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Abstract. In this monograph we consider the general setting of conformal graph directed
Markov systems modeled by countable state symbolic subshifts of finite type. We deal with
two classes of such systems: attracting and parabolic. The latter being treated by means
of the former.

We prove fairly complete asymptotic counting results for multipliers and diameters
associated with preimages or periodic orbits ordered by a natural geometric weighting.
We also prove the corresponding Central Limit Theorems describing the further features
of the distribution of their weights.

These results have direct applications to a wide variety of examples, including the
case of Apollonian Circle Packings, Apollonian Triangle, expanding and parabolic rational
functions, Farey maps, continued fractions, Mannenville-Pomeau maps, Schottky groups,
Fuchsian groups, and many more. This gives a unified approach which both recovers
known results and proves new results.

Our new approach is founded on spectral properties of complexified Ruelle–Perron–
Frobenius operators and Tauberian theorems as used in classical problems of prime number
theory.
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1. Introduction

1.1. Short General Introduction. We begin with a simple problem formulated for gen-
eral iterated function systems acting on a compact metric space X. Let(

ϕe : X → X
)
e∈E,

be a countable, either finite or infinite, family of C1+α contracting maps on a metric space.
We can associate to a point ξ ∈ X the images

ϕω(ξ) := ϕω1 ◦ · · · ◦ ϕωn(ξ)

where ω = (ω1, · · · , ωn) ∈ En, n ≥ 1, and then we associate two natural weights

λξ(ω) := − log |(ϕω)′(ξ)|
and

∆ξ(ω) := − log diam(ϕω(X)).

Since there is no natural way to order and count these images in terms of their combinatorial
weight (i.e., the length n of ω = (ω1, · · · , ωn)), we use instead the two weights introduced
above: namely, λξ(ω) and ∆ξ(ω).

Under mild natural hypotheses, we show that there exist two constants C1, C2 > 0 (and
we provide explicit dynamical expressions for them) and δ ∈ (0,+∞) such that

lim
T→+∞

#{ω : λξ(ω) ≤ T}
eδT

= C1

and

lim
T→+∞

#{ω : ∆ξ(ω) ≤ T}
eδT

= C2.

These are perhaps the highlights of our results which are simplest to present; but we actually
prove more. For example, we also provide the corresponding asymptotic results when, in
addition, one requires that the points ϕω(ξ) are to fall into a prescribed ball B in X. We
also count the corresponding multipliers if the points ϕω(ξ) are replaced by periodic points
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of the system, i.e. by unique fixed points xω of the maps ϕω, which exists because all the
maps ϕω are (with our current hypotheses) contractions of the space X into itself. To this
end, we can denote

λp(ω) = − log |(ϕω)′(xω)|
and then there exists C3 > 0 such that

lim
T→+∞

#{ω : λp(ω) ≤ T}
eδT

= C3.

A fuller description of our results is provided below in further subsections of this intro-
duction and in complete detail in appropriate technical sections of the manuscript.

There are natural and instructive parallels of our work and the classical approach to the
prime number theorem, as well as with known results on the Patterson-Sullivan orbit count-
ing technology and the asymptotics of Apollonian circles. There are also natural counting
problems in both expanding and parabolic rational functions, complex continued fractions,
Farey maps, Manneville-Pomeau maps, Schottky groups, Fuchsian groups, including Hecke
groups, and more examples. We apply our general results to all of them, thus giving a
unified approach which yields both new results and a new approach to established results.

All of these are based on our current results for conformal graph directed Markov sys-
tems over a countable alphabet. These, i. e. such directed Markov systems, form the
core of the manuscript, and are objects of ultimate results of Part 1 and Part 2. Their
more detailed informal description is presented below in Section 1.2, entitled Asymptotic
Counting Results; Section 1.3 is devoted to the, above mentioned, classes of examples.

Our counting results (on the symbolic level) are close in spirit to those of Steve Lalley
from [37]. These would directly apply to our counting on the symbolic level if the graph
directed Markov systems we considered had finite alphabets. However, we need to deal with
those systems with a countable alphabet and we obtain our counting results via the study of
spectral properties of complexified Ruelle–Perron–Frobenius operators, as used by William
Parry and the first–named author, rather than the renewal theory approach of Lalley. It
is worth mentioning that our results on the symbolic level could have been formulated and
proved with no real additional difficulties in terms of ergodic sums of summable Hölder
continuous potentials rather than merely the functions λξ(ω) from the next subsection.

We would also like to add that our work was partly inspired by counting results of
Kontorovich and Oh for Apollonian packings from [36] (see also [56]–[58]), which in our
monograph are recovered and ultimately follow from our more general results for conformal
graph directed Markov systems. Nevertheless, the approach and the level of generality of
our approach is entirely different than that of Kontorovich and Oh. We have recently re-
ceived an interesting preprint [31] of Byron Heersink where he studies the counting problems
for the Farey map, Gauss map, and closed geodesics on the modular surface. We would also
like to note that a part of the classical work of the first named author and William Parry
(including [68], [69], [62], [61]), the method of the complex Perron–Frobenius operator to
approach various counting problems in geometry and dynamics, has been used by several
authors including [50], [52], [72], [3].



ASYMPTOTIC COUNTING IN CONFORMAL DYNAMICAL SYSTEMS 5

We now discuss our results below in more detail.

1.2. Asymptotic Counting Results. In Sections 3, and 9, we will recall from [47] the
respective concepts of attracting and parabolic countable alphabet conformal graph directed
Markov systems. This symbolic viewpoint is a convenient framework for keeping track of
the quantities we want to count. We begin by recalling enough notation to allow us to
formulate versions of our main results, beginning with the family of contractions we will
study, referring the read to the appropriate later sections for more details.

In contrast to the simple family of contractions described in Subsection 1.1, we will need
to consider a more general “Markovian structure” for our family of contractions, so as to
accommodate the examples we wish to apply them to (see Subsection 1.3). A directed
multigraph consists of a finite set V of vertices, a countable (either finite or infinite) set E
of directed edges, two functions

i, t : E −→ V,

and an incidence matrix A : E × E → {0, 1} for (V,E, i, t) such that

Aab = 1 implies t(b) = i(a).

Now suppose that in addition, we have a collection of nonempty compact metric spaces
{Xv}v∈V and a number κ ∈ (0, 1), such that for every e ∈ E, we have a one-to-one
contraction ϕe : Xt(e) → Xi(e) with Lipschitz constant (bounded above by) κ. Then the
collection

S = {ϕe : Xt(e) → Xi(e)}e∈E
is called an attracting graph directed Markov system (or GDMS). The GDMS is called an
attracting iterated function system (or IFS) if the set V of vertices is a singleton and all
the entries of the incidence matrix A are 1s. We will explain these definitions in greater
detail in Section 3.

We denote by E∞A ⊆ EN the subshift of finite type associated to the alphabet E and the
matrix A, and we denote by E∗A the collection of finite words admissible by the matrix A.
We say that the incidence matrix A is finitely irreducible if there exists a finite set Ω ⊂ E∗A
such that for all a, b ∈ E there exists a word ω ∈ Ω such that the concatenation aωb is in
E∗A. We then also call the system S irreducible. We extend the functions i, t : E → V in a
natural way to E∗A as follows:

t(ω) := t
(
ω|ω|
)

and i(ω) := i(ω1).

For every word ω ∈ E∗A, say ω ∈ En
A, n ≥ 0, let us denote

ϕω := ϕω1 ◦ · · · ◦ ϕωn : Xt(ω) → Xi(ω).

This symbolic setting is particularly useful for our analysis (in particular, the introduction
of a transfer operator).

Now, we define the natural coding map

πS = π : E∞A −→ X :=
∐
v∈V

Xv,
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by

{πS(ω)} :=
⋂
n∈N

ϕω|n
(
Xt(ωn)

)
where ω ∈ E∞A and

∐
v∈V Xv is the disjoint union of the compact topological spaces Xv,

v ∈ V . The set
J = JS = πS(E∞A )

is called the limit set of the GDMS S. We will describe these objects in greater detail in
Section 3.

To be able to study geometrical features of S we need to impose some additional hy-
potheses. We call a GDMS S conformal if for some d ∈ N, the following conditions are
satisfied.

(a) For every vertex v ∈ V , Xv is a compact connected subset of Rd, and Xv = Int(Xv).
(b) (Open Set Condition) For all a, b ∈ E such that a 6= b,

ϕa(Int(Xt(a))) ∩ ϕb(Int(Xt(b))) = ∅.
(c) (Conformality) There exists a family of open connected sets Wv ⊂ Xv, v ∈ V , such

that for every e ∈ E, the map ϕe extends to a C1 conformal diffeomorphism from
Wt(e) into Wi(e) with Lipschitz constant ≤ κ.

(d) (Bounded Distortion Property (BDP)) There are two constants L ≥ 1 and α > 0
such that for every e ∈ E and every pair of points x, y ∈ Xt(e),∣∣∣∣ |ϕ′e(y)|

|ϕ′e(x)|
− 1

∣∣∣∣ ≤ L‖y − x‖α,

where |ϕ′ω(x)| denotes the scaling factor of the derivative ϕ′ω(x) : Rd → Rd which is
a similarity map.

From now on through this introduction and, actually, through the entire manuscript we
assume that the system S is finitely irreducible, i.e. that the incidence matrix A is finitely
irreducible. For our counting results we need one natural hypothesis more. We call the
system S strongly regular if there exists s ∈ [0,+∞) such that

0 < P(s) < +∞
where for s ≥ 0, we let

P(s) := lim
n→+∞

1

n
log

∑
|ω|=n

‖ϕ′ω‖s∞

 ,

and ‖ϕ′‖∞ denotes the supremum norm of the derivative of a conformal map ϕ over its
domain. For example, every non trivial finite GDMS is strongly regular. In particular,
every finite IFS with the alphabet E having at least two elements is strongly regular.

Finally, we want to introduce a standard form of non-degeneracy condition on the deriva-
tives. First,

E∗p := {ω ∈ E∗A : Aω|ω|ω1 = 1}.
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Further, for all t, a ∈ R we denote by Ga(t) multiplicative subgroup of positive reals (0,+∞)
that is generated by the set{

e−a|ω||ϕ′ω(xω)|t : ω ∈ E∗p
}
⊆ (0,+∞)

where xω is the only fixed point for ϕω : Xi(ω1) → Xi(ω1). Let S = {ϕe}e∈E be a finitely
irreducible conformal GDMS then call a parameter t ∈ R strongly S–generic if there exists
no a ∈ R such that Ga(t) is generated by e2πk for some k ∈ N0. We call the system S
D–generic if each parameter t ∈ R \ {0} is S–generic.

In order to formulate an equidistribution result we need to introduce an appropriate
reference measure. There is (see [47], comp. [42]) a natural ambient Borel probability
measure mδS on the shift space E∞A occasionally called the the symbolic conformal measure,
and which satisfies the following Gibbs property: For every ω ∈ E∗A, we have that

(1.1) C−1
δS
‖ϕ′ω‖δS∞ ≤ mδS ([ω]) ≤ CδS‖ϕ′ω‖δS∞

where δS is the Hausdorff Dimension of the limit set JS , CδS ∈ (0,+∞) is a constant
independent of ω and we denote

[ω] :=
{
τ ∈ E∞A : τ ||ω| = ω

}
is the cylinder generated by the word ω. In here |ω| is the length of the finite word ω and
τ |n is the word formed by the first n terms of τ .

There is also (see again[47], comp. [42]) µδS , a unique Borel probability shift invari-
ant measure on E∞A absolutely continuous with respect to mδS . In fact µδS and mδS are
equivalent and the corresponding Radon–Nikodym derivatives are bounded.
m̃δS := mδS ◦ π−1

S , the image of the measure mδS under the projection πS , is then
supported on JS and is called the (δS–) conformal measure on JS . It is characterized (see
[47], comp. [42]) by the following two properties. Firstly,

m̃δS (ϕω(F )) =

∫
F

|ϕ′ω|δS dm̃δS

for every ω ∈ EA and every Borel set F ⊆ Xt(ω), and secondly,

m̃δS

(
ϕα(Xt(α)) ∩ ϕβ(Xt(β))

)
= 0

whenever α, β are incomparable elements of E∗A. We also denote

µ̃δS := µ̃δS ◦ π−1
S ,

the image of the invariant measure µδS under the projection πS . We will return to these
definitions again in Section 3 and Section 9.

An equally important role for us is played by parabolic conformal GDMSs. These are
somewhat the same as finite alphabet attracting systems with one exemption that some
moduli of derivatives at some fixed points can be equal to 1. This apparent small change in
definition yields however quite transparently visible differences in dynamical and geometric
properties. This can be readily seen from our exposition in Section 9, particularly in what
concerns invariant measures. Furthermore, some counting results for parabolic systems are
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strikingly different than those for attracting ones as the content of Theorem 1.2 readily
shows.

We are now in a position to formulate our first counting and equidistribution results.
Let πS(ρ) ∈ J ⊂ X be a reference point coded by an infinite sequence ρ ∈ E∞A . Fix any
non-empty Borel set B ⊂ X. Then for all T > 0 we define:

Nρ(B, T ) := #
{
ω ∈ E∗ρ : ϕω(πS(ρ)) ∈ B and λπS(ρ)(ω) ≤ T

}
and

Np(B, T ) := #
{
ω ∈ E∗p : xω ∈ B and λp(ω) ≤ T

}
,

where
E∗ρ := {ω ∈ E∗A : ωρ ∈ E∞A },

and, we recall,
E∗p = {ω ∈ E∗A : Aω|ω|ω1 = 1},

are finite words of symbols, i.e. we count the number of words ω ∈ E∗i for which the weight
λi(ω) does not exceed T and, additionally, the image ϕω(πS(ρ)) is in B if i = ρ, or the
fixed point xω of ϕω is in B if i = p.

The following result is based on Theorem 5.9 for attracting conformal GDMSs and The-
orem 11.2 for parabolic systems.

Theorem 1.1 (Asymptotic Equidistribution Formula for Multipliers). Suppose that S is
either a strongly regular finitely irreducible D-generic attracting conformal GDMS or an
irreducible parabolic conformal GDMS. Let δ = δS = HD(JS) be the Hausdorff dimension
of the associated limit set JS .

Fix ρ ∈ E∞A . Let B ⊂ X be a Borel set such that mδS (∂B) = 0, then

lim
T→+∞

Nρ(B, T )

eδT
=
ψδ(ρ)

δχµδ
m̃δ(B)

and

lim
T→+∞

Np(B, T )

eδT
=

1

δχµδ
µ̃δ(B),

where ψδ = dµδ/dmd and χµδ is the Lyapunov exponent of the measure µδ.

This result, and essentially all counting results which follow, can be rephrased in terms
of weak–star convergence of appropriately defined and normalized counting measures.

We will formulate more counting results in the present subsection and in the next one we
will discuss representative examples of conformal dynamical systems where the appropriate
counting results will be obtain by associating to them either attracting or parabolic GDMSs
and applying the above theorem.

Our proof of Theorem 1.1 for attracting systems is based on following five steps:

(1) Describing the spectrum of an associated complexified Ruelle-Perron-Frobenius (RPF)
operator; done at the symbolic level, culminating in the results of Section 4,
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(2) Using this information on the RPF operator in order to find meromorphic extensions
of associated complex η functions, i.e., Poincaré functions (or series), see Section 6,

(3) Using the information on the domain of the Poincaré series to deduce the asymptotic
formulae (Theorem 5.8) for λω(ξ) on the mixture of the symbolic level (the words
ωρ are required to belong to a symbolic cylinder [τ ] rather than ϕω(πS(ρ)) or xω
to belong to B) and GDMS level, by classical methods from prime number theory
based on Tauberian theorems.

(4) Having (3) derive the asymptotic formulae for − log |ϕ′ω(xω)|; i.e. for periodic points
xω of ϕω by means of sufficiently fine approximations.

(5) Deducing the asymptotic formulae for the Borel sets B ⊆ X (Theorem 5.9) from
those at the symbolic level (Theorem 5.8).

We can leverage our results for attracting systems to prove the corresponding results for
the more delicate case of parabolic systems. This is done by associating with a parabolic
system (by a form of inducing) a countable alphabet attracting GDMSs and expressing the
corresponding Poincaré series for parabolic systems as infinite sums of the Poincaré series
for those associated attracting systems. The rewards for this extra work is that our results
then apply to a wide class of interesting examples (see next subsection).

It is interesting to note that whereas the D-generic hypothesis of Theorem 1.1 needed
for attracting systems is very mild, in the case of parabolic systems, or more precisely
the attracting systems naturally associated to them, they are automatically D–generic (see
Theorem 9.7), so no genericity hypothesis is needed for them at all.

We would like to stress again that parabolic systems are of equal importance to the
attracting systems. Indeed, many of the applications, such as to Farey maps or Apollonian
packings for example, are based on parabolic GDMSs. The parabolic systems frequently
generate more complex and intriguing counting phenomena, particularly in regard to count-
ing diameters, which we will now address.

We now describe the corresponding results for asymptotic counting of diameters. These
are more geometrical and more complex than those for multipliers, and counting multipliers
is intrinsically more of a “dynamical process”.

We bring up the appropriate counting definitions related to diameters of sets. We fix
ρ ∈ E∞A , put ξ = πS(ρ) and fix a set Y ⊆ Xi(ρ). We denote

∆(ω) = ∆Y (ω) := − log diam(ϕω(Y )), ω ∈ E∗ρ ,

with the natural convention that for ω = ε, being the empty (neutral) word:

∆Y (ε) = − log diam(Y ),

and further, for any T > 0,

DρY (B, T ) := {ω ∈ E∗ρ : ∆Y (ω) ≤ T and ϕω(ξ) ∈ B},

Dρ
Y (B, T ) := #DρY (B, T ).
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Also
EρY (B, T ) := {ω ∈ E∗ρ : ∆Y (ω) ≤ T and ϕω(Y ) ∩B 6= ∅}

and
Eρ
Y (B, T ) := #EρY (B, T ).

We refer the reader to the appropriate sections for further relevant definitions and con-
cepts, and to the next subsection for, already mentioned, examples of conformal dynamical
systems. However, for the present, we note that Ω denotes the set of all parabolic elements
of E, that for every e ∈ E,

Ωe := {a ∈ Ω : Aae = 1}
and that

Ω∞ = Ω∞(S) :=

{
a ∈ Ω :

2pa
pa + 1

≥ δS

}
.

The following theorem comprises Theorem 8.1, Theorem 8.4, Remark 8.5, Theorem 12.1,
Theorem 12.2, and Remark 12.3.

Theorem 1.2 (Asymptotic Equidistribution Formula for Diameters). Suppose that S is
either a strongly regular finitely irreducible D-generic attracting conformal GDMS or an
irreducible parabolic conformal GDMS.

Denote by δ the Hausdorff dimension of the limit set JS . Fix ρ ∈ E∞A and then a set
Y ⊆ Xi(ρ) having at least two elements. If B ⊂ X is a Borel set such that m̃δ(∂B) = 0
then,

lim
T→+∞

Dρ
Y (B, T )

eδT
= Cρ1(Y )m̃δ(B)

and

lim
T→+∞

Eρ
Y (B, T )

eδT
= Cρ1(Y )m̃δ(B),

where Cρ1(Y ) ∈ (0,+∞] is a constant depending only on the system S, the letter ρ1 and
the set Y .

In addition Cρ1(Y ) is finite if and only if either

(1) Y ∩ Ω∞ = ∅ or
(2) δ > max

{
p(a) : a ∈ Ωρ1 and xa ∈ Y

}
.

In particular Cρ1(Y ) is finite if the system S is attracting.

The proofs of the results in Theorem 1.2 for diameters are based on those for multipliers.
The subtlety in the attracting case is that the basic bounded distortion property alone does
not suffice to pass from the case of multipliers to the case of diameters; one needs additional
approximating steps. For parabolic systems, even the basic bounded distortion property is
weaker and more involved and a careful analysis of parabolic behavior is needed.

It is worth emphasizing once again the importance of parabolic systems for many appli-
cations and classes of examples, including that of Apollonian packings. This is even more
transparent in the case of diameters than multipliers, since the diameters often appear
more frequently in the geometric setting.
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1.3. Examples. Now we would like to describe some classes of conformal dynamical sys-
tems to which we can apply Theorem 1.1 and Theorem 1.2. Often applying these results
requires some non-trivial preparation.

Our first class of examples is formed by conformal expanding repellers, see Definition 17.1.
The appropriate consequences of Theorem 1.1 and Theorem 1.2 are stated as Theorem 17.8.
The primary examples of non-linear conformal expanding repellers are formed by expand-

ing rational functions of the Riemann sphere Ĉ. The consequences of Theorem 1.1 and
Theorem 1.2 in this context, are given by Theorem 17.22.

Perhaps the the most obvious example related to attracting GDMSs are the Gauss map

G(x) =
1

x
−
[

1

x

]
,

and the corresponding Gauss IFS G consisting of the maps

[0, 1] 3 x 7−→ gn(x) :=
1

x+ n
, n ∈ N.

Theorem 17.15 summarizes the consequences of Theorem 1.1 and Theorem 1.2 stated for
the Gauss map G itself.

Now let describe some well known parabolic GDMSs to which our results apply. We start
with 1-dimensional systems. Our primary classes of such systems, defined and analyzed in
Subsection 18, are illustrated by following.

a) Manneville–Pomeau maps fα : [0, 1]→ [0, 1], where α > 0 is a fixed number, defined
by

fα(x) = x+ x1+α (mod 1),

and the Farey map f : [0, 1]→ [0, 1] defined by

f(x) =

{
x

1−x if 0 ≤ x ≤ 1
2

1−x
x

if 1−x
x
≤ x ≤ 1.

The appropriate asymptotic counting results, stemming from Theorem 1.1 and The-
orem 1.2, are provided by Theorem 18.1 and Theorem 18.2.

b) A large class of conformal parabolic systems is provided by parabolic rational func-

tions of the Riemann sphere Ĉ. These are those rational functions (see Subsec-
tion 18.2) that have no critical points in the Julia sets but do have rationally indif-
ferent periodic points. The appropriate asymptotic counting results, consequences
of Theorem 1.1 and Theorem 1.2, are stated as Corollary 18.10. Probably the best
known example of a parabolic rational function is the polynomial

Ĉ 3 z 7−→ f1/4(z) := z2 +
1

4
∈ Ĉ.

It has only one parabolic point, namely z = 1/2. In fact this is a fixed point of f1/4

and f ′1/4(1/2) = 1. Another explicit class of such functions is given by the maps of
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the form
Ĉ 3 z 7−→ 2 + 1/z + t

where t ∈ R.

c) A separate large class of examples is provided by some classes of Kleinian groups,
namely by finitely generated classical Schottky groups and essentially all finitely
generated Fuchsian groups.

Convex co-compact (no tangencies) Schottky groups are described and analyzed
in detail in Section 19 while general Schottky groups (allowing tangencies) are dealt
with in Subsection 20. The appropriate asymptotic counting results, stemming from
Theorem 1.1 and Theorem 1.2, are provided by Theorem 19.10 and Theorem 20.3.

As a particularly famous example, the counting problem of circles in a full Apollonian
packing reduces to an appropriate counting problem for a finitely generated classical Schot-
tky group with tangencies. The full presentation of asymptotic counting in this context,
stemming from Theorem 1.1 and Theorem 1.2, is given by Corollary 20.9. We present be-
low a more restricted form (see Theorem 20.13) involving only the counting of diameters;
it recovers results from [36] (see also [56]–[58]), obtained by entirely different methods.

Theorem 1.3. Let C1, C2, C3 be three mutually tangent circles in the Euclidean plane
having mutually disjoint interiors. Let C4 be the circle tangent to all the circles C1, C2, C3

and having all of them in its interior; we then refer to the configuration (C1, C2, C3, C4) as
bounded. Let A be the corresponding circle packing.

Let δ = 1.30561 . . . be the Hausdorff dimension of the residual set of A and let mδ be the
Patterson-Sullivan measure of the corresponding parabolic Schottky group Γ.

If NA(T ) denotes the number of circles in A of diameter at least 1/T then the limit

lim
T→+∞

NA(T )

eδT

exists, is positive, and finite. Moreover, there exists a constant C ∈ (0,+∞) such that if
NA(T ;B) denotes the number of circles in A of diameter at least 1/T and lying in B, then

lim
T→+∞

NA(T ;B)

eδT
= Cmδ(B)

for every open ball B ⊂ C.

Closely related to A is the curvilinear triangle T (or Apollonian triangle) formed by the
three edges joining the three tangency points of C1, C2, C3 and lying on these circles. The
collection

G := {C ∈ A : C ⊂ T }
is called the Apollonian gasket generated by the circles C1, C2, C3. As a consequence of
Theorem 1.3, taking B = T , we get the following (see Corollary 20.14); it overlaps with
results from [36] (see also [56]–[58]), obtained with entirely different methods.

Corollary 1.4. Let C1, C2, C3 be three mutually tangent circles in the Euclidean plane
having mutually disjoint interiors. Let C4 be the circle tangent to all the circles C1, C2, C3
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and having all of them in its interior; we then refer to the configuration C1, C2, C3, C4 as
bounded. Let A be the corresponding circle packing.

If T is the curvilinear triangle formed by C1, C2 and C3, then the limit

lim
T→+∞

NA(T ; T )

eδT

exists, is positive, and finite and counts the elements of G. Moreover, there exists a constant
C ∈ (0,+∞), in fact the one of Theorem 20.13, such that

lim
T→+∞

NA(T ;B)

eδT
= Cmδ(B)

for every Borel set B ⊂ T with mδ(∂B) = 0.

Figure 1. (i) The Standard Apollonian Packing; (ii) The Apollonian Gasket

In fact we can provide a more direct proof of Corollary 1.4, by appealing directly to the
theory of parabolic conformal IFSs and avoiding the intermediate step of parabolic Schottky
groups. Indeed, it follows immediately from Theorem 12.6.

In the context of limit sets, such as circle packings, there is scope for finding error terms
in the above asymptotic formulae, see ex. [39] and [60]. It could be also done using
the techniques worked out in our present manuscript. However, in the general setting of
conformal graph directed Markov systems quite delicate technical hypotheses might well
be required.

1.4. Statistical Results. A second aim of this monograph is to consider the statistical
properties of the distribution of the different weights λρ(ω) and diam(ϕω(X)) corresponding
to words ω with the same length n. This is a very specific mathematical problem, but is
set against the backdrop of a vast literature dealing with different statistical properties of
dynamical systems.
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The classical Central Limit Theorem for Gibbs measures and uniformly hyperbolic dy-
namical systems (originally due to Sinai, Ratner, etc.) were inspired by the classical theo-
rems for independent identically distributed random variables. In particular, in this context
there are two particularly fruitful approaches: Firstly, the spectral approach based on per-
turbation theory for the maximal eigenvalue; and, secondly, the martingale method of
Gordin [22]. An excellent account of Central Limit Theorems in this setting appears in
[14]. Stronger results based on invariance principles were pioneered by Denker-Philipp [15].

In the broader setting of non-uniformly hyperbolic systems and natural invariant proba-
bility measures there have been a number of important contributions by different authors,
including Young [94], [95], Sarig [80] Liverani-Saussol-Vaienti [40] and Gouëzel [25]. In the
case of transformations with only a sigma finite natural invariant measures there are results
on stable limit laws, see [97] and the references therein.

Since our aim is to develop Central Limit Theorems to deal specifically with the distri-
bution of diameters of sets, not only typical points in a measurable sense (Theorem 1.6)
and also in terms of counting averages (Theorem 1.8), we cannot apply the results above
directly, but they provide a key blueprint for us to follow.

There are many other statistical properties that might be considered (e.g., Berry-Essen
estimates, Shrinking targets, Large Deviations, Local Limit Theorems, Extremal theory,
Multifractal analysis, etc.) but these are beyond the scope of this monograph.

In the context of attracting and parabolic GDMSs we have the following Central Limit
Theorem, see Part 3. We refer the reader to the appropriate section for a detailed definitions
of the hypothesis.

Theorem 1.5. If S is either a strongly regular finitely irreducible D–generic conformal
GDMS or a finite alphabet irreducible parabolic GDMS with δS >

2pS
pS+1

1, then there exists

σ2 > 0 such that if G ⊂ R is a Lebesgue measurable set with Leb(∂G) = 0, then

lim
n→+∞

µδ

({
ω ∈ E∞A :

− log
∣∣ϕ′ω|n(πS(σn(ω)))

∣∣− χµδn√
n

∈ G

})
=

1√
2πσ

∫
G

e−
t2

2σ2 dt.

In particular, for any α < β

lim
n→+∞

µδ

({
ω ∈ E∞A : α ≤

− log
∣∣ϕ′ω|n(πS(σn(ω)))

∣∣− χµδn√
n

≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

The following result is an alternative Central Limit Theorem considering instead the
logarithms of the diameters of the images of reference sets.

Theorem 1.6. Suppose that there S is either a strongly regular finitely irreducible D–
generic conformal GDMS or a finite alphabet irreducible parabolic GDMS with δS >

2pS
pS+1

.

1this hypothesis means that the corresponding invariant measure µδ is finite, thus a probability after
normalization
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Let σ2 := P′′(0)(6= 0). For every v ∈ V let Yv ⊂ Xv be a set with at least two points. If
G ⊂ R is a Lebesgue measurable set with Leb(∂G) = 0, then

lim
n→+∞

µδ

({
ω ∈ E∞A :

− log diam(ϕω|n(Yt(ωn)))− χµδn√
n

∈ G
})

=
1√
2πσ

∫
G

e−
t2

2σ2 dt.

In particular, for any α < β

lim
n→+∞

µδ

({
ω ∈ E∞A : α ≤

− log diam(ϕω|n(Yt(ωn)))− χµδn√
n

≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

There are more theorems in this vein proven in Part 3, for example the Law of Iterated
Logarithm. In order to formulate other statistical results of a slightly different flavor, we
define the following measures

µn(H) :=

∑
ω∈H e

−δλρ(ω)∑
ω∈Enρ

e−δλρ(ω)

for integers n ≥ 1 and H ⊂ En
ρ . We also consider the function ∆n : En

A → R given by

∆n(ω) =
λρ(ω)− χδn√

n
.

Theorem 1.7. If S is either a finitely irreducible strongly regular conformal GDMS or a
finite alphabet irreducible parabolic GDMS with δS >

2pS
pS+1

, then for every ρ ∈ E∞A we have

that

lim
n→+∞

∫
Enρ

λρ
n
dµn = χµδ = −

∫
E∞ρ

log
∣∣ϕ′ω1

(
πS(σ(ω))

)∣∣dµδ(ω).

The following theorem describes precisely the magnitude of deviations in this convergence,
and is another form of Central Limit Theorem.

Theorem 1.8. If S is either a strongly regular finitely irreducible D–generic attracting
conformal graph directed Markov system or a finite alphabet irreducible parabolic GDMS
with δS >

2pS
pS+1

, then the sequence of random variables (∆n)∞n=1 converges in distribution

to the normal (Gaussian) distribution N0(σ) with mean value zero and the variance σ2 =
P′′(δ). Equivalently, the sequence (µn◦∆−1

n )∞n=1 converges weakly to the normal distribution
N0(σ2). This means that for every Borel set F ⊂ R with Leb(∂F ) = 0, we have

lim
n→+∞

∑
ω∈Enρ

∣∣ϕ′ω(πS(ρ)
∣∣δ11F (λρ(ω|n)−χδn√

n

)
∑

ω∈Enρ

∣∣ϕ′ω(πS(ρ|)
∣∣δ = lim

n→+∞
µn(∆−1

n (F )) =
1√
2πσ

∫
F

e−t
2/2σ2

dt.

In particular all these theorems hold for all classes of examples described in subsection 1.3,
in the case of parabolic systems under the additional hypothesis that δ > 2p

p+1
, which ensures

that the corresponding invariant measure µδ is finite, thus probabilistic after normalization.
In the case of continued fractions these take on exactly the same form, in the case of Kleinian
groups, including Apollonian circle packings, as for associated GDMSs.
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However, in giving statements of the Central Limit Theorems for examples, we have
chosen rational functions to best illustrate them. The first result is a Central Limit Theorem
for the distribution of the derivatives of an expanding rational function along orbits.

Theorem 1.9. Let f : Ĉ → Ĉ be either an expanding rational function of the Riemann

sphere Ĉ or a parabolic rational function of Ĉ with δS >
2pS
pS+1

. Then there exists σ2 > 0

such that if G ⊂ R is a Lebesgue measurable set with Leb(∂G) = 0, then

lim
n→+∞

µδ

({
z ∈ J(f) :

log
∣∣(fn)′(z)

∣∣− χµδn√
n

∈ G

})
=

1√
2πσ

∫
G

e−
t2

2σ2 dt.

In particular, for any α < β

lim
n→+∞

µδ

({
z ∈ J(f) : α ≤

log
∣∣(fn)′(z)

∣∣− χµδn√
n

≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

The second result is a Central limit Theorem describing the diameter of the preimages
of reference sets.

Theorem 1.10. Let f : Ĉ → Ĉ be either an expanding rational function of the Riemann

sphere Ĉ or a parabolic rational function of Ĉ with δS >
2pS
pS+1

. Then for every e ∈ F let

Ye ⊂ Re be a set with at least two points. If G ⊂ R is a Lebesgue measurable set with
Leb(∂G) = 0, then

lim
n→+∞

µδ

({
z ∈ J(f) :

− log diam
(
f−nx (Ye(z,n))

)
− χµδn√

n
∈ G

})
=

1√
2πσ

∫
G

e−
t2

2σ2 dt

where f−nx is a local inverse for fn in a neighborhood of x = fn(z). In particular, for any
α < β

lim
n→+∞

µδ

({
z ∈ J(f) : α ≤

− log diam
(
f−nx (Ye(z,n))

)
− χµδn√

n
≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

Theorem 1.11. If f : Ĉ → Ĉ is either an expanding rational function of the Riemann

sphere Ĉ or a parabolic rational function of Ĉ with δS >
2pS
pS+1

, then for every ξ ∈ J(f), we

have that

lim
n→+∞

∫
f−n(ξ)

log
∣∣(fn)′

∣∣
n

dµn = χδ.

The final result concerning central limit theorems is a Central Limit Theorem which
describes the distribution of preimages of a reference point.

Theorem 1.12. If f : Ĉ → Ĉ is either an expanding rational function of the Riemann

sphere Ĉ or a parabolic rational function of Ĉ with δS >
2pS
pS+1

, then the sequence of random

variables (∆n)∞n=1 converges in distribution to the normal (Gaussian) distribution N0(σ)
with mean value zero and the variance σ2 > 0. Equivalently, the sequence (µn ◦ ∆−1

n )∞n=1
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converges weakly to the normal distribution N0(σ2). This means that for every Borel set
F ⊂ R with Leb(∂F ) = 0, we have

lim
n→+∞

∑
z∈f−n(ξ) |(fn)′(z)|−δ11F

(
log |(fn)′(z)|−χδn√

n

)
∑

z∈f−n(ξ) |(fn)′(z)|−δ
= lim

n→+∞
µn(∆−1

n (F )) =
1√
2πσ

∫
F

e−t
2/2σ2

dt.

We complete this section by putting our results in Parts 4 and 5 into context.

1.5. Background on the applications and examples. At the heart of this monograph
is a new general method which serves to provide a unified approach to both counting prob-
lems (Theorem 1.1 and Theorem 1.2 ) and statistical results (Theorem 1.5 and Theorem
1.6), which can then be applied to many different examples. Although many of our appli-
cations are new, it is only to be expected that some of these touch upon the work of others,
particularly for some of the better known examples. For the benefit of the reader, and to
place our results into context, in this subsection we briefly describe how our results relate
to the existing literature.

In subsection 1.3 (and later in Example 17.14) we began with the historically important
examples of the uniformly expanding Gauss map and non-uniformly expanding Manneville-
Pomeau map, and our asymptotic counting results for these appear as Theorems 18.1 and
18.2. Indirectly, one could relate the counting results for periodic orbits for these maps to
those for closed geodesics on the Modular surface, by the use of appropriate sections to
the flow [48]. Then the corresponding asymptotic counting results for closed geodesics are
wellknown by use of the Selberg trace formula (see [30]). In fact, the results for this special
example are even stronger in that they also have error terms for the counting function,
something we have not considered. There is an alternative dynamical approach for counting
closed geodesics in [52], [53]. A version of the metric central limit theorem (Theorem 18.4)
and Law of the Iterated Logarithm Theorem (Theorem 18.4 ) for the Manneville-Pomeau
map can be found in the classical works of Philipp [64]and Doeblin [19]. We are not aware
of earlier work on the statistical results for closed orbits and preimages of the Manneville-
Pomeau map in Theorem 18.5.

In the same subsection (subsection 1.3, and later in subsection 18.2) we consider the
example of the parabolic rational functions. In this case a metric Central Limit Theorem
(related to Theorem 18.11) appears, for example, in the paper [18] for Gibbs measures.
An earlier version for hyperbolic rational function follows from the work in Bowen’s book
[4] with the aid of Markov partitions. There are various results on the equidistribution of
preimages, starting with Lyubich’s result [41]. However, we do not know of any previous
results related to Theorem 1.12, Corollary 18.10 or the subsequent results.

Finally, we considered the case of Kleinian Schottky groups Γ. In this context, in much
the same was as in the case of the Gauss map, some of the counting results can be refor-
mulated in terms of closed geodesics, this time on the manifold Hd+1/Γ with all sectional
curvatures equal to −1. Unfortunately, most of the known counting results where Γ is a
lattice (where Hd+1/Γ has finite volume) due to Huber, Selberg and others (see [30]) do not
apply. In the case of a classical hyperbolic Schottky group some of the easier counting and
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distribution results from Theorem 19.10 for fixed points could probably be deduced from
counting closed orbits for Axiom A flows (see [61]), and the simpler results for displace-
ments might be derived from work in [37] or [71]. In the case of convex cocompact groups
there is also a metric Central Limit Theorem, which essentially comes from the work of
Ratner [76]. (Ratner’s statement is for Anosov flows, but since the proof uses symbolic
dynamics the same approach works for hyperbolic flows and thus applies here). For the
case of lattices the metric Central Limit Theorem was established in [38]. However, the
Central Limit theorem in Theorem 19.12 appears new.

The model example of the Apollonian Circle packing introduced in subsection 1.3, and
described in subsection 20.2, has received considerable attention in recent years. Kon-
torovich and Oh [36] proved the original asymptotic counting result for circles (Theorem
1.3) and our contribution is an alternative approach. There are generalizations and refine-
ments due to Oh and Shah [56], [57] and others, including error terms by Lee and Oh for
the counting fuctions, which again we have not considered [39]. An alternative approach
to the equidistribution results appears in the [63] which, in common with[36], works with
the dynamics in Hd+1, in contract to our approach which works on the boundary. We are
not aware of any previous Central Limit Theorems or other related statistical properties in
this context.

Now, we present our systematic exposition of the above mentioned (an more) results
along with their proofs. We start with thermodynamic formalism for countable alphabet
subshifts of finite type.

Part 1. Attracting Conformal Graph Directed Markov
Systems

2. Thermodynamic Formalism of Subshifts of Finite Type with
Countable Alphabet; Preliminaries

In this section we introduce more completely than in the introduction the symbolic setting
in which we will be working. Furthermore, we will describe the fundamental thermodynamic
concepts, ideas and results, particularly those related to the associated Ruelle-Perron-
Frobenius operators, which will play a crucial role throughout the monograph.

Let N = {1, 2, . . .} be the set of all positive integers and let E be a countable set, either
finite or infinite, called in the sequel an alphabet. Let

σ : EN → EN

be the shift map, i.e. cutting off the first coordinate and shifting one place to the left. It
is given by the formula

σ
(
(ωn)∞n=1

)
=
(
(ωn+1)∞n=1

)
.
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We also set

E∗ =
∞⋃
n=0

En.

to be the set of finite strings. For every ω ∈ E∗, we denote by |ω| the unique integer n ≥ 0
such that ω ∈ En. We call |ω| the length of ω. We make the convention that E0 = {∅}. If
ω ∈ EN and n ≥ 1, we put

ω|n = ω1 . . . ωn ∈ En.

If τ ∈ E∗ and ω ∈ E∗ ∪ EN, we define the concatenation of τ and ω by:

τω :=

{
τ1 . . . τ|τ |ω1ω2 . . . ω|ω| if ω ∈ E∗,
τ, . . . τ|τ |ω1ω2 . . . if ω ∈ EN, .

Given ω, τ ∈ EN, we define ω∧ τ ∈ EN∪E∗ to be the longest initial block common to both
ω and τ . For each α > 0, we define a metric dα on EN by setting

(2.1) dα(ω, τ) = e−α|ω∧τ |.

All these metrics induce the same topology, known to be the product (Tichonov) topology.
A real or complex valued function defined on a subset of EN is uniformly continuous with
respect to one of these metrics if and only if it is uniformly continuous with respect to all
of them. Also, this function is Hölder with respect to one of these metrics if and only if it
is Hölder with respect to all of them although, of course, the Hölder exponent depends on
the metric. If no metric is specifically mentioned, we take it to be d1.

Now consider an arbitrary matrix A : E × E → {0, 1}. Such a matrix will be called the
incidence matrix in the sequel. Set

E∞A := {ω ∈ EN : Aωiωi+1
= 1 for all i ∈ N}.

Elements of E∞A are called A-admissible. We also set

En
A := {ω ∈ EN : Aωiωi+1

= 1 for all 1 ≤ i ≤ n− 1}, n ∈ N,

and

E∗A :=
∞⋃
n=0

En
A.

The elements of these sets are also called A-admissible. For every ω ∈ E∗A, we put

[ω] := {τ ∈ E∞A : τ||ω| = ω}.

The set [ω] is called the cylinder generated by the word ω. The collection of all such
cylinders forms a base for the product topology relative to E∞A . The following fact is
obvious.

Proposition 2.1. The set E∞A is a closed subset of EN, invariant under the shift map
σ : EN → EN, the latter meaning that

σ(E∞A ) ⊆ E∞A .
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We recall that the matrix A is said to be finitely irreducible if there exists a finite set
Λ ⊆ E∗A such that for all i, j ∈ E there exists ω ∈ Λ for which iωj ∈ E∗A. If all elements of
some Λ are of the same length, then A is called finitely primitive (or aperiodic).

The topological pressure of a continuous function f : E∞A → R with respect to the shift
map σ : E∞A → E∞A is defined to be

(2.2) P(f) := lim
n→∞

1

n
log

∑
ω∈EnA

exp

(
sup
τ∈[ω]

n−1∑
j=0

f(σj(τ))

)
.

The existence of this limit, following from the observation that the “log” above forms a
subadditive sequence, was established in [46], comp. [47]. Following the common usage we
abbreviate

Snf :=
n−1∑
j=0

f ◦ σj

and call Snf(τ) the nth Birkhoff’s sum of f evaluated at a word τ ∈ E∞A .

Observe that a function f : E∞A → R is (locally) Hölder continuous with an exponent
α > 0 if and only if

Vα(f) := sup
n≥1
{Vα,n(f)} < +∞,

where
Vα,n(f) = sup{|f(ω)− f(τ)|eα(n−1) : ω, τ ∈ E∞A and |ω ∧ τ | ≥ n}.

Observe further that Hα(A), the vector space of all bounded Hölder continuous functions
f : E∞A → R (or C) with an exponent α > 0 becomes a Banach space with the norm || · ||α
defined as follows:

||f ||α := ||f ||∞ + Vα(f).

The following theorem has been proved in [46], comp. [47], for the class of acceptable func-
tions defined there. Since Hölder continuous ones are among them, we have the following.

Theorem 2.2 (Variational Principle). If the incidence matrix A : E×E → {0, 1} is finitely
irreducible and if f : E∞A → R is Hölder continuous, then

P(f) = sup
{

hµ(σ) +

∫
f dµ

}
,

where the supremum is taken over all σ-invariant (ergodic) Borel probability measures µ
such that

∫
f dµ > −∞.

We would like also to mention that this theorem was proved in [78] for Hölder continuous
functions f though with a different definition of topological pressure.

We call a σ-invariant probability measure µ on E∞A an equilibrium state of a Hölder
continuous function f : E∞A → R if

∫
−f dµ < +∞ and

(2.3) hµ(σ) +

∫
f dµ = P(f).
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If f : E∞A → R is a Hölder continuous function, then following [46], and [47] a Borel
probability measure µ on E∞A is called a Gibbs state for f (comp. also [4], [29], [74], [77],
[81], [92] and [91]) if there exist constants Q ≥ 1 and Pµ ∈ R such that for every ω ∈ E∗A
and every τ ∈ [ω]

(2.4) Q−1 ≤ µ([ω])

exp
(
S|ω|f(τ)− Pµ|ω|

) ≤ Q.

If additionally µ is shift-invariant, it is then called an invariant Gibbs state. It is readily
seen from this definition that if a Hölder continuous function f : E∞A → R admits a Gibbs
state µ, then

Pµ = P(f).

From now on throughout this section f : E∞A → R is assumed to be a Hölder continuous
function with an exponent α > 0, and it is also assumed to satisfy the following requirement

(2.5)
∑
e∈E

exp(sup(f |[e])) < +∞.

Functions f satisfying this condition are called (see [46], and [47]) in the sequel summable.
We note that if f has a Gibbs state, then f is summable. This requirement of summability,
allows us to define the Ruelle–Perron–Frobenius operator

Lf : Cb(E
∞
A )→ Cb(E

∞
A ),

acting on the space of bounded continuous functions Cb(E
∞
A ) endowed with ‖ · ‖∞, the

supremum norm, as follows:

Lf (g)(ω) :=
∑

e∈E:Aeω1=1

exp(f(eω)g(eω).

Then ‖Lf‖∞ ≤
∑

e∈E exp(sup(f |[e])) < +∞ and for every n ≥ 1

Lnf (g)(ω) =
∑

τ∈EnA:Aτnω1=1

exp
(
Snf(τω)

)
g(τω).

The conjugate operator L∗f acting on the space C∗b (E∞A ) has the following form:

L∗f (µ)(g) := µ(Lf (g)) =

∫
Lf (g) dµ.

Observe that the operator Lf preserves the space Hα(A), of all Hölder continuous functions
with an exponent α > 0. More precisely

Lf (Hα(A)) ⊆ Hα(A).

We now provide a brief account of those elements of the spectral theory that we will need
and use in the sequel. Let B be a Banach space and let L : B → B be a bounded linear
operator. A point λ ∈ C is said to belong to the spectral set (spectrum) of the operator
L if the operator λIB − L : B → B is not invertible, where IB : B → B is the identity
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operator on B. The spectral radius r(L) of L is defined to be the supremum of moduli of
all elements in the spectral set of L. It is known that r(L) is finite and

r(L) = lim
n→∞

‖Ln‖1/n.

A point λ of the spectrum of L is said to belong to the essential spectral set (essential
spectrum) of the operator L if λ is not an isolated eigenvalue of L of finite multiplicity.
The essential spectral radius ress(L) of L is defined to be the supremum of moduli of all
elements in the essential spectral set of L. It is known (see [54]) that

ress(L) = lim
n→∞

inf
{
‖Ln −K‖1/n

}
,

where for every n ≥ 1 the infimum is taken over all compact operators K : B → B. The
operator L : B → B is called quasi-compact if either r(L) = 0 or

ress(L) < r(L).

The proof of the following theorem can be found in [46] and [47]. For the items (a)–(f) see
also Corollary 4.3.8 in [8].

Theorem 2.3. Suppose that f : E∞A → R is a Hölder continuous summable function and
the incidence matrix A is finitely irreducible. Then

(a) There exists a unique Borel probability eigenmeasure mf of the conjugate Perron-
Frobenius operator L∗f and the corresponding eigenvalue is equal to eP(f).

(b) The eigenmeasure mf is a Gibbs state for f .

(c) The function f : E∞A → R has a unique σ-invariant Gibbs state µf .

(d) The measure µf is ergodic, equivalent to mf and if ψf = dµf/dmf is the Radon–
Nikodym derivative of µf with respect to mf , then logψf is uniformly bounded.

(e) If
∫
−f dµf < +∞, then the σ-invariant Gibbs state µf is the unique equilibrium

state for the potential f .

(f) In case the incidence matrix A is finitely primitive, the Gibbs state µf is completely
ergodic.

(g) The spectral radius of the operator Lf considered as acting either on Cb(E
∞
A ) or

Hα(A) is in both cases equal to eP(f).

(h) In either case of (g) the number eP(f) is a simple (isolated in the case of Hα(A))
eigenvalue of Lf and the Radon–Nikodym derivative ψf ∈ Hα(A) generates its
eigenspace.

(i) The remainder of the spectrum of the operator Lf : Hα(A)→ Hα(A) is contained in
a union of finitely many eigenvalues of finite multiplicity (different from eP(f)) of
modulus eP(f) and a closed disk centered at 0 with radius strictly smaller than eP(f).
In particular, the operator Lf : Hα(A)→ Hα(A) is quasi-compact.
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In the case where the incidence matrix A is finitely primitive a stronger statement
holds: namely, apart from eP(f), the spectrum of Lf : Hα(A)→ Hα(A) is contained
in a closed disk centered at 0 with radius strictly smaller than eP(f).
In particular, the operator Lf : Hα(A)→ Hα(A) is quasi-compact.

We are indeed concerned with Gibbs states and these suffice for us in this monograph.
Theorem 2.3 gives us a full power of thermodynamic formalism resulting from a spectral
gap. For this we do assume finite irreducibility. Indeed, we would like to add that Omri
Sarig proved in [81] that finite irreducibility is also necessary for the existence of Gibbs
states. Other papers of Sarig on countable shifts include [78], [79], [82]. The reader may
also consult [11] and [10]. We are far from claiming that the above list of the works on the
subject of countable shift is complete.

3. Attracting Conformal Countable Alphabet Graph Directed Markov
Systems (GDMSs)

and
Countable Alphabet Attracting Iterated Function Systems (IFSs);

Preliminaries

In this manuscript we consider conformal countable alphabet graph directed Markov
system (abbr. GDMS) as defined and extensively studied in [47]. These are quite far going
generalizations of conformal countable alphabet iterated function systems (abbr. IFS) of
[42], which in turn generalize the finite alphabet ones. All of them contain appropriate
similarity systems and each step of the above generalizations gives rise to new dynamical
and geometric phenomena.

The highest level of flexibility, the countable alphabet GDMSs, are interested on their
own, of course in this manuscript with respect to the counting phenomena, and are well
suited to modeling the dynamical examples in which we are interested. In later sections we
will prove the results in this context and explain how they can be used to derive different
geometric and dynamical results, such as those already mentioned in the introduction.

Let us define a graph directed Markov system (abbr. GDMS) relative to a directed
multigraph (V,E, i, t) and an incidence matrix A : E × E → {0, 1}. As said, such systems
have been defined and first studied at length in [42] and [47]. We recall that directed
multigraph consists of a finite set V of vertices, a countable (either finite or infinite) set E
of directed edges, two functions

i, t : E → V,

and an incidence matrix A : E × E → {0, 1} on (V,E, i, t) such that

Aab = 1 implies t(a) = i(b).

Now suppose that in addition, we have a collection of nonempty compact metric spaces
{Xv}v∈V and a number κ ∈ (0, 1), such that for every e ∈ E, we have a one-to-one
contraction ϕe : Xt(e) → Xi(e) with Lipschitz constant (bounded above by) κ. We recall
that the collection

S = {ϕe : Xt(e) → Xi(e)}e∈E
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is called an attracting graph directed Markov system (or GDMS). We will frequently refer
to it just as a graph directed Markov system or GDMS. We will however always keep the
adjective ”parabolic” when, in later sections, we will also speak about parabolic graph
directed Markov systems. We extend the functions i, t : E → V in a natural way to E∗A as
follows:

t(ω) := t
(
ω|ω|
)

and i(ω) := i(ω1).

For every word ω ∈ E∗A, say ω ∈ En
A, n ≥ 0, let us denote

ϕω := ϕω1 ◦ · · · ◦ ϕωn : Xt(ω) → Xi(ω).

We now describe the limit set, also frequently called the attractor, of the system S. For
any ω ∈ E∞A , the sets {ϕω|n

(
Xt(ωn)

)
}n≥1 form a descending sequence of nonempty compact

sets and therefore
⋂
n≥1 ϕω|n

(
Xt(ωn)

)
6= ∅. Since for every n ≥ 1,

diam
(
ϕω|n

(
Xt(ωn)

))
≤ κndiam

(
Xt(ωn)

)
≤ κn max{diam(Xv) : v ∈ V },

we conclude that the intersection ⋂
n∈N

ϕω|n
(
Xt(ωn)

)
is a singleton and we denote its only element by πS(ω) or simpler, by π(ω). In this way we
have defined a map

πS := π : E∞A −→ X :=
∐
v∈V

Xv,

where
∐

v∈V Xv is the disjoint union of the compact topological spaces Xv, v ∈ V . The
map π is called the coding map, and the set

J = JS := π(E∞A )

is called the limit set of the GDMS S. The sets

Jv = π({ω ∈ E∞A : i(ω1) = v}), v ∈ V,

are called the local limit sets of S.

We call S maximal if for all a, b ∈ E, we have Aab = 1 if and only if t(b) = i(a). In
[47], a maximal GDMS was called a graph directed system (abbr. GDS). Finally, we call
a maximal GDMS S an iterated function system (or IFS) if V , the set of vertices of S, is
a singleton. Equivalently, a GDMS is an IFS if and only if the set of vertices of S is a
singleton and all entries of the incidence matrix A are equal to 1.

Definition 3.1. We call the GDMS S and its incidence matrix A finitely irreducible if
there exists a finite set Ω ⊂ E∗A such that for all a, b ∈ E there exists a word ω ∈ Ω such
that the concatenation aωb is in E∗A. S and A are called finitely primitive if the set Ω may
be chosen to consist of words all having the same length. If such a set Ω exists but is not
necessarily finite, then S and A are called irreducible and primitive, respectively. Note that
all IFSs are symbolically irreducible.
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Remark 3.2. For every integer q ≥ 1 define Sq, the qth iterate of the system S, to be

{ϕω : Xt(ω) → Xi(ω) : ω ∈ Eq
A}

and its alphabet is Eq
A. All the theorems proved in this monograph hold under the formally

weaker hypothesis that all the elements of some iterate Sq, q ≥ 1, of the system S, are
uniform contractions. This in particular pertains to the Gauss system of Example 17.14
for which q = 2 works.

With the aim of moving on to geometric applications, and following [47], we recall that
we called a GDMS conformal if for some d ∈ N, the following conditions were satisfied.

(a) For every vertex v ∈ V , Xv is a compact connected subset of Rd, and Xv = Int(Xv).
(b) (Open Set Condition) For all a, b ∈ E such that a 6= b,

ϕa(Int(Xt(a))) ∩ ϕb(Int(Xt(b))) = ∅.

(c) (Conformality) There exists a family of open connected sets Wv ⊂ Xv, v ∈ V , such
that for every e ∈ E, the map ϕe extends to a C1 conformal diffeomorphism from
Wt(e) into Wi(e) with Lipschitz constant ≤ κ.

(d) (Bounded Distortion Property (BDP)) There are two constants L ≥ 1 and α > 0
such that for every e ∈ E and every pair of points x, y ∈ Xt(e),∣∣∣∣ |ϕ′e(y)|

|ϕ′e(x)|
− 1

∣∣∣∣ ≤ L‖y − x‖α,

where |ϕ′ω(x)| denotes the scaling factor of the derivative ϕ′ω(x) : Rd → Rd which is
a similarity map.

Remark 3.3. When d = 1 the conformality is automatic. If d ≥ 2 and a family S =
{ϕe}e∈E satisfies the conditions (a) and (c), then it also satisfies condition (d) with α = 1.
When d = 2 this is due to the well-known Koebe’s Distortion Theorem (see for example,
[9, Theorem 7.16], [9, Theorem 7.9], or [32, Theorem 7.4.6]). When d ≥ 3 it is due to [47]
depending heavily on Liouville’s representation theorem for conformal mappings; see [34]
for a detailed development of this theorem leading up to the strongest current version, and
also including exhaustive references to the historical background.

For every real number s ≥ 0, let (see [42] and [47])

P(s) := lim
n→+∞

1

n
log

∑
|ω|=n

‖ϕ′ω‖s∞

 ,

where ‖ϕ′‖∞ denotes the supremum norm of the derivative of a conformal map ϕ over its
domain; in our context these domains will be always the sets Xv, v ∈ V . The above limit
always exists because the corresponding sequence is clearly subadditive. The number P(s)
is called the topological pressure of the parameter s. Because of the Bounded Distortion
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Property (i.e., Property (d)), we have also the following characterization of topological
pressure:

P(s) := lim
n→+∞

1

n
log

∑
|ω|=n

|ϕ′ω(zω)|s
 ,

where {zω : ω ∈ E∗A} is an entirely arbitrary set of points such that zω ∈ Xt(ω) for every
ω ∈ E∗A. Let ζ : E∞A → R be defined by the formula

(3.1) ζ(ω) := log |ϕ′ω1
(π(σ(ω))|.

The following proposition is easy to prove; see [47, Proposition 3.1.4] for complete details.

Proposition 3.4. For every real s ≥ 0 the function sζ : E∞A → R is Hölder continuous
and

P(sζ) = P(s).

Definition 3.5. We say that a nonnegative real number s belongs to ΓS if

(3.2)
∑
e∈E

‖ϕ′e‖s∞ < +∞.

Let us record the following immediate observation.

Observation 3.6. A nonnegative real number s belongs to ΓS if and only if the Hölder
continuous potential sζ : E∞A → R is summable.

We recall from [42] and [47] the following definitions:

γS := inf ΓS = inf

{
s ≥ 0 :

∑
e∈E

‖ϕ′e‖s∞ < +∞

}
.

The proofs of the following two statements can be found in [47].

Proposition 3.7. If S is an irreducible conformal GDMS, then for every s ≥ 0 we have
that

ΓS = {s ≥ 0 : P(s) < +∞}
In particular,

γS := inf {s ≥ 0 : P(s) < +∞} .

Theorem 3.8. If S is a finitely irreducible conformal GDMS, then the function ΓS 3 s 7→
P(s) ∈ R is

(1) strictly decreasing,

(2) real-analytic,

(3) convex, and

(4) lims→+∞ P(s) = −∞.
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We denote

Ls := Lsζ
acting either on Cb(E

∞
A ) or on Ha(A). Because of Proposition 3.4 and Observation 3.6, our

Theorem 2.3 applies to all functions sζ : E∞A → R giving the following.

Theorem 3.9. Suppose that the system S is finitely irreducible and s ∈ ΓS . Then

(a) There exists a unique Borel probability eigenmeasure ms of the conjugate Perron-
Frobenius operator L∗s and the corresponding eigenvalue is equal to eP(s).

(b) The eigenmeasure ms is a Gibbs state for sζ.

(c) The function sζ : E∞A → R has a unique σ-invariant Gibbs state µs.

(d) The measure µs is ergodic, equivalent to ms and if ψs = dµs/dms is the Radon–
Nikodym derivative of µs with respect to ms, then logψs is uniformly bounded.

(e) If χµs := −
∫
ζ dµs < +∞, then the σ-invariant Gibbs state µs is the unique equi-

librium state for the potential sζ.

(f) In case the the system S is finitely primitive, the Gibbs state µs is completely ergodic.

(g) The spectral radius of the operator Ls considered as acting either on Cb(E
∞
A ) or

Hα(A) is in both cases equal to eP(s).

(h) In either case of (g) the number eP(s) is a simple (isolated in the case of Hα(A))
eigenvalue of Ls and the Radon–Nikodym derivative ψs ∈ Hα(A) generates its
eigenspace.

(i) The reminder of the spectrum of the operator Ls : Hα(A)→ Hα(A) is contained in a
union of finitely many eigenvalues (different from eP(s)) of modulus eP(s) and a closed
disk centered at 0 with radius strictly smaller than eP(s) (if A is finitely primitive,
then these eigenvalues of modulus smaller than eP(s) disappear). In particular, the
operator Ls : Hα(A)→ Hα(A) is quasi-compact.

Given s ∈ ΓS it immediately follows from this theorem and the definition of Gibbs states
that

(3.3) C−1
s e−P(s)|ω|‖ϕ′ω‖s∞ ≤ ms([ω]) � µs([ω]) ≤ Cse

−P(s)|ω|‖ϕ′ω‖s∞
for all ω ∈ E∗A, where Cs ∈ [1,+∞) is some constant. We put

(3.4) m̃s := ms ◦ π−1
S and µ̃s := µs ◦ π−1

S .

The measure m̃s is characterized (see [47]) by the following two properties:

(3.5) m̃s(ϕe(F )) = e−P(s)

∫
F

|ϕ′e| dm̃s

for every e ∈ E and every Borel set F ⊆ Xt(e), and

(3.6) m̃s

(
ϕa(Xt(a)) ∩ ϕb(Xt(b))

)
= 0
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whenever a, b ∈ E and a 6= b. By a straightforward induction these extend to

(3.7) m̃s(ϕω(F )) = e−P(s)|ω|
∫
F

|ϕ′ω| dm̃s

for every ω ∈ E∗A and every Borel set F ⊆ Xt(ω), and

(3.8) m̃s

(
ϕα(Xt(α)) ∩ ϕβ(Xt(β))

)
= 0

whenever α, β ∈ E∗A and are incomparable.
The following theorem, providing a geometrical interpretation of the parameter δS , has

been proved in [47] ([42] in the case of IFSs).

Theorem 3.10. If S is an finitely irreducible conformal GDMS, then

δ = δS := HD(JS) = inf{s ≥ 0 : P(s) ≤ 0} ≥ γS .

Following [42] and [47] we call the system S regular if there exists s ∈ (0,+∞) such that

P(s) = 0.

Then by Theorems 3.10 and 3.8, such zero is unique and is equal to δS . So,

(3.9) P(δS) = 0.

Formula (3.3) then takes the following form:

(3.10) C−1
δS
‖ϕ′ω‖δS∞ ≤ mδS ([ω]) � µδS ([ω]) ≤ CδS‖ϕ′ω‖δS∞

for all ω ∈ E∗A. The measure m̃δS is then referred to as the δS–conformal measure of the
system S.

Also following [42] and [47], we call the system S strongly regular if there exists s ∈
[0,+∞) (in fact in (γS ,+∞)) such that

0 < P(s) < +∞.
Because of Theorem 3.8 each strongly regular conformal GDMS is regular. Furthermore,
we record the following two immediate observations.

Observation 3.11. If s ∈ Int(ΓS), then χµs < +∞.

Observation 3.12. A finitely irreducible conformal GDMS S is strongly regular if and
only if

γS < δS .

In particular, if the system S is a strongly regular, then δS ∈ Int(ΓS).

These two observations yield the following.

Corollary 3.13. If a finitely irreducible conformal GDMS S is strongly regular, then χµδ <
+∞.

We will also need the following fact, well-known in the case of finite alphabets E, and
proved for all countable alphabets in [47].
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Theorem 3.14. If s ∈ Int(ΓS), then

P′(s) = −χµs .
In particular this formula holds if the system S is strongly regular and s = δS .

We end this section by noting that each finite irreducible system is strongly regular.

4. Complex Ruelle–Perron–Frobenius Operators; Spectrum and
D–Genericity

A key ingredient when analyzing the Poincaré series ηξ(s) and ηp(s), mentioned in the
introduction, is to use complex Ruelle-Perron-Frobenius or transfer operators. These are
closely related to the RPF operators already introduced, except that we now allow the
weighting function to take complex values. More precisely, we extend the definition of
operators Ls, s ∈ ΓS , to the complex half-plane

Γ+
S := {s ∈ C : Res > γS},

in a most natural way; namely, for every s ∈ Γ+
S , we set

(4.1) Ls(g)(ω) =
∑

e∈E:Aeω1=1

|ϕ′e(π(ω))|sg(eω).

Clearly these linear operators Ls act on both Banach spaces Cb(E
∞
A ) and Hα(A), are

bounded, and we have the following.

Observation 4.1. The function

Γ+
S 3 s 7→ Ls ∈ L(Hα(A))

is holomorphic, where L(Hα(A)) is the Banach space of all bounded linear operators on
Ha(A) endowed with the operator norm.

Proposition 4.2. Let S be a finitely irreducible conformal GDMS. Then for every s =
σ + it ∈ Γ+

S

(1) the spectral radius r(Ls) of the operator Ls : Hα(A) → Hα(A) is not larger than
eP(σ) and

(2) the essential spectral radius ress(Ls) of the operator Ls : Hα(A) → Ha(A) is not
larger than e−αeP(σ).

Proof. Assume without loss of generality that E = N. For every ω ∈ E∗A choose arbitrarily
ω̂ ∈ [ω]. Now for every integer n ≥ 1 define the linear operator

En : Hα(A)→ Hα(A)

by the formula

(4.2) En(g) :=
∑
ω∈EnA

g(ω̂)11[ω].
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Equivalently

En(g) = g(ω̂), ω ∈ E∞A .
Of course ||En(g)||α ≤ ||g||α and En is a bounded operator with ||En||α ≤ 1. However, the
series (4.2) is not uniformly convergent, i.e. it is not convergent in the supremum norm
|| · ||∞, thus not in the Hölder norm || · ||α either. For all integers N ≥ 1 and n ≥ 1 denote

En
A(N) := {ω ∈ En

A : ∀j≤n ωj ≤ N}

and

En
A(N+) := {ω ∈ En

A : ∃j≤n ωj > N}.
Let us further write

En,Ng :=
∑

ω∈EnA(N)

g(ω̂)11[ω]

and

E+
n,Ng :=

∑
ω∈EnA(N+)

g(ω̂)11[ω].

Of course En,N : Hα(A) → Ha(A) is a finite–rank operator, thus compact. Therefore, the
composite operator LsEn,N : Hα(A)→ Ha(A) is also compact. We know that

(4.3)
‖Lns − LnsEn,N‖α = ‖(Lns − LnsEn) + Lns (En − En,N)‖α = ‖Lns (I − En) + LnsE+

n,N‖α
≤ ‖Lns (I − En)‖α + ‖LnsE+

n,N‖α.

We will estimate from above each of the last two terms separately. We begin first with the
first of these two terms. In the same way as for real parameters s, which is done in [47],
one proves for all operators Ls : Hα(A)→ Hα(A) the following form of the Ionescu–Tulcea–
Marinescu inequality:

(4.4) ‖Lns g‖α ≤ CeP(σ)n
(
‖g‖∞ + e−αn‖g‖α

)
with some constant C > 0. This establishes item (1) of our theorem. Since a straightforward
calculation shows that ‖g−Eng‖α ≤ 2‖g‖α and ‖g−Eng‖∞ ≤ ‖g|αe−αn , we therefore get
that

‖Lns (I − En)g‖α ≤ CeP(σ)n
(
‖g‖αe−αn + 2e−αn‖g‖α

)
= 3CeP(σ)ne−αn‖g‖α.

Thus,

(4.5) ||Lns (I − En)||α ≤ 3CeP(σ)ne−αn.

Passing to the estimate of the second term, we have

LnsE+
n,Ng(ω) =

∑
τ∈En

A
(N+)

τω∈E∞
A

g(τ̂)|ϕ′τ (π(σ(ω)))|s.
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Therefore,

‖LnsE+
n,Ng‖α ≤

∑
τ∈EnA(N+)

|g(τ̂)|
∥∥∥∣∣ϕ′τ ◦ π ◦ σ∣∣s∥∥∥

α

≤ ‖g‖∞
∑

τ∈EnA(N+)

∥∥∥∣∣ϕ′τ ◦ π ◦ σ∣∣s∥∥∥
α

≤ ‖g‖∞
∑

τ∈EnA(N+)

∥∥∥∣∣ϕ′τ ◦ π ◦ σ∣∣s∥∥∥
α
.

Hence,

(4.6) ‖LnsE+
n,N‖α ≤

∑
τ∈EnA(N+)

∥∥∥∣∣ϕ′τ ◦ π ◦ σ∣∣s∥∥∥
α
.

But ∥∥∥∣∣ϕ′τ ◦ π ◦ σ∣∣s∥∥∥
α
≤ C‖ϕ′τ‖σ∞.

for all τ ∈ E∗A with some constant C > 0. Since the matrix A : E × E → {0, 1} is finitely
irreducible, there exists a finite set Λ∞ ⊆ E∞A such that for every e ∈ E there exists (at
least one) ê ∈ Λ∞ such that eê ∈ E∞A . We further set for every τ ∈ E∗A,

τ̂ := τ̂|τ |.

For every k ∈ E = N let

(4.7) ξk := sup{‖ϕ′n‖∞ : n ≥ k} −→ 0 as k →∞.
Fix an arbitrary ε > 0 so small that σ− ε > γS . By the Bounded Distortion Property and
(4.7), we then have

(4.8)

∑
τ∈EnA(N+)

‖ϕ′τ‖σ∞ ≤ Kσ
∑

τ∈EnA(N+)

|ϕ′τ (π(τ̂))|σ ≤ Kσ
∑
ω∈Λ∞

∑
τ∈En

A
(N+)

τω∈E∞
A

|ϕ′τ (π(ω))|σ

= Kσ
∑
ω∈Λ∞

∑
τ∈En

A
(N+)

τω∈E∞
A

|ϕ′τ (π(ω))|ε|ϕ′τ (π(ω))|σ−ε

≤ KσξεN
∑
ω∈Λ∞

∑
τ∈En

A
(N+)

τω∈E∞
A

|ϕ′τ (π(ω))|σ−ε

≤ Kσ#Λ∞ξ
ε
NLnσ−ε11(ω) ≤ Kσ#Λ∞ξ

ε
N‖Lnσ−ε‖∞

≤ Kσ#Λ∞ξ
ε
N‖Lnσ−ε‖α

≤ CKσ#Λ∞ξ
ε
Ne

P(σ−ε)n,

where the last inequality was written due to (4.4) applied with s = σ − 1 and g = 11.
Inserting this to (4.7) and (4.8), we thus get that

‖LnsE+
n,N‖α ≤ CKσ#Λ∞ξ

ε
Ne

P(σ−ε)n.
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Now, take an integer Nn ≥ 1 so large that ξεN ≤ (Kσ#Λ∞)−1e−αn. Inserting this to the
above display, we get that

‖LnsE+
n,Nn
‖α ≤ CeP(σ−ε)ne−αn.

Along with (4.5), (4.3), and the fact that P(σ) ≤ P(σ − ε), this gives that

‖Lns − LnsEn,Nn‖α ≤ 4CeP(σ−ε)ne−αn.

Therefore,

ress(Ls) ≤ lim
n→∞

‖Lns − Lns ◦ En,Nn‖1/n
α ≤ eP(σ−ε)e−α.

Letting ε → 0 and using continuity of the pressure function Γ+
S 3 t 7→ P(t) ∈ R, we thus

get that

ress(Ls) ≤ e−αeP(σ).

The proof of item (2) is thus complete, and we are done. �

We recall that if λ0 is an isolated point of the spectrum of a bounded linear operator L
acting on a Banach space B, then the Riesz projector Pλ0 : B → B of λ0 (with respect to
L) is defined as

1

2πi

∫
γ

(λI − L)−1dλ

where, γ is any simple closed rectifiable Jordan curve enclosing λ0 and enclosing no other
point of the spectrum of L. We recall that λ0 is called simple if the range Pλ0(B) of the
projector Pλ0 is 1-dimensional. Then λ0 is necessarily an eigenvalue of L. We recall the
following well-known fact.

Theorem 4.3. Let λ0 be an eigenvalue of a bounded linear operator L acting on a Banach
space B. Assume that the Riesz projector Pλ0 of λ0 (and L) is of finite rank. If there exists
a constant C ∈ [0,+∞) such that

‖Ln‖ ≤ C|λ0|n

for all integers n ≥ 0, then (of course) r(L) = |λ0|, and moreover

Pλ0(B) = Ker(λ0I − L).

What we will really need in conjunction with Proposition 4.2 is the following.

Lemma 4.4. If S is a finitely irreducible conformal GDMS and if s = σ + it ∈ Γ+
S , then

every eigenvalue of Ls : Hα(A)→ Hα(A) with modulus equal to eP(σ) is simple.

Proof. Since ‖Lns‖α ≤ 3||Lnσ||α ≤ CeP(σ)n for every n ≥ 0 and some constant C > 0
independent of n, and since the Riesz projector of every eigenvalue of modulus eP(σ) of Ls
is of finite rank (as by Proposition 4.2 such an eigenvalue does not belong to the essential
spectrum of Ls), we conclude from Theorem 4.3 that in order to prove our lemma it suffices
to show that

dim
(
Ker(λI − Ls)

)
= 1
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for any such eigenvalue λ. Consider two operators L̂σ, L̂s : Hα(A) → Hα(A) given by the
formulae

(4.9) L̂σg(ω) := e−P(σ) 1

ψσ(ω)
Lσ(gψσ)(ω)

and

(4.10) L̂sg(ω) := e−P(σ) 1

ψσ(ω)
Ls(gψσ)(ω)

Both these operators are conjugate respectively to the operators e−P(σ)Lσ and e−P(σ)Ls,
r(L̂σ) = 1,

(4.11) L̂σ11 = 11 (so L̂nσ11 = 11 for all n ≥ 0),

and in order to prove our lemma it is enough to show that

dim
(
Ker(λI − L̂s)

)
= 1

for every eigenvalue λ of L̂s with modulus equal to 1. We shall prove the following.

Claim 10: If u ∈ Hα(A), then the sequence(
1

n

n−1∑
j=0

L̂jσu

)∞
n=1

converges uniformly on compact subsets of E∞A to the constant function equal to
∫
E∞A

u dµσ.

Proof. The same proof as that of Theorem 4.3 in [47] asserts that any subsequence of the

sequence
(

1
n

∑n−1
j=0 L̂jσu

)∞
n=1

has a subsequence converging uniformly on compact subsets

of E∞A to a function which is a fixed point of L̂σ. By (4.11) and Corollary 7.5 in [47]

each such function is a constant. Since the operator L̂σ preserves integrals (L̂∗σµσ = µσ)
against Gibbs/equilibrium measure µσ, it follows that all these constants must be equal to∫
E∞A

u dµσ. The proof of Claim 10 is thus complete. �

Now, fix λ ∈ Ker(λI − L̂s) arbitrary and let g 6= 0 ∈ Ker(λI − L̂s) be arbitrary.

Claim 20: The function E∞A 3 ω 7→ |g(ω)| ∈ R is constant.

Proof. For every ω ∈ E∞A and every integer n ≥ 0 we have |g(ω)| = |L̂ns g(ω)| ≤ L̂nσ|g|(ω),
and therefore

|g(ω)| ≤ 1

n

n−1∑
j=0

L̂jσ|g|(ω).

So, invoking Claim 10, we get that

|g(ω)| ≤
∫
E∞A

|g| dµσ.
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Since g is continuous and supp(µσ) = E∞A , this implies that

|g(ω)| =
∫
E∞A

|g| dµσ

for all ω ∈ E∞A . The proof of Claim 20 is thus complete. �

Formulae (4.9)–(4.11) give for every τ ∈ E∞A that

L̂nσg(τ) =
∑
ω∈En

A
Aωnτ1=1

exp
(
Snh(ωτ)

)
g(ωτ)

and

λng(τ) = L̂ns g(τ) =
∑
ω∈En

A
Aωnτ1=1

exp
(
Snh(ωτ)

)
|ϕ′ω(π(τ))|itg(ωτ),

where h : E∞A → (−∞, 0) is some Hölder continuous function resulting from (4.11) and∑
ω∈En

A
Aωnτ1=1

exp
(
Snh(ωτ)

)
= 1.

Since λn = 1, it follows from the last two formulas and Claim 10 that

|ϕ′ω(π(τ))|itg(ωτ) = λng(τ)

for all ω ∈ En
A with Aωnτ1 = 1. Equivalently:

g(ωτ) = λn|ϕ′ω(π(τ))|−itg(τ).

This implies that if g1, g2 are two arbitrary functions in Ker(λI − Ls) such that

g1(τ) = g2(τ),

then g1 coincides with g2 on the set {ωτ : ω ∈ E∗A and Aω|om|τ1 = 1}. But since this set is
dense in E∞A and both g1 and g2 are continuous, it follows that

g1 = g2.

Thus the vector space Ker(λI − Ls) is 1-dimensional and the proof is complete. �

Now we define

E∗p := {ω ∈ E∗A : Aω|ω|ω1 = 1}.
This set will be treated in greater detail in the forthcoming sections and will play an
important role throughout the monograph, primarily in regard to periodic points of GDMSs.

For all t, a ∈ R we denote by Ga(t) and Gi
a(t) the multiplicative subgroups respectively

of positive reals (0,+∞) and of the unit circle S1 := {z ∈ C : |z| = 1} that are respectively
generated by the sets{

e−a|ω||ϕ′ω(xω)|t : ω ∈ E∗p
}
⊆ (0,+∞) and

{
e−ia|ω||ϕ′ω(xω)|it : ω ∈ E∗p

}
⊆ S1,
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where xω is the only fixed point for ϕω : Xi(ω1) → Xi(ω1). The following proposition has
been proved in [68] in the context of finite alphabets E, but the proof carries through
without any change to the case of countable infinite alphabets as well.

Proposition 4.5. Let S = {ϕe}e∈E be a finitely irreducible conformal GDMS. If t ∈ R and
a ∈ R, then the following conditions are equivalent.

(a) Ga(t) is generated by e2πk with some k ∈ N0.

(b) exp(ia+ P(σ)) is an eigenvalue for Lσ+it : Cb(E
N
A)→ Cb(E

N
A) for some σ ∈ ΓS .

(c) exp(ia+ P(σ)) is an eigenvalue for Lσ+it : Hα(A)→ Hα(A) for all σ ∈ ΓS .

(d) There exists u ∈ Cb(E∞A ) (Hα(A)) such that the function

E∞A 3 ω 7→ tζ(ω)− a+ u(ω)− u ◦ σ(ω)

belongs to Cb(E
∞
A , 2πZ) (Hα(E∞A , 2πZ)).

(e) Gi
a(t) = {1}.

As a matter of fact [68] establishes equivalence (in the case of finite alphabet) of conditions
(a)–(d) but the equivalence of (a) and (e) is obvious.

We call a parameter t ∈ R S-generic if the above condition (a) fails for a = 0 and we call it
strongly S–generic if it fails for all a ∈ R. We call the system S D–generic if each parameter
t ∈ R \ {0} is S–generic and we call it strongly D-generic if each parameter t ∈ R \ {0} is
strongly S-generic.

Remark 4.6. We would like to remark that if the GDMS S is D-generic, then no function
tζ : E∞A → R, t ∈ R \ {0}, is cohomologous to a constant. Precisely, there is no function
u ∈ Cb(E∞A ) such that

tζ(ω) + u(ω)− u ◦ σ(ω)

is a constant real-valued function.

The concept of D–genericity will play a pivotal role throughout our whole article. We
start dealing with it by proving the following.

Proposition 4.7. If S is a finitely irreducible strongly D-generic conformal GDMS and if
s = σ + it ∈ Γ+

S with t ∈ R \ {0}, then r(Ls) < eP(σ).

Proof. By Proposition 4.2 the set

σ(Ls) ∩
(
C \B(0, e−α/2eP(σ))

)
is finite and consists only of eigenvalues of Ls. So, by Proposition 4.5,

σ(Ls) ∩
(
C \B(0, e−α/2eP(σ))

)
∩ {λ ∈ C : |λ| = eP(σ)} = ∅.

Therefore, using also Theorem 3.9 (g), we get that

r(Ls) ≤ max
{
e−α/2eP(σ),max

{
|λ| : λ ∈ σ(Ls) ∩

(
C \B(0, e−α/2eP(σ))

)}}
< eP(σ).

The proof is complete. �
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We now shall provide a useful characterization of D-generic and strongly D-generic sys-
tems.

Proposition 4.8. A finitely irreducible conformal GDMS S = {ϕe}e∈E is D–generic if and
only if the additive group generated by the set{

log |ϕ′ω(xω)| : ω ∈ E∗p
}

is not cyclic.

Proof. Suppose first that the system S = {ϕe}e∈E is not D–generic. This means that there
exists t ∈ R \ {0} which is not S-generic. This in turn means that the group G0(t) is
generated by some non-negative integral power of e2π, say by e2qπ, q ∈ N0. And this means
that for every ω ∈ E∗p ,

|ϕ′ω(xω)|t = exp
(
2πqkω

)
with some (unique) kω ∈ Z. But then t log |ϕ′ω(xω)| = 2πqkω or equivalently

log |ϕ′ω(xω)| = 2πq

t
kω.

This implies that the additive group generated by the set{
log |ϕ′ω(xω)| : ω ∈ E∗p

}
⊆ R

is a subgroup of 〈2πq
t
〉, the cyclic group generated by 2πq

t
, and is therefore itself cyclic.

For the converse implication suppose that the additive group generated by the set{
log |ϕ′ω(xω)| : ω ∈ E∗p

}
is cyclic. This means that there exists γ ∈ (0,+∞) such that

log |ϕ′ω(xω)| = 2πγlω

for all ω ∈ E∗p and some lω ∈ −N0. There then exists t ∈ R \ {0} such that tγ ∈ N. But
then

|ϕ′ω(xω)|t = exp
(
(2πtγ)lω

)
,

implying that the multiplicative group generated by the set

{|ϕ′ω(xω)|t : ω ∈ E∗p
}

is a subgroup of < e2πtγ >, the cyclic group generated by e2πtγ, and is therefore itself cyclic.
This means that t ∈ R \ {0} is not S-generic, and this finally means that the system S is
not D-generic. We are done. �

Remark 4.9. The D–genericity assumption is fairly generic. For example, it holds if there

are two values i, j ∈ E (or the weaker condition i, j ∈ E∗A) such that
log |ϕ′i(xi)|
log |ϕ′j(xj)|

is irrational;

where we recall that xi and xj are the unique fixed points, respectively, of ϕi and ϕj.
On the other hand, it is easy to construct specific conformal GDMSs for which it fails.
For example, we can consider maps ϕi(x) = x+1

2i
for i ≥ 1 and than we can deduce that

log |ϕ′i(x)| ∈ (log 2)Z.
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Proposition 4.10. A finitely irreducible conformal GDMS S = {ϕe}e∈E is strongly D–
generic if and only if the additive group generated by the set{

log |ϕ′ω(xω)| − β|ω| : ω ∈ E∗p
}

is not cyclic for any β ∈ R.

Proof. Suppose first that the system S = {ϕe}e∈E is not strongly D–generic. This means
that there exists t ∈ R \ {0} which is not S-generic. This in turn means that for some
a ∈ R the group Ga(t) is generated by some non-negative integral power of e2π, say by e2qπ,
q ∈ N0. And this means that for every ω ∈ E∗p ,

e−a|ω||ϕ′ω(xω)|t = exp
(
2πqkω

)
with some (unique) kω ∈ Z. But then t log |ϕ′ω(xω)| − a|ω| = 2πqkω or equivalently

log |ϕ′ω(xω)| − a

t
|ω| = 2πq

t
kω.

This implies that the additive group generated by the set{
log |ϕ′ω(xω)| − a

t
|ω| : ω ∈ E∗p

}
is a subgroup of < 2πq

t
>, the cyclic groups generated by 2πq

t
, and is therefore itself cyclic.

For the converse implication suppose that the additive group generated by the set{
log |ϕ′ω(xω)| − β|ω| : ω ∈ E∗p

}
is cyclic for some β ∈ R. This means that there exists γ ∈ (0,+∞) such that

log |ϕ′ω(xω)| − β|ω| = 2πγlω

for all ω ∈ E∗p and some lω ∈ Z. There then exists t ∈ R \ {0} such that tγ ∈ N. But then

e−tβ|ω||ϕ′ω(xω)|t = exp
(
(2πtγ)lω

)
,

implying that the multiplicative group generated by the set{
e−tβ|ω||ϕ′ω(xω)|t : ω ∈ E∗p

}
is a subgroup of < e2πtγ >, the cyclic group generated by e2πtγ, and is therefore itself cyclic.
This means that t ∈ R \ {0} is not strongly S-generic, and this finally means that the
system S is not strongly D-generic. We are done. �

5. Asymptotic Results for Multipliers; Statements and First Preparations

In this section we keep the setting of the previous one. In this framework we can formulate
our main asymptotic result, which has the dual virtues of being relatively easy to prove in
this setting and also having many interesting applications, as illustrated in the introduction.
In a later section we will also formulate the general result for C2 multidimensional conformal
contractions, although the basic statements will be exactly the same. We can now define
two natural counting functions in the present context corresponding to “preimages” and
“periodic points” respectively.
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Definition 5.1. We can naturally order the countable family of the compositions of con-
tractions ϕ ∈ E∗A in two different ways. Fix ρ ∈ E∞A arbitrary and set ξ := πS(ρ) ∈ JS .
Let

E∗ρ := {ω ∈ E∗A : ωρ ∈ E∞A },
and, as we have already defined, for all integers n ≥ 1 let

En
ρ := {ω ∈ En

A : ωρ ∈ E∞A }.

We recall from the previous section the set

E∗p = {ω ∈ E∗A : Aω|ω|ω1 = 1},

and for all integers n ≥ 1 we put

En
p := {ω ∈ En

A : Aωnω1 = 1},

i.e., the words ω in E∗A such that the words ω∞ ∈ E∞A , the infinite concatenations of ωs,
are periodic points of the shift map σ : E∞A → E∞A with period n.

(1) Firstly, we can associate the weights

λρ(ω) := − log |ϕ′ω(ξ)| > 0, ω ∈ E∗ρ ,

and

(2) Secondly, we can use the weights

λp(ω) := − log |ϕ′ω(xω)| > 0, ω ∈ E∗p ,

where we recall that xω(= ϕω(xω)) is the unique fixed point for the contraction
ϕω : Xi(ω1) → Xi(ω1); we note that t(ω) = i(ω1).

We can associate appropriate counting functions to each of these weights, defined by

πρ(T ) :=
{
ω ∈ E∗ρ : λρ(ω) ≤ T

}
and πp(T ) :=

{
ω ∈ E∗p : λp(ω) ≤ T

}
,

respectively, and their cardinalities

Nρ(T ) := #πρ(T ) and Np(T ) := #πp(T ),

respectively, for each T > 0, i.e. the number of words ω ∈ E∗i for which the corresponding
weight λi(ω) doesn’t exceed T for i = ρ, p.

The functions πρ(T ) and πp(T ) are clearly both monotone increasing in T .
We first prove the following basic result, showing that the rates of growth of these two
functions are both equal to the Hausdorff Dimension of the limit set JS .

Proposition 5.2. If the (finitely irreducible) conformal GDMS S is strongly regular, then

δS = lim
T→+∞

1

T
logNρ(T ) = lim

T→+∞

1

T
logNp(T ).



ASYMPTOTIC COUNTING IN CONFORMAL DYNAMICAL SYSTEMS 39

Proof. Fix i ∈ {ρ, p}. Write δ := δS . Assume for a contradiction that

lim
T→+∞

1

T
logNi(T ) > δ.

There then exists ε > 0 and an increasing unbounded sequence Tn → +∞ such that

Ni(Tn) ≥ e(δ+ε)Tn .

We recall from the definition of a conformal GDMS that ‖ϕ′e‖∞ ≤ κ ∈ (0, 1) for all e ∈ E,
and then ‖ϕ′ω‖∞ ≤ κ|ω| for all ω ∈ E∗A. Since

(5.1) λi(ω) + log ‖ϕ′ω‖∞ ≥ 0

for all ω ∈ E∗A. we conclude that whenever ω ∈ πi(Tn), i.e. whenever λi(ω) ≤ Tn, then

|ω| ≤ Tn
| log κ|

≤ kn :=

[
Tn
| log κ|

]
+ 1,

where [·] denotes the integer part. Therefore, we can also bound

kn∑
j=1

∑
ω∈EjA

‖ϕ′ω‖δ∞ ≥
∑

ω∈πi(Tn)

‖ϕ′ω‖δ∞ ≥ Ni(Tn)e−δTn ≥ eεTn .

Hence, there exists 1 ≤ jn ≤ kn such that∑
ω∈EjnA

‖ϕ′ω‖δ∞ ≥
1

kn
eεTn .

In particular, limn→∞ jn = +∞. Recalling that each strongly regular system is regular and
invoking (3.9), we finally get

0 = P(δ) = lim
n→+∞

1

jn
log

∑
ω∈EjnA

‖ϕ′ω‖δ∞ ≥ lim
n→+∞

1

jn
log

(
eεTn

kn

)

≥ lim
n→+∞

1

kn
log

(
eεTn

kn

)
= lim

n→+∞

1

kn
(εTn − log kn)

= ε lim
n→+∞

Tn
kn

= ε| log κ| > 0.

This contradiction shows that

(5.2) lim
T→+∞

1

T
logNi(T ) ≤ δ.

For the lower bound recall that

χδ = −
∫
E∞A

log |ϕ′ω1
(π(σ(ω)))| dµδ > 0
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is the Lyapunov exponent of the measure µδ with respect to the shift map σ : E∞A → E∞A .
Since the system S is strongly regular, it follows from Observations 3.12 and 3.11 that χδ
is finite. It then further follows from Theorem 3.9 (e) that hµδ is finite and

hµδ
χδ

= δ.

Recall that along with (5.1) the Bounded Distortion Property, yields

(5.3) 0 ≤ λi(ω) + log ‖ϕ′ω‖∞ ≤ logC

for all ω ∈ E∗A and some constant C > 1. Using this and (3.10) we then get for every ε > 0
and all integers n ≥ 1 large enough that{

ω ∈ En
A : λi(ω) ≤ (χµδ + ε)n

}
=

=

{
ω ∈ En

A : λi(ω) ≤
(

hµδ
δ

+ ε

)
n

}
⊇
{
ω ∈ En

A : −1

δ
log µδ([ω]) ≤

(
hµδ
δ

+ ε

)
n+

logCδ
δ
− logC

}
⊇
{
ω ∈ En

A : −1

δ
log µδ([ω]) ≤

(
hµδ
δ

+ 2ε

)
n

}
=
{
ω ∈ En

A : log µδ([ω]) ≥ −
(
hµδ + 2εδ

)
n
}
.

Having this, it follows from Breiman-McMillan-Shannon Theorem that

#
{
ω ∈ En

A : λi(ω) ≤ (χµδ + ε)n
}
≥ exp

(
(hµδ − 3εδ)n

)
for all integers n ≥ 1 large enough. Since we also obviously have

πi
(
(χµδ + ε)n

)
⊇ {ω ∈ En

A : λi(ω) ≤ (χµδ + ε)n
}
,

we therefore get for every T > 0 large enough,

logNi(T ) = logNi

(
(χµδ + ε)

T

(χµδ + ε)

)
≥ logNi

(
(χµδ + ε)

[
T

(χµδ + ε)

])
≥ (hµδ − 3εδ)

[
T

(χµδ + ε)

]
.

Therefore,

lim
T→+∞

1

T
logNi(T ) ≥ hµδ − 3εδ

χµδ + ε
.

So, letting ε↘ 0 yields

lim
T→+∞

1

T
logNi(T ) ≥ hµδ

χµδ
= δ.

Along with (5.2) this completes the proof. �
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In particular, this proposition gives one more characterization of the value of δ.

One of our main objectives in this monograph is to provide a wide ranging substantial
improvement of Proposition 5.2. This is the asymptotic formula below, formulated at
level of conformal graph directed Markov systems, along with its further strengthenings,
extensions, and generalizations, both for conformal graph directed Markov systems and
beyond. Our first main result is the following.

Theorem 5.3 (Asymptotic Formula). If S is a strongly regular finitely irreducible D-
generic conformal GDMS and ρ ∈ E∞A , then with δ = δS = HD(JS), we have that

lim
T→+∞

Nρ(T )

eδT
=
ψδ(ρ)

δχµδ

and

lim
T→+∞

Np(T )

eδT
=

1

δχµδ
.

The proof of this theorem will be completed as a special case of Theorem 5.8 (which is
proved in Section 7).

Remark 5.4. If the generic D-genericity hypothesis fails, then we may still have an as-
ymptotic formulae, but of a different type, e.g., there exists Ni(T ) ∼ C exp(δa[(log T )/a])
as T → +∞. This is illustrated by the example in Remark 4.9 with a = log 2.

As a preparation for the proof of Theorem 5.3 we now introduce a version of the main
tool that will be used in the sequel. Our strategy, stemming from number theoretical
considerations of distributions of prime numbers, is to use an appropriate complex function
defined in terms of all of the weights λρ(ω) and then to apply a Tauberian Theorem to
convert properties of the function into the required asymptotic formula of Nρ(T ), i.e. the
first formula of Theorem 5.3. The asymptotic formula for Np(T ), i.e. the second formula
of Theorem 5.3 will be derived from the former, i.e. that of Nρ(T ). The basic complex
function in the symbolic context is the following.

Definition 5.5. Given s ∈ C we define the (formal) Poincaré series by:

ηρ(s) :=
∑
ω∈E∗ρ

e−sλρ(ω) =
∞∑
n=1

∑
ω∈Enρ

e−sλρ(ω).

In fact we will need a localized version of this function, which will be introduced and
analyzed in Section 6.

For the present, we observe that since∑
ω∈Enρ

|e−sλρ(ω)| =
∑
ω∈Enρ

e−Re(sλρ(ω)) �
∑
ω∈Enρ

‖ϕ′ω‖Res
∞ ≤

∑
ω∈EnA

‖ϕ′ω‖Res
∞
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and since

lim
n→∞

1

n
log

∑
ω∈Enρ

‖ϕ′ω‖Res
∞

 = P(Res) < 0

whenever Res > δS , we get the following preliminary result.

Observation 5.6. The Poincaré series

ηρ(s) =
∞∑
n=1

∑
ω∈Enρ

e−sλρ(ω)

converges absolutely uniformly on each set {s ∈ C : Res > t}, for t > δS .

For notational convenience to follow we introduce the following set

∆+
S := {s ∈ C : Res > δS}.

As have said, the series ηρ(s) will be our main tool to acquire the asymptotic formula for
the cardinalities of the sets πρ(T ), i.e. of the numbers Nρ(T ). An appropriate knowledge
of the behavior of the series ηρ(s) on the imaginary line Re(s) = δS is required for this end.
Indeed, in fact one needs to know that the function ηρ(s) has a meromorphic extension

to some open neighborhoods of ∆+
S = {s ∈ C : Res ≥ δS} with the only pole at s = δS ,

that this pole is simple and the corresponding residue is to be calculated. This extension of
ηρ(s) functions will come from an understanding of the spectral properties of the associated
complex RPF operators.

With some additional work, we can actually get finer asymptotic results than those of
Theorem 5.3. These count words subject to their weights being less than T and, addi-
tionally, their images being located in some, fairly arbitrarily prescribed, parts of the limit
set.

Definition 5.7. Let ρ ∈ E∞A and let τ ∈ E∗A. Fix any Borel set B ⊂ X. Having T > 0 we
define:

πρ(B, T ) :=
{
ω ∈ E∗ρ : ϕω(πS(ρ)) ∈ B and λρ(ω) ≤ T

}
and

πp(B, T ) :=
{
ω ∈ E∗p : xω ∈ B and λp(ω) ≤ T

}
.

We also define

πρ(τ, T ) :=
{
ω ∈ E∗ρ : λρ(τω) ≤ T

}
and πp(τ, T ) :=

{
ω ∈ E∗p : λp(τω) ≤ T

}
.

The corresponding cardinalities of these sets are denoted by:

Nρ(B, T ) := #πρ(B, T ) and Np(B, T ) = #πp(B, T ),

and

Nρ(τ, T ) := #πρ(τ, T ) and Np(τ, T ) = #πp(τ, T ),
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i.e. the first pair count the number of words ω ∈ E∗i for which the weight λi(ω) does not
exceed T and, additionally, the image ϕω(πS(ρ)) is in B if i = ρ, or the fixed point xω, of
ϕω, is in B if i = p, while the second pair count the number of words ω ∈ E∗i for which the
weight λi(τω) does not exceed T (for i = p, ρ) and an initial block of ω coincides with τ .

The following are refinements of the asymptotic results presented in Theorem 5.3, whose
proof will be completed in Section 7.

Theorem 5.8 (Asymptotic Equidistribution Formula for Multipliers I). Suppose that S is
a strongly regular finitely irreducible D-generic conformal GDMS. Let δ = δS = HD(JS).
Fix ρ ∈ E∞A .

If τ ∈ E∗A then,

(5.4) lim
T→+∞

Nρ(τ, T )

eδT
=
ψδ(ρ)

δχµδ
mδ([τ ]),

and

(5.5) lim
T→+∞

Np(τ, T )

eδT
=

1

δχµδ
µδ([τ ]).

Theorem 5.9 (Asymptotic Equidistribution Formula for Multipliers II). Suppose that S
is a strongly regular finitely irreducible D-generic conformal GDMS. Let δ = δS = HD(JS).
Fix ρ ∈ E∞A .

If B ⊂ X is a Borel set such that m̃δ(∂B) = 0 (equivalently µ̃δ(∂B) = 0) then,

(5.6) lim
T→+∞

Nρ(B, T )

eδT
=
ψδ(ρ)

δχµδ
m̃δ(B)

and

(5.7) lim
T→+∞

Np(B, T )

eδT
=

1

δχµδ
µ̃δ(B).

After establishing the results of the next section (6), we will first prove in Section 7 formula
(5.4). Then, in the same section, we will deduce from it formula (5.5). Finally, still within
Section 7, we will deduce Theorem 5.9 as a consequence of Theorem 5.8. The asymptotic
estimates for Nρ(B, T ) given in this theorem, will turn out to have wider applications
than the basic asymptotic results in Theorem 5.3. This will be apparent, particularly
in Section 8 and Section 12 where we apply these results to deduce asymptotics of the
diameters of circles.

Remark 5.10. Theorem 5.8 is formulated for a countable state symbolic system. In fact
it could be formulated and proved with no real additional difficulty for ergodic sums of
all summable Hölder continuous potentials rather than merely the functions λρ(ω). In the
particular case of a finite state symbolic system this would recover the corresponding results
of Lalley [37].
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6. Complex Localized Poincaré Series ηρ

In order to prove the asymptotic statements of Theorem 5.8 we want to consider a
localized Poincaré series, which in turn generalizes the Poincaré series introduced in the
previous section. Again we denote by ρ ∈ E∞A our reference point and set ξ := πS(ρ) ∈ JS .

Definition 6.1. Given s ∈ C we define the following localized (formal) Poincaré series.
Fixing τ ∈ E∗A and denoting q := |τ |, we formally write

ηρ(τ, s) :=
∑
ω∈E∗ρ

Aτqω1=1

e−sλρ(τω).

We formally expand the series ηρ(τ, s) as follows.

ηρ(τ, s) : =
∑
ω∈E∗ρ

Aτqω1=1

e−sλρ(τω) =
∑
ω∈E∗ρ

Aτqω1=1

|ϕ′τω|s(π(ρ)) =
∑
ω∈E∗ρ

Aτqω1=1

|ϕ′τ |s(π(ωρ))|ϕ′ω|s(π(ρ))

=
∞∑
n=1

∑
ω∈Enρ

Aτqω1=1

|ϕ′τ |s ◦ π(ωρ)|ϕ′ω|s(π(ρ))

=
∞∑
n=1

Lns
(
|ϕ′τ |s ◦ π

)
(ρ).

Defining the operator L(n)
s,τ from Hα(A) to Ha(A) by

Hα(A) 3 g 7−→ L(n)
s,τ g := Lns

(
g · (|ϕ′τ |s ◦ π)

)
∈ Hα(A),

we then formally write

ηρ(τ, s) =
∞∑
n=1

L(n)
s,τ 11(ρ).

The same argument as that leading to Observation 5.6 leads to the following corresponding
result.

Observation 6.2. For every τ ∈ E∗ρ the localized Poincaré series ηρ(τ, s) converges abso-
lutely uniformly on each set

{s ∈ C : Res > t} (⊆ ∆+
S ),

t > δS , thus defining a holomorphic function on ∆+
S .

Our main result about localized Poincaré series, which is crucial to us for obtaining the
asymptotic behavior of Nρ(τ, T ), is the following.

Theorem 6.3. Assume that the finitely irreducible strongly regular conformal GDMS S is
D-generic. If τ ∈ E∗A then
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(a) the function ∆+
S 3 s 7−→ ηρ(τ, s) ∈ C has a meromorphic extension to some neigh-

borhood of the vertical line Re(s) = δS ,

(b) this extension has a single pole s = δS , and

(c) the pole s = δ = δS is simple and its residue is equal to ψδ(ρ)
χµδ

mδ([τ ]).

Proof. By Observation 6.2 and by the Identity Theorem for meromorphic functions, in
order to prove the theorem it suffices to do the following.

(1) Show that for every s0 = δS + it0 ∈ Γ+
S with t0 6= 0 the function ηρ(τ, ·) has a

holomorphic extension to some open neighborhood of s0 in C.

(2) Show that the function ηρ(τ, ·) has a meromorphic extension to some open neigh-
borhood of δS in C with a simple pole at δS .

(3) Calculate the residue of this extension at the point s = δS to show that it is equal

to ψδ(ρ)
χµδ

mδ([τ ]).

We first deal with item (1). Let Λ ⊆ C be the set of all eigenvalues of the operator
Ls0 : Hα(A) → Hα(A) whose moduli are equal to 1. By Proposition 4.2 this set is finite,
and, by Lemma 4.4, it consists of only simple eigenvalues. Write

Λ = {λj}qj=1,

where q := #Λ. Then, invoking Observation 3.6, Observation 4.1, and Proposition 4.2
(along with the fact that P(δS) = 0), we see that the Kato–Rellich Perturbation Theorem
applies and it produces holomorphic functions

U 3 s 7→ λj(s) ∈ C, j = 1, 2, . . . , q

defined on some sufficiently small neighborhood U ⊆ Γ+
S of s0 with the following properties

for all j = 1, 2, . . . , q:

• λj(s0) = λj,

• λj(s) is a simple isolated eigenvalue of the operator Ls : Hα(A)→ Hα(A)

Invoking Proposition 4.2 for the third time, we can further write, perhaps with a smaller
neighborhood U of s0, that

Ls =

q∑
j=1

λj(s)Ps,j + ∆s,

where

• Ps,j : Hα(A)→ Hα(A) are projections onto respective 1-dimensional spaces Ker
(
λj(s)I−

Ls
)
,

• all functions U 3 s 7→ ∆s, Ps,j, j = 1, 2, . . . , q, are holomorphic,

• r(∆s) ≤ e−α/2 for every s ∈ U , and
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• Ps,iPs,j = 0 whenever i 6= j and ∆sPs,j = Ps,j∆s = 0 for all s ∈ U .

In consequence

(6.1) Lns =

q∑
j=1

λnj (s)Ps,j + ∆n
s

for all integers n ≥ 0. Shrinking U again if necessary, we will have that

||∆n
s ||α ≤ Ce−

α
3
n

for all integers n ≥ 0 and some constant C ∈ (0,+∞) independent of n. Since the
system S is D-generic, it follows from Proposition 4.5 that λj(s) 6= 1 for all s ∈ U and all
j = 1, 2, . . . , q. Denoting by S∞(s) the holomorphic function

U 3 s 7−→ ∆∞(s) :=
∞∑
n=1

∆n
s (|ϕ′τ |s ◦ π)(ρ)

and summing equation (6.1) over all n ≥ 1, we obtain

ηρ(τ, s) =
∞∑
n=1

Lns
(
|ϕ′τ |s ◦ π

)
(ρ) =

q∑
j=1

λj(s)(1− λj(s))−1Ps,j
(
|ϕ′τ |s ◦ π

)
(ρ) + ∆∞(s)

for all s ∈ U ∩{s ∈ C : Re(s) > δS}. But (remembering that λj(s) 6= 1) since, all the terms
of the right-hand side of this equation are holomorphic functions from U to C, the formula

U 3 s 7→
q∑
j=1

λj(s)(1− λj(s))−1Ps,j
(
|ϕ′τ |s ◦ π

)
+ ∆∞(s) ∈ C

provides the required holomorphic extension of the function ηρ(τ, s) to a neighborhood of
s0.

Now we shall deal will items (2) and (3). It follows from Theorem 3.9 (h) and (i), and
the Kato–Rellich Perturbation Theorem that

(6.2) Lns = λnsQs + Sns , n ≥ 0,

for all s ∈ U ⊆ Γ+
S , a sufficiently small neighborhood of δ, where

(4) λs is a simple isolated eigenvalues of Ls : Hα(A) → Hα(A) and the function U 3
s 7→ λs ∈ C is holomorphic,

(5) Qs : Hα(A) → Hα(A) is a projector onto the 1-dimensional eigenspace of λs, and
the map U 3 s 7→ Qs ∈ L(Hα(A)) is holomorphic,

(6) ∃κ∈(0,1) ∃C>0 ∀s∈U ∀n≥0

‖Sns ‖α ≤ Cκn,

and the map U 3 s 7→ Ss ∈ L(Hα(A)) is holomorphic, and

(7) All three operators Ls, Qs, and Ss mutually commute and QsSs = 0.
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Let us write
Hτ,s := Qs

(
|ϕ′τ |s ◦ π

)
.

It follows from (5) that the function U 3 s 7→ Hτ,s ∈ Hα(A) is holomorphic, whence the
function valued map U 3 s 7→ Hs(ρ) ∈ C is holomorphic too. It follows from (6) that the
series

S∞(s) :=
∞∑
n=1

Sns

converges absolutely uniformly to a holomorphic function, whence the function U 3 s 7→
Σ∞(s) ∈ Hα(A) is holomorphic too. Since, by Theorem 3.8, the function s 7→ λs is not
constant on any neighborhood of δ, it follows from (4) that shrinking U if necessary, we
will have that

λs 6= 1

for all s ∈ U \ {δ}. It follows from Theorem 3.8, the definition of δ, and Proposition 4.2
(1) that

|λs| < 1

for all s ∈ U ∩ {s ∈ C : Re(s) > δS}. It therefore follows from (6.2) that

ηρ(s) = λs(1− λs)−1Hτ,s(ρ) + S∞(s)

for all s ∈ U ∩ {s ∈ C : Re(s) > δS}, and consequently, the map

(6.3) U 3 s 7→ λs(1− λs)−1Hτ,s(ρ) + S∞(s)

is a meromorphic extension of ηρ(τ, ·) to U . We keep the same symbol ηρ(τ, s) for this
extension. Now, using Theorem 3.14, we get

lim
s↘δ

s− δ
1− λs

= −
(

lim
s↘δ

λs − 1

s− δ

)−1

= −
(

lim
s↘δ

λs − λδ
s− δ

)−1

= −
(
λ′δ
)−1

= −
(
d

ds

∣∣∣
s=δ
eP(s)

)−1

= −
(
P′(δ)eP(δ)

)−1
= −(P′(δ))−1

=
1

χµδ
.

Since λδ = 1 and

Hδ,τ (ρ) = Qδ

(
|ϕ′τ |δ ◦ π

)
(ρ) =

(∫
E∞A

|ϕ′τ |δ ◦ π dmδ

)
ψδ(ρ) = ψδ(ρ)mδ([τ ]),

we therefore conclude that

resδ
(
ηρ(τ, ·)

)
=
ψδ(ρ)

χµδ
mδ([τ ]).

The proof is thus complete. �

We can take τ to be the neutral (empty) word and deduce the corresponding results for
the original Poincaré series
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Corollary 6.4. Assume that the finitely irreducible strongly regular conformal GDMS S is
D-generic. Then

(a) the function ηρ(s) has a meromorphic extension to some neighborhood of the vertical
line Re(s) = δS ,

(b) this extension has a single pole s = δS = HD(JS), and

(c) the pole s = δ = δS is simple and its residue is equal to ψδ(ρ)
χµδ

.

7. Asymptotic Results for Multipliers; Concluding of Proofs

We are now in position to complete the proof of Theorem 5.8 and then, as its consequence,
of Theorem 5.9. We aim to apply the Ikehara-Wiener Tauberian Theorem [93], which is a
familiar ingredient in the classical analytic proof of the Prime Number Theorem in Number
Theory.

Theorem 7.1 (Ikehara-Wiener Tauberian Theorem, [93]). Let M and θ be positive real
numbers. Assume that α : [M,+∞) → (0,+∞) is monotone increasing and continuous
from the left, and also that there exists a (real) number D > 0 such that the function

s 7−→
∫ +∞

M

x−sdα(x)− D

s− θ
∈ C

is analytic in a neighborhood of Re(s) ≥ θ. Then

lim
x→+∞

α(x)

xθ
=
D

θ
.

We can now apply this general result in the present setting to prove the asymptotic equidis-
tribution results. We begin with the proof of formula (5.4) in Theorem 5.8.

Proof of formula (5.4) in Theorem 5.8. Let τ ∈ E∗A be an arbitrary. We define the function
Mρ(τ, ·) : [1,+∞)→ N0 by the formula

Mρ(τ, T ) := Nρ(τ, log T ) = {τω ∈ E∗ρ : |ϕ′τω(ξ)|−1 ≤ T}.
We then have for every s > δ that

ηρ(τ, s) =

∫ ∞
1

T−sdMρ(τ, T ).

Now Theorem 6.3 tells us that Theorem 7.1 applies with the function α being equal to
Mρ(τ, ·) and with θ := δS , to give

lim
T→+∞

Mρ(τ, T )

T δ
=
ψδ(ρ)

δχµδ
mδ([τ ]).

Consequently

(7.1) lim
T→+∞

Nρ(τ, T )

eδT
= lim

T→+∞

Mρ(τ, e
T )

eδT
=
ψδ(ρ)

δχµδ
mδ([τ ]).

This means that (5.4) is proved. �
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Now we move onto the proof of (5.5). However the first step to do this is of quite
general character and will be also used in Section 8. We therefore present it as a separate
independent procedure. Fix an integer q ≥ 0. Let H ⊆ E∞A be a set representable as a
(disjoint) union of cylinders of length q. Let

Rq,H,ρ(T ) :=
{
ω ∈ πρ(T ) : |ω| > q and ω||ω||ω|−q+1 ∈ H

}
and the corresponding counting numbers

Rq,H,ρ(T ) := #Rq,H,ρ(T ).

We shall prove the following.

Lemma 7.2. If q ≥ 0 is an integer and H ⊆ E∞A is a (disjoint) union of cylinders of length
q, then the limit below exists and

(7.2) lim
T→∞

Rq,H,ρ(T )

eδT
≤ K2δ(δχµδ)

−1mδ(H).

Proof. As in the proof of formula (5.4) in Theorem 5.8, the Poincaré series corresponding
to the counting scheme #Rq,H,ρ(T ) is the function η̂H,ρ(s), where for any γ ∈ E∞A ,

η̂H,γ(s) :=
∑

ω∈E∗γ, |ω|≥q+1

ω||ω||ω|−q+1
∈H

|ϕ′ω(πS(γ))|s =
∞∑

n=q+1

∑
ω∈Enγ

ω|nn−q+1∈H

|ϕ′ω(πS(γ))|s

=
∞∑

n=q+1

∑
ω∈Enγ

σn−q(ωγ)∈H

|ϕ′ω(πS(γ))|s =
∞∑

n=q+1

∑
ω∈Enγ

ωγ∈σ−(n−q)(H

|ϕ′ω(πS(γ))|s

=
∞∑

n=q+1

∑
ω∈Enγ

11H ◦ σn−q(ωγ) · |ϕ′ω(πS(γ))|s

=
∞∑

n=q+1

Lns
(
11H ◦ σn−q

)
(γ) =

∞∑
n=q+1

Lqs
(
Ln−qs

(
11H ◦ σn−q

))
(γ)

=
∞∑

n=q+1

Lqs
(
11[F cq,ρ]Ln−qs 11

)
(γ) = Lqs

(
11H

∞∑
n=q+1

Ln−qs 11

)
(γ).

Now, the same reasoning as in the proof of Theorem 6.3 shows that the function

s 7−→ ηq(s) :=
∞∑

n=q+1

Ln−qs 11(γ)

has a meromorphic extension, denoted by the same symbol ηq(s), to some neighborhood,
call it G, of the vertical line Re(s) = δS with only pole at s = δS . This is again a simple
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pole with residue equal to χµδψδ(γ). Since the operators Lqs are locally uniformly bounded
at all points of G, the function

s 7−→ Lqs

(
11H

∞∑
n=q+1

Ln−qs 11

)
(γ)

has holomorphic extension, which we will still call η̂H,γ(s), to G \ {δ}. In addition

lim
s→δ

(δ − s)η̂H,γ(s) = Lqδ
(

11H lim
s→δ

(δ − s)ηq(s)
)

(g) = Lqδ
(
11Hχ

−1
µδ
ψδ
)

(γ)

= χ−1
µδ
Lqδ (11Hψδ) (γ) ≤ χ−1

µδ
‖ψδ‖∞Lqδ (11H) (γ)

≤ Kδχ−1
µδ
Lqδ (11H) (γ)

≤ K2δχ−1
µδ
mδ(H).

Therefore, we can apply the Ikehara-Wiener Tauberian Theorem (Theorem 7.1) in exactly
the same way as in the proof of (5.4), to conclude that

lim
T→∞

Rq,H,ρ(T )

eδT
=

resδ(η̂q,H,ρ)

δ
≤ K2δ(δχµδ)

−1mδ(H).

The proof is complete. �

Proof of formula (5.5) in Theorem 5.8. For every γ ∈ E∗A fix exactly one γ+ ∈ E∞A such
that

γγ+ ∈ E∞A .

Observe that for every integer q ≥ 1, every γ ∈ Eq
A, and every ω ∈ E∗A such that γω ∈ E∗p ,

we have

(7.3) K−1
q |ϕ′γω(π(γγ+))| ≤ |ϕ′γω(xγω)| ≤ Kq|ϕ′γω(π(γγ+))|.

It then follows from (7.3) that

(7.4) πp(γ, T ) ⊆ πγγ+(γ, T + logKq)

and

(7.5) πγγ+(γ, T ) ⊆ πp(γ, T + logKq).

Let

k := |τ |.
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Using (7.5) and applying formula (5.4) of Theorem 5.9, we obtain that

lim
T→∞

Np(τ, T )

eδT
≥ lim

T→∞

∑
γ∈Eq

A

τγ∈Eq+k
A

Nτγ(τγ)+

(
τγ, T − logKq+k

)
exp

(
δ(T − logKq+k)

) K−δq+k

≥ K−δq+k
∑
γ∈Eq

A

τγ∈Eq+k
A

lim
T→∞

Nτγ(τγ)+

(
τγ, T − logKq+k

)
exp

(
δ(T − logKq+k)

)
= K−δq+k

1

δχδ

∑
γ∈Eq

A

τγ∈Eq+k
A

ψδ(τγ(τγ)+)mδ([τγ])

≥ K−2δ
q+k

1

δχδ

∑
γ∈Eq

A

τγ∈Eq+k
A

µδ([τγ])

= K−2δ
q+k

1

δχδ
µδ([τ ]).

Therefore, taking the limit with q →∞, we obtain

(7.6) lim
T→∞

Np(τ, T )

eδT
≥ 1

δχδ
µδ([τ ]).

Passing to the proof of the upper bound of the limit supremum, we split Eq
A, in a way that

will be specified later, into two disjoint sets Fq and its complement F c
q := Eq

A \ Fq (each of
which naturally consists of words of length q) with Fq being finite. In particular,

Eq
A = Fq ∪ F c

q .

So far we have not imposed any additional hypotheses on the sets Fq and F c
q . This will be

done later in the course of the proof. We set

Rq,ρ(T ) := Rq,F cq (T )

and

Rq,ρ(T ) := #Rq,ρ(T ),
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and note that because of (7.4), we have

πp(τ, T ) =
⋃
γ∈Fq
γτ∈E∗

A

πτγ(τγ)+

(
τγ, T + logKq+k

)
∪
⋃
γ∈Fcq
γτ∈E∗

A

πτγ(τγ)+

(
τγ, T + logKq+k

)
⊆

⋃
γ∈Fq
γτ∈E∗

A

πτγ(τγ)+

(
τγ, T + logKq+k

)
∪
⋃
γ∈F cq

πττ+

(
γ, T + logKq+k + logK

)
=

⋃
γ∈Fq
γτ∈E∗

A

πτγ(τγ)+

(
τγ, T + logKq+k

)
∪Rq,ττ+(T + logKq+k + logK).

Therefore, using finiteness of the set Fq, Theorem 5.9, and (7.2), we further obtain

lim
T→∞

Np(τ, T )

eδT
≤
∑
γ∈Fq
γτ∈E∗

A

Nτγ(τγ)+

(
τγ, T + logKq+k

)
exp

(
δ(T + logKq+k)

) Kδ
q+k + lim

T→∞

Rq,ττ+(T + logKq+k + logK)

eδT

≤ Kδ
q+k

1

δχδ

∑
γ∈Fq
γτ∈E∗

A

ψδ(τγ(τγ)+)mδ([τγ]) +K3δKδ
q+k

1

δχδ
mδ

(
[F c
q ]
)

≤ K2δ
q+k

1

δχδ

∑
γ∈Eq

A

τγ∈Eq+k
A

µδ([τγ]) +K3δKδ
q+k

1

δχδ
mδ

(
[F c
q ]
)

≤ K2δ
q+k

1

δχδ
µδ([τ ]) +K3δKδ

q+k

1

δχδ
mδ

(
[F c
q ]
)
.

Hence, taking finite sets Fq,ρ with mδ

(
[Fq,ρ]

)
converging to one, so that mδ

(
[F c
q,ρ]
)

converges
to zero, we obtain

lim
T→∞

Np(τ, T )

eδT
≤ K2δ

q+k

1

δχδ
µδ([τ ]).

Therefore, taking the limit with q →∞, we obtain

lim
T→∞

Np(τ, T )

eδT
≤ 1

δχδ
([τ ]).

Along with (7.6) this yields

(7.7) lim
T→∞

Np(τ, T )

eδT
=

1

δχδ
µδ([τ ]).

The proof of formula (5.5) in Theorem 5.8 is thus complete. This simultaneously finishes
the proof of all of Theorem 5.8 �
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Proof of Theorem 5.9. The same proof, as a consequence of Theorem 5.8 goes through for
i = ρ and i = p. We therefore denote

Ci :=

{
1
δχδ
ψδ(ρ) if i = ρ

1
δχδ

if i = p,

νi :=

{
mδ if i = ρ

µd if i = p
and ν̃i :=

{
m̃δ if i = ρ

µ̃δ if i = p.

We shall first prove both formulae (5.6) and (5.7) for all sets B that are open. To emphasize
this, let us denote an arbitrary open subset of X by V . We assume that ν̃i(∂V ) = 0. Then
for every s ∈ (0, 1) there exists a finite set Γs(V ) consisting of mutually incomparable
elements of E∗A such that

⋃
τ∈Γs(V )

ϕτ
(
Xt(τ)

)
⊆ V and νi

 ⋃
τ∈Γs(V )

[τ ]

 = ν̃i

 ⋃
τ∈Γs(V )

ϕτ
(
Xt(τ)

) ≥ sν̃i(V )

where the “=” sign in this formula is due to (3.8). So, for both i = ρ, p, using (7.1), we get
that

lim
T→+∞

Ni(V, T )

eδT
≥

∑
τ∈Γκ(V )

lim
T→+∞

Ni(τ, T )

eδT
=

∑
τ∈Γκ(V )

Ciνi([τ ])

= Ciνi

 ⋃
τ∈Γκ(V )

[τ ]


≥ sCiν̃i(V ).

Letting s↗ 1, we thus obtain

(7.8) lim
T→+∞

Ni(V, T )

eδT
≥ Ciν̃i(V ).

Therefore, we also have

(7.9) lim
T→+∞

Ni(V
c
, T )

eδT
≥ Ciν̃i(V

c
).

But since νi(∂V ) = 0, we have νi(V ) + νi(V
c
) = 1, whence

(7.10) lim
T→+∞

Ni(V
c
, T )

eδT
≥ Ci(1− ν̃i(V )).
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Therefore, using (7.1) and (7.7), both with τ replaced by EN
A, we get

(7.11)

Ci = lim
T→+∞

Ni(T )

eδT
≥ lim

T→+∞

Ni(V, T ) +Ni(V
c
, T )

eδT

≥ lim
T→+∞

Ni(V, T )

eδT
+ lim

T→+∞

Ni(V
c
, T )

eδT

≥ lim
T→+∞

Ni(V, T )

eδT
+ Ci

(
1− ν̃i(V )

)
.

Thus,

lim
T→+∞

Ni(V, T )

eδT
≤ Ciν̃i(V ).

Along with (7.8) this implies

(7.12) lim
T→+∞

Ni(V, T )

eδT
= Ciν̃i(V ).

Finally, let B be an arbitrary Borel subset of X such that ν̃i(∂B) = 0. Then B = B ∪ ∂B
and

ν̃i(B) = ν̃i(B).

Since the measure νi is outer regular, given ε > 0 there exists an open set G ⊆ X such that
B ⊆ G and

(7.13) ν̃i(G) ≤ ν̃i(B) + ε.

Now, for every x ∈ B there exists an open set Vx ⊆ G, in fact an open ball centered at x,
such that x ∈ Vx and

ν̃i(∂Vx) = 0.

In particular, {Vx}x∈B is a open cover of B. Since B is compact, there thus exists a finite

set F ⊆ B such that

B ⊆ V :=
⋃
x∈F

Vx ⊆ G.

Since F is finite, ∂V ⊆
⋃
x∈F ∂Vx, whence νi(∂V ) = 0. Therefore, (7.12) applies to V to

give

lim
T→+∞

Ni(B, T )

eδT
≤ lim

T→+∞

Ni(B, T )

eδT
≤ lim

T→+∞

Ni(V, T )

eδT
= Ciν̃i(V )

≤ Ciν̃i(G)

≤ Ci(ν̃i(B) + ε).

Letting ε↘ 0, we therefore get

(7.14) lim
T→+∞

Ni(B, T )

eδT
≤ Ciν̃i(B).
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Now, we can finish the argument in the same way as in the case of open sets. Since
∂Bc = ∂B, we have mδ(∂B

c) = 0. In particular, (7.14) also yields

lim
T→+∞

Ni(B
c, T )

eδT
≤ Ciν̃i(B

c) = Ci(1− ν̃i(B)).

Therefore, using Theorem 5.3 we can write

Ci = lim
T→+∞

Ni(T )

eδT
= lim

T→+∞

Ni(B, T ) +Ni(B
c, T )

eδT

≤ lim
T→+∞

Ni(B, T )

eδT
+ lim

T→+∞

Ni(B
c, T )

eδT

≤ lim
T→+∞

Ni(B, T )

eδT
+ Ci

(
1− ν̃i(B)

)
.

Thus,

lim
T→+∞

Ni(B, T )

eδT
≥ Ciν̃i(B).

Along with (7.14) this gives

lim
T→+∞

Ni(B, T )

eδT
= Ciν̃i(B),

and the proof of the theorem is complete. �

8. Asymptotic Results for Diameters

In this section we obtain asymptotic counting properties corresponding to the functions

− log diam
(
ϕω(Xt(ω)

)
, ω ∈ E∗A.

These are relatively simple consequences of Theorem 5.9, but not quite so simple as one
would expect. The subtle difficulty is due to the fact that the functions Ni(B, T ), i = ρ, p
are very sensitive to additive changes. In fact it follows from Theorem 5.9 that for every
u > 0,

lim
T→∞

Ni(B, T + u)

Ni(B, T )
= eδu > 0.

In fact we will do something more general, namely for every v ∈ V we fix an arbitrary
set Yv ⊆ Xv, having at least two points, and we look at asymptotic counting properties
corresponding to the functions

− log diam
(
ϕω(Yt(ω)

)
), ω ∈ E∗A.

Such a generalization is interesting in its own right, but will turn out to be particularly
useful when dealing with asymptotic counting properties for diameters in the context of
parabolic GDMSs, see Section 12.

So, again S is a finitely irreducible conformal GDMS, we fix ρ ∈ E∞A and put ξ = πS(ρ).
We furthermore fix

Y ⊆ Xi(ρ1).
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We denote
∆(ω) = ∆Y (ω) := − log diam

(
ϕω(Y )

)
, ω ∈ E∗ρ ,

with the natural convention that for ω = ε, being the empty (neutral) word:

∆Y (ε) = − log diam(Y ),

and further, for any B ⊆ X and T > 0,

DρY (B, T ) := Dρ(B, T ) := {ω ∈ E∗ρ : ∆Y (ω) ≤ T and ϕω(ξ) ∈ B},

Dρ
Y (B, T ) := #DρY (B, T ).

The main result of this section is the following.

Theorem 8.1. Suppose that S is a strongly regular finitely irreducible conformal D-generic
GDMS. Let δ = δS = HD(JS). Fix ρ ∈ E∞A and Y ⊆ Xi(ρ) having at least two points.

If B ⊂ X is a Borel set such that m̃δ(∂B) = 0 (equivalently µ̃δ(∂B) = 0) then,

(8.1) lim
T→+∞

Dρ
Y (B, T )

eδT
= Cρ(Y )m̃δ(B),

where Cρ(Y ) ∈ (0,+∞) is a constant depending only on the system S, the word ρ (but see
Remark 8.5), and the set Y . In addition

(8.2) K−2δ(δχδ)
−1diamδ(Y ) ≤ Cρ(Y ) ≤ K2δ(δχδ)

−1diamδ(Y ).

We first shall prove the following auxiliary result. It is trivial in the case of finite alphabet
E but requires an argument in the infinite case.

Lemma 8.2. With the hypotheses of Theorem 8.1, for every integer q ≥ 1 let

π
(q)
i (B, T ) := πi(B, T ) ∩ Eq

A, i = ρ, p,

and
N

(q)
i (B, T ) := #π

(q)
i (B, T ).

Then

lim
T→∞

N
(q)
i (B, T )

eδT
= 0.

Proof. Since N
(q)
i (B, T ) ≤ N

(q)
i (T ) := N

(q)
i (X,T ), it suffices to prove that

lim
T→∞

N
(q)
i (T )

eδT
= 0.

By considering the iterate Sq of S it is further evident that it suffices to show that

lim
T→∞

N
(1)
i (T )

eδT
= 0.

To see this consider the Poincaré series

s 7−→ η(1)
ρ (s) := Ls11(ρ),
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notice that it is holomorphic throughout {s ∈ C : Re(s) > γS} ⊇ ∆+
S , and conclude the

proof with the help of the Ikehara-Wiener Tauberian Theorem (Theorem 7.1), in the same
way as in the proof of Theorem 5.3. �

Denote also

D(ρ,q)(B, T ) := Dρ(B, T ) ∩ Eq
ρ = Dρ(B, T ) ∩ Eq

A.

By (BDP)

N
(ρ,q)
i (B, T − logK) ≤ D(ρ,q)(B, T ) ≤ N

(ρ,q)
i (B, T + logK).

Therefore, as an immediate consequence of Lemma 8.2, we get the following.

Corollary 8.3. With the hypotheses of Theorem 8.1, for every integer q ≥ 1, we have

lim
T→∞

D(ρ,q)(B, T )

eδT
= 0.

Now we can turn to the actual proof of Theorem 8.1.

Proof of Theorem 8.1. Fix an integer q ≥ 0 and define:

Kq := sup

{
|ϕ′ω(y)|
|ϕ′ω(x)|

: τ ∈ Eq
A, x, y ∈ Conv

(
ϕτ (Xt(τ))), ω ∈ E∗τ

}
≥ 1,

where Conv(F ) is the convex hull of a set F ⊆ Rd. In particular K0 = K, the distortion
constant of the system S. (BDP) yields

(8.3) lim
q→∞

Kq = 1.

(BDP) again, along with the Mean Value Theorem, imply that for all τ ∈ E∗ρ and all
ω ∈ E∗τ , we have that

diam
(
ϕωτ (Y )

)
= diam

(
ϕω
(
ϕτ (Y )

))
≤ Kq|ϕ′ω(ϕτ (ξ))|diam(ϕτ (Y ))

and

diam
(
ϕωτ (Y )

)
≥ K−1

q |ϕ′ω(ϕτ (ξ))|diam(ϕτ (Y )).

Equivalently

(8.4) λτρ(ω) + ∆Y (τ)− logKq ≤ ∆Y (ωτ) ≤ λτρ(ω) + ∆Y (τ) + logKq.

Denote

Dρτ (B, T ) := {ω ∈ E∗τ : ωτ ∈ Dρ(B, T )}
and

Dρ
τ (B, T ) := #Dρτ (B, T ).

Formula (8.4) then gives

(8.5) πτρ(B, T ) ⊆ Dρτ (B, T + ∆Y (τ) + logKq)

and

(8.6) Dρτ (B, T ) ⊆ πτρ(B, T −∆Y (τ) + logKq).
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The former equation is equivalent to

Dρτ (B, T ) ⊇ πτρ(B, T −∆Y (τ)− logKq).

This formula and (8.6) yield

(8.7) Nτρ

(
B, T −∆Y (τ)− logKq

)
≤ Dρ

τ (B, T ) ≤ Nτρ

(
B, T −∆Y (τ) + logKq

)
.

since

(8.8) Dρ(B, T ) =
⋃
τ∈Eqρ

Dρτ (B, T )τ ∪
q⋃
j=0

D(ρ,j)(B, T )

and since all the terms in this union are mutually disjoint, formula (8.8) yields

Dρ(B, T ) ≥
∑
τ∈Eqρ

Dρ
τ (B, T ).

By inserting it into formula (8.7), we get

Dρ(B, T ) ≥
∑
τ∈Eqρ

Nτρ

(
B, T −∆Y (τ)− logKq

)
.

Therefore,

Dρ(B, T )

eδT
≥
∑
τ∈Eqρ

Nτρ

(
B, T −∆Y (τ)− logKq

)
exp

(
δ(T −∆Y (τ)− logKq)

) · exp
(
δ(T −∆Y (τ)− logKq)

)
eδT

=
∑
τ∈Eqρ

Nτρ

(
B, T −∆Y (τ)− logKq

)
exp

(
δ(T −∆Y (τ)− logKq)

)K−δq e−δ∆Y (τ)

= K−δq
∑
τ∈Eqρ

Nτρ

(
B, T −∆Y (τ)− logKq

)
exp

(
δ(T −∆Y (τ)− logKq)

)e−δ∆Y (τ).

Hence, applying Theorem 5.9, we get

(8.9)

lim
T→∞

Dρ(B, T )

eδT
≥ K−δq

∑
τ∈Eqρ

e−δ∆Y (τ) lim
T→∞

Nτρ

(
B, T −∆Y (τ)− logKq

)
exp

(
δ(T −∆Y (τ)− logKq)

)
≥ K−δq

∑
τ∈Eqρ

e−δ∆Y (τ)(χδδ)
−1ψδ(τρ)mδ(B)

= (χδδ)
−1mδ(B)K−δq

∑
τ∈Eqρ

e−δ∆Y (τ)ψδ(τρ).

This is a good enough lower bound for us but getting a sufficiently good upper bound is
more subtle. As in the proof of formula (5.5) in Theorem 5.8, we split Eq

A, at the moment
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arbitrarily, into two disjoint sets Fq and its complement F c
q := Eq

A \ Fq (each of which
naturally consists of words of length q) with Fq being finite. In particular,

Eq
A = Fq ∪ F c

q .

So far we do not require anything more from the sets Fq and F c
q . We will make specific

choices later in the course of the proof. We are now primarily interested in the sets

Rq,ρ(T ) := Rq,[F cq ],ρ(T ) =
{
ω ∈ πρ(T ) : |ω| > q and ω||ω||ω|−q+1 ∈ F

c
q,ρ

}
and the corresponding counting numbers

Rq,ρ(T ) := #Rq,ρ(T ).

We are interested in estimating from above, the upper limit

lim
T→∞

Dρ
Y (B, T )

eδT
.

First of all, Lemma 7.2 yields

(8.10) lim
T→∞

Rq,ρ(T )

eδT
≤ K2δδ−1χµδmδ

(
[F c
q ]
)
.

Denote now

R∗q,ρ(T ) :=
{
ω ∈ Dρ(T ) : |ω| > q and ω||ω||ω|−q+1 ∈ F

c
q

}
and the corresponding counting numbers

R∗q,ρ(T ) := #R∗q,ρ(T ).

It follows from (8.4), applied with τ being empty (neutral) word, that

R∗q,ρ(T ) ⊆ Rq,ρ

(
T + log ∆Y (ε) + logK

)
.

Along with (7.2) this yields

lim
T→∞

R∗q,ρ(T )

eδT
≤ K3δδ−1χµδmδ∆Y (ε)

(
[F c
q ]
)
.

Now we write ⋃
τ∈Eqρ

Dρτ (B, T )τ =
⋃

τ∈Fq∩Eqρ

Dρτ (B, T )τ ∪R∗q,ρ(T ).

Together with (8.8) and (8.7) this yields

Dρ
Y (B, T ) ≤

∑
τ∈Fq,ρ∩Eqρ

Dρ
τ (B, T )τ +R∗q,ρ(T ) +

q∑
j=0

D(ρ,j)(B, T )

≤
∑

τ∈Fq,ρ∩Eqρ

Nτρ(B, T −∆Y (τ) + logKq) +R∗q,ρ(T ) +

q∑
j=0

D(ρ,j)(B, T ).
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Hence, invoking also Corollary‘8.3 and finiteness of the set Fq,ρ, we get
(8.11)

lim
T→∞

Dρ
Y (B, T )

eδT
≤ Kδ

q

∑
τ∈Fq,ρ∩Eqρ

e−∆Y (τ) lim
T→∞

Nτρ(B, T −∆Y (τ) + logKq)

exp
(
δ(T −∆Y (τ) + logKq)

) + lim
T→∞

R∗q,ρ(T )

eδT

≤ (χδδ)
−1mδ(B)Kδ

q

∑
τ∈Eqρ

e−δ∆Y (τ)ψδ(τρ) +K3δ(δχδ)
−1∆Y (ε)mδ

(
[Fq]
)
.

Hence, taking finite sets Fq,ρ with mδ

(
[Fq,ρ]

)
converging to one, with mδ

(
[F c
q,ρ]
)

converging
to zero, we obtain

(8.12) lim
T→∞

Dρ
Y (B, T )

eδT
≤ Kδ

q (χδδ)
−1mδ(B)

∑
τ∈Eqρ

e−δ∆Y (τ)ψδ(τρ).

Since

ψδ(ρ) = Lqδψδ(ρ) �
∑
τ∈Eqρ

e−δ∆Y (τ)ψδ(τρ) � Lqδψδ(ρ) = ψδ(ρ),

we conclude from (8.9) and (8.12) that both limT→∞
DρY (B,T )

eδT
and limT→∞

DρY (B,T )

eδT
are finite

and positive numbers. Furthermore, we conclude from these same two formulae that for
every q ≥ 1,

1 ≤
limT→∞

DρY (B,T )

eδT

limT→∞
DρY (B,T )

eδT

≤ K2δ
q .

Formula (8.3) then yields that the limit limT→∞
DρY (B,T )

eδT
exists and is finite and positive.

Invoking (8.9) and (8.12) again along with (8.3), we thus deduce the limit

lim
q→∞

∑
τ∈Eqρ

e−δ∆Y (τ)ψδ(τρ)

also exists, is finite and positive. Denoting this limit by C ′S , we thus conclude that

lim
T→∞

Dρ
Y (B, T )

eδT
=

1

δχδ
C ′Smδ(B),

and so, in order to complete the proof of Theorem 8.1, we only need to estimate C ′S . Indeed,∑
τ∈Eqρ

e−δ∆Y (τ)ψδ(τρ) =
∑
τ∈Eqρ

diamδ
(
ϕτ (Y )

)
ψδ(τρ) ≤

∑
τ∈Eqρ

‖ϕ′τ‖δ∞diamδ(Y )ψδ(τρ)

≤ Kδdiamδ(Y )
∑
τ∈Eqρ

|ϕ′τ (πS(ρ))|δψδ(τρ)

= Kδψδ(ρ)diamδ(Y )

≤ K2δdiamδ(Y ),
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and similarly, ∑
τ∈Eqρ

e−δ∆Y (τ)ψδ(τρ) ≥ K−2δdiamδ(Y ).

The proof is complete. �

We can now consider a slightly different approach to counting diameters. Still keeping
ρ ∈ E∞A , Y ⊆ Xi(ρ1), a set B ⊆ X, and T > 0, we define:

EρY (B, T ) := {ω ∈ E∗ρ : ∆Y (ω) ≤ T and ϕω(Y ) ∩B 6= ∅}

and

Eρ
Y (B, T ) := #EρY (B, T ).

Theorem 8.4. Suppose that S is a strongly regular finitely irreducible conformal D-generic
GDMS. Let δ = δS = HD(JS). Fix ρ ∈ E∞A and Y ⊆ Xi(ρ) having at least two points and
such that πS(ρ) ∈ Y .

If B ⊂ X is a Borel set such that m̃δ(∂B) = 0 (equivalently µ̃δ(∂B) = 0) then,

(8.13) lim
T→+∞

Eρ
Y (B, T )

eδT
= Cρ(Y )m̃δ(B),

where Cρ(Y ) ∈ (0,+∞) is a constant, in fact the one produced in Theorem 8.1, depending
only on the system S, the word ρ (but see Remark 8.5), and the set Y . In addition

(8.14) K−2δ(δχδ)
−1diamδ(Y ) ≤ Cρ(Y ) ≤ K2δ(δχδ)

−1diamδ(Y ).

Proof. Since πS(ρ) ∈ Y we have that

Dρ
Y (B, T ) ≤ Eρ

Y (B, T ).

It therefore follows from Theorem 8.1 that

(8.15) lim inf
T→+∞

Eρ
Y (B, T )

eδT
≥ Cρ(Y )m̃δ(B).

Since EρY (T ) = EρY (X,T ) = DρY (T ), Theorem 8.1, also yields

(8.16) lim
T→+∞

Eρ
Y (T )

eδT
= CS(Y ).

Now fix (εn)∞n=1, a sequence of positive numbers converging to zero such that for all n ≥ 1

m̃δ(∂B(B, εn)) = 0.

Then m̃δ(∂B
c(B, εn)) = 0 and ϕω(Y ) intersects at most one of the sets B or Bc(B; εk)∩Bc

if ∆Y (ω) ≥ log(1/εn). Hence applying formula (8.15) to the sets Bc(B, εn) ∩ Bc and using
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(8.16) we get for every n ≥ 1 that

Cρ(Y ) ≥ lim sup
T→+∞

Eρ
Y (B, T ) + Eρ

Y (Bc(B, εn), T )

eδT

≥ lim sup
T→+∞

Eρ
Y (B, T )

eδT
+ lim inf

T→+∞

Eρ
Y (Bc(B, εn), T )

eδT

≥ lim sup
T→+∞

Eρ
Y (B, T )

eδT
+ Cρ(Y )m̃δ(B

c(B, εn)).

But limn→+∞ m̃δ(B
c(B, εn)) = m̃δ(B

c) = 1−mδ(B), (remembering that m̃δ(∂B) = 0), and
therefore

Cρ(Y ) ≥ lim sup
T→+∞

Eρ
Y (B, T )

eδT
+ Cρ(Y )(1−mδ(B)).

Hence

lim sup
T→+∞

Eρ
Y (B, T )

eδT
≤ Cρ(Y )mδ(B).

Along with (8.15) this finishes the proof of the first part of the theorem. The second part,
i.e. (8.14), is just formula (8.2). �

Remark 8.5. Since the left-hand side of (8.13) depends only on ρ1, i.e. the first coordinate
of ρ, we obtain that the constant CY (ρ) of Theorem 8.4 and Theorem 8.1, also depends in
fact only on ρ1. We could have provided a direct argument of this already when proving
Theorem 8.1 and this would not affect the proof of Theorem 8.4. However, our approach
seems to be most economical.

We say that a graph directed Markov system S has the property (A) if for every vertex
v ∈ V there exists av ∈ E such that

i(av) = v

and

Aeav = 1

whenever t(e) = v. As an immediate consequence of Theorem 8.1, Theorem 8.4 and
Remark 8.5, we get the following.

Theorem 8.6. Suppose that S is a strongly regular finitely irreducible D-generic conformal
GDMS with property (A). Let δ = δS = HD(JS). For any v ∈ V let Yv ⊆ Xv having at
least two points fixed.

If B ⊂ X is a Borel set such that m̃δ(∂B) = 0 (equivalently µ̃δ(∂B) = 0) and ρ ∈ E∞A is
with ρ1 = av, then,

(8.17) lim
T→+∞

Dρ
Yv

(B, T )

eδT
= lim

T→+∞

Eρ
Yv

(B, T )

eδT
= Cv(Yv)m̃δ(B),

where Cv(Yv) ∈ (0,+∞) is a constant depending only on the vertex v ∈ V and the set Yv.
In particular, this holds for Yv := Xv, v ∈ V .
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Recall, see [8] for example, that a GDMS S is maximal if Aab = 1 whenever t(a) = i(b).
Since every iterated function system is maximal and finitely irreducible and since each
maximal GDMS has property (A), as an immediate consequence of Theorem 8.6, and
Remark 8.5 (improved to claim that now Cρ(Y ) depends only on i(ρ1) and Y ) we get the
following two corollaries.

Corollary 8.7. Suppose that S is a strongly regular finitely irreducible D-generic maximal
conformal GDMS. Let δ = δS = HD(JS). For any v ∈ V let Yv ⊆ Xv having at least two
points be fixed.

If B ⊂ X is a Borel set such that m̃δ(∂B) = 0 (equivalently µ̃δ(∂B) = 0) and ρ ∈ E∞A is
with i(ρ1) = v, then,

(8.18) lim
T→+∞

Dρ
Yv

(B, T )

eδT
= lim

T→+∞

Eρ
Yv

(B, T )

eδT
= Cv(Yv)m̃δ(B),

where Cv(Yv) ∈ (0,+∞) is a constant depending only on the vertex v ∈ V and the set Yv.
In particular, this holds for Yv := Xv, v ∈ V .

Corollary 8.8. Suppose that S is a strongly regular D-generic conformal IFS acting on a
phase space X. Let δ = δS = HD(JS). Fix Y ⊆ X having at least two points.

If B ⊂ X is a Borel set such that m̃δ(∂B) = 0 (equivalently µ̃δ(∂B) = 0) and ρ ∈ E∞A ,
then,

(8.19) lim
T→+∞

Dρ
Y (B, T )

eδT
= lim

T→+∞

Eρ
Y (B, T )

eδT
= C(Y )m̃δ(B),

where C(Y ) ∈ (0,+∞) is a constant depending only on the set Y . In particular, this holds
for Y := X.

Part 2. Parabolic Conformal Graph Directed Markov
Systems

We want to apply the previous results (Theorem 5.8, Theorem 5.9, Theorem 8.1, Theo-
rem 8.4) to prove counting theorems for a variety of dynamical and geometric examples. In
particular, these theorems can be applied to prove geometric counting results for Apollo-
nian packings and many other systems naturally arising in the realm of Kleinian groups and
one-dimensional conformal, holomorphic and real, dynamical systems. But such systems
do not really fit into the framework of previous sections. These however fit into the frame-
work of conformal parabolic iterated function systems, and more generally of parabolic
graph directed Markov systems. Therefore, and because parabolic systems are interesting
on their own, following [45] and [47], we recall the definition of parabolic systems, bring up
their basic properties, and, based on mentioned above results from previous sections, i.e
attracting GDMSs, we prove appropriate counting results for them. This primarily means
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Theorem 11.1 and Theorem 11.2 for multipliers i. e. analogues of Theorem 5.8 and Theo-
rem 5.9 in this setting, along with several of its quite involved, corollaries, primarily about
counting diameters.

9. Parabolic GDMS; Preliminaries

In present section, following [45] and [47], we describe the suitable parabolic setting, we
canonically associate to a parabolic system an ordinary (uniformly contracting) conformal
graph directed Markov system (a kind of inducing), and we prove Theorem 9.7, which is a
somewhat surprising and remarkable result about parabolic systems.

Similarly as in Section 3 we assume that we are given a directed multigraph (V,E, i, t)
with V finite and E also finite (though in Section 3 E was merely assumed to be countable),
an incidence matrix A : E ×E → {0, 1}, and two functions i, t : E → V such that Aab = 1
implies t(b) = i(a). Also, we have nonempty compact metric spaces {Xv}v∈V . Suppose
further that we have a collection of conformal maps ϕe : Xt(e) → Xi(e), e ∈ E, satisfying the
following conditions (which are more general than in Section 3 in that we do not necessarily
assume the maps ϕe to be uniform contractions).

(1) (Open Set Condition) ϕa(Int(X)) ∩ ϕb(Int(X)) = ∅ for all a, b ∈ E with a 6= b.

(2) |ϕ′e(x)| < 1 everywhere except for finitely many pairs (e, xe), e ∈ E, for which xe is
the unique fixed point of ϕe and |ϕ′e(xe)| = 1. Such pairs and indices i will be called
parabolic and the set of parabolic indices will be denoted by Ω. All other indices
will be called hyperbolic. We assume that Aee = 1 for all e ∈ Ω.

(3) ∀n ≥ 1 ∀ω = (ω1ω2...ωn) ∈ En
A if ωn is a hyperbolic index or ωn−1 6= ωn, then ϕω

extends conformally to an open connected set Wt(ωn) ⊆ Rd and maps Wt(ωn) into
Wi(ωn).

(4) If e ∈ E is a parabolic index, then⋂
n≥0

ϕen(X) = {xe}

and the diameters of the sets ϕen(X) converge to 0.

(5) (Bounded Distortion Property) ∃K ≥ 1 ∀n ≥ 1 ∀ω ∈ En
A ∀x, y ∈ Wt(ωn), if ωn is a

hyperbolic index or ωn−1 6= ωn, then

|ϕ′ω(y)|
|ϕ′ω(x)|

≤ K.

(6) ∃κ < 1 ∀n ≥ 1 ∀ω ∈ En
A if ωn is a hyperbolic index or ωn−1 6= ωn, then ‖ϕ′ω‖ ≤ κ.

(7) (Cone Condition) There exist α, l > 0 such that for every x ∈ ∂X ⊆ Rd there
exists an open cone Con(x, α, l) ⊆ Int(X) with vertex x, central angle of Lebesgue
measure α, and altitude l.
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(8) There exists a constant L ≥ 1 such that∣∣∣∣ |ϕ′e(y)|
|ϕ′e(x)|

− 1

∣∣∣∣ ≤ L‖y − x‖α,

for every e ∈ E and every pair of points x, y ∈ V .

We call such a system of maps

S = {ϕe : e ∈ E}
a subparabolic conformal graph directed Markov system.

Let us note that conditions (1), (3), (5)–(7) are modeled on similar conditions which
were used to examine hyperbolic conformal systems.

Definition 9.1. If Ω 6= ∅, we call the system S = {ϕi : i ∈ E} parabolic.

As stated in (2) the elements of the set E \Ω are called hyperbolic. We extend this name
to all the words appearing in (5) and (6). It follows from (3) that for every hyperbolic word
ω,

ϕω(Wt(ω)) ⊆ Wt(ω).

Note that our conditions ensure that ϕ′e(x) 6= 0 for all e ∈ E and all x ∈ Xt(i). It was
proved (although only for IFSs nevertheless the case of GDMSs can be treated completely
similarly) in [45] (comp. [47]) that

(9.1) lim
n→∞

sup
ω∈EnA

{
diam(ϕω(Xt(ω)))

}
= 0.

As its immediate consequence, we record the following.

Corollary 9.2. The map π = πS : E∞A → X :=
⊕

v∈V Xv,

{π(ω)} :=
⋂
n≥0

ϕω|n(X),

is well defined, i.e. this intersection is always a singleton, and the map π is uniformly
continuous.

As for hyperbolic (attracting) systems the limit set J = JS of the system S = {ϕe}e∈e is
defined to be

JS := π(E∞A )

and it enjoys the following self-reproducing property:

J =
⋃
e∈E

ϕe(J).

We now, still following [45] and [47], want to associate to the parabolic system S a canonical
hyperbolic system S∗. We will then be able to apply the ideas from the previous section
to S∗. The set of edges is defined as follows:

E∗ :=
{
inj : n ≥ 1, i ∈ Ω, i 6= j ∈ E, Aij = 1

}
∪ (E \ Ω) ⊆ E∗A.
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We set

V∗ = t(E∗) ∪ i(E∗)
and keep the functions t and i on E∗ as the restrictions of t and i from E∗A. The incidence
matrix A∗ : E∗ × E∗ → {0, 1} is defined in the natural (and the only reasonable) way by
declaring that A∗ab = 1 if and only if ab ∈ E∗A. Finally

S∗ = {ϕe : Xt(e) → Xt(e)| e ∈ E∗}.

It immediately follows from our assumptions (see [45] and [47] for more details) that the
following is true.

Theorem 9.3. The system S∗ is a hyperbolic (contracting) conformal GDMS and the limit
sets JS and JS∗ differ only by a countable set. If the system S is finitely irreducible, then
so is the system S∗.

The price we pay by replacing the non-uniform “contractions” in S with the uniform
contractions in S∗ is that even if the alphabet E is finite, the alphabet E∗ of S∗ is always
infinite. In particular, already at the first level (just the maps ϕω, ω ∈ E∗,), we get more
scaling factors to deal with. In order to understand them, we will need the following
quantitative result, whose complete proof can be found in [88].

Proposition 9.4. Let S be a conformal parabolic GDMS. Then there exists a constant
C ∈ (0,+∞) and for every i ∈ Ω there exists some constant pi ∈ (0,+∞) such that for all
n ≥ 1 and for all z ∈ Xi :=

⋃
j∈I\{i} ϕj(X),

C−1n
− pi+1

pi ≤ |ϕ′in(z)| ≤ Cn
− pi+1

pi .

Furthermore, if d = 2 then all constants pi are integers ≥ 1 and if d ≥ 3 then all constants
pi are equal to 1.

Let us also introduce the following auxiliary system:

S− := {ϕe : e ∈ E \ Ω}.

As an immediate consequence of Proposition 9.4 we get the following.

Proposition 9.5. If S is a conformal parabolic GDMS, then

ΓS∗ =

(
pS

pS + 1
,+∞

)
, γS∗ =

pS
pS + 1

,

where

pS := max{pi : i ∈ Ω}.
and the system S∗ is, in the terminology of [47], hereditarily (co-finitely) regular, in partic-
ular, strongly regular.
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We set

δS := δ∗S ,

mδS := m∗δS∗ and m̃δS := m̃∗δS∗ .

Given e ∈ E, we set

Ωe := {a ∈ Ω : Aae = 1}
and

Ωρ := Ωρ1

for every ρ ∈ E∞A . We will need the following facts proved in [45], comp. [47].

Theorem 9.6. If S is an irreducible conformal parabolic GDMS, then

(1) δS = HD(JS),

(2) The measure m̃δS is δ–conformal for the original system S in the sense that

m̃δS (ϕω(F )) =

∫
F

|ϕ′ω|δS dm̃δS

for every ω ∈ EA and every Borel set F ⊆ Xt(ω), and

m̃δS

(
ϕα(Xt(α)) ∩ ϕβ(Xt(β))

)
= 0

whenever α, β ∈ E∗A and are incomparable.

(3) There exists a, unique up to multiplicative constant, σ–finite shift–invariant measure
µδS on E∞A , absolutely continuous with respect to mδS . The measure µδS is equivalent
to mδS and

(a) The Radon–Nikodym derivative of µδS with respect to mδ is given by the fol-
lowing formula:

ψδS (ρ) :=
dµδS
dmδS

(ρ) = ψ∗δS (ρ) +
∑
a∈Ωρ

∞∑
k=1

|ϕ′ak(π(ρ))|δψ∗δS (akρ).

(b) The measure µδS (and µ̃δS := µδS ◦ π−1
S ) is finite (we then always treat it as

normalized so that it is a probability measure) if and only if

δS >
2pS
pS + 1

.

More precisely, the following conditions are equivalent:

(b1) δS >
2pa
pa+1

,

(b2) There exists an integer l ≥ 1 such that µδS ([al]) < +∞, and

(b3) For every integer l ≥ 1, µδS ([al]) < +∞.
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(4) Furthermore, we have that

χδS := −
∫
E∞A

log
∣∣ϕ′ω1

(πS(ω)
∣∣dµδ = χ∗δS ∈ (0,+∞)

and, as for attracting GDMSs, we call χδS the Lyapunov exponent of the system S
with respect to measure µδS .

For future use we denote

Ω∞ = Ω∞(S) :=

{
a ∈ Ω :

2pa
pa + 1

≥ δS

}
.

A crucial feature of the hyperbolic systems arising from parabolic systems is that they
are automatically D-hyperbolic. We have already seen that this is not necessarily true for
hyperbolic systems.

Theorem 9.7. If S is an irreducible conformal parabolic GDMS, then S∗, the associated
contracting (hyperbolic) GDMS, is D-generic.

Proof. Assume for a contradiction that S∗ is not D-generic. According to Proposition 4.8
this means that the additive group generated by the set{

− log |ϕ′ω(xω)| : ω ∈ E∗∗A∗
}
⊆ R

is cyclic. Denote its generator by M > 0. Fix b ∈ Ω and then take α ∈ E∗A such that
α1 6= b and αb2α1 ∈ E∗A. Note that then αb2α1 ∈ E∗∗A∗ and moreover αbnα1 ∈ E∗∗A∗ for all
integers n ≥ 2. For every integer n ≥ 2 denote by xn ∈ JS∗ the only fixed point of the
map ϕαbnα1 : Xt(α1) → Xt(α1). We know from the above that for every n ≥ 2 there exists
an integer kn ≥ 1 such that

(9.2) − log
∣∣ϕ′αbnα1

(xn)
∣∣ = Mkn.

By Proposition 9.4 we have that

(9.3)
∣∣ϕ′αbnα1

(xn)
∣∣ = |ϕ′α1

(xn)| ·
∣∣ϕ′bn(ϕα1(xn))

∣∣ · ∣∣ϕ′α(ϕbnα1(xn))
∣∣ = Cnn

− pb+1

pb

with some Cn ∈ (C−1, C), where C is the constant coming from Proposition 9.4. Combining
this with (9.2) yields

kn = − 1

M
logCn +

pb + 1

Mpb
log n.

On the other hand

lim
n→∞

xn = lim
n→∞

ϕαbnα1(xn) = ϕα
(

lim
n→∞

ϕnb (ϕα1(xn))
)

= ϕα(xb)

and

lim
n→∞

ϕbnα1(xn) = xb.
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Keeping in mind that ϕb(xb) = xb and |ϕ′b(xb)| = 1 and using the Bounded Distortion
Property, we therefore get

lim
n→∞

∣∣ϕ′αbn+1α1
(xn+1)

∣∣∣∣ϕ′αbnα1
(xn)

∣∣ = lim
n→∞

∣∣ϕ′αbn+1α1
(ϕα(xb))

∣∣∣∣ϕ′αbnα1
(ϕα(xb))

∣∣
= lim

n→∞

∣∣ϕ′α(ϕn+1
b (ϕα1α(xb))

)∣∣ · ∣∣ϕ′b(ϕnb (ϕα1α(xb))
)∣∣∣∣ϕ′α(ϕnb (ϕα1α(xb))

)∣∣
= lim

n→∞

|ϕ′α(xb)| · |ϕ′b(xb)|
|ϕ′α(xb)|

= |ϕ′b(xb)| = 1.

Equivalently:

lim
n→∞

(
− log |ϕ′αbn+1α1

(xn+1)| − (− log |ϕ′αbnα1
(xn)|

)
= 0.

Using (9.2) this gives that limn→∞(kn+1 − kn) = 0. Since all kn, n ≥ 1, are integers, this
implies that the sequence (kn)∞n=1 is eventually constant. However, it follows from (9.2)
that limn→∞ kn = +∞, and the contradiction we obtain finishes the proof. �

Remark 9.8. We could generalize slightly the concepts of subparabolic and parabolic
systems by requiring in item (2) of their definition that not merely some elements ϕe,
e ∈ E, have parabolic fixed points but some finitely many elements ϕω, ω ∈ E∗A, have such
points. In other words it would suffice to assume that some iterate of the system S in the
sense of Remark 3.2 is parabolic. Indeed, this would not really affect any considerations of
this and any forthcoming section involving parabolic GDMSs, and such generalization will
turn out to be needed in Subsection 18.1 for the Farey map, Subsections 20 and 20.2 when
we deal respectively with Schottky groups with tangencies and Apollonian circle packings.

10. Poincaré’s Series for S∗, the Associated Countable Alphabet
Attracting GDMS

In this section we again let S be an irreducible conformal parabolic GDMS. Our goal
is to describe the Poincaré series and the associated asymptotic (equidistribution) results
for the system S. This is achieved by means of the transfer operator associated to the
associated hyperbolic system S∗.

We begin by formulating the required notation. Fix first ρ ∈ E∞A∗ arbitrary. Denote
ξ := πS∗(ρ). Treating ρ in an obvious way as an element of E∞A , we can also write ξ = πS(ρ).
Fix next an arbitrary τ ∈ E∗∗A∗ .

Let η∗i (τ, s), i = ρ, p, be the corresponding Poincaré series for the contracting system S∗,
and we continue to use

ηi(τ, s), i = ρ, p,

to denote the Poincaré series for the original (now parabolic) system S. This allows to
deduce the analytical properties of ηi from those for the η∗i , to which we can apply the
results already established in Proposition 6.3.



70 MARK POLLICOTT AND MARIUSZ URBAŃSKI

We show that the Poincaré series ηi(τ, s) for the parabolic system S can be expressed
in terms of the Poincaré series for η∗i (τ, s) for the hyperbolic system S∗. In particular,
we can deduce properties for η∗i (τ, s) which are the analogue of those for ηi(τ, s), already
established in Proposition 6.3. We can formally write

(10.1)

ηρ(τ, s) =
∑

ω∈E∗ρ :τω∈E∗A

|ϕ′τω(π(ρ))|s

=
∑
ω∈E∗∗,ρ
τω∈E∗∗A∗

|ϕ′τω(π(ρ))|s +
∑
a∈Ωρ

∞∑
k=1

∑
ω∈E∗∗A∗
τωa∈E∗

A

|ϕ′τωak(π(ρ))|s

=
∑
ω∈E∗∗ρ

τω∈E∗∗A∗

|ϕ′τω(π(ρ))|s +
∑
a∈Ωρ

∞∑
k=1

∑
ω∈E∗∗A∗
τωa∈E∗

A

|ϕ′τω(π(akρ))|s|ϕ′ak(π(ρ))|s

=
∑
ω∈E∗∗ρ

τω∈E∗∗A∗

|ϕ′τω(π(ρ))|s +
∑
a∈Ωρ

∞∑
k=1

|ϕ′ak(π(ρ))|s
∑

ω∈E∗∗A∗
τωa∈E∗

A

|ϕ′τω(π(akρ))|s

= η∗ρ(τ, s) +
∑
a∈Ωρ

∞∑
k=1

|ϕ′ak(π(ρ))|sη∗akρ(τ, s).

Since by Theorem 9.7 we have that S∗ is D-generic it follows from the proof of Theorem 6.3
that for every s0 = δS + it0 ∈ Γ+

S with t0 6= 0 all functions η∗
akρ

(τ, ·) have holomorphic

extensions on a common neighborhood, denoted by U , of s0 ∈ Γ+
S∗ of the form

U 3 s 7−→
q∑
j=1

λ∗j(s)(1− λ∗j(s))−1P ∗s,j(|ϕ′τ |s ◦ π)(akρ) + S∗∞(s) ∈ C,

where all the symbols “∗” indicate that the appropriate objects pertain to the system S∗.
Since

|P ∗s,j(|ϕ′τ |s ◦ π∗)(akρ)| ≤ ‖P ∗s,j(|ϕ′τ |s ◦ π∗)‖∞ ≤ ‖P ∗s,j(|ϕ′τ |s ◦ π∗)‖α < +∞,

it follows that all the functions η∗
akρ

(τ, ·) are uniformly bounded on U . Since also δS >
pa
pa+1

and since

(10.2)
∣∣|ϕ′ak(π(ρ))|s

∣∣ ≤ |ϕ′ak(π(ρ))|δS � (k + 1)−
pa+1
pa

δS ,

we eventually conclude that the series in (10.1) converges absolutely uniformly on U , thus
representing a holomorphic function. We are therefore left to consider the case of s0 = δS .
By virtue of (6.3) we then have for every k ≥ 0 that

η∗akρ(τ, s) = λ∗s(1− λ∗s)−1H∗τ,s(a
kρ) + Σ∞(s).
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Substituting this into (10.1), we therefore get

ηρ(τ, s) = η∗ρ(τ, s)+λ∗s(1−λ∗s)−1
∑
a∈Ωρ

∞∑
k=1

|ϕ′ak(π(ρ))|sH∗τ,s(akρ)+
∑
a∈Ωρ

∞∑
k=1

|ϕ′ak(π(ρ))|sΣ∞(s),

and by (10.2) both series involved in the above formula converge absolutely uniformly on U .
Looking up now at the calculations from the end of the proof of Theorem 6.3 and invoking
Theorem 9.6 (3) and (4), we conclude that the function U 3 s 7→ ηρ(τ, s) is meromorphic
with a simple pole at s = δS whose residue is equal to

ψ∗δS (ρ)

χ∗δS
m∗δS ([τ ]) +

∑
a∈Ωρ

∞∑
k=1

|ϕ′ak(π(ρ))|δSψ∗δ (akρ)m∗δS ([τ ]) =

=
1

χδS

(
ψ∗δS (ρ) +

∑
a∈Ωρ

∞∑
k=1

|ϕ′ak(π(ρ))|δψ∗δS (akρ)
)
mδS ([τ ])

=
ψδS (ρ)

χδS
mδS ([τ ]).

We have thus proved the following.

Theorem 10.1. If S is an irreducible parabolic conformal GDMS, ρ ∈ E∞A∗, and τ ∈ E∗∗A∗,
then

(a) The function ∆+
S 3 s 7−→ ηρ(τ, s) ∈ C has a meromorphic extension to some

neighborhood of the vertical line Re(s) = δS ,

(b) This extension has a single pole s = δS , and

(c) The pole s = δS is simple and its residue is equal to
ψδS (ρ)

χδS
mδS ([τ ]).

11. Asymptotic Results for Multipliers

Now that we have established Theorem 10.1, we are ready to prove the following theorem
which, along with its two corollaries below, constitutes the main results of this section.

Theorem 11.1 (Asymptotic Equidistribution of Multipliers for Parabolic Systems I). Sup-
pose that S is an irreducible parabolic conformal GDMS. Fix ρ ∈ E∞A . If τ ∈ E∗A then,

(11.1) lim
T→+∞

Nρ(τ, T )

eδST
=
ψδS (ρ)

δSχµδ
mδS ([τ ]),

and

(11.2) lim
T→+∞

Np(τ, T )

eδST
=

1

δSχµδS
µδS ([τ ]).
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Proof. We first prove formula (11.1). If ρ ∈ E∞∗A∗ and τ ∈ E∗∗A∗ , this formula follows
from Theorem 10.1 in exactly the same way as formula (5.5) in Theorem 5.8 follows from
Theorem 6.3.

Now keep τ ∈ E∗∗A∗ and let ρ ∈ E∞A be arbitrary. Then for every q ≥ 1 large enough
there exists ρq ∈ E∞∗A∗ such that

ρ|q = ρq|q.
Since limq→∞ d(ρ, ρq) = 0, the Bounded Distortion Property (BDP) for the attracting

system S∗ yields a function q 7→ K̂q ∈ [1,+∞) such that

(11.3) lim
q→∞

K̂q = 1

and

K̂−1
q ≤

|ϕ′τ (πS(ρ))|
|ϕ′τ (πS(ρq))|

≤ K̂q

for all q ≥ 1 large enough as indicated above. Hence

Nρq(τ, T − log K̂q) ≤ Nρ(τ, T ) ≤ Nρq(τ, T + log K̂q).

Therefore, dividing by eδST we get that

Nρq(τ, T − log K̂q)

exp(δS(T − log K̃q))
K̂−δSq ≤ Nρ(τ, T )

eδST
≤

Nρq(τ, T + log K̂q)

exp(δS(T + log K̃q))
K̂δS
q .

Since ρq ∈ E∞∗A∗ and τ ∈ E∗∗A∗ we thus obtain

K̂−δSq

ψδS (ρ)

δSχδS
mδ([τ ]) ≤ lim inf

T→+∞

Nρ(τ, T )

eδST
≤ lim sup

T→+∞

Nρ(τ, T )

eδST
≤ K̂δS

q

ψδS (ρ)

δSχδS
mδS ([τ ]).

Invoking (11.3) we now conclude that

(11.4) lim
T→+∞

Nρ(τ, T )

eδST
=
ψδS (ρ)

δSχδS
mδS ([τ ]).

Working in full generality, we now assume that ρ ∈ E∞A and τ ∈ E∗A. Then there exists Fτ ,
a countable collection of mutually incomparable elements of E∗∗A∗ , each of which extends
τ , such that

mδS

(
[τ ] \

⋃
ω∈Fτ

[ω]

)
= 0.

Noting that then the family {[ω] : ω ∈ Fτ} consists of mutually disjoint sets, we thus get
that from (11.4) that

lim inf
T→+∞

Nρ(τ, T )

eδST
≥ lim inf

T→+∞

∑
ω∈Fτ Nρ(ω, T )

eδST
≥
∑
ω∈Fτ

lim inf
T→+∞

Nρ(ω, T )

eδST

=
∑
ω∈Fτ

ψδS (ρ)

δSχµδS
mδS ([ω]) =

ψδS (ρ)

δSχµδS
mδS ([τ ]).
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Having this (and already knowing that the neutral word ∅ belongs to E∗∗A∗) then (11.4)
gives that

lim
T→+∞

Nρ(T )

eδST
=
ψδS (ρ)

δSχδS
mδS ([∅]) =

ψδS (ρ)

δSχδS
mδS (E∞∗A∗) =

ψδS (ρ)

δSχδS
,

we deduce that

lim
T→+∞

Nρ(τ, T )

eδST
=
ψδS (ρ)

eδST
mδS ([τ ])

in the say way (although it is now in fact simpler) as formula (7.12) is deduced from (7.8)
and (7.1), the latter applied with τ = ∅ (i.e., the empty word). The proof of formula (11.1)
is then complete.

Now we prove formula (11.2). First assume that τ is not a power of an element from Ω.
This means that either

τ = ajβ

where a ∈ Ω, j ≥ 1, and β1 6= a or
τ = β

where β1 6∈ Ω. In either case,
τ = ajβ,

with j ≥ 0. As in the proof of formula (5.5) in Theorem 5.8, for every γ ∈ E∗A fix γ+ ∈ E∞A
(which in fact can be selected to depend only on γ|γ|) such that

γγ+ ∈ E∞A .
Fix q ≥ 1 and γ ∈ Eq

A arbitrarily. Consider an arbitrary element ωbk ∈ E∗A, ω ∈ E∗∗,A∗ ,

b ∈ Ω such that ajβγωbk ∈ E∗p . Consider two cases:

Case 10. Assume b 6= a if j ≥ 1. Then∣∣ϕ′ajβγωbk(xajβγωbk)∣∣ =
∣∣ϕ′ajβγω(πS((bkajβγω)∞)

)∣∣ · ∣∣ϕ′bk(πS((ajβγωbk)∞)
)∣∣

and ∣∣ϕ′ajβωbk(πS(ajβγγ+)
)∣∣ =

∣∣ϕ′ajβγω(πS(bkajβγγ+)
)∣∣ · ∣∣ϕ′bk(πS(ajβγγ+)

)∣∣.
Since ω ∈ E∗∗A∗ and since either b 6= a if j ≥ 1 or β1 6∈ Ω if j = 0, by the (BDP) we get that

K̃−1
q ≤

∣∣ϕ′ajβγω(πS
(
(bkajβγω)∞)

)∣∣∣∣ϕ′
ajβγω

(
πS(bkajβγγ+)

)∣∣ ≤ K̃q

and

K̃−1
q ≤

∣∣ϕ′
bk

(
πS((ajβγωbk)∞)

)∣∣∣∣ϕ′
bk

(
πS((ajβγγ+)

)∣∣ ≤ K̃q

with some “distortion” function q 7→ K̃q ∈ [1,+∞) such that limq→∞ K̂q = 1. Conse-
quently,

(11.5) K̃−2
q ≤

∣∣ϕ′
ajβγωbk

(xajβγωbk)
∣∣∣∣ϕ′

ajβγωbk
(πS((ajβγγ+))

∣∣ ≤ K̃2
q .
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Case 20. Assume j ≥ 1 and b = a. Then

(11.6)
∣∣ϕ′ajβγωbk(xajβγωbk)∣∣ =

∣∣ϕ′ajβγω(πS((aj+kβγω)∞)
)∣∣ · ∣∣ϕ′ak(πS((ajβγωbk)∞)

)∣∣
and

(11.7)
∣∣ϕ′ajβγωbk(πS(ajβγγ+)

)∣∣ =
∣∣ϕ′ajβγω(πS(aj+kβγγ+)

)∣∣.∣∣ϕ′ak(πS(ajβγγ+)
)∣∣.

Again by (BDP) we have that

(11.8) K̃−1
q ≤

∣∣ϕ′ajβγω(πS((aj+kβγω)∞))
)∣∣∣∣ϕ′

ajβγω

(
πS(aj+kβγγ+)

)∣∣ ≤ K̃q.

By the Chain Rule

(11.9)
∣∣ϕ′ak(πS(ajβγκ))

∣∣ =
∣∣ϕ′ak+j(πS(βγκ))

∣∣ · ∣∣ϕ′aj(πS(βγκ))
∣∣−1

for every κ ∈ E∗A such that γκ ∈ E∗A. Since β1 6= a we have that

K̃−1
q ≤

∣∣ϕ′
aj+k

(
πS((βγωak)∞)

)∣∣∣∣ϕ′
aj+k

(
πS(βγγ+)

)∣∣ ≤ K̃q

and

K̃−1
q ≤

∣∣ϕ′aj(πS((βγωak)∞)
)∣∣∣∣ϕ′

aj

(
πS(βγγ+)

)∣∣ ≤ K̃q.

Hence, invoking (11.9) we get that

K̃−2
q ≤

∣∣ϕ′
ak

(
πS((ajβγωak)∞)

)∣∣∣∣ϕ′
ak

(πS(ajβγγ+)
)∣∣ ≤ K̃2

q .

Along with (11.8), (11.6) and (11.7) this yields

(11.10) K̃−3
q ≤

∣∣ϕ′
ajβγωbk

(xajβγωbk)
∣∣∣∣ϕ′

ajβγωbk

(
πS(ajβγγ+)

)∣∣ ≤ K̃3
q .

Now it follows from (11.5) and (11.10) that

(11.11) πajβγγ+(ajβγ, T − 3 log K̃q) ⊆ πp(α
jβγ, T ) ⊆ πajβγγ+(ajβγ, T + 3 log K̃q).
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Therefore, applying (11.1) we get that

(11.12)

lim inf
T→+∞

Np(a
jβ, T )

eδST
≥ lim inf

T→+∞

∑
γ∈Eq

A
ajβγ∈E∗

A

Nαjβγγ+(ajβγ, T − 3 log K̃q)

eδST

≥
∑
γ∈Eq

A
ajβγ∈E∗

A

lim inf
T→+∞

Nαjβγγ+(ajβγ, T − 3 log K̃q)

eδST

=
∑
γ∈Eq

A
ajβγ∈E∗

A

lim inf
T→+∞

Nαjβγγ+(ajβγ, T − 3 log K̃q)

eδS(T−3 log K̃q)
K̃−3δS
q

= K̃−3δS
q

∑
γ∈E∞

A
ajβγ∈E∗

A

ψδS (ajβγγ+)

δSχδS
mδS ([ajβγ])

≥ K−1
q (ajβ)

1

δSχδS
µδS ([ajβ]),

with some function q 7→ Kq(a
jβ) ∈ [1,+∞) for which limq→+∞Kq(a

jβ) = 1 and which
exists because ajβ is not a power of an element from Ω. Taking the limit in (11.12) as
q → +∞, we thus get that

(11.13) lim inf
T→+∞

Np(a
jβ, T )

eδST
≥ 1

δSχδ
µδS ([ajβ]).

In the general case, i.e., making no assumptions on τ ∈ E∗A we proceed in the same way as in
the proof of formula (11.1). We can fix Fτ , a countable collection of mutually incomparable
words extending τ , not being powers (concatenations) of elements from Ω, and such that

µδS

(
[τ ] \

⋃
ω∈Fτ

)
= 0.

Noting that then the family {[ω] : ω ∈ Fτ} consists of mutually disjoint sets, we thus get
that from (11.13) that

(11.14)

lim inf
T→+∞

Np(τ, T )

eδST
≥ lim inf

T→+∞

∑
ω∈Fτ Np(ω, T )

eδST
≥
∑
ω∈Fτ

lim inf
T→+∞

Np(ω, T )

eδST

=
1

δSχδS

∑
ω∈Fτ

µδS ([ω]) =
1

δSχδS
µδS ([τ ]).

For the upper bound we again deal first with words ajβ, i.e., the same as those leading to
(11.13). Since the alphabet E is finite it follows from the left hand side of (11.11) and from
(11.1) that
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(11.15)

lim sup
T→+∞

Np(a
jβ, T )

eδST
≤ lim sup

T→+∞

∑
γ∈E∞

A
ajβγ∈E∗

A

Nαjβγγ+(ajβγ, T + 3 log K̃q)

eδST

≤
∑
γ∈E∞

A
ajβγ∈E∗

A

lim sup
T→+∞

Nαjβγγ+(ajβγ, T + 3 log K̃q)

eδST

=
∑
γ∈E∞

A
ajβγ∈E∗

A

lim sup
T→+∞

Nαjβγγ+(ajβγ, T + 3 log K̃q)

eδS(T+3 log K̃q)
K̃3δS
q

= K̃3δS
q

∑
γ∈E∞

A
ajβγ∈E∗

A

ψδS (ajβγγ+)

δSχδS
mδS ([ajβγ])

≤ Kq(a
jβ)

1

δSχδS
µδS ([ajβ]).

Taking the limit as q → +∞ in (11.15) we thus get that

lim inf
T→+∞

Np(a
jβ, T )

eδST
≤ 1

δSχδS
µδS ([ajβ]).

Along with (11.13) this gives

(11.16) lim
T→+∞

Np(a
jβ, T )

eδST
=

1

δSχδS
µδS ([ajβ]).

Passing to the upper bound in the general case, we only need to deal with powers of
parabolic elements. Because of (11.14) and Theorem 9.6 (b1)–(b3), formula (11.2) holds
for all words τ = al, l ≥ 1, where a ∈ Ω is such that δS ≤ 2pa

pa+1
. In what follows, we can

thus assume that

δS >
2pa
pa + 1

.

Then for every integer j ≥ −1, we have

(11.17) [aj+1] \ [aj+2] =
⋃{

[aj+1e] : e ∈ E \ {a} andAae = 1
}
.

Since the set E \ {a} is finite it thus follows from (11.16) that
(11.18)

Np([a
j+1] \ [aj+2], T )

eδST
=

1

δSχδS
µδS ([aj+1] \ [aj+2]) =

1

δSχδS
(µδS ([aj+1])− µδS ([aj+2])).
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Now if ω ∈ [aj+1] \ [aj+2] then ω = aj(aκal) with κ1, κ|κ| ∈ E \ {a}, Aaκ1 = 1, Aκ|κ|a = 1,
and l ≥ 0. Then

e−T ≤
∣∣ϕ′aj(aκal)(xaj(aκal))∣∣ =

∣∣ϕ′aκal(xaj(aκal))∣∣·∣∣ϕ′aj(xaκaj+l)∣∣ � (j+2)−(pa+1)/pa
∣∣ϕ′aκal(xaj(aκal))∣∣.

Denoting by Q ≥ 1 the multiplicative constant corresponding to the “�” sign above, we
thus get

(11.19)
∣∣ϕ′aκal(xaj(aκal))∣∣ ≥ Q−1(j + 2)−

pa+1
pa e−T .

Now fix a word β ∈ E∞A with β1 = a and β2 6= a. Then∣∣ϕ′aκal(xaj(aκal))∣∣ =
∣∣ϕ′al(xaj(aκal))∣∣ · |ϕ′aκ(xaj+lκ)| � (j + l + 2)−

pa+1
pa · j

pa+1
pa

∣∣ϕ′aκ(πS(β)
)∣∣.

It therefore follows from (11.19) that∣∣ϕ′ax(πS(β))
∣∣ ≥ Q−2(j + l + 2)

pa+1
pa e−T .

Equivalently,

− log
∣∣ϕ′aκ(πS(β))

∣∣ ≤ 2 logQ− (pa + 1)

pa
log(j + l + 2) + T.

Hence

aκ ∈ πβ
(

[aκ1], 2 logQ− (pa + 1)

pa
log(j + l + 2) + T

)
.

Therefore,

(11.20) Np([α
j+1] \ [aj+2]) ≤

∑
b∈E\{a}
Aab=1

∞∑
l=0

Nβ

(
[ab], 2 logQ− pa + 1

pa
log(j + l + 2) + T

)
.

By formula (11.1), and since the alphabet E is finite, there exists T1 > 0 such that

(11.21) e−δSSNβ([ab], S) ≤ ψδS (β)

δSχδS
mδS ([ab]) ≤ ψδS (β)

δSχδS

for every b ∈ E \ {a} with Aab = 1 and every S ≥ T1. Now

2 logQ− pa + 1

pa
log(j + l + 2) + T ≥ T1

if and only if

(11.22) j + l + 2 ≤ sT := Q
2pa
pa+1 exp

(
pa

pa + 1
(T − T1)

)
.

In addition, if

(11.23) 2 logQ− pa + 1

pa
log(j + l + 2) + T ≤ −1,

then

(11.24) Nβ

(
[ab], 2 logQ− pa + 1

pa
log(j + l + 2) + T

)
= 0.



78 MARK POLLICOTT AND MARIUSZ URBAŃSKI

Formula (11.23) just means that

(11.25) j + l + 2 ≥ uT := eQ
2pa
pa+1 e

pa
pa+1

T .

Therefore, returning to formula (11.20), for every q ≥ 1 we get that
(11.26)
∞∑

j=q+1

e−δSTNp([α
j+1] \ [aj+2]) ≤

≤
∑

b∈E\{a}
Aab=1

∞∑
j=q

∑
l:j+l+2≤sT

Nβ

(
[ab], 2 logQ− pa+1

pa
log(j + l + 2) + T

)
exp

(
δS(2 logQ− pa+1

pa
log(j + l + 2) + T )

)Q2δS (j + l + 2)−
pa+1
pa

δS+

+
∑

sT+1≤j+l+2≤uT

e−δSTNβ([ab], T1)

≤ Q2δS#E
ψδS (β)

δSχδS

∞∑
j=q

∞∑
k=j

k−
pa+1
pa

δS +Nae
−δSTu2

T

≤ Q̂1

∞∑
j=q

j1− pa+1
pa

δS + Q̂2 exp

((
2pa
pa + 1

− δS
)
T

)
≤ Q̂3q

2− pa+1
pa

δS + Q̂2 exp

((
2pa
pa + 1

− δS
)
T

)
,

where Na := max
{
Nβ([ab], T1) : b ∈ E\{a}, Aab = 1

}
, Q̂1, Q̂2, Q̂3 ≥ 1 are universal con-

stants, and the last inequality holds because δS >
2pa
pa+1

.

Applying (11.18) and (11.26) we obtain for all integers q ≥ k + 2 the following estimate

lim
T→+∞

∣∣∣∣Np([a
k], T )

eδST
− 1

δSχδS
µδS ([ak])

∣∣∣∣ =

= lim
T→+∞

∣∣∣∣∣
q∑

j=k−1

Np([a
j+1] \ [aj+2], T )

eδST
+

∞∑
j=q+1

Np([a
j+1] \ [aj+2], T )

eδST
− 1

δSχδS
µδS ([ak])

∣∣∣∣∣
≤ lim

T→+∞

∣∣∣∣∣
q∑

j=k−1

Np([a
j+1] \ [aj+2], T )

eδST
− 1

δSχδS
µδS ([ak])

∣∣∣∣∣+ lim
T→+∞

∣∣∣∣∣
∞∑

j=q+1

Np([a
j+1] \ [aj+2], T )

eδST

∣∣∣∣∣
≤ 1

δSχδS

∣∣∣∣∣
q∑

j=k−1

µδS ([aj+1] \ [aj+2])− µ([ak])

∣∣∣∣∣+ lim
T→+∞

Q̂2

∑
a∈Ω

exp

((
2pa
pa + 1

− δS
)
T

)
=

1

δSχδS

∣∣µδS ([ak] \ [aq+2])− µ([ak])
∣∣

=
1

δSχδS
µδS ([aq+2]).
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But since δS >
2pa
pa+1

we have that limq→∞ µδS ([aq+2]) = 0 and therefore

lim
T→+∞

∣∣∣∣Np([a
k], T )

eδST
− 1

δSχδS
µδS ([ak])

∣∣∣∣ = 0.

This just means that

lim
T→∞

Np([a
k], T )

eδST
=

1

δSχδS
µδS ([ak]).

The proof of our theorem is thus complete. �

The proof of the following theorem, based on Theorem 11.1, is exactly the same as the
proof of Theorem 5.9 based on Theorem 5.8.

Theorem 11.2 (Asymptotic Equidistribution of Multipliers for Parabolic Systems II).
Suppose that S is an irreducible parabolic conformal GDMS. Fix ρ ∈ E∞A . If B ⊂ X is a
Borel set such that m̃δS (∂B) = 0 (equivalently µ̃δS (∂B) = 0) then,

(11.27) lim
T→+∞

Nρ(B, T )

eδST
=
ψδS (ρ)

δSχµδS
m̃δS (B)

and

(11.28) lim
T→+∞

Np(B, T )

eδST
=

1

δSχµδS
µ̃δS (B).

We have as an immediate corollary the following:

Theorem 11.3 (Asymptotic Equidistribution of Multipliers for Parabolic Systems). Sup-
pose that S is an irreducible parabolic conformal GDMS. Fix ρ ∈ E∞A . Then

(11.29) lim
T→+∞

Nρ(T )

eδST
=
ψδS (ρ)

δSχµδS

and

(11.30) lim
T→+∞

Np(T )

eδST
=

1

δSχµδS
µ̃δS (JS).

12. Asymptotic Results for Diameters

We now want to use the asymptotic results established in the previous section to show
the asymptotic formulae for diameters of images of a set.

In this section, as in the previous one, we assume that S is an irreducible conformal
parabolic GDMS. Our task here is, for parabolic systems, the same as the one in Section 8
for attracting systems, i.e. to obtain asymptotic counting properties corresponding to the
function − log diam(ϕω(Y )), ω ∈ E∗A. The notation here is the same as in Section 8. Our
strategy now is to use the full generality of Theorem 8.1 and to deduce from it the first
main result of the current section, which is the following.
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Theorem 12.1 (Asymptotic Equidistribution Formula of Diameters for Parabolic Systems,
I). Suppose that S is an irreducible parabolic conformal GDMS. Fix ρ ∈ E∞A and Y ⊆ Xi(ρ)

having at least two points. If B ⊂ X is a Borel set such that m̃δS (∂B) = 0 (equivalently
µ̃δS (∂B) = 0) then,

(12.1) lim
T→+∞

Dρ
Y (B, T )

eδST
= Cρ(Y )m̃δS (B),

where Cρ(Y ) ∈ (0,+∞] is a constant depending only on the system S, the word ρ (but see
Remark 12.3), and the set Y . In addition Cρ(Y ) is finite if and only if either

(1)

Y ∩ Ω∞ = (Y ∩ Ω∞ ∩ Ωρ1) = ∅

or
(2)

δS > max
{
p(a) : a ∈ Ωρ1 and xa ∈ Y

}
.

Then the function [ρ1] 3 ω 7−→ Cω(Y ) is uniformly separated away from zero and bounded
above.

Proof. Recall that

Ωρ1 = {a ∈ Ω : Aaρ1 = 1}.

We know that

E∗ρ = E∗∗ρ ∪
⋃
a∈Ωρ

∞⋃
k=1

E∗∗aa
k

and this union consists of mutually incomparable terms. Therefore,

DρY (B, T ) = DρY,S∗(B, T ) ∪
⋃
a∈Ωρ

∞⋃
k=1

Da
kρ
ϕ
ak

(Y ),S∗(B, T ),

and this union consists of mutually disjoint terms. Therefore,

(12.2)
Dρ
Y (B, T )

eδST
≥
Dρ
Y,S∗(B, T )

eδST
+
∑
a∈Ωρ

∞∑
k=1

Dakρ
ϕ
ak

(Y ),S∗(B, T )

eδST
,

and for every q ≥ 1:

(12.3)
Dρ
Y (B, T )

eδST
≤
Dρ
Y,S∗(B, T )

eδST
+
∑
a∈Ωρ

q∑
k=1

Dakρ
ϕ
ak

(Y ),S∗(B, T )

eδST
+
∑
a∈Ωρ

∞∑
k=q+1

Dakρ
ϕ
ak

(Y ),S∗(B, T )

eδST
.
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Assume first that ρ ∈ EN
∗A∗ . Then, akρ ∈ EN

∗A∗ for every a ∈ Ωρ and for all integers k ≥ 0,
whence we can invoke Theorem 8.1 and 12.5, to conclude that

(12.4)

lim
T→∞

Dρ
Y (B, T )

eδST
≥ lim

T→∞

Dρ
Y,S∗(B, T )

eδST
+
∑
a∈Ωρ

∞∑
k=1

lim
T→∞

Dakρ
ϕ
ak

(Y ),S∗(B, T )

eδST

=
(
CS

∗

ρ (Y ) +
∑
a∈Ωρ

∞∑
k=1

CS
∗

akρ(ϕak(Y ))
)
m∗δS (B)

=
(
CS

∗

ρ (Y ) +
∑
a∈Ωρ

∞∑
k=1

CS
∗

akρ(ϕak(Y ))
)
mδS (B).

Since for every a ∈ Ωρ and for all integers k ≥ 0

diam
(
ϕak(Y )

)
�

{
(k + 1)−

1
pa if Y ∩ Ω∞ ∩ Ωρ 6= ∅,

(k + 1)−
pa+1
pa if Y ∩ Ω∞ ∩ Ωρ = ∅,

formula (12.4) along with (8.2), complete the proof of Theorem 12.1 if neither (1) nor (2)
hold. So, for the rest of the proof of the present case of ρ ∈ EN

∗A∗ , we assume that at least
one of (1) or (2) holds. Then

(12.5) CS
∗

ρ (Y ) +
∑
a∈Ωρ

∞∑
k=1

CS
∗

akρ(ϕak(Y )) < +∞,

and in addition, this number is bounded away from zero and bounded above independently
of ρ ∈ EN

∗A because of (8.2).

Now fix a ∈ Ωρ. If ω ∈ Da
kρ
ϕ
ak

(Y ),S∗(B, T ), then

diam
(
ϕω(ϕak(Y ))

)
≥ e−T ,

and, as

diam
(
ϕω(ϕak(Y ))

)
≤ ‖ϕ′ω‖∞diam

(
ϕak(Y )

)
≤ Q1diam(ϕω(Xt(ω)))diam

(
ϕak(Y )

)
= Q1diam(ϕω(Xi(a)))diam

(
ϕak(Y )

)
,

with some constant Q1 > 0, we thus conclude that

diam(ϕω(Xi(ω))) ≥ Q−1
1 e−Tdiam−1

(
ϕak(Y )

)
.

Equivalently,

∆Xi(a)
(ω) ≤ logQ1 + log diam

(
ϕak(Y )

)
+ T.

Thus

ω ∈ DaρXi(a),S∗
(

logQ1 + log diam
(
ϕak(Y )

)
+ T

)
.

In conclusion,

(12.6) Da
kρ
ϕ
ak

(Y ),S∗(B, T ) ⊆ DaρXi(a),S∗
(

logQ1 + log diam
(
ϕak(Y )

)
+ T

)
.
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By virtue of Theorem 8.1 there exists T1 > 0 such that

(12.7)
Daρ
Xi(a),S∗(B, S)

eδSS
≤ CS

∗

aρ (Xi(a)) + 1

for all S ≥ T1. Now, let k2(T ) be the least integer such that

logQ2 + log diam
(
ϕak(Y )

)
+ T < 0.

Then

(12.8) DaρXi(a),S∗
(

logQ2 + log diam
(
ϕak(Y )

)
+ T

)
= ∅

for all k ≥ k2(T ) and

k2(T ) ≤

{
Qpa

2 e
pa(T−T1) if (2) holds

Q
pa
pa+1

2 e
pa
pa+1

(T−T1) if (1) holds

with some constant Q2 ∈ (0,+∞), which in general depends on Y if (1) holds. Furthermore,
let k1(T ) be least integer such that

logQ2 + log diam
(
ϕak(Y )

)
+ T < T1.

Then, on the one hand,

logQ2 + log diam
(
ϕak(Y )

)
+ T < T1,

for all k ≥ k1(T ) and (so) it follows from (12.6) that

Da
kρ
ϕ
ak

(Y ),S∗(B, T ) ⊆ DaρXi(a),S∗(T1).

On the other hand,

logQ2 + log diam
(
ϕak(Y )

)
+ T ≥ T1
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for all 0 ≤ k ≤ k1(T ). All of this, together with (12.6)–(12.8), yield
(12.9)

∞∑
k=q+1

Dakρ
ϕ
ak

(Y ),S∗(B, T )

eδST
=

=

k1(T )∑
k=q+1

Dakρ
ϕ
ak

(Y ),S∗(B, T )

eδST
+

k2(T )∑
k=k1(T )+1

Dakρ
ϕ
ak

(Y ),S∗(B, T )

eδST

≤
[Q2epa(T−T1)]∑

k=q+1

Daρ
Xi(a),S∗

(
logQ2 + log diam

(
ϕak(Y )

)
+ T

)
exp

(
δS
(

logQ2 + log diam
(
ϕak(Y )

)
+ T

))QδS
2 diamδS

(
ϕak(Y )

)
+

+

k2(T )∑
k=k1(T )+1

Daρ
Xi(a),S∗(T1)

eδST1
eδS(T1−T )

≤ QδS
2

k1(T )∑
k=q+1

(
CS

∗

aρ (Xi(a)) + 1
)
diamδS

(
ϕak(Y )

)
+
(
CS

∗

aρ (Xi(a)) + 1
)
eδS(T1−T )k2(T )

≤ QδS
2

∞∑
k=q+1

(
CS

∗

aρ (Xi(a)) + 1
)
diamδS

(
ϕak(Y )

)
+
(
CS

∗

aρ (Xi(a)) + 1
)
eδS(T1−T )k2(T ).

Denote by Σ1(q, T ) the maximum over all a ∈ Ωρ of the first term in the last line of the
above formula and by Σ2(T ) the second term. Because we are assuming either (1) or (2)
from our current theorem, we have that in either case

(12.10) lim
q→∞

Σ1(q, T ) = 0 and lim
T→∞

Σ2(T ) = 0.

Keeping q ≥ 1 fixed, inserting (12.9) to (12.3), and applying Theorem 8.1, we obtain

lim
T→∞

Dρ
Y (B, T )

eδST
≤

≤ lim
T→∞

Dρ
Y,S∗(B, T )

eδST
+
∑
a∈Ωρ

q∑
k=1

lim
T→∞

Dakρ
ϕ
ak

(Y ),S∗(B, T )

eδST
+ #Ωρ

(
Σ1(q, T ) + Σ2(T )

)

≤

CS∗ρ (Y ) +
∑
a∈Ωρ

q∑
k=1

CS
∗

akρ(ϕak(Y ))

 m̃δS (B) + #Ω
(
Σ1(q, T ) + Σ2(T )

)
.

Therefore, invoking (12.10), we obtain by letting q →∞, that

lim
T→∞

Dρ
Y (B, T )

eδST
≤

CS∗ρ (Y ) +
∑
a∈Ωρ

∞∑
k=1

CS
∗

akρ(ϕak(Y ))

 m̃δS (B).
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Along with (12.4) this shows that formula (12.1) holds. The number

CS
∗

ρ (Y ) +
∑
a∈Ωρ

∞∑
k=1

CS
∗

akρ(ϕak(Y ))

is finite because of (12.5). Invoking also the sentence following this formula, we conclude
the proof in the case of words ρ ∈ EN

∗A∗ .

Now, we pass to the general case, i.e., all we assume is that ρ ∈ EN
A. For every k ≥ 1

choose ρ(k) ∈ EN
∗A∗ such that

ρ(k)|k = ρ|k.
We already know that there exists a constant M ≥ 1 such that

M−1 ≤ CY (ρ(k)) ≤M

for all integers k ≥ 1. So, passing to a subsequence, we may assume without loss of
generality that the limit

lim
k→+∞

CY (ρ(k))

exists and belongs to the interval [M−1,M ]. We denote this limit by CY (ρ).
Assume first that B ⊆ X is an open set. In order to emphasize the openness of the set

B and in order to clearly separate the present setup from the next one, we now denote B
by V . Fixing ε > 0, there then exist Fε, a compact subset of V and a number r(ε) > 0
such that

(12.11) m̃δS (V \Fε) < ε and m̃δS (B(V, r(ε))\V ) < ε

and

(12.12) m̃δS (∂Fε) = 0 and m̃δS (∂B(V, r(ε))) = 0,

where in writing the latter of these four requirements we used the fact that m̃δS (∂V ) = 0.
Hence there exists k ≥ 1 so large that for every ω ∈ Eρ (simultaneously meaning that
ω ∈ Eρk , we have that

ϕω
(
πS(ρ(k))

)
∈ Fε =⇒ ϕω(πS(ρ) ∈ V )

and

ϕω
(
πS(ρ)

)
∈ V =⇒ ϕω

(
πS(ρ(k))

)
∈ B(V, r(ε))).

Therefore, for every T > 0,

Dρ
(k)

Y (Fε, T ) ⊆ DρY (V, T ) ⊆ Dρ
(k)

Y (B(V, r(ε)), T )

so,

Dρ(k)

Y (Fε, T ) ≤ Dρ
Y (V, T ) ≤ Dρ(k)

Y (B(V, r(ε)), T ).
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Hence, applying the already proven assertion for words in E∞∗A∗ one gets

Cρ(k)(Y )m̃δS (Fε) = lim
T→+∞

D
(ρ(k))
Y (Fε, T )

eδST
≤ lim inf

T→+∞

D
(ρ)
Y (V, T )

eδST
≤ lim sup

T→+∞

D
(ρ)
Y (V, T )

eδST

≤ lim
T→+∞

Dρ(k)

Y (B(V, r(ε), T ))

eδST
= Cρ(k)(Y )m̃δS (B(V, r(ε))).

So, letting k → +∞ and invoking (12.12) we obtain that

Cρ(Y )m̃δS (Fε) ≤ lim inf
T→+∞

Dρ
Y (V, T )

eδST
≤ lim sup

T→+∞

Dρ
Y (V, T )

eδST
≤ Cρ(Y )m̃δS (B(V, r(ε))).

Hence, letting ε→ 0 and invoking 12.11 we get that

Cρ(Y )m̃δS (V ) ≤ lim inf
T→+∞

Dρ
Y (V, T )

eδST
≤ lim sup

T→+∞

Dρ
Y (V, T )

eδST
≤ Cρ(Y )m̃δS (V ),

and the theorem is fully proved for all open sets B. Having shown this, the general case can
be taken care of in exactly the same way as the part of the proof of Theorem 5.9, starting
right after formula (7.12). This completes the proof. �

Having established Theorem 12.1, by proceeding in a similar way to the way Theorem 8.4
was based on Theorem 8.1, we derive from Theorem 12.1, the following second main result
of the current section.

Theorem 12.2 (Asymptotic Equidistribution Formula of Diameters for Parabolic Systems,
II). Suppose that S is an irreducible parabolic conformal GDMS. Fix ρ ∈ E∞A and Y ⊆ Xi(ρ)

having at least two points and such that πS(ρ) ∈ Y . If B ⊂ X is a Borel set such that
m̃δS (∂B) = 0 (equivalently µ̃δS (∂B) = 0) then,

(12.13) lim
T→+∞

Eρ
Y (B, T )

eδST
= Cρ(Y )m̃δS (B),

where Cρ(Y ) ∈ (0,+∞] is a constant (the same as that of Theorem 12.1) depending only
on the system S, the word ρ (but see Remark 12.3), and the set Y . In addition Cρ(Y ) is
finite if and only if either

(1)

Y ∩ Ω∞ = (Y ∩ Ω∞ ∩ Ωρ) = ∅
or

(2)

δS > max
{
p(a) : a ∈ Ωρ and xa ∈ Y

}
.

Then the function [ρ1] 3 ω 7−→ Cω(Y ) is uniformly bounded away from zero and bounded
above.
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Remark 12.3. We now can essentially repeat Remark 8.5 verbatim with the only change
being the replacement of Theorem 8.4 and Theorem 8.1, respectively, by Theorem 12.2
and Theorem 12.1. For the sake of completeness, convenience of the reader, and ease of
referencing we summarize:

Since the left-hand side of (12.13) depends only on ρ1, i.e. the first coordinate of ρ, we
obtain that the constant CY (ρ) of Theorem 12.2 and Theorem 12.1, depends in fact only
on ρ1. Again, we could have provided a direct argument for this already when proving
Theorem 12.1 and this would not affect the proof of Theorem 12.2. Thus our approach
seems most economical.

The last three results of this section are derived from the, already established, results,
in the same way as the last three results of Section 8 were derived from the earlier results
of that section.

Theorem 12.4. Suppose that S is an irreducible parabolic conformal GDMS with property
(A). For any v ∈ V let Yv ⊆ Xv having at least two points. If B ⊂ X is a Borel set such
that m̃δS (∂B) = 0 (equivalently µ̃δS (∂B) = 0) and ρ ∈ E∞A is with ρ1 = av, then,

(12.14) lim
T→+∞

Dρ
Y (B, T )

eδST
= lim

T→+∞

Eρ
Y (B, T )

eδST
= Cv(Yv)m̃δS (B),

where Cv(Yv) ∈ (0,+∞] is a constant depending only on the vertex v ∈ V and the set Yv.
In particular, this holds for Yv := Xv, v ∈ V . In addition Cv(Y ) is finite if and only if
either

(1)
Y ∩ Ω∞ = (Y ∩ Ω∞ ∩ Ωav) = ∅

or
(2)

δS > max
{
p(a) : a ∈ Ωav and xa ∈ Y

}
.

Corollary 12.5. Suppose that S is an irreducible maximal parabolic conformal GDMS. For
any v ∈ V let Yv ⊆ Xv having at least two points be fixed. If B ⊂ X is a Borel set such
that m̃δS (∂B) = 0 (equivalently µ̃δS (∂B) = 0) and ρ ∈ E∞A is with i(ρ1) = v, then,

(12.15) lim
T→+∞

Dρ
Y (B, T )

eδST
= lim

T→+∞

Eρ
Y (B, T )

eδST
= Cv(Yv)m̃δS (B),

where Cv(Yv) ∈ (0,+∞] is a constant depending only on the vertex v ∈ V and the set Yv.
In particular, this holds for Yv := Xv, v ∈ V . In addition Cv(Y ) is finite if and only if
either

(1)
Y ∩ Ω∞ = (Y ∩ Ω∞ ∩ Ωv) = ∅

or
(2)

δS > max
{
p(a) : a ∈ Ωv and xa ∈ Y

}
.
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Corollary 12.6. Suppose that S is a conformal parabolic IFS acting on a phase space X.
Fix Y ⊆ X having at least two points. If B ⊂ X is a Borel set such that m̃δS (∂B) = 0
(equivalently µ̃δS (∂B) = 0) and ρ ∈ E∞A , then,

(12.16) lim
T→+∞

Dρ
Y (B, T )

eδST
= lim

T→+∞

Eρ
Y (B, T )

eδST
= C(Y )m̃δS (B),

where C(Y ) ∈ (0,+∞] is a constant depending only on the set Y . In particular, this holds
for Y := X. In addition C(Y ) is finite if and only if either

(1)

Y ∩ Ω∞ = ∅

or
(2)

δS > max
{
p(a) : a ∈ Ω and xa ∈ Y

}
.

Part 3. Central Limit Theorems
We now consider the distribution of weights and the Central Limit Theorems. In this

section we will formulate the results in full generality and provide their applications in
subsequent sections.

Let us consider a conformal, either attracting or parabolic, GDMS. As we did in previous
sections, we can associate to finite words ω ∈ E∗A both the weights λi(ω) (i = p, ρ) and the
word length |ω|. We would like to understand how these quantities are related for typical
orbits, which leads naturally to the study of Central Limit Theorems. The most familiar and
natural formulation of Central Limit Theorems (CLT) is with respect to invariant measures.
However, in the present context it is equally natural to give versions for preimages and
periodic points.

13. Central Limit Theorems for Multipliers and Diameters: Attracting
GDMSs with Invariant Measure µδS

As an immediate consequence of Theorem 2.5.4 (which easiliy follows from Theorem 7.1 in
[65]), Lemma 2.5.6, Lemma 4.8.8 from [47], and Remark 9.8 from our present monograph,
we get the following version of the Central Limit Theorem for attracting systems and
Gibbs/equilibrium states.

Theorem 13.1. If S is a strongly regular finitely irreducible D–generic conformal GDMS
2, then there exists σ2 > 0 (in fact σ2 = P′′(0) 6= 0 because of Remark 9.8 and since the

2In fact µδS below can be replaced by the (unique) Gibbs/equilibrium state of any Hölder continuous
summable potential f : E∞

A → R.
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system S is D–generic) such that if G ⊂ R is a Lebesgue measurable set with Leb(∂G) = 0,
then

lim
n→+∞

µδS

({
ω ∈ E∞A :

− log
∣∣ϕ′ω|n(πS(σn(ω)))

∣∣− χµδSn√
n

∈ G

})
=

1√
2πσ

∫
G

e−
t2

2σ2 dt.

In particular, for any α < β

lim
n→+∞

µδS

({
ω ∈ E∞A : α ≤

− log
∣∣ϕ′ω|n(πS(σn(ω)))

∣∣− χµδSn√
n

≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

Since by the Bounded Distortion Property (BDP) of the definition of attracting GDMSs,
the numbers ∣∣ log diam

(
ϕ|ω|n(Yt(ω))

)
− log |ϕ′ω|n(πS(σn(ω))|

∣∣
are uniformly bounded above and since limn→+∞

√
n = +∞ we immediately obtain from

Theorem 13.1 its version with − log
∣∣ϕ′ω|n(πS(σn(ω)))

∣∣ replaced by − log diam
(
ϕ|ω|n(Yt(ω))

)
.

This gives the following.

Theorem 13.2. Suppose that S is a strongly regular finitely irreducible D–generic confor-
mal GDMS3. Let σ2 := P′′(0)(6= 0). For every v ∈ V let Yv ⊂ Xv be a set with at least two
points. If G ⊂ R is a Lebesgue measurable set with Leb(∂G) = 0, then

lim
n→+∞

µδS

({
ω ∈ E∞A :

− log diam(ϕω|n(Yt(ωn)))− χµδSn√
n

∈ G
})

=
1√
2πσ

∫
G

e−
t2

2σ2 dt.

In particular, for any α < β

lim
n→+∞

µδS

({
ω ∈ E∞A : α ≤

− log diam(ϕω|n(Yt(ωn)))− χµδSn√
n

≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

Also, as an immediate consequence of the appropriate results from [47] and Remark 9.8
from our present monograph, we get the following Law of Iterated Logarithm.

Theorem 13.3. Suppose that there S is a strongly regular finitely irreducible D–generic
conformal GDMS4. Let σ2 := P′′(0) > 0. For every v ∈ V let Yv ⊂ Xv be a set with at least
two points. Then for µδS–a.e. ω ∈ E∞A , we have that

lim sup
n→+∞

− log
∣∣(ϕ′ω|n(πS(σn(ω)))

∣∣− χµδSn√
n log log n

=
√

2πσ

and

lim sup
n→+∞

− log diam
(
ϕω|n(Yt(ωn))

)
− χµδSn√

n log log n
=
√

2πσ.

3In fact µδS below can be replaced by the (unique) Gibbs/equilibrium state of any Hölder continuous
summable potential f : E∞

A → R.
4In fact µδS below can be replaced by the (unique) Gibbs/equilibrium state of any Hölder continuous

summable potential f : E∞
A → R.
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Remark 13.4. It is possible to reverse the roles of the word length and the weights. More
precisely, given ω ∈ EA and t ≥ 0 we can define n = n(t, ω) to be the only integer for which

λ(ω|n) ≤ t < λ(ω|n+1).

Ergodicity of measure µδS and Birkhoff’s Ergodic Theorem then yield

lim
t→+∞

t

n(t, ω)
= χµδS

for µδS–a.e. ω ∈ E∞A . We claim that there exists σ2
0 > 0 such that for any α < β

lim
t→+∞

µδS

({
ω ∈ E∞A : α ≤

λ(ω|n(t,ω))− χµδS t√
t

≤ β

})
=

1√
2πσ

∫ β

α

e−u
2/2σ2

0 du.

This is obtained by reinterpreting an approach of Melbourne and Törok, originally applied
in the case of suspended flow [49]. In particular, they showed that if a discrete system
satisfies a central limit theorem with variance σ2, then a suitable suspension flows also
satisfy the CLT. 5 In the present case one takes σ : EA → EA as the discrete transformation
and a roof function r : EA → R defined by r = − log

∣∣ϕ′ω1
(πS(σ(ω)))

∣∣. For the suspension
space Er

A = {(ω, u) : 0 ≤ u ≤ r(ω)} with the identifications (ω, r(ω)) ∼ (σω, 0) one
can consider the suspension flow σrt : Er

A → Er
A defined by σrt (ω, u) = (ω, u + t), up to

the identifications. We can associate to the σ-invariant probability measure a ϕ-invariant
probability measure µ̂σ defined by dµ̂σ = dµσ × dt/

∫
rdµδS . Given a function F : Er

A → R
the CLT for the flow gives that

lim
t→+∞

µ̂δS

({
(ω, u) ∈ Er

A : α ≤
∫ t

0
F ◦ ϕs(ω, u)ds− t

∫
dµ̂δS√

t
≤ β

})
=

1√
2πσ

∫ β

α

e−u
2/2σ2

1 du,

where σ2
1 = σ2

0/χµδS cf. [49], §3.We would like to choose F so that
∫ t

0
F ◦ ϕs(ω, u)ds

corresponds to λ(ω|n(t,ω)). To this end one chooses a function F which integrates to unity

on fibers, i.e.,
∫ r(ω)

0
F (ω, u)du = 1 for all ω ∈ ΣA, and has support close to EA × {0}.

Thus the Central Limit Theorem for the suspension flow corresponds to the Central Limit
Theorem formulated above in t. The variances are related by a factor of

∫
rdµδS .

We now turn the the parabolic setting.

14. Central Limit Theorems for Multipliers and Diameters: Parabolic
GDMSs with Finite Invariant Measure µδS

Through this whole section we assume that the invariant measure µδS is finite, so nor-
malized to be probability one. We want to consider analogous comparison results in the
context of parabolic GDMSs. Following the approach described in Section 9, given a para-
bolic conformal GDMS S we associate to it a conformal GDMS S∗. In this case the Central

5There is a mild hypothesis on the roof function r which is satisfied if r ∈ L4, say. This is the case in
our present context.
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Limit Theorem for the measure µ∗δS associated to S∗ translates into a Central Limit The-
orem for the parabolic system S and its measure µδS . This leads to the following results,
the first of which is the analogue of Theorem 13.1.

Theorem 14.1. If S is a finitely irreducible parabolic conformal GDMS with δS >
2p
p+1

6,

then there exists σ2 > 0 such that if G ⊂ R is a Lebesgue measurable set with Leb(∂G) = 0,
then

lim
n→+∞

µδS

({
ω ∈ E∞A :

− log
∣∣ϕ′ω|n(πS(σn(ω)))

∣∣− χµδSn√
n

∈ G

})
=

1√
2πσ

∫
G

e−
t2

2σ2 dt.

In particular, for any α < β

lim
n→+∞

µδS

({
ω ∈ E∞A : α ≤

− log
∣∣ϕ′ω|n(πS(σn(ω)))

∣∣− χµδSn√
n

≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

Proof. By Theorem 9.6, the hypothesis that δS >
2p
p+1

precisely means that measure µδS is

finite, and, as always, we normalize it to be a probability measure. Because of Theorem 9.7
and Remark 9.8 Theorem 14.1 then is a standard consequence of L. S. Young’s tower
approach [94], [95], comp. [26], [26], and [26]. �

The second result is the parabolic analogue of Theorem 13.2.

Theorem 14.2. Let S be a finite alphabet irreducible parabolic GDMS with δS >
2p
p+1

7.

Then there exists σ2 > 0 such that if for every v ∈ V , a set Yv ⊂ Xv is given having at
least two points and whose closure is disjoint from the set of parabolic fixed points Ω, then
for every Lebesgue measurable set G ⊂ R with Leb(∂G) = 0, we have that

lim
n→+∞

µδS

({
ω ∈ E∞A :

− log diam(ϕω|n(Yt(ωn)))− χµtn√
n

∈ G
})

=
1√
2πσ

∫
G

e−t
2/2σdt.

In particular, for any α < β

lim
n→+∞

µδS

({
ω ∈ E∞A : α ≤

− log diam(ϕω|n(Yt(ωn)))− χµtn√
n

≤ β

})
=

1√
2πσ

∫ β

α

e−t
2/2σdt.

Proof. Because of Theorem 14.1, it suffices to show that

lim
n→+∞

µδS
(
{ω ∈ E∞A :

∣∣ log diam(ϕω|n(Yt(ωn))
∣∣− log

∣∣ϕ′ω|n(πS(σn(ω))
∣∣ ≥ n1/4}

)
= 0.

To show this, write

gn(ω) :=
∣∣ log diam(ϕω|n(Yt(ωn))

∣∣− log
∣∣ϕ′ω|n(πS(σn(ω))

∣∣.
6By Theorem 9.6, this precisely means that measure µδS is finite, and, as always, we normalize it to be

a probability measure.
7As above
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Since the set EN
A \EN

A∗ is countable and the measure µδS is atomless, it suffices to deal with
the elements of EN

A\EN
A∗ only. Each such element ω has a unique representation in the form

ω = τajσn(ω),

where τ ∈ E∗∗,A∗ , a ∈ Ω and j = j(ω) ∈ {0, 1, · · · , n− |τ |}. Then for every n ≥ 0 either

diam(ϕω|n(Yt(ωn))) � ‖ϕ′τ‖(j + 1)−1/pa or diam(ϕω|n(Yt(ωn))) � ‖ϕ′τ‖(j + 1)(pa+1)/pa ,

respectively, depending on whether a ∈ Y t(ωn) or not. In either case

diam(ϕω|n(Yt(ωn))) � ‖ϕ′τ‖(j + 1)−α

where α ∈ {1/pa, (pa + 1)/pa}. Since ω ∈ EN
A \ EN

A∗ , there exists a largest (finite) k ≥ 0
such that

ω ∈ [τaj+k].

Then ∣∣ϕ′ω|n(πS(σn(ω)
)∣∣ � ‖ϕ′τ‖(j + k + 1)−

pa+1
pa (k + 1)

pa+1
pa .

Hence

gn(ω) ≤ pa + 1

pa

(
log(k + 1) + log(j + k + 1) + α log(j + 1) + Γ+

)
≤ Γ log(j + k + 1)

where Γ+ ∈ [0,+∞) and Γ ∈ [1,+∞) are some universal constants independent of ω and
n. Then∫

ω∈E∞
A∗ :j(ω)=j

gn(ω)dµδS (ω) ≤ Σj := Γ
∑

τ∈En−jA (∗)

∑
a∈Ω

∑
b 6=a
Aab=1

∞∑
k=0

log(j + k + 1)µδS ([τaj+kb]),

where En−j
A (∗) denotes the set of all finite words of “real” length n− j that belong to E∗∗A∗.

Now represent each element τ ∈ En−j
A (∗) uniquely as cldγ, where l ≥ 0, c ∈ Ω, d 6= c. Then

both cld and γ belong to E∗∗A∗ , and we can write

Σj = Γ
∑
c∈Ω

∑
d6=c
Acd=1

∑
γ∈E∗∗A∗

n−j−1∑
l=0

∑
a∈Ω

∑
b 6=a
Aab=1

∞∑
k=0

log(j + k + 1)µδS ([cldγaj+kb]).
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Now since the Radon-Nikodym derivative
dµδS
dmδS

is comparable to l+ 1 on cld and since the

three words cld, γ and aj+kb, belong to E∗A∗ , we obtain

Σj �
∑
c∈Ω

∑
d6=c
Acd=1

∑
γ∈E∗∗A∗

dγ∈En−k−l−1
A

n−j−1∑
l=0

∑
a∈Ω

∑
b 6=a
Aab=1

∞∑
k=0

log(j + k + 1)(l + 1)mδS ([cldγaj+kb])

�
∑
c∈Ω

∑
d6=c
Acd=1

∑
γ∈E∗∗A∗

dγ∈En−k−l−1
A

n−j−1∑
l=0

∑
a∈Ω

∑
b 6=a
Aab=1

∞∑
k=0

log(j + k + 1)(l + 1)mδS ([cld])mδS ([γ])mδS ([aj+kb])

�
∑
c∈Ω

∑
a∈Ω

∞∑
l=0

∞∑
k=1

log(j + k + 1)(l + 1)1− pa+1
pa

δS (j + k + 1)−
pa+1
pa

δS

�
∑
a∈Ω

∞∑
k=0

log(j + k + 1)(j + k + 1)−
pa+1
pa

δS

where the last comparability sign we wrote because 1− pa+1
pa

δS < −1 for all c ∈ Ω. Therefore,∫
E∞A

gndµδS =
n∑
j=0

∫
{ω∈E∞

A∗ :j(ω)=j}
gn(ω)dµ(ω)

�
∞∑
j=0

∑
a∈Ω

∞∑
k=1

log(j + k)(j + k)−
pa+1
pa

δS

� D :=
∞∑
j=0

∞∑
k=1

log(j + k)(j + k)−
p+1
p
δS < +∞,

where, we recall, p = max{pa : a ∈ Ω} and the constant D is finite since p+1
p
δS > 2.

Therefore, Tchebyschev’s Inequality tells us that

µδS
(
{ω ∈ E∞A : gn(ω) ≥ n1/4}

)
≤

∫
E∞A

gndµδS

n1/4
≤ Dn−1/4,

and the proof is complete. �

Remark 14.3. There are a variety of even stronger results, e.g., Functional Central Limit
Theorems and Invariance Principles, based on approximation by Brownian Motion, which
should also hold with a little more work. Similarly, there are other complementary results
such as large deviation results.

Remark 14.4. There are possible stronger results of other kinds as well. For example, in
both the hyperbolic and parabolic settings there is the possibility of estimating error terms
and obtaining local limit theorems as in [24] and [25].
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15. Central Limit Theorems: Asymptotic Counting Functions for
Attracting GDMSs

In this subsection we work in the setting of attracting GDMSs. We again fix ρ ∈ E∞A .
For any n ≥ 1 and ω ∈ En

ρ consider the weights

e−δSλρ(ω) = |ϕ′ω(π(ρ))|δS .

More precisely, for every set H ⊂ En
ρ , we define

(15.1) µn(H) :=

∑
ω∈H e

−δSλρ(ω)∑
ω∈Enρ

e−δSλρ(ω)
=
LnδS11[H](ρ)

LnδS11(ρ)
.

Define the function λ : E∞A → R by the formula:

λ(ω) = − log |ϕ′ω1
(σ(ω))|.

In particular, for every τ ∈ E∗ρ , say τ ∈ En
ρ ,

λρ(τ) =
n−1∑
j=0

λ
(
σj(τρ)

)
.

We first prove the following.

Theorem 15.1. If S is a finitely irreducible strongly regular conformal GDMS, then for
every ρ ∈ E∞A we have that

(15.2) lim
n→+∞

∫
Enρ

λρ
n
dµn = χµδS =

∫
E∞ρ

λdµδS .

Proof. The idea of the proof is to represent the integral∫
Enρ

λρ
n
dµn

as the ratio of (sums of) Perron–Frobenius operators, and then to use the spectral properties
of the operator LδS . However, there is a difficulty in such an approach which does not
appear in the case of a finite alphabet. The character of this difficulty is that although
the function λ : E∞A → R is always Hölder continuous, in the case of infinite alphabet it is
unbounded. The remedy comes from the fact that LδS (11) is a Hölder continuous bounded
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function. Beginning the proof, we have∫ n

Eρ

λρ
n
dµn =

1
n
LnδS
(∑n−1

j=0 λ ◦ σj
)
(ρ)

LnδS (11)(ρ)
=

1
n

∑n−1
j=0 LnδS (λ ◦ σj)(ρ)

LnδS (11)(ρ)

=
1
n

∑n−1
j=0 L

n−j
δS

(
LjδS (λ ◦ σj)

)
(ρ)

LnδS (11)(ρ)

=
1
n

∑n−1
j=0 L

n−j
δS

(
λLjδS11

)
(ρ)

LnδS (11)(ρ)

=
1
n

∑n−1
j=0 L

n−(j+1)
δS

(
LδS (λLjδS11)

)
(ρ)

LnδS (11)(ρ)
.

Now a straightforward calculation based on the strong regularity of the system S shows
that the Hölder norms of the functions LδS (λLiδS11), i ≥ 0, are uniformly bounded above.

With the fact that the sequence (LiδSg)∞i=0 converges uniformly (in fact exponentially fast)

to
∫
gdmδSψδS for every bounded Hölder continuous function g : E∞A → R we conclude

that the sequence (LδS (λLjδS11))∞j=0 converges uniformly to LδS (λψδS ). So, fixing ε > 0, we
can find k1 ≥ 1 such that

‖LδS (λLjδS11)− LδS (λψδS )‖α ≤ ε

for all j ≥ k1. Furthermore, there exist N ≥ k2 ≥ k1 such that for all n ≥ N and all
j ≤ n− k2, ∥∥∥Ln−jδS

(λLjδS11)−
∫
LδS (λψδS )dmδSψδS

∥∥∥
α
≤ ε.

But
∫
LδS (λψδS )dmδS =

∫
λψδSdmδS =

∫
λdµδS and M := sup{‖LnδS11‖α : n ≥ 0} is finite.

So we can conclude that∥∥∥Ln−(j+1)
δS

LδS (λLjδS11)−
∫
λdµδSψδS

∥∥∥
α
≤ (1 +M)ε

for all n ≥ N and all k1 ≤ j ≤ n− k2. Hence∫
λdµδS − (1 +M)ε ≤ lim inf

n→+∞

∫
EnS

λδS
n
dµ ≤ lim sup

n→+∞

∫
EnS

λδS
n
dµ ≤

∫
λdµδS + (M + 1)ε.

Letting ε→ 0, then concludes the proof. �

Now we are next going to prove versions of the Central Limit Theorem (CLT) that involve
counting. This requires some preparatory steps.

We define the functions ∆n : En
ρ → R by the formulae

(15.3) ∆n(ω) :=
λρ(ω)− χδSn√

n
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and consider the sequence (µn ◦ ∆−1
n )∞n=1 of probability distributions on R. Observe that

for every Borel set F ⊂ R, we have that

(15.4)

µn ◦∆−1
n (F ) =

LnδS11[∆−1
n (F )](ρ)

LnδS11(ρ)
=
LnδS (11F ◦∆n)(ρ)

LnδS11(ρ)

=

∑
ω∈Enρ

e−δSλp(ω)11F (∆n(ω))∑
ω∈Enρ

e−δSλp(ω)

=

∑
ω∈Enρ

e−δSλp(ω)11F

(
λρ(ω)−χδSn√

n

)
∑

ω∈Enρ
e−δSλp(ω)

where in the third term the function ∆n is considered as defined on EN
A by the formula

∆n(ω) =
λρ(ω|n)− χδSn√

n
.

Our last counting result for attracting systems is the following.

Theorem 15.2. If S is a strongly regular finitely irreducible D–generic attracting conformal
graph directed Markov system, then the sequence of random variables (∆n)∞n=1 converges in
distribution to the normal (Gaussian) distribution N0(σ) with mean value zero and the
variance σ2 = P′′(δS) (the latter being positive because of Remark 9.8 and since the system
S is D–generic). Equivalently, the sequence (µn ◦∆−1

n )∞n=1 converges weakly to the normal
distribution N0(σ2). This means that for every Borel set F ⊂ R with Leb(∂F ) = 0, we
have

(15.5) lim
n→+∞

µn(∆−1
n (F )) =

1√
2πσ

∫
F

e−t
2/2σ2

dt.

Proof. This theorem is equivalent to showing that the characteristic functions (or Fourier
transforms) of the measures µn ◦∆−1

n converge to the characteristic function of N0(σ2), i.e.,

to the function R 3 t 7−→ e−σ
2t2/2. By the formula (6.2) we have for every t ∈ R that∫

R
eitxdµn ◦∆−1

n (x) =

∫
Enρ

eit∆n(ω)dµn(ω) =
LnδS (eit∆n)(ρ)

LnδS11(ρ)

= e−tχδS
√
n
Ln
δS− it√

n

11(ρ)

LnδS11(ρ)

= e−tχδS
√
n

λnδS− it√
n

QδS− it√
n
(11)(ρ) + Sn

δS− it√
n

11(ρ)

ψδS (ρ) + SnδS11(ρ)

 .

It therefore follows from items (4), (5) and (6) following formula 6.2 that

lim
n→+∞

∫
R
eitxdµn ◦∆−1

n (x) = lim
n→+∞

e−itχδS
√
nλn

δS− it√
n

.
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Denote by log λs, s belonging to some sufficiently small neighborhood of δS , the principle
branch of the logarithm of λs, i.e., that determined by the requirement that log λδS = 0.
Since log λs = P(s) for real s > γs and since P′(0) = −χδS , we therefore get that

λs = exp(log λs) = exp

(
−χδS (s− δ) +

δS
2

2
(s− δS)2 +O(|s− δS |3)

)
.

So for s = δS − it√
n

we get

λδS− it√
n

= exp

(
i
tχδS√
n
− σ2t2

2n
+O(n−3/2)

)
.

Therefore,

e−itχδS
√
nλn

δS− it√
n

= e−itχδS
√
n exp

(
itχδS

√
n− σ2t2

2
+O(n−1/2)

)
= exp

(
−σ

2t2

2
+O(n−1/2)

)
.

So finally

lim
n→+∞

∫
R
eitxdµn ◦∆−1

n (x) = exp
(
−σ2t2/2

)
.

Thus since R 3 t 7−→ exp (−σ2t2/2) is the characteristic function of the Gaussian distribu-
tion N0(σ2), the proof is complete. �

16. Central Limit Theorems: Asymptotic Counting Functions for
Parabolic GDMSs

We want to extend the Central Limit Theorem for counting functions from the previous
(attracting GDNSs) subsection to the case of parabolic GDMSs. We are in the same setting
as in Section 9 i.e., S = {ϕe}e∈E is an irreducible conformal parabolic GDMS. Furthermore,
the functions ∆n and measures µn have formally the same definitions as their “attracting”
counterparts given in Subsection 13 respectively by formulae (15.3) and (15.1). We start
with the following analogue of Theorem 15.1.

Theorem 16.1. If S is an irreducible parabolic conformal GDMS for which

δS >
2pS
pS + 1

,

i.e the invariant measure µδS is finite (so a probability after normalization), then for every
ρ ∈ E∞A∗

lim
n→+∞

∫
λρ
n
dµn =

∫
E∞A

λdµδS = χδS .
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Proof. Since the behavior of iterates of the Perron–Frobenius operator LδS is now (in the
parabolic context) more complicated than in the attracting case, we need to provide a
conceptually different proof than that of Theorem 15.1. We will make an essential use of
Birkhoff’s Ergodic Theorem instead.

Firstly, we fix ε > 0. Then it follows from Birkhoff’s Ergodic Theorem, along with
both Lusin’s Theorem and Egorov’s Theorem, that there exists an integer Nε ≥ 1 and a
measurable set F (ε) ⊂ E∞A such that mδS (F (ε)) > 1−ε (remembering that mδS is equivalent
to µδS ) for every τ ∈ F (ε) and every integer n ≥ Nε,∣∣∣∣∣

∑n−1
j=0 λ ◦ σj(τ)

n
− χδS

∣∣∣∣∣ ≤ ε.

For all n ≥ N2 let

Fρ(ε, n) := {ω ∈ En
ρ : ωρ ∈ F (ε)} and F c

ρ (ε, n) := {ω ∈ En
ρ : ωρ ∈ F c(ε)}

Then

(16.1)

∣∣∣∣∣ ∑
ω∈Fρ(ε,n)

λρ(ω)

n

|ϕ′ω(π(ρ))|δS
LnδS11(ρ)

−
∑

ω∈Fρ(ε,n)

χδS
|ϕ′ω(π(ρ))|δS
LnδS11(ρ)

∣∣∣∣∣ =

=

∣∣∣∣∣∣
∑

ω∈Fρ(ε,n)

(
λρ(ω)

n
− χδS

)
|ϕ′ω(π(ρ))|δS
LnδS11(ρ)

∣∣∣∣∣∣
=

∣∣∣∣λρ(ω)

n
− χδS

∣∣∣∣ ∑
ω∈Fρ(ε,n)

|ϕ′ω(π(ρ))|δS
LnδS11(ρ)

=

∣∣∣∣λρ(ω)

n
− χδS

∣∣∣∣ ≤ ε.

Now given a positive number M and an arbitrary function g : E∞A → R for which |g| ≤M ,
we have that∣∣∣∣∣∣
∑

ω∈F cρ (ε,n)

g(ωρ)
|ϕ′ω(π(ρ))|δS
LnδS11(ρ)

∣∣∣∣∣∣ ≤ M

LnδS11(ρ)

∑
ω∈F cρ (ε,n)

|ϕ′ω(π(ρ))|δS ≤ M ′

LnδS11(ρ)

∑
ω∈F cρ (ε,n)

mδS ([ω])

=
M ′

LnδS11(ρ)
mδS (F c

ρ (ε, n))

≤ M ′

LnδS11(ρ)
ε,

with some appropriate constant M ′ > 0. Now it follows from Theorem E of [33] that there
exists a constant Qρ ≥ 1, depending on ρ (in fact depending only on dist(π(ρ),Ω)) such
that

Q−1
ρ ≤ LnδS (ρ) ≤ Qρ
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for every integer n ≥ 0. We therefore get

(16.2)

∣∣∣∣∣∣
∑

ω∈F cρ (ε,n)

g(ωρ)
|ϕ′ω(π(ρ))|δS
LnδS11(ρ)

∣∣∣∣∣∣ ≤M ′Qρε.

Since

0 ≤ 1

n

n−1∑
j=0

λ ◦ σj ≤M

for every n ≥ 1, applying (16.1) and also (16.2) for both

g =
1

n

n−1∑
j=0

λ ◦ σj and g = χδS ,

we get the following bound:∣∣∣∣ ∫
Enρ

λρ
n
dµn − χδS

∣∣∣∣ ≤
≤

∣∣∣∣∣
(∫

Fρ(ε,n)

λρ
n
dµn −

∫
Fρ(ε,n)

χδSdµn

)
+

(∫
F cρ (ε,n)

λρ
n
dµn −

∫
F cρ (ε,n)

χδSdµn

)∣∣∣∣∣
≤

∣∣∣∣∣
∫
Fρ(ε,n)

λρ
n
dµn −

∫
Fρ(ε,n)

χδSdµn

∣∣∣∣∣+

∣∣∣∣∣
∫
Fρ(ε,n)c

λρ
n
dµn −

∫
Fρ(ε,n)c

χδSdµn

∣∣∣∣∣
≤
∣∣∣∣ ∑
ω∈Fs(ε,n)

λρ(ω)

n

|ϕ′ω(π(ρ))|δS
LnδS1(ρ)

−
∑

ω∈Fs(ε,n)

χδS
|ϕ′ω(π(ρ))|δS
LnδS1(ρ)

∣∣∣∣+
+

∣∣∣∣∣
∫
F cρ (ε,n)

λρ
n
dµu

∣∣∣∣∣+

∣∣∣∣∣
∫
F cρ (ε,n)

χδSdµu

∣∣∣∣∣
≤ ε+

∣∣∣∣∣∣
∑

ω∈F cs (ε,n)

λρ(ω)

n

|ϕ′ω(π(ρ))|δS
LnδS11(ρ)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

ω∈F cs (ε,n)

χδS
|ϕ′ω(π(ρ))|δS
LnδS11(ρ)

∣∣∣∣∣∣
≤ ε+M ′Qρε+M ′Qρε

≤ (1 + 2M ′Qρ)ε.

Hence, letting ε→ 0 we obtained ∫
Enρ

λρ
n
dµn = χδS

and the proof is complete. �

Our main theorem in this subsection is the following.
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Theorem 16.2. If S is an irreducible parabolic conformal GDMS for which

δS >
2pS
pS + 1

,

i.e the invariant measure µδS is finite (so a probability after normalization), then the se-
quence of random variables (∆n)∞n=1 converges in distribution to the normal (Gaussian)
distribution N0(σ2) with mean value zero and the variance σ2 = P ′′∗ (δS) > 0. Equivalently,
the sequence (µn◦∆−1

n )∞n=1 converges weakly to the normal distribution N0(σ2). This means
that for every Borel set F ⊂ R with Leb(∂F ) = 0, we have

(16.3) lim
n→+∞

µn(∆−1
n (F )) =

1√
2πσ

∫
F

e−t
2/2σ2

dt.

Proof. Using our previous notation recall that

ψδS =
dµδS
dmδS

.

Then
LδSψδS = ψδS ,

and we can define the operator L̂δS : L1(µδS )→ L1(µδS ) by the formula

L̂δS (g) =
1

ψδS
LδS (gψδS ).

Then
L̂δS (11) = 11

and L̂δS is the Perron–Frobenius operator associated to the measure–preserving symbolic
dynamical system (σ, µδS ). Following Gouëzel [27], for every integer q ≥ 1 we consider the
set

Zq :=
⋃
b∈Ω

⋃
e∈E\{b}
Abe=1

{bke : 1 ≤ k ≤ q} ∪ (E \ Ω)

and the first return map σq : Zq → Zq. Still following [27], given an integer n ≥ 1 we define

an operator L̂(n)
δS

: L1(µδS )→ L1(µδS ) by the formula

L̂(n)
δS

(g) := 11ZqL̂nδS (g11Zq).

Now our setting entirely fits into the hypothesis of section 2, 3 and 4 of Gouëzel’s paper
[27]. In particular, Theorem 2.1 (especially its formula (2)), Theorem 3.7 and Lemma 4.4
of [27] apply to give (compare the last formula of the proof of Proposition 4.6 in [27]) for
any τ ∈ Zq and any t ∈ R that

(16.4) lim
n→+∞

∣∣∣L̂(n)
δS

(eit∆n)(ρ)− µδS (Zq)
2e−σ

2/2t2
∣∣∣ = 0.

Now there exists q0 ≥ 0 such that ρ ∈ Zq0 . Fix ε > 0. Take q ≥ q0 sufficiently large, say,
q ≥ q1 ≥ q0 that

(16.5) 1− µδS (Zq)
2 < ε.



100 MARK POLLICOTT AND MARIUSZ URBAŃSKI

Then by (16.4)

(16.6) lim sup
n→+∞

∣∣∣L̂(n)
δS

(eit∆n)(ρ)− e−σ2/2t2
∣∣∣ ≤ εe−σ

2/2t2 .

Now define µ′n analogously to (15.1), i.e., for H ⊂ En
∗,ρ:

µ′n(H) =
∑
ω∈H

e−δSλρ(ω).

Then the same calculation as (21.2) gives∫
R
eitxdµ′n ◦∆−1

n (x) = L̂nδS (eit∆n)(ρ) = L̂(n)
δS

(eit∆n)(ρ) + L̂δS (11Zcqe
it∆n)(ρ).

But

(16.7)
∣∣∣L̂δS (11Zcqe

it∆n)(ρ)
∣∣∣ ≤ ∣∣∣L̂δS (11Zcq )(ρ)

∣∣∣ = L̂δS (11Zcq )(ρ),

and according to Theorem E in [33] we can write

lim
n→+∞

L̂δS (11Zcq )(ρ) = µδS (11Zcq ) = 1− µδS (11Zq).

Combining this along with (16.4), (16.6) and (16.7) gives

lim sup
n→+∞

∣∣∣∣∫
R
eitxdµ′n ◦∆−1

n (x)− e−σ2/2t2
∣∣∣∣ ≤ εe−σ

2/2t2 + 1− µδS (Zq) ≤ (1 + e−σ
2/2t2)ε.

Hence

lim
n→+∞

∫
R
eitxdµ′n ◦∆−1

n (x) = e−σ
2/2t2 .

Therefore, formula (16.3) holds with µn replaced µ′n. Because of this, because the measures
µn and µ′n are equivalent for all n ≥ 1, and since, by Theorem E of [33] again, for the
sequence (µ′n)∞n=1,

lim
n→+∞

dµn
dµ′n

(x) = 1

uniformly with respect to all x ∈ R, we finally conclude that the formula (16.3) holds for
measures µn, n ≥ 1. Thus the proof of Theorem 16.2 is complete. �

Part 4. Examples and Applications, I

17. Attracting/Expanding Conformal Dynamical Systems

In this section we deal with a class of conformal dynamical systems that are expand-
ing and we show that their, appropriately organized, inverse holomorphic branches form
conformal attracting GDMSs. We also examine in greater detail some special countable
alphabet conformal attracting GDMSs.
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17.1. Conformal Expanding Repellers. In this section we deal with conformal expand-
ing repellers. We do it by applying the theory developed in the previous sections. In fact
it suffices to work here with conformal GDMSs modeled on finite alphabets E. However,
most of the results proved in this section are entirely new.

Let us start with the the definition of a conformal expanding repeller, the primary object
of interest in this subsection.

Definition 17.1. Let U be an open subset of Rd, d ≥ 1. Let X be a compact subset of U .
Let f : U → Rd be a conformal map. The map f is called a conformal expanding repeller
if the following conditions are satisfied:

(1) f(X) = X,

(2) |f ′|X | > 1,

(3) there exists an open set V such that V ⊂ U and

X =
∞⋂
k=0

f−n(V ),

and
(4) the map f |X : X → X is topologically transitive.

Note that f is not required to be one-to-one; in fact usually it is not one-to-one. Abusing
notation slightly we frequently refer also to the set X alone as a conformal expanding
repeller. In order to use a uniform terminology we also call X the limit set of f .

Typical examples of conformal expanding repellers are provided by the following.

Proposition 17.2. If f : Ĉ→ Ĉ is a rational function of degree d ≥ 2, such that the map
f restricted to its Julia set J(f) is expanding, then J(f) is a conformal expanding repeller.

The basic concept associated with such repellers which will be used in this section is
given by the following definition.

Definition 17.3. A finite cover R = {Re : e ∈ F} of X is said to be a Markov partition
of the space X for the mapping T if the following conditions are satisfied.

(a) Re = IntRe for all e ∈ F .

(b) IntRa ∩ IntRb = ∅ for all a 6= b.

(c) IntRb ∩ f(IntRa) 6= ∅ =⇒ Rb ⊂ f(Ra) whenever a, b ∈ F .

The elements of a Markov partition will be called cells in the sequel. The basic theorem
about Markov partitions proved, for ex. in [74], is this.

Theorem 17.4. Any conformal expanding repeller f : X → X admits Markov partitions
of arbitrarily small diameters.
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Fix β > 0 so small that for every x ∈ X and every n ≥ 0 there exists f−nx : B(fn(x), 4β)→
Rd, a unique continuous branch of f−n sending fn(x) to x. Theorem 17.4 guarantees us the
existence of R = {Rj : j ∈ F}, a Markov partition of f with all cells of diameter smaller
than β. Having such a Markov partition R we now associate to it a finite graph directed
Markov system. The set of vertices is equal to R while the alphabet E is defined as follows.

E :=
{

(i, j) ∈ F × F : IntRj ∩ f(IntRi) 6= ∅
}
.

Now, from the above for every (i, j) ∈ E there exists a unique conformal map f−1
i,j :

B(Rj, β)→ Rd such that

f−1
i,j (Rj) ⊆ Ri.

Define the incidence matrix A : E × E → {0, 1} by

A(i,j)(k,l) =

{
1 if l = i

0 if l 6= i.

We further define:

t(i, j) = j and i(i, j) = i.

Of course

(17.1) SR = {f−1
i,j : (i, j) ∈ E}

forms a finite conformal directed Markov system, and SR is irreducible since the map
f : X → X is transitive. Let

πR := πSR : E∞A → X

be the canonical projection onto the limit set JS of the conformal GDMS S which is easily
seen to be equal to X.

Returning to the actual topic of the paper, i.e., counting inverse images and periodic
points, we fix a point ξ ∈ X, a Markov Partition

R = {Re : e ∈ F},
with

(17.2) ξ ∈
⋃
e∈F

Int(Re).

So, there exists a unique element e(ξ) ∈ F such that ξ ∈ Int(Re(ξ)), and we fix a radius
α > 0 so small that

B(ξ, α) ⊂ Re(ξ).

Furthermore, there exists a unique code of ξ, i.e. a unique infinite word ρ ∈ E∞A such that

πR(ρ) = ξ.

Using our usual notation we set

(17.3) λ(z) = log |(fn(z))′(z)|,
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where z is an inverse image of ξ under an iterate of f and the integer n(z) ≥ 0 is uniquely
determined by the following two conditions:

(17.4) fn(z)(z) = ξ

and

(17.5) fk(z) 6= ξ for every integer 0 ≤ k < k(z).

We immediately note that if ξ is not periodic then condition (17.4) alone determines n(z)
uniquely. We further note that that if ωρ is a (unique by (17.2)) coding of z (ω ∈ E∗ρ) then

λ(z) = λρ(ω).

We denote the set of all inverse images of ξ under iterates of f by f−∗(ξ), i.e.

f−∗(ξ) :=
∞⋃
n=0

f−n(ξ).

We call z := (x, n) ∈ X × N, a periodic pair of f (of period n) if

fn(x) = x.

We then denote x by ẑ and n by n(z). Of course x is a periodic point of f (of period n).
We emphasize that we do not assume n to be a prime (least) period of x. We set

λp(z) := log |(fn(z))′(ẑ)|.

We denote by P̂er(f) (respectively P̂ern(f)) the set of all periodic pairs (of period n) and
by Per(f) (respectively Pern(f)) the set of all periodic points (of period n) of f .

Given T ≥ 0 we set
πξ(f, T ) := {z ∈ f−∗(ξ) : λ(z) ≤ T}

and
πp(f, T ) = {z ∈ P̂er(f) : λp(z) ≤ T}.

Furthermore, given a set B ⊂ X, we denote

πξ(f,B, T ) := B ∩ πξ(f, T ) and πp(f ;B, T ) := B ∩ πp(f, T ).

As in the case of graph directed Markov systems we denote

Nξ(f, T ) := #πξ(f, T ), Nξ(f ;B, T ) := #πξ(f ;B, T )

and
Np(f, T ) := #πp(f, T ), Np(f,B, T ) := #πp(f,B, T ).

Given a set Y ⊂ B(ξ, α) we denote

DξY (f ;B, T ) := {z ∈ f−∗(ξ) ∩B : log diam
(
f
−n(z)
ẑ (Y )

)
≤ T},

EξY (f ;B, T ) :=
{
z ∈ f−∗(ξ) : log diam

(
f
−n(z)
ẑ (Y )

)
≤ T and f

−n(z)
ẑ (Y ) ∩B 6= ∅

}
,

and then

Dξ
Y (f ;B, T ) := #DξY (f ;B, T ) and Eξ

Y (f ;B, T ) := #EξY (f ;B, T ).
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Now we record a straightforward, but basic observation which links this section to the
previous ones. It is the following.

Observation 17.5. If f : X → X is a conformal expanding repeller, then with the notation
as above

Nξ(f ;B, T ) = Nρ(B, T ), Dξ
Y (f ;B, T ) = Dρ

Y ρ(B, T )

and

ΓNp(B, T ) ≤ Np(f ;B, T ) ≤ Nρ(B, T )

with some universal constant Γ ∈ (0,+∞). In addition,

Np(f ;B, T ) = Np(B, T )

whenever B ⊆
⋃
e∈F Int(Re).

We call a conformal expanding repeller f : X → X D–generic if and only if the additive
group generated by the set

{λp(z) : z ∈ P̂er(f)}
is not cyclic. It is immediate from the definition of the graph directed Markov system SR
and Proposition 4.8 that we have the following.

Proposition 17.6. A conformal expanding repeller f : X → X is D–generic if and only
if the conformal graph directed Markov system SR is D–generic.

A concept of essentially non–linear conformal expanding repellers was introduced by
Dennis Sullivan in [86], Section 3, although the terminology used there was “non-linear
C–analytic expanding system”. This was explored in detail in [74], where they were called
“non–linear conformal expanding repeller”. The additional adjective “essentially” is to in-
dicate that the system is not merely non-linear but in fact is not even conformally conjugate
to a linear system. One of many characterizations (see Chapeter 6 of [74] for these) of essen-
tially non–linear conformal expanding repellers is that there is no conformal atlas covering
X with respect to which the map f is affine, i.e. a similarity composed with a translation.
Analogously, as for graph directed Markov systems, with the help of Chapter 10 from [74],
we get the following proposition, which adds considerably to our knowledge that D–generic
conformal expanding repellers abound.

Proposition 17.7. An essentially non–linear conformal expanding repeller f : X → X is
D–generic.

As a fairly direct consequence of Theorem 5.9 and Theorem 8.1, we get the following.

Theorem 17.8. Let f : X → X be a D–generic conformal expanding repeller and let
δ := HD(X).

(1) Let mδ be the unique δ-conformal measure for f on X, which coincides with the
normalized δ–dimensional Hausdorff measure on X.
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(2) Let µδ be the unique f -invariant Borel probability measure on X absolutely contin-
uous (in fact known to be equivalent) with respect to mδ. It is also known to be the
unique equilibrium state of the potential X 3 x 7→ −δ log |f ′(x)| ∈ R.

(3) Let ψδ := dµδ
dmδ

.

(4) Fix ξ ∈ X arbitrarily and Y ⊂ B(ξ, α), an arbitrary set consisting of at least two
distinct points.

(5) Let B ⊂ X be an arbitrary Borel set such that mδ(∂B) = 0 (equivalently that
µδ(∂B) = 0).

Then

(17.6) lim
T→+∞

Nξ(f ;B, T )

eδT
=
ψδ(ξ)

δχδ
mδ(B),

(17.7) lim
T→+∞

Np(f ;B, T )

eδT
=

1

δχδ
µδ(B),

and

(17.8) lim
T→+∞

Dξ
Y (f ;B, T )

eδT
= lim

T→+∞

Eξ
Y (f ;B, T )

eδT
= Cξ(Y )mδ(B),

where Cξ(Y ) ∈ (0,+∞) is a constant depending only on the repeller f , the point ξ ∈ X,
and the set Y . In addition

(17.9) K−2δ(δχδ)
−1diamδ(Y ) ≤ Cξ(Y ) ≤ K2δ(δχδ)

−1diamδ(Y ),

and the function

ξ 7−→ Cξ(Y ) ∈ (0,+∞)

is locally constant on some sufficiently small neighborhood of Y .

Proof. By making use of Observation 17.5, formulae (17.6) and (17.8) are immediate conse-
quences of formula (5.6) of Theorem 5.9, along with Theorem 8.1 and Theorem 8.4, once we
notice that the measures mδ and µσ are respectively δ-conformal and invariant, equivalent
to mδ, for both the conformal expanding repeller f : X → X and the associated conformal
GDMS SR. In order to get formula (17.7) one uses formula (5.7) of Theorem 5.9, and also,
in a straightforward way, the fact that µS(∂R) = 0. The fact the function ξ 7−→ Cξ(Y ) is
locally constant follows from Remark 8.5. �

From the results of Section 3, in particular the versions of the Central Limit Theorem,
proved for attracting conformal GDMSs, we directly get the following consequences for
expanding repellers.
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Theorem 17.9. Let f : X → X be a D–generic conformal expanding repeller. With
notation of Theorem 17.8, there exists σ2 > 0 (in fact σ2 = P′′(0) > 0) such that if G ⊂ R
is a Lebesgue measurable set with Leb(∂G) = 0, then

lim
n→+∞

µδ

({
z ∈ X :

log
∣∣(fn)′(z)

∣∣− χµδn√
n

∈ G

})
=

1√
2πσ

∫
G

e−
t2

2σ2 dt.

In particular, for any α < β

lim
n→+∞

µδ

({
z ∈ X : α ≤

log
∣∣(fn)′(z)

∣∣− χµδn√
n

≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

For every point z ∈ X and every integer n ≥ 0 let e(z, n) ∈ F be such that

fn(z) ∈ Re.

Theorem 17.10. Let f : X → X be a D–generic conformal expanding repeller. With
notation of Theorem 17.8, there exists σ2 > 0 (in fact σ2 = P′′(0) > 0) such that if G ⊂ R
is a Lebesgue measurable set with Leb(∂G) = 0, then

lim
n→+∞

µδ

({
z ∈ X :

− log diam
(
f−nx (Ye(z,n))

)
− χµδn√

n
∈ G

})
=

1√
2πσ

∫
G

e−
t2

2σ2 dt.

In particular, for any α < β

lim
n→+∞

µδ

({
z ∈ X : α ≤

− log diam
(
f−nx (Ye(z,n))

)
− χµδn√

n
≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

The next result is a law of the iterated logarithm.

Theorem 17.11. Let f : X → X be a D–generic conformal expanding repeller. Assume
the some notation as in Theorem 17.8, For every e ∈ F let Ye ⊂ Re be a set with at least
two points. There exists σ2 > 0 (in fact σ2 := P′′(0) > 0) such that for µδ–a.e. z ∈ X, we
have that

lim sup
n→+∞

log
∣∣(fn)′(z)

∣∣− χµδn√
n log log n

=
√

2πσ

and

lim sup
n→+∞

− log diam
(
f−nx (Ye(z,n))

)
− χµδn√

n log log n
=
√

2πσ.

Let ξ ∈ X be fixed. For every set H ⊂ f−n(ξ), define

(17.10) µn(H) :=

∑
z∈H

∣∣(fn)′(z)
∣∣−δ∑

z∈f−n(ξ)

∣∣(fn)′(z)
∣∣−δ .
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Theorem 17.12. If f : X → X is a conformal expanding repeller, then for every ξ ∈ X,
we have that

(17.11) lim
n→+∞

∫
f−n(ξ)

log
∣∣(fn)′

∣∣
n

dµn = χδ.

Analogously to (15.3) we define the functions ∆n : f−n(ξ)→ R by the formulae

(17.12) ∆n(z) :=
log
∣∣(fn)′(z)

∣∣− χµδn√
n

and consider the sequence (µn ◦∆−1
n )∞n=1 of probability distributions on R.

We have the following.

Theorem 17.13. If f : X → X is a D–generic conformal expanding repeller, then the
sequence of random variables (∆n)∞n=1 converges in distribution to the normal (Gaussian)
distribution N0(σ) with mean value zero and the variance σ2 = P ′′(δ) > 0. Equivalently,
the sequence (µn◦∆−1

n )∞n=1 converges weakly to the normal distribution N0(σ2). This means
that for every Borel set F ⊂ R with Leb(∂F ) = 0, we have

(17.13) lim
n→+∞

µn(∆−1
n (F )) =

1√
2πσ

∫
F

e−t
2/2σ2

dt.

17.2. 1–Dimensional Attracting Conformal GDMSs and 1–Dimensional Confor-
mal Expanding Repellers. In this subsection we briefly discuss 1–Dimensional systems.
We start with the following.

Example 17.14. Theorem 5.9, Theorem 8.1, and Theorem 8.4 hold in particular if a
system S in one–dimensional, i.e., if X is a compact interval of R. Perhaps the the best
known and one of the most often considered, is the infinite IFS G formed by all continuous
inverse branches of the Gauss map

G(x) = x− [x].

So G consists of the maps

[0, 1] 3 x 7−→ gn(x) :=
1

x+ n
, n ∈ N.

and with q = 2 in the sense of Remark 3.2 it becomes a conformal IFS. The corresponding
conformal measure m1 is just Lebesgue measure Leb on [0, 1] (or somewhat more precisely
on the set of irrational numbers of [0, 1] being JG, the limit set of the Gauss system G. The
corresponding invariant measure µ1, is in this case the well-known Gauss measure defined
by

dµ1

dm1

(x) =
1

log 2
· 1

1 + x
.

Looking at the fixed points of g1, g2, and g3 one immediately concludes that the Gauss
system G is D–generic. It is also known (see ex. [44]) to be strongly regular, even more, in
the terminology of [47], it is hereditarily regular. So, Theorem 5.9, 8.1 and 8.4 do indeed
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apply to this system. Because of importance of the Gauss map we formulate below all
the above mentioned applications expressed in the language of the Gauss map itself rather
than the associated IFS G. We adopt the, naturally adjusted, notation of Subsection 17.1.

We begin with the growth estimates.

Theorem 17.15. If G : [0, 1] → [0, 1] is the Gauss map, then with notation of subsection
17.1 we have the following. Fix ξ ∈ [0, 1]. If B ⊂ [0, 1] is a Borel set such that Leb(∂B) = 0
and Y ⊂ [0, 1] is any set having at least two elements, then

lim
T→+∞

Nξ(G;B, T )

eT
=
ψ1(ξ)

χ1

Leb(B),

lim
T→+∞

Np(G;B, T )

eT
=

1

χ1

µ1(B),

and

lim
T→+∞

Dξ
Y (G;B, T )

eT
= lim

T→+∞

Eξ
Y (G;B, T )

eT
= C(Y )Leb(B),

where C(Y ) ∈ (0,+∞] is a constant depending only on the map G and the set Y .

We next formulate a Central Limit Theorem for diameters.

Theorem 17.16. Let G : [0, 1]→ [0, 1] be the Gauss map. Let σ2 := P′′(0) > 0. With the
notation of Theorem 17.8 we have the following. Let Y ⊂ [0, 1] be a set with at least two
points. If H ⊂ R is a Lebesgue measurable set with Leb(∂H) = 0, then

lim
n→+∞

µ1

({
z ∈ [0, 1] :

− log diam
(
G−nx (Y )

)
− χµ1n√

n
∈ H

})
=

1√
2πσ

∫
H

e−
t2

2σ2 dt.

In particular, for any α < β

lim
n→+∞

µ1

({
z ∈ [0, 1] : α ≤

− log diam
(
G−nx (Y )

)
− χµ1n√

n
≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

The law of the iterated logarithm takes the following form.

Theorem 17.17. Let G : [0, 1] → [0, 1] be the Gauss map. Let σ2 := P′′(0) > 0. With
notation of Theorem 17.8 we have the following. Let Y ⊂ [0, 1] be a set with at least two
points. Then for Leb–a.e. z ∈ [0, 1, we have that

lim sup
n→+∞

log
∣∣(Gn)′(z)

∣∣− χµ1n√
n log log n

=
√

2πσ

and

lim sup
n→+∞

− log diam
(
G−nx (Y )

)
− χµ1n√

n log log n
=
√

2πσ.

Finally, we have a Central Limit Theorem for counting functions.
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Theorem 17.18. If G : [0, 1]→ [0, 1] is the Gauss map, then for every ξ ∈ [0, 1], we have
that

lim
n→+∞

∫
G−n(ξ)

log
∣∣(Gn)′

∣∣
n

dµn = χ1.

Theorem 17.19. If G : [0, 1] → [0, 1] is the Gauss map, then the sequence of random
variables (∆n)∞n=1 converges in distribution to the normal (Gaussian) distribution N0(σ)
with mean value zero and the variance σ2 = P ′′(δ) > 0. Equivalently, the sequence (µn ◦
∆−1
n )∞n=1 converges weakly to the normal distribution N0(σ2). This means that for every

Borel set F ⊂ R with Leb(∂F ) = 0, we have

(17.14) lim
n→+∞

µn(∆−1
n (F )) =

1√
2πσ

∫
F

e−t
2/2σ2

dt.

Remark 17.20. Theorem 17.8 holds in particular if f : X 7→ X is a conformal expanding
repeller with X a compact subset (a topological Cantor set) of R.

17.3. Hyperbolic (Expanding) Rational Functions of the Riemann Sphere Ĉ. One
of the most celebrated conformal expanding repellers are hyperbolic (expanding) rational

functions of the Riemann sphere Ĉ restricted to the Julia sets and already mentioned in
subsection 17.1. For the sake of completeness and convenience of the reader, let us briefly

describe them. Let f : Ĉ→ Ĉ be a rational function of degree d ≥ 2. Let J(f) denote the
Julia sets of f and let

Crit(f) := {c ∈ Ĉ : f ′(c) = 0}
be the set of all critical (branching) points of f . Put

PC(f) :=
∞⋃
n=1

fn(Crit(f))

and call it the postcritical set of f . The rational map f : Ĉ → Ĉ is said to be hyperbolic
(expanding) if the restriction f |J(f) : J(f)→ J(f) satisfies

(17.15) inf{|f ′(z)| : z ∈ J(f)} > 1

or, equivalently,

(17.16) |f ′(z)| > 1

for all z ∈ J(f). Another, topological, characterization of expandingness is the following.

Fact 17.21. A rational function f : Ĉ→ Ĉ is expanding if and only if

J(f) ∩ PC(f) = ∅.

It is immediate from this characterization that all the polynomials z 7→ zd, d ≥ 2, are
expanding along with their small perturbations z 7→ zd + ε; in fact expanding rational
functions are commonly believed to form a vast majority amongst all rational functions.
This is known at least for polynomials with real coefficients.



110 MARK POLLICOTT AND MARIUSZ URBAŃSKI

It is known from [96] (see also Section 3 of [73]) that the only essentially linear expanding
rational functions are the maps of the form

Ĉ 3 z 7−→ fd(z) =: zd ∈ Ĉ, |d| ≥ 2.

In consequence the only non D-generic rational functions of the Riemann sphere Ĉ are these
functions fd. So, as an immediate consequence of Theorem 17.8, we get the following.

Theorem 17.22. Let f : Ĉ → Ĉ be a hyperbolic (expanding) rational function of the

Riemann sphere Ĉ not of the form Ĉ 3 z 7−→ zd ∈ Ĉ, |d| ≥ 2. Let δ := HD(J(f)).

(1) Let mδ be the unique δ-conformal measure for f on the Julia set J(f), which coin-
cides with the normalized δ–dimensional Hausdorff measure on J(f).

(2) Let µδ be the unique f -invariant Borel probability measure on J(f) absolutely con-
tinuous (in fact known to be equivalent) with respect to mδ. It is also known to be
the unique equilibrium state of the potential J(f) 3 x 7→ −δ log |f ′(x)| ∈ R.

(3) Let ψδ := dµδ
dmδ

.

(4) Fix ξ ∈ J(f) arbitrary and Y ⊂ B(ξ, α) (where α > 0 is sufficiently small as
described in subsection 17.1), an arbitrary set consisting of at least two distinct
points.

(5) Let B ⊂ J(f) be an arbitrary Borel set such that mδ(∂B) = 0 (equivalently that
µδ(∂B) = 0).

Then

(17.17) lim
T→+∞

Nξ(f ;B, T )

eδT
=
ψδ(ξ)

δχδ
mδ(B),

(17.18) lim
T→+∞

Np(f ;B, T )

eδT
=

1

δχδ
µδ(B),

and

(17.19) lim
T→+∞

Dξ
Y (f ;B, T )

eδT
= lim

T→+∞

Eξ
Y (f ;B, T )

eδT
= Cξ(Y )mδ(B),

where Cξ(Y ) ∈ (0,+∞) is a constant depending only on the repeller f , the point ξ ∈ J(f),
and the set Y . In addition

(17.20) K−2δ(δχδ)
−1diamδ(Y ) ≤ Cξ(Y ) ≤ K2δ(δχδ)

−1diamδ(Y ),

and the function

ξ 7−→ Cξ(Y ) ∈ (0,+∞)

is locally constant on some sufficiently small neighborhood of Y .
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Fixing a Markov partition for the map f : J(f) → J(f), as immediate consequences
of Theorems 17.9 – 17.19 we get the following stochastic laws, primarily Central Limit
Theorems, for the dynamical system (f, µδ).

We begin with a Central Limit Theorem for the expansion on orbits.

Theorem 17.23. Let f : Ĉ→ Ĉ be a hyperbolic (expanding) rational function of the Rie-

mann sphere Ĉ not of the form Ĉ 3 z 7−→ zd ∈ Ĉ, |d| ≥ 2. With notation of Theorem 17.8
there exists σ2 > 0 (in fact σ2 = P′′(0) > 0) such that if G ⊂ R is a Lebesgue measurable
set with Leb(∂G) = 0, then

lim
n→+∞

µδ

({
z ∈ J(f) :

log
∣∣(fn)′(z)

∣∣− χµδn√
n

∈ G

})
=

1√
2πσ

∫
G

e−
t2

2σ2 dt.

In particular, for any α < β

lim
n→+∞

µδ

({
z ∈ J(f) : α ≤

log
∣∣(fn)′(z)

∣∣− χµδn√
n

≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

We next have a Central Limit Theorem for diameters.

Theorem 17.24. Let f : Ĉ → Ĉ be a hyperbolic (expanding) rational function of the

Riemann sphere Ĉ not of the form Ĉ 3 z 7−→ zd ∈ Ĉ, |d| ≥ 2. Let σ2 := P′′(0) > 0. With
the notation of Subsection 17.1 for every e ∈ F let Ye ⊂ Re be a set with at least two points
and if G ⊂ R is a Lebesgue measurable set with Leb(∂G) = 0, then

lim
n→+∞

µδ

({
z ∈ J(f) :

− log diam
(
f−nx (Ye(z,n))

)
− χµδn√

n
∈ G

})
=

1√
2πσ

∫
G

e−
t2

2σ2 dt.

In particular, for any α < β

lim
n→+∞

µδ

({
z ∈ J(f) : α ≤

− log diam
(
f−nx (Ye(z,n))

)
− χµδn√

n
≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

The following is a version of the law of the iterated function scheme.

Theorem 17.25. Let f : Ĉ → Ĉ be a hyperbolic (expanding) rational function of the

Riemann sphere Ĉ not of the form Ĉ 3 z 7−→ zd ∈ Ĉ, |d| ≥ 2. Let σ2 := P′′(0) > 0. With
the notation of Subsection 17.1 for every e ∈ F let Ye ⊂ Re be a set with at least two points
and if G ⊂ R is a Lebesgue measurable set with Leb(∂G) = 0, then for µδ–a.e. z ∈ J(f),
we have that

lim sup
n→+∞

log
∣∣(fn)′(z)

∣∣− χµδn√
n log log n

=
√

2πσ

and

lim sup
n→+∞

− log diam
(
f−nx (Ye(z,n))

)
− χµδn√

n log log n
=
√

2πσ.



112 MARK POLLICOTT AND MARIUSZ URBAŃSKI

Theorem 17.26. If f : Ĉ→ Ĉ is a hyperbolic (expanding) rational function of the Riemann

sphere Ĉ, then for every ξ ∈ J(f), we have that

(17.21) lim
n→+∞

∫
f−n(ξ)

log
∣∣(fn)′

∣∣
n

dµn = χδ.

Finally, we have a Central Limit Theorem for counting.

Theorem 17.27. If f : Ĉ→ Ĉ is a hyperbolic (expanding) rational function of the Riemann

sphere Ĉ not of the form Ĉ 3 z 7−→ zd ∈ Ĉ, |d| ≥ 2, then the sequence of random variables
(∆n)∞n=1 converges in distribution to the normal (Gaussian) distribution N0(σ) with mean
value zero and the variance σ2 = P ′′(δ) > 0. Equivalently, the sequence (µn ◦ ∆−1

n )∞n=1

converges weakly to the normal distribution N0(σ2). This means that for every Borel set
F ⊂ R with Leb(∂F ) = 0, we have

(17.22) lim
n→+∞

µn(∆−1
n (F )) =

1√
2πσ

∫
F

e−t
2/2σ2

dt.

18. Conformal Parabolic Dynamical Systems

Now we move onto dealing with parabolic systems. We consider first 1–dimensional
examples.

18.1. 1–Dimensional Parabolic IFSs. Theorems 11.1, 12.1 and 12.2 hold in particular
if a parabolic system S is 1–dimensional, i.e., if X is a compact interval of R. Perhaps the
best known, and one of the most often considered, are the 1-dimensional parabolic IFSs
formed by (two) continuous inverse branches of Manneville–Pomeau maps fα : [0, 1]→ [0, 1]
defined by the

fα(x) = x+ x1+α (mod 1),

where α > 0 is a fixed number and by the (two) continuous inverse branches of the Farey
map (for this one Remark 9.8 applies with q = 2)

f(x) =

{
x

1−x if 0 ≤ x ≤ 1
2

1−x
x

if 1−x
x
≤ x ≤ 1.

Observe that for parabolic points,

Ω(f) = Ω(fα) = {0}
for all α > 0. Furthermore,

p(f) = 1 and p(fα) = α

for all α > 0, and

Ω∞(fα) =

{
∅ if α < 1

{0} if α ≥ 1,
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while
Ω∞(f) = {0}.

Of course for both systems, arising from fα and f , the corresponding δ number is equal to
1 and mδ is the Lebesgue measure Leb.

Another large class of 1-dimensional parabolic maps, actually comprising the above,
whose continuous inverse branches form a 1-dimensional parabolic GDMS can be found in
[90]. In conclusion, using also Corollary 12.6, we have the following results which apply to
all of them.

Theorem 18.1. If f : [0, 1] → [0, 1] is the Farey map, then with notation of subsection
17.1 we have the following. Fix ξ ∈ [0, 1]. If B ⊂ [0, 1] is a Borel set such that Leb(∂B) = 0
and Y ⊂ [0, 1] is any set having at least two elements, then

(18.1) lim
T→+∞

Nξ(f ;B, T )

eT
=
ψ1(ξ)

χ1

Leb(B),

(18.2) lim
T→+∞

Np(f ;B, T )

eT
=

1

χ1

µ1(B),

and

(18.3) lim
T→+∞

Dξ
Y (f ;B, T )

eT
= lim

T→+∞

Eξ
Y (f ;B, T )

eT
= C(Y )Leb(B),

where C(Y ) ∈ (0,+∞] is a constant depending only on the map f and the set Y . In
addition C(Y ) is finite if and only if

0 /∈ Y .

Although this is not needed for our results in this monograph, it is interesting that a
simple calculation reveals that the attracting “*” IFS of Section 9 associated with the Farey
IFS is just the Gauss IFS G described in Remark 17.14.

As the next theorem shows, the counting situation is more complex in the case of
Manneville-Pomeau maps.

Theorem 18.2. If α > 0 and fα : [0, 1] → [0, 1] is the corresponding Manneville-Pomeau
map, then with the notation of subsection 17.1 we have the following. Fix ξ ∈ [0, 1]. If
B ⊂ [0, 1] is a Borel set such that Leb(∂B) = 0 and Y ⊂ [0, 1] is any set having at least
two elements, then

(18.4) lim
T→+∞

Nξ(fα;B, T )

eT
=
ψ1(ξ)

χ1

Leb(B),

(18.5) lim
T→+∞

Np(fα;B, T )

eT
=

1

χ1

µ1(B),

and

(18.6) lim
T→+∞

Dξ
Y (fα;B, T )

eT
= lim

T→+∞

Eξ
Y (fα;B, T )

eT
= C(Y )Leb(B),
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where C(Y ) ∈ (0,+∞] is a constant depending only on the map fα and the set Y . In
addition C(Y ) is finite if and only if either

(1) 0 /∈ Y or
(2) α < 1.

In general, we have the following.

Theorem 18.3. If f is generated by a parabolic Cantor set of [90], then with notation of
subsection 17.1, we have the following.

Fix ξ belonging to the limit set of the iterated function system associated to f . If B ⊂ X
is a Borel set such that mδ(∂B) = 0 and Y ⊂ [0, 1] is any set having at least two elements
and contained in a sufficiently small ball centered at ξ, then

(18.7) lim
T→+∞

Nξ(f ;B, T )

eδT
=
ψδ(ξ)

δχδ
mδ(B),

(18.8) lim
T→+∞

Np(f ;B, T )

eδT
=

1

δχδ
µδ(B),

and

(18.9) lim
T→+∞

Dξ
Y (f ;B, T )

eδT
= lim

T→+∞

Eξ
Y (f ;B, T )

eδT
= Cξ(Y )mδ(B),

where Cξ(Y ) ∈ (0,+∞] is a constant depending only on the map f , the point ξ, and the
set Y . In addition Cξ(Y ) is infinite if and only if

ξ ∈ Ω∞(f) ∩ Y and p(ξ) ≤ δ.

With respect to the stochastic laws, as an immediate consequence of the results in Sub-
sections 14 and 16 we get that the following results hold for systems considered in the
current subsection.

We begin with a Central Limit Theorem for the expansion along orbits.

Theorem 18.4. Let T be either a Manneville-Pomeau map fα with α < 1, or generally,
the map generated by a parabolic Cantor set of [90] with Ω∞(T ) = ∅. Let J be either the
interval [0, 1] (Manneville-Pomeau) or the parabolic Cantor set. Let σ2 = P′′(0) > 0. With
the notation of Subsection 17.1 if G ⊂ R is a Lebesgue measurable set with Leb(∂G) = 0,
then

lim
n→+∞

µδ

({
z ∈ J :

log
∣∣(T n)′(z)

∣∣− χµδn√
n

∈ G

})
=

1√
2πσ

∫
G

e−
t2

2σ2 dt.

In particular, for any α < β

lim
n→+∞

µδ

({
z ∈ J : α ≤

log
∣∣(T n)′(z)

∣∣− χµδn√
n

≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

We next have a Central Limit Theorems for diameters.
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Theorem 18.5. Let T be either a Manneville-Pomeau map fα with α < 1, or generally,
the map generated by a parabolic Cantor set of [90] with Ω∞(T ) = ∅. Let J be either the
interval [0, 1] (Manneville-Pomeau) or the parabolic Cantor set. Let σ2 = P′′(0) > 0. With
the notation of Subsection 17.1, for every e ∈ F let Ye ⊂ Re be a set with at least two
points, then if G ⊂ R is a Lebesgue measurable set with Leb(∂G) = 0 we have

lim
n→+∞

µδ

({
z ∈ J :

− log diam
(
T−nx (Ye(z,n))

)
− χµδn√

n
∈ G

})
=

1√
2πσ

∫
G

e−
t2

2σ2 dt.

In particular, for any α < β

lim
n→+∞

µδ

({
ω ∈ J : α ≤

− log diam
(
T−nx (Ye(z,n))

)
− χµδn√

n
≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

Next, we have a Central Limit Theorem for preimages.

Theorem 18.6. Let T be either a Manneville-Pomeau map fα with α < 1, or generally,
the map generated by a parabolic Cantor set of [90] with Ω∞(T ) = ∅. Let J be either the
interval [0, 1 (Manneville-Pomeau) or the parabolic Cantor set. Then for every ξ ∈ J , we
have that

lim
n→+∞

∫
T−n(ξ)

log
∣∣(T n)′

∣∣
n

dµn = χδ.

Finally, we have a Central Limit Theorem for counting.

Theorem 18.7. Let T be either a Manneville-Pomeau map fα with α < 1, or generally,
the map generated by a parabolic Cantor set of [90] with Ω∞(T ) = ∅. Let J be either the
interval [0, 1 (Manneville-Pomeau) or the parabolic Cantor set. Then for every ξ ∈ J the
sequence of random variables (∆n)∞n=1 converges in distribution to the normal (Gaussian)
distribution N0(σ) with mean value zero and the variance σ2 = P′′(δ) > 0. Equivalently,
the sequence (µn◦∆−1

n )∞n=1 converges weakly to the normal distribution N0(σ2). This means
that for every Borel set F ⊂ R with Leb(∂F ) = 0, we have

(18.10) lim
n→+∞

µn(∆−1
n (F )) =

1√
2πσ

∫
F

e−t
2/2σ2

dt.

18.2. Parabolic Rational Functions. Now we pass to the counting applications for par-

abolic rational functions. We recall that if f : Ĉ → Ĉ is a rational function then ξ ∈ Ĉ is
called a rationally indifferent (or just parabolic) periodic point of f if f q(ξ) = ξ for some
integer q ≥ 1 and (f q)′(ξ) = 1. It is well known and easy to to see that then ξ ∈ J(f), the
Julia set of f . The number p(ξ) ≥ 1, closely related to the one of parabolic GDMSs, comes
from the Taylor series expansion of f about ξ:

f q(z) = z + a(z − ξ)p(ξ)+1 + higher terms

with a 6= 0. Another, more geometric, characterization of p(ξ) is that it is equal to the
number of Fatou petals for f q coming out of ξ. Let

pf := max{p(ξ)},
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where the maximum is taken over the (finite) set of all rationally indifferent periodic points
of f .

The following theorem has been proved in [16].

Theorem 18.8. If f : Ĉ→ Ĉ is a rational function, then the following two conditions are
equivalent.

(1) f |J (f) : J(f)→ J(f) is expansive.

(2) |f ′(z)| > 0 for all z ∈ J(f), i.e. J(f) contains no critical point of f .

In addition, if (a) or (b) hold then the map f̂ : Ĉ→ Ĉ is not expanding iff J(f) contains a

parabolic periodic point. Following [16] and [17] we then call the map f̂ : Ĉ→ Ĉ parabolic.
Probably, the best known example of a parabolic rational function is the polynomial

Ĉ 3 z 7−→ f1/4(z) := z2 +
1

4
∈ Ĉ.

It has only one parabolic point, namely z = 1/2. In fact this is a fixed point of f1/4 and
f ′1/4(1/2) = 1. It was independently proved in [89] and [96] that

(18.11) δ1/4 := HD(J1/4) > 1.

The GDMS associated to f as in formula (17.1) is now parabolic. The measures mδ and µδ
(being inconsistent but these now denote the objects on the Julia sets rather than on the
symbol space) come either from the theory of parabolic conformal GDMS of Subsection 9,
particularly, Theorem 9.6, or can be traced back much earlier to [16], [17] and [1]. Either
from these three papers or from Theorem 9.6, we have the following.

Theorem 18.9. If f : Ĉ → Ĉ is a parabolic rational function then the invariant measure
µδ is finite if and only of

δ = δf = HD(J(f)) >
2pf
pf + 1

.

With the arguments parallel to those in the proof of Theorem 17.8, as a consequence of
Theorem 11.2, Theorem 12.1 and Theorem 12.2, we get the following.

Corollary 18.10. If f : Ĉ → Ĉ is a parabolic rational function then with notation of
Subsection 17.1, we have the following.

Fix ξ ∈ J(f). If B ⊂ Ĉ is a Borel set such that mδ(∂B) = 0 and Y ⊂ Ĉ is any set
having at least two elements and contained in a sufficiently small ball centered at ξ, then

(18.12) lim
T→+∞

Nξ(f ;B, T )

eδT
=
ψδ(ξ)

δχδ
mδ(B),

(18.13) lim
T→+∞

Np(f ;B, T )

eδT
=

1

δχδ
µδ(B),

and

(18.14) lim
T→+∞

Dξ
Y (f ;B, T )

eδT
= lim

T→+∞

Eξ
Y (f ;B, T )

eδT
= Cξ(Y )mδ(B),
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where Cξ(Y ) ∈ (0,+∞] is a constant depending only on the map f , the point ξ, and the
set Y . In addition Cξ(Y ) is infinite if and only if

ξ ∈ Ω∞(f) ∩ Y and p(ξ) ≤ δ.

As in the previous subsection, the stochastic laws appear as immediate consequences of
the results in Subsections 14 and 16.

We begin with a Central Limit Theorem for the expansion along orbits.

Theorem 18.11. Let f : Ĉ→ Ĉ be a parabolic rational function of the Riemann sphere Ĉ
with δ >

2pf
pf+1

8. With notation of Theorem 17.8 we have the following.

There exists σ2 > 0 (in fact σ2 = P′′(0) > 0) such that if G ⊂ R is a Lebesgue measurable
set with Leb(∂G) = 0, then

lim
n→+∞

µδ

({
z ∈ J(f) :

log
∣∣(fn)′(z)

∣∣− χµδn√
n

∈ G

})
=

1√
2πσ

∫
G

e−
t2

2σ2 dt.

In particular, for any α < β

lim
n→+∞

µδ

({
z ∈ J(f) : α ≤

log
∣∣(fn)′(z)

∣∣− χµδn√
n

≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

We next have a Central Limit Theorem for diameters.

Theorem 18.12. Let f : Ĉ → Ĉ be a parabolic rational function of the Riemann sphere

Ĉ with δ >
2pf
pf+1

9. Let σ2 := P′′(0) > 0. With notation of Subsection 17.1 we have the

following.
For every e ∈ F let Ye ⊂ Re be a set with at least two points. If G ⊂ R is a Lebesgue

measurable set with Leb(∂G) = 0, then

lim
n→+∞

µδ

({
z ∈ J(f) :

− log diam
(
f−nx (Ye(z,n))

)
− χµδn√

n
∈ G

})
=

1√
2πσ

∫
G

e−
t2

2σ2 dt.

In particular, for any α < β

lim
n→+∞

µδ

({
z ∈ J(f) : α ≤

− log diam
(
f−nx (Ye(z,n))

)
− χµδn√

n
≤ β

})
=

1√
2πσ

∫ β

α

e−
t2

2σ2 dt.

Finally, we have a Central Limit Theorem for counting.

Theorem 18.13. If f : Ĉ → Ĉ is a parabolic rational function of the Riemann sphere Ĉ
with δ >

2pf
pf+1

10, then for every ξ ∈ J(f), we have that

(18.15) lim
n→+∞

∫
f−n(ξ)

log
∣∣(fn)′

∣∣
n

dµn = χδ.

8This precisely means that the invariant measure µδ is finite, thus normalized to be probabilistic.
9The same as above
10The same as above



118 MARK POLLICOTT AND MARIUSZ URBAŃSKI

Theorem 18.14. If f : Ĉ → Ĉ is a parabolic rational function of the Riemann sphere

Ĉ with δ > 2p−f
pf+1

11, then the sequence of random variables (∆n)∞n=1 converges in distribu-

tion to the normal (Gaussian) distribution N0(σ) with mean value zero and the variance
σ2 = P ′′(δ) > 0. Equivalently, the sequence (µn ◦∆−1

n )∞n=1 converges weakly to the normal
distribution N0(σ2). This means that for every Borel set F ⊂ R with Leb(∂F ) = 0, we
have

(18.16) lim
n→+∞

µn(∆−1
n (F )) =

1√
2πσ

∫
F

e−t
2/2σ2

dt.

Note that for the map f1/4 : Ĉ→ Ĉ,

p
(
f1/4

)
= p1/4 = max{p(a) : a ∈ Ω} = 1,

so by (18.11) we have that,

(18.17) δ > p1/4 = p
(
f1/4

)
=

2p1/4

2p1/4 + 1
.

Thus, Theorem 18.9 gives the following.

Theorem 18.15. For the map f1/4 : Ĉ → Ĉ, Ω∞ = ∅ and the invariant measure µδ is
finite, so a probability after normalization.

Thus, as a consequence of all in this subsection, we get the following.

Corollary 18.16. If f1/4 : Ĉ→ Ĉ is parabolic quadratic polynomial

Ĉ 3 z 7−→ f1/4(z) := z2 +
1

4
∈ Ĉ,

then with notation of Subsection 17.1, we have the following.

Fix ξ ∈ J(f1/4). If Y ⊂ Ĉ is any set having at least two elements and contained in a
sufficiently small ball centered at ξ, then there exists a constant Cξ(Y ) ∈ (0,+∞) such that

if B ⊂ Ĉ is a Borel set with mδ(∂B) = 0, then

(18.18) lim
T→+∞

Nξ(f1/4;B, T )

eδT
=
ψδ(ξ)

δχδ
mδ(B),

(18.19) lim
T→+∞

Np(f1/4;B, T )

eδT
=

1

δχδ
µδ(B),

and

(18.20) lim
T→+∞

Dξ
Y (f1/4;B, T )

eδT
= lim

T→+∞

Eξ
Y (f1/4;B, T )

eδT
= Cξ(Y )mδ(B).

Remark 18.17. Because of (18.17) all the hypotheses of Theorems 18.11 – 18.14 are

satisfied for the map f1/4 : Ĉ → Ĉ; so, in particular, all these theorems hold for the map
f = f1/4.

11The same as above
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On the other hand if f : Ĉ → Ĉ is a parabolic rational function with HD(J(f)) ≤ 1,

which is the case for many maps, in particular those of the form Ĉ 3 z 7→ 2 + 1/z+ t where
t ∈ R or parabolic Blaschke products, then

δ ≤ 1 ≤ pa

for every point a ∈ Ω(f). Thus also

Ω∞(f) = Ω(f)

and, as an immediate consequence of Corollary 18.10, we get the following.

Corollary 18.18. If f : Ĉ → Ĉ is a parabolic rational function with HD(J(f)) ≤ 1, then
with notation of Subsection 17.1, we have the following.

Fix ξ ∈ J(f). If B ⊂ Ĉ is a Borel set such that mδ(∂B) = 0 and Y ⊂ Ĉ is any set
having at least two elements and contained in a sufficiently small ball centered at ξ, then

(18.21) lim
T→+∞

Nξ(f ;B, T )

eδT
=
ψδ(ξ)

δχδ
mδ(B),

(18.22) lim
T→+∞

Np(f ;B, T )

eδT
=

1

δχδ
µδ(B),

and

(18.23) lim
T→+∞

Dξ
Y (f ;B, T )

eδT
= lim

T→+∞

Eξ
Y (f ;B, T )

eδT
= Cξ(Y )mδ(B),

where Cξ(Y ) ∈ (0,+∞] is a constant depending only on the map f , the point ξ, and the
set Y . In addition Cξ(Y ) is finite if and only if

ξ /∈ Ω(f) ∩ Y .

Part 5. Examples and Applications, II: Kleinian Groups
In this part we apply our counting results to some large classes of Kleinian groups. These

include all finitely generated classical Schottky groups and essentially all finitely generated
Fuchsian groups. The applications described in this section would actually fit into two
previous sections: Convex co-compact (hyperbolic) groups would fit to Section 17 while
parabolic ones would fit to Section 18. However, because of their distinguished character
and the specific methods used to deal with them, we collect all the applications to Kleinian
groups in one separate part.
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19. Finitely Generated Classical Schottky Groups with no
Tangencies

In this section we first recall the definition of hyperbolic finitely generated classical
Schottky groups. Next, we associate to them appropriate conformal graph directed Markov
systems and then we express many concepts pertaining to such groups in the language of
such GDMSs. This enables us to apply the counting results for graph directed Markov
systems, obtained in previous parts, to such Schottky groups.

Doing this we also, on the way, associate to a finitely generated classical Schottky group
an appropriate symbolic dynamics, precisely, a countable alphabet finitely irreducible sub-
shift of finite type as defined in the first sections of our manuscript.

The use of symbolic dynamics to study Schottky groups can be viewed in the more general
framework of convex cocompact Fuchsian and Kleinian groups, which can be traced back to
the work of Hedlund. A specific instance of the coding for (non–classical) Schottky groups,
and developing the corresponding thermodynamic formalism, occurs in Bowen’s famous
1979 paper on the Hausdorff Dimension of quasi-circles [5]. A nice recent exposition of
this construction is given in the book [12]. The coding in Bowen’s influential paper was
used, either implicitly or explicitly, in a number of subsequent works. These include both
the paper of Lalley [37], and its generalization by Quint to higher rank Schottky settings
[75]. Further development of these ideas covers the more general case of infinitely generated
Schottky groups described, for example, in [87]. In a different direction Mark Pollicott in
[70] and Dal’bo and Peigné [13] used symbolic dynamics (based on continued fractions) to
count closed geodesics on the non-compact modular surface in the context of metrics of
variable negative curvature.

Fix an integer d ≥ 1. Fix also an integer q ≥ 2. Let

Bj, j = ±1,±2, · · · ,±q,
be open balls in Rd with mutually disjoint closures. For every j = 1, 2, · · · , q let

gj : R̂d → R̂d

be a conformal self-map of the one point compactification of Rd (thus making R̂d confor-
mally equivalent to the unit sphere Sd ⊂ Rd+1) such that

(19.1) gj(B
c
−j) = Bj.

The group G generated by the maps gj, j = 1, . . . , q, is called a hyperbolic classical Schottky
group; hyperbolic alluding to the lack of tangencies. If there is no danger of misunderstand-
ing, we will frequenly skip in this section the adjective “hyperbolic”, speaking simply about
Schottky groups. Note that if we set

gj := g−1
−j

for all j = −1, . . . ,−q then (19.1) holds for all j = ±1,±2, · · · ,±q.
Denote by Hd+1 the space Rd×(0,+∞) endowed with the Poincaré metric. The Poincaré

Extension Theorem ensures that all the maps gj, j = 1, . . . , q, uniquely extend to conformal
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self-maps of

Hd+1
:= R̂d × [0,+∞),

also denoted by gj, onto itself. Their restrictions to Hd+1, which are again also denoted
by gj, are isometries with respect to the Poincaré metric ρ on Hd. The group generated
by these isometries in discrete, is also denoted by G, and is also called the Schottky group
generated by the maps gj, j = 1, . . . , q. For every j = ±1,±2, · · · ,±q denote by B̂j the
half-ball in Hd+1 with the same center and radius as those of Bj. We recall the following
well-known standard fact.

Fact 19.1. The region

R := Hd+1 \
q⋃
j=1

(B̂j ∪ B̂−j)

is a fundamental domain for the action of G on Hd+1 and

R̂d \
q⋃
j=1

(Bj ∪B−j)

is a fundamental domain for the action of G on R̂d.

For any z ∈ Hd+1
the set of cluster points of the set Gz is contained in

q⋃
j=1

Bj ∪B−j,

and is independent of z. We call it the limit set of G and denote it by Λ(G). This set is
compact, perfect, G(Λ(G)) = Λ(G) and G acts minimally on Λ(G). We denote

V := {±1,±2, . . . ,±q}, E := V × V \ {(i,−i) : i ∈ V },
and introduce an incidence matrix A : E × E → {0, 1} by declaring that

A(a,b),(c,d) =

{
1 if b = c

0 if b 6= c

Furthermore, we set for all (a, b) ∈ E, t(a, b) := b and i(a, b) := a, and

g(a,b) := ga|Bb : Bb → Ba.

In this way we have associated to G the conformal graph directed Markov system

SG := {ge : e ∈ E}.
By the very definition of this system, for every ω ∈ E∗A, say ω = (a1, b1)(a2, b2) . . . (an, bn),
we have that

gω = g(a1,b1) ◦ g(a2,b2) ◦ . . . ◦ g(an,bn)|Bbn = ga1 ◦ ga2 ◦ . . . ◦ gan|Bbn : Bbn → Ba1 .

Of course,
Λ(G) = JSG
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and we make the following observation:

Observation 19.2. The projection map

π = πG := πSG : EN
A → Λ(G)

is a homeomorphism, in particular, a bijection.

We will now make some preparatory comments on our approach to counting problems
for the group G by means of the conformal GDMS SG. For any element ξ ∈ Λ(G) there
exists a unique k ∈ V such that ξ ∈ Bk and by Observation 19.2, a unique ρ ∈ E∞A such
that

ξ = πG(ρ);

of course i(ρ) = k. Set

Gξ := {gω : ω ∈ E∗ρ} = {gω : ω ∈ E∗A, t(ω) = i(ρ) = k} := Gk.

The next obvious observation is the following.

Observation 19.3. The maps

E∗ρ 3 ω 7→ gω ∈ G and E∗ρ 3 ω 7−→ gω(ξ) ∈ G(ξ)

are both 1-to-1.

For every g = gω ∈ Gξ, ω ∈ E∗ρ , we denote

λξ(g) = − log |g′(ξ)| = − log |g′ω(ξ)| = λρ(ω).

Furthermore, for every set Y ⊂ Bk we denote

∆Y (ω) = − log(diam(gω(Y )))

Now we move onto the discussion of periodic points of the system SG along with periodic
orbits of the geodesic flow and closed geodesics on the hyperbolic manifold Hd+1/G.

Indeed, first of all we recall the following.

Observation 19.4. The map E∗p 3 ω 7−→ gω ∈ G is 1-to-1.

Now, if ω ∈ E∗p then

gω(Bt(ω)) ⊂ Bt(ω)

and the map gω : Bt(ω) → Bt(ω) has a unique fixed point. Call it xω. We know that the

map gω : R̂d → R̂d has exactly one other fixed point. Call it yω. Denoting by −ω the word

(−αn,−αn−1)(−αn−1,−αn−2)(−αn−2,−αn−3) · · · (−α2,−α1)(−α1,−αn)

and marking that ω = (α1, β1)(α2, β2) · · · (αn, βn) belongs to E∗p , we see that −ω ∈ E∗p and

g−ω = g−1
ω as elements of the group G. Then x−ω ∈ B−αn 6= Bβn . So as gω(x−ω) = x−ω we

must have yω = x−ω. Therefore, we have the following.
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Proposition 19.5. If ω ∈ E∗p then γω, the geodesic in Hd+1 joining yω and xω (oriented
from yω to xω), is fixed by gω, crosses the fundamental domain R, γω/G is a closed geodesic
on Hd+1/G with length

(19.2) λp(ω) = − log |g′ω(xω)|,
and simultaneously represents a periodic orbit of the geodesic flow on the unit tangent
bundle of Hd+1/G with the period equal to λp(ω).

On the other hand, if γ is a closed oriented geodesic in Hd+1/G then its full lift γ̃ in Hd+1

consists of a countable union of mutually disjoint geodesics in Hd+1. Then the set γ̃ ∩R is
not empty and each of its connected components is an oriented geodesic joining two distinct

faces of R. Fix ∆, one of the such connected components. Let ∆̂ be the full geodesic in

Hd+1 containing ∆ and oriented in the direction of ∆. Fix z ∈ ∆̂ arbitrarily. Denote by

l(γ) the length of γ. Let z∗ be the unique point on ∆̂ such that ρ(z∗, z) = l(γ) and the

segment [z, z∗] is oriented in the direction of ∆̂. Since both points z and z∗ project to the
same element of Hd+1/G, there exists a unique element gγ,∆ ∈ G such that gγ,∆(z) = z∗.
Since γ has no self intersections it follows that

gγ,∆(∆̃) = ∆̃.

Denote be x∆ and y∆ the endpoints of ∆̂ labeled so that the direction of ∆̂ is from y∆ to
x∆. Let a, b be unique elements of V such that x∆ ∈ Ba and y∆ ∈ Bb. Let ω̂∆ ∈ E∗A and
k ∈ V be the unique elements respectively of E∗A and V such that

gγ,∆ = gω̂∆
and t(ω̂∆) = k,

the first equality meant in the group G. We will prove the following.

Claim 1. k = −b

Proof. By our choice of the endpoints x∆ and y∆, y∆ is an attracting fixed point of
g−1
k (gω̂∆

)−1 = (gω̂∆
◦ gk)−1. Since also y∆ ∈ Bb, we thus conclude that

(19.3) g−k ◦ (gω̂∆
)−1(Bb) ⊆ Bb.

Consequently, −k = b, and Claim 1 is proved. �

Since also a 6= b as ∆ intersects R, we thus conclude that

(19.4) ωγ,∆ := ω̂∆(−b, a) ∈ E∗A and gγ,∆ = gωγ,∆ .

In addition, by the same token as (19.3) we get that gω̂∆
◦ gk(Ba) ⊂ Ba. Thus i(ω̂∆) = a.

Consequently
ω∆ ∈ E∗p .

In addition,
λp(ωγ,∆) = λ(gωγ,∆) = λ(gγ,∆) = ρ(z∗, z) = l(γ)

and
γωγ,∆/G = γ.
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Denote by C(γ) the set of all connected components of γ̃ ∩ R. Of course we have the
following.

Observation 19.6. The function C(γ) 3 ∆ 7−→ ωγ,∆ ∈ E∗p is one-to-one.

We shall prove the following.

Proposition 19.7. The map E∗p 7−→ γω/G is a surjection from E∗p onto C(G), the set of

all closed oriented geodesics on Hd+1/G. Furthermore, if γ is a closed oriented geodesic on
Hd+1/G then

Per(γ) := {ω ∈ E∗p : γω/G = γ} = {ωγ,∆ ∈ E∗p : ∆ ∈ C(γ)}
and Per(γ) forms a full periodic cycle, i.e. the orbit of any element of ω ∈ Per(γ) under
the map σ∗ : ω 7−→ σ(ω)ω1.

Proof. The first part of this proposition has already been proved. More precisely, it is
contained in Proposition 19.5 and formula (19). The inclusion

{ω∆ ∈ E∗p : ∆ ∈ C(γ)} ⊂ {ω ∈ E∗p : γω/G = γ}
follows immediately from (19). The inclusion

Per(γ) = {ω∆ ∈ E∗p : γω/G = γ} ⊂ {ωγ,∆ ∈ E∗p : ∆ ∈ C(γ)}
follows from the fact that for each ω ∈ E∗p the geodesic γω crosses R. So formula (19.7) is
established. Now,

gσ(ω)ω1(g−1
ω1

(xω)) = g−1
ω1
◦ gω1 ◦ gσ(ω)(xω) = g−1

ω1
◦ gω(xω) = g−1

ω1
(xω).

Similarly,
gσ(ω))ω1(g−1

ω1
(yω)) = g−1

ω1
(yω).

Also, by the Chain Rule,

l(gσ(ω)ω1) = λp(σ(ω)ω1) = λp(ω) = l(gω).

Therefore, noting also that g−1
ω1

(γω) crosses R, we get

γσ(ω)ω1 = g−1
ω1

(γω) and γσ(ω)ω1/G = γω/G = γ.

So, σ(ω)ω1 ∈ Per(γ) and we have proved that Per(γ) is a union of full periodic cycles. Let
ω ∈ Per(γ) be arbitrary. Put n := |ω|. Since

n−1∑
j=0

l(γσ∗j(ω) ∩R) = l(γ) =
∑

∆∈C(γ)

|∆|,

since all elements γσ∗j(ω)∩R are mutually disjoint, and since {γσ∗j(ω)∩R : 0 ≤ j ≤ n−1} ⊂
C(γ) we can conclude

{γσ∗j(ω) ∩R : 0 ≤ j ≤ n− 1} = C(γ).

Along with (19.7) and Observation 19.6 this yields the last assertion of Proposition 19.7
and the proof of this proposition is complete �
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Denote by Ĝ ⊂ G the set of those elements in G for which γg, the oriented geodesic in
Hd+1 from its repelling fixed point yg to its attracting fixed point xg crosses the fundamental
domain R. We can now complete Observation 19.4 by proving the following.

Proposition 19.8. The map E∗p 3 ω 7−→ gω ∈ G is a bijection from E∗p onto Ĝ.

Proof. Observation 19.4 tells us that this map is one-to-one and Proposition 19.5 tells us

that its range is contained in Ĝ. Thus, in order to complete the proof we have to show

that Ĝ is contained in this range. So fix g ∈ Ĝ. Let α be the projection on Hd+1/G of the
geodesic γg such that l(α) = α(g). Then g = gωα,∆ where ∆ = γg ∩R. Since ωα,∆ ∈ E∗p we
are done. �

Propositions 19.5 and 19.7 provide a full description of closed oriented geodesics and
periodic orbits of the geodesic flow in terms of symbolic dynamics and graph directed
Markov systems. For the picture to be complete we also describe all periodic points of the
group G.

Proposition 19.9. The map

E∗p 3 ω 7−→ 〈ω〉 = {g ◦ gω ◦ g−1 : g ∈ G}
has the following properties:

(1) 〈ω〉 = 〈τ〉 ⇔ 〈ω〉 ∩ 〈τ〉 6= ∅ ⇔ τ = σ∗j(ω) for some j ≥ 0.
(2) Each element g ◦gω ◦g−1 has precisely two fixed points g(xω) and g(yω). In addition

(g ◦ gω ◦ g−1)′(g(xω)) = g′ω(xω) and (g ◦ gω ◦ g−1)′(g(yω)) = g′ω(yω)

(3) For each h ∈ G \ {Id} there exists a unique periodic cycle such that
(a) there exists ω ∈ E∗p in this periodic cycle and a unique g ∈ G, depending on ω,

such that h = g ◦ gω ◦ g−1,
(b) for each ω ∈ E∗p in this periodic cycle there exists a unique g ∈ G, depending

on ω, such that h = g ◦ gω ◦ g−1.

The proof of this proposition is straightforward and we omit it.

Now we pass to the main goal of this monograph, i.e., counting estimates. We deal
with these in the symbol space and on both Hd+1 and Hd+1/G. We start with appropriate
definitions.

Let B denote a Borel subset of Rd. Set

πξ(G;T,B) := {g ∈ Gξ : λξ(g) ≤ T and g(ξ) ∈ B}

πξ(G;T ) := πξ(G;T,Rd) = {g ∈ Gξ : λξ(g) ≤ T}

πp(G;T,B) := {ω ∈ E∗p : λp(ω) = l(γω) ≤ T and xω ∈ B},

πp(G;T ) := πp(G;T,Rd) = {ω ∈ E∗p : λp(ω) = l(γω) ≤ T},
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π̂p(G, T ) := {g ∈ Ĝ : l(γg) ≤ T}

Having k ∈ V = {±j}qj=1 and Y ⊂ Bk put

∆Y (g) := − log
(
diam(g(Y ))

)
.

We further denote

Dξ(G;T,B, Y ) := {g ∈ Gk : ∆Y (g) ≤ T and g(ξ) ∈ B},

Ek(G;T,B, Y ) := {g ∈ Gk : ∆Y (g) ≤ T and g(Y ) ∩B 6= ∅},

and

Ek(G;T, Y ) := Ek(G;T,Rd, Y ) := {g ∈ Gk : ∆Y (g) ≤ T}.

We denote by Nξ(G;T,B), Nξ(G;T ), Np(G;T,B), Np(G;T ), N̂p(G;T ), Dξ(G;T,B, Y ),
Ek(G;T,B, Y ) and Ek(G;T, Y ) the corresponding cardinalities.

As an immediate consequence of Theorem 5.9, Theorem 8.1, and Theorem 8.4 along with
Observation 19.3, Proposition 19.5, Observation 19.4, Observation 19.6 and Proposition
19.8 we get the following.

Theorem 19.10. Let G = 〈gj〉qj=1 be a hyperbolic finitely generated classical Schottky group

acting on R̂d, d ≥ 2.

• Let δG be the Poincaré exponent of G; it is known to be equal to HD(Λ(G)).

• Let mδG be the Patterson-Sullivan conformal measure for G on Λ(G).

• Let µδG be the SG-invariant measure on Λ(G) equivalent to mδG.

• Fix k ∈ {±1,±2, · · · ,±q} and ξ ∈ Λ(G) ∩Bk.

Let B ⊆ Rd be a Borel set with mδG(∂B) = 0 (equivalently µδG(∂B) = 0) and let Y ⊆ Bk

be a set having at least two distinct points. Then with some constant Ck(Y ) ∈ (0,+∞), we
have that

lim
T→+∞

Nξ(G;T,B)

eδGT
=
ψδG(ξ)

δGχδG
mδG(B), lim

T→+∞

Nξ(G;T )

eδGT
=
ψδG(ξ)

δGχδG
,

lim
T→+∞

Np(G;T,B)

eδGT
=

1

δGχδG
µδG(B), lim

T→+∞

Np(G;T )

eδGT
=

1

δGχδG
,



ASYMPTOTIC COUNTING IN CONFORMAL DYNAMICAL SYSTEMS 127

lim
T→+∞

N̂p(G;T )

eδGT
=

1

δGχδG
,

lim
T→+∞

Dξ(G;T,B, Y )

eδGT
= Ck(Y )mδG(B),

lim
T→+∞

Ek(G;T,B, Y )

eδGT
= Ck(Y )mδG(B),

lim
T→+∞

Ek(G;T, Y )

eδGT
= Ck(Y ).

Theorem 13.1 – Theorem 13.3 for the conformal GDMS SG, associated to the group G,
are valid without changes. Therefore, we do not repeat them here. However, we present
the appropriate versions of Theorems 15.1 and 15.2 as their formulations are closer to the
group G. In order to get appropriate expressions in the language of the group G itself,
given ξ ∈ Λ(G), and an integer n ≥ 1, we set

Gn
ξ := {gω : ω ∈ En

ρ } ⊆ Gξ.

Furthermore, we define a probability measure µn on Gn
ξ by setting that

(19.5) µn(H) :=

∑
g∈H e

−δλξ(g)∑
ω∈Gnξ

e−δλξ(g)

for every set H ⊂ Gn
ξ . As an immediate consequence of Theorem 15.1 we get the following.

Theorem 19.11. If G = 〈gj〉qj=1 is a hyperbolic finitely generated classical Schottky group

acting on R̂d, d ≥ 2, then for every ξ ∈ Λ(G) we have that

lim
n→+∞

∫
Gnξ

λξ
n
dµn = χµδ .

Now define the functions ∆n : Gn
ξ → R by the formulae

∆n(g) =
λξ(g)− χn√

n
,

As an immediate consequence of Theorem 15.2 we get the following.

Theorem 19.12. If G = 〈gj〉qj=1 is a hyperbolic finitely generated classical Schottky group

acting on R̂d, d ≥ 2, then for every ξ ∈ Λ(G) the sequence of random variables (∆n)∞n=1

converges in distribution to the normal (Gaussian) distribution N0(σ) with mean value
zero and the variance σ2 = P′′SG(δ) > 0. Equivalently, the sequence (µn ◦∆−1

n )∞n=1 converges
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weakly to the normal distribution N0(σ2). This means that for every Borel set F ⊂ R with
Leb(∂F ) = 0, we have

(19.6) lim
n→+∞

µn(∆−1
n (F )) =

1√
2πσ

∫
F

e−t
2/2σ2

dt.

20. Generalized (allowing tangencies) Classical Schottky Groups

In this section we keep to the same setting and the same notation as in Subsection 19.
except that we now do not assume that the closures Bj, j = ±1, · · · ,±q to be disjoint but
merely that the open balls Bj, j = ±1, · · · ,±q themselves are mutually disjoint.

20.1. General Schottky Groups. We also assume that if an element g ∈ G \ {Id} has a
fixed point (call it zq) in ∂Bj for some j ∈ {±1, · · · ,±q} then g is parabolic. Then zg is a
unique fixed point of g and there exists a unique j∗ ∈ {±1, · · · ,±q} \ {j} such that

zg ∈ Bj ∩Bj∗ .

We refer to zg as a parabolic fixed point of G (and of g). We denote by p(g) ≥ 1 its rank.
We further denote by Ω(G) the set of all parabolic fixed points of G. Any such group G
is called a generalized Schottky group (GSG). If G has at least one parabolic element, it
is called a parabolic Schottky group (PSG). We associate to the group G the conformal
GDMS SG in exactly the same way as for hyperbolic (i.e. without tangencies) Schottky
groups in Section 19. Since any generalized Schottky group G is geometrically finite, the
number of conjugacy classes of parabolic elements of G and the number of orbit classes
of parabolic fixed points of G, i.e. Ω(G)/G, are both finite. In consequence, we have the
following.

Observation 20.1. The conformal GDMS SG associated to G is attracting if G has no
parabolic fixed points and it is (finite) parabolic (in the sense of Remark 9.8) if G has some
parabolic fixed points.

and

Observation 20.2. We have that:

• Each parabolic fixed point of G has a representative in⋃
−q≤j<k≤q

Bj ∩Bk,

and
•

Ω(SG) = Ω(G) ∩
⋃

−q≤j<k≤q

Bj ∩Bk.

We define

(20.1) pG := p(SG) := sup{p(g) : g ∈ Ω(G)}.
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So, as an immediate consequence of Theorems 11.2, 12.1, and 12.2, in the same way as
Theorem 19.10, i.e., along with Observation 19.3, Proposition 19.5, Observation 19.4, Ob-
servation 19.6 and Proposition 19.8, we get the following.

Theorem 20.3. Let G = 〈gj〉qj=1 be a parabolic classical Schottky group acting on Rd,
d ≥ 2.

• Let δG be the Poincaré exponent of G; which is known to be equal to HD(Λ(G)).

• Let mδG be the Patterson-Sullivan conformal measure for G on Λ(G).

• Let µδG be the SG-invariant measure on Λ(G) equivalent to mδG.

• Fix k ∈ {±1,±2, · · · ,±q} and ξ ∈ Λ(G) ∩Bk.

Let B ⊆ Rd be a Borel set with mδG(∂B) = 0 (equivalently µδG(∂B) = 0) and let Y ⊆ Bk

be a set having at least two distinct points. Then with some constant Ck(Y ) ∈ (0,+∞), we
have that

lim
T→+∞

Nξ(G;T,B)

eδGT
=
ψδG(ξ)

δGχδG
mδG(B), lim

T→+∞

Nξ(G;T )

eδGT
=
ψδG(ξ)

δGχδG
,

lim
T→+∞

Np(G;T,B)

eδGT
=

1

δGχδG
µδG(B), lim

T→+∞

Np(G;T )

eδGT
=

1

δGχδG
,

lim
T→+∞

N̂p(G;T )

eδGT
=

1

δGχδG
,

lim
T→+∞

Dξ(G;T,B, Y )

eδGT
= Ck(Y )mδG(B),

lim
T→+∞

Ek(G;T,B, Y )

eδGT
= Ck(Y )mδG(B),

lim
T→+∞

Ek(G;T, Y )

eδGT
= Ck(Y ).

In addition, Ck(Y ) > 0 is finite if and only if

(1)

Y ∩ Ω∞(SG) = (Y ∩ Ω∞(SG) ∩ ∂Bk) = ∅
or

(2)

δG > max
{
p(g) : zg ∈ ∂Bk

}
.
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As in the case of hyperbolic Schottky groups, there are also Central Limit Theorems
on the distribution of the preimages for parabolic Schottky groups. Theorem 14.1 and
Theorem 14.2 for the parabolic conformal GDMS SG, associated to the group G, take the
same form. Therefore, we do not repeat them here. However, we present the appropriate
versions of Theorems 16.1 and 16.2 as their formulations are closer to the actual group G.
As in the case of hyperbolic groups, in order to get appropriate expressions in the language
of the group G itself, given ξ ∈ Λ(G), and an integer n ≥ 1, we set

Gn
ξ := {gω : ω ∈ En

ρ } ⊆ Gξ.

Furthermore, we define a probability measure µn on Gn
ξ by setting that

(20.2) µn(H) :=

∑
g∈H e

−δλξ(g)∑
ω∈Gnξ

e−δλξ(g)

for every set H ⊂ Gn
ξ . As an immediate consequence of Theorem 16.1 we get the following.

Theorem 20.4. If G = 〈gj〉qj=1 is a parabolic finitely generated classical Schottky group

acting on R̂d, d ≥ 2, and

δG >
2pG
pG + 1

,

i.e the invariant measure µδ is finite (so a probability after normalization), then for every
ξ ∈ Λ(G) we have that

lim
n→+∞

∫
Gnξ

λξ
n
dµn = χµδ .

Again as in the hyperbolic (no tangencies) case, we define the functions ∆n : Gn
ξ → R,

n ∈ N, by the formulae

∆n(g) =
λξ(g)− χn√

n
.

As an immediate consequence of Theorem 16.2 we get the following.

Theorem 20.5. If G = 〈gj〉qj=1 is a parabolic finitely generated classical Schottky group

acting on R̂d, d ≥ 2, and

δG >
2pG
pG + 1

,

i.e., the invariant measure µδ is finite (thus a probability measure after normalization), then
for every ξ ∈ Λ(G) the sequence of random variables (∆n)∞n=1 converges in distribution to
the normal (Gaussian) distribution N0(σ) with mean value zero and the variance σ2 =
P′′S∗G(δ) > 0. Equivalently, the sequence (µn ◦ ∆−1

n )∞n=1 converges weakly to the normal

distribution N0(σ2). This means that for every Borel set F ⊂ R with Leb(∂F ) = 0, we
have

lim
n→+∞

µn(∆−1
n (F )) =

1√
2πσ

∫
F

e−t
2/2σ2

dt.
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Figure 2. The Tangent Circles C1, C2, C3, C4 and Dual Circles K1, K2, K3, K4

20.2. Apollonian Circle Packings. We now describe the application of Theorem 20.3 to
Apollonian circle packings, as explained in the introduction. This can be formulated in the
framework we described in the introduction to this section. Some additional information
related to the subject of this section and the one following it can be found in works such
as [2], [7], [21], [23], [36], [28], [51], [56]–[58], [59], and [83]. Of course we make no claims
for this list to be even remotely complete.

Let C1, C2, C3, C4 be four distinct circles in the Euclidean (complex) plane, each of which
shares a common tangency point with each of the others. We assume that the bounded
component of the complement of one of these circles contains the bounded components
of the complements of the remaining three circles. Without loss of generality C4 is this
circle enclosing the three other. We refer to such configuration of circles C1, C2, C3, C4

as bounded. This name will be justified in a moment. We can now choose the new four
circles K1, K2, K3, K4 that are dual to the original four tangent circles, i.e., those circles
that pass through the three of the four possible tangent points between the initial circles
C1, C2, C3, C4. We label them (uniquely) so that

Ci ∩Ki = ∅

for all i = 1, 2, 3, 4. Figure 2 depicts this construction.
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We associate to the dual circles K1, K2, K3, K4 the respective inversions g1, g2, g3, g4 in
these four dual circles. More precisely, if Ki, i = 1, 2, 3, 4, is a circle with center ai ∈ C and
radius ri > 0 then we define

gi(z) =
1

r2
i

z − ai
|z − ai|2

+ ai,

Denote by B1, B2, B3 and B4 the open balls (disks) enclosed, respectively, by the circles
K1, K2, K3, K4. Let

G := 〈g1, g2, g3, g4〉
be the group generated by the four inversions g1, g2, g3, g4. Let Γ be the subgroup of G
consisting of its all orientation preserving elements. Observe that Γ is a free group generated
by three elements, for example by

γ1 := g4 ◦ g1, γ2 := g4 ◦ g2, γ3 := g4 ◦ g3.

Now noting that the the balls

B1, B2, B3; B−1 := g4(B1), B−2 := g4(B2), B−3 := g4(B3),

are mutually disjoint (see Figure 3), and that for every i = 1, 2, 3:

γi(Bi) = g4 ◦ gi(Bi) = g4(Bc
i ) = (g4(Bi))

c = Bc
−i

we get the following.

Observation 20.6. Γ = 〈γ1, γ2, γ3〉 is a parabolic classical Schottky group.

In addition,

Observation 20.7. The parabolic classical Schottky group Γ has six conjugacy classes of
parabolic elements whose representatives are

γ1, γ2, γ3, γ1γ
−1
2 , γ1γ

−1
3 , γ2γ

−1
3 ,

with the corresponding parabolic fixed points being the only elements, respectively, of

B1 ∩B4, B2 ∩B4, B3 ∩B4, B−1 ∩B−2, B−1 ∩B−3, B−2 ∩B−3.

These objects are depicted in Figure 3. We have the following.

Observation 20.8. The limit set Λ(Γ) coincides with the residual set of the Apollonian
circle packing generated by the circles C1, C2, C3, C4. In addition (see [6], [43], and Theo-
rem 9.6), we have the following.

(1) δΓ = HD(Λ(Γ)) > 1,

(2) p(g) = 1 for every parabolic element of Γ, and so

δΓ > sup{p(g)},
where g ∈ Γ ranges of all parabolic elements of G,

(3) Ω∞
(
SΓ

)
= ∅, and so µδΓ , the probability SΓ-invariant measure on Λ(Γ), is finite,

thus probability after normalization.
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B−2

C4

C1

C2

C3

B1

B3

B2

g1(C1)

g3g1(C1)
B4

Figure 3. Circles, Disks, and Generators of G

Hence, as an immediate consequence of Theorem 20.3, we get the following.

Corollary 20.9. Let C1, C2, C3, C4 be a bounded12 configuration of four distinct circles in
the plane, each of which shares a common tangency point with each of the others. Let Γ be
the corresponding parabolic classical Schottky group.

• Let δΓ be the Poincaré exponent of Γ; it is known to be equal to HD(Λ(Γ)).

• Let mδΓ be the Patterson-Sullivan conformal measure for Γ on Λ(Γ).

• Let µδΓ be the probability SΓ-invariant measure on Λ(Γ) equivalent to mδΓ.

• Fix k ∈ {±1,±2,±3} and ξ ∈ Λ(Γ) ∩Bk.

Then for every set Y ⊂ Bk having at least two distinct points there exists a constant
Ck(Y ) ∈ (0,+∞) such that for every Borel set B ⊂ Rd with mδΓ(∂B) = 0 (equivalently
µδΓ(∂B) = 0), we have that

lim
T→+∞

Nξ(Γ;T,B)

eδΓT
=
ψδΓ(ξ)

δΓχδΓ
mδΓ(B), lim

T→+∞

Nξ(Γ;T )

eδΓT
=
ψδΓ(ξ)

δΓχδΓ
,

12Boundedness of the configuration C1, C2, C3, C4 guarantees us that the group Γ is Schottky in the
sense of our previous section, and, in particular, all the numbers Nξ(Γ;T ) and Np(Γ;T ) are finite.
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lim
T→+∞

Np(Γ;T,B)

eδΓT
=

1

δΓχδΓ
µδΓ(B), lim

T→+∞

Np(Γ;T )

eδΓT
=

1

δΓχδΓ
,

lim
T→+∞

N̂p(Γ;T )

eδΓT
=

1

δΓχδΓ
,

lim
T→+∞

Dξ(Γ;T,B, Y )

eδΓT
= C(Y )mδG(B),

lim
T→+∞

Ek(Γ;T,B, Y )

eδΓT
= Ck(Y )mδΓ(B),

lim
T→+∞

Ek(Γ;T, Y )

eδΓT
= Ck(Y ).

Making use of Observation 20.8, as an immediate consequence respectively of Theo-
rem 20.4 and Theorem 20.5, we get the following two theorems.

Theorem 20.10. Let C1, C2, C3, C4 be a bounded configuration of four distinct circles in
the plane, each of which shares a common tangency point with each of the others. If Γ is
the corresponding parabolic classical Schottky group, then for every ξ ∈ Λ(Γ) we have that

lim
n→+∞

∫
Γnξ

λξ
n
dµn = χµδ .

The next theorem is a Central Limit Theorem for diameters of circles in the Apollonian
Circle Packing.

Theorem 20.11. Let C1, C2, C3, C4 be a bounded configuration of four distinct circles in
the plane, each of which shares a common tangency point with each of the others. If Γ is the
corresponding parabolic classical Schottky group, then for every ξ ∈ Λ(Γ) the sequence of
random variables (∆n)∞n=1 converges in distribution to the normal (Gaussian) distribution
N0(σ) with mean value zero and the variance σ2 = P′′S∗Γ(δ) > 0. Equivalently, the sequence

(µn ◦ ∆−1
n )∞n=1 converges weakly to the normal distribution N0(σ2). This means that for

every Borel set F ⊂ R with Leb(∂F ) = 0, we have

lim
n→+∞

µn(∆−1
n (F )) =

1√
2πσ

∫
F

e−t
2/2σ2

dt.

In Figure 2 we illustrate the Central Limit Theorem for the diameters in the standard
Apollonian Circle Packing in Theorem 20.5.

Now, we consider the actual counting of the circles in the Apollonian circle packing
generated by the bounded configuration of the circles C1, C2, C3 and C4. The following
immediate observation is crucial to this goal.
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Figure 4. We plot a portion of the weighted histogram of the 6,377,292
values − log r where r is a circle of generation n = 14 for standard Apollonian
circle packing. There are 46 bins with a weighting corresponding to rδ.

Observation 20.12. The elements of A, the Apollonian circle packing generated by the
bounded configuration of the circles C1, C2, C3, C4, is bounded13 and coincide with the
following disjoint union

{C1, C2, C3, C4} ∪
3⋃
j=1

(Γj ∪ {Id})(gj(Cj)) ∪
3⋃
j=1

4⋃
i=1,i 6=j

(Γi ∪ {Id})(gi ◦ gj(Cj))∪

∪ {g4(C4)} ∪ ∪3
j=1(Γj ∪ {Id})(gj ◦ g4)(C4),

and for j = 1, 2, 3 and i ∈ {1, 2, 3} \ {j} we have that

gj(Cj) ⊂ Bj, gi ◦ gj(Cj) ⊂ Bi, g4 ◦ gj(Cj) ⊂ B−j, gj ◦ g4(C4) ⊂ Bj.

For every T > 0 and every set B ⊂ C, we denote

E(T ;B) :=
{
C ∈ A : − log diam(C) ≤ T and C ∩B 6= ∅

}
,

E(T ) := E(T ;C)

NA(T ;B) := #E(T ;B) and NA(T ) := #E(T ).

As an immediate consequence of the last two formulas of Corollary 20.9 and Observa-
tion 20.12 we get the following result proved in [36] (see also [56]–[58]) by entirely different
methods.

Theorem 20.13. Let C1, C2, C3, C4 be a bounded configuration of four distinct circles in
the plane, each of which shares a common tangency point with each of the others. Let A
be the corresponding circle packing.

13This justifies the name “bounded” in regards to the configuration C1, C2, C3, C4.
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Let δ = 1.30561 . . . be the Hausdorff dimension of the residual set of A and let mδ be the
Patterson-Sullivan measure of the corresponding parabolic classical Schottky group Γ.

Then the limit

lim
T→+∞

NA(T )

eδT

exists, is positive, and finite. Moreover, there exists a constant C ∈ (0,+∞) such that

lim
T→+∞

NA(T ;B)

eδT
= Cmδ(B)

for every Borel set B ⊂ C with mδ(∂B) = 0.

20.3. Apollonian Triangle. Now we consider the Apollonian triangle. Let C1, C2, C3 be
three mutually tangent circles in the plane having mutually disjoint interiors. Let C4 be
the circle tangent to all the circles C1, C2, C3 and having all of them in its interior, i.e. the
configuration C1, C2, C3, C4 is bounded.

We look at the curvilinear triangle T formed by the three edges joining the three tangency
points of C1, C2, C3 and lying on these circles. The bounded collection

G := {C ∈ A : C ⊂ T }

is called the Apollonian gasket generated by the circles C1, C2, C3. Since ∂T ∩ Λ(Γ) = ∂T
has Hausdorff dimension 1, since δ > 1 and since mδ is a constant multiple of δ–dimensional
Hausdorff measure restricted to Λ(Γ), we have that mδ(∂T ) = 0. Another, a more general
argument for this, would be to invoke Corollary 1.4 from [20]. Therefore, as an immediate
consequence of Theorem 20.13 we get the following result, also proved by Kontorovich and
Oh in [36] (see also [56]–[58]) with entirely different methods.

Corollary 20.14. Let C1, C2, C3 be three mutually tangent circles in the plane having
mutually disjoint interiors. Let C4 be the circle tangent to all the circles C1, C2, C3 and
having all of them in its interior, i.e. the configuration C1, C2, C3, C4 is bounded. Let A be
the corresponding (bounded) circle packing.

Let δ = 1.30561 . . . be the Hausdorff dimension of the residual set of A and let mδ be the
Patterson-Sullivan measure of the corresponding parabolic classical Schottky group Γ.

If T is the curvilinear triangle formed by C1, C2 and C3, then the limit

lim
T→+∞

NA(T ; T )

eδT

exists, is positive, and finite; we just count the elements of G. Moreover, there exists a
constant C ∈ (0,+∞), in fact the one of Theorem 20.13, such that

lim
T→+∞

NA(T ;B)

eδT
= Cmδ(B)

for every Borel set B ⊂ T with mδ(∂B) = 0.
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Figure 5. Apollonian Triangle

Now we will provide a somewhat different proof of Corollary 20.14, by appealing directly
to the theory of parabolic conformal IFSs and avoiding the intermediate step of parabolic
Schottky groups. Indeed, let C0 be the circle inscribed in T and tangent to the circles C1,
C2 and C3. Let x1, x2 and x3 be the vertices of the curvilinear triangle T , i.e., for i = 1, 2, 3,
xi is the only element of the intersection Ki ∩K4. Let

ϕi : Ĉ→ Ĉ
be the Möbius transformation fixing the point xi and mapping the other vertices xj and
xk, respectively, onto the only points of the intersections C0 ∩ Cj and C0 ∩ Ck. Then

S = {ϕ1, ϕ2, ϕ3}
is a parabolic IFS defined on B4, xi is a parabolic fixed point of ϕi, i = 1, 2, 3, and

G = {ϕω(C0) : ω ∈ {1, 2, 3}∗},
see Figure 5. We therefore obtain Corollary 20.14 immediately from Theorem 12.6.

Remark 20.15. In the context of limit sets, such as circle packings, there is scope for
finding error terms in the above asymptotic formulae, see ex. [39] and [60]. It could be also
done using the techniques worked out in our present manuscript. However, in the general
setting of conformal graph directed Markov systems quite delicate technical hypotheses
might well be required.

Remark 20.16. For these analytic maps it would be equally possible to work with Banach
spaces of analytic functions, rather than Hölder continuous functions. This would have the
advantage that the transfer operator operator is compact (even trace class or nuclear) and
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might help to simplify some of the arguments as well as being useful in explicit numerical
computations. On the other hand, working with Hölder functions allows the results to be
applied to a far greater range of examples.

Remark 20.17. In higher dimensions, we can consider the packing of the sphere Sd by
mutually tangent d-spheres. The same analysis gives a corresponding asymptotic for the
diameters of spheres. In an overlapping setting and with entirely different methods this
question has been addressed in Oh’s paper [55].

21. Fuchsian Groups

We recall that a Fuchsian group Γ is a discrete group of orientation preserving Poincaré
isometries acting on the unit disk

D = {z ∈ C : |z| < 1}
in the complex plane. A Poincaré isometry means that the Poincaré metric

|dz|
1− |z|2

is preserved, equivalently the map is a holomorphic homeomorphism of the disk D onto
itself. The limit set Λ(Γ) of Γ is a compact perfect subset of S1 = ∂D = {z ∈ C : |z| = 1}.
Assume that Γ is finitely generated and denote a minimal (in the sense of inclusion) set
of its generators by {gj}±qj=±1 where gj = g−1

j . Assume that q ≥ 2, so that Γ is non-
elementary. Following [84] (see also [85]) we call Γ non-exceptional if at least one of the
following conditions holds (corresponding to conditions (10.1)-(10.3) from [37]):

(1) D/Γ is not compact;

(2) The generating set has at least 5 elements (i.e., q ≥ 5) and every non-trivial relation
has length 5; and

(3) At least 3 of the generating relations have length at least 7.

In particular, every finitely generated parabolic Fuchsian group is non-exceptional as the
condition (1) above is satisfied. In the language of conformal GDMSs, C. Series proved in
[84] (see also [66], [67] for an alternative account and [85] where a more algebraic approach
is employed) the following:

Theorem 21.1. If Γ is a non-exceptional Fuchsian group then there exists a finite irre-
ducible pre-parabolic GDMS SΓ with an incidence matrix A, a finite set of vertices V and
a finite alphabet E = {±1,±2, · · · ,±q} such that

(1) For every j ∈ E the corresponding element of SΓ is gj : Xt(j) → Xi(j)

(2) All sets Xv, v ∈ V are closed subarcs of S1

(3) The map E∗A 3 ω 7−→ gω ∈ Γ is a bijection
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(4) Λ(Γ) = JSΓ

(5) The map πSΓ
: E∞A −→ JSΓ

= Λ(Γ) is a continuous surjection and it is 1-to-1 except
at countably many points, where it is 2-to-1.

Similarly to (but not exactly) as in Section 19, given e ∈ E we define

Γe := {γω ∈ E∗A and ω1 = e}.
Then having ρ ∈ AN

A we set
Γρ := Γρ1

Again, similarly as in Section 19, we denote

λρ(γ) = − log |γ′(πΓ(ρ))| = − log |γ′ω(πΓ(ω))| = λρ(ω)

for every ω ∈ E∗ρ (γ = γω ∈ Γρ1 = Γρ) and

∆(Y ) := − log(diam(γω(Y )))

if Y ⊂ Xt(ρ1). Also
λp(ω) = − log |γ′ω(xω)|

if ω ∈ E∗p
Let B denote a Borel subset of the set S1. Set

πρ(Γ;T,B) := {γ ∈ Γρ : λρ(γ) ≤ T and γ(πΓ(ρ)) ∈ B}

πρ(Γ;T ) := πξ(Γ;T, S1) = {γ ∈ Γρ : λρ(γ) ≤ T}

πp(Γ;T,B) := {ω ∈ E∗p : λp(ω) = l(γω) ≤ T and xω ∈ B},

πp(Γ;T ) := πp(Γ;T, S1) = {ω ∈ E∗p : λp(ω) = l(γω) ≤ T},

π̂p(Γ, T ) := {γ ∈ Γ̂ : l(γγ) ≤ T}
With e := ρ1 we further denote

Dρ(Γ;T,B, Y ) := {γ ∈ Γe : ∆γ(Y ) ≤ T and γ(πΓ(ρ)) ∈ B},

Ee(Γ;T,B, Y ) = {γ ∈ Γe : ∆γ(Y ) ≤ T and γ(Y ) ∩B 6= ∅},
and

Ee(Γ;T, Y ) := Ee(Γ;T, S1, Y ) = {γ ∈ Γe : ∆γ(Y ) ≤ T}.

We denote byNξ(Γ;T,B), Nξ(Γ;T ), Np(Γ;T,B), Np(Γ;T ), N̂p(Γ;T ), Dξ(Γ;T,B, Y ), Ee(Γ;T,B, Y )
and Ee(Γ;T, Y ) the corresponding cardinalities.

As immediate consequences of Theorem 5.9, Theorem 8.1, Theorem 8.4, Theorems 11.2,
12.1, and 12.2, along with Theorem 21.1 and Fuchsian counterparts of Proposition 19.5,
Observation 19.6 and Proposition 19.8, following from [84] and [85], we get the following.
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Theorem 21.2. Let Γ = 〈γj〉qj=1 be a finitely generated non-exceptional Fuchsian group.

• Let δΓ be the Poincaré exponent of Γ; it is known to be equal to HD(Λ(Γ)).

• Let mδΓ be the Patterson-Sullivan conformal measure for G on Λ(Γ).

• Let µδΓ be the SΓ-invariant measure on Λ(Γ) equivalent to mδΓ.

• Fix e ∈ E = {±1,±2, · · · ,±q} and ρ ∈ E∞A with ρ1 = e.

Let B ⊆ S1 be a Borel set with mδΓ(∂B) = 0 (equivalently µδΓ(∂B) = 0) and let Y ⊆ Xt(e)

be a set having at least two distinct points. Then with some constant Ce(Y ) ∈ (0,+∞], we
have that

lim
T→+∞

Nξ(Γ;T,B)

eδΓT
=
ψδΓ(ξ)

δΓχδΓ
mδΓ(B), lim

T→+∞

Nξ(Γ;T )

eδΓT
=
ψδΓ(ξ)

δΓχδΓ
,

lim
T→+∞

Np(Γ;T,B)

eδΓT
=

1

δΓχδΓ
µδΓ(B), lim

T→+∞

Np(Γ;T )

eδΓT
=

1

δΓχδΓ
,

lim
T→+∞

N̂p(Γ;T )

eδΓT
=

1

δΓχδΓ
,

lim
T→+∞

Dξ(Γ;T,B, Y )

eδΓT
= Ce(Y )mδΓ(B),

lim
T→+∞

Ek(Γ;T,B, Y )

eδΓT
= Ce(Y )mδΓ(B),

lim
T→+∞

Ek(Γ;T, Y )

eδΓT
= Ce(Y ).

In addition, Ce(Y ) > 0 is finite if and only if

Y ∩ Ω(SΓ) = ∅,
in particular if Γ has no parabolic points, i.e. if it is convex co-compact.

We would like to add that the geodesic flow of a non-compact surface was coded by a
sususpension flow over countable shift in [15] and was, in particular, used to get appropriate
counting results.

Theorem 13.1 – Theorem 13.3 hold for the conformal GDMS SΓ, associated to the group
Γ, without changes. Therefore, we do not repeat them here. However, as in Section 19,
we present the appropriate versions of Theorems 15.1 and 15.2 as their formulations are
closer to the group Γ. In order to get appropriate expressions in the language of the group
Γ itself, given ρ ∈ E∞A , and an integer n ≥ 1, we set

Γnρ := {γω : ω ∈ En
ρ } ⊆ Γρ.
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Furthermore, we define a probability measure µn on Γnρ by setting that

(21.1) µn(H) :=

∑
γ∈H e

−δλρ(γ)∑
γ∈Γnρ

e−δλρ(γ)

for every set H ⊂ Γnρ . As an immediate consequence of Theorem 15.1 we get the following.

Theorem 21.3. If Γ = 〈γj〉qj=1 is a finitely generated non-exceptional convex co-compact
(i. e. without parabolic fixed points) Fuchsian group, then for every ρ ∈ E∞A we have that

lim
n→+∞

∫
Γnρ

λρ
n
dµn = χµδ .

Now define the functions ∆n : Γnρ → R by the formulae

∆n(γ) =
λξ(γ)− χn√

n
.

As an immediate consequence of Theorem 15.2 we get the following.

Theorem 21.4. If Γ = 〈γj〉qj=1 is a finitely generated non-exceptional convex co-compact
(i. e. without parabolic fixed points) Fuchsian group, then for every ρ ∈ E∞A the sequence of
random variables (∆n)∞n=1 converges in distribution to the normal (Gaussian) distribution
N0(σ) with mean value zero and the variance σ2 = P′′SΓ

(δ) > 0. Equivalently, the sequence
(µn ◦ ∆−1

n )∞n=1 converges weakly to the normal distribution N0(σ2). This means that for
every Borel set F ⊂ R with Leb(∂F ) = 0, we have

(21.2) lim
n→+∞

µn(∆−1
n (F )) =

1√
2πσ

∫
F

e−t
2/2σ2

dt.

21.1. Hecke Groups. A special class of Fuchsian parabolic (so non-exceptional) groups
are Hecke groups. These are easiest to express in the Lobachevsky model of hyper-
bolic geometry and plane rather than in the Poincaré one. The 2-dimensional hyperbolic
(Lobachevsky) plane is the set

H := {z ∈ C : Imz > 0}
endowed with the Riemannian metric

|dz|
Imz

.

Given ε > 0 the corresponding Hecke group is defined as follows

Γε :=
〈
z 7→ −1/z, z 7→ z + 1 + ε

〉
.

This group has an elliptic element order 2 which is the map z 7−→ −1/z and one (conjugacy
class) of parabolic elements which is the map z 7−→ z + 1 + ε. Its (parabolic) fixed point
is ∞. In particular all the limit sets Λ(Γε) are unbounded, and therefore the Hecke groups
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Γε do not really fit into the setting of our current manuscript. However, any Möbius
transformation

H : D→ H
is an isometry with respect to corresponding Poincaré metrics and the map

Γε 3 γ 7−→ H−1 ◦ γ ◦H
establishes an algebraic isomorphism between Γε and the group

Γ̂ε := {H−1 ◦ γ ◦H : γ ∈ Γε}.

Of course, the conjugacy H between Γ̂ε and Γε congregates elements of Γ̂ε and Γε viewed
as isometric actions. The groups Γ̂ε are Fuchsian parabolic (so non-exceptional) groups
acting on D and perfectly fit into the setting of Section 21. In particular, Theorem 21.2
holds for them.
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[26] S. Gouëzel, Statistical properties of a skew product with a curve of neutral points, Ergod. Th. &
Dynam. Sys., 27 (2007), 123-151. 14
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[87] B. Stratmann, M. Urbański, Pseudo-Markov systems and infinitely generated Schottky groups, Amer.

J. Math. 129 (2007) 1019-1062. 19
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