is equally reasonable to expect that contenders may believe that their opponents’ex-

penditures will not exceed a certain finite upper bound. The assumption that the expenditure

to win the contest may be constrained from above also accounts for possibilities of budget-

constrained participants and for possible exogenous restrictions on the level of expenditures

in the contest (e.g., an upper threshold on expenditures set by a ‘contest designer’).9 For

practical reasons, in what follows we mainly focus on the interpretation of (x1, ..., xn) and

(x̄1, ..., x̄n) as beliefs about possible bounds on the opponents’potential choices.

The cost of action xi is given by xi and incurred irrespective of the contest’s outcome.

The probability that contestant i receives the prize, the contest success function (CSF), is

given by

pi (xi; x−i) =


hi(xi)∑n
j=1 hj(xj)

if ∃j ∈ {1, ..., n} such that xj > 0

1
n

if xj = 0 for all j ∈ {1, ..., n}
, (1)

where x−i ≡ (x1, ..., xi−1, xi+1, ..., xn) denotes the vector of action choices by all players except

for contestant i. The set of strategy combinations of player i’s opponents is denoted by X−i

and the set of strategy combinations of all players is denoted by X. We also let x denote the

vector of action choices by all participants in the contest; x ≡ (x1, x2, ..., xn) . The function

hi (·) (i = 1, ..., n) is assumed to be increasing in its argument. Under this assumption, pi is

increasing in own action and decreasing in the actions of the opponents. It is also assumed

8For an early treatment of contests where expenditure must exceed some minimum level, see Schoonbeek
and Kooreman (1997).

9Since resources are scarce, all of the participants in a contest will be budget constrained. However, for
some or all contenders the budget constraint may be non-binding.
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that hi (·) is concave and twice-continuously differentiable and hi (0) = 0 for all i = 1, ..., n.

The assumption of concavity of hi (·) implies that pi (xi; x−i) is concave for all xi > 0 and

all x−i.
10

Contestant i’s utility function is given by

Ui

(
xi;
∑
j 6=i

hj (xj)

)
= pi (xi; x−i)Vi − xi, (2)

where Vi denotes the value of the prize to contestant i. The assumption that the contenders

are risk neutral is made primarily with the purpose of focusing on the effect of ambiguity

aversion. Our results carry over to a more general setting with risk averse preferences under

appropriate qualifying conditions.

The contest considered in the paper falls into a general category of aggregative games

(Cornes and Hartley, 2011; Acemoglu and Jensen, 2013). The strategic interaction considered

in the paper is a game with negative aggregate externalities (Eichberger et al., 2009), since

the CSF in (1) is decreasing in the aggregate
[∑

j 6=i hj (xj)
]
of the opponents’actions. The

cross-partial derivative of contender i’s utility function with respect to own and opponent

k’s actions is equal to

∂2Ui

(
xi;
∑

j 6=i hj (xj)
)

∂xi∂xk
=
∂2pi (xi; x−i)

∂xi∂xk
Vi,

where

∂2pi (xi; x−i)

∂xi∂xk
= −h′i (xi)h′k (xk)

[∑
j 6=i hj (xj)

]
− hi (xi)[∑n

j=1 hj (xj)
]3 .

It follows from this expression that the marginal benefit of own action ∂pi(xi;x−i)
∂xi

is de-

creasing in opponent k’s action when player i’s opponents choose relatively large actions(∑
j 6=i hj (xj) > hi (xi)

)
. However, it is increasing when the opponents choose relatively

10We maintain the assumption of a general function hi (·) in this section. To streamline the presentation
of our findings, Section 4 adopts the functional form hi (xi) = xβi while Section 5 assumes simple lotteries
with hi (xi) = xi. To see that these assumptions are without loss of generality, note that by applying the
transformation h−1i (·) to the choice variables, player i’s objective function is transformed into an objective
of a contender playing a simple lottery and having a non-linear cost function h−1i (·) (Cornes and Hartley,
2011).
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small actions
(∑

j 6=i hj (xj) < hi (xi)
)
. In other words, when the aggregate of a player’s op-

ponents’efforts is suffi ciently large, an increase in any opponent’s effort will crowd out the

player’s effort (the player will partially give in). On the other hand, when the aggregate of a

player’s opponents’efforts is suffi ciently small, the player will respond to an increase in any

opponent’s effort by increasing her effort (the player will keep up). Thus, this game does

not globally exhibit either strategic complementarity or strategic substitutability (Bulow et

al., 1985). Note also that when all players have the same function hj and choose the same

action, the strategies of the players are (local) strategic substitutes.

Suppose that the contenders perceive ambiguity about their opponents’choice of action.

This ambiguity is represented by a capacity which reflects the weights a player places on

different strategies of the opponents. A capacity is similar to a subjective probability with

the exception that it may be non-additive. We restrict our attention to the case where the

ambiguity for contestant i is represented by a neo-additive capacity11 vi defined on the set

of the opponents’strategies X−i :

vi (∅) = 0, vi (X−i) = 1, and vi (A) = δi (1− αi)+(1− δi)πi (A) for all ∅ & A & X−i, (3)

where αi, δi ∈ [0, 1] and πi is a standard probability distribution on X−i. Contestant i has

some doubts that the probability distribution πi (·) is the true probability distribution over

the opponents’strategies and this ambiguity is reflected by the parameter δi. Parameter αi

characterises contestant i’s ambiguity attitude. The support of a neo-additive capacity vi

is defined by supp(vi) = supp(πi). We focus on neo-additive capacities because they offer

a clear-cut separation of ambiguity perception from ambiguity attitude and allow for both

ambiguity-averse and ambiguity-loving decision-makers. Moreover, contests have focal best

and worst outcomes, i.e. winning and losing, which makes neo-additive capacities particularly

suitable for analysis.

It is assumed that all participants in the contest have Choquet expected utility (CEU)

11A capacity v on a set S is a set function v : S → [0, 1] such that v (∅) = 0, v (S) = 1, and v (A) ≥ v (B)
for any A,B ⊆ S and B ⊆ A.
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preferences (Schmeidler, 1989) with a neo-additive capacity (Chateauneuf et al., 2007):

Wi (xi; πi, αi, δi) = δi (1− αi)Mi (xi)+δiαimi (xi)+(1− δi)
∫
Ui

(
xi;
∑
j 6=i

hj (xj)

)
dπi (x−i) ,

(4)

where

Mi (xi) ≡ max
x−i∈X−i

Ui

(
xi;
∑
j 6=i

hj (xj)

)
=

hi (xi)

hi (xi) + Y −i
Vi − xi,

mi (xi) ≡ min
x−i∈X−i

Ui

(
xi;
∑
j 6=i

hj (xj)

)
=

hi (xi)

hi (xi) + Ȳ−i
Vi − xi,

Y −i ≡
∑
j 6=i

hj
(
xj
)
and Ȳ−i ≡

∑
j 6=i

hj (x̄j) .

The functionMi (xi) represents the best possible scenario of player i’s opponents’choices for

player i while mi (xi) corresponds to the worst possible scenario.

A neo-additive capacity has the following intuitive interpretation and behavioural impli-

cations. A decision-maker with CEU preferences and a neo-additive capacity has subjective

beliefs characterised by the additive probability distribution πi (·) but lacks confidence in this

belief. When δi = 0, the decision-maker is certain in her probabilistic assessment πi (·) and,

as a result, has expected utility preferences. In contrast, when δi > 0, (s)he will take into

account the effect of her actions on the best and worst outcomes. The larger the parameter

δi, the greater the weight that the decision-maker will place on these two extreme outcomes

and the larger the deviation from the expected utility preferences. Thus, it is natural to

interpret δi as measuring ambiguity, and we shall refer to it as the degree of ambiguity. The

decision-maker’s reaction to uncertainty about beliefs has optimistic and pessimistic traits.

The optimistic trait is reflected by the weight on the best outcome Mi (xi), measured by

δi (1− αi) , while the pessimistic trait is given by the weight on the worst outcome mi (xi) ,

measured by δiαi. Relatively high (low) values of αi correspond to pessimistic (optimistic)

attitudes to ambiguity. Thus, parameter αi is referred to as the degree of pessimism (or

degree of ambiguity aversion).
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Substituting from (2) into (4), we obtain:

Wi (xi; πi, αi, δi)

=

[
δi

(
(1− αi)hi (xi)
hi (xi) + Y −i

+
αihi (xi)

hi (xi) + Ȳ−i

)
+ (1− δi)

∫ (
hi (xi)

hi (xi) + Y−i

)
dπi (x−i)

]
Vi − xi,

where Y−i ≡
∑

j 6=i hj (xj) .We assume that, given the structure of the game, the πi (·)s are

determined endogenously while the degrees of optimism, αi, and ambiguity, δi, are treated

as exogenous parameters. A decision-maker’s attitude towards ambiguity αi is a personal

trait akin to tastes in a standard consumer problem. Thus, it is reasonable to suppose that

it is independent of the decision problem and exogenous influences.

Define the best-response correspondence of player i, given that her/his beliefs are repre-

sented by a neo-additive capacity vi, by Ri(vi) = Ri (πi, αi, δi) ≡ argmax
xi∈Xi

Wi (xi; πi, αi, δi).

We adopt the following definition from Eichberger and Kelsey (2014), which is an extension

of an earlier work in Dow and Werlang (1994):12

Definition 1 (equilibrium under ambiguity) A vector of neo-additive capacities (v̂1, v̂2, ..., v̂n)

is an Equilibrium Under Ambiguity (EUA) if for all i = 1, .., n, ∅ 6= supp (v̂i) ⊆ ×
j 6=i
Rj(v̂j).

If x̂−i ∈ supp (v̂i) for all i = 1, 2, .., n, then (x̂1, x̂2, ..., x̂n) is called an equilibrium strategy

profile. If supp (v̂i) contains a single vector x̂−i for each player i = 1, 2, ..., n, we will say

that x̂ is a singleton equilibrium.

Thus, an equilibrium is characterised by a capacity for each player. The support of this

capacity consists of strategies that are best responses for the opponents. In the Appendix

we prove that this strategic interaction has a singleton EUA:

Proposition 2 The contest has a singleton EUA (v∗1, ..., v
∗
n) where v∗i = δi (1− αi)+(1− δi) π∗i ,

12For alternative approaches to analyzing strategic behavior under ambiguity, see, e.g. example, Lo
(1996), Marinacci (2000), Eichberger and Kelsey (2000), Bade (2011), and Hanany et al. (2016).
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π∗i
(
x∗−i
)

= 1 for i = 1, ..., n, x∗ =
(
φ1

(∑
j 6=1 hj

(
x∗j
))
, ..., φn

(∑
j 6=n hj

(
x∗j
)))

,

φi

(∑
j 6=i

hj (xj)

)
=



xi, if
∂Zi(xi;

∑
j 6=i hj(xj))
∂xi

≤ 0

x̄i, if
∂Zi(x̄i;

∑
j 6=i hj(xj))
∂xi

> 0

unique positive solution of
∂Zi(xi,

∑
j 6=i hj(xj),αi,δi)

∂xi
= 0,

otherwise

(5)

and

Zi(xi,
∑
j 6=i

hj (xj) , αi, δi) =
[
δi
(
(1− αi) pi

(
xi; x−i

)
+ αipi (xi; x̄−i)

)
+ (1− δi) pi (xi; x−i)

]
Vi−xi.

(6)

Proof. See Appendix.

This singleton equilibrium is the ambiguous equivalent of a pure strategy Nash equilib-

rium. There may also be non-singleton equilibria, in which there are two or more strategies

in the support of the players’beliefs. These are the ambiguous analogues of mixed strategy

Nash equilibria. We focus on the singleton equilibrium since, even in the absence of ambi-

guity, the interpretation of mixed equilibrium is problematic.13 Given that (the analogies

of) pure strategy equilibria always exist in our model, it is desirable to avoid these issues by

confining attention to such equilibria.

We demonstrate in the proof of the above proposition that the payoff function can be

written as (6) so that the contest under ambiguity is equivalent to a contest where player i’s

probability of winning the prize is equal to14

δi
(
(1− αi) pi

(
xi; x−i

)
+ αipi (xi; x̄−i)

)
+ (1− δi) pi (xi; x−i)

13Since players are indifferent between all of the strategies to which they assign a positive probability
they have no incentive to play the strategy which sustains the mixed equilibrium (Osborne and Rubinstein,
1994).

14The transformation of the probability of winning a contest in our paper is different from misperceptions
about the probability of winning a contest that may be associated with the experimental design (Chowdhury
et al., 2017). The two correspond to very different behavioral traits. A comparison is made diffi cult by the
fact that the probability misperception story does not yet possess a theoretical underpinning of how exactly
these misperceptions are formed and how they interact with other components of the model. Even if one were
to formally model the misperception story, we believe that this theory would not yield predictions similar to
our model. For example, we show below that overbidding can be a non-monotonic function of the number
of players. In contrast, it seems that probability mispercetpions are likely to be monotonic in the number of
contenders, yielding a monotonic relationship between overbidding and the number of contestants.
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and the value of the prize is equal to Vi. The latter expression reveals that the incen-

tives to invest in the contest come through three different channels; the optimistic scenario

δi (1− αi) pi
(
xi; x−i

)
, the pessimistic scenario δiαipi (xi; x̄−i) , and the ‘standard’scenario

(1− δi) pi (xi; x−i) .

4 Symmetric case

We begin with an analysis of a symmetric contest where all of the players have the same

value of the prize, the same contest success function, the same lower and upper bounds on

contest expenditures, and the same degrees of pessimism:15

V1 = · · · = Vn ≡ V, h1 (·) = · · · = hn (·) = h (·) ,

x1 = · · · = xn ≡ x, x̄1 = · · · = x̄n ≡ x̄,

α1 = · · · = αn ≡ α, δ1 = · · · = δn ≡ δ.

Suppose also that h (x) = xβ, where β ≤ 1 (Tullock, 1967, 1980). There are a number of

reasons we examine symmetric contests. First, they are more tractable. Second, they are

more illustrative of how the degrees of ambiguity and ambiguity aversion affect behaviour

in contests. Third, many experimental studies entail various symmetry assumptions and we

are interested in juxtaposing our findings to the received experimental evidence.16

In a symmetric equilibrium, x∗1 = ... = x∗n ≡ x∗. From (5), we obtain an implicit expression

15For space considerations, we mainly only focus on the comparative statics for the parameters that
distinguish our framework from the received literature, namely, those that are associated with ambiguity
about opponents’behavior.

16The assumption that all players have the same perception of ambiguity and attitude to ambiguity is a
simplifying assumption which is relaxed in later sections of the paper.
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for the unique interior symmetric equilibrium (when it exists)17:

z (x∗, α, δ) ≡ β (n− 1) (x∗)β−1

δ
 (1− α) xβ

((x∗)β+(n−1)xβ)
2

+α x̄β

((x∗)β+(n−1)x̄β)
2

+ (1− δ) 1

n2 (x∗)β

V−1 = 0.

(7)

4.1 Equilibrium effort and the comparative statics of ambiguity

In this section we find and compare the Nash equilibrium and the EUA. We then proceed to

study the comparative statics of ambiguity and effort. The effect of the degree of ambiguity

on the equilibrium effort is characterised in the following:

Lemma 3 The equilibrium effort x∗ under ambiguity is a decreasing function of the degree

of ambiguity δ if and only if the Nash equilibrium effort xN ≡ β(n−1)
n2

V exceeds the equilibrium

effort x∗ under ambiguity:

xN ≥ x∗. (8)

Proof. See Appendix.

In the Appendix we also demonstrate that condition (8) holds if and only if

(1− α)xβ(
(β (n− 1)V )β + n2β (n− 1)xβ

)2 +
αx̄β(

(β (n− 1)V )β + n2β (n− 1) x̄β
)2 ≤

1

n2β+2 (β (n− 1)V )β
,

(9)

which reveals how the model parameters affect the relationship between the degree of am-

biguity δ and the equilibrium effort x∗. It also demonstrates that the equilibrium effort

under ambiguity is a monotonic function of the degree of ambiguity. Under both inequality

(8) and its reverse, an increase in ambiguity widens the gap between the equilibrium effort

under ambiguity and the Nash prediction. If the ambiguity attitude of the contenders (and

other parameters of the model) is such that the equilibrium effort under ambiguity exceeds

the Nash prediction xN , then an increase in the degree of ambiguity will widen this gap by

17Existence and uniqueness of an interior symmetric equilibrium is guaranteed by imposing restrictions
on the lower and upper bounds for x and other parameters of the model. The comparative statics analysis
is straightforward when either all of the players choose the lower bound on expenditure or all of the players
choose the upper bound. For this reason, we focus on the interior solutions.
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increasing the equilibrium effort under ambiguity. The dark-shaded curve in Figure 1 depicts

this scenario for a parameterization of our model where the contenders are ambiguity seeking

(α = 0.3). The Nash equilibrium for this example is equal to 1.6 and the equilibrium effort

under ambiguity continuously increases starting from this level as the degree of ambiguity

changes from no ambiguity (δ = 0) to the highest possible level of ambiguity (δ = 1).

When xN ≥ x∗, an increase in ambiguity widens the gap by decreasing the equilibrium

effort under ambiguity. The light-shaded curve in Figure 1 depicts this possibility for the case

of ambiguity averse contenders (α = 0.9). Note also that the contenders may be ambiguity

loving but under-invest compared to the Nash equilibrium. It is easy to construct examples

where the participants are ambiguity seeking but where x∗ is decreasing in δ.More generally,

it follows from (8) that if

xβ(
(β (n− 1)V )β + n2β (n− 1)xβ

)2 >
x̄β(

(β (n− 1)V )β + n2β (n− 1) x̄β
)2 (10)

then there is a threshold level of the degree of ambiguity aversion such that x∗ is increasing

in δ if and only if the participants have a degree of ambiguity aversion that is smaller than

that threshold level. Conversely, if the reverse of inequality (10) holds then x∗ is increasing

in δ if and only if the participants have a degree of ambiguity aversion that is higher than

some threshold level of ambiguity aversion.

It also follows from condition (9) that the equilibrium effort x∗ either increases in the

degree of ambiguity for all δ or decreases in the degree of ambiguity for all δ. Equivalently,

whether the contenders under-invest or overinvest relative to the Nash equilibrium is inde-

pendent of the degree of ambiguity δ ∈ (0, 1) .

Finally, consider the case where β = 1. This is a simple lottery frequently explored in ex-

perimental studies. The parameter x̄ may represent the subjects’endowment of experimental

currency. Suppose also that the participants in the lottery believe that their opponents will

buy at least x > 0 lottery tickets. Under this scenario, a contender’s equilibrium effort under
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ambiguity will exceed the Nash equilibrium if and only if

(1− α)
x

(V + n2x)2 + α
x̄

(V + n2x̄)2 −
(n− 1)

n4V
> 0. (11)

It follows from this expression that if the upper threshold x̄ is relatively large compared

to the lower threshold x, then the equilibrium effort under ambiguity will exceed the Nash

equilibrium if and only if the contenders are suffi ciently optimistic. For example, when

V = 10, x = 0.5, x̄ = 20, n = 5, the inequality holds if and only if the degree of pessimism

is less than 0.38. Formally, we use (11) to demonstrate the following18:

Proposition 4 Consider a symmetric contest with β = 1, x̄ = V, and x = θV. Then

(i) There exist ᾱ, θ ∈ (0, 1) such that for all α ∈ [0, ᾱ) and all θ ∈ (θ, 1] there exist n, n̄ ∈ N

such that if the players’pessimism is equal to α and the number of players is between n and

n̄, then the equilibrium effort x∗ under ambiguity will exceed the Nash equilibrium effort xN .

(ii) There exists a threshold value n̂ ∈ N of the number of players such that xN > x∗ for any

contest with more than n̂ players.

(iii) There exists a threshold value α̂ ∈ [0, 1) of the degree of pessimism such that xN > x∗

for any contest where the players’degree of pessimism exceeds α̂.

Proof. See Appendix.

These findings are very intuitive. Relatively optimistic players expect their opponents to

choose relatively low investments. When the number of opponents belongs to an intermediate

range between N and N̄ , this results in higher incentives to invest. Consequently, the

equilibrium effort under ambiguity is higher than the Nash equilibrium. This finding suggests

that overinvestment observed in experimental settings may be due to subjects’optimistic

attitudes. Combined with the recent experimental evidence (see, e.g., Halevy, 2007, and

Ivanov, 2011) that a substantial share of experimental subjects exhibit optimism, this finding

provides an explanation for overbidding observed in the lab.

The relationship between the number of contenders and overinvestment is also sensible.

The potential for overinvestment comes from the optimistic channel and this channel is most
18This proposition extends to general symmetric contests. To economize on space, we have chosen to

state it for simple lotteries only.

16



influential when the number of players is neither too small nor too large. Proposition 4

illustrates that both the mechanism through which the number of opponents affects equilib-

rium investments and the resultant comparative statics results for contests with non-linear

probability weighting and our model are different. Baharad and Nitzan (p. 2055, 2008) find

that for contests with relatively large numbers of contestants, ‘...the individuals tend to be

optimistic, that is, the conceived winning probability is higher than the objective probabil-

ity and this induces them to increase their effort suffi ciently such that the contested rent

is over-dissipated.’The ‘optimistic’trait in our model has a different interaction with the

number of contestants.

As a numerical illustration of Proposition 4, consider the parameterization V = x̄ = 100

and θ = 0.05. The EUA exceeds the Nash equilibrium under the following scenarios, for

example; (a) when α = 0.1, x∗ > xN if and only if n is between 4 and 16, (b) when α = 0.2,

x∗ > xN if and only if n is between 4 and 14, (c) when α = 0.3, x∗ > xN if and only if n is

between 4 and 12, and (d) when α = 0.4, x∗ > xN if and only if n is between 5 and 9. Thus,

as postulated by Proposition 4, the EUA exceeds the Nash equilibrium for intermediate

values of the number of contenders. Furthermore, this range of intermediate values expands

as the players become more optimistic. Note also that the range of values of the degree of

pessimism α and the number of players n for which overbidding occurs will expand when the

players’beliefs about the lower threshold of their opponents’expenditure increases (large θ).

4.2 Degree of pessimism and equilibrium effort

We now turn to the relationship between the equilibrium effort and the contenders’pes-

simism. A change in the degree of pessimism shifts the weight between the pessimistic and

optimistic channels, leaving the standard channel intact. The overall effect depends on which

of these channels provides stronger incentives to invest in the contest. Formally, we have:

Proposition 5 The equilibrium effort x∗ under ambiguity will increase in the degree of

pessimism α if and only if

x∗ > (n− 1)
1
β
√
xx̄, (12)
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which holds if and only if

δ

(
√
xx̄)

1−β
(
x̄
β
2 + x

β
2

)2 +
(1− δ) (n− 1)

n2 (
√
xx̄)

>
(n− 1)

1
β

βV
. (13)

Proof. See Appendix.

It follows immediately from (13) that:

Corollary 6 The equilibrium effort x∗ under ambiguity will decrease in the degree of pes-

simism α if at least one of the following conditions is satisfied:

(i) the value of the prize V is suffi ciently small,

(ii) the number of contestants n is suffi ciently large,

(iii) the lower bound x on effort is suffi ciently large, and

(iv) the upper bound x̄ on effort is suffi ciently large.

To gain intuition into the necessary and suffi cient conditions for the equilibrium effort to

be decreasing in the degree of pessimism, recall the three channels through which changes in

the parameters affect the incentives to invest in the contest; the optimistic, pessimistic, and

standard channels. Consider a decrease in the value of the prize V. The incentives to invest

for all three channels will decrease. Moreover, the disincentives to invest associated with

the pessimistic channel will be more prominent for a lower value of the prize. Hence, the

equilibrium effort will be lower for contests with relatively pessimistic contenders and low

value of the prize. Similar reasoning underlies part (ii) of Corollary 6. Consider now part (iv)

of the Corollary (part (iii) has a similar intuition). A relatively pessimistic contender places

most of the weight on the scenario where her opponents choose a relatively large expenditure,

namely the upper bound x̄. Part (iv) of the Corollary follows because an increase in x̄ results

in a decrease in the marginal benefit of own action and because this effect is stronger when

the contender is relatively pessimistic.
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5 The model with two types of contenders

Suppose, as in the previous section, that x1 = · · · = xn ≡ x and x̄1 = · · · = x̄n ≡ x̄. But,

in contrast to the preceding section, the contenders may differ in terms of their degrees of

ambiguity δ, their degrees of ambiguity aversion α, and their values of the prize. There are

two types of contenders; type-A contenders, who have a common degree of ambiguity δA and

common degree of ambiguity aversion αA, and type-B contenders, who have a common degree

of ambiguity δB and common degree of ambiguity aversion αB. The contenders {1, ...,m}

(for 1 ≤ m ≤ n − 1) are of type A while the remaining contenders are of type B. For

simplicity, we assume that h1 (·) = · · · = hn (·) = h (x) = x, thus, restricting the setup

in this section to simple lotteries. This assumption can be relaxed but at the expense of

substantially cluttering the exposition.

When all contenders have the same value of the prize, V1 = · · · = Vn ≡ V, we will

focus on an equilibrium where all contenders of the same type choose the same action;

x∗1 = ... = x∗m ≡ x∗A and x
∗
m+1 = ... = x∗n ≡ x∗B. From the first-order conditions in (5), the

equilibrium actions (x∗A, x
∗
B) for an interior equilibrium in this case are implicitly given by

the following system of equations19:

(n− 1) δA

[
(1− αA)x

(xA + (n− 1)x)2 +
αAx̄

(xA + (n− 1) x̄)2

]
+ (1− δA)

(m− 1)xA + (n−m)xB

(mxA + (n−m)xB)2 =
1

V
,

(14)

(n− 1) δB

[
(1− αB)x

(xB + (n− 1)x)2 +
αBx̄

(xB + (n− 1) x̄)2

]
+ (1− δB)

mxA + (n−m− 1)xB

(mxA + (n−m)xB)2 =
1

V
.

5.1 The model with two contenders

The assumption of two contenders allows for an informative graphical illustration of the

comparative statics for ambiguity attitude and degree of ambiguity. We begin with the

case where there is one player of each type, players A and B, and suppose, without loss of

generality, that winning the contest is worth at least as much to player A as to player B.

Hence, the value of the prize to the two individuals is given by VA = V and VB = ηV, where

19As in the previous section, an interior equilibrium materializes for certain conditions on the model
parameters. A full analysis of corner solutions is available from the authors upon request.
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0 6 η 6 1.

As a benchmark, we continue to use the Nash equilibrium which in this case is given by:

xNA =
ηV

(η + 1)2 and x
N
B =

η2V

(η + 1)2 . (15)

Both xNA and xNB are increasing in η on the set of feasible values 0 6 η 6 1. They take

their maximum values at η = 1, in which case xNA = xNB = V
4
. Thus, the symmetric contest

produces the highest effort levels. This arises because competition is more intense in a

symmetric contest. The marginal benefit of effort is greater when a player is level with

his/her opponent than when (s)he is clearly ahead or clearly behind.

Assume that the set of feasible strategies may be written in the form [κV, λV ] , where

0 < κ < 1
4
and λ > 1

4
.20 Under this assumption, the symmetric Nash equilibrium is in the

interior of the strategy sets. Comparing xNA , x
N
B , x

∗
A, and x

∗
B, we obtain:

Proposition 7 Suppose that both players perceive a positive degree of ambiguity (δA, δB >

0). In an EUA both players will choose an effort lower than xNA , i.e. x
∗
i 6 ηV

(η+1)2
for i = A,B.

Proof. See Appendix.

Thus, in any EUA both players provide less effort than the Nash equilibrium effort level

of the player with the highest value of the prize. Hence, ambiguity causes player A to choose

lower effort than her Nash equilibrium level. In contrast, player B may provide more or less

effort than her Nash level. It is straightforward to construct examples where the player with

the lower valuation of the prize overbids compared to Nash.

Godoy et al. (2015) conducted a series of two-player laboratory contests and demon-

strated that expenditure levels were higher in the treatment where contest expenditures are

sequential and observable than in the treatment where expenditures were chosen simultane-

ously. This finding is consistent with the predictions of our model. It is natural to anticipate

that players will not perceive much ambiguity in contests where expenditures are sequential

and observable. In contrast, one may expect players to perceive significant ambiguity about

20The assumption κ > 0 is equivalent to the requirement xi > 0. For a motivation of the latter assumption,
see the beginning of Section 3.
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the opponent’s action when the choices are made simultaneously. For the case of two players,

such increase in ambiguity will result in lower expenditure according to Proposition 7.

It follows immediately from Proposition 7 that:

Corollary 8 Suppose that both players perceive a positive degree of ambiguity (δA, δB > 0)

and have the same value of the prize V . Then, in an EUA both players will make strictly

less than the Nash equilibrium level of contributions xNA = xNB = V
4
.

The intuition behind this finding is as follows. Recall that the incentives to invest come

through three channels. The pessimistic and optimistic channels produce incentives to invest

that are lower than the incentives for the game without ambiguity. A complete pessimist

believes that her opponent will choose a very large investment. In this case, the marginal

product of the player’s effort is relatively low since (s)he believes that (s)he will likely lose

the contest unless (s)he invests a very large amount. The marginal product of effort is also

relatively low for an optimist since there is only one opponent and optimism causes a player to

overweight low effort from her opponent.21 In this case, the player believes that (s)he can win

the contest without much effort. Ambiguity causes the decision-maker to overweight both

possibilities. As a result, the equilibrium expenditures under ambiguity are lower than in the

Nash equilibrium. In the following section we show that, even with symmetric valuations,

the EUA can exceed the Nash equilibrium in games with more than two contenders.

We now turn to the comparative statics. For space considerations, in the rest of the

paper we focus on the case where all players have the same value of the prize.

In a contest with two contenders, player A’s and B’s best response functions, φA (xB)

and φB (xA) , for interior solutions are given by the unique solutions to the corresponding

equations in (14) with n = 2 and m = 1. Lemma 12 in the Appendix summarises the

monotonicity properties of the best-response functions. Figure 2 depicts these functions.

For xi > xj a marginal increase in the opponent’s action xj intensifies the competition

leading to an increase in player i’s effort. In contrast, for xj > xi an increase in xj reduces

the intensity of the competition leading to a decrease in player i’s effort. Player A’s (player

21With multiple opponents, the optimistic channel may induce more effort from a player than under Nash.
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B’s) best response curve is downward (upward) sloping above the 450 degree line and upward

(downward) sloping below it.

As a starting point in the comparison of equilibrium efforts we take a two-player symmet-

ric contest where both players perceive the same degree of ambiguity δ and have the same

degree of pessimism α. For such contests, we have:

Proposition 9 Suppose 1−δα
4x

+ δαx̄
(x+x̄)2

> 1
V
. Then, the two-player symmetric contest has a

unique equilibrium. Moreover, this equilibrium is symmetric and interior.

Proof. See Appendix.

When 1−δα
4x

+ δαx̄
(x+x̄)2

≤ 1
V
, both players will choose the lowest possible expenditure x.

We sidestep this uninteresting case and instead focus on interior solutions in the rest of this

section. It follows immediately from Lemma 3 and Corollary 8 that for a symmetric contest

with two contenders, the unique equilibrium effort is a strictly decreasing function of the

common degree of ambiguity δ. Proposition 5 in turn implies that for a symmetric two-

contender contest the symmetric equilibrium will be a decreasing function of the common

degree of pessimism if and only if x∗ <
√
xx̄, which implies by Proposition 8 that if xx̄ > V 2

16

then the symmetric equilibrium will be a decreasing function of the degree of pessimism. The

effect of an increase in the degree of pessimism is to shift the decision weight from the best

outcome to the worst. Under inequality xx̄ > V 2

16
, the extra weight on the worst outcome

affects the marginal benefit more than the reduction of the weight on the best outcome.

We demonstrate in the Appendix (see Lemma 13) that the best response functions are

single-peaked with the peak located at the unique symmetric equilibrium (see Figure 2

and the following proposition). Using this property of the best response functions, we can

determine how changes in the degrees of ambiguity and attitudes to ambiguity of individual

players affect behaviour starting from the symmetric environment. Let xA = xB = x denote

the equilibrium effort level for a symmetric contest with δA = δB = δ and αA = αB = α

and let (x′A, x
′
B) denote the equilibrium for an asymmetric contest with δj = δ < δi = δ′ and

αA = αB = α, where i, j ∈ {A,B} and i 6= j.22 Figure 2 depicts the effect of an increase

22It is implicitly assumed that an increase in the degree of ambiguity from δ to δ′ is relatively small. See
the proof of the following proposition for more details.
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in player A’s degree of ambiguity on equilibrium behaviour starting from the symmetric

scenario. As a result of this change, player A’s best response curve shifts leftward while

player B’s best response curve remains unchanged. The EUA moves from point A to point

A′. Formally, we have:

Proposition 10 An increase in player i’s (i ∈ {A,B}) degree of ambiguity starting from

a symmetric contest will strictly decrease both players’equilibrium efforts; x′k < xk for k ∈

{A,B}. Moreover, the resulting reduction in player i’s effort will strictly exceed the reduction

in player j’s (j 6= i) effort; x′j > x′i.

Proof. See Appendix.

An increase in ambiguity perceived by player i causes her to put more weight on the

possibility that her opponent will choose very high expenditure x̄ or very low expenditure x.

This decreases player i’s perceived marginal benefit and, as a result, reduces her equilibrium

effort. Since the competition from player i has become less intense, player j 6= i responds by

decreasing her effort as well. However, to stay ahead of her opponent in terms of having a

higher probability of winning, player j reduces effort by less than player i. Thus, an increase

in player i’s degree of ambiguity renders a strategic advantage to player j and improves the

latter player’s payoff. Proposition 10 also implies that when the two contenders are involved

in a rent-seeking activity, an increase in ambiguity perceived by either player will decrease

the amount of rent dissipation. This may explain why in practice rent dissipation is not full,

contrary to Tullock’s predictions.

Consider the effect of changes in player i’s degree of ambiguity aversion and now let

(x′A, x
′
B) denote the equilibrium of an asymmetric contest with δA = δB = δ and αj = α <

αi = α′, where i, j ∈ {A,B} and i 6= j. Conducting analysis similar to that for the previous

proposition, we obtain:23

Proposition 11 An increase in player i’s (i ∈ {A,B}) degree of ambiguity aversion starting

from a symmetric contest will decrease both players’ equilibrium efforts; x′k < xk for k ∈
23The results for the scenarios where the players’values of the prize, initial degrees of ambiguity, and

their initial attitudes to ambiguity are asymmetric are available from the authors upon request.
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{A,B}. Moreover, the resulting reduction in player i’s effort will exceed the reduction in

player j’s (j 6= i) effort; x′j > x′i.

5.2 The model with more than two players

Consider the case with m identical ambiguity averse contenders and (n−m) identical am-

biguity loving contenders. Figure 3 depicts the relationship between the number m of ambi-

guity averse contenders and the equilibrium expenditures of representative ambiguity averse

and ambiguity loving contenders for a specific parameterization of our model. In this case,

irrespective of the fraction of ambiguity averse players the equilibrium expenditure of ambi-

guity averse contenders is below the Nash equilibrium level (which is equal to 8) while the

equilibrium expenditure of ambiguity loving contenders is above it. Note also that as the

number of ambiguity averse players monotonically increases, both contender types increase

their equilibrium expenditures.

The results reported in Figure 3 and, more generally, our findings in the previous sections

demonstrate that perceptions and attitudes to ambiguity provide an explanation for over-

spreading frequently observed in experiments. A significant diversity of ambiguity attitudes,

which is frequently observed in the lab (see, e.g., Halevy, 2007), can lead to considerable

variations of actual investments in contests.

Contrasting these and Section 4’s findings with those in Section 5.1, the reader will have

noticed that there is a difference between the results for two-player contests and multi-player

contests (by a multi-player contest we mean three or more players.). In two-player symmetric

contests ambiguity always gives rise to effort levels below the Nash equilibrium. In contrast,

in multi-player contests ambiguity can give rise to overbidding.

The difference can be explained intuitively as follows. Individual effort levels are mainly

determined by the perceived marginal benefit of effort, which is in turn influenced by the

intensity of competition. If a player is a long way ahead he has low marginal benefit since he

is likely to win regardless of his/her own effort. Similarly an individual who is far behind will

have a low marginal benefit, since (s)he is likely to lose whatever (s)he does. The highest

marginal benefit comes in a roughly equal contest which gives rise to the most intense
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competition between the players.

In a multi-player contest each individual is effectively competing against the aggregate

effort of all the others. Thus in a reasonably equal contest without ambiguity each individual

perceives him/herself as being behind. For instance, if there are five similar players and each

supplies 1
5
of the total effort and thus has a relatively low (around 20%) chance of winning.

Thus (s)he has a relatively low marginal benefit of effort. Now assume that a given player

is ambiguity loving. Then (s)he will place positive decision weight on the possibility that

his/her rivals will supply very low effort. This will increase his/her marginal benefit since

it reduces the gap between the given individual’s effort and the aggregate effort of the

others. Suppose the given individual is very optimistic and takes this low level to be 1
4
of

the equilibrium effort. Then (s)he will perceive him/herself to be in a roughly equal contest

with the aggregate of the other players. As a result, his/her marginal benefit of effort will

be relatively high.

6 Conclusion

The paper has developed and analysed contests where contenders perceive ambiguity about

strategies of their opponents. In addition to proving existence of equilibrium under am-

biguity and exploring its uniqueness properties, we have investigated how the degree of

ambiguity regarding other participants’strategies and preferences toward ambiguity affect

equilibrium behaviour. The paper also established a relationship between the equilibrium

under ambiguity and Nash equilibrium.

Our results suggest that relatively optimistic players tend to invest more than their

pessimistic counterparts. Pessimists over-weight the event that their opponents will provide

high effort which mutes incentives to expend resources. In contrast, optimists over-weight the

scenario that opponents will choose low expenditures. In multi-player games the incentives

to invest can be stronger when opponents choose relatively small expenditures than under

the most pessimistic scenario. As a result, optimists invest more and have a higher chance

of winning. This effect is especially pronounced for intermediate numbers of the opponents.

In the introduction, we have put forth a number of reasons why players in a contest may
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perceive ambiguity. One of the motivations stemmed from the uniqueness of many contests

which may lead to ambiguous beliefs. But then one may argue that in such contexts players

are unlikely to play any kind of equilibrium.24 We have two arguments in favour of the

combination of ambiguity and equilibrium. First, it provides a theoretical equivalent of a

controlled experiment. If we introduce ambiguity but otherwise keep assumptions similar to

a standard model then we know that any changes are due to the presence of ambiguity. In

contrast, if we change two or more assumptions of a standard model it is less clear which of

these is responsible for any new result.

A second argument in favour of the combination of ambiguity and equilibrium can be

drawn from Milgrom and Roberts (1990). They show that in games with strategic comple-

ments many naive adjustment processes will lead the players to the equilibrium. An example

would be playing a best response to the opponent’s previous move. This adjustment may

occur in real time. However, equally it may represent a thought process of the participants.

If there is ambiguity in the same class of games, a similar adjustment process would result

in convergence to the equilibrium. This is because what we refer to as the ‘perturbed game’

inherits the key property of strategic complementarity. Admittedly, contests do not satisfy

Milgrom and Roberts’(1990) assumptions. However, we are reasonably confident that a sim-

ilar result can be proved in this context. This is because the best response correspondences

in contests are single peaked and the players’actions are strategic complements on the first

part of the strategy space and strategic substitutes on the second part.

The paper developed in the paper uses the neo-additive model of ambiguity to represent

beliefs of the contenders about the strategies of their opponents. These preferences satisfy

both the axioms of CEU and Maxmin Expected Utility (MEU), which are two of the most

commonly used models of ambiguity. The results in Eichberger and Kelsey (2014) suggest

that our findings can be generalised to the class of CEU preferences with a Jaffray-Phillipe

JP-capacity (Jaffray and Philippe, 1997). We also conjecture that the results in the present

paper could be extended to include the class of smooth ambiguity preferences (Hanany et al.,

2016). The present paper also opens the way for subsequent research on comparative statics

24We are indebted to Associate Editor Alan Beggs for bringing up this important point.
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in a larger class of games. Our conjecture is that similar comparative static results could

be proved for all ‘well-behaved’games in which the (Nash) best response correspondence

is single peaked. This would be similar to the way in which Eichberger and Kelsey (2014)

generalise the model of public goods provision from Eichberger and Kelsey (2002). We leave

all of these interesting theoretical explorations to future research.

The model yields a number of testable hypotheses. It would be informative to empirically

investigate these in the lab and in the field. To elicit ambiguity perceptions and attitudes

and their relationship to strategic behaviour, one could use a multi-stage procedure where

in one of the stages the subjects’attitudes to ambiguity are elicited using an Ellsberg style

experimental design while in the other stage these subjects strategically interact in a contest.

An alternative is to directly elicit experimental subjects’beliefs about the strategies of their

opponents and relate them to strategic choices. Finally, one could introduce ambiguity

into an experimental setting by manipulating the identity of the opponent (Eichberger et

al., 2008) and then examining whether this is associated with any significant changes in

behaviour.

Supplementary material

Supplementary material is available on the OUP website. This is the online appendix.
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Online Appendix
“Contests with Ambiguity”(by D. Kelsey and T. Melkonyan)

Our proof of Proposition 2 utilises the suffi cient conditions for the existence of a pure

strategy Nash equilibrium in Reny (1999). The analysis relies on the following definitions

(see Reny, 1999 for more details). A game is called compact if each player’s pure strategy

set is non-empty and compact and each player has a bounded payoff function. A pair

(x∗,u∗) ∈ Rn × Rn is in the closure of the graph of the vector payoff function if u∗ is the

limit of the vector of payoffs corresponding to some sequence of strategies converging to

x∗. Player i can secure a payoff of β ∈ R at x ∈ X if there exists x̂i ∈ Xi, such that

Zi

(
x̂i,
∑

j 6=i hj
(
x′j
)
, αi, δi

)
≥ β for all x′−i ∈ X−i in some open neighbourhood of x−i. A

game is better-reply secure if whenever (x∗,u∗) is in the closure of the graph of its vector

payoff function and x∗ is not an equilibrium, some player i can secure a payoff strictly above

u∗i at x∗. By Theorem 3.1 in Reny (1999), if the game is compact, quasi-concave, and

better-reply secure, then it possesses a pure strategy Nash equilibrium.

Proof of Proposition 2. Consider the game

Γ (δ,α) =
〈

(Xi, δi (1− αi)Mi (xi) + δiαimi (xi) + (1− δi)Ui (xi; x−i))i=1,2,...,n

〉
,

where δ ≡ (δ1, ..., δn) and α ≡ (α1, ..., αn). Note that Γ (δ,α) is a ‘perturbed’ game

obtained from G =
〈

(Xi, Ui (xi; x−i))i=1,2,...,n

〉
by replacing Ui (xi; x−i) with the function

δi (1− αi)Mi (xi) + δiαimi (xi) + (1− δi)Ui (xi; x−i) for i = 1, 2, ..., n. Eichberger, Kelsey

and Schipper (2009) establish a relationship between the sets of Nash equilibria of the per-

turbed game and Equilibria under Ambiguity for games with two players. Their arguments

can be extended to games with an arbitrary number of players to show that for any pure

strategy Nash equilibrium (x∗1, ..., x
∗
n) of the perturbed game Γ (δ,α), there is a corresponding

singleton EUA (v∗1, ..., v
∗
n) of the game G with v∗i = δi (1− αi) + (1− δi) π∗i and π∗i

(
x∗−i
)

= 1

for i = 1, ..., n (Eichberger and Kelsey, 2000, pp. 202-204). Moreover, the payoff function of

the perturbed game can be written as (6). In light of the established relationship between

the equilibria under ambiguity of the game G and Nash equilibria of the perturbed game,

we examine the pure strategy equilibria of the latter game.

It follows from the strict concavity of pi (xi; x−i) in xi for all xi > 0 and all x−i and the re-

sultant strict concavity of the objective function in (6) that player i’s best response function

1



for
∑

j 6=i hj (xj) > 0 is given by (5). It is also true that player i’s best response function is

continuous for
∑

j 6=i hj (xj) > 0.

The perturbed game satisfies all of the conditions of Reny’s (1999) Theorem 3.1. First, the

perturbed game is compact because even if there is no upper limit on a player’s action one

can focus on an appropriately chosen compact subset of the real line. Second, the payoff

functions of the players are bounded. Third, consider the concavity of the players’payoff

functions. If at least one of player i’s opponents chooses a strictly positive action player i’s

payoff function (6) is continuous and concave in own strategy. The only discontinuity occurs

when all of the opponents choose inaction; x−i = 0. Note also that this case can materialise

only when x−i = 0. Under this scenario, player i’s payoff function is given by

Zi (xi, 0, αi, δi) =

 [δi (1− αi) + (1− δi)] Vin , if xi = 0

[δi ((1− αi) + αipi (xi; x̄−i)) + (1− δi)]Vi − xi, if xi > 0
,

which is discontinuous but concave. Thus, all players’payoff functions are concave, and

hence quasi-concave, in own strategies.

It is only left to verify that the game is better-reply secure. Since the latter property is a

weaker requirement than continuity, the condition for the game to be better-reply secure is

satisfied at all points of continuity of a player’s payoff function in own strategy, i.e. when∑
j 6=i hj (xj) > 0 or when

∑
j 6=i hj (xj) = 0 and xi > 0. Moreover, when x = 0, player i’s

payoff function exhibits an upward jump and a strategy that slightly exceeds xi = 0 can

secure her a payoff that is greater than Zi (0, 0, αi, δi) = [δi (1− αi) + (1− δi)] Vin . Thus, the

game is also better-reply secure, which concludes the proof of the existence of a pure strategy

Nash equilibrium.

Proof of Lemma 3. From the implicit function theorem, ∂x
∗

∂δ
= −

∂z(x∗,α,δ)
∂δ

∂z(x∗,α,δ)
∂x∗

. Differenti-

ating (7) with respect to x∗ and δ, respectively, and using (7) we obtain

∂z (x∗, α, δ)

∂x∗
= −β (n− 1)V

δ (x∗)β−2


(1−α)x((1+β)(x∗)β+(1−β)(n−1)x)

((x∗)β+(n−1)x)
3

+
αx̄((1+β)(x∗)β+(1−β)(n−1)x̄)

((x∗)β+(n−1)x̄)
3

+ (1− δ) 1

n2 (x∗)2

 < 0,

∂z (x∗, α, δ)

∂δ
=

β (n− 1) (x∗)β−1

δ

[
1

V β (n− 1) (x∗)β−1
− 1

n2 (x∗)β

]
V.

It follows from these expressions that ∂z(x∗,α,δ)
∂δ

> 0 if and only if x∗ > β(n−1)
n2

V = xN .

2



The equivalence between (9) and condition x∗ > xN follows from evaluating z (·, α, δ) at

xN :

z
(
xN , α, δ

)
= δ

n2β+2 (β (n− 1)V )β

 (1−α)xβ

((β(n−1)V )β+n2β(n−1)xβ)
2

+ αx̄β

((β(n−1)V )β+n2β(n−1)x̄β)
2

− 1

 . (A.1)

Proof of Proposition 4. Inequality (11) can be written as

B (n, θ) > A (n, θ) · α, (A.2)

where A (n, θ) ≡ θ
(1+n2θ)2

− 1
(1+n2)2

and B (n, θ) ≡ θ
(1+n2θ)2

− n−1
n4
. We have that

A (n, θ) > 0⇐⇒ n2
√
θ > 1, (A.3)

∂A (n, θ)

∂n
= 4n

(
1

(1 + n2)3 −
θ2

(1 + n2θ)3

)
< 0⇐⇒ θ

1
3

(
n2θ

1
3 − 1

)
> 1,

∂2A (n, θ)

∂n2
=

4θ2 (5n2θ − 1)

(1 + n2θ)4 > 0⇐⇒ 5n2θ > 1.

Hence, when n is relatively large, A (n, θ) is positive, decreasing, and convex in n. The

asymptote of the graph of A (n, θ) as a function of n when the latter tends to infinity is

vertical. Similarly, we have

B (n, θ) < 0⇐⇒ n
(
1 + 2θn2 + θ2n4

)
> 1 + 2θn2 + θ (1 + θ)n4, (A.4)

∂B (n, θ)

∂n
= − 4θ2n

(1 + θn2)3 +
3n− 4

n5
> 0⇐⇒ (3n− 4)

(
1 + θn2

)3
> 4θ2n6,

∂2B (n, θ)

∂n2
= 4

(
θ2 (5θn2 − 1)

(1 + θn2)4 −
3n− 5

n6

)
< 0⇐⇒ (3n− 5)

(
1 + θn2

)4
> θ2n6

(
5θn2 − 1

)
.

Hence, for suffi ciently large n, B (n, θ) is negative, increasing, and concave. The asymptote

of the graph of B (n, θ) as a function of n when the latter tends to infinity is vertical. Finally,

A (n, θ) > B (n, θ)⇐⇒ n4 (n− 2) +
(
2n2 + 1

)
(n− 1) > 0. (A.5)

Both parts of the Proposition follow immediately from (A.2), (A.3), (A.4), and (A.5).

3



Proof of Proposition 5. From the implicit function theorem we have

∂x∗

∂α
= −

∂z(x∗,α,δ)
∂α

∂z(x∗,α,δ)
∂x∗

.

It follows from the proof of Lemma 3 that ∂z(x∗,α,δ)
∂x∗ < 0. Differentiating (7) with respect to

α, we obtain

∂z (x∗, α, δ)

∂α
= βδV (n− 1) (x∗)β−1

− xβ(
(x∗)β + (n− 1)xβ

)2 +
x̄β(

(x∗)β + (n− 1) x̄β
)2

 ,

which yields the first part of the proposition. The equivalence between inequalities (12)

and (13) is obtained by evaluating z (·, α, δ) at (n− 1)
1
β
√
xx̄ and comparing the resulting

expression to zero.

Lemma 12 The slopes of the reaction functions at interior points (x < xi, xj < x̄)

satisfy

∂φi
∂xj

> 0 if xi > xj and
∂φi
∂xj

< 0 if xi < xj where i, j ∈ {A,B} and i 6= j.

Proof of Lemma 12. Application of the implicit function theorem to (14) yields

∂φi
∂xj

=
(xi − xj) (1− δi) (xi + x)3 (xi + x̄)3

2
[
δi (xi + xj)

3 ((1− αi)x (xi + x̄)3 + αix̄ (xi + x)3)+ (1− δi)xj (xi + x)3 (xi + x̄)3] ,
which implies the lemma since all terms in the above expression except for (xi − xj) are

positive.

Proof of Proposition 7. First, note that the first order-conditions for an interior

equilibrium are:

δAαA
λV

(x∗A + λV )2 + δA (1− αA)
κV

(x∗A + κV )2 + (1− δA)
x∗B

(x∗A + x∗B)2 =
1

V
, (A.6)

δBαB
λV

(λV + x∗B)2 + δB (1− αB)
κV

(x∗B + κV )2 + (1− δB)
x∗A

(x∗A + x∗B)2 =
1

ηV
. (A.7)

We shall prove the result by contradiction. Suppose that there exists an EUA in which at

least one of the players provides an effort greater than xNA . There are three cases to consider:

Case 1: x∗A >
ηV

(η+1)2
= xNA and x

∗
B > η2V

(η+1)2
= xNB .

4



We have
λV

(λV + x∗B)2 6
1

V

λ(
λ+ η2

(η+1)2

)2 6
1

V

λ(
λ+ 1

4

)2 <
1

V
<

1

ηV
. (A.8)

Similarly,
κV

(x∗B + κV )2 <
1

ηV
. (A.9)

Finally,
x∗A

(x∗A + x∗B)2 6
x∗A

(x∗A + xNB )
2 <

xNA

(xNA + xNB )
2 =

1

ηV
(A.10)

where the first inequality in (A.10) follows because x∗A

(x∗A+xB)
2 is decreasing in xB while the

second inequality follows because xA

(xA+xNB )
2 is decreasing in xA for xA > xB.

It then follows from (A.8), (A.9), and (A.10) that the left-hand-side of (A.6) is strictly smaller

than 1
ηV
provided δB > 0. But this implies that the equilibrium condition (A.7) cannot be

satisfied. Hence, there does not exist an EUA in this case.

Case 2: x∗A >
ηV

(η+1)2
= xNA and x

N
B = η2V

(η+1)2
> x∗B. The proof is similar to case 1.

Case 3: x∗A <
ηV

(η+1)2
= xNA and x

∗
B >

η2V

(η+1)2
= xNB . The proof is similar to case 1.

Thus, there is no EUA in all three possible cases. The result follows.

Proof of Proposition 9. The derivative of a contestant’s payoff with respect to own

effort evaluated at a point where the contestants choose the same effort level x is given by

(
δ (1− α)

x

(x+ x)2 + δα
x̄

(x+ x̄)2 +
(1− δ)

4x

)
V − 1. (A.11)

The expression in (A.11) evaluated at x = x is strictly positive under our assumption that
1−δα

4x
+ δαx̄

(x+x̄)2
> 1

V
. Moreover, it is is strictly negative at x = x̄ since x̄ > V

4
> x > 0. Hence,

by the Intermediate Value Theorem there exists x for which the expression in (A.11) is equal

to 0. Since the expression in (A.11) is strictly decreasing in x there can be only one value

of x ∈ (x, x̄) for which it is equal to zero. This value of x is the effort level in the unique

symmetric equilibrium. Moreover, by Lemma 13 this equilibrium is unique.

Lemma 13 Let i, j ∈ {A,B} and i 6= j. We have

1. φi (xj) ≷ xj as xj ≶ x∗,

2. φi (xj) is increasing (resp. decreasing) on [x, x∗] , (resp. [x∗, x̄]).

Proof of Lemma 13. By definition of a symmetric equilibrium, φi (x
∗) = x∗. Now,

note that since φi (xj) attains its maximum at xj = x∗, ∂φi(x
∗)

∂xj
= 0, there exists ε > 0 such

5



that for xj ∈ [x∗ − ε, x∗ + ε] , φi (xj) > xj if xj < x∗ and φi (xj) < xj if xj > x∗ (see the

proof of the previous proposition for an argument demonstrating existence and uniqueness

of x∗).

The claim is proved by contradiction. Suppose that there exists x̃, x < x̃ < x∗, with φi (x̃) <

x̃. Hence, by the Intermediate Value Theorem, there must exist x̂, x̃ < x̂ < x∗ − ε such

that φi (x̂) = x̂. Hence, x̂ is a symmetric equilibrium effort level. However, this contradicts

uniqueness of the symmetric equilibrium (Proposition 9). Hence, no such x̃ can exist which,

in turn, implies the claim. A similar argument demonstrates that xj > φi (xj) when xj > x∗.

Since xi > xj for xj ∈ [x, x∗] , Lemma 12 implies that φi (xj) is strictly increasing on this

interval. Similarly, φi (xj) is strictly decreasing for xj ∈ [x∗, x̄] .

Proof of Proposition 10. The marginal benefit of player i’s effort is given by(
δi

[
(1− αi)x
(xi + x)2 +

αix̄

(xi + x̄)2

]
+ (1− δi)

xj

(xi + xj)
2

)
V.

It follows from this expression that the effect of change in δi on this marginal benefit is

proportional to

−
(

(1− αi)
[

xj

(xi + xj)
2 −

x

(xi + x)2

]
+ αi

[
xj

(xi + xj)
2 −

x̄

(xi + x̄)2

])
V,

which implies that as long as xjx̄ > x2
i > xjx an increase in δi will decrease marginal benefit

of effort. Since the marginal cost of effort is constant, an increase in δi will result in a

decrease in player i’s effort when xjx̄ > x2
i > xjx. Hence, for points around the symmetric

equilibrium, the best response function will exhibit a decrease. By Lemma 12, φj (xi) is

increasing for xi ∈ [x, x] . Hence, as a result of the shift of player i’s best response curve the

equilibrium will move to a point where x′k < xk for k ∈ {A,B} and x′j > x′i.

6


