ASYMPTOTIC COUNTING
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CONFORMAL DYNAMICAL SYSTEMS
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ABSTRACT. In this monograph we consider the general setting of conformal graph directed
Markov systems modeled by countable state symbolic subshifts of finite type. We deal with
two classes of such systems: attracting and parabolic. The latter being treated by means
of the former.

We prove fairly complete asymptotic counting results for multipliers and diameters
associated with preimages or periodic orbits ordered by a natural geometric weighting.
We also prove the corresponding Central Limit Theorems describing the further features
of the distribution of their weights.

These results have direct applications to a wide variety of examples, including the
case of Apollonian Circle Packings, Apollonian Triangle, expanding and parabolic rational
functions, Farey maps, continued fractions, Mannenville-Pomeau maps, Schottky groups,
Fuchsian groups, and many more. This gives a unified approach which both recovers
known results and proves new results.

Our new approach is founded on spectral properties of complexified Ruelle-Perron—
Frobenius operators and Tauberian theorems as used in classical problems of prime number
theory.
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1. Introduction

1.1. Short General Introduction. We begin with a simple problem formulated for gen-
eral iterated function systems acting on a compact metric space X. Let

(gpe:X—>X)

ecE’

be a countable, either finite or infinite, family of C**® contracting maps on a metric space.
We can associate to a point £ € X the images

Qow(g) = Puw; ©°°0 Spwn(f)

where w = (wy,- -+ ,w,) € E", n > 1, and then we associate two natural weights

Ae(w) = —log ()" ()]
and
A¢(w) := —log diam(¢,,(X)).

Since there is no natural way to order and count these images in terms of their combinatorial
weight (i.e., the length n of w = (wq, -+ ,wy,)), we use instead the two weights introduced
above: namely, A\¢(w) and Ag(w).

Under mild natural hypotheses, we show that there exist two constants Cy,Cy > 0 (and
we provide explicit dynamical expressions for them) and § € (0, 400) such that

. FHw Ae(w) < T} _

Tgr—lr-loo €5T Ol
and A -
: <
lim #{w 5(w) =T} = ().
T—+o00 65T

These are perhaps the highlights of our results which are simplest to present; but we actually
prove more. For example, we also provide the corresponding asymptotic results when, in
addition, one requires that the points ¢, () are to fall into a prescribed ball B in X. We
also count the corresponding multipliers if the points ¢, () are replaced by periodic points
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of the system, i.e. by unique fixed points z,, of the maps ¢, which exists because all the
maps ¢, are (with our current hypotheses) contractions of the space X into itself. To this
end, we can denote

Ap(w) = —log [(w)'(70)]
and then there exists ('3 > 0 such that
: <
o #w M) S T)

T—+o0 edT

— Cg.

A fuller description of our results is provided below in further subsections of this intro-
duction and in complete detail in appropriate technical sections of the manuscript.

There are natural and instructive parallels of our work and the classical approach to the
prime number theorem, as well as with known results on the Patterson-Sullivan orbit count-
ing technology and the asymptotics of Apollonian circles. There are also natural counting
problems in both expanding and parabolic rational functions, complex continued fractions,
Farey maps, Manneville-Pomeau maps, Schottky groups, Fuchsian groups, including Hecke
groups, and more examples. We apply our general results to all of them, thus giving a
unified approach which yields both new results and a new approach to established results.

All of these are based on our current results for conformal graph directed Markov sys-
tems over a countable alphabet. These, i. e. such directed Markov systems, form the
core of the manuscript, and are objects of ultimate results of Part 1 and Part 2. Their
more detailed informal description is presented below in Section [1.2] entitled Asymptotic
Counting Results; Section is devoted to the, above mentioned, classes of examples.

Our counting results (on the symbolic level) are close in spirit to those of Steve Lalley
from [37]. These would directly apply to our counting on the symbolic level if the graph
directed Markov systems we considered had finite alphabets. However, we need to deal with
those systems with a countable alphabet and we obtain our counting results via the study of
spectral properties of complexified Ruelle-Perron—Frobenius operators, as used by William
Parry and the first—named author, rather than the renewal theory approach of Lalley. It
is worth mentioning that our results on the symbolic level could have been formulated and
proved with no real additional difficulties in terms of ergodic sums of summable Holder
continuous potentials rather than merely the functions A¢(w) from the next subsection.

We would also like to add that our work was partly inspired by counting results of
Kontorovich and Oh for Apollonian packings from [36] (see also [56]-[58]), which in our
monograph are recovered and ultimately follow from our more general results for conformal
graph directed Markov systems. Nevertheless, the approach and the level of generality of
our approach is entirely different than that of Kontorovich and Oh. We have recently re-
ceived an interesting preprint [31] of Byron Heersink where he studies the counting problems
for the Farey map, Gauss map, and closed geodesics on the modular surface. We would also
like to note that a part of the classical work of the first named author and William Parry
(including [68], [69], [62], [61]), the method of the complex Perron-Frobenius operator to
approach various counting problems in geometry and dynamics, has been used by several
authors including [50], [52], [72], [3].
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We now discuss our results below in more detail.

1.2. Asymptotic Counting Results. In Sections , and |§|, we will recall from [47] the
respective concepts of attracting and parabolic countable alphabet conformal graph directed
Markov systems. This symbolic viewpoint is a convenient framework for keeping track of
the quantities we want to count. We begin by recalling enough notation to allow us to
formulate versions of our main results, beginning with the family of contractions we will
study, referring the read to the appropriate later sections for more details.

In contrast to the simple family of contractions described in Subsection (1.1} we will need
to consider a more general “Markovian structure” for our family of contractions, so as to
accommodate the examples we wish to apply them to (see Subsection . A directed
multigraph consists of a finite set V' of vertices, a countable (either finite or infinite) set F
of directed edges, two functions

,t: B —V,
and an incidence matric A: E x E — {0,1} for (V, E,i,t) such that
Agp =1 1implies (b) =i(a).

Now suppose that in addition, we have a collection of nonempty compact metric spaces
{X,}vey and a number k € (0,1), such that for every e € E, we have a one-to-one
contraction ¢, : Xy — Xj.) with Lipschitz constant (bounded above by) k. Then the
collection

§= {(Pe : Xt(e) — Xi(e)}eEE

is called an attracting graph directed Markov system (or GDMS). The GDMS is called an
attracting iterated function system (or IFS) if the set V' of vertices is a singleton and all
the entries of the incidence matrix A are 1s. We will explain these definitions in greater
detail in Section [3

We denote by EY C EN the subshift of finite type associated to the alphabet E and the
matrix A, and we denote by E the collection of finite words admissible by the matrix A.
We say that the incidence matrix A is finitely irreducible if there exists a finite set 2 C £
such that for all a,b € E there exists a word w € {2 such that the concatenation awb is in
E’,. We then also call the system S irreducible. We extend the functions 7, : £ — V in a
natural way to E% as follows:

tw) ==t(wy) and i(w) =i(w).
For every word w € £, say w € E, n > 0, let us denote
Puw = Py © 0Py, - Xt(w) — Xz(w)

This symbolic setting is particularly useful for our analysis (in particular, the introduction
of a transfer operator).
Now, we define the natural coding map

WSZW:EZO—>X:=HXU,

veV



6 MARK POLLICOTT AND MARIUSZ URBANSKI

by
{ms(@)} == [ Putn Xi(wn)
neN
where w € EY and [], ., X, is the disjoint union of the compact topological spaces X,,

v € V. The set

veV

J=Js=ms(EY)
is called the limit set of the GDMS S§. We will describe these objects in greater detail in
Section
To be able to study geometrical features of & we need to impose some additional hy-
potheses. We call a GDMS S conformal if for some d € N, the following conditions are
satisfied.

(a) For every vertex v € V, X, is a compact connected subset of R?, and X, = Int(X,).
(b) (Open Set Condition) For all a,b € E such that a # b,

Pa(Int(Xy(a))) N p(Int(Xyp))) = 0.

(c) (Conformality) There exists a family of open connected sets W, C X,,, v € V| such
that for every e € E, the map ¢, extends to a C! conformal diffeomorphism from
Wiy into Wiy with Lipschitz constant < k.

(d) (Bounded Distortion Property (BDP)) There are two constants L > 1 and o > 0
such that for every e € E/ and every pair of points z,y € Xy,

e ()]
()]

where |¢! ()| denotes the scaling factor of the derivative ¢/ (z) : R? — R? which is
a similarity map.

_ 1] < Lily - al|*

From now on through this introduction and, actually, through the entire manuscript we
assume that the system S is finitely irreducible, i.e. that the incidence matrix A is finitely
irreducible. For our counting results we need one natural hypothesis more. We call the
system S strongly reqular if there exists s € [0, +00) such that

0 <P(s) < +o0

where for s > 0, we let

J— 3 1 ! ||s
and ||¢'||o denotes the supremum norm of the derivative of a conformal map ¢ over its
domain. For example, every non trivial finite GDMS is strongly regular. In particular,
every finite IFS with the alphabet F having at least two elements is strongly regular.
Finally, we want to introduce a standard form of non-degeneracy condition on the deriva-
tives. First,

B ={wekl}: Auppjon = 1}.
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Further, for all ¢, a € R we denote by G,(t) multiplicative subgroup of positive reals (0, +00)
that is generated by the set

{e_“|w||g0;(xw)|t ‘W E E*} C (0, +0)

where z,, is the only fixed point for ¢, : Xjw,) = Xiw,). Let S = {@c}ecr be a finitely
irreducible conformal GDMS then call a parameter ¢t € R strongly S—generic if there exists
no a € R such that G,(t) is generated by e?™* for some k € Ny. We call the system S
D-generic if each parameter ¢t € R\ {0} is S—generic.

In order to formulate an equidistribution result we need to introduce an appropriate
reference measure. There is (see [47], comp. [42]) a natural ambient Borel probability
measure msg on the shift space £ occasionally called the the symbolic conformal measure,
and which satisfies the following Gibbs property: For every w € E%, we have that

(1.1) Cia ll91128 < mas (w]) < Cos L 1S

where s is the Hausdorff Dimension of the limit set Js, Cs; € (0,+00) is a constant
independent of w and we denote

w]i={r € EY : 7w =w}

is the cylinder generated by the word w. In here |w| is the length of the finite word w and
7|, is the word formed by the first n terms of 7.

There is also (see again[47], comp. [42]) pss, a unique Borel probability shift invari-
ant measure on K absolutely continuous with respect to ms,. In fact ps, and ms, are
equwalent and the correspondmg Radon-Nikodym derivatives are bounded.

Msg ‘= Mgg O 7r$ , the image of the measure ms, under the projection mg, is then
supported on Js and is called the (ds—) conformal measure on Js. It is characterized (see
[47), comp. [42]) by the following two properties. Firstly,

iss(ul ) = [ 1Ll it
F
for every w € E/4 and every Borel set ' C Xy, and secondly,
M5 (Pa(Xi@) N 0s(Xis)) =0

whenever «, 5 are incomparable elements of £%. We also denote

fiss = iss 0 T
the image of the invariant measure ps, under the projection ms. We will return to these
definitions again in Section [3] and Section [9]

An equally important role for us is played by parabolic conformal GDMSs. These are
somewhat the same as finite alphabet attracting systems with one exemption that some
moduli of derivatives at some fixed points can be equal to 1. This apparent small change in
definition yields however quite transparently visible differences in dynamical and geometric
properties. This can be readily seen from our exposition in Section [0} particularly in what
concerns invariant measures. Furthermore, some counting results for parabolic systems are
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strikingly different than those for attracting ones as the content of Theorem readily
shows.

We are now in a position to formulate our first counting and equidistribution results.
Let ms(p) € J C X be a reference point coded by an infinite sequence p € EY. Fix any
non-empty Borel set B C X. Then for all T" > 0 we define:

Ny(B,T) :=#{we E}: p,(rs(p)) € B and Ay (w) < T}
and
N,(B,T) :=#{we B x, € B and \y(w) < T},
where
B = {we E} :wp e EYY,
and, we recall,
By ={wekly: Auppon = 1},
are finite words of symbols, i.e. we count the number of words w € E for which the weight
Ai(w) does not exceed T and, additionally, the image ¢, (7s(p)) is in B if i = p, or the
fixed point z,, of ¢, is in B if i = p.
The following result is based on Theorem for attracting conformal GDMSs and The-
orem for parabolic systems.

Theorem 1.1 (Asymptotic Equidistribution Formula for Multipliers). Suppose that S is
either a strongly regular finitely irreducible D-generic attracting conformal GDMS or an
irreducible parabolic conformal GDMS. Let § = 0s = HD(Js) be the Hausdorff dimension
of the associated limit set Js.

Fiz p e EY. Let B C X be a Borel set such that ms,(0B) = 0, then

i NBT) _ alp)

ms(B
T— 400 65T 6XM5 mé( )
and N(BT) 1
. p 9 - ~
TEI-ir-loo T S, fis(B).

where Y5 = dus/dmg and X, is the Lyapunov exponent of the measure fis.

This result, and essentially all counting results which follow, can be rephrased in terms
of weak—star convergence of appropriately defined and normalized counting measures.

We will formulate more counting results in the present subsection and in the next one we
will discuss representative examples of conformal dynamical systems where the appropriate
counting results will be obtain by associating to them either attracting or parabolic GDMSs
and applying the above theorem.

Our proof of Theorem for attracting systems is based on following five steps:

(1) Describing the spectrum of an associated complexified Ruelle-Perron-Frobenius (RPF)
operator; done at the symbolic level, culminating in the results of Section [4]



ASYMPTOTIC COUNTING IN CONFORMAL DYNAMICAL SYSTEMS 9

(2) Using this information on the RPF operator in order to find meromorphic extensions
of associated complex 7 functions, i.e., Poincaré functions (or series), see Section @,

(3) Using the information on the domain of the Poincaré series to deduce the asymptotic
formulae (Theorem for A, (&) on the mixture of the symbolic level (the words
wp are required to belong to a symbolic cylinder [r] rather than ¢, (7s(p)) or z,
to belong to B) and GDMS level, by classical methods from prime number theory
based on Tauberian theorems.

(4) Having (3) derive the asymptotic formulae for —log |/ (z,)|; i.e. for periodic points
x,, of v, by means of sufficiently fine approximations.

(5) Deducing the asymptotic formulae for the Borel sets B C X (Theorem from
those at the symbolic level (Theorem |5.8)).

We can leverage our results for attracting systems to prove the corresponding results for
the more delicate case of parabolic systems. This is done by associating with a parabolic
system (by a form of inducing) a countable alphabet attracting GDMSs and expressing the
corresponding Poincaré series for parabolic systems as infinite sums of the Poincaré series
for those associated attracting systems. The rewards for this extra work is that our results
then apply to a wide class of interesting examples (see next subsection).

It is interesting to note that whereas the D-generic hypothesis of Theorem needed
for attracting systems is very mild, in the case of parabolic systems, or more precisely
the attracting systems naturally associated to them, they are automatically D—generic (see
Theorem , so no genericity hypothesis is needed for them at all.

We would like to stress again that parabolic systems are of equal importance to the
attracting systems. Indeed, many of the applications, such as to Farey maps or Apollonian
packings for example, are based on parabolic GDMSs. The parabolic systems frequently
generate more complex and intriguing counting phenomena, particularly in regard to count-
ing diameters, which we will now address.

We now describe the corresponding results for asymptotic counting of diameters. These
are more geometrical and more complex than those for multipliers, and counting multipliers
is intrinsically more of a “dynamical process”.

We bring up the appropriate counting definitions related to diameters of sets. We fix
p € EY, put £ = 7ms(p) and fix a set Y C Xj(,). We denote

A(w) = Ay (w) := —logdiam(¢,(Y)), w € £},
with the natural convention that for w = £, being the empty (neutral) word:
Ay (e) = —logdiam(Y'),
and further, for any 7" > 0,
DL(B,T) = {w € E' : Ay(w) < T and g, (€) € B},
DY(B,T) = #Dy(B,T).
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Also
EV(B,T) ={we L : Ay(w) <T and ¢,(Y)NB # 0}
and
EY(B,T) = #&(B,T).
We refer the reader to the appropriate sections for further relevant definitions and con-
cepts, and to the next subsection for, already mentioned, examples of conformal dynamical
systems. However, for the present, we note that {2 denotes the set of all parabolic elements
of E, that for every e € F,
Qe ={aeQ: A =1}
and that

2pa
Qoo = Voo (S) =2 a € >ds ¢ .
§)={acn: 2> a)
The following theorem comprises Theorem [8.1, Theorem [8.4, Remark [8.5] Theorem [12.]

Theorem [12.2, and Remark [12.3]

Theorem 1.2 (Asymptotic Equidistribution Formula for Diameters). Suppose that S is
either a strongly reqular finitely irreducible D-generic attracting conformal GDMS or an
irreducible parabolic conformal GDMS.

Denote by 6 the Hausdorff dimension of the limit set Js. Fiz p € EY and then a set
Y C Xy, having at least two elements. If B C X is a Borel set such that ms(0B) = 0
then,

. DY(B,T) _
m — =G (Y)ms(B)
and EO(B.T
lim E(BT) _ C,, (Y)ms(B),

T—+o0 65T
where C,, (Y') € (0,400] is a constant depending only on the system S, the letter p; and
the set Y.

In addition C,,(Y') is finite if and only if either
(1) YNQy =0 or B
(2) 6 > max {p(a) :a € Q, and z,€Y}.
In particular C,, (Y') is finite if the system S is attracting.

The proofs of the results in Theorem for diameters are based on those for multipliers.
The subtlety in the attracting case is that the basic bounded distortion property alone does
not suffice to pass from the case of multipliers to the case of diameters; one needs additional
approximating steps. For parabolic systems, even the basic bounded distortion property is
weaker and more involved and a careful analysis of parabolic behavior is needed.

It is worth emphasizing once again the importance of parabolic systems for many appli-
cations and classes of examples, including that of Apollonian packings. This is even more
transparent in the case of diameters than multipliers, since the diameters often appear
more frequently in the geometric setting.
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1.3. Examples. Now we would like to describe some classes of conformal dynamical sys-
tems to which we can apply Theorem and Theorem [.2] Often applying these results
requires some non-trivial preparation.

Our first class of examples is formed by conformal expanding repellers, see Definition [17.1}
The appropriate consequences of Theorem and Theorem |1.2|are stated as Theorem [17.8|
The primary examples of non-linear conformal expanding repellers are formed by expand-
ing rational functions of the Riemann sphere C. The consequences of Theorem and
Theorem [I.2] in this context, are given by Theorem [17.22]

Perhaps the the most obvious example related to attracting GDMSs are the Gauss map

G@wzi—[ﬂ,

and the corresponding Gauss IFS G consisting of the maps

1
0,1 —> gn = ) N.
0,130 gala)i= ——, ne

Theorem [17.15] summarizes the consequences of Theorem and Theorem stated for
the Gauss map G itself.

Now let describe some well known parabolic GDMSs to which our results apply. We start
with 1-dimensional systems. Our primary classes of such systems, defined and analyzed in
Subsection |18}, are illustrated by following.

a) Manneville-Pomeau maps f, : [0,1] — [0, 1], where a > 0 is a fixed number, defined
by
fa(z) =2 + 2" (mod 1),
and the Farey map f : [0,1] — [0, 1] defined by

The appropriate asymptotic counting results, stemming from Theorem and The-
orem [1.2] are provided by Theorem and Theorem [18.2]

b) A large class of conformal parabolic systems is provided by parabolic rational func-
tions of the Riemann sphere C. These are those rational functions (see Subsec-
tion that have no critical points in the Julia sets but do have rationally indif-
ferent periodic points. The appropriate asymptotic counting results, consequences
of Theorem [I.T] and Theorem [I.2] are stated as Corollary [[8.10] Probably the best
known example of a parabolic rational function is the polynomial

. 1 -~
Cazr—>f1/4(z)::z2+16(c.

It has only one parabolic point, namely z = 1/2. In fact this is a fixed point of f;/4
and f],,(1/2) = 1. Another explicit class of such functions is given by the maps of
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the form R
Cozr—2+1/2+t
where t € R.

c) A separate large class of examples is provided by some classes of Kleinian groups,
namely by finitely generated classical Schottky groups and essentially all finitely
generated Fuchsian groups.

Convex co-compact (no tangencies) Schottky groups are described and analyzed
in detail in Section |19 while general Schottky groups (allowing tangencies) are dealt
with in Subsection 20, The appropriate asymptotic counting results, stemming from
Theorem and Theorem [1.2] are provided by Theorem and Theorem

As a particularly famous example, the counting problem of circles in a full Apollonian
packing reduces to an appropriate counting problem for a finitely generated classical Schot-
tky group with tangencies. The full presentation of asymptotic counting in this context,
stemming from Theorem [I.1) and Theorem [I.2] is given by Corollary [20.9] We present be-
low a more restricted form (see Theorem involving only the counting of diameters;
it recovers results from [36] (see also [56]-[58]), obtained by entirely different methods.

Theorem 1.3. Let Cy,Cs,Cs be three mutually tangent circles in the Fuclidean plane
having mutually disjoint interiors. Let Cy be the circle tangent to all the circles Cy, Cs, Cs
and having all of them in its interior; we then refer to the configuration (C1,Cs, Cs,Cy) as
bounded. Let A be the corresponding circle packing.

Let 6 = 1.30561 ... be the Hausdorff dimension of the residual set of A and let ms be the
Patterson-Sullivan measure of the corresponding parabolic Schottky group T'.

If No(T') denotes the number of circles in A of diameter at least 1/T then the limit

Nu(T)

exists, is positive, and finite. Moreover, there exists a constant C' € (0,400) such that if
NA(T; B) denotes the number of circles in A of diameter at least 1/T and lying in B, then

. Nu(T; B)
P = = Cma(B)
for every open ball B C C.

Closely related to A is the curvilinear triangle 7 (or Apollonian triangle) formed by the
three edges joining the three tangency points of C7, C5y, (5 and lying on these circles. The
collection

G={CeA:CCT}
is called the Apollonian gasket generated by the circles C,Cy, C3. As a consequence of
Theorem taking B = T, we get the following (see Corollary ; it overlaps with
results from [36] (see also [56]-[58]), obtained with entirely different methods.

Corollary 1.4. Let Cy,Cy,C5 be three mutually tangent circles in the Fuclidean plane
having mutually disjoint interiors. Let Cy be the circle tangent to all the circles Cy, Co, C3
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and having all of them in its interior; we then refer to the configuration Cy,Cs, C3,Cy as
bounded. Let A be the corresponding circle packing.
If T is the curvilinear triangle formed by Cy, Cs and Cs, then the limit

lim Na(T;T)
T—~+o00 65T

exists, is positive, and finite and counts the elements of G. Moreover, there exists a constant

C € (0,400), in fact the one of Theorem [20.13], such that

i N4(T; B)
TAHJIrloo 66T

for every Borel set B C T with ms(0B) = 0.

= CTTL5(B)

Ficure 1. (i) The Standard Apollonian Packing; (ii) The Apollonian Gasket

In fact we can provide a more direct proof of Corollary [I.4] by appealing directly to the
theory of parabolic conformal IF'Ss and avoiding the intermediate step of parabolic Schottky
groups. Indeed, it follows immediately from Theorem [12.6]

In the context of limit sets, such as circle packings, there is scope for finding error terms
in the above asymptotic formulae, see ex. [39] and [60]. It could be also done using
the techniques worked out in our present manuscript. However, in the general setting of
conformal graph directed Markov systems quite delicate technical hypotheses might well
be required.

1.4. Statistical Results. A second aim of this monograph is to consider the statistical
properties of the distribution of the different weights A\,(w) and diam(¢,, (X)) corresponding
to words w with the same length n. This is a very specific mathematical problem, but is
set against the backdrop of a vast literature dealing with different statistical properties of
dynamical systems.
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The classical Central Limit Theorem for Gibbs measures and uniformly hyperbolic dy-
namical systems (originally due to Sinai, Ratner, etc.) were inspired by the classical theo-
rems for independent identically distributed random variables. In particular, in this context
there are two particularly fruitful approaches: Firstly, the spectral approach based on per-
turbation theory for the maximal eigenvalue; and, secondly, the martingale method of
Gordin [22]. An excellent account of Central Limit Theorems in this setting appears in
[T4]. Stronger results based on invariance principles were pioneered by Denker-Philipp [15].

In the broader setting of non-uniformly hyperbolic systems and natural invariant proba-
bility measures there have been a number of important contributions by different authors,
including Young [94], [95], Sarig [80] Liverani-Saussol-Vaienti [40] and Gouézel [25]. In the
case of transformations with only a sigma finite natural invariant measures there are results
on stable limit laws, see [97] and the references therein.

Since our aim is to develop Central Limit Theorems to deal specifically with the distri-
bution of diameters of sets, not only typical points in a measurable sense (Theorem |1.6))
and also in terms of counting averages (Theorem [1.8)), we cannot apply the results above
directly, but they provide a key blueprint for us to follow.

There are many other statistical properties that might be considered (e.g., Berry-Essen
estimates, Shrinking targets, Large Deviations, Local Limit Theorems, Extremal theory,
Multifractal analysis, etc.) but these are beyond the scope of this monograph.

In the context of attracting and parabolic GDMSs we have the following Central Limit
Theorem, see Part|3] We refer the reader to the appropriate section for a detailed definitions
of the hypothesis.

Theorem 1.5. If S is either a strongly reqular finitely irreducible D—generic conformal
GDMS or a finite alphabet irreducible parabolic GDMS with s > % E then there exists

02 > 0 such that if G C R is a Lebesque measurable set with Leb(0G) = 0, then

—log |y, (ms(o™(w)))| — Xusn 1 2
lim ps | Sw e EY : & Ww'"( st )))‘ X ed = / e 202 dt.
n——+o0o \/ﬁ IQmo I

In particular, for any o < S

_10g‘80/| (WS(Un(W»)‘ = XusT 1 e
li EY:a< il < = T207 dt.
n}f@#é ({w e Y a< N <p 27m/a e 2

The following result is an alternative Central Limit Theorem considering instead the
logarithms of the diameters of the images of reference sets.

Theorem 1.6. Suppose that there S is either a strongly regular finitely irreducible D—

generic conformal GDMS or a finite alphabet irreducible parabolic GDMS with s > pipfl.

Lthis hypothesis means that the corresponding invariant measure ps is finite, thus a probability after
normalization
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Let 02 := P"(0)(# 0). For everyv € V let Y, C X, be a set with at least two points. If
G C R is a Lebesgue measurable set with Leb(0G) = 0, then

—log di wl (Yiw — 1 2
lim g <{w e EY: og diam(¢p |n( t( n))) XpsT c G}> — /e 3% (.
n—r+00 N 210 Ja

In particular, for any o < S

—1 di w Y, w - 1 A 2
lim LLs ({w e Ezo i S 0og 1am(90 |n( t( n))) Xﬂén S 5}) _ / e 27 dt.
n—-+00 \/ﬁ 2ro «

There are more theorems in this vein proven in Part [3 for example the Law of Iterated
Logarithm. In order to formulate other statistical results of a slightly different flavor, we
define the following measures

—dAp(w)
ZweH € g

—0A,(w
S ucry € W)

for integers n > 1 and H C E}. We also consider the function A, : £} — R given by

pn(H) =

Ap(W) — xsm
Ap(w) = L2220
()= 22
Theorem 1.7. ]fS is either a ﬁm'tely irreducible strongly reqular conformal GDMS or a
we have

+1 ’
that

. A
i, f 52 === ol (rs(o16D) )

The following theorem describes precisely the magnitude of deviations in this convergence,
and is another form of Central Limit Theorem.

Theorem 1.8. If S is either a strongly regular finitely irreducible D—generic attracting
conformal graph directed Markov system or a finite alphabet irreducible parabolic GDMS

with ds > pipfl , then the sequence of random variables (A,)S2, converges in distribution

to the normal (Gaussian) distribution ./\/'0( ) with mean value zero and the variance o® =
P"((S) Equivalently, the sequence (p, o A1), converges weakly to the normal distribution
No(c?). This means that for every Borel set F C R with Leb(OF) = 0, we have

6 Ap(Wln)—xsm
Dweny [PL(ms(p)[ Ly (2225 1
lim £ } ( v ) = lim (AN (F)) = /e_tQ/QUZdt.
F

] _
noee > wery |Pu(ms(pl)] e 2mo

In particular all these theorems hold for all classes of examples described in subsection
in the case of parabolic systems under the additional hypothesis that § > +1, which ensures
that the corresponding invariant measure p is finite, thus probabilistic after normalization.
In the case of continued fractions these take on exactly the same form, in the case of Kleinian

groups, including Apollonian circle packings, as for associated GDMSs.
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However, in giving statements of the Central Limit Theorems for examples, we have
chosen rational functions to best illustrate them. The first result is a Central Limit Theorem
for the distribution of the derivatives of an expanding rational function along orbits.

Theorem 1.9. Let f : C — C be either an expandmg rational function of the Riemann

sphere C ora parabolic rational function ofC with ds > pzpfl Then there exists 0? > 0

such that if G C R is a Lebesgue measurable set with Leb(0G) = 0, then

log [(f")(2)] = xusn 1 2
Jm s ({ZEJ(f) N0 €Gy | = 2M/Ge 207 dt.

In particular, for any o < 3

n\/ _ B 2
g ({0t )L s

The second result is a Central limit Theorem describing the diameter of the preimages
of reference sets.

Theorem 1.10. Let f : C — C be either an , expanding rational function of the Riemann
sphere C ora parabolic rational function of(C with ds > 2pf1 Then for every e € F let
Y. C R, be a set with at least two points. If G C R is a Lebesgue measurable set with

Leb(0G) = 0, then
. T IOg dlam(f;n(}/;(z,n))) — XusT 1 —%
ngffooﬂa ({ze J(f) : N eG, | = 27ra/g€ 207 dt

where f™ is a local inverse for f™ in a neighborhood of x = f"(z). In particular, for any
a<p

—1 di -n Y’ezn — B 42
lim s ({Z € J(f) o S 0g lam(faz ( (2, ))) Xus T S 5}) — 1 / e 202 dt.

n—-+0o \/ﬁ 27]'0'

Theorem 1.11. If f (C — C is ezther an_ expandmg mtzonal function of the Riemann

(f), w

+1’

i [ Log | U]y — s
=8

n——+oo n

have that

The final result concerning central limit theorems is a Central Limit Theorem which
describes the distribution of preimages of a reference point.

Theorem 1.12. If f (C — C is ezther an ea:pcmdmg mtzonal function of the Riemann

+1,
variables (A)S°, converges in dzstmbutzon to the normal (Gaussian) distribution ./\fo( )

with mean value zero and the variance o* > 0. Equivalently, the sequence (u, o A1),
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converges weakly to the normal distribution Ny(o?). This means that for every Borel set
F C R with Leb(0F) = 0, we have

ny/ () |—6 log |(f™)"(2)|=xsn
lim s |1V ﬂF( g ) = lm i (AN(F) = / —~12/202 g
n)/ -5 - Hn By - € .
noteo Zzef*"(f) [(f")(2)] n—+00 2o JF

We complete this section by putting our results in Parts 4 and 5 into context.

1.5. Background on the applications and examples. At the heart of this monograph
is a new general method which serves to provide a unified approach to both counting prob-
lems (Theorem and Theorem ) and statistical results (Theorem and Theorem
, which can then be applied to many different examples. Although many of our appli-
cations are new, it is only to be expected that some of these touch upon the work of others,
particularly for some of the better known examples. For the benefit of the reader, and to
place our results into context, in this subsection we briefly describe how our results relate
to the existing literature.

In subsection (and later in Example we began with the historically important
examples of the uniformly expanding Gauss map and non-uniformly expanding Manneville-
Pomeau map, and our asymptotic counting results for these appear as Theorems and
[18.2] Indirectly, one could relate the counting results for periodic orbits for these maps to
those for closed geodesics on the Modular surface, by the use of appropriate sections to
the flow [48]. Then the corresponding asymptotic counting results for closed geodesics are
wellknown by use of the Selberg trace formula (see [30]). In fact, the results for this special
example are even stronger in that they also have error terms for the counting function,
something we have not considered. There is an alternative dynamical approach for counting
closed geodesics in [52], [53]. A version of the metric central limit theorem (Theorem
and Law of the Iterated Logarithm Theorem (Theorem [18.4]) for the Manneville-Pomeau
map can be found in the classical works of Philipp [64]and Doeblin [19]. We are not aware
of earlier work on the statistical results for closed orbits and preimages of the Manneville-
Pomeau map in Theorem [18.5]

In the same subsection (subsection , and later in subsection we consider the
example of the parabolic rational functions. In this case a metric Central Limit Theorem
(related to Theorem appears, for example, in the paper [I8] for Gibbs measures.
An earlier version for hyperbolic rational function follows from the work in Bowen’s book
[4] with the aid of Markov partitions. There are various results on the equidistribution of
preimages, starting with Lyubich’s result [41]. However, we do not know of any previous
results related to Theorem [I.12] Corollary or the subsequent results.

Finally, we considered the case of Kleinian Schottky groups I'. In this context, in much
the same was as in the case of the Gauss map, some of the counting results can be refor-
mulated in terms of closed geodesics, this time on the manifold H**!/T" with all sectional
curvatures equal to —1. Unfortunately, most of the known counting results where I' is a
lattice (where H?*! /T has finite volume) due to Huber, Selberg and others (see [30]) do not
apply. In the case of a classical hyperbolic Schottky group some of the easier counting and
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distribution results from Theorem for fixed points could probably be deduced from
counting closed orbits for Axiom A flows (see [61]), and the simpler results for displace-
ments might be derived from work in [37] or [7I]. In the case of convex cocompact groups
there is also a metric Central Limit Theorem, which essentially comes from the work of
Ratner [76]. (Ratner’s statement is for Anosov flows, but since the proof uses symbolic
dynamics the same approach works for hyperbolic flows and thus applies here). For the
case of lattices the metric Central Limit Theorem was established in [38]. However, the
Central Limit theorem in Theorem appears new.

The model example of the Apollonian Circle packing introduced in subsection [1.3], and
described in subsection [20.2] has received considerable attention in recent years. Kon-
torovich and Oh [36] proved the original asymptotic counting result for circles (Theorem
and our contribution is an alternative approach. There are generalizations and refine-
ments due to Oh and Shah [56], [57] and others, including error terms by Lee and Oh for
the counting fuctions, which again we have not considered [39]. An alternative approach
to the equidistribution results appears in the [63] which, in common with[36], works with
the dynamics in H?"!, in contract to our approach which works on the boundary. We are
not aware of any previous Central Limit Theorems or other related statistical properties in
this context.

Now, we present our systematic exposition of the above mentioned (an more) results
along with their proofs. We start with thermodynamic formalism for countable alphabet
subshifts of finite type.

Part 1. Attracting Conformal Graph Directed Markov
Systems

2. THERMODYNAMIC FORMALISM OF SUBSHIFTS OF FINITE TYPE WITH
COUNTABLE ALPHABET; PRELIMINARIES

In this section we introduce more completely than in the introduction the symbolic setting
in which we will be working. Furthermore, we will describe the fundamental thermodynamic
concepts, ideas and results, particularly those related to the associated Ruelle-Perron-
Frobenius operators, which will play a crucial role throughout the monograph.

Let N={1,2,...} be the set of all positive integers and let F be a countable set, either
finite or infinite, called in the sequel an alphabet. Let

o: EN — EN

be the shift map, i.e. cutting off the first coordinate and shifting one place to the left. It
is given by the formula

0(("‘171)?;):1) = ((wn+1)ﬁ°:1) .
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We also set
E* = U E".
n=0

to be the set of finite strings. For every w € E*, we denote by |w| the unique integer n > 0
such that w € E". We call |w| the length of w. We make the convention that E° = {@}. If
w € EN and n > 1, we put

W =wi...w, € E™.

If € E* and w € E* U EN, we define the concatenation of 7 and w by:

Ty T WiW2 - - - W if we B,
Tw = ) N
T, T WiWs - - . if we BEY,.

Given w, T € EN, we define wAT € ENU E* to be the longest initial block common to both
w and 7. For each a > 0, we define a metric d, on EN by setting

(2.1) do(w, T) = el

All these metrics induce the same topology, known to be the product (Tichonov) topology.
A real or complex valued function defined on a subset of EV is uniformly continuous with
respect to one of these metrics if and only if it is uniformly continuous with respect to all
of them. Also, this function is Holder with respect to one of these metrics if and only if it
is Holder with respect to all of them although, of course, the Holder exponent depends on
the metric. If no metric is specifically mentioned, we take it to be d;.

Now consider an arbitrary matrix A: £ x E — {0,1}. Such a matrix will be called the
incidence matrix in the sequel. Set

EX ={weE": A
Elements of £ are called A-admissible. We also set

B i={we EY: Apg =1forall1 <i<n—1}, neN,

=1 for all i € N}.

WiWi+1

and

Ey = By
n=0

The elements of these sets are also called A-admissible. For every w € E%, we put
w]={re EY: 7, =w}
The set [w] is called the cylinder generated by the word w. The collection of all such

cylinders forms a base for the product topology relative to Y. The following fact is
obvious.

Proposition 2.1. The set EY is a closed subset of EV, invariant under the shift map
o BN — EN | the latter meaning that

o(EY) C EY.
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We recall that the matrix A is said to be finitely irreducible if there exists a finite set
A C E7 such that for all 4, 7 € E there exists w € A for which iwj € E%. If all elements of
some A are of the same length, then A is called finitely primitive (or aperiodic).

The topological pressure of a continuous function f : £} — R with respect to the shift
map o : EY — EY is defined to be

n—1
1 .
— 13 _ J
(2.2) P(f) := nh_)rgon log E exp (S;l[p] E f(o (’7’))) :
weET el j=0
The existence of this limit, following from the observation that the “log” above forms a

subadditive sequence, was established in [46], comp. [47]. Following the common usage we
abbreviate

n—1
Suf =) foo
j=0

and call S, f(7) the nth Birkhoff’s sum of f evaluated at a word 7 € EY.

Observe that a function f : EY — R is (locally) Hélder continuous with an exponent
a > 0 if and only if

Va(f) = sup{Van(f)} < 400,

n>1
where
Van(f) = sup{|f(w) — f(7)|e*™ Vw7 € E¥ and |w A 7| > n}.
Observe further that H,(A), the vector space of all bounded Holder continuous functions
f: EY — R(or C) with an exponent o > 0 becomes a Banach space with the norm || - ||,
defined as follows:
1 lla = 1f11oe + V).

The following theorem has been proved in [46], comp. [47], for the class of acceptable func-
tions defined there. Since Holder continuous ones are among them, we have the following.

Theorem 2.2 (Variational Principle). If the incidence matriz A : Ex E — {0, 1} is finitely
irreducible and if f : EY — R is Holder continuous, then

P(f) = sup {hu(a) + /fd,u},

where the supremum is taken over all o-invariant (ergodic) Borel probability measures p
such that [ fdp > —oc.

We would like also to mention that this theorem was proved in [7§] for Hélder continuous
functions f though with a different definition of topological pressure.

We call a o-invariant probability measure p on EY an equilibrium state of a Holder
continuous function f: EY — Rif [ —fdu < +oo and

(2.3 o)+ [ du=P(9)
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If f: EY — R is a Hélder continuous function, then following [46], and [47] a Borel
probability measure p on EY is called a Gibbs state for f (comp. also [, [29], [74], [71],
[81], [92] and [91]) if there exist constants () > 1 and P, € R such that for every w € E
and every T € [w]

-1 p([w])
(24) o= exp (S f(T) — Pplw]) =

If additionally p is shift-invariant, it is then called an invariant Gibbs state. It is readily
seen from this definition that if a Holder continuous function f : £ — R admits a Gibbs
state u, then

P, =P(f).
From now on throughout this section f : E — R is assumed to be a Holder continuous
function with an exponent o > 0, and it is also assumed to satisfy the following requirement

(2.5) > exp(sup(fli)) < +oo.

Functions f satisfying this condition are called (see [46], and [47]) in the sequel summable.
We note that if f has a Gibbs state, then f is summable. This requirement of summability,
allows us to define the Ruelle—Perron—Frobenius operator

Ly: G(ET) = G(EY),

acting on the space of bounded continuous functions Cy(ES) endowed with || - ||, the
supremum norm, as follows:

Li(g)(w) = Z exp(f(ew)g(ew).
e€l:Aew; =1
Then ||Lf|loc <D ocpexp(sup(fl)) < +oo and for every n > 1
L1(g)(w) = Z exp (S, f(Tw))g(Tw).
TEEY Ay =1

The conjugate operator L} acting on the space Cy(EY) has the following form:

£5lg) = u(Ls(9) = [ £5(g)de

Observe that the operator Ly preserves the space H,(A), of all Holder continuous functions
with an exponent o > 0. More precisely

Ly(Ha(A)) € Ha(A).

We now provide a brief account of those elements of the spectral theory that we will need
and use in the sequel. Let B be a Banach space and let L : B — B be a bounded linear
operator. A point A € C is said to belong to the spectral set (spectrum) of the operator
L if the operator \Ig — L : B — B is not invertible, where Ig : B — B is the identity
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operator on B. The spectral radius (L) of L is defined to be the supremum of moduli of
all elements in the spectral set of L. It is known that r(L) is finite and

r(L) = lim ||L”||1/”.
n—oo

A point A of the spectrum of L is said to belong to the essential spectral set (essential
spectrum) of the operator L if A is not an isolated eigenvalue of L of finite multiplicity.
The essential spectral radius res(L) of L is defined to be the supremum of moduli of all
elements in the essential spectral set of L. It is known (see [54]) that

Tess<L) = n@o inf {HL” — KHl/"}’

where for every n > 1 the infimum is taken over all compact operators K : B — B. The
operator L : B — B is called quasi-compact if either r(L) = 0 or
Tess(L) < 1(L).

The proof of the following theorem can be found in [46] and [47]. For the items (a)—(f) see
also Corollary 4.3.8 in [§].

Theorem 2.3. Suppose that f: EY — R is a Holder continuous summable function and
the incidence matriz A is finitely irreducible. Then

(a) There exists a unique Borel probability eigenmeasure my of the conjugate Perron-
Frobenius operator L} and the corresponding eigenvalue is equal to el

(b) The eigenmeasure my is a Gibbs state for f.
(c) The function f: EY — R has a unique o-invariant Gibbs state fiy.

(d) The measure iy is ergodic, equivalent to my and if Yy = dpy/dmy is the Radon—
Nikodym derivative of pip with respect to my, then logy is uniformly bounded.

(e) If [ —fdus < +oo, then the o-invariant Gibbs state py is the unique equilibrium
state for the potential f.

f ]n case th@ incidence matric A 18 mtel 7imitive, the GbeS state 1% 18 com letel
yp f 74 Y
ergodic.

g) The spectral radius of the operator Ly considered as acting either on Cy(EY) or
f A
Ho(A) is in both cases equal to e”F).

(h) In either case of (g) the number e*Y) is a simple (isolated in the case of Hy(A))
eigenvalue of Ly and the Radon-Nikodym derivative ¢y € H,(A) generates its
ergenspace.

(i) The remainder of the spectrum of the operator Ly : Hy(A) — Hy(A) is contained in
a union of finitely many eigenvalues of finite multiplicity (different from e*F)) of
modulus ) and a closed disk centered at 0 with radius strictly smaller than ).
In particular, the operator Ly : Hy(A) = Ho(A) is quasi-compact.
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In the case where the incidence matriz A is finitely primitive a stronger statement
holds: namely, apart from eP) | the spectrum of L; : Ho(A) — H,(A) is contained
in a closed disk centered at O with radius strictly smaller than e®) .

In particular, the operator Ly : Hy(A) — Ho(A) is quasi-compact.

We are indeed concerned with Gibbs states and these suffice for us in this monograph.
Theorem gives us a full power of thermodynamic formalism resulting from a spectral
gap. For this we do assume finite irreducibility. Indeed, we would like to add that Omri
Sarig proved in [8I] that finite irreducibility is also necessary for the existence of Gibbs
states. Other papers of Sarig on countable shifts include 78], [79], [82]. The reader may
also consult [I1] and [I0]. We are far from claiming that the above list of the works on the
subject of countable shift is complete.

3. ATTRACTING CONFORMAL COUNTABLE ALPHABET GRAPH DIRECTED MARKOV
SYSTEMS (GDMSs)
AND
COUNTABLE ALPHABET ATTRACTING ITERATED FUNCTION SYSTEMS (IFSs);
PRELIMINARIES

In this manuscript we consider conformal countable alphabet graph directed Markov
system (abbr. GDMS) as defined and extensively studied in [47]. These are quite far going
generalizations of conformal countable alphabet iterated function systems (abbr. IFS) of
[42], which in turn generalize the finite alphabet ones. All of them contain appropriate
similarity systems and each step of the above generalizations gives rise to new dynamical
and geometric phenomena.

The highest level of flexibility, the countable alphabet GDMSs, are interested on their
own, of course in this manuscript with respect to the counting phenomena, and are well
suited to modeling the dynamical examples in which we are interested. In later sections we
will prove the results in this context and explain how they can be used to derive different
geometric and dynamical results, such as those already mentioned in the introduction.

Let us define a graph directed Markov system (abbr. GDMS) relative to a directed
multigraph (V, E,,t) and an incidence matrix A : E' x E — {0,1}. As said, such systems
have been defined and first studied at length in [42] and [47]. We recall that directed
multigraph consists of a finite set V' of vertices, a countable (either finite or infinite) set £
of directed edges, two functions

,t: E—V,
and an incidence matric A: E x E — {0,1} on (V, E,i,t) such that
Agp =1 1implies t(a) =i(b).

Now suppose that in addition, we have a collection of nonempty compact metric spaces
{X,}vey and a number k € (0,1), such that for every e € E, we have a one-to-one
contraction ¢, : Xy — Xje) with Lipschitz constant (bounded above by) k. We recall
that the collection

S = {()06 : Xt(e) — Xi(e)}eEE
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is called an attracting graph directed Markov system (or GDMS). We will frequently refer
to it just as a graph directed Markov system or GDMS. We will however always keep the
adjective "parabolic” when, in later sections, we will also speak about parabolic graph
directed Markov systems. We extend the functions ¢,¢ : E — V in a natural way to E as
follows:

tw) =t(ww) and i(w):=i(w).
For every word w € E’, say w € E’, n > 0, let us denote
Puw = Puwy O 0Py, - Xt(w) — X’L(w)
We now describe the limit set, also frequently called the attractor, of the system &. For

any w € E, the sets {¢,), (Xt(wn))}nzl form a descending sequence of nonempty compact
sets and therefore (1,5, ¢ul, (Xi(wn)) # 0. Since for every n > 1,

diam (¢, (Xyw,)) < w"diam (Xy,)) < £"max{diam(X,): v € V},

we conclude that the intersection

) #utn (XKien)

neN

is a singleton and we denote its only element by ms(w) or simpler, by 7(w). In this way we
have defined a map
s ::W:EZOHX::HXU,
veV
where [, X, is the disjoint union of the compact topological spaces X,, v € V. The
map 7 is called the coding map, and the set

J=Js:=7n(EY)
is called the limit set of the GDMS §. The sets
Jy=m({w € EY 1 i(w1) =v}), veV,
are called the local limit sets of S.

We call § mazimal if for all a,b € E, we have A, = 1 if and only if ¢(b) = i(a). In
[47], a maximal GDMS was called a graph directed system (abbr. GDS). Finally, we call
a maximal GDMS S an iterated function system (or IFS) if V', the set of vertices of S, is
a singleton. Equivalently, a GDMS is an IFS if and only if the set of vertices of S is a
singleton and all entries of the incidence matrix A are equal to 1.

Definition 3.1. We call the GDMS S and its incidence matrix A finitely irreducible if
there exists a finite set 2 C E% such that for all a,b € E there exists a word w € () such
that the concatenation awb is in £%. S and A are called finitely primitive if the set (2 may
be chosen to consist of words all having the same length. If such a set €2 exists but is not
necessarily finite, then S and A are called irreducible and primitive, respectively. Note that
all IF'Ss are symbolically irreducible.
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Remark 3.2. For every integer ¢ > 1 define 8%, the qth iterate of the system S, to be
{g&w : Xt(w) — Xi(w) TwE Eg}

and its alphabet is £%. All the theorems proved in this monograph hold under the formally
weaker hypothesis that all the elements of some iterate S?, ¢ > 1, of the system S, are
uniform contractions. This in particular pertains to the Gauss system of Example [17.14
for which ¢ = 2 works.

With the aim of moving on to geometric applications, and following [47], we recall that
we called a GDMS conformal if for some d € N, the following conditions were satisfied.

(a) For every vertex v € V, X, is a compact connected subset of R?, and X, = Int(X,).
(b) (Open Set Condition) For all a,b € F such that a # b,

Pa(Int(Xi(a))) N @o(Int( X)) = 0.

(¢) (Conformality) There exists a family of open connected sets W,, C X,, v € V, such
that for every e € E, the map ¢, extends to a C! conformal diffeomorphism from
Wiy into W) with Lipschitz constant < k.

(d) (Bounded Distortion Property (BDP)) There are two constants L > 1 and a > 0
such that for every e € £ and every pair of points =,y € Xy,

e ()]
()]

where |¢! ()| denotes the scaling factor of the derivative ¢/ (z) : R? — R? which is
a similarity map.

_ 1\ < Lily - al|*

Remark 3.3. When d = 1 the conformality is automatic. If d > 2 and a family S =
{@e}ecr satisfies the conditions (a) and (c), then it also satisfies condition (d) with a = 1.
When d = 2 this is due to the well-known Koebe’s Distortion Theorem (see for example,
[9, Theorem 7.16], [9, Theorem 7.9], or [32, Theorem 7.4.6]). When d > 3 it is due to [47]
depending heavily on Liouville’s representation theorem for conformal mappings; see [34]
for a detailed development of this theorem leading up to the strongest current version, and
also including exhaustive references to the historical background.

For every real number s > 0, let (see [42] and [47])

. 1 ! ||s
P(s):= lm —log [ 37 lleLl |
|w|=n
where ||¢'[| denotes the supremum norm of the derivative of a conformal map ¢ over its
domain; in our context these domains will be always the sets X,, v € V. The above limit
always exists because the corresponding sequence is clearly subadditive. The number P(s)

is called the topological pressure of the parameter s. Because of the Bounded Distortion
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Property (i.e., Property (d)), we have also the following characterization of topological
pressure:

1 / s
P(s):= lim —log |Z () |

where {2z, : w € E}} is an entirely arbitrary set of points such that z, € X, for every
w € . Let ¢ : EY — R be defined by the formula

(3.1) ((w) :=log|ey, (m(a(w))]

The following proposition is easy to prove; see [47, Proposition 3.1.4] for complete details.

Proposition 3.4. For every real s > 0 the function s¢ : EY — R is Holder continuous

and
P(s¢) = P(s).
Definition 3.5. We say that a nonnegative real number s belongs to I's if
(3.2) > lleellse < +oo.
eck

Let us record the following immediate observation.

Observation 3.6. A nonnegative real number s belongs to I's if and only if the Holder
continuous potential s¢ : £ — R is summable.

We recall from [42] and [47] the following definitions:

s i= infT's = inf {s >0:) lletlls < +OO} :

ecl
The proofs of the following two statements can be found in [47].
Proposition 3.7. If S is an irreducible conformal GDMS, then for every s > 0 we have
that
Is={s>0:P(s) < +o0}
In particular,

vs :=inf{s > 0: P(s) < 4+o0}.

Theorem 3.8. If S is a finitely irreducible conformal GDMS, then the function I's > s —
P(s) e R is

1) strictly decreasing,

2

(
(2) real-analytic,
(3) convezx, and
(4)

4) limg_, 1o P(s) = —0c0.
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We denote
,Cs = ,ng

acting either on Cy(EY) or on H,(A). Because of Proposition |3.4] and Observation our
Theorem [2.3] applies to all functions s¢ : EY¥ — R giving the following.

Theorem 3.9. Suppose that the system S is finitely irreducible and s € I's. Then

(a) There exists a unique Borel probability eigenmeasure mg of the conjugate Perron-

Frobenius operator LY and the corresponding eigenvalue is equal to eF®).

(b) The eigenmeasure mg is a Gibbs state for sC.
(¢) The function s¢ : EX — R has a unique o-invariant Gibbs state jis.

(d) The measure us is ergodic, equivalent to ms and if s = dps/dms is the Radon—
Nikodym derivative of us with respect to my, then logs is uniformly bounded.

(e) If X, := — [ Cdps < +o0, then the o-invariant Gibbs state s is the unique equi-
librium state for the potential sC.

(f) In case the the system S is finitely primitive, the Gibbs state ps is completely ergodic.

(g) The spectral radius of the operator Ly considered as acting either on Cy(EY) or

H,(A) is in both cases equal to ().

(h) In either case of (g) the number ) is a simple (isolated in the case of Hy(A))
eigenvalue of Ls and the Radon—Nikodym derivative s € H,(A) generates its
ergenspace.

(i) The reminder of the spectrum of the operator Ls : Hy(A) — Hy(A) is contained in a
union of finitely many eigenvalues (different from e®) ) of modulus e*) and a closed
disk centered at 0 with radius strictly smaller than e®) (if A is finitely primitive,
then these eigenvalues of modulus smaller than ) disappear). In particular, the
operator Ls : Hy(A) — Hy(A) is quasi-compact.

Given s € I's it immediately follows from this theorem and the definition of Gibbs states
that

(3.3) O te POl 15 < mu([w]) = ps((w]) < Coe PO |13,
for all w € F%, where Cy € [1,4+00) is some constant. We put
(3.4) Mg := My O 7r§1 and  [ig 1= ji;0 g .

The measure m; is characterized (see [47]) by the following two properties:

(3.5) (o (F) = e [ il dm,
F

for every e € £ and every Borel set ' C Xy, and

(3.6) s (@a(Xea) N op(Xewy)) =0
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whenever a,b € E and a # b. By a straightforward induction these extend to

37) (P = PO [ [,
F

for every w € E7) and every Borel set F' C Xy, and

(3.8) M (a(Xi) N @s(Xys)) =0

whenever «, f € E% and are incomparable.
The following theorem, providing a geometrical interpretation of the parameter ds, has
been proved in [47] ([42] in the case of IFSs).

Theorem 3.10. If S is an finitely irreducible conformal GDMS, then
§ =05 :=HD(Js) =inf{s > 0: P(s) <0} > ~s.
Following [42] and [47] we call the system S regular if there exists s € (0, 400) such that
P(s) = 0.
Then by Theorems and [3.8], such zero is unique and is equal to ds. So,
(3.9) P(ds) = 0.
Formula then takes the following form:
(3.10) Ci LI < mag([e]) = 155 (0]) < Csllgl s

for all w € E. The measure ms, is then referred to as the ds—conformal measure of the
system S.

Also following [42] and [47], we call the system S strongly regular if there exists s €
[0,4+00) (in fact in (s, 4+00)) such that

0 < P(s) < +oc.

Because of Theorem each strongly regular conformal GDMS is regular. Furthermore,
we record the following two immediate observations.

Observation 3.11. If s € Int(I's), then x,, < +oc.

Observation 3.12. A finitely irreducible conformal GDMS § is strongly regular if and
only if

vs < 0s.
In particular, if the system S is a strongly regular, then ds € Int(I's).

These two observations yield the following.

Corollary 3.13. If a finitely irreducible conformal GDMS S is strongly regular, then x,, <
+00.

We will also need the following fact, well-known in the case of finite alphabets E, and
proved for all countable alphabets in [47].
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Theorem 3.14. If s € Int(['s), then
P/(S) = _X,Ufs'

In particular this formula holds if the system S s strongly reqular and s = ds.

We end this section by noting that each finite irreducible system is strongly regular.

4. COMPLEX RUELLE-PERRON—FROBENIUS OPERATORS; SPECTRUM AND
D—GENERICITY

A key ingredient when analyzing the Poincaré series n¢(s) and n,(s), mentioned in the
introduction, is to use complex Ruelle-Perron-Frobenius or transfer operators. These are
closely related to the RPF operators already introduced, except that we now allow the
weighting function to take complex values. More precisely, we extend the definition of
operators L, s € I's, to the complex half-plane

't :={s € C:Res>ns},
in a most natural way; namely, for every s € I'%, we set
(4.1) Lag)w)= Y leulr(w)]glew).
e€El:Aew; =1

Clearly these linear operators L£; act on both Banach spaces Cy(E%) and H,(A), are
bounded, and we have the following.

Observation 4.1. The function
't s L, € L(HL(A))

is holomorphic, where L(H,(A)) is the Banach space of all bounded linear operators on
H,(A) endowed with the operator norm.

Proposition 4.2. Let S be a finitely irreducible conformal GDMS. Then for every s =

o+it e}
(1) the spectral radius v(Ls) of the operator Ls : Ho(A) — Ha(A) is not larger than
eP@) and
(2) the essential spectral radius ress(Ls) of the operator L : Hy(A) — Ha(A) is not

larger than e,

Proof. Assume without loss of generality that £ = N. For every w € E% choose arbitrarily
& € |w]. Now for every integer n > 1 define the linear operator

E, :H,(A) — H,(A)
by the formula

(4.2) En(g) = Y g(@)1g.
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Equivalently
Ea(9) = 9(@), we ET.
Of course || E,(9)||a < ||9]la and E,, is a bounded operator with ||E,||, < 1. However, the

series (4.2)) is not uniformly convergent, i.e. it is not convergent in the supremum norm
||+ ||oo, thus not in the Hélder norm || - ||, either. For all integers N > 1 and n > 1 denote

and
EZ(N‘F) = {w S Ez : ngnwj > N}

Let us further write

WwEET(N)
and
Efyg:= Y g(@)ly.
WEET (N+)
Of course E, y : Hy,(A) — H,(A) is a finite-rank operator, thus compact. Therefore, the
composite operator L;E, v : Hy(A) — H,(A) is also compact. We know that
Hﬁg - ‘CZEn,NHa = ||(£;l - ﬁgEn) + E?(En - En,N)Ha = ”LS(I - En) + £ZE2_,NHa

(4.3) ; )
< NLAT = En)lla + L5 E ylla-

We will estimate from above each of the last two terms separately. We begin first with the
first of these two terms. In the same way as for real parameters s, which is done in [47],
one proves for all operators L : Hy(A) — H,(A) the following form of the Ionescu—Tulcea—
Marinescu inequality:

(4.4) I1£3glla < Ce" " (llglloc + € gla)

with some constant C' > 0. This establishes item (1) of our theorem. Since a straightforward
calculation shows that ||g — E,g|la < 2||9]la and ||g — Englleo < [|glae™™ , we therefore get
that

1£3(I = Ep)glla < Ce" @™ ([lgllae™" + 267" |g[la) = 3Ce" e (|g]|a
Thus,
(4.5) 1LY — E,)||a < 3CeF@nemon,

Passing to the estimate of the second term, we have

LIBvgw) = Y g@)e, (@)

TGEX(N‘F)

oo
TwGEA
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Therefore,
HﬁnE+Ng||a < Z ’g(f-)‘ “(p; O7TOo'|s
T€ET (N+) *
<lghe > ||lehomool
T€ET (N+) :
<9l Z “<p’To7roa|s )
T€ET (N+) ¢
Hence,
(4.6) ILEIN < > HM ”O"FHQ‘
TEE} (N+)
But

1%

H}%OWOOI H < O,

for all 7 € £ with some constant C' > 0. Since the matrix A : E x E — {0, 1} is finitely
irreducible, there exists a finite set Ao, C EY such that for every e € F there exists (at
least one) é € A, such that eé € EY. We further set for every 7 € £,

A

T =74

For every k € E = N let

(4.7) & = sup{||@llc : m >k} — 0 as k — oo.

Fix an arbitrary € > 0 so small that 0 — e > vs5. By the Bounded Distortion Property and

, we then have
> IS ET Y KEGIrSET Y Y lelr)

T€ET (N+) T€ER (N+) WENAoo TEER(NA)

oo
TwEEA

=K7Y Y @)l @)

WEAo TEER(N+)

TwEEOO

(48) <K& Y Y law)l

WEA TEER(N+)

‘rwGEio

< KO#AEGLE_ M (w) < KO#AE L0
< K7# AN [1£5 - Nla
< CKU#AOOé-}sveP(G—e)n

where the last inequality was written due to (4.4) applied with s = ¢ — 1 and g = 1.
Inserting this to (4.7) and (4.8), we thus get that

HﬁnE-‘rNHa < CKU#Aoofa P(o—e)n )
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Now, take an integer N,, > 1 so large that &5 < (K°#A.) 'e *". Inserting this to the
above display, we get that

12, o < O,
Along with (4.5)), (4.3), and the fact that P(c) < P(o — ¢), this gives that
I3~ L3 B o < 40P

Therefore,
Tess(Ls) < Tim || L7 — L7 0 By, n, ||V < P,
n—oo

Letting ¢ — 0 and using continuity of the pressure function I'S 5 ¢ — P(¢) € R, we thus
get that
Tess(Ls) < e7%eP),

The proof of item (2) is thus complete, and we are done. 0

We recall that if )y is an isolated point of the spectrum of a bounded linear operator L
acting on a Banach space B, then the Riesz projector Py, : B — B of Ay (with respect to
L) is defined as

1
— [ (M — L) tdA
27 ),
where, 7 is any simple closed rectifiable Jordan curve enclosing \g and enclosing no other
point of the spectrum of L. We recall that A is called simple if the range Py,(B) of the
projector Py, is 1-dimensional. Then Ag is necessarily an eigenvalue of L. We recall the
following well-known fact.

Theorem 4.3. Let \y be an eigenvalue of a bounded linear operator L acting on a Banach
space B. Assume that the Riesz projector Py, of Ao (and L) is of finite rank. If there exists
a constant C € [0,400) such that

1L < ClAo|"
for all integers n > 0, then (of course) r(L) = |Xo|, and moreover
P,,(B) = Ker(AgI — L).
What we will really need in conjunction with Proposition [4.2] is the following.

Lemma 4.4. If S is a finitely irreducible conformal GDMS and if s = o + it € T'S, then
every eigenvalue of L, : Hy(A) — Hy(A) with modulus equal to eP\7) is simple.

Proof. Since ||L"||lo < 3||L7||a < CeP@m for every n > 0 and some constant C' > 0
independent of n, and since the Riesz projector of every eigenvalue of modulus eF(@) of £,
is of finite rank (as by Proposition such an eigenvalue does not belong to the essential
spectrum of L), we conclude from Theorem that in order to prove our lemma it suffices
to show that

dim (Ker(M — £,)) =1
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for any such eigenvalue . Consider two operators Ly, Ly : Ho(A) — Hy(A) given by the
formulae

b () e PO L W
(4.9) Log(w): %(w)ﬁa(gwa)( )
and

S () e P L W
(4.10) Lig(w): z/;a(w)‘CS(gw“)( )

Both these operators are conjugate respectively to the operators e (@)L, and e )L,

A

(L) =1,
(4.11) L,A=1 (so £ =1 forall n>0),
and in order to prove our lemma it is enough to show that
dim (Ker(AI — ﬁs)) =1
for every eigenvalue A of L, with modulus equal to 1. We shall prove the following.

Claim 1°: If u € H,(A), then the sequence
n—1
1 A
n“
7=0

converges uniformly on compact subsets of EY to the constant function equal to [ oo Ul
A

o0

n=1

Proof. The same proof as that of Theorem 4.3 in [47] asserts that any subsequence of the

[e.9]

1 n—1 A4 . .
sequence <E > i=0 E{,u) o has a subsequence converging uniformly on compact subsets

of E¥ to a function which is a fixed point of £,. By (@.11) and Corollary 7.5 in [47]

each such function is a constant. Since the operator L, preserves integrals (L: i, = fi,)

against Gibbs/equilibrium measure i, it follows that all these constants must be equal to

Jioo wdpiy. The proof of Claim 1° is thus complete. O
A

Now, fix A € Ker(\ — L) arbitrary and let g # 0 € Ker(A — £,) be arbitrary.
Claim 2°: The function E¥ 3 w — |g(w)| € R is constant.

Proof. For every w € EY and every integer n > 0 we have |g(w)| = [£g(w)| < L?|g|(w),
and therefore
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Since g is continuous and supp(p,) = £, this implies that

9@ = [ _loldue
EX

for all w € EY. The proof of Claim 2° is thus complete. OJ

Formulae (4.9)—(4.11]) give for every 7 € EY that
Lrg(r) = Y exp(Suh(wr))g(wr)

weETR

Awnrl =1

and

Ng(r) = Lig(r) = Y exp (Suhl(wr)) |l (x (7)) g(wr),

n
weEA

Ay =1

where h : EY — (—00,0) is some Holder continuous function resulting from (4.11)) and

Z exp (S,h(wr)) = 1.

weEY
Awpry =1

Since \" = 1, it follows from the last two formulas and Claim 1° that

[l (m(T)[*g(wr) = A"g(7)
for all w € B} with A, -, = 1. Equivalently:

g(wr) = N, (m (1) g(7).
This implies that if g1, g2 are two arbitrary functions in Ker(AI — L) such that

91(7) = g2(7),
then g; coincides with go on the set {wT :w € F% and Aw|0m|T1 = 1}. But since this set is
dense in EY° and both ¢g; and g, are continuous, it follows that
g1 = g2-
Thus the vector space Ker(A — L) is 1-dimensional and the proof is complete. U
Now we define
B ={wel}: Aupppjon = 1}.

This set will be treated in greater detail in the forthcoming sections and will play an
important role throughout the monograph, primarily in regard to periodic points of GDMSs.

For all t,a € R we denote by G,(t) and G’ (t) the multiplicative subgroups respectively
of positive reals (0, +00) and of the unit circle S* := {z € C : |z| = 1} that are respectively
generated by the sets

{e Mgl s w € Bj} € (0,4+00) and {e7I|gf, (w)|" :w € B} C S,
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where z,, is the only fixed point for ¢,, : Xj,) = Xjw,). The following proposition has
been proved in [68] in the context of finite alphabets F, but the proof carries through
without any change to the case of countable infinite alphabets as well.

Proposition 4.5. Let S = {¢.}ecr be a finitely irreducible conformal GDMS. Ift € R and
a € R, then the following conditions are equivalent.

(a) Go(t) is generated by €™ with some k € Ny.
(b) exp(ia + P(0)) is an eigenvalue for Ly i : Co(EY) — Cyo(EY) for some o € T's.
(c) exp(ia + P(0)) is an eigenvalue for L,y : Ho(A) = Ho(A) for all o € Ts.
(d) There exists u € Cy(EY) (Ho(A)) such that the function
EY sw—t((w) —a+u(w) —uoo(w)
belongs to Cyo(EY, 21Z) (Ho(EX, 277Z)).
(¢) Gilt) = {1},

As a matter of fact [68] establishes equivalence (in the case of finite alphabet) of conditions
(a)—(d) but the equivalence of (a) and (e) is obvious.

We call a parameter ¢t € R S-generic if the above condition (a) fails for a = 0 and we call it
strongly S—generic if it fails for all @ € R. We call the system & D—generic if each parameter
t € R\ {0} is S—generic and we call it strongly D-generic if each parameter ¢ € R\ {0} is
strongly S-generic.

Remark 4.6. We would like to remark that if the GDMS § is D-generic, then no function
t¢ : EY — R, t € R\ {0}, is cohomologous to a constant. Precisely, there is no function
u € Cy(EY) such that

t¢(w) + u(w) —uoo(w)
is a constant real-valued function.

The concept of D—genericity will play a pivotal role throughout our whole article. We
start dealing with it by proving the following.

Proposition 4.7. If S is a finitely irreducible strongly D-generic conformal GDMS and if
s=o+it € 't witht € R\ {0}, then r(L,) < ().

Proof. By Proposition [£.2] the set
o(Ls) N (C\ B(0, e_o‘/gep(”)))
is finite and consists only of eigenvalues of L,. So, by Proposition [4.5]
a(Ly) N (C\B(0,e 2PN n{r e C: |\ ="} =0.
Therefore, using also Theorem (g), we get that
r(Ls) < max {e’aﬂep(”), max {|\| : A € o(L,) N (C\ B(0, e’o‘/QeP(”)))}} < P,
The proof is complete. O
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We now shall provide a useful characterization of D-generic and strongly D-generic sys-
tems.

Proposition 4.8. A finitely irreducible conformal GDMS S = {p.}ecr is D—generic if and
only if the additive group generated by the set

{log|gp’w(xw)| fwE E;}

15 not cyclic.

Proof. Suppose first that the system & = {@¢ }ecr is not D—generic. This means that there

exists ¢ € R\ {0} which is not S-generic. This in turn means that the group Gy(t) is

generated by some non-negative integral power of €7, say by ¢*™, ¢ € Ny. And this means

that for every w € E,

|00 ()| = exp (27qk.)

with some (unique) k, € Z. But then tlog |¢/,(z,)| = 2mqk,, or equivalently

2mq

log |, (7,)] = Tkw'

This implies that the additive group generated by the set
{log|yl(2s,)| :we B} CR

2mq

1), the cyclic group generated by @, and is therefore itself cyclic.

is a subgroup of (

For the converse implication suppose that the additive group generated by the set

{log ¢, (v.)| s w € B}
is cyclic. This means that there exists v € (0, +00) such that

log |0, (z.)] = 27l
for all w € B and some [, € —Np. There then exists t € R\ {0} such that ¢y € N. But
then
|00 ()| = exp ((27t7)L),
implying that the multiplicative group generated by the set

{leu(@a)l' 1w e Ej}
is a subgroup of < 2™ > the cyclic group generated by e?™ | and is therefore itself cyclic.

This means that ¢ € R\ {0} is not S-generic, and this finally means that the system S is
not D-generic. We are done. U

Remark 4.9. The D—genericity assumption is fairly generic. For example, it holds if there

are two values i, € E (or the weaker condition i, j € E%) such that % is irrational;
(T

where we recall that x; and z; are the unique fixed points, respectively, of ¢; and ;.

On the other hand, it is easy to construct specific conformal GDMSs for which it fails.

For example, we can consider maps ¢;(z) = zz—fl for + > 1 and than we can deduce that
log |¢i(z)| € (log 2)Z.
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Proposition 4.10. A finitely irreducible conformal GDMS S = {@e}ecr is strongly D—
generic if and only if the additive group generated by the set

{log ¢, (v)] = Blw| 1 w € B}
1s not cyclic for any 5 € R.
Proof. Suppose first that the system S = {@.}ecr is not strongly D—generic. This means
that there exists t € R\ {0} which is not S-generic. This in turn means that for some

a € R the group G,(t) is generated by some non-negative integral power of 2™, say by 2™,
q € No. And this means that for every w € £,
el (w)|" = exp (2mgh,)
with some (unique) k, € Z. But then tlog |¢! (z,)| — a|w| = 27qk,, or equivalently
a 2mq
log |¢;,(zw)| — ;|W| = Fo.
This implies that the additive group generated by the set

a *
{1og l¢l, (w.)] — Sl w € B}}

is a subgroup of < @ > the cyclic groups generated by @, and is therefore itself cyclic.

For the converse implication suppose that the additive group generated by the set

{log ¢, (w)] = Blw| 1 w € B}
is cyclic for some § € R. This means that there exists v € (0, 400) such that

log |¢(, (z0)| = Alw| = 2ml,
for all w € E; and some [, € Z. There then exists ¢ € R\ {0} such that ¢y € N. But then

e Pl (2)]" = exp ((2mty)L),
implying that the multiplicative group generated by the set

{e‘tﬁ|w||<p;(xw)]t TwE E;}

is a subgroup of < 2™ > the cyclic group generated by e*™ and is therefore itself cyclic.
This means that ¢ € R\ {0} is not strongly S-generic, and this finally means that the
system S is not strongly D-generic. We are done. 0]

5. ASYMPTOTIC RESULTS FOR MULTIPLIERS; STATEMENTS AND FIRST PREPARATIONS

In this section we keep the setting of the previous one. In this framework we can formulate
our main asymptotic result, which has the dual virtues of being relatively easy to prove in
this setting and also having many interesting applications, as illustrated in the introduction.
In a later section we will also formulate the general result for C? multidimensional conformal
contractions, although the basic statements will be exactly the same. We can now define
two natural counting functions in the present context corresponding to “preimages” and
“periodic points” respectively.
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Definition 5.1. We can naturally order the countable family of the compositions of con-
tractions ¢ € E% in two different ways. Fix p € EY arbitrary and set £ := ws(p) € Js.
Let

B = {we FE} :wp e ETYY,
and, as we have already defined, for all integers n > 1 let

B} ={we L} wpe LY}
We recall from the previous section the set

B ={weFE]: Aupon = 1},
and for all integers n > 1 we put

By ={we ) Ay =1},

i.e., the words w in E% such that the words w™> € E%°, the infinite concatenations of ws,
are periodic points of the shift map o : EY — EY with period n.

(1) Firstly, we can associate the weights
Ap(w) = —log [¢,(§)] >0, we Ly,
and
(2) Secondly, we can use the weights
Mp(w) := —log |y, (z,)] >0, weE]),

where we recall that z,(= ¢,(z,)) is the unique fixed point for the contraction
Qo+ Xi(w) = Xi(wy); we note that t(w) = i(wy).

We can associate appropriate counting functions to each of these weights, defined by
mo(T) ={w e B} : \(w) <T} and mp(T) :={we B : \(w) <T},
respectively, and their cardinalities
Ny(T) = #m,(T) and Ny(T) := #m,(T),

respectively, for each 7" > 0, i.e. the number of words w € E} for which the corresponding
weight \;(w) doesn’t exceed T for i = p, p.

The functions 7,(T") and m,(7") are clearly both monotone increasing in 7'.
We first prove the following basic result, showing that the rates of growth of these two
functions are both equal to the Hausdorff Dimension of the limit set Js.

Proposition 5.2. If the (finitely irreducible) conformal GDMS S is strongly regular, then

. 1 1
ds = lim ?long(T): m Tlong(T).

li
T—+o00 T—+o00
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Proof. Fix i € {p,p}. Write 6 := ds. Assume for a contradiction that

1
TLHEOO T log N;(T) > 6.

There then exists ¢ > 0 and an increasing unbounded sequence T,, — +o¢ such that
N1<Tn) > e(é-‘r—E)Tn.

We recall from the definition of a conformal GDMS that ||¢.|l« < k € (0,1) for all e € E,
and then ||¢]||oo < &I for all w € E%. Since

(5.1) Ai(w) +log [yl =2 0

for all w € E%. we conclude that whenever w € m;(7},), i.e. whenever \;(w) < T,,, then

T, T,
lw| < <k,:= + 1,
| log K| | log K|

where [-] denotes the integer part. Therefore, we can also bound

kn

Do ez Do Nellk = N(Th)e ™ = e

j=1 ngi} wem; (Ty)
Hence, there exists 1 < j, < k, such that
1
> el > —e .
. n
weE

In particular, lim,,_,, j, = +00. Recalling that each strongly regular system is regular and

invoking (3.9), we finally get

1 S o— 1 T
0=P()= lim —log Z leLlloe = lim — log

n——+o0o In / n—-+o00 In k’n
weE

. | eTh 1
> lim — log (6 )z lim k—(eTn—logkn)

n—-+o0o n kn n—-+o00 n

— T,
= snl_iglooa = ¢|log k| > 0.

This contradiction shows that

— 1
(5.2) lim Tlog N(T) <é.

T—+o0

For the lower bound recall that

X6 = — /E log |, (7(0(w)))| djsg > 0

oo
A
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is the Lyapunov exponent of the measure ps with respect to the shift map o : £ — E.
Since the system S is strongly regular, it follows from Observations and that s
is finite. It then further follows from Theorem (e) that h,, is finite and

h

=,

Xs
Recall that along with (5.1) the Bounded Distortion Property, yields
(5.3) 0 < Xi(w) +1log||¢.,||ee < logC

for all w € E% and some constant C' > 1. Using this and (3.10) we then get for every € > 0
and all integers n > 1 large enough that

{w e Ey: )\i(w) < (Xw —|—5)n} =

:{weEj:)\i(w)S <%+E) n}

1 h log C,
. {wEEZ:——log,ug([w])S (ﬁ+5)n+ °8 5—logC}

o o o

> {w € By -~ logps([u]) < (hT n 25) n}
= {w € E} :logps([w]) = —(hy, +220)n}.

Having this, it follows from Breiman-McMillan-Shannon Theorem that
#{w € EY : \i(w) < (xus €)1} > exp ((hy, — 3e6)n)

for all integers n > 1 large enough. Since we also obviously have

71-Z'((Xms + 5)”) 2 {w € EZZX : /\i(w) < (XM& + 5)”}7

we therefore get for every T' > 0 large enough,

log N;(T) = log N; ((Xms +¢) (XMT 5 ) > log N; ((Xug +¢) [LD

+ (Xua +€)
T
> (h,, — 3¢9) { }
XM + 5
Therefore,

1 h,. — 3eb

lim - log Ny(T) > 2 =2,

T—+o00 Xug +e€

So, letting ¢ \, 0 yields
1 h
lim —log N;(T) > —£ = 4.

T—+oo X/Jg
Along with ([5.2)) this completes the proof. O
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In particular, this proposition gives one more characterization of the value of 9.

One of our main objectives in this monograph is to provide a wide ranging substantial
improvement of Proposition [5.2] This is the asymptotic formula below, formulated at
level of conformal graph directed Markov systems, along with its further strengthenings,
extensions, and generalizations, both for conformal graph directed Markov systems and
beyond. Our first main result is the following.

Theorem 5.3 (Asymptotic Formula). If S is a strongly reqular finitely irreducible D-
generic conformal GDMS and p € EY, then with § = 6s = HD(Js), we have that

No(T) _ s(p)

TEI—Poo eST (5Xu5
and
N, (T
lim P ( ) = 1 .
T—+oo €T OX s

The proof of this theorem will be completed as a special case of Theorem (which is
proved in Section .

Remark 5.4. If the generic D-genericity hypothesis fails, then we may still have an as-
ymptotic formulae, but of a different type, e.g., there exists N;(T') ~ Cexp(dal(logT)/al)
as T — +oo. This is illustrated by the example in Remark (4.9 with a = log 2.

As a preparation for the proof of Theorem we now introduce a version of the main
tool that will be used in the sequel. Our strategy, stemming from number theoretical
considerations of distributions of prime numbers, is to use an appropriate complex function
defined in terms of all of the weights A\,(w) and then to apply a Tauberian Theorem to
convert properties of the function into the required asymptotic formula of N,(7T'), i.e. the
first formula of Theorem . The asymptotic formula for N,(T), i.e. the second formula
of Theorem will be derived from the former, i.e. that of N,(7'). The basic complex
function in the symbolic context is the following.

Definition 5.5. Given s € C we define the (formal) Poincaré series by:
D YRS Y I
weE} n=1weky

In fact we will need a localized version of this function, which will be introduced and
analyzed in Section [6]

For the present, we observe that since

D2 = 3 eV < B el < D LI

weEg weEg weE” weEY
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and since
1
lim — log E ¢l |I%e | = P(Res) < 0
n—oo M,
wEEﬁ

whenever Res > dg, we get the following preliminary result.

Observation 5.6. The Poincaré series

pls) =) Y e

n:leEg
converges absolutely uniformly on each set {s € C: Res > t}, for t > Js.

For notational convenience to follow we introduce the following set
AL :={s € C:Res > ds}

As have said, the series 7),(s) will be our main tool to acquire the asymptotic formula for
the cardinalities of the sets m,(T"), i.e. of the numbers N,(T"). An appropriate knowledge
of the behavior of the series 7,(s) on the imaginary line Re(s) = ds is required for this end.
Indeed, in fact one needs to know that the function 7,(s) has a meromorphic extension

to some open neighborhoods of AL = {s € C: Res > ds} with the only pole at s = s,
that this pole is simple and the corresponding residue is to be calculated. This extension of
1,(s) functions will come from an understanding of the spectral properties of the associated
complex RPF operators.

With some additional work, we can actually get finer asymptotic results than those of
Theorem These count words subject to their weights being less than T and, addi-
tionally, their images being located in some, fairly arbitrarily prescribed, parts of the limit
set.

Definition 5.7. Let p € EY and let 7 € E. Fix any Borel set B C X. Having T' > 0 we
define:

T,(B,T) = {w € B pu(ms(p)) € B and A, (w) < T}
and
(B, T) :={we E}: z, € Band \(w) <T}.
We also define
(1, T) :={we ES : M\ (tw) <T} and my(1,T) :={we E;: A\(rw) <T}.
The corresponding cardinalities of these sets are denoted by:
N,(B,T) :=#m,(B,T) and N,(B,T) = #m,(B,T),

and
Ny (1,T) := #m,(r,T) and N,(1,T) = #mp(7,T),
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i.e. the first pair count the number of words w € E} for which the weight \;(w) does not
exceed T" and, additionally, the image ¢, (7s(p)) is in B if i = p, or the fixed point z,, of
¢w, is in B if ¢ = p, while the second pair count the number of words w € E} for which the
weight \;(T7w) does not exceed T' (for ¢ = p, p) and an initial block of w coincides with 7.

The following are refinements of the asymptotic results presented in Theorem [5.3] whose
proof will be completed in Section [7]

Theorem 5.8 (Asymptotic Equidistribution Formula for Multipliers I). Suppose that S is
a strongly regular finitely irreducible D-generic conformal GDMS. Let § = s = HD(Js).
Fiz p e EY.

If T € E7 then,

N(r.T) _ ()

(5.4) Aim Sy ms([7]),
and

. Ny(r, T) 1
(5.5) i ST i)

Theorem 5.9 (Asymptotic Equidistribution Formula for Multipliers II). Suppose that S
is a strongly regqular finitely irreducible D-generic conformal GDMS. Let § = 65 = HD(Js).
Fiz p € EY.

If B C X is a Borel set such that ms(0B) = 0 (equivalently 115(0B) = 0) then,

NP(BvT> _ %(P) ~

(56) Jim S5 = ()
and

) N, (B,T) 1
(57) im S = uB).

After establishing the results of the next section @, we will first prove in Section m formula
. Then, in the same section, we will deduce from it formula . Finally, still within
Section [7| we will deduce Theorem as a consequence of Theorem [5.8] The asymptotic
estimates for N,(B,T) given in this theorem, will turn out to have wider applications
than the basic asymptotic results in Theorem 5.3 This will be apparent, particularly
in Section |8 and Section where we apply these results to deduce asymptotics of the
diameters of circles.

Remark 5.10. Theorem is formulated for a countable state symbolic system. In fact
it could be formulated and proved with no real additional difficulty for ergodic sums of
all summable Holder continuous potentials rather than merely the functions A,(w). In the
particular case of a finite state symbolic system this would recover the corresponding results

of Lalley [37].
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6. COMPLEX LOCALIZED POINCARE SERIES 7,

In order to prove the asymptotic statements of Theorem we want to consider a
localized Poincaré series, which in turn generalizes the Poincaré series introduced in the
previous section. Again we denote by p € E our reference point and set £ := 7s(p) € Js.

Definition 6.1. Given s € C we define the following localized (formal) Poincaré series.
Fixing 7 € E% and denoting ¢ := ||, we formally write

np T, 8 § : e —s\p Tw)

weE*
A‘rqwl 71

We formally expand the series np(T, s) as follows.

= > eI = N ) = Y @)Ll (x ()

weE} weE} weE}
Aqul_l Arguwy =1 Arguwy =1
= E > |l o mwp) el (w(p))
= wEEn
Aqul—l

=> L, o) (p).

Defining the operator £{% from H o(A) to Hy(A) by
Ho(A) 39— L{)g = LI(g - (I¢/]" o) € Ha(A),

T

we then formally write

s)=>Y £
n=1
The same argument as that leading to Observation leads to the following corresponding

result.

Observation 6.2. For every 7 € E7 the localized Poincaré series n,(7, s) converges abso-
lutely uniformly on each set

{s € C:Res >t} (C AY),
t > ds, thus defining a holomorphic function on A}.

Our main result about localized Poincaré series, which is crucial to us for obtaining the
asymptotic behavior of N,(7,T'), is the following.

Theorem 6.3. Assume that the finitely irreducible strongly regular conformal GDMS S is
D-generic. If T € E then
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a) the function AL > s+ n,(1,s) € C has a meromorphic extension to some neigh-
S Tl
borhood of the vertical line Re(s) = s,
(b) this extension has a single pole s = 0s, and

(c) the pole s = § = ds is simple and its residue is equal to %@mg([ﬂ).

Proof. By Observation [6.2] and by the Identity Theorem for meromorphic functions, in
order to prove the theorem it suffices to do the following.

(1) Show that for every sy = ds + ity € I't with ¢ty # 0 the function 7,(7,) has a
holomorphic extension to some open neighborhood of sy in C.

(2) Show that the function 7,(7,-) has a meromorphic extension to some open neigh-
borhood of s in C with a simple pole at ds.

(3) Calculate the residue of this extension at the point s = ds to show that it is equal
to L ([7]).
Xpg

We first deal with item (1). Let A C C be the set of all eigenvalues of the operator
L, : Ho(A) — Hy(A) whose moduli are equal to 1. By Proposition this set is finite,
and, by Lemma 4.4} it consists of only simple eigenvalues. Write

A= {)\J };1':17
where ¢ := #A. Then, invoking Observation Observation [4.1} and Proposition 4.2
(along with the fact that P(ds) = 0), we see that the Kato—Rellich Perturbation Theorem
applies and it produces holomorphic functions
Usses M\(s)€C, j=1,2,....¢q

defined on some sufficiently small neighborhood U C T'S of sy with the following properties
forall j =1,2,...,q¢:

* Aj(s0) = Ay,

e );(s) is a simple isolated eigenvalue of the operator L, : Hy(A) — H,(A)

Invoking Proposition for the third time, we can further write, perhaps with a smaller
neighborhood U of sg, that

Lo=) N(s)Pj+ A,
=1
where

e P,;:Hu(A) = H,(A) are projections onto respective 1-dimensional spaces Ker (A;(s)I—
L),

e all functions U > s — Ay, P, j, j=1,2,...,q, are holomorphic,

o r(A,) < e % for every s € U, and
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o PP, ; =0 whenever ¢ # j and AP, ; = P ;A; =0 forall s e U.

In consequence
q

(6.1) L= N(s)Py+ AL
j=1

for all integers n > 0. Shrinking U again if necessary, we will have that
1A ]|o < Ce™5"

for all integers n > 0 and some constant C' € (0,+00) independent of n. Since the
system S is D-generic, it follows from Proposition that \;(s) # 1 for all s € U and all
j=1,2,...,q. Denoting by Sy (s) the holomorphic function

U3 s Als) = 3 AN 0 )(p)

and summing equation (6.1)) over all n > 1, we obtain
00 q
m(r.5) = 3 L2 0 m)(p) = S A () (1 = M) P (eI 0 1) (0) + Anc(s)
n=1 j=1

forall s € UN{s € C: Re(s) > ds}. But (remembering that A;(s) # 1) since, all the terms
of the right-hand side of this equation are holomorphic functions from U to C, the formula

U353 X)L = X(5)) 7 P (€] 0 ) + Aucls) € C

provides the required holomorphic extension of the function 7,(7,s) to a neighborhood of
So-

Now we shall deal will items (2) and (3). It follows from Theorem (h) and (i), and
the Kato—Rellich Perturbation Theorem that

(6.2) L= \Qu+ ST, n>0,
for all s € U C 'L, a sufficiently small neighborhood of §, where

(4) As is a simple isolated eigenvalues of £, : H,(A) — H,(A) and the function U >
s — As € C is holomorphic,

(5) Qs : Ho(A) — Hu(A) is a projector onto the 1-dimensional eigenspace of A, and
the map U 3 s — Qs € L(H,(A)) is holomorphic,

(6) EIne(O,l) E]C>0 VSGU vnZO
155 ][a < CK™,

and the map U 5 s — Sg € L(H,(A)) is holomorphic, and
(7) All three operators L, Qs, and S5 mutually commute and QS5 = 0.
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Let us write

H,, = Qs(|<p’T|5 o 7T>.
It follows from (5) that the function U 3 s — H,, € H,(A) is holomorphic, whence the
function valued map U > s — Hg(p) € C is holomorphic too. It follows from (6) that the
series

Seo(8) 1= i Sy
n=1

converges absolutely uniformly to a holomorphic function, whence the function U > s
Yo(s) € Hy(A) is holomorphic too. Since, by Theorem the function s — A, is not
constant on any neighborhood of ¢, it follows from (4) that shrinking U if necessary, we
will have that

As #1
for all s € U\ {6}. It follows from Theorem [3.8] the definition of §, and Proposition
(1) that

A <1
for all s € UN{s € C: Re(s) > ds}. It therefore follows from ([6.2)) that

np(s) = As(1 - )‘S)_IHT,S(p) + Seo(8)

for all s € UN{s € C: Re(s) > ds}, and consequently, the map
(6.3) U3 s A(1— ) Hyo(p) + Soo(s)

is a meromorphic extension of 7,(7,-) to U. We keep the same symbol 7,(r,s) for this
extension. Now, using Theorem |3.14] we get

. s—46 oA -1\ D VDV 1
i{fsl_As——(K%s_a) ——(?{%5_5) = - (%)

eP(s)) - _ _(P/(é)eP((S))_l — —(P/(5)>_1

Since A\s = 1 and

Hs-(p) = Qs(|¢L° o ) (p) = (/

we therefore conclude that

o]

A

AR dea> bs(p) = vs(p)ms([7]),

r655(np(7, )) = %—(p)ma([ﬂ)-

1s
The proof is thus complete. U

We can take 7 to be the neutral (empty) word and deduce the corresponding results for
the original Poincaré series
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Corollary 6.4. Assume that the finitely irreducible strongly regular conformal GDMS S is
D-generic. Then

(a) the function n,(s) has a meromorphic extension to some neighborhood of the vertical
line Re(s) = s,

(b) this extension has a single pole s = 6s = HD(Js), and

(c) the pole s = § = ds is simple and its residue is equal to ¢X‘§T(p).

&

7. ASYMPTOTIC RESULTS FOR MULTIPLIERS; CONCLUDING OF PROOFS

We are now in position to complete the proof of Theorem|5.8|and then, as its consequence,
of Theorem We aim to apply the Ikehara-Wiener Tauberian Theorem [93], which is a
familiar ingredient in the classical analytic proof of the Prime Number Theorem in Number
Theory.

Theorem 7.1 (Ikehara-Wiener Tauberian Theorem, [93]). Let M and 0 be positive real
numbers. Assume that « : [M,+00) — (0,400) is monotone increasing and continuous

from the left, and also that there exists a (real) number D > 0 such that the function

+o00 D
—y B
s»—>/M rdo(r) S—QGC

is analytic in a neighborhood of Re(s) > 6. Then
a(z) D

lim — — =2

z—+oo  xf 0
We can now apply this general result in the present setting to prove the asymptotic equidis-

tribution results. We begin with the proof of formula (5.4)) in Theorem .

Proof of formula (5.4) in Theorem . Let 7 € E7 be an arbitrary. We define the function

M,(t,-) : [1,400) = Ny by the formula
M,(7,T) := N,(1,10gT) = {rw € E} : |¢,,(§)| " < T}.

We then have for every s > ¢ that

np(T,s):/ T™dM,(7,T).
1

Now Theorem tells us that Theorem applies with the function o being equal to
M,(t,-) and with 0 := ds, to give

M,(m,T) _ ¢s(p)

A = =5, el
Consequently
. Np(Ta T) o . MP(T7 eT) . wd(p)
(7.1) TEIEOO T TETOO T = X ms([7]).

This means that (5.4)) is proved. O
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Now we move onto the proof of (5.5)). However the first step to do this is of quite
general character and will be also used in Section 8, We therefore present it as a separate
independent procedure. Fix an integer ¢ > 0. Let H C EY be a set representable as a
(disjoint) union of cylinders of length ¢. Let

Ryt p(T) = {w € m,(T) : [w| > qand w||Z]_,,, € H}

and the corresponding counting numbers
Romp(T) = #Rqm,p(T).
We shall prove the following.

Lemma 7.2. If g > 0 is an integer and H C E is a (disjoint) union of cylinders of length
q, then the limit below exists and

(7.2) lim RquT(T) < K (6x,,) 'ms(H).

Proof. As in the proof of formula (5.4)) in Theorem , the Poincaré series corresponding
to the counting scheme #R, i ,(T') is the function 7y ,(s), where for any v € EY,

My(s) = > lelmsIP= Y. D lelrs()I

WEEY, |w|>q+1 n=qg+1 weEEY
n
|w] w|n_q+1€H

w‘|w\—q+1€H

= > > lemstmrE= DY > lelms())
n=qg+1 wEEY n=q+1 weEY

o4 (wy)EH ww€07(7L7q)(H

=Y 3 wmooUwy) - el (ms()I
n=q+1lwekE?

= D Li(lgoa™ ) (1) = D LULT(Lg 00" ))()
n=q+1 n=q+1

= > LU ) L70) () = LY (nH S ﬁ?qn) (7)-
n=q+1 n=q+1

Now, the same reasoning as in the proof of Theorem shows that the function

o0

s ay(s) = Y LIU(Y)

n=q+1

has a meromorphic extension, denoted by the same symbol 7,(s), to some neighborhood,
call it G, of the vertical line Re(s) = ds with only pole at s = ds. This is again a simple
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pole with residue equal to x,,%s(7). Since the operators £I are locally uniformly bounded
at all points of GG, the function

5 — L1 (nH > ,cg—qn> ()
n=q+1

has holomorphic extension, which we will still call 7y ,(s), to G \ {¢}. In addition

lim (8 — )i (5) = £5 (1 1im(0 = s)ng(s) ) (9) = £ (T, ) ()
= Xl £ (L) (1) < X sloe 22 () (1)

< KIXGILE (L) (9)

< K2‘5X;§1m5(H).

Therefore, we can apply the Tkehara-Wiener Tauberian Theorem (Theorem [7.1)) in exactly
the same way as in the proof of (5.4)), to conclude that

. R, H, T reSs ﬁ H, _
fm qe(s;( - <5q o < K*(0X,) " ms(H).
The proof is complete. U

Proof of formula (5.5)) in Theorem . For every v € FE% fix exactly one v* € EY such
that

Wt e EY.

Observe that for every integer ¢ > 1, every v € EY%, and every w € E% such that yw € E7,
we have

(7.3) Kol (m(yr )] < 1@ (@00) ] < Kol (m(vy))]-

It then follows from ([7.3)) that

(7.4) (7, T) C Tyt (7, T + log Ky )
and
(7.5) Tyt (1, T) € mp(7, T + log K).
Let

k:=|t|.
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Using ((7.5) and applying formula (5.4) of Theorem , we obtain that

N, (7, T N, T —log K,
lim p(? ) > lim v(ry)* (7—7 08 q+k) quk
Tooo € Too o exp (6(T — log Ky+1,))
TERA
T’yGEIq:_k

>k Y Noo(ry+ (77, T — log Kyox)
-k Tooo  exp (6(T —log Kyiy))

q
'yEEA

T’YEEqA+k

Ko X i) mil(r)

o5 1
> quga Z ps([77])
0 veBY

q+k
T'yeEA

1
—25
= quk%w(m)-

Therefore, taking the limit with ¢ — oo, we obtain

(7.6) lim peT > —pus([7]).

51

Passing to the proof of the upper bound of the limit supremum, we split E%, in a way that
will be specified later, into two disjoint sets [, and its complement Fy := £ \ Fy (each of

which naturally consists of words of length ¢) with Fj, being finite. In particular,

E% = F,UF¢.

So far we have not imposed any additional hypotheses on the sets Fy, and F;. This will be

done later in the course of the proof. We set
Ryp(T) := 7?'q,FqC (T)

and

Rq,p(T> = #Rq,p (T),
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and note that because of ([7.4)), we have

(1, T) = U Ty (ry)+ (T’y, T + log Kq+k) U U Ty (ry)+ (T")/, T + log Kq+k)

YEFg 'yeF;
’YTGEZ v‘reE:‘4
- U Tory(ry)+ (7‘7, T + log Kq+k) U U y g— (7, T + log Kyy, + log K)
YEFq ’yEF;
"/TEETZ

= | Ty (77, T +10g Kyir) U Ryrr (T + log Ky + log K).

YEFq
'y‘rEE'jf4

Therefore, using finiteness of the set £y, Theorem , and ([7.2), we further obtain

R+ (T +log Kyyf + log K)

T # < Z N+ (77, T + log Kyyr,) K., + Tm
TS0 e Sem €XDp (6(T +log Kgs1)) I T—00 e’
yreEY
< Kg“@éixg Z Ys(Ty(Ty) )ms([79]) + K36K§+kém5([F;])
ety
< KNS () + KPR s (7))
> Btk 5Ys —~ q+k 5Xs q
TJEE??H“

1 1 .
< Kﬁikd—mus([ﬂ) + K36K§+k5_>@m6<[Fq])-

Hence, taking finite sets F, , with ms([F,,]) converging to one, so that ms([F¢,]) converges
to zero, we obtain

T NP(T? T) 26 1
pm —5r— < Kq+ké—x(sl~06([7])-
Therefore, taking the limit with ¢ — oo, we obtain
— Ny(7,T) 1
A G
A —— 5 < 5)@([7])-
Along with ([7.6)) this yields
. Ny, T) 1
(7.7) Tlgfolo T 5—X§M5([T])‘

The proof of formula (5.5 in Theorem [5.8]is thus complete. This simultaneously finishes
the proof of all of Theorem [5.8 0
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Proof of Theorem [.9] The same proof, as a consequence of Theorem [5.8| goes through for
1 = p and 7 = p. We therefore denote

o aolslp) if i=p
b : if i=np,

x5

T L I U .

[bd if i=p [Ls it i=np.
We shall first prove both formulae (5.6 and (5.7)) for all sets B that are open. To emphasize
this, let us denote an arbitrary open subset of X by V. We assume that 7;(0V) = 0. Then

for every s € (0,1) there exists a finite set I';(V) consisting of mutually incomparable
elements of £’ such that

U ng(Xt(T))QV and v U 71| =v U goT(Xt(T)) > sv;(V)
Tels(V) Tels(V) Tel's(V)

where the “=" sign in this formula is due to (3.8)). So, for both i = p, p, using (7.1)), we get
that

oT
T—rtoo e (v) Totoe € el (V)
= Cy; U [7]
7€l (V)
Letting s 1, we thus obtain
N;(V, ~

Therefore, we also have

(7.9) im YT o),

TIOO 66
But since 1;(dV) = 0, we have 1;(V) + 15(V") = 1, whence

N,(V,T)
0T

(7.10) lim

T—+o0

> Ci(1 = (V).
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Therefore, using (7.1) and (7.7)), both with 7 replaced by EY, we get

Ni(T — NV, T)+N,(V", T
G = tim 2D 5y MDD NOLT)
T—+oo 65T T—~+o0 e‘ST
— N,(V,T) NV T
7.11 > RS A A A
( ) - TLHJIrloo edT * TLI_TOO edT
T Nz(V7T) ~
> i 20D o)
Thus,
— N;(V,T) ~
N <oy
TETOO T < Ciy (V).
Along with (7.8)) this implies
N;(V, T -
(7.12) lim NV, T) = Ci (V).

T—~+o00 e‘ST

Finally, let B be an arbitrary Borel subset of X such that 7;(9B) = 0. Then B = BUJB
and

7;(B) = 1y(B).

Since the measure v; is outer regular, given € > 0 there exists an open set G C X such that
B C G and

Now, for every x € B there exists an open set V, C G, in fact an open ball centered at z,
such that x € V,, and

In particular, {V,},.5 is a open cover of B. Since B is compact, there thus exists a finite
set F C B such that

Bcv=Jvca

Since F is finite, 0V C J,cp OVa, whence 1;(0V) = 0. Therefore, (7.12)) applies to V' to

give

— Ni(B,T)  — N{(B,T) . N;(WV,T)
A e S T < = = GilY)
< Civ(G)

< Ci(wi(B) +¢).
Letting € \, 0, we therefore get

(7.14) lim Ni(B,T) < Civi(B).

T—+o0 e(ST
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Now, we can finish the argument in the same way as in the case of open sets. Since

0B¢ = 0B, we have ms(0B¢) = 0. In particular, (7.14)) also yields
T Nz(BcaT)

TLHJIrloo €5T
Therefore, using Theorem [5.3] we can write

< Ciyy(BY) = Ci(1 — 154(B)).

N;(T N;(B,T)+ N;(B¢,T
C; = lim ZET) = lim (B, )i;T (B T)
T—4+o00o € T—+o00 e
N;(B,T) — Ny(B4T)
< - . 7 A S s
- TE_JFOO edT * TEIEOO edT
. Ni(B,T) ~
< 1 ———+ (1 —14(B)).
T—1>_Ifoo €6T T ( V( >)
Thus,
N;(B,T ~
lim % > Civi(B).
T—4o00 €
Along with ([7.14]) this gives
. Ny«(B,T) -
i S = OB
and the proof of the theorem is complete. 0

8. ASYMPTOTIC RESULTS FOR DIAMETERS

In this section we obtain asymptotic counting properties corresponding to the functions
—log diam (¢, (Xyw)), w € Ej.

These are relatively simple consequences of Theorem [5.9] but not quite so simple as one
would expect. The subtle difficulty is due to the fact that the functions N;(B,T), i = p,p
are very sensitive to additive changes. In fact it follows from Theorem that for every
u >0,
lim N(B,T +u) = ¢
T—00 Nz (B, T)
In fact we will do something more general, namely for every v € V we fix an arbitrary
set Y, C X,, having at least two points, and we look at asymptotic counting properties
corresponding to the functions

> 0.

—log diam (¢, (Yyw))), w € Ej.

Such a generalization is interesting in its own right, but will turn out to be particularly
useful when dealing with asymptotic counting properties for diameters in the context of
parabolic GDMSs, see Section [12|
So, again § is a finitely irreducible conformal GDMS, we fix p € EY and put £ = ms(p).
We furthermore fix
Y C Xig)-
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We denote
A(w) = Ay (w) := —logdiam(p,(Y)), we E},

with the natural convention that for w = ¢, being the empty (neutral) word:
Ay (e) = —logdiam(Y'),

and further, for any B C X and T > 0,

Dy(B,T):=D(B,T) :={w e £} : Ay(w) < T and ¢,(§) € B},

DY (B,T) := #Dy.(B,T).

The main result of this section is the following.

Theorem 8.1. Suppose that S is a strongly reqular finitely irreducible conformal D-generic
GDMS. Let 6 = ds = HD(Js). Fiz p € EY and Y C X;(,y having at least two points.

If B C X is a Borel set such that ms(0B) = 0 (equivalently jis(0B) = 0) then,
Dy.(B,T ~
(8.1) lim Dy(B.T) _ C,(Y)ms(B),

T—+oo B‘ST

where C,(Y') € (0,400) is a constant depending only on the system S, the word p (but see
Remark , and the set'Y . In addition

(8.2) K2 (5xs) Mdiam®(Y) < C,(Y) < K#(6xs) ™ 'diam’ (V).
We first shall prove the following auxiliary result. It is trivial in the case of finite alphabet
E but requires an argument in the infinite case.
Lemma 8.2. With the hypotheses of Theorem for every integer ¢ > 1 let
n(B,T) = m(B,T)NE%, i=p,p,

and
N(B,T) := #m”(B,T).

Then w

- N;¥(B,T)

S
Proof. Since N\”(B,T) < N\(T) := N\(X,T), it suffices to prove that
(9)
lim 2V 5<T) =0.
T—o0 e

By considering the iterate S? of S it is further evident that it suffices to show that

1)

=0.
T—o0 65T

To see this consider the Poincaré series

s 1 (s) = L,1(p).
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notice that it is holomorphic throughout {s € C : Re(s) > 7s} 2 A_E, and conclude the
proof with the help of the Ikehara-Wiener Tauberian Theorem (Theorem , in the same
way as in the proof of Theorem [5.3] O

Denote also
DY) (B,T) :=D"(B,T)N E! = D’(B,T) N EY.
By (BDP)
NPD(B,T —log K) < D¥9(B,T) < N (B,T +log K).
Therefore, as an immediate consequence of Lemma [8.2] we get the following.
Corollary 8.3. With the hypotheses of Theorem for every integer ¢ > 1, we have
. D(mq)( B, T)
i, =
Now we can turn to the actual proof of Theorem [8.1]

Proof of Theorem [B.1]. Fix an integer ¢ > 0 and define:

=0.

Culy \
K, :=sup { ||%0' E$§|| T E R x,y€ COﬂV((pT(Xt(T))), wE ET} >1,

where Conv(F) is the convex hull of a set ' C R?. In particular Ky = K, the distortion
constant of the system S. (BDP) yields

(8.3) lim K, = 1.

q— o0

(BDP) again, along with the Mean Value Theorem, imply that for all 7 € E5 and all
w € EZ, we have that

diam (0, (Y)) = diam (. (#7(Y))) < Kqlel,(o-(&))|diam(p-(Y))

and
diam (o (Y)) > K, [, (-(€)) diam (- (V).
Equivalently
(8.4) Arp(w) + Ay (1) —log K; < Ay (w) < Arp(w) + Ay (7) + log K.
Denote
DB, T):={we E;:wreD’(B,T)}
and

DI(B,T) = #D2(B,T).
Formula (8.4)) then gives

(8.5) (B, T) C DB, T + Ay(7) + log K,)
and

(8.6) DY(B,T) C 70rp(B,T — Ay(7) + log K,).
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The former equation is equivalent to

DL(B,T) 2 mp(B, T — Ay (1) — log K,).
This formula and yield
(8.7) Nop(B, T — Ay(7) —log K;) < D2(B,T) < N,,(B, T — Ay(7) + log Ky).
since

q .
(8.8) D’(B,T) = | J D2(B, T)ru| JD")(B,T)
TEE] Jj=0
and since all the terms in this union are mutually disjoint, formula (8.8) yields
7> De(B,T).
TEE]

By inserting it into formula (8.7)), we get
D?(B,T)> Y N:,(B,T - Ay(r) —log K,).

reEd
Therefore,
DP(B,T) - N.,(B,T — Ay(7) — log K,) exp( (T — Ay (1) —log K,))
ST T fems CXP (6(T — Ay (1) —log K,)) ST
_ NTP(B,T—AY logK)K e
S &XP (6(T — Ay () —log K,)) *

Np (B, T — Ay(7) — log K,)

— K s T —6Ay (7).
Z T AY( ) IOqu))

Hence, applying Theorem [5.9] we get

P N, (B, T —A —log K
lim —D (B.T) > K, ’ Z e 0v (™) im p( v(7) —log q)

Tooo €T et T—oo €XP (5(T — Ay (7) — log Kq))
(8.9) > K0 e (x0) s (p)ms(B)
TEEq
= (xs0)" K.y e 0ys(rp).

TEE}

This is a good enough lower bound for us but getting a sufficiently good upper bound is
more subtle. As in the proof of formula (5.5 in Theorem [5.8] we split EY%, at the moment
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arbitrarily, into two disjoint sets Fy and its complement Fy := Ej \ Fy (each of which
naturally consists of words of length ¢) with F}, being finite. In particular,
By =F,UF,.

So far we do not require anything more from the sets F; and F,;. We will make specific
choices later in the course of the proof. We are now primarily interested in the sets

Rop(T) =Ry reo(T) = {wem(T):|w| > qand WHZLqH € F;p}
and the corresponding counting numbers
Ry p(T) = #Ry,(T).
We are interested in estimating from above, the upper limit

lim .
T—00 €5T

First of all, Lemma yields

. R,(T _ .
(8.10) lim q”;g, ) < K5 'y uyms([FY]).

T—o0 e
Denote now
R; (1) :={weD(T): |w| >qand w”ﬂ_qﬂ € F}
and the corresponding counting numbers
R, (T):=#R; (T).
It follows from (8.4]), applied with 7 being empty (neutral) word, that
R ,(T) SRy, (T + log Ay (g) + log K).
Along with ([7.2)) this yields
— R; (T)

Jim 45— < K®5 ' ms Ay (2) ([FE]).
Now we write
U pus.m)r= |J DB T)rUR;,(T).

T€E] TeF,NE]

Together with (8.8]) and (8.7)) this yields

q
DY(B,T)< Y, DXBT)r+ R, (T)+ Y DP(B,T)
TEFy, ,NEY §=0
q
< Y Ny(B.T—Ay(r) +log K,) + R} (T) + > _ DY(B,T).

TEFpNE} =0
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Hence, invoking also Corollary{8.3] and finiteness of the set 7 ,,
(8.11)
— D{.(B, T)

lim X~ < K9
T—o00 €§T q

we get

Z €7AY(T) m NTP(B,T— Ay<7'> —|—10qu) X m R;p(T)

i
reFy ,NE] T—00 exp ((5(T — Ay (1) + log Kq)) Tosoo 0T

< (x50)'ms(BYKG Y e s(rp) + K¥(6x5) T Ay (e)ms ([F)])-

TeE]

Hence, taking finite sets F , with m(;([Fq,p]) converging to one, with m5([F ¢ ]) converging
to zero, we obtain

— Dp B.T
(8.12) lim % < Kg(x(;(s)_lm(;(B) Z e A Dys(p).

T—00 65
TeE]

Since

Us(p) = L3ws(p) = Y e P2 Dus(rp) < Livs(p) = s(p),

TEE]

p _ p
we conclude from and (8.12) that both lim, , # and limy_, o % are finite
and positive numbers. Furthermore, we conclude from these same two formulae that for
every q > 1,

T D%.(B,T)
hn/1T~>oo * 0T K26
lim, 2B~
=T —00 edT

D (BT)

Formula (8.3) then yields that the limit limT_,oo —57— exists and is finite and positive.
Invoking and (8.12) again along with (8.3)), we thus deduce the limit

—dAy (T
Jim 3 e ys(rp)

TGEq
also exists, is finite and positive. Denoting this limit by C%, we thus conclude that

. Dy(B,T) _
'1—1'520 €6T (S 5

Os ms(B),
and so, in order to complete the proof of Theorem 8.1] -, we only need to estimate C. Indeed,

D e Dys(rp) = diam’ (o (V) vs(mp) < D [k |5 diam’ (Y )bs(7p)

TEE] TEE] TeE]
< K‘Sdiam Z |l (ms(p | Ys(Tp)
TeEq
— KPyy(p)diam? (V)

< K®diam’(Y),
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and similarly,

Z e Dys(rp) > K2 diam®(Y).

TEE]
The proof is complete. U

We can now consider a slightly different approach to counting diameters. Still keeping
p €LY, Y C X, aset BC X, and T > 0, we define:

EV(B,T) ={we B Ay(w) <T and ¢ (Y)N B # 0}
and
EY(B,T) = #&L(B,T).

Theorem 8.4. Suppose that S is a strongly reqular finitely irreducible conformal D-generic
GDMS. Let § = 0s = HD(Js). Fizx p € EY and Y C Xy, having at least two points and
such that 7s(p) € Y.

If B C X is a Borel set such that ms(0B) = 0 (equivalently ps(0B) = 0) then,

. Ey(B,T)
19 i =

= C,(Y)ms(B),

where C,(Y') € (0,400) is a constant, in fact the one produced in Theorem depending
only on the system S, the word p (but see Remark , and the set Y. In addition

(8.14) K2 (5xs) tdiam®(Y) < C,(Y) < K®(6xs)” 'diam’ (V).
Proof. Since ms(p) € Y we have that

DY (B,T) < E{.(B,T).
It therefore follows from Theorem [8.1] that
(8.15) lim inf 2B T)

T—+o0 65T

> Cp<Y)m5(B)'

Since EJ(T) = EJ(X,T) = DY(T), Theorem [8.1] also yields

(8.16) i 220

T—+o0 €5T

= Cs(Y).
Now fix (€,)22,, a sequence of positive numbers converging to zero such that for all n > 1
ms(0B(B,€,)) = 0.

Then ms(0B(B, €,)) = 0 and ¢, (Y) intersects at most one of the sets B or B°(B;¢;) N B¢
if Ay (w) > log(1/e,). Hence applying formula (8.15)) to the sets B°(B,¢,) N B¢ and using
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(8.16)) we get for every n > 1 that

C,(Y) > limsup
T—+o00

ES(B,T) + EL(BY(B, ), T)
eéT

Ep B.T EP B¢(B T
ZlimSUpL’)—Himinf Y( ( 7€n)7 )

Ttoo edT T 5400 edT
p
EC(B,T)
el

> lim sup
T—+o0

But lim,, o ms(B°(B, €,)) = ms(B°) = 1 —mgs(B), (remembering that ms(0B) = 0), and
therefore

+ C,(Y)ms(B(B, €,)).

_ EY(B,T
C,(Y) > limsup %
T—4o00 €

E{(B,T
lim sup %
T—+o00 €

Along with (8.15)) this finishes the proof of the first part of the theorem. The second part,
i.e. (8.14)), is just formula ({8.2]). O

Remark 8.5. Since the left-hand side of depends only on py, i.e. the first coordinate
of p, we obtain that the constant Cy (p) of Theorem and Theorem also depends in
fact only on p;. We could have provided a direct argument of this already when proving
Theorem and this would not affect the proof of Theorem [8.4, However, our approach
seems to be most economical.

+C,(Y)(1 = ms(B)).

Hence
< Cp(Y)ms(B).

We say that a graph directed Markov system S has the property (A) if for every vertex
v € V there exists a, € F such that
i(ay) =wv
and
Aea, =1
whenever #(e) = v. As an immediate consequence of Theorem [8.1 Theorem and
Remark [8.5 we get the following.

Theorem 8.6. Suppose that S is a strongly reqular finitely irreducible D-generic conformal
GDMS with property (A). Let § = 6s = HD(Js). For any v € V let Y, C X, having at
least two points fixed.

If B C X is a Borel set such that ms(0B) = 0 (equivalently pis(0B) =0) and p € EY is
with p1 = a,, then,

DTy E(BT) ~

(8.17) Tgrfoo — T = TETOO — = Cy(Y,)ms(B),
where Cy(Y,) € (0,+00) is a constant depending only on the vertexr v € V' and the set Y,,.
In particular, this holds for'Y, := X,, v € V.
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Recall, see [§] for example, that a GDMS S is maximal if A,, = 1 whenever t(a) = i(b).
Since every iterated function system is maximal and finitely irreducible and since each
maximal GDMS has property (A), as an immediate consequence of Theorem and
Remark (improved to claim that now C,(Y") depends only on i(p;) and Y') we get the
following two corollaries.

Corollary 8.7. Suppose that S is a strongly reqular finitely irreducible D-generic maximal
conformal GDMS. Let 6 = ds = HD(Js). For anyv € V let Y, C X, having at least two
points be fized.

If B C X is a Borel set such that ms(0B) = 0 (equivalently 1is(0B) =0) and p € EY is
with i(p1) = v, then,

DL(BT) . EL(B.T) ~

519 i, P =l S = (D)
where Cy(Y,) € (0,+00) is a constant depending only on the vertexr v € V and the set Y,,.
In particular, this holds for'Y, .= X,, v e V.

Corollary 8.8. Suppose that S is a strongly reqular D-generic conformal IFS acting on a
phase space X. Let 6 = ds = HD(Js). Fiz Y C X having at least two points.

If B C X is a Borel set such that ms(0B) = 0 (equivalently ps(0B) = 0) and p € EY,
then,

p P
(8.19) lim M: lim M

T—+00 €5T T—+o00 €6T

= C(Y)ms(B),

where C(Y') € (0,400) is a constant depending only on the set'Y . In particular, this holds
forY =X.

Part 2. Parabolic Conformal Graph Directed Markov
Systems

We want to apply the previous results (Theorem , Theorem , Theorem , Theo-
rem to prove counting theorems for a variety of dynamical and geometric examples. In
particular, these theorems can be applied to prove geometric counting results for Apollo-
nian packings and many other systems naturally arising in the realm of Kleinian groups and
one-dimensional conformal, holomorphic and real, dynamical systems. But such systems
do not really fit into the framework of previous sections. These however fit into the frame-
work of conformal parabolic iterated function systems, and more generally of parabolic
graph directed Markov systems. Therefore, and because parabolic systems are interesting
on their own, following [45] and [47], we recall the definition of parabolic systems, bring up
their basic properties, and, based on mentioned above results from previous sections, i.e
attracting GDMSs, we prove appropriate counting results for them. This primarily means
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Theorem and Theorem for multipliers i. e. analogues of Theorem and Theo-
rem in this setting, along with several of its quite involved, corollaries, primarily about
counting diameters.

9. PArRABOLIC GDMS; PRELIMINARIES

In present section, following [45] and [47], we describe the suitable parabolic setting, we
canonically associate to a parabolic system an ordinary (uniformly contracting) conformal
graph directed Markov system (a kind of inducing), and we prove Theorem , which is a
somewhat surprising and remarkable result about parabolic systems.

Similarly as in Section (3| we assume that we are given a directed multigraph (V) E,i,t)
with V finite and E also finite (though in Section E was merely assumed to be countable),
an incidence matrix A : £ x E — {0,1}, and two functions i,¢ : E — V such that A, =1
implies ¢(b) = i(a). Also, we have nonempty compact metric spaces {X,},cv. Suppose
further that we have a collection of conformal maps . : Xy = Xj(), € € E, satisfying the
following conditions (which are more general than in Section |3|in that we do not necessarily
assume the maps ¢, to be uniform contractions).

(1) (Open Set Condition) ¢, (Int(X)) N (Int(X)) = 0 for all a,b € E with a # b.

(2) |¢L(z)| < 1 everywhere except for finitely many pairs (e, z.), e € E, for which z. is
the unique fixed point of ¢, and |, (z.)| = 1. Such pairs and indices ¢ will be called
parabolic and the set of parabolic indices will be denoted by 2. All other indices
will be called hyperbolic. We assume that A.. = 1 for all e € ().

(3) Vn > 1 Vw = (wiws...w,,) € EY if w, is a hyperbolic index or w,_1 # w,, then ¢,
extends conformally to an open connected set Wy,) C R¢ and maps Wiw,) into
Witwn)-

(4) If e € E is a parabolic index, then
ﬂ Pen(X) = {xe}
n>0
and the diameters of the sets @.n(X) converge to 0.

(5) (Bounded Distortion Property) 3K > 1Vn > 1 Vw € E} Va,y € Wy, if wy, is a
hyperbolic index or w,,_1 # w,, then

/
o, ()]
(6) 3k <1Vn >1VYw e EY if w, is a hyperbolic index or w,_1 # wy, then [|¢] || < k.
(7) (Cone Condition) There exist a,! > 0 such that for every 2 € X C R? there

exists an open cone Con(z,«,l) C Int(X) with vertex z, central angle of Lebesgue
measure «, and altitude .
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(8) There exists a constant L > 1 such that

A
|0 ()|
for every e € E and every pair of points z,y € V.

-1

< Llly — xf|*,

We call such a system of maps
S={pe:e€ L}
a subparabolic conformal graph directed Markov system.

Let us note that conditions (1), (3), (5)—(7) are modeled on similar conditions which
were used to examine hyperbolic conformal systems.

Definition 9.1. If Q # (), we call the system S = {y; : i € E} parabolic.

As stated in (2) the elements of the set E'\ 2 are called hyperbolic. We extend this name
to all the words appearing in (5) and (6). It follows from (3) that for every hyperbolic word
w?

Po(Wiw) € Wiw)-
Note that our conditions ensure that ¢, (x) # 0 for all e € E and all € X,;). It was

proved (although only for IFSs nevertheless the case of GDMSs can be treated completely
similarly) in [45] (comp. [47]) that

(9.1) lim sup {diam(¢, (X))} =0.

n—oo WGE:{

As its immediate consequence, we record the following.

Corollary 9.2. The map m = s : EY — X == @, o X,

{m(@)} =) @uln (X),
n>0
1s well defined, i.e. this intersection is always a singleton, and the map w is uniformly
conlinuous.

As for hyperbolic (attracting) systems the limit set J = Js of the system & = {p,}ece is
defined to be

Js = m(EY)
and it enjoys the following self-reproducing property:
J={]Jee(J)
eck

We now, still following [45] and [47], want to associate to the parabolic system S a canonical
hyperbolic system S*. We will then be able to apply the ideas from the previous section
to §*. The set of edges is defined as follows:

E,={i"jin>1,i€Q i#jeb, Aj=1}U(E\Q) CE}.
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We set
V. =t(E,) Ui(E,)

and keep the functions ¢ and 7 on E, as the restrictions of ¢ and ¢ from E’. The incidence
matrix A* : F, x E, — {0,1} is defined in the natural (and the only reasonable) way by
declaring that A, =1 if and only if ab € E. Finally

S* = {goe : Xt(e) — Xt(e)| e € E*}

It immediately follows from our assumptions (see [45] and [47] for more details) that the
following is true.

Theorem 9.3. The system S* is a hyperbolic (contracting) conformal GDMS and the limit
sets Js and Js- differ only by a countable set. If the system S is finitely irreducible, then
so is the system S*.

The price we pay by replacing the non-uniform “contractions” in & with the uniform
contractions in &* is that even if the alphabet FE is finite, the alphabet E* of §* is always
infinite. In particular, already at the first level (just the maps ¢, w € E*)), we get more
scaling factors to deal with. In order to understand them, we will need the following
quantitative result, whose complete proof can be found in [88].

Proposition 9.4. Let S be a conformal parabolic GDMS. Then there exists a constant
C € (0,400) and for every i € Q) there exists some constant p; € (0,+00) such that for all
n > 1 and for all z € X; := Ujcp sy 0i(X),

pit1 _pitl

C™'n" ni <|pw(2)] <Cn 7.

Furthermore, if d = 2 then all constants p; are integers > 1 and if d > 3 then all constants
p; are equal to 1.

Let us also introduce the following auxiliary system:
S ={p.:e€ E\Q}.
As an immediate consequence of Proposition [9.4] we get the following.

Proposition 9.5. If S is a conformal parabolic GDMS, then

Ps Pbs
s = ,+OO ) * = )
y (Ps +1 ) 1T A1

where
ps = max{p; : i € Q}.

and the system S* is, in the terminology of [AT], hereditarily (co-finitely) reqular, in partic-
ular, strongly reqular.
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We set

Giv

and

5s 1= 6%,

— * i — ¥
Mg = Mg, and  Mgg == My, .

en e € E, we set
Qe :={aeQ: A, =1}

Q,:=Q,,

for every p € E¥. We will need the following facts proved in [45], comp. [47].

Theorem 9.6. If S is an irreducible conformal parabolic GDMS, then

(1) 6s = HD(Js),

(2) The measure msg is d—conformal for the original system S in the sense that

M (Pu(F / "Pw’(ss dmgg
for every w € E4 and every Borel set I’ C Xy, and
M5 (Pa(Xi) N ps(Xig)) =0
whenever o, B € £ and are incomparable.

(3) There exists a, unique up to multiplicative constant, o—finite shift—invariant measure
tss on B, absolutely continuous with respect to ms,. The measure pisq 1s equivalent
to mss and

(a) The Radon-Nikodym derivative of pss with respect to mg is given by the fol-
lowing formula:

Usslp) = 95 () s () 1 3 Il m()) P (a).

dm
0s acQ, k=1

(b) The measure 55 (and Jiss = jiss © T5') is finite (we then always treat it as
normalized so that it is a probability measure) if and only if

2ps
ps+1

More precisely, the following conditions are equivalent:

(bl) 05 > 2Pa

Pat1’

0s >

(b2) There exists an integer | > 1 such that pss([a']) < o0, and
(b3) For every integer | > 1, uss([a']) < +o0.
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(4) Furthermore, we have that

oo == [ log |¢L,(ms(w)ldis = xG, € (0.+00)
E‘OO

A

and, as for attracting GDMSSs, we call xss the Lyapunov exponent of the system S
with respect to measure [isg.

For future use we denote

2pa
—= = . > .
Qoo = Qoo (S) {aeQ - _55}

A crucial feature of the hyperbolic systems arising from parabolic systems is that they
are automatically D-hyperbolic. We have already seen that this is not necessarily true for
hyperbolic systems.

Theorem 9.7. If S is an irreducible conformal parabolic GDMS, then S*, the associated
contracting (hyperbolic) GDMS, is D-generic.

Proof. Assume for a contradiction that S* is not D-generic. According to Proposition
this means that the additive group generated by the set

{ —~log|el ()] 1w e B} CR

is cyclic. Denote its generator by M > 0. Fix b € ) and then take a € E% such that
a1 # b and ab’a; € E%. Note that then ab’a; € EX,. and moreover ab"a; € E,. for all
integers n > 2. For every integer n > 2 denote by z, € Js« the only fixed point of the
mMap Pabra; © Xi(ay) — Xt(ay)- We know from the above that for every n > 2 there exists
an integer k, > 1 such that

92 — 108 | )] = M.
By Proposition [9.4] we have that

_ pptl

(9.3) ‘SD/benal(xn)’ |05, ()] ’@bn (Pay (7)) ’ |§0a (@orar (20)) ‘ =Cpn ™

with some C, € (C~!,C), where C is the constant coming from Proposition[9.4 Combining
this with (9.2)) yields

1
k, = ——logCn—i—pb

1 .
i Mp, ogn

On the other hand

lim 2, = lm apra, (¥n) = Pa( im 7 (e () = Pals)

n—oo
and

lim ppna, (,) = 4.
n—oo
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Keeping in mind that ¢,(x,) = 2 and |p)(xp)] = 1 and using the Bounded Distortion
Property, we therefore get

‘Splaanrlal (xn+1)| "lpab”+1a1 (9001< b))|

lim = lim
n—00 “plabnal(fﬂnﬂ n—00 ‘Soab"al e )‘
_ i 12 @ara(m)) | }%(% (Para(s)))]
e ’90& (901? 9004104 $b )|
/
— tim [Pl 1By 1.
Equivalently:

Jim (= log |[¢pni1, (Tnt1)| = (=108 [@lpma, (za)]) = 0.

Using (9.2]) this gives that lim, (k11 — k) = 0. Since all k,, n > 1, are integers, this
implies that the sequence (k,)22; is eventually constant. However, it follows from (9.2)
that lim,,_. k, = +00, and the contradiction we obtain finishes the proof. O

Remark 9.8. We could generalize slightly the concepts of subparabolic and parabolic
systems by requiring in item (2) of their definition that not merely some elements ¢,
e € E, have parabolic fixed points but some finitely many elements ¢, w € E%, have such
points. In other words it would suffice to assume that some iterate of the system & in the
sense of Remark is parabolic. Indeed, this would not really affect any considerations of
this and any forthcoming section involving parabolic GDMSs, and such generalization will
turn out to be needed in Subsection for the Farey map, Subsections [20] and when
we deal respectively with Schottky groups with tangencies and Apollonian circle packings.

10. POINCARE’S SERIES FOR S8*, THE ASSOCIATED COUNTABLE ALPHABET
ATTRACTING GDMS

In this section we again let § be an irreducible conformal parabolic GDMS. Our goal
is to describe the Poincaré series and the associated asymptotic (equidistribution) results
for the system &. This is achieved by means of the transfer operator associated to the
associated hyperbolic system S*.

We begin by formulating the required notation. Fix first p € E arbitrary. Denote
¢ .= ms+(p). Treating p in an obvious way as an element of £, we can also write £ = ms(p).
Fix next an arbitrary TE E,..

Let nf(7,s), i = p, p, be the corresponding Poincaré series for the contracting system S*,
and we continue to use

T]i(7—7s)a L= PPy
to denote the Poincaré series for the original (now parabolic) system S. This allows to

deduce the analytical properties of n; from those for the 7}, to which we can apply the
results already established in Proposition [6.3]
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We show that the Poincaré series 1;(7, s) for the parabolic system S can be expressed
in terms of the Poincaré series for 7} (7, s) for the hyperbolic system S*. In particular,
we can deduce properties for (7, s) which are the analogue of those for (7, s), already
established in Proposition 6.3. We can formally write

n(rs) = Y o)l

wGE‘;:TwEE*

= Z |, (T |+ZZ > [Phua (o)l

weE}, a€Qy k=1 weEY,
TWEE L A* ‘rwaEEA
04 = > o)l +ZZ > (@)l (w(p)I*
( O ) wEE aGQ k=1 wEE*
TweE* A* ‘rwaEEA
= > eI +ZZ!W F Y [ (w(dp))®
weE*p a€fy k=1 wEEY 14
TweE* L A* deEEA
= p(r,8) + Y D () i, (7, ).
a€Q, k=1

Since by Theorem [9.7] we have that S* is D-generic it follows from the proof of Theorem
that for every so = ds + itg € I's with ¢, # 0 all functions U;kp(T, -) have holomorphic

extensions on a common neighborhood, denoted by U, of sy € T'%. of the form

q
U3 s D X()(1 - X5(5) Pl o m)(a¥p) + S5(s) € C,
j=1

Wy

where all the symbols “x” indicate that the appropriate objects pertain to the system S*.
Since

|Pe(lerl o m) (@)l < 1P (171" 0 T) oo < NP2 (19517 0 )l < 00,

it follows that all the functions n}, (7,-) are uniformly bounded on U. Since also ds > 24

and since

(10.2) e (T ()| < 1l (R(p))S = (ke + 1)~ "5,

we eventually conclude that the series in (10.1]) converges absolutely uniformly on U, thus
representing a holomorphic function. We are therefore left to consider the case of sy = d5s.
By virtue of (6.3) we then have for every k > 0 that

M p (T, 8) = AL(1 = X)) THH (a%p) + B (s).
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Substituting this into (10.1]), we therefore get

no(7,8) = 3(T8) +AL1=A) T Y Z e (T ()P HZ ((a¥p)+ ) 0> Il (m(p)) e (5),

acfl, k=1 acfl, k=1

and by both series involved in the above formula converge absolutely uniformly on U'.
Looking up now at the calculations from the end of the proof of Theorem and invoking
Theorem (3) and (4), we conclude that the function U > s — 1,(7, s) is meromorphic
with a simple pole at s = ds whose residue is equal to

Yisl) e ()4 3 Z [on () P (a®p)mi (I7]) =

X(ss

= (viulo) *3 ka oI5 (a"p) Jmse([7))
o %:;(P)m T
= =2 Emas (7))

We have thus proved the following.

Theorem 10.1. If S is an irreducible parabolic conformal GDMS, p € EX., and 7 € E} 4.,
then

(a) The function AL > s — n,(r,s) € C has a meromorphic extension to some
neighborhood of the vertical line Re(s) = ds,

(b) This extension has a single pole s = ds, and

(¢) The pole s = ds is simple and its residue is equal to ‘;iip) mess([7])-

11. AsymMPTOTIC RESULTS FOR MULTIPLIERS

Now that we have established Theorem [10.1] we are ready to prove the following theorem
which, along with its two corollaries below, constitutes the main results of this section.

Theorem 11.1 (Asymptotic Equidistribution of Multipliers for Parabolic Systems I). Sup-
pose that S is an irreducible parabolic conformal GDMS. Fiz p € EY. If T € E then,

(11.1) SJim N'; ((;’TT) = Qgi‘;(f) mss ([7]),
and
(11.2) im YTD L)
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Proof. We first prove formula (11.1)). If p € EX. and 7 € E},., this formula follows
from Theorem in exactly the same way as formula (5.5 in Theorem follows from
Theorem [6.3]
Now keep 7 € E},. and let p € EY be arbitrary. Then for every ¢ > 1 large enough
there exists p, € E5. such that
Plg = Plg-
Since lim, o d(p, py) = 0, the Bounded Distortion Property (BDP) for the attracting
system S* yields a function ¢ — K, € [1,400) such that
(11.3) qlggo K,=1
and /
o s _ o
T e (ms(pg))l T
for all ¢ > 1 large enough as indicated above. Hence
N,,(1,T —log K,) < N,(1,T) < N, (7, T +log K,).
Therefore, dividing by e’7 we get that
Npq(T,T—lOngq) P N, (7,T) < Npq(T,T+log[fq) s
exp(0s(T —log K,)) * = €T 7 exp(ds(T +log K,))

Since p, € E5. and T € EY 4. we thus obtain

< Ags wés (p) mgs([T]).

K0s _%55(,0) ms([7]) < liminf —Np(T’ 7) < lim sup —NP(T’ 7)
58)(65

a (55)(55 T—+o0 edsT T— 400 edsT
Invoking ((11.3) we now conclude that

N, (m,T
(114) lim P(TJ ) — %s(ﬂ)
T—+oo  e9sT 0sXss

mss ([7])-

Working in full generality, we now assume that p € EY and 7 € E%. Then there exists F,,
a countable collection of mutually incomparable elements of E,., each of which extends

7, such that
My ([T]\ U M) = 0.

weF-
Noting that then the family {[w] : w € F,} consists of mutually disjoint sets, we thus get

that from (11.4]) that

N.AT-.T N,(w, T N,(w, T
T—+oo €98 T—+o0 e’s e F T—+o0 e’s
Vss(p) Vss(p)
= 5 S m(sg([w]> - 6 3 55([7—])
weFr SX“(SS SXH&S
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Having this (and already knowing that the neutral word () belongs to E,.) then ([11.4))
gives that

lim =
T—400 665T 5SX5S

we deduce that

No(, ) s5(p)

P, et = e s ()

in the say way (although it is now in fact simpler) as formula is deduced from (|7.8
and (7.1), the latter applied with 7 = 0 (i.e., the empty word). The proof of formula (1.1
is then complete.

Now we prove formula (11.2]). First assume that 7 is not a power of an element from 2.
This means that either

T=adp
where a € 2, j > 1, and 51 # a or
r=5
where 81 € ). In either case, ’
r=ap,

with j7 > 0. As in the proof of formula (/5.5)) in Theorem , for every v € E% fix y* € EY
(which in fact can be selected to depend only on «,) such that

"€ EY.
Fix ¢ > 1 and v € E% arbitrarily. Consider an arbitrary element wb® € E%, w € E3 px,
b € Q such that a/ Bywb* € E;. Consider two cases:
Case 1°. Assume b # a if j > 1. Then
|9 it (T ot )| = |00 o (s (07 Byw0)>)) | - |03 (s (0! Brwd®)>)) |
and ‘ ' .
0L g (75 (@7 By )| = |0l gy (ms (b5 a? By )| - |0 (s (a? Byy ™)) |.
Since w € E¥,. and since either b # a if j > 1 or 1 € Q if j = 0, by the (BDP) we get that

|t g (7 ("0 Brw))) |

Kl<
T s (Ts(BraiBy )| T
- e (s (0 Bryb)=))|
Rt < [P \TsUa e K
T e (rs((@pyyt))| T

with some “distortion” function ¢ lN(q € [1,400) such that lim, . I?q = 1. Conse-
quently,

[Pl gt (Tat e
(11.5) 72 < P Tos

< . < K2,
T g (s (@B ) T
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Case 2°. Assume j > 1 and b = a. Then

(11.6) |05 ot (T gyt ) | = |3 o (s (@7 Byw) ) | - [0ln (s (0! Bywb®)>)) |
and
(11.7) |00 gt (T (07 YY) | = | @i s (15 (@ B9 )) |-l (s (@7 By ™)) |-

Again by (BDP) we have that

1 _ o (ms(@ 80 )| _

11.8 K : < K,.
(11-8) T | (ms(@ By )| T
By the Chain Rule
(11.9) o (s (a7 B7R))| = |hawss (ms(Br))| - |0l (s (By))| "

for every xk € E such that vk € E%. Since ; # a we have that

=1 _ [ (ms(Bywa®) )| ~
o < Wbl )] _
|Q0aj+k (Ws(ﬁ'm/ ))}
and
K-l < }@;;(WS((BWWGIC)OO))‘ < f(q.
‘ |01 (s (B777))]
Hence, invoking we get that
E—_z < ’@;k (7TS(<aj57wak)oo>)‘ <[’€—2

T e(rs(@pyy))| T

Along with (11.8]), (11.6) and (11.7)) this yields

/
~ , T s g
(11.10) K3 < ’waﬂﬁvwbk( By bk)‘

T ‘gpgjﬁ’ywbk (Ws(ajﬂ’y’}ﬂr)”

Now it follows from ((11.5) and (11.10]) that

73
< K.

(11.11) Tai gyt (@ By, T — 3log K,) C my(a?8v,T) C Tai gyt (@2 By, T + 3log K,).



ASYMPTOTIC COUNTING IN CONFORMAL DYNAMICAL SYSTEMS 75

Therefore, applying (11.1]) we get that

lim inf w > lim inf Nayigyyt (@7 By, T — 3log K,)
T—+o00 edsT = Tt osT
VGE%
al ByeEY
. Naipyy+ (@787, T — 3log f?q)
> D, lminf
WGE%
al ByeEY
(11.12) _ Z i inf Najgw+(aj5’Y,T—~310qu)—;~{_355
gt L To° e9s(T—3log Kq) q
N
ajﬁ've?ij‘
7Bv77) :
- Ry Y I ()
7; 55X5s s [ ]
aJﬁ’YGEZ
(ajﬁ) 55 o “55([aj5])7
S

with some function ¢ — K,(a’8) € [1,+00) for which lim, . K,(a?’8) = 1 and which
exists because a/f is not a power of an element from 2. Taking the limit in (11.12) as
q — 400, we thus get that

. Ny(d!B,T) 1
(11.13) l%rg}rgvf edsT 08X

pss ([a”B])-

In the general case, i.e., making no assumptions on 7 € £’ we proceed in the same way as in
the proof of formula (11.1]). We can fix F,, a countable collection of mutually incomparable
words extending 7, not being powers (concatenations) of elements from €2, and such that

s([T]\ U):

Noting that then the family {[w] : w € F,} consists of mutually disjoint sets, we thus get
that from (11.13) that

N, (7,T Ny(w, T N, (w, T
lim inf L > lim inf Zweﬂ »l ) > lim inf M
T—4o00 edsT T—+o0 edsT T—+o0 edsT
(11.14) W
S has ()
OsXbs ‘o5 ~ Osxes

For the upper bound we again deal first with words a’j3, i.e., the same as those leading to
11.13)). Since the alphabet E is finite it follows from the left hand side of (11.11]) and from
11 1% that
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N, ('3, T N gt (387, T + 3log K,
lim sup —p(iﬁT ) < lim sup Z ]5’Y’Y+( 676 = & Q)
T—+o0 e’s T—400 vEEP e’s
(1.7‘5'}/€Ej21

N, iB~,T + 3log K
Z lim sup 02577+ (@ BZT—i_ 0g Ky)
T—4o00 e’s

oo
YEER

ajﬁ'yEE:Z

(11.15) = Y limsup Naigry+ (@07, T + 31og Ky) a5
Tstoo e9s(T+3log Kq) q

YEEY
ajﬁ'yEEz

J .
— Ry Y DI ()

"/EEOo
a]ﬁ’yeEA

, 1
S KQ(GJB) 5SX5
S

Taking the limit as ¢ — +o00 in (11.15)) we thus get that

N, (a’B,T 1
lim inf p(@5,T) <
T—+o0 edsT (55)(55

Along with (11.13]) this gives

pss ([a’ B]).

pss ([0’ B]).-

N,(a’B,T 1
(11.16) lim @8 T)
T—too 05T 05Xss

s ([a’ B]).-

Passing to the upper bound in the general case, we only need to deal with powers of
parabolic elements. Because of (11.14) and Theorem (b1)-(b3), formula (11.2)) holds

for all words 7 = a', [ > 1, where a € Q is such that ds < pa’:‘jl. In what follows, we can
thus assume that
2pa

ds > .

* 7 pat1
Then for every integer j > —1, we have
(11.17) [a?™)\ [a?1?] = U{ [’ 'e] 1 e € E\ {a} andA, = 1}.
Since the set £\ {a} is finite it thus follows from (11.16]) that
(11.18)

Np([aj“] \ [ajH],T) 1 j41 j42 1 j+1 j+2
ot = s (TN 0) = () — s (077,
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Now if w € [a?*'] \ [@/*?] then w = o/ (ara') with k1, kg € B\ {a}, Aus, = 1, Ay 0 =1,
and { > 0. Then
e_T < }(p;j(aﬁal)(xaj(anal))} - |S02mal (xaj(a/ﬁal)>"|90;j (xanajH” = (]+2) SOZmal (xaj(a“al)>"

Denoting by ) > 1 the multiplicative constant corresponding to the “<” sign above, we
thus get

—(pa+1)/pa

pa+1
(11.19) ’¢a5a1< Lai(aral )| > Q" (] +2)” o e’
Now fix a word 8 € EY with 81 = a and 3 # a. Then
a"rl . Pa+1
‘(p;nal(xaj(am’))‘ = ‘Soibl(xaj(aml)” ’ "pfm(xaj*’ )| ~ (] +1+ 2) ©J Pe @gn(ﬂs(ﬁ))"

It therefore follows from ((11.19) that
|S0:m3(7r3(/3))| ZQ (]+l—|—2) pa 6 -T

Equivalently,
10 |ehulms(9)] < 2105 Q — LD og(j 14 2) 7
Hence a
ak € g <[a/<:1],2log@ — Mlog(j +1+2) +T> .
Therefore, ’

(11.20) Ny([T\ @) < Y ZNB(ab 2logQ — L2

beE\{a} [=0
Agp=1

log(]+l+2)+T>

By formula ([11.1]), and since the alphabet F is finite, there exists 7} > 0 such that

(11.21) e 55 Ng([ab], S) < ¢5S(B)m5s([ab])§%5_(m

SXés 55X5s
for every b € E \ {a} with Ay, =1 and every S > 7. Now

ZlogQ—p 110g(j+l+2)+T2T1
if and only if '
(11.22) G142 < sp = QuetT exp (paj_l(T—Tl)).
In addition, if
(11.23) 21050 — P e 4142+ T < 1,
then '
(11.24) Nj ([ab], 2log Q — log( +1+2)+ T) = 0.
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Formula (|11.23]) just means that

2pg

(1125) ]—|—l—|-2 > ur _era+lepa+lT
Therefore, returning to formula (11.20)), for every ¢ > 1 we get that
(11.26)

> TN ([T o) <

J=q+1

o0 Ng ([ab], 2log Q — P25 log(j +1 4+ 2) + T
Sy s ( )

beB\(a} j=q lij+1+2<s7€XP ( d5(2log Q — 2 log(j + 1 + 2) + T))

+ > e~ Ny([ab], T})

ST+l<j+l+2<uT

S Q255#E¢5S (ﬁ Z Z k_:Da+ ds + NaeiésTU%ﬂ

05Xss Jj=q k=j

~ i 1_Patl ~ 2 a
<L e (3 ) )

a

N . ~ 2Da
< quQ_ppaH‘SS + Q2 exp (( el 58) T) 7
Do+ 1

Q¥s(j+1+2) %

where N, := max{N@ [ab] Tl) be E\{a}, Aw = 1} @1,@2,@3 > 1 are universal con-

stants,

p+1

Applying 1} and (11.26) we obtain for all integers ¢ > k + 2 the following estimate

i [P L) -
_ ;:;1 Np([aj'*‘liéi T[aj+2], n J:i; Np([amiai T[am], T) 53; s ()
< o | 22 el o) )+ T @ e (2 ) 7)
= s s (T ) - (e
1

 Os5Xss

Hss ([aq+2] )
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But since s > pi’j‘:l we have that lim, . 55 ([a?72]) = 0 and therefore
— [Np([@"],T) 1 By
TEI-&I-Ioo edsT - 5SX65 /L(;S([CL ]) = 0.
This just means that
: N, P( [ak]v T) 1 k
T T e ss ([a*]).
The proof of our theorem is thus complete. OJ

The proof of the following theorem, based on Theorem [11.1} is exactly the same as the

proof of Theorem [5.9 based on Theorem

Theorem 11.2 (Asymptotic Equidistribution of Multipliers for Parabolic Systems II).
Suppose that S is an irreducible parabolic conformal GDMS. Fixz p € EY. If B C X is a
Borel set such that mss(0B) = 0 (equivalently fi5s(0B) = 0) then,

NP(BvT) _ ¢5s(p)m

(11.27) TEToo s G5 X, <)
and

_ONB,T) 1
(11.28) B 58}(“55%(3).

We have as an immediate corollary the following:

Theorem 11.3 (Asymptotic Equidistribution of Multipliers for Parabolic Systems). Sup-
pose that S is an wrreducible parabolic conformal GDMS. Fiz p € EY. Then

NP(T) _ %s (P)

11.29 li =
( ) Toteo edsT 08 X pus s
and

N1
(11.30) L S 55XM68M55(J$)'

12. ASYMPTOTIC RESULTS FOR DIAMETERS

We now want to use the asymptotic results established in the previous section to show
the asymptotic formulae for diameters of images of a set.

In this section, as in the previous one, we assume that § is an irreducible conformal
parabolic GDMS. Our task here is, for parabolic systems, the same as the one in Section
for attracting systems, i.e. to obtain asymptotic counting properties corresponding to the
function — log diam(y,(Y)), w € E4. The notation here is the same as in Section [§} Our
strategy now is to use the full generality of Theorem and to deduce from it the first
main result of the current section, which is the following.
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Theorem 12.1 (Asymptotic Equidistribution Formula of Diameters for Parabolic Systems,
I). Suppose that S is an irreducible parabolic conformal GDMS. Fiz p € EY andY C Xj(,
having at least two points. If B C X is a Borel set such that mss(0B) = 0 (equivalently

tss(0B) = 0) then,

 Dy(B.T)
(12.1) AT

- CP(Y)m(Ss (B)7
where C,(Y') € (0,+00] is a constant depending only on the system S, the word p (but see
Remark , and the set Y. In addition C,(Y') is finite if and only if either
(1)
YNQe=Y N2 NQ,)=0

(2)

6s > max {p(a) :a €Q, and z,€Y}.

Then the function [p1] > w —— C,(Y) is uniformly separated away from zero and bounded
above.

Proof. Recall that

Q) ={aecQ: A, =1}
We know that

* * _k
=E,u | J JEa
a€fly k=1
and this union consists of mutually incomparable terms. Therefore,
D4(B.T) = Dis. (B.T)U | DY 5. (B.1),
a€flp k=1

and this union consists of mutually disjoint terms. Therefore,

Dy(B,T) _ Dy D87y 5. (B,T)
(12.2) e0sT =z edsT Z Z eésT ’
acQ, k=1

and for every g > 1:

gy DHET PEelB) o 5 Pl (010, 57 2 Dol )

6(5$T - 655T 65$T 655T
a€Qp k=1 a€fly k=q+1
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Assume first that p € EY,.. Then, a*p € EY,. for every a € 2, and for all integers k > 0,
whence we can invoke Theorem [8.1] - and [I12.5] to conclude that

. DY(B,T) _ . Dys(BT) = . DZ ")+ (B.T)
a p K=
(12.4) S GAEDS Z (90 (V) )i, (B)
a€f)y k=1
(s + Y Z(J (00 (V) ) s (B).
acfl, k=1

Since for every a € €2, and for all integers £ > 0

dam (g (¥)) = (k+1)7%  if YNQenQ, #0,
ak = Do _
i k+1)75% i YNo.nQ, =0,

formula ((12.4)) along with ({8.2)), complete the proof of Theorem if neither (1) nor (2)

hold. So, for the rest of the proof of the present case of p € EL,., we assume that at least
one of (1) or (2) holds. Then

(12.5) B Z(J (par (V) < 400,

acl, k=1

and in addition, this number is bounded away from zero and bounded above independently

of p € EY, because of .

Now fix a € ,. IfweD“ (B,T), then

k(Y),S*

diam (o (e (Y))) 2 7",
and, as
diam (0o (ar (Y))) < |6 loodiam (oqr (Y)) < Qrdiam(ep, (Xyw)))diam (qx (V)
= Qudiam (. (Xi()))diam (pa (Y)),

with some constant @)1 > 0, we thus conclude that

diam (. (Xiw))) > Qr'e Tdiam™ (¢ar(Y)).
Equivalently,

Ax,., (w) <log Q1 + log diam (@ (Y)) + T.
Thus

w € DY | s (log Qi+ logdiam (g (Y)) + T).

In conclusion,

ak a .
(12.6) D%Z(Y)’S*(B, T) C DX’Z(Q),S*(log Q1 + log diam (¢, (Y)) + 7).
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By virtue of Theorem there exists 7} > 0 such that

*

D;(p S*(B> S)
i(a)> S
o055 < Cap (Xi(a)) +1

(12.7)

for all S > T;. Now, let ko(T') be the least integer such that
log Q2 + log diam (p,+(Y)) + T < 0.
Then

(12.8) D?{;(a)’s* ( log Q2 + log diam(gpak (Y)) + T) =0

for all k& > ko(T') and

anepa(T_Tl) if (2) holds
anﬁeﬁ(:”_ﬂ) if (1) holds

ko(T) < {

with some constant Q5 € (0, 400), which in general depends on Y if (1) holds. Furthermore,
let k1(T") be least integer such that

log Q2 + log diam (pae(Y)) + T < T1.
Then, on the one hand,
log Q> + log diam (¢ (Y)) + T < Ty,

for all k£ > k1(T) and (so) it follows from (12.6)) that

ak a
DL )5 (B, T) DY o.(Th).

On the other hand,

log Q2 + log diam (¢, (Y)) + T > T
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for all 0 < k < k(7). All of this, together with (12.6)—(12.8)), yield
(12.9)

o DU (B,T)

Z Pk (Y),S* .
e(SsT o

k=q+1
_ WD DIty o (BT) D DY (B,T)
- > DY s
k=q+1 k=ky (T)+1

< [Qgepai—m] DY s (10g Qs + log diam (g (V) +7)
- exp ((53 ( log Q)5 + log diam(gpa;c (Y)) + T))

k=q+1

Qgs diam?®s (goak (Y)) +

aP DY, s+ (11) 5 Tl)

Os(T1=T)
+ Z 65$T1
k=k1(T

k1(T)
<QF Y (Co (Xigw) + ) diam’ (0,6 (Y)) + (O, (Xiqw) + 1) Dhy (T)

k=q+1
< Q5s Z (C’S*( ))+1)d1am (¢ (Y)) + (C‘S*( @)+ 1) s, (T).

Denote by ¥4(¢,7T") the maximum over all a € €, of the first term in the last line of the
above formula and by X9(7") the second term. Because we are assuming either (1) or (2)
from our current theorem, we have that in either case

(12.10) lim ¥(¢,T) =0 and lim X5(T) = 0.
q—00 T—oo

Keeping ¢ > 1 fixed, inserting (12.9) to (12.3), and applying Theorem [8.1] we obtain

— DB, T
lim—Y( ’ >§

T—o00 G‘SST

(B, T)

_DYS*BT ¢ky)s*
< Tlgrolo s gQ: ;T%oo 5aT + #Qp(EI<Qa T) + EQ(T))
acitp
< CS* )+ Z Z mss(B) + #Q(El(QaT) + EQ(T))'
a€fly k=1

Therefore, invoking (|12.10]), we obtain by letting ¢ — oo, that

— DU(B,T) . -
Jin BED < (erm+ XY o iss (B).

acfly k=1
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Along with (12.4]) this shows that formula (12.1]) holds. The number

Co(Y)+ ) D> Ci(pa(Y))

acfly, k=1

is finite because of ([12.5)). Invoking also the sentence following this formula, we conclude
the proof in the case of words p € EY,..

Now, we pass to the general case, i.e., all we assume is that p € EY. For every k > 1
choose p* € EN,. such that

Pk = pli.
We already know that there exists a constant M > 1 such that

Mt <Cy(pW) <M

for all integers k > 1. So, passing to a subsequence, we may assume without loss of
generality that the limit

: (k)
kEI—Poo CY (p )
exists and belongs to the interval [M !, M]. We denote this limit by Cy(p).

Assume first that B C X is an open set. In order to emphasize the openness of the set
B and in order to clearly separate the present setup from the next one, we now denote B
by V. Fixing ¢ > 0, there then exist F;, a compact subset of V' and a number r(g) > 0
such that

(12.11) mss(VAF.) <e and msg(B(V,r(e))\V) <e
and
(12.12) mss(0F.) =0 and ms,(0B(V,r(e))) =0,

where in writing the latter of these four requirements we used the fact that msg(0V) = 0.
Hence there exists k > 1 so large that for every w € E, (simultaneously meaning that
w € E, , we have that

vu(rs(p®)) e . = . (nslp) €V)
and
vu(rs(p)) €V = w,(rs(p™)) € B(V,r(e))).
Therefore, for every T' > 0,
Dy (F.,T) € DY(V,T) € DY (B(V.7(2)), T)

S0,
o)

DY (F.,T) < DL(V,T) < D& (B(V,r(e)), T).
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Hence, applying the already proven assertion for words in £J5. one gets

(k)
_ DY E. Ty . DYW,T) DY (V,T)
N i A

o 7 (e
< tim 2 BT _ oy (BVr(e).

T T—+oo edsT

So, letting k — +o00 and invoking ((12.12)) we obtain that

o, (Vinas (F) < timinf 2XVT) s YW 0y (Bvie(e))).

T—too  e9sT Totoo €T 7

Hence, letting ¢ — 0 and invoking [12.11| we get that

- .. DYV, T) , Dy.(V,T) ~
Co(Y)mss (V) < lim inf ——7— < llTHiiloP T S Co(Y)mss(V),
and the theorem is fully proved for all open sets B. Having shown this, the general case can
be taken care of in exactly the same way as the part of the proof of Theorem [5.9] starting

right after formula ([7.12)). This completes the proof. O

Having established Theorem [12.1], by proceeding in a similar way to the way Theorem
was based on Theorem [8.1], we derive from Theorem [12.1] the following second main result
of the current section.

Theorem 12.2 (Asymptotic Equidistribution Formula of Diameters for Parabolic Systems,
I1). Suppose that S is an irreducible parabolic conformal GDMS. Fiz p € E andY C Xj(,
having at least two points and such that ws(p) € Y. If B C X is a Borel set such that
mss(0B) = 0 (equivalently fi5s(0B) = 0) then,

. EY(B,T)
(12.13) A =T

= Cp(Y)mss (B),

where C,(Y) € (0,+00] is a constant (the same as that of Theorem depending only
on the system S, the word p (but see Remark , and the set Y. In addition C,(Y) is
finite if and only if either

(1)
YNQe=YN2hNQ,) =0

(2)

s > max {p(a) :a € Q, and z, €Y}

Then the function [p1] o w — C,(Y) is uniformly bounded away from zero and bounded
above.
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Remark 12.3. We now can essentially repeat Remark verbatim with the only change
being the replacement of Theorem and Theorem [8.1] respectively, by Theorem [12.2
and Theorem [12.1. For the sake of completeness, convenience of the reader, and ease of
referencing we summarize:

Since the left-hand side of depends only on py, i.e. the first coordinate of p, we
obtain that the constant Cy(p) of Theorem and Theorem [12.1] depends in fact only
on p;. Again, we could have provided a direct argument for this already when proving
Theorem and this would not affect the proof of Theorem [12.2] Thus our approach
seems most economical.

The last three results of this section are derived from the, already established, results,
in the same way as the last three results of Section |8 were derived from the earlier results
of that section.

Theorem 12.4. Suppose that S is an irreducible parabolic conformal GDMS with property
(A). For any v € V let Y, C X, having at least two points. If B C X is a Borel set such
that msg(0B) = 0 (equivalently fi55(0B) = 0) and p € EY is with p1 = a,, then,
DB BB,

(12.14) Am = = lim ——— = Co(Yo)mes (B),
where C,(Y,) € (0,+00] is a constant depending only on the vertex v € V and the set'Y,,.
In particular, this holds for Y, := X,, v € V. In addition C,(Y) is finite if and only if
either

(1) _ _
YNQeo =Y N NQ,) =0

or
(2)

s > max {p(a) :a € Q,, and z, €Y},

Corollary 12.5. Suppose that S is an irreducible mazimal parabolic conformal GDMS. For
any v € V let Y, C X, having at least two points be fixed. If B C X is a Borel set such
that mss(0B) = 0 (equivalently ji5,(0B) = 0) and p € EY is with i(p1) = v, then,
D{(B,T EY (B, T
(12.15) lim M = lim M

T—+o0 edsT T—+o0 edsT

= CU(Y;JT?L(SS(B%

where C,(Y,) € (0,400] is a constant depending only on the vertex v € V' and the set Y,.
In particular, this holds for'Y, = X,, v € V. In addition C,(Y) is finite if and only if
either

(1) _ _
YNQeo =Y NQeNQ,) =0

or

(2)

s > max {p(a) :a € Q, and z, €Y}
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Corollary 12.6. Suppose that S is a conformal parabolic IFS acting on a phase space X.
Fiz' Y C X having at least two points. If B C X is a Borel set such that mss(0B) = 0
(equivalently ji5,(0B) = 0) and p € EY, then,

DY.(B,T E{(B,T
(12.16) lim Dy(B.T) _ lim Ey(B.T)

Totoo  e9sT  Tohjeo  esT

= O(Y)mss(B),

where C(Y') € (0,+00] is a constant depending only on the set Y. In particular, this holds
forY := X. In addition C(Y') is finite if and only if either

(1)
YNQo =10

(2)

s >max {p(a) :a € Q and z, €Y}

Part 3. Central Limit Theorems

We now consider the distribution of weights and the Central Limit Theorems. In this
section we will formulate the results in full generality and provide their applications in
subsequent sections.

Let us consider a conformal, either attracting or parabolic, GDMS. As we did in previous
sections, we can associate to finite words w € E% both the weights \;(w) (i = p, p) and the
word length |w|. We would like to understand how these quantities are related for typical
orbits, which leads naturally to the study of Central Limit Theorems. The most familiar and
natural formulation of Central Limit Theorems (CLT) is with respect to invariant measures.
However, in the present context it is equally natural to give versions for preimages and
periodic points.

13. CENTRAL LIMIT THEOREMS FOR MULTIPLIERS AND DIAMETERS: ATTRACTING
GDMSs WITH INVARIANT MEASURE /154

As an immediate consequence of Theorem 2.5.4 (which easiliy follows from Theorem 7.1 in
[65]), Lemma 2.5.6, Lemma 4.8.8 from [47], and Remark [9.8| from our present monograph,
we get the following version of the Central Limit Theorem for attracting systems and
Gibbs/equilibrium states.

Theorem 13.1. If S is a strongly reqular finitely irreducible D—generic conformal GDMS
Pl then there exists 02 > 0 (in fact 0> = P"(0) # 0 because of Remark and since the

’In fact s below can be replaced by the (unique) Gibbs/equilibrium state of any Hoélder continuous
summable potential f : EF — R.
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system S is D—generic) such that if G C R is a Lebesque measurable set with Leb(0G) = 0,
then

—log |¢/, (ms(0™(w)))| — Xpus.1 1 2
lim g4 weEY : W ‘"( st )))| Ms @ = /6%2 dt.
n——+oo \/ﬁ 2o a

In particular, for any a < 8

. —log |, (ms(a™(W))| = Xps 1 1 [ e
HBTOOM(;S <{w € EA coa< \/ﬁ < ﬁ = 27{_0/& e 202 dt.

Since by the Bounded Distortion Property (BDP) of the definition of attracting GDMSs,
the numbers

| log diam (¢l (Yiw)) —log ¢, (ms(o™(w))|
are uniformly bounded above and since lim,, ;. /n = 400 we 1mmediately obtain from
Theorem its version with — log ‘go;‘n(mg(cf"(w))ﬂ replaced by — log diam (|, (Yiw)))-
This gives the following.

Theorem 13.2. Suppose that S is a strongly reqular finitely irreducible D—generic confor-
mal GDMY} Let 0 := P"(0)(£ 0). For everyv € V let Y, C X, be a set with at least two
points. If G C R is a Lebesque measurable set with Leb(0G) = 0, then

—log diam (g, (Yi(w,))) — n 1 2
lim s <{w € EY : & (Pt (Yin)) = X € G}) = /e_za2 dt.
n—-+oo \/ﬁ Qo G

In particular, for any o < 3

o — log diam (), (Yew,))) — Xusg T 1 b
(e e ) )

Also, as an immediate consequence of the appropriate results from [47] and Remark
from our present monograph, we get the following Law of Iterated Logarithm.

Theorem 13.3. Suppose that there S is a strongly reqular finitely irreducible D-generic
conformal G’DM@. Let 0? :=P"(0) > 0. For everyv € V let Y, C X, be a set with at least
two points. Then for puss—a.e. w € EY, we have that

—lo ' Ars(o™(w — n
st g (¢, (ms(0™(@)))| = Xuag _ Vo

n—s+00 vnloglogn

—logdiam (|, (Yiw,))) — n
lim sup & (SO (Vi )>) Xutss =V 2mo.

n—+00 vnloglogn

and

3In fact tss below can be replaced by the (unique) Gibbs/equilibrium state of any Holder continuous
summable potential f : EF — R.

In fact s below can be replaced by the (unique) Gibbs/equilibrium state of any Hoélder continuous
summable potential f : EF — R.
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Remark 13.4. It is possible to reverse the roles of the word length and the weights. More
precisely, given w € E4 and t > 0 we can define n = n(t,w) to be the only integer for which

Awln) <t < AWnt1)-
Ergodicity of measure p;, and Birkhoft’s Ergodic Theorem then yield

. t
lim
t—+o0 n(t, w)

- X#as

for uss—a.e. w € EY. We claim that there exists of > 0 such that for any o <

)‘(w‘n(tw)> — Xps t 1 A 2 /0 2
: oe) : < ) S < — —Uu /20’ .
t£+mooms ({w CbQ:as Vit - B}) 2o /oé ‘ " du

This is obtained by reinterpreting an approach of Melbourne and To6rok, originally applied
in the case of suspended flow [49]. In particular, they showed that if a discrete system
satisfies a central limit theorem with variance o2, then a suitable suspension flows also
satisfy the CLT. |E| In the present case one takes 0 : F4 — E4 as the discrete transformation
and a roof function r : E4 — R defined by r = —log |¢., (7s(c(w)))|. For the suspension
space B = {(w,u) : 0 < u < r(w)} with the identifications (w,r(w)) ~ (ow,0) one
can consider the suspension flow o} : £’y — E’ defined by o} (w,u) = (w,u + t), up to
the identifications. We can associate to the o-invariant probability measure a (-invariant
probability measure fi, defined by dfi, = du, x dt/ [ rduss. Given a function F': B, — R
the CLT for the flow gives that

t ~
Foopg(w,u)ds—t[d 1 B
lim /765 ({(w7u) c E;x o< fo o (W U) S f Hss < ﬂ}) _ / efuz/%% du,

t—+o00 \/]_f 2Qmo

where of = 07/x,,, cf [49], §3.We would like to choose F' so that I3 F o py(w, u)ds
corresponds to A(w|n(w)). To this end one chooses a function F* which integrates to unity
on fibers, i.e., for(w) F(w,u)du = 1 for all w € ¥4, and has support close to E4 x {0}.
Thus the Central Limit Theorem for the suspension flow corresponds to the Central Limit
Theorem formulated above in ¢. The variances are related by a factor of [ rdpus,.

We now turn the the parabolic setting.

14. CENTRAL LIMIT THEOREMS FOR MULTIPLIERS AND DIAMETERS: PARABOLIC
GDMSs WITH FINITE INVARIANT MEASURE [i5

Through this whole section we assume that the invariant measure j5, is finite, so nor-
malized to be probability one. We want to consider analogous comparison results in the
context of parabolic GDMSs. Following the approach described in Section [9] given a para-
bolic conformal GDMS S we associate to it a conformal GDMS S*. In this case the Central

SThere is a mild hypothesis on the roof function r which is satisfied if » € L*, say. This is the case in
our present context.
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Limit Theorem for the measure pj_ associated to S* translates into a Central Limit The-
orem for the parabolic system S and its measure ji5,. This leads to the following results,
the first of which is the analogue of Theorem [13.1

Theorem 14.1. If S is a finitely irreducible parabolic conformal GDMS with és > %ﬁ

then there exists 0® > 0 such that if G C R is a Lebesgue measurable set with Leb(0G) = 0,
then

—log ¢ (ms(0™(w)))| — n 1 2
lim g we EY : g‘%‘”( st )))| Nisss edG = /6_%2 dt.
n——+o0o \/ﬁ AQmo a

In particular, for any o < S

. . —log |¢l,), (ms(a™(W))| = Xus 1 I
HETEOOMS ({WGEA o< T <p = 27ra/a e 202 dt.

Proof. By Theorem the hypothesis that ds > % precisely means that measure p;, is
finite, and, as always, we normalize it to be a probability measure. Because of Theorem
and Remark Theorem then is a standard consequence of L. S. Young’s tower
approach [94], [95], comp. [26], [26], and [26]. O

The second result is the parabolic analogue of Theorem [13.2]

Theorem 14.2. Let S be a finite alphabet irreducible parabolic GDMS with 6s > z%'

Then there exists 0 > 0 such that if for every v € V, a set 'Y, C X, is given having at
least two points and whose closure is disjoint from the set of parabolic fixzed points 2, then
for every Lebesgue measurable set G C R with Leb(0G) = 0, we have that

— log diam(). (Vi) = Xus 1 )
lim s (dwe BY @ —2 tam(pu), Vi) = Xl o 1) _ /e 22t
nstoo vn 2ro Ja

In particular, for any a < 8
—log di whn Yeton))) — 1
hm N'(SS ({w c Eflo e’ S 0g lam(gp |n( t( n))) X;U«tn S 6}) — / e_tz/ZJdt'
n—+oo \/ﬁ 2ro a
Proof. Because of Theorem [14.1} it suffices to show that

ngrfoo Lo ({w € EY : |10g diam(gpw|n(}/}(wn))‘ —log ‘g0;|n(7r3(0"(w))} > n1/4}) = 0.
To show this, write

gn(w) := | log diam(puy, (Yiw.))| — log [, (ms(o™ (w))]-

6By Theorem this precisely means that measure p;, is finite, and, as always, we normalize it to be
a probability measure.
"As above
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Since the set EY \ EY. is countable and the measure p;, is atomless, it suffices to deal with
the elements of EY\ . only. Each such element w has a unique representation in the form

w=Tdo"(w),
where 7 € E} 4., a € Qand j = j(w) € {0,1,--- ,n — |7[}. Then for every n > 0 either
diam(pu, (Yiw,) < @G +1) 7P or - diam (@, (Yan))) = [l [l(7 + 1) @072,
respectively, depending on whether a € Vt(wn) or not. In either case
diam (o (Vi) = le7 (G +1)7°

where « € {1/pa, (pa + 1)/pa}. Since w € EY \ EY., there exists a largest (finite) k& > 0
such that

w e [Taj+k]'
Then
el (ms(o @) = NG + &+ 175 (k4 )5
Hence
gn(w) < Pat1 (log(k + 1) +log(j + k + 1) + alog(j + 1) + T) < Tlog(j +k + 1)

Pa

where I'; € [0,4+00) and I" € [1,+00) are some universal constants independent of w and
n. Then

/ o ):,Qn(w)d/ias(w) <=0 > >TSS ogl + k+ D)pusg ([ra o)),

TGEK*J’ (%) a€ef AZfil k=0

where E 7 (%) denotes the set of all finite words of “real” length n — j that belong to E7,,.
Now represent each element 7 € E' 7 (x) uniquely as c'dvy, where [ > 0, c € Q, d # c¢. Then
both cld and ~ belong to E7,., and we can write

n—j—1

S=TY 03 3 YN > o + b+ s ([l dya? ).

c€EQ  d#c ~y€eEY, . 1=0 a€Q b#a k=0
Acd=1 * Agb=1
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Now since the Radon-Nikodym derivative dits !d and since the

dm
three words c!d, v and a/**b, belong to E*A* We obtain

n—j—1

LYY Y Y Y el ke 0+ D ()

cEQ dfc  yeET,.  1=0 a€Q bra_ k=0
Acd=1 d EEX k—1—1 Agb=1
n—j—1
=> > > Z >N Zlog3+k+1)(l+1)m53([c d))miss ([7])mss ([’ 0))
c€Q d#c  yeB',,  I=0 a€Q bra k=0
Acd= ld EETAL k—1—1 Agp=1

Pa+ 5s

=3NS S log(i+E+ DI+ 1)

ceQ aeQ) 1=0 k=1

=3 log(j+ b+ 1)+ k1)

a€f) k=0

(G+k+1)"

where the last comparability sign we wrote because 1—”‘;—:153 < —1forall ¢ € Q). Therefore,

/ gnd/lés Z/ o (w)du(w)
I {weER 4 (
= Zzzbg ARG+ k)

j=0 a€eQ) k=1
oo &) 1
=D:=>" S log(j+k)(j + k)T < +oo,
j=0 k=1

where, we recall, p = max{p, : a € Q} and the constant D is finite since 1%153 > 2.
Therefore, Tchebyschev’s Inequality tells us that

f wgndﬂé
Hss ({w € EY : gp(w) > n1/4}) < E“l—MS < Dn~ Y4,
n

and the proof is complete. 0

Remark 14.3. There are a variety of even stronger results, e.g., Functional Central Limit
Theorems and Invariance Principles, based on approximation by Brownian Motion, which
should also hold with a little more work. Similarly, there are other complementary results
such as large deviation results.

Remark 14.4. There are possible stronger results of other kinds as well. For example, in
both the hyperbolic and parabolic settings there is the possibility of estimating error terms
and obtaining local limit theorems as in [24] and [25].
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15. CENTRAL LIMIT THEOREMS: ASYMPTOTIC COUNTING FUNCTIONS FOR
ATTRACTING GDMSS

In this subsection we work in the setting of attracting GDMSs. We again fix p € EY.
For any n > 1 and w € £ consider the weights

e = [l (m(p))I.

More precisely, for every set H C E}, we define

Dwen €M L5 L ()

(15.1) i (H) = = Los o)
ZUJEEZ} e=0sA0() ds ﬂ(ﬂ)

Define the function A : £ — R by the formula:

Aw) = —log g, (a(w))].

In particular, for every 7 € I}, say 7 € E7,

We first prove the following.

Theorem 15.1. If S is a finitely irreducible strongly regular conformal GDMS, then for
every p € EY we have that

i A
(15.2) lim Ldu, = Xsg :/ Adfisg
By

n—-+oo E,ﬁl n

Proof. The idea of the proof is to represent the integral

A
/ L,
n T

P

as the ratio of (sums of ) Perron—Frobenius operators, and then to use the spectral properties
of the operator L5,. However, there is a difficulty in such an approach which does not
appear in the case of a finite alphabet. The character of this difficulty is that although
the function A : EY — R is always Holder continuous, in the case of infinite alphabet it is
unbounded. The remedy comes from the fact that Ls,(1) is a Hélder continuous bounded
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function. Beginning the proof, we have

[ Y- Ly (S Ao o)) A £, (o al)(p)
B, N L5, (1)(p) L5, (1)(p)

IS (L, (00 0) ()

L5 (1) (p)
oo £ L) ()
L5, (1)(p)
a0 L5 U (Lss (AL 1) (p)
L5, (1)(p)

Now a straightforward calculation based on the strong regularity of the system S shows
that the Holder norms of the functions Ls5(ALj 1), @ > 0, are uniformly bounded above.

With the fact that the sequence ( sz 9)52, converges uniformly (in fact exponentially fast)
to [ gdmsgipsg for every bounded Holder continuous function g : EY — R we conclude

that the sequence (E(;S()\,Cgsll))jo-’;o converges uniformly to Ls5(Asg). So, fixing € > 0, we
can find k; > 1 such that

H‘Cfss()“cgs]l) - £55<>‘¢55)Ha <€

for all j > k;. Furthermore, there exist N > ky > k; such that for all n > N and all

j S n— k27
‘ £gls_j<)‘£§5ﬂ) - /ﬁés ()‘ths)dmﬁsl/J@s

But [ Lss(Mpsg)dmss = [ Mssdmss = [ Mdpss and M = sup{||£3 1]|o : 7 > 0} is finite.
So we can conclude that

it i) = [ Mg,

for all n > N and all k1 < 7 <n — ky. Hence

<e.

«

<(1+M)e

07

n—+00 o n n—-+00

A A
/)\dugs —(1+M)e < hminf/ 208 gy < limsup/ D08 gy < /Ad/ms + (M 4+ 1)e.
E Ex N

Letting € — 0, then concludes the proof. 0]

Now we are next going to prove versions of the Central Limit Theorem (CLT) that involve
counting. This requires some preparatory steps.
We define the functions A, : E} — R by the formulae

(15.3) An(w) = Ap(w)%
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and consider the sequence (p,, o A1), of probability distributions on R. Observe that

n=1

for every Borel set F' C R, we have that
_ gsn[Agl(F)] (p) _ ﬁgs(ﬂF o An)(p)
55 1(p) 55 1(p)
Dwemy € M Lp(AL (W)
(15.4) B ZweE;L e—0sAp(w)

Ap(w)— n
Seny € PN L (%)
> wemy €702
P

where in the third term the function A, is considered as defined on EY by the formula

An(w) _ AP(“‘”\)/E_ Xan‘

Our last counting result for attracting systems is the following.

fin © AH(F)

Theorem 15.2. If S is a strongly regular finitely irreducible D—generic attracting conformal
graph directed Markov system, then the sequence of random variables (A,)22, converges in
distribution to the normal (Gaussian) distribution Ny(o) with mean value zero and the
variance o> = P"(8s) (the latter being positive because of Remark and since the system
S is D-generic). Equivalently, the sequence (p, o A1), converges weakly to the normal
distribution No(o?). This means that for every Borel set F C R with Leb(OF) = 0, we
have

(15.5) lim (AN F)) = ! / e P12 .

F

n—-+o0o 27{'0‘

Proof. This theorem is equivalent to showing that the characteristic functions (or Fourier
transforms) of the measures j1,, 0 A converge to the characteristic function of Ny(o?), i.e.,
to the function R 3 t —» e~ /2. By the formula (6.2)) we have for every t € R that

n itAn
/eimdﬂn o A:Ll(l’) _ / eitAn(w)dMn(w) _ 65(6 )(p)
R

En 5 1(p)
LY . 1(p)
— eftXtSS \/ﬁ 0s— Vn
5 1(p)

e o it Qo5 (1) (p) + 55 4 1(p)

Yss(p) + S5 1(p)

It therefore follows from items (4), (5) and (6) following formula [6.2] that

lim 67,txdlun o A;1<Qf) = lim e—ltX(sS\/ﬁ)\gL "
n—+oo [p n—+o00 ST Un
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Denote by log A,, s belonging to some sufficiently small neighborhood of dg, the principle
branch of the logarithm of A, i.e., that determined by the requirement that log As; = 0.
Since log A\ = P(s) for real s > ~, and since P'(0) = —x;5, we therefore get that

5 2
As = exp(log \;) = exp <_X65<S —0) + %(8 —d0s)? + O(]s — 5S|3)) :

Sofors:ég—\j—%weget

Therefore,

vn

2,42
= exp (—% + O(n_l/Z)) :

. . 2t2
e—ztxasx/ﬁ)\gls_i _ e*“X‘ss‘/ﬁeXp (itXés\/ﬁ _ UT + O(nl/z))

So finally

I g, 0 AN (z) = exp (—0°t?/2) .

Jm ] edp o Ay () xp (—0*t*/2)
Thus since R 3 ¢ — exp (—0?t?/2) is the characteristic function of the Gaussian distribu-
tion Ny(0?), the proof is complete. O

16. CENTRAL LIMIT THEOREMS: ASYMPTOTIC COUNTING FUNCTIONS FOR
PArABoOLIC GDMSs

We want to extend the Central Limit Theorem for counting functions from the previous
(attracting GDNSs) subsection to the case of parabolic GDMSs. We are in the same setting
as in Section[J]i.e., S = {¢¢}ecr is an irreducible conformal parabolic GDMS. Furthermore,
the functions A,, and measures pu, have formally the same definitions as their “attracting”
counterparts given in Subsection (13| respectively by formulae and . We start
with the following analogue of Theorem [15.1]

Theorem 16.1. If S is an irreducible parabolic conformal GDMS for which

2ps
ps+1

53>

i.e the invariant measure 55 s finite (so a probability after normalization), then for every
p e Ex
. Ao
lim —d, = Adpss = Xss-
n E

n—-+oo o
A
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Proof. Since the behavior of iterates of the Perron-Frobenius operator Ls, is now (in the
parabolic context) more complicated than in the attracting case, we need to provide a
conceptually different proof than that of Theorem [15.1 We will make an essential use of
Birkhoft’s Ergodic Theorem instead.

Firstly, we fix € > 0. Then it follows from Birkhoff’s Ergodic Theorem, along with
both Lusin’s Theorem and Egorov’s Theorem, that there exists an integer N, > 1 and a
measurable set F'(¢) C EY such that mss(F(€)) > 1—e (remembering that my, is equivalent
to usg) for every 7 € F(€) and every integer n > N,

‘2" 1 Xooi(r)

— Xos| S €

For all n > N, let
Fye,n) ={we k) :wpeFle)} and Fj(en):={weE): wpe€ F(e)}
Then

Ap(w) |r, (m Os (T Os
3 (W) lgo,(m(p)>s 3 [ (m(p)s | _

n Xs n
wEF,(en) n £5$ﬂ(p) WEF,(e;n) ® ‘Cés]l(p)
| x (a,) ke
S n
(16.1) weF,(e,n) n E(ssﬂ(ﬁ)
Ap(w) |t (m(p))|s
i D Dl 175
weF,(en) ds P
A
_ p(w) el < e
n

Now given a positive number M and an arbitrary function g : EY — R for which |g| < M,
we have that

/ T s /
> B IS < ph T eI S g Y mae)

1 - LR
wEFﬁ(e,n) <p) s (p) wEFpC(e,n) wEFg(E,n)
M/
L3 1(p)
M/
S -
L5 (p)
with some appropriate constant M’ > 0. Now it follows from Theorem E of [33] that there

exists a constant (), > 1, depending on p (in fact depending only on dist(w(p),2)) such
that

Ty s (F(e,m))

€,

Q" < L) <@,
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for every integer n > 0. We therefore get

A :
16.2 L A <M .
(16.2) > glwp) o) | S M
wEFE(en) S
Since
1 n—1
0<— I <
< - Z Aoogl < M
7=0
for every n > 1, applying (16.1]) and also (16.2) for both
1 n—1
g= EZ)\OOJ and g = Xss,
=0

we get the following bound:

A
/ Ly, — Xss
E n

< / ﬁd/vbn _/
F,(en) n F,

P

<

A A
Fy(emn) T Fy(en) Fy(em)e T Fp(e;n)e
A, (w) o ( Os '(m 0s
o ¥ ML A,
we Py (o) o5 ) uehien) o5 \F
A
+ / | +
Fg(en) n
A (w) ! ( Os ' (m os
| £ ]|
wEFE(e,n) Os WEFE(en) os
<e+ MQue+ MQ,e
< (1+2M'Q,)e.

Hence, letting ¢ — 0 we obtained

A
/ _pdﬂ’n = Xés
gn N

3
and the proof is complete.

Our main theorem in this subsection is the following.

A
Xésdﬂn> + ( / —Fdptn — / Xasdun>
(e,n) Fg(en) n Fg(emn)

/ X5s d:uu
Fg(en)
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Theorem 16.2. If S is an irreducible parabolic conformal GDMS for which

2ps
ps+ 1’

i.e the invariant measure sg is finite (so a probability after normalization), then the se-
quence of random variables (Ay)5°, converges in distribution to the normal (Gaussian)
distribution No(o?®) with mean value zero and the variance o® = P!(ds) > 0. Equivalently,
the sequence (p, 0 A1), converges weakly to the normal distribution No(o?). This means

that for every Borel set F' C R with Leb(OF) = 0, we have

53>

. —1 _ 1 —t2 /202
(16.3) ngrfoo pn(A(F)) = T /Fe dt.
Proof. Using our previous notation recall that
d,LL(;S
VYss = dmg,
Then
Lss¥ss = Vs
and we can define the operator 255 : L' (uss) — L*(pss) by the formula
255 (9) = L[fas (9%ss)-
Vs
Then N
Lss(1)=1

and 255 is the Perron-Frobenius operator associated to the measure-preserving symbolic
dynamical system (o, ui54). Following Gouézel [27], for every integer ¢ > 1 we consider the

set
Zq::U U {bre: 1<k <qtU(E\Q)

be) ecE\{b}
Ape=1

and the first return map o, : Z, — Z,. Still following [27], given an integer n > 1 we define
an operator E(({;) : LY(psg) — LY (pss) by the formula

L3 (9) = 12,05, (g1z,).
Now our setting entirely fits into the hypothesis of section 2, 3 and 4 of Gouézel’s paper
[27]. In particular, Theorem 2.1 (especially its formula (2)), Theorem 3.7 and Lemma 4.4
of [27] apply to give (compare the last formula of the proof of Proposition 4.6 in [27]) for
any 7 € Zy and any t € R that
(16.4) lim |L57 (") (p) — psg (Zy)%e 72| = 0.

n—-+00

Now there exists ¢o > 0 such that p € Z,,. Fix € > 0. Take ¢ > qo sufficiently large, say,
q > q1 > qo that

(16.5) 1 — wss(Z,)° < e
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Then by ([6.3)
(16.6) lim sup Egz)(e“A”)(p) — e

n——4o00

Now define y;, analogously to (15.1)), i.e., for H C E} ;:
H(H) = 3 et

weH

Then the same calculation as (21.2) gives

/R e dpl, o AN (x) = L3 (") (p) = Ly (™) (p) + Lss (Lzee™ ) (p).

27942
Sﬁeg/%.

But
(16.7) a5 (U2 (0)] < 3o (1) (0)| = L5 (17, ),
and according to Theorem E in [33] we can write

i Lo (17)(p) = s (L) = 1 = s (1z,).

Combining this along with ((16.4)), (16.6|) and ((16.7) gives

lim sup / e"dpr, 0 A (1) — e 7| < e p 1 — s (Z,) < (14 e e
n—+o00 R
Hence

li ite g,/ o A1 — /2

i [ o 5@ =

Therefore, formula (16.3)) holds with p, replaced !,. Because of this, because the measures
iy, and pl are equivalent for all n > 1, and since, by Theorem E of [33] again, for the
sequence (i, )py,

uniformly with respect to all x € R, we finally conclude that the formula ((16.3) holds for
measures [,, n > 1. Thus the proof of Theorem [16.2]is complete. 0J

Part 4. Examples and Applications, I

17. Attracting/Expanding Conformal Dynamical Systems

In this section we deal with a class of conformal dynamical systems that are expand-
ing and we show that their, appropriately organized, inverse holomorphic branches form
conformal attracting GDMSs. We also examine in greater detail some special countable
alphabet conformal attracting GDMSs.
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17.1. Conformal Expanding Repellers. In this section we deal with conformal expand-
ing repellers. We do it by applying the theory developed in the previous sections. In fact
it suffices to work here with conformal GDMSs modeled on finite alphabets E. However,
most of the results proved in this section are entirely new.

Let us start with the the definition of a conformal expanding repeller, the primary object
of interest in this subsection.

Definition 17.1. Let U be an open subset of R?, d > 1. Let X be a compact subset of U.
Let f: U — R? be a conformal map. The map f is called a conformal expanding repeller
if the following conditions are satisfied:

1) f(X) =X,
@) /x> 1,
(3) there exists an open set V such that V C U and

X=[)f"w),

and
(4) the map f|x : X — X is topologically transitive.

Note that f is not required to be one-to-one; in fact usually it is not one-to-one. Abusing
notation slightly we frequently refer also to the set X alone as a conformal expanding
repeller. In order to use a uniform terminology we also call X the limit set of f.

Typical examples of conformal expanding repellers are provided by the following.

Proposition 17.2. If f: C — C is a rational function of degree d > 2, such that the map
f restricted to its Julia set J(f) is expanding, then J(f) is a conformal expanding repeller.

The basic concept associated with such repellers which will be used in this section is
given by the following definition.

Definition 17.3. A finite cover R = {R. : e € F'} of X is said to be a Markov partition
of the space X for the mapping T if the following conditions are satisfied.

(a) R.=IntR, foralleec F.

(b) IntR, NIntR, =0 for all a # b.

(c) IntRyN f(IntR,) # 0 = R, C f(R,) whenever a,b€ F.
The elements of a Markov partition will be called cells in the sequel. The basic theorem
about Markov partitions proved, for ex. in [74], is this.

Theorem 17.4. Any conformal expanding repeller f : X — X admits Markov partitions
of arbitrarily small diameters.
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Fix f > 0so small that for every x € X and every n > 0 there exists f." : B(f"(x),45) —
R?, a unique continuous branch of f~" sending f™(x) to . Theorem guarantees us the
existence of R = {R; : j € F'}, a Markov partition of f with all cells of diameter smaller
than 8. Having such a Markov partition R we now associate to it a finite graph directed
Markov system. The set of vertices is equal to R while the alphabet E is defined as follows.

E:={(i,j) € F x F:IntR; N f(IntR;) # 0}.

-1 .

Now, from the above for every (i,j) € E there exists a unique conformal map i

B(Rj, 3) — R? such that
fii (Bj) € Ri.

0,
Define the incidence matrix A: E x E — {0,1} by

e
We further define:

t(i,7) =7 and i(i,5) = 1.
Of course
(17.1) Sk =1{fi} :(i,5) € B}

forms a finite conformal directed Markov system, and Sz is irreducible since the map
f: X — X is transitive. Let

TR =Tsy : EY = X
be the canonical projection onto the limit set Js of the conformal GDMS & which is easily
seen to be equal to X.

Returning to the actual topic of the paper, i.e., counting inverse images and periodic
points, we fix a point £ € X, a Markov Partition

R ={R.:e€ F},
with
(17.2) ¢ € | Jmt(R.).
ecl

So, there exists a unique element e(§) € F such that £ € Int(R.)), and we fix a radius
a > 0 so small that

B(f, Oz) C Re(g).
Furthermore, there exists a unique code of &, i.e. a unique infinite word p € EY such that
mr(p) =&

Using our usual notation we set

(17.3) A(z) = log |(f"*))'(2),
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where z is an inverse image of £ under an iterate of f and the integer n(z) > 0 is uniquely
determined by the following two conditions:

(17.4) ) =¢
and
(17.5) f¥(2) # ¢ for every integer 0 < k < k().

We immediately note that if £ is not periodic then condition (17.4]) alone determines n(z)
uniquely. We further note that that if wp is a (unique by ([17.2))) coding of z (w € E7) then
A(z) = A,(w).

We denote the set of all inverse images of £ under iterates of f by f~*(&), i.e.

F© = re©.

We call z := (z,n) € X x N, a periodic pair of f (of period n) if

@) = .
We then denote x by 2 and n by n(z). Of course x is a periodic point of f (of period n).
We emphasize that we do not assume n to be a prime (least) period of x. We set

Ap(2) = log [(f*2))'(2)].

We denote by ﬁe\r( f) (respectively ﬁe\rn( f)) the set of all periodic pairs (of period n) and
by Per(f) (respectively Per,(f)) the set of all periodic points (of period n) of f.
Given T > 0 we set

me(f,T) = {z € f*(€) : Mz) < T}
and
m(f,T) = {z € Per(f) : Ap(2) < T}.

Furthermore, given a set B C X, we denote
me(f,B,T) = BNwe(f,T) and m,(f;B,T):=BnNm,(f,T).
As in the case of graph directed Markov systems we denote
Ne(f, 1) :=#me(f,T), Ne(f; B, T):=#me(f; B, T)
and

Ny(f,T) = #mp(f,T), Np(f,B,T) = #my(f,B,T).
Given a set Y C B(&, «) we denote

DE(f; B,T) = {z € f(€) N B : log diam (f"?(Y)) < T},
Ev(f; B,T) = {z € f*(€) : logdiam (f."(Y)) < T and f"7/(Y) N B #0},
and then
Dy(f:B,T) = #Dy(f:B,T) and By(f; B.T) = #&(f; B, T).



104 MARK POLLICOTT AND MARIUSZ URBANSKI

Now we record a straightforward, but basic observation which links this section to the
previous ones. It is the following.

Observation 17.5. If f : X — X is a conformal expanding repeller, then with the notation
as above

Ne(f: B,T) = N,(B.T), Dy(f:B,T)=D{p(B.T)
and
FNP(B,T) < Np(f§ B,T) < Np(BaT)
with some universal constant I' € (0, +00). In addition,
N, (f; B, T) = Np(B,T)
whenever B C |, ., Int(R.).

We call a conformal expanding repeller f : X — X D-generic if and only if the additive
group generated by the set

{\p(2) : z € Per(f)}
is not cyclic. It is immediate from the definition of the graph directed Markov system Sz
and Proposition [4.8) that we have the following.

Proposition 17.6. A conformal expanding repeller f : X — X is D—generic if and only
if the conformal graph directed Markov system Sr is D—generic.

A concept of essentially non-linear conformal expanding repellers was introduced by
Dennis Sullivan in [86], Section 3, although the terminology used there was “non-linear
C—analytic expanding system”. This was explored in detail in [74], where they were called
“non-linear conformal expanding repeller”. The additional adjective “essentially” is to in-
dicate that the system is not merely non-linear but in fact is not even conformally conjugate
to a linear system. One of many characterizations (see Chapeter 6 of [74] for these) of essen-
tially non—linear conformal expanding repellers is that there is no conformal atlas covering
X with respect to which the map f is affine, i.e. a similarity composed with a translation.
Analogously, as for graph directed Markov systems, with the help of Chapter 10 from [74],
we get the following proposition, which adds considerably to our knowledge that D—generic
conformal expanding repellers abound.

Proposition 17.7. An essentially non—linear conformal expanding repeller f: X — X is
D—generic.

As a fairly direct consequence of Theorem [5.9 and Theorem [8.1], we get the following.

Theorem 17.8. Let f : X — X be a D—generic conformal expanding repeller and let
0 :=HD(X).

(1) Let ms be the unique 0-conformal measure for f on X, which coincides with the
normalized d—dimensional Hausdorff measure on X.



ASYMPTOTIC COUNTING IN CONFORMAL DYNAMICAL SYSTEMS 105

(2) Let ps be the unique f-invariant Borel probability measure on X absolutely contin-
uous (in fact known to be equivalent) with respect to ms. It is also known to be the
unique equilibrium state of the potential X > x +— —dlog|f'(x)| € R.

(3) Let g5 := g

(4) Fiz & € X arbitrarily and Y C B(,«), an arbitrary set consisting of at least two
distinct points.

(5) Let B C X be an arbitrary Borel set such that ms(0B) = 0 (equivalently that

p1s(0B) =0).
Then
(17.6) Jim S 8 (),
(17.7) e L2
and
_ DY(f;B,T) .. Ey(f;B1T)
(178) TLHJrrloo eéT = TLlJroo 65T = Cg(Y)m(g(B),

where Ce(Y') € (0,400) is a constant depending only on the repeller f, the point § € X,
and the set Y. In addition

(17.9) K~2(6xs) 'diam®(Y) < Ce(Y) < K% (5xs) *diam’(Y),

and the function
§— Ce(Y) € (0, 400)

18 locally constant on some sufficiently small neighborhood of Y .

Proof. By making use of Observation [17.5] formulae ((17.6) and (17.8]) are immediate conse-
quences of formula of Theorem 5.9], along with Theorem and Theorem , once we
notice that the measures ms and pu, are respectively -conformal and invariant, equivalent
to mg, for both the conformal expanding repeller f : X — X and the associated conformal
GDMS Sz. In order to get formula one uses formula of Theorem , and also,
in a straightforward way, the fact that ps(OR) = 0. The fact the function § — C¢(Y) is
locally constant follows from Remark 8.5 U

From the results of Section [3], in particular the versions of the Central Limit Theorem,
proved for attracting conformal GDMSs, we directly get the following consequences for
expanding repellers.
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Theorem 17.9. Let f : X — X be a D—generic conformal expanding repeller. With
notation of Theorem there exists o> > 0 (in fact 0 = P"(0) > 0) such that if G C R
is a Lebesque measurable set with Leb(0G) = 0, then

1 n\/ _ +2
lim ps | 9zeX : o8 | (/)] = X cGy)=— /6202 dt.
n——+o00 \/ﬁ 2Qm0 G

In particular, for any o < 8

1 n\/ _ 1 B 2
lim ps zeX ra< o8 ‘(f ) (Z)‘ Xug™ <p = / e 202 (t.
n—+00 Vn 210 Jao

For every point z € X and every integer n > 0 let e(z,n) € F' be such that
f"(z) € R..

Theorem 17.10. Let f : X — X be a D-generic conformal expanding repeller. With
notation of Theorem there exists o* > 0 (in fact 0 = P"(0) > 0) such that if G C R
is a Lebesque measurable set with Leb(0G) = 0, then

-1 di S Yvezn - 1 _
lim g ({Z € X : 0g lam(fx ( (2, ))) XpusT c G}) - /e 202 (t.
G

n—-4o0o \/ﬁ 27‘(‘0‘

In particular, for any o <

— log di o Y:a zn - 1 B 2
lim s zeX ra< 08 1am(fw (Ve ))) XpssT? < B = / e~ 2.2 dt.
n—+oo \/ﬁ AQmo o

The next result is a law of the iterated logarithm.

Theorem 17.11. Let f : X — X be a D—generic conformal expanding repeller. Assume
the some notation as in Theorem [I7.8, For every e € F let Y, C R, be a set with at least
two points. There exists 0> > 0 (in fact o* := P"(0) > 0) such that for ps—a.e. z € X, we
have that

log |(f")'(2)| = Xusn
li =2
Lniiip nloglogn "

and
— log diam(f*"(Ye(z n))) — XusT fo—
1. z i = 2 .
fgiljop nloglogn "

Let £ € X be fixed. For every set H C f7"(§), define

Seen| (VG
Ser e | YR

(17.10) fin(H) =
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Theorem 17.12. If f : X — X is a conformal expanding repeller, then for every & € X,
we have that

(17.11) lim log | (/")

d,un = Xs-
oo Jron(e) n

Analogously to (15.3)) we define the functions A,, : f~"(£{) — R by the formulae
_ log |(£7)'(2)] = X
NZD

and consider the sequence (p, o A 1)°° , of probability distributions on R.
We have the following.

(17.12) An(z):

Theorem 17.13. If f : X — X is a D—generic conformal expanding repeller, then the
sequence of random variables (A,)5, converges in distribution to the normal (Gaussian)
distribution No(co) with mean value zero and the variance o* = P"(§) > 0. FEquivalently,

the sequence (p, 0 A1), converges weakly to the normal distribution No(o?). This means
that for every Borel set F' C R with Leb(0F) = 0, we have

1 2 2
(17.13) lim o (AL(F)) = / /2 gy
n—+00 27'('0' F
17.2. 1-Dimensional Attracting Conformal GDMSs and 1-Dimensional Confor-
mal Expanding Repellers. In this subsection we briefly discuss 1-Dimensional systems.
We start with the following.

Example 17.14. Theorem [5.9, Theorem and Theorem hold in particular if a
system S in one—dimensional, i.e., if X is a compact interval of R. Perhaps the the best
known and one of the most often considered, is the infinite IFS G formed by all continuous
inverse branches of the Gauss map

G(z) =z — [z].

So G consists of the maps

1
0,1 > 2+ g, = ) € N.
0,152 gola) = ——,

and with ¢ = 2 in the sense of Remark it becomes a conformal IFS. The corresponding
conformal measure m; is just Lebesgue measure Leb on [0, 1] (or somewhat more precisely
on the set of irrational numbers of [0, 1] being Jg, the limit set of the Gauss system G. The
corresponding invariant measure g1, is in this case the well-known Gauss measure defined

by

— () = . .
dmy log2 1+«
Looking at the fixed points of ¢y, g2, and g3 one immediately concludes that the Gauss

system G is D—generic. It is also known (see ex. [44]) to be strongly regular, even more, in
the terminology of [47], it is hereditarily regular. So, Theorem and do indeed
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apply to this system. Because of importance of the Gauss map we formulate below all

the above mentioned applications expressed in the language of the Gauss map itself rather

than the associated IFS G. We adopt the, naturally adjusted, notation of Subsection [17.1]
We begin with the growth estimates.

Theorem 17.15. If G : [0,1] — [0, 1] is the Gauss map, then with notation of subsection
17.1) we have the following. Fiz & € [0,1]. If B C [0,1] is a Borel set such that Leb(0B) = 0
and Y C [0,1] is any set having at least two elements, then

Ne(GsB.T) _ 1(6)

Tgrfoo T ™ Leb(B),
. N(G;B,T) 1
TEIEOO el N Z“l(B)’
and .
DS.(G: B, T ES(G: B, T
lim Dy (G B T) _ lim Ey(G:B,T) — C(Y)Leb(B),
T—+o0 el T—+o00 eT

where C(Y') € (0,400] is a constant depending only on the map G and the set Y.
We next formulate a Central Limit Theorem for diameters.

Theorem 17.16. Let G : [0,1] — [0,1] be the Gauss map. Let o* := P"(0) > 0. With the
notation of Theorem we have the following. LetY C [0,1] be a set with at least two
points. If H C R is a Lebesque measurable set with Leb(OH) = 0, then

_log diam (G="(Y)) — 2
lim i ({26[0,1] . Zlogdiam(G," (V) X‘“”eH}) _ /ewdt.
H

n——+00 \/ﬁ 2mo

In particular, for any o < 8

~log diam (G5 (Y)) — I
lim ({26[0,1] o < Zlogdian(G,7(Y)) X“l"gﬁ}): ! /e—mdt.

n—+00 Vn 2o
The law of the iterated logarithm takes the following form.

Theorem 17.17. Let G : [0,1] — [0,1] be the Gauss map. Let o := P"(0) > 0. With
notation of Theorem we have the following. Let'Y C [0,1] be a set with at least two
points. Then for Leb-a.e. z € [0,1, we have that

log [(G™)'(2)] = xun
li =2
fﬁiliop nloglogn "

and

=V 27o.

. —log diam(G;"(Y)) — xun
lim sup
n—s400 vnloglogn

Finally, we have a Central Limit Theorem for counting functions.
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Theorem 17.18. If G : [0,1] — [0, 1] is the Gauss map, then for every & € [0, 1], we have
that
; log [(G")'|
im _—

d,un = X1-
e N

Theorem 17.19. If G : [0,1] — [0,1] is the Gauss map, then the sequence of random

variables (A)%, converges in distribution to the normal (Gaussian) distribution No(o)

with mean value zero and the variance o® = P"(§) > 0. Equivalently, the sequence (ji, o

A1, converges weakly to the normal distribution No(o?). This means that for every

Borel set F C R with Leb(OF) = 0, we have

1
(17.14) lm i (ASH(F)) = / e P12 gy,
n—-+oo 2770' r
Remark 17.20. Theorem holds in particular if f : X — X is a conformal expanding
repeller with X a compact subset (a topological Cantor set) of R.

17.3. Hyperbolic (Expanding) Rational Functions of the Riemann Sphere C. One
of the most celebrated conformal expanding repellers are hyperbolic (expanding) rational
functions of the Riemann sphere C restricted to the Julia sets and already mentioned in
subsection [I7.1] For the sake of completeness and convenience of the reader, let us briefly
describe them. Let f: C — C be a rational function of degree d > 2. Let J (f) denote the
Julia sets of f and let
Crit(f) :== {ce C: f'(c) = 0}
be the set of all critical (branching) points of f. Put

PC(f) := | J £ (Crit(f))

and call it the postcritical set of f. The rational map f : C — C is said to be hyperbolic
(expanding) if the restriction f|;¢s) : J(f) — J(f) satisfies

(17.15) inf{|f'(z)|: 2 € J(f)} > 1
or, equivalently,
(17.16) 1f'(2)] > 1

for all z € J(f). Another, topological, characterization of expandingness is the following.

Fact 17.21. A rational function f : C—Cis expanding if and only if

J(f) N PC(f) = 0.

It is immediate from this characterization that all the polynomials z + 2% d > 2, are
expanding along with their small perturbations z — 2¢ + ¢; in fact expanding rational
functions are commonly believed to form a vast majority amongst all rational functions.
This is known at least for polynomials with real coefficients.
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It is known from [96] (see also Section 3 of [73]) that the only essentially linear expanding
rational functions are the maps of the form

C3zr— fy(z2)=:2€C, |d>2

In consequence the only non D-generic rational functions of the Riemann sphere C are these
functions fy. So, as an immediate consequence of Theorem [17.§], we get the following.

Theorem 17.22. Let f : C — Cbea hyperbolzc (expanding) rational function of the
Riemann sphere C not of the form C 3 z — 2% € C, |d| > 2. Let § := HD(J(f)).

(1) Let mg be the unique §-conformal measure for f on the Julia set J(f), which coin-
cides with the normalized 0—dimensional Hausdorff measure on J(f).

(2) Let us be the unique f-invariant Borel probability measure on J(f) absolutely con-
tinuous (in fact known to be equivalent) with respect to ms. It is also known to be
the unique equilibrium state of the potential J(f) > x — —dlog|f'(x)| € R.

(3) Let 5 := s,

dmyg

(4) Fixz & € J(f) arbitrary and Y C B(&,«) (where a > 0 is sufficiently small as
described in subsection , an arbitrary set consisting of at least two distinct

points.
(5) Let B C J(f) be an arbitrary Borel set such that ms(0B) = 0 (equivalently that
ps(0B) = 0).
Then
- Ne(fi B, T) _ hs(§)
(1717) TETOO edT 5X5 §<B)’
: Np(f; BaT) o 1
(17.18) AT T B
and
. Dy(f;B,T) . Ey(f;B,T) _
(17.19) A e = g = Gel(V)ms(B),

where Ce(Y) € (0,400) is a constant depending only on the repeller f, the point & € J(f),
and the set Y. In addition

(17.20) K2 (0xs) 'diam®(Y) < Ce(Y) < K% (5xs) *diam’(Y),

and the function
§— Ce(Y) € (0,+00)

is locally constant on some sufficiently small neighborhood of Y .
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Fixing a Markov partition for the map f : J(f) — J(f), as immediate consequences
of Theorems — we get the following stochastic laws, primarily Central Limit
Theorems, for the dynamical system (f, us).

We begin with a Central Limit Theorem for the expansion on orbits.

Theorem 17.23. Let f : C—Cbea hyperbolzc (expanding) rational function of the Rie-

mann sphere (C not of the form Cozr—zlc C |d| > 2. With notation of Theorem m
there exists 0® > 0 (in fact 0® = P"(0) > 0) such that if G C R is a Lebesque measurable
set with Leb(0G) = 0, then

1 nl _ 1 2
lim  ps ({z e J(f) : og‘ ") (Z)‘ Xiss T € G}) = / e 202 dt.
n—-+o0o 27TO' a

In particular, for any o < 8

1 n\/ _ B +2
n1—1>r—i{loolu{S ({Z < J(f) fas Og}(f )\</ZT_7),‘ e < B}) - 217'('0'/(1 ¢t

We next have a Central Limit Theorem for diameters.

ST

Theorem 17.24. Let f C — C bea hyperbolzc (exzpanding) rational function of the

Riemann sphere C not of the form C > z —» 24 € C, |d| > 2. Let 0 := P"(0) > 0. With
the notation of Subsection [I7.1] for every e € F let Y, C R, be a set with at least two points
and if G C R is a Lebesque measurable set with Leb(0G) = 0, then

—1 di 7n Yezn - _ 2
lim  ps <{z e J(f) : og diam (£, (Ye(zm)) — Xps c G}) _ 1 /e 207 dt.
¢

n—-+00 \/ﬁ 2no

In particular, for any o < 3

_1 d o }/;zn - 1 p 7i
lim ps ({z eJ(f) ra< 0g 1am(fx (Ye(z, ))) XpsT < 5}) - / e 202 dt.

rar) vn 2mo
The following is a version of the law of the iterated function scheme.

Theorem 17.25. Let f C — C be a hyperbolzc (expanding) rational function of the
Riemann sphere C not of the form C > z —s 24 € C, |d| > 2. Let o := P"(0) > 0. With
the notation of Subsection [17.1] for every e € F let Y, C R, be a set with at least two points
and if G C R is a Lebesque measurable set with Leb(0G) = 0, then for us—a.e. z € J(f),
we have that

log |(f™)(2)] — Xusm
li =2
fﬂigop nloglogn "

and
—logdiam(f_”(Ye(Z n))) — XusT
li < ’ =\ 2mno.
fﬂiﬁf nloglogn no
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Theorem 17.26. If f : C—Cisa hyperbolic (expanding) rational function of the Riemann
sphere C, then for every & € J(f), we have that

1 n\/
(17.21) lim / log (/)] ‘dun — xs.
nEe Jpn(e) n

Finally, we have a Central Limit Theorem for counting.

Theorem 17.27. If f : C—Cisa hyperbolzc (expanding) rational function of the Riemann
sphere C not of the form Cozr—zlc C |d| > 2, then the sequence of random variables
(A)2, converges in distribution to the normal (Gaussmn) distribution Ny(o) with mean
value zero and the variance o = P"(8) > 0. FEquivalently, the sequence (p, o A1),

converges weakly to the normal distribution Ny(o?). This means that for every Borel set
F C R with Leb(OF) = 0, we have

(17.22) lim o (A(F)) = — / /2 gy
F

n——+o00 27'(0'

18. Conformal Parabolic Dynamical Systems

Now we move onto dealing with parabolic systems. We consider first 1-dimensional
examples.

18.1. 1-Dimensional Parabolic IFSs. Theorems [11.1] [12.1| and [12.2| hold in particular
if a parabolic system S is 1-dimensional, i.e., if X is a compact interval of R. Perhaps the
best known, and one of the most often considered, are the 1-dimensional parabolic IFSs

formed by (two) continuous inverse branches of Manneville-Pomeau maps f, : [0,1] — [0, 1]
defined by the

fo(z) = 2+ 2" (mod 1),

where a > 0 is a fixed number and by the (two) continuous inverse branches of the Farey
map (for this one Remark [9.8] applies with ¢ = 2)

for all o > 0. Furthermore,

for all @ > 0, and
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while

Q0 (f) = {0}
Of course for both systems, arising from f, and f, the corresponding § number is equal to
1 and my is the Lebesgue measure Leb.

Another large class of 1-dimensional parabolic maps, actually comprising the above,
whose continuous inverse branches form a 1-dimensional parabolic GDMS can be found in
[90]. In conclusion, using also Corollary , we have the following results which apply to
all of them.

Theorem 18.1. If f : [0,1] — [0,1] is the Farey map, then with notation of subsection
we have the following. Fiz & € [0,1]. If B C [0, 1] is a Borel set such that Leb(0B) = 0

and Y C [0,1] is any set having at least two elements, then

Ne(f:B,T) _ a(e)

18.1 li Leb(B
(18.1) Am = e (B),
. N,(f;B,T 1
(182) i ST ),
and
DS(f:B. T ES(f:B. T
(18.3) Tgrf # — lim # = C(Y)Leb(B),

where C(Y) € (0,+00] is a constant depending only on the map f and the set Y. In
addition C(Y') is finite if and only if
0¢7.
Although this is not needed for our results in this monograph, it is interesting that a
simple calculation reveals that the attracting “*” IFS of Section [9] associated with the Farey
IF'S is just the Gauss IFS G described in Remark [I7.14]

As the next theorem shows, the counting situation is more complex in the case of
Manneville-Pomeau maps.

Theorem 18.2. If o > 0 and f, : [0,1] — [0, 1] is the corresponding Manneville-Pomeau
map, then with the notation of subsection we have the following. Fiz & € [0,1]. If
B C [0,1] is a Borel set such that Leb(0B) = 0 and Y C [0,1] is any set having at least
two elements, then

Ne(fa: B.T) _ ta(8)

18.4 1i Leb(B
(18.4) Am T " eb(B),
. Ny(f: B, T 1
(18.5) B orB);
and
DS (f.:B. T ES(f.:B.T
(18.6) lim Dylfai B,T) _ lim v(foi B, T) C(Y)Leb(B),
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where C(Y) € (0,+00] is a constant depending only on the map f, and the set Y. In
addition C(Y') is finite if and only if either

(1) 0¢Y or

(2) a < 1.

In general, we have the following.

Theorem 18.3. If f is generated by a parabolic Cantor set of [90], then with notation of
subsection we have the following.

Fiz € belonging to the limit set of the iterated function system associated to f. If B C X
is a Borel set such that ms(0B) =0 and Y C [0,1] is any set having at least two elements
and contained in a sufficiently small ball centered at &, then

Ne(fi B,T) _ 4s(0)

(18.7) Jlim S5 5 ma(B).
ON(fBT) 1
(18.8) M T T g B
and
- Dy(f;B,T) . E(f;B,T) _
(18.9) A g A g = GeY)ma(B),

where Ce(Y') € (0,+00] is a constant depending only on the map f, the point &, and the
set Y. In addition C¢(Y) is infinite if and only if

§€0u(f)NY and p(¢) <4

With respect to the stochastic laws, as an immediate consequence of the results in Sub-
sections and we get that the following results hold for systems considered in the
current subsection.

We begin with a Central Limit Theorem for the expansion along orbits.

Theorem 18.4. Let T be either a Manneville-Pomeau map f, with o < 1, or generally,
the map generated by a parabolic Cantor set of [90] with Qoo (T) = 0. Let J be either the
interval [0,1] (Manneville-Pomeau) or the parabolic Cantor set. Let o = P"(0) > 0. With
the notation of Subsection if G C R is a Lebesgue measurable set with Leb(0G) = 0,

then
1 T — 1 .2
lim ps|<z€J: Og|( )(Z)| Xus? e V) = /e‘zazdt.
n—+00 Vn 2no Ja

In particular, for any o < 3

1 Ty — B e
lim 15 ({ZGJ ca< Og‘( >(Z)| Xpus™ Sﬂ}) — 1 / e 202 dt.

n——+00 \/ﬁ 2Qm0

We next have a Central Limit Theorems for diameters.
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Theorem 18.5. Let T' be either a Manneville-Pomeau map f, with o < 1, or generally,
the map generated by a parabolic Cantor set of [90] with Qoo(T) = 0. Let J be either the
interval [0,1] (Manneville-Pomeau) or the parabolic Cantor set. Let o = P"(0) > 0. With
the notation of Subsection for every e € F let Y, C R. be a set with at least two
points, then if G C R is a Lebesgue measurable set with Leb(0G) = 0 we have

—log di T™Yean)) — 1 42
lim  pug ({ cJ: 08 1am( T ( (,))) XusT EG}) _ /@ 202 (t.
G

n—400 Vn 2mo

In particular, for any o < 8

— log di " Yvezn - 1 B 2
lim /L(;({wej_.ag o8 1am(x ( (’))) Xﬂ6n§6}>_ / e 22 dt.

n—-+o00 N 270

Next, we have a Central Limit Theorem for preimages.

Theorem 18.6. Let T be either a Manneville-Pomeau map f, with o < 1, or generally,
the map generated by a parabolic Cantor set of [90] with Qoo (T) = 0. Let J be either the
interval [0,1 (Manneville-Pomeau) or the parabolic Cantor set. Then for every & € J, we
have that
. log [(T™)'|
im L —

dpin = Xs-
e Jrome 1

Finally, we have a Central Limit Theorem for counting.

Theorem 18.7. Let T be either a Manneville-Pomeau map f, with o < 1, or generally,
the map generated by a parabolic Cantor set of [90] with Qoo (T) = 0. Let J be either the
interval [0,1 (Manneville-Pomeau) or the parabolic Cantor set. Then for every & € J the
sequence of random variables (A,)>2, converges in distribution to the normal (Gaussian)
distribution No(o) with mean value zero and the variance o® = P"(§) > 0. Equivalently,
the sequence (p, 0 A1) converges weakly to the normal distribution No(o?). This means

n=1

that for every Borel set F' C R with Leb(0F) = 0, we have

(18.10) lim i, (AN (F)) = ! / e 2 gt
F

n—-+oo 271'0'

18.2. Parabolic Rational Functions. Now we pass to the counting applications for par-
abolic rational functions. We recall that if f : C — C is a rational function then €€ C is
called a rationally indifferent (or just parabolic) periodic point of f if f9(£) = ¢ for some
integer ¢ > 1 and (f9)'(§) = 1. It is well known and easy to to see that then & € J(f), the
Julia set of f. The number p(§) > 1, closely related to the one of parabolic GDMSs, comes
from the Taylor series expansion of f about &:

fi(z) = z + a(z — €)PO+! L higher terms

with @ # 0. Another, more geometric, characterization of p(¢§) is that it is equal to the
number of Fatou petals for f? coming out of £. Let

py = max{p(£)},
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where the maximum is taken over the (finite) set of all rationally indifferent periodic points

of f.

The following theorem has been proved in [16].

Theorem 18.8. If f: C — C s a rational function, then the following two conditions are
equivalent.

(1) fla = J(f) = J(f) is expansive.
(2) |f'(2)| >0 for all z € J(f), i.e. J(f) contains no critical point of f.

In addition, if (a) or (b) hold then the map ]?: C — Cisnot expanding iff J(f) contains a
parabolic periodic point. Following [16] and [I7] we then call the map f : C — C parabolic.
Probably, the best known example of a parabolic rational function is the polynomial
N 1 -~
C3z+— fiu(2) ::zz+1 e C.

It has only one parabolic point, namely z = 1/2. In fact this is a fixed point of f;,, and
f1,4(1/2) = 1. It was independently proved in [89] and [96] that

The GDMS associated to f as in formula is now parabolic. The measures ms and pis
(being inconsistent but these now denote the objects on the Julia sets rather than on the
symbol space) come either from the theory of parabolic conformal GDMS of Subsection |§|,
particularly, Theorem [9.6] or can be traced back much earlier to [16], [L7] and [I]. Either
from these three papers or from Theorem [0.6] we have the following.

Theorem 18.9. If f : C—Cisa parabolic rational function then the invariant measure
W s finite if and only of

s 2ps
5= by = HD(I(f)) > =,

With the arguments parallel to those in the proof of Theorem [I7.8] as a consequence of
Theorem [11.2] Theorem and Theorem [12.2) we get the following.

Corollary 18.10. If f : C—>Cisa parabolic rational function then with notation of
Subsection [17.1], we have the following.

Fiz ¢ € J(f). If B C C is a Borel set such that ms(0B) = 0 and Y C C is any set
having at least two elements and contained in a sufficiently small ball centered at &, then

Ne(fi B,T) _ s(0)

(18.12) TEI—POO T 5xs ms(B),
(18.13) e L2
and
DS.(f;B,T ES(f;B, T
(18.14) lim Dy(f:B.1) lim E(/:B.T) = C¢(Y)ms(B),

T—+00 edT T— 400 edT
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where Ce(Y') € (0,+00] is a constant depending only on the map f, the point &, and the
set Y. In addition C¢(Y') is infinite if and only if

£ € Qu(f)NY and p(§) <.
As in the previous subsection, the stochastic laws appear as immediate consequences of

the results in Subsections [14] and [16l
We begin with a Central Limit Theorem for the expansion along orbits.

Theorem 18.11. Let f : C—Chbhea parabolic rational function of the Riemann sphere C
with § > ]%. With notation of Theorem |17.8| we have the following.

There exists o> > 0 (in fact 0 = P"(0) > 0) such that if G C R is a Lebesque measurable
set with Leb(0G) = 0, then

i ({zem ,. log\<f”>'<z>\—weg}>: L [t
n——+o0o 271'0' G

In particular, for any o <

lim 5 ({ZG J(f) :a< 10g|<fn)/(z)‘ — Xus™ Sﬁ}) _ 1 /66—;;2 di.

B

rart NLD 2ro
We next have a Central Limit Theorem for diameters.

Theorem 18.12. Let f : C—Chbhea parabolic rational function of the Riemann sphere

C with § > %ﬂ. Let 02 := P"(0) > 0. With notation of Subsection |17.1| we have the

following.
For every e € F let Y, C R, be a set with at least two points. If G C R is a Lebesgue
measurable set with Leb(0G) = 0, then

: _ —logdiam (f;"(Yeem)) = Xus 1 .
ngglooﬂd <{z € J(f) N eGp | = 271'0'/@6 202 dt.

In particular, for any a < 8

. —log diam (f, " (Ye(zm))) = Xus? 1 /5 —
1 ceJ(f):a< ’ < = 207 dt.
Jim s ({Z (f) - < NG <p 5 | €

Finally, we have a Central Limit Theorem for counting.

Theorem 18.13. If f : C—oCisa parabolic rational function of the Riemann sphere C
with 6 > z% then for every & € J(f), we have that

1 n\/
(18.15) lim / Mdun = Xs-
f=(&)

n——+oo n

8This precisely means that the invariant measure pug is finite, thus normalized to be probabilistic.
9The same as above
0The same as above
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Theorem 18.14. If f : C—Cisa parabolic rational function of the Riemann sphere
C with § > ;‘;’—;{ then the sequence of random variables (A,)5, converges in distribu-
tion to the normal (Gaussian) distribution No(o) with mean value zero and the variance
02 = P"(8) > 0. Equivalently, the sequence (u, o A1), converges weakly to the normal
distribution No(0?). This means that for every Borel set ' C R with Leb(OF) = 0, we
have

1 2 2
(18.16) lim ,(AH(F)) = /e_t 207 qt,
F

n—-4o0o 271'0'

Note that for the map f/4 : C— @,

p(f1/4) =pi1js = max{p(a) : a € Q} =1,
so by ([18.11)) we have that,
2p1/4
18.17 o> = = —
( ) p1/a = p(fi/4) OPES
Thus, Theorem [18.9| gives the following.
Theorem 18.15. For the map fi4 : C — @, Qs = 0 and the invariant measure 5 1s
finite, so a probability after normalization.

Thus, as a consequence of all in this subsection, we get the following.

Corollary 18.16. If fi4: C—Cis parabolic quadratic polynomaial
. 1 -
C3z+— fiu(2) ::,224—1 e C,

then with notation of Subseczf\ion 17.1, we have the following.

Fiz & € J(fiya). If Y C C is any set having at least two elements and contained in a
sufficiently small ball centered at &, then there exists a constant Ce(Y') € (0, +00) such that

if B C C is a Borel set with ms(0B) = 0, then
Ne(fya; B.T) — s()

(18.18) TETOO T = ms(B),
. Np(fiy; B,T) 1
(18.19) AT T gy B
and
- Dy(fysB.T) o By (fis B.T)
(18.20) TLHEOO T = TLHJrrloo T = Ce(Y)ms(B).

Remark 18.17. Because of ([18.17) all the hypotheses of Theorems [18.11] — [18.14] are
satisfied for the map f1/4 : C — C; so, in particular, all these theorems hold for the map

f =l

HThe same as above
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On the other hand if f : C — C is a parabolic rational function with HD(J(f)) < 1,

which is the case for many maps, in particular those of the form C 3 z + 24 1/z+t where
t € R or parabolic Blaschke products, then

0<1<pa
for every point a € Q(f). Thus also

Qoo (f) = QUS)
and, as an immediate consequence of Corollary [18.10 we get the following.

Corollary 18.18. If f : C — C is a parabolic rational function with HD(J(f)) < 1, then
with notation of Subsection [17.1, we have the following. R

Fiz & € J(f). If B C C is a Borel set such that ms(0B) = 0 and Y C C is any set
having at least two elements and contained in a sufficiently small ball centered at &, then

(18.21) TETOO T Sxs ms(B),
(18.22) T e LA
and
- DS(f;B,T) . Ey(f;B,T)
(18.23) A g i g = Ge(Y)me(B),

where Ce(Y') € (0,+00] is a constant depending only on the map f, the point &, and the
set Y. In addition C¢(Y') is finite if and only if

§¢Q(f)nY.

Part 5. Examples and Applications, II: Kleinian Groups

In this part we apply our counting results to some large classes of Kleinian groups. These
include all finitely generated classical Schottky groups and essentially all finitely generated
Fuchsian groups. The applications described in this section would actually fit into two
previous sections: Convex co-compact (hyperbolic) groups would fit to Section while
parabolic ones would fit to Section [18 However, because of their distinguished character
and the specific methods used to deal with them, we collect all the applications to Kleinian
groups in one separate part.
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19. Finitely Generated Classical Schottky Groups with no
Tangencies

In this section we first recall the definition of hyperbolic finitely generated classical
Schottky groups. Next, we associate to them appropriate conformal graph directed Markov
systems and then we express many concepts pertaining to such groups in the language of
such GDMSs. This enables us to apply the counting results for graph directed Markov
systems, obtained in previous parts, to such Schottky groups.

Doing this we also, on the way, associate to a finitely generated classical Schottky group
an appropriate symbolic dynamics, precisely, a countable alphabet finitely irreducible sub-
shift of finite type as defined in the first sections of our manuscript.

The use of symbolic dynamics to study Schottky groups can be viewed in the more general
framework of convex cocompact Fuchsian and Kleinian groups, which can be traced back to
the work of Hedlund. A specific instance of the coding for (non—classical) Schottky groups,
and developing the corresponding thermodynamic formalism, occurs in Bowen’s famous
1979 paper on the Hausdorff Dimension of quasi-circles [5]. A nice recent exposition of
this construction is given in the book [I2]. The coding in Bowen’s influential paper was
used, either implicitly or explicitly, in a number of subsequent works. These include both
the paper of Lalley [37], and its generalization by Quint to higher rank Schottky settings
[75]. Further development of these ideas covers the more general case of infinitely generated
Schottky groups described, for example, in [87]. In a different direction Mark Pollicott in
[70] and Dal’bo and Peigné [13] used symbolic dynamics (based on continued fractions) to
count closed geodesics on the non-compact modular surface in the context of metrics of
variable negative curvature.

Fix an integer d > 1. Fix also an integer ¢ > 2. Let
B, j==%1,£2,--- +¢q,
be open balls in R? with mutually disjoint closures. For every j =1,2,--- ,q let
g; - RI 5 RY

be a conformal self-map of the one point compactification of R? (thus making R? confor-
mally equivalent to the unit sphere S¢ C R4*!) such that

(19.1) 9;(B%;) = Bj.

The group G generated by the maps g;, j = 1,..., ¢, is called a hyperbolic classical Schottky
group; hyperbolic alluding to the lack of tangencies. If there is no danger of misunderstand-
ing, we will frequenly skip in this section the adjective “hyperbolic”, speaking simply about
Schottky groups. Note that if we set

9 =9_;
for all j = —1,..., —q then (19.1)) holds for all j = +1,+2,--- | +¢.

Denote by H4*! the space R? x (0, +00) endowed with the Poincaré metric. The Poincaré
Extension Theorem ensures that all the maps g;, j = 1, ..., ¢, uniquely extend to conformal
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self-maps of

A =R x [0, +00),

also denoted by g;, onto itself. Their restrictions to H?!, which are again also denoted
by g;, are isometries with respect to the Poincaré metric p on HY. The group generated
by these isometries in discrete, is also denoted by G, and is also called the Schottky group
generated by the maps g;, j = 1,...,q. For every j = £1,+£2,--- ,£q denote by Ej the
half-ball in H*"! with the same center and radius as those of B;. We recall the following
well-known standard fact.

Fact 19.1. The region
q
R:=H""\|J(B;UB.))
j=1
is a fundamental domain for the action of G on H%! and
q
R\ (J(B;UB.))
j=1
is a fundamental domain for the action of G on RY.
For any z € A the set of cluster points of the set Gz is contained in
q
JB,uB_,
j=1

and is independent of z. We call it the limit set of G and denote it by A(G). This set is
compact, perfect, G(A(G)) = A(G) and G acts minimally on A(G). We denote

Vi={£1,£2,...,+q¢}, E:=V xV\{(i,—i):ieV},
and introduce an incidence matrix A : £ x E' — {0,1} by declaring that

1 ifb=c
AW&W”:{O if b+ c

Furthermore, we set for all (a,b) € E, t(a,b) := b and i(a,b) := a, and
Glab) ‘= 9a|§b : B, — B,.
In this way we have associated to G the conformal graph directed Markov system
Sg:={g.:e€ E}.

By the very definition of this system, for every w € E7, say w = (a1, b1)(ag,b2) ... (an, by),
we have that

Gw = Y(a1,b1) © Y(az,b2) © -+ - © g(an,bn)lﬁbn = 0a; ©Gay ©-..0 gan|§bn : Ebn — Eal'

Of course,

MG) = Js
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and we make the following observation:
Observation 19.2. The projection map
T =mg = Ts, - B — A(G)
is a homeomorphism, in particular, a bijection.

We will now make some preparatory comments on our approach to counting problems
for the group G by means of the conformal GDMS Sg. For any element § € A(G) there
exists a unique k € V such that ¢ € B), and by Observation [19.2 a unique p € E% such
that

§=7a(p);
of course i(p) = k. Set
Ge ={go:w € E} ={g.:w € E}, t(w) =i(p) = k} = Gy.
The next obvious observation is the following.
Observation 19.3. The maps
ESSwr—g,€G and E) > w+—— g,(§) € G(§)
are both 1-to-1.

For every g = g, € G¢, w € £}, we denote
Ae(g) = —log|g' (&) = —log |9, (&) = Ap(w).
Furthermore, for every set Y C Bj, we denote
Ay (w) = — log(diam(g.,(Y)))

Now we move onto the discussion of periodic points of the system Sg along with periodic
orbits of the geodesic flow and closed geodesics on the hyperbolic manifold HY! /G,
Indeed, first of all we recall the following.

Observation 19.4. The map E; 3> w > g, € G is 1-to-1.

Now, if w € E then
Guw (Et(w)) C Et(w)
and the map g, : Et(w) — Ft(w) has a unique fixed point. Call it z,. We know that the
map g, : R? — R? has exactly one other fixed point. Call it ,. Denoting by —w the word
(=, —an—1) (=1, = 2) (=2, ——3) - - - (=2, —ou ) (—au, —a)

and marking that w = (a1, 81)(az, B2) - - - (i, B) belongs to Er, we see that —w € E and

9w = g5' as elements of the group G. Then z_,, € B_,,, # Bg,. So as g,(v_,) = 7_, we
must have y,, = x_,,. Therefore, we have the following.
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Proposition 19.5. If w € EJ then 7, the geodesic in He*Y joining vy, and z,, (oriented
fromy, to x,,), is fired by g,,, crosses the fundamental domain R, v, /G is a closed geodesic
on HY /G with length

(19.2) Ap(w) = —log |g, ()],
and simultaneously represents a periodic orbit of the geodesic flow on the unit tangent

bundle of H*™ /G with the period equal to \,(w).

On the other hand, if 7 is a closed oriented geodesic in H?*! /G then its full lift 7 in H*H!
consists of a countable union of mutually disjoint geodesics in HY"!. Then the set ¥ "R is
not empty and each of its connected components is an oriented geodesic joining two distinct
faces of R. Fix A, one of the such connected components. Let A be the full geodesic in
H*! containing A and oriented in the direction of A. Fix z € A arbitrarily. Denote by
I(7) the length of 7. Let z* be the unique point on A such that p(z*,z) = I(7) and the

segment [z, z*] is oriented in the direction of A. Since both points z and z* project to the
same element of H! /G, there exists a unique element g, o € G such that g, A(2) = 2*.
Since v has no self intersections it follows that

977A<A> = A'
Denote be xa and ya the endpoints of A labeled so that the direction of A is from ya to
xza. Let a,b be unique elements of V' such that xo € B, and ya € By. Let W € E% and
k € V be the unique elements respectively of £% and V' such that
g%A = gQA and t(@A) = ]{J,
the first equality meant in the group G. We will prove the following.
Claim 1. k= —b

Proof. By our choice of the endpoints xa and ya, ya is an attracting fixed point of
92 (953) 7t = (9o, © gx) L. Since also ya € By, we thus conclude that

(19.3) 9-1 0 (92,) "' (Bs) C B

Consequently, —k = b, and Claim 1 is proved. 0
Since also a # b as A intersects R, we thus conclude that

(19.4) Wy = Wa(—b,a) € By and gy A = g 4

In addition, by the same token as we get that gz, o gx(B,) C Ba. Thus i(0a) = a.
Consequently
WA € E;.
In addition,
Ap(Wy,a) = MGu, 2) = Mgya) = p(27, 2) = 1(7)
and
Yoy a /G =17
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Denote by C() the set of all connected components of ¥ N R. Of course we have the
following.

Observation 19.6. The function C(y) 3 A — w, A € E} is one-to-one.
We shall prove the following.

Proposition 19.7. The map E; — ~,/G is a surjection from E onto C(G), the set of
all closed oriented geodesics on HIt /G. Furthermore, if v is a closed oriented geodesic on

H /G then

Per(y) :={w € B} :1,/G =7} ={w,a € E, : A €C(7)}
and Per(vy) forms a full periodic cycle, i.e. the orbit of any element of w € Per(y) under
the map 0* : w — o(w)wy.

Proof. The first part of this proposition has already been proved. More precisely, it is
contained in Proposition and formula (19). The inclusion

lwa€E): AeC(y)} C{w e By 1,/G =1}
follows immediately from . The inclusion
Per(y) ={wa € B, : 1.,/G =7} C{w,a € B, A€C(v)}
follows from the fact that for each w € E the geodesic 7, crosses R. So formula (19.7) is
established. Now,
owyer (G, (Tw)) = G © Gun © Gotw) (T0) = 6} 0 Gu(0) = 92, ().
Similarly,
Jo(w))wy (9;11 (yW)) = 9511 (yw>'
Also, by the Chain Rule,
UYo(wyw) = Ap(o(W)wr) = Ap(w) = 1(gw)-

Therefore, noting also that g '(7.,) crosses R, we get

Yo(w)wr = 9511 (%J) and 'YU(W)M/G = 'YW/G =7
So, o(w)w; € Per(vy) and we have proved that Per(y) is a union of full periodic cycles. Let
w € Per(y) be arbitrary. Put n := |w|. Since

n—

l(’ya*j(w) ﬂR) = l('Y) - Z |A|7

1
Jj=0 AeC(y)

since all elements 7,+j(,y R are mutually disjoint, and since {7,«(,)NR : 0 < j <n—1} C
C(vy) we can conclude

{Vori@wy MR : 0< 5 <n—1} =C(v).
Along with and Observation this yields the last assertion of Proposition [19.7]
and the proof of this proposition is complete 0
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Denote by G C G the set of those elements in G for which 7g, the oriented geodesic in
H**! from its repelling fixed point y, to its attracting fixed point z, crosses the fundamental
domain R. We can now complete Observation by proving the following.

Proposition 19.8. The map E; > w +— g, € G is a bijection from E; onto G.

Proof. Observation [19.4] tells us that this map is one-to-one and Proposition [19.5] tells us
that its range is contalned in G. Thus, in order to complete the proof we have to show
that G is contained in this range. So fix g € G. Let a be the projection on He*! /G of the
geodesic 7, such that I(a) = a(g). Then g = g, A where A =+, N'R. Since wa a € E}; we
are done. 0

Propositions [19.5 and [19.7] provide a full description of closed oriented geodesics and
periodic orbits of the geodesic flow in terms of symbolic dynamics and graph directed
Markov systems. For the picture to be complete we also describe all periodic points of the
group G.

Proposition 19.9. The map
E;Bwb—><w>:{gogwog_1 g€ G}
has the following properties:
(1) (wWy={(r) & WnN(r)#0 & 7=0"(w) for some j > 0.
(2) Each element gog,0g~" has precisely two fized points g(z.,) and g(y,,). In addition
(90900971 (9(z)) = gi(ws) and (g0 g.097") (9(y)) = i (v)
(3) For each h € G\ {Id} there exists a unique periodic cycle such that
(a) there exists w € E5 in this periodic cycle and a unique g € G, depending on w,
such that h = gog,og™',
(b) for each w € Ej in this periodic cycle there exists a unique g € G, depending
on w, such that h = go g, og'.

The proof of this proposition is straightforward and we omit it.

Now we pass to the main goal of this monograph, i.e., counting estimates. We deal
with these in the symbol space and on both H**! and H*!/G. We start with appropriate
definitions.

Let B denote a Borel subset of R?. Set

me(Gi T, B) :={g € G : Ae(9) < T and g(§) € B}
me(GiT) = me(Gi T, RY) = {g € Ge : Ae(9) < T}
(G T, B) :={w € E; : \(w) =1(,) <T and 2, € B},

Tp(GiT) 1= mp(G5 T, RY) = {w € By Ap(w) = U(7) < T,
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TG T):={geG:l(vy,) <T}

Having k € V = {£j}!_, and Y C By, put

Ay(g) = —log (diam(g(Y))).
We further denote

D(GiT.B,Y) = {g € Gy : Ay(g) <T and g(¢) € B},

E(GiT,B,Y) :={g € Gy:Ay(g) <T and g(Y)N B # 0},
and
E(GiT)Y) = &G T, RYY) = {g € Gr : Ay(g9) < T}.

We denote by N¢(G;T,B), Ne(G;T), N,(G;T,B), Ny(G;T), NP(G';T)7 D¢(G;T,B,Y),
Ew(G;T,B,Y) and Ex(G;T,Y) the corresponding cardinalities.

As an immediate consequence of Theorem [5.9] Theorem [8.1] and Theorem [8.4] along with
Observation [19.3] Proposition [19.5 Observation [19.4] Observation [19.6] and Proposition
19.8| we get the following.

Theorem 19.10. Let G = (gj>;1-:1 be a hyperbolic finitely generated classical Schottky group
acting on Rd, d>2.

o Let 6 be the Poincaré exponent of G; it is known to be equal to HD(A(G)).

o Let ms, be the Patterson-Sullivan conformal measure for G on A(G).

o Let s, be the Sg-invariant measure on A(G) equivalent to ms, .

o Fizk € {£1,42,--- ,£¢} and £ € A(G) N By.
Let B C R? be a Borel set with ms,(0B) = 0 (equivalently ps.(0B) = 0) and let Y C B,

be a set having at least two distinct points. Then with some constant Ci,(Y') € (0,400), we
have that

T—+o00 edcT 5GX5G T—+oo  edGT 5GX5G

N,(G;T,B 1 N,(G;T 1
llm p( ) ) ) — H(SG (B), llm p( i ) — 7
T—+400 edcT 5@)(56, To4oo  edcT 5GX5G
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i o
P Dg(G;i:’TB’ ) Gy yma(B),
A Ek(G;g;’TB’ Y - v )ma (B),

Tlgrfm % = CR(Y).

Theorem [13.1] — Theorem for the conformal GDMS Sg, associated to the group G,
are valid without changes. Therefore, we do not repeat them here. However, we present
the appropriate versions of Theorems and as their formulations are closer to the
group . In order to get appropriate expressions in the language of the group G itself,
given £ € A(G), and an integer n > 1, we set

G¢ =19, we E}} CGe.

Furthermore, we define a probability measure u, on G¢ by setting that

ZgEH 6_(”\6(!])

—dXe(g
ZweG? e 5( )

for every set H C G¢. As an immediate consequence of Theorem we get the following.

(19.5) pn(H) =

Theorem 19.11. If G = (gj>§:1 s a hyperbolic finitely generated classical Schottky group
acting on RY, d > 2, then for every € € A(G) we have that

. e
HETOO Gg Edlun N Xué'

Now define the functions A, : G¢ — R by the formulae

As an immediate consequence of Theorem [15.2] we get the following.

Theorem 19.12. If G = <gj)?:1 s a hyperbolic finitely generated classical Schottky group

acting on RY, d > 2, then for every € € A(G) the sequence of random variables (A,)5°

n=1
converges in distribution to the normal (Gaussian) distribution Ny(o) with mean value

zero and the variance o = P5,.(0) > 0. Equivalently, the sequence (i, o A1) converges
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weakly to the normal distribution Ny(o?). This means that for every Borel set F' C R with
Leb(0F) = 0, we have

n——+o00 27‘(’0’

(19.6) lim o (A(F)) = — / /27 gy
F

20. Generalized (allowing tangencies) Classical Schottky Groups

In this section we keep to the same setting and the same notation as in Subsection [19,
except that we now do not assume that the closures B;, j = £1,--- , ¢ to be disjoint but
merely that the open balls B;, j = £1,--- , £¢q themselves are mutually disjoint.

20.1. General Schottky Groups. We also assume that if an element g € G\ {Id} has a
fixed point (call it z,) in 0B, for some j € {£1,---,+q} then g is parabolic. Then z, is a
unique fixed point of g and there exists a unique j* € {£1,---,+q} \ {j} such that

We refer to z, as a parabolic fixed point of G (and of g). We denote by p(g) > 1 its rank.
We further denote by Q(G) the set of all parabolic fixed points of G. Any such group G
is called a generalized Schottky group (GSG). If G has at least one parabolic element, it
is called a parabolic Schottky group (PSG). We associate to the group G the conformal
GDMS &g in exactly the same way as for hyperbolic (i.e. without tangencies) Schottky
groups in Section [19] Since any generalized Schottky group G is geometrically finite, the
number of conjugacy classes of parabolic elements of G and the number of orbit classes
of parabolic fixed points of G, i.e. Q(G)/G, are both finite. In consequence, we have the
following.

Observation 20.1. The conformal GDMS S¢ associated to G is attracting if G has no
parabolic fixed points and it is (finite) parabolic (in the sense of Remark if G has some
parabolic fixed points.

and

Observation 20.2. We have that:

e Each parabolic fixed point of G has a representative in

U B;nEB,
—q<j<k<q
and
[ ]
AUSe) =& n  |J B;NBy
—q<j<k<q
We define

(20.1) pe = p(Sc) = sup{p(g) : g € Q(G)}.
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So, as an immediate consequence of Theorems [I11.2] [12.1] and [12.2] in the same way as
Theorem [19.10] i.e., along with Observation [19.3] Proposition [19.5, Observation [19.4 Ob-
servation [19.6| and Proposition [19.8] we get the following.

Theorem 20.3. Let G = <gj>?:1 be a parabolic classical Schottky group acting on RY,
d>2.

o Let §¢ be the Poincaré exponent of G; which is known to be equal to HD(A(G)).
e Let mg, be the Patterson-Sullivan conformal measure for G on A(G).

o Let us, be the Sg-invariant measure on A(G) equivalent to ms, .

o Fizk € {£1,42,---,£¢} and £ € A(G) N By.

Let B C R? be a Borel set with ms,(0B) = 0 (equivalently ps.(0B) = 0) and let Y C B,
be a set having at least two distinct points. Then with some constant Cy(Y) € (0,400), we
have that

Ne(G T, B) _ ¢56(8)

m5G(B)7

Ne(G5T) s (§)

lim

edaT N G Xoe To+too  e%aT d0aXs¢ ’
N,(G;T, B 1 N,(G;T 1
hm p(Gy 9 ) — /,L(;G (B), hm p(Gy ) — 7
T—+o0 edcT (5@X5G T—+oo 6T 5GX6G
N, (G;T 1
lim p(GT)
T—+o0 edcT 5GX6G
. D{(Gv T7 Bv Y)
TETOO edaT = Ce(Y)mag(B),
i G =l s B),
Tgrfoo edeT = G(Y)

In addition, C(Y') > 0 is finite if and only if
(1) B B
Y NQu(Se) = (Y N Qu(Se) NOBy) =10

(2)

¢ > max {p(g) : zg € OBy }.
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As in the case of hyperbolic Schottky groups, there are also Central Limit Theorems
on the distribution of the preimages for parabolic Schottky groups. Theorem and
Theorem for the parabolic conformal GDMS S, associated to the group G, take the
same form. Therefore, we do not repeat them here. However, we present the appropriate
versions of Theorems and as their formulations are closer to the actual group G.
As in the case of hyperbolic groups, in order to get appropriate expressions in the language
of the group G itself, given £ € A(G), and an integer n > 1, we set

G¢ i ={g, we E)} CGe.
Furthermore, we define a probability measure u, on G¢ by setting that

ZgEH 6_(”\6(!])

—d0Xe(g
ZwEG’g e &( )

for every set H C G¢. As an immediate consequence of Theorem we get the following.

(20.2) pn(H) ==

Theorem 20.4. If G = (gj>3-:1 s a parabolic finitely generated classical Schottky group
acting on Rd, d> 2, and

2pc
pe+1
i.e the invariant measure pgs is finite (so a probability after normalization), then for every
¢ € A(G) we have that

5g>

. e
n1~1>r+noo G? gdlun N Xug'

Again as in the hyperbolic (no tangencies) case, we define the functions A, : Gy — R,
n € N, by the formulae

An(!]) _ Aﬁ(g\)/% Xn.

As an immediate consequence of Theorem [16.2] we get the following.

Theorem 20.5. If G = (gj>;1-:1 1s a parabolic finitely generated classical Schottky group
acting on Rd, d>2, and
2pc
pe+1
i.e., the invariant measure ps is finite (thus a probability measure after normalization), then
for every & € A(G) the sequence of random variables (A,)2, converges in distribution to
2

the normal (Gaussian) distribution No(o) with mean value zero and the variance o* =

gé@) > 0. FEquivalently, the sequence (u, o A 1), converges weakly to the mormal

n=1

distribution No(o?). This means that for every Borel set F C R with Leb(OF) = 0, we
have

§G>

1
lim p, (A HF)) = /e_tQ/QUZdt.
F

n—-+o0o 271'0'
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F1GURE 2. The Tangent Circles C', Cy, C5, Cy and Dual Circles K1, Ko, K3, K,

20.2. Apollonian Circle Packings. We now describe the application of Theorem to
Apollonian circle packings, as explained in the introduction. This can be formulated in the
framework we described in the introduction to this section. Some additional information
related to the subject of this section and the one following it can be found in works such
as [2], [7], [210, [23], [36], [28], [51], [56)-[58], [59], and [83]. Of course we make no claims
for this list to be even remotely complete.

Let C, Cy, C3, Cy be four distinct circles in the Euclidean (complex) plane, each of which
shares a common tangency point with each of the others. We assume that the bounded
component of the complement of one of these circles contains the bounded components
of the complements of the remaining three circles. Without loss of generality C} is this
circle enclosing the three other. We refer to such configuration of circles C4, Cs, Cs, Cy
as bounded. This name will be justified in a moment. We can now choose the new four
circles K4, Ky, K3, K, that are dual to the original four tangent circles, i.e., those circles
that pass through the three of the four possible tangent points between the initial circles
C4, Cy, Cs, Cy. We label them (uniquely) so that

for all « = 1,2, 3,4. Figure 2 depicts this construction.
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We associate to the dual circles K, Ky, K3, K4 the respective inversions ¢q, g2, g3, g4 in
these four dual circles. More precisely, if K;, ¢ = 1,2, 3,4, is a circle with center a; € C and

radius r; > 0 then we define
1 z—a

9i(2) =

Denote by By, Bz, B3 and By the open balls (disks) enclosed, respectively, by the circles
Kl, KQ, K3, K4. Let

E |Z — ailz + i

G = (91, 92, g3, 94)
be the group generated by the four inversions g1, go, g3, 94. Let T' be the subgroup of G
consisting of its all orientation preserving elements. Observe that I'is a free group generated
by three elements, for example by

Y1:=940°41, 7Y2:'=04°G2, 3= Ggs40Gs.

Now noting that the the balls
By, By, Bs; B_i:=g4(Bi1), B_y:=gu(Bs), B_3:= ga(Bs),
are mutually disjoint (see Figure 3), and that for every i = 1,2, 3:
%(Bi) = g10 9:/(Bi) = ga(Bf) = (94(By))° = BS,

we get the following.
Observation 20.6. I' = (71, 72,73) is a parabolic classical Schottky group.
In addition,

Observation 20.7. The parabolic classical Schottky group I' has six conjugacy classes of
parabolic elements whose representatives are

M Y Y MY MW VeV
with the corresponding parabolic fixed points being the only elements, respectively, of
B.NB,, BoNBy, BsNBy, B.1NB_,, B.yNB_3, B_,NDB_s.
These objects are depicted in Figure 3. We have the following.

Observation 20.8. The limit set A(I") coincides with the residual set of the Apollonian
circle packing generated by the circles C1, Cy, C3, Cy. In addition (see [6], [43], and Theo-
rem , we have the following.

(1) or = HD(A(T")) > 1,
(2) p(g) =1 for every parabolic element of T", and so
or > sup{p(9)},
where g € I' ranges of all parabolic elements of GG,

(3) Qo0 (Sr) = 0, and so ps;., the probability Sp-invariant measure on A(T'), is finite,
thus probability after normalization.
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9391 (Ch)

Ficure 3. Circles, Disks, and Generators of GG

Hence, as an immediate consequence of Theorem [20.3] we get the following.

Corollary 20.9. Let C,C5,C3,Cy be a boundeaﬂ configuration of four distinct circles in
the plane, each of which shares a common tangency point with each of the others. Let I' be
the corresponding parabolic classical Schottky group.

e Let op be the Poincaré exponent of I'; it is known to be equal to HD(A(T)).
e Let mg. be the Patterson-Sullivan conformal measure for I' on A(T").
o Let g be the probability Sr-invariant measure on A(T') equivalent to ms,..
o Firk € {+1,42,43} and ¢ € A(T') N By,.
Then for every set Y C By, having at least two distinct points there exists a constant

Cr(Y) € (0,+00) such that for every Borel set B C R with ms.(0B) = 0 (equivalently
ws.(0B) = 0), we have that

lim Nf(F;T7 B) _ ¢6F(£)m§F(B), lim Nﬁ(F7T> _ ¢6F(§)

T 5 0o eorT 5FX5F T—400 1T 5FX§F ’

2Boundedness of the configuration Cy,Cy, Cs,Cy guarantees us that the group I' is Schottky in the
sense of our previous section, and, in particular, all the numbers N¢(I'; T') and N,(I'; T') are finite.
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_ N,(;T,B) 1 _ONMT)
Tl—1>I-‘yl:lOO €6FT _ 61"X6F Mo <B>7 TEI}-]OO 66FT - 51"X(§F )
N, (I T 1
lim p(T)
T—+oo 1T Or Xsr
i L = (8)
TLHEOO edrT = G )mac (B),
TLHEOO eorT CulY)

Making use of Observation [20.8, as an immediate consequence respectively of Theo-
rem and Theorem [20.5] we get the following two theorems.

Theorem 20.10. Let C,Cy, Cs,Cy be a bounded configuration of four distinct circles in
the plane, each of which shares a common tangency point with each of the others. If I' is
the corresponding parabolic classical Schottky group, then for every & € A(I') we have that

The next theorem is a Central Limit Theorem for diameters of circles in the Apollonian
Circle Packing.

Theorem 20.11. Let C,C5, Cs,Cy be a bounded configuration of four distinct circles in
the plane, each of which shares a common tangency point with each of the others. IfT" is the
corresponding parabolic classical Schottky group, then for every & € A(I') the sequence of
random variables (A,,)>, converges in distribution to the normal (Gaussian) distribution
No(o) with mean value zero and the variance o = Pg;(é) > 0. Equivalently, the sequence

(pn © A1), converges weakly to the normal distribution Ny(o?). This means that for

every Borel set F' C R with Leb(0F) = 0, we have

1 2 2
lim i (AL(F)) = / /27 gy
F

n—-+00 271'0'

In Figure 2 we illustrate the Central Limit Theorem for the diameters in the standard
Apollonian Circle Packing in Theorem [20.5|

Now, we consider the actual counting of the circles in the Apollonian circle packing
generated by the bounded configuration of the circles C, Cy, C3 and Cy. The following
immediate observation is crucial to this goal.
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Fi1GURE 4. We plot a portion of the weighted histogram of the 6,377,292
values — log r where r is a circle of generation n = 14 for standard Apollonian
circle packing. There are 46 bins with a weighting corresponding to 7°.

Observation 20.12. The elements of A, the Apollonian circle packing generated by the
bounded configuration of the circles Cy,Cy, C3, CYy, is boundedﬁ and coincide with the
following disjoint union

{01702703704}UU 7 UAId})(g;(Cy)) U U U i U{Id})(gi 0 g;(C))V

j=1 j=li=1i#j
U{ga(Ca)} WUy (T U {Id}) (g © 94)(Ca),
and for j =1,2,3 and 7 € {1,2,3} \ {j} we have that

95(Cj) C Bj, gi095(Cy) C Bi, gaog;(Cy) C B, g509(Cy) C Bj.

For every T' > 0 and every set B C C, we denote
E(T;B):={CeA: —logdiam(C) <T and C N B # 0},
E(T) :=&(T;C)
NA(T;B) :=#E(T;B) and NA(T) :=#E(T).
As an immediate consequence of the last two formulas of Corollary and Observa-

tion [20.12| we get the following result proved in [30] (see also [56]-[58]) by entirely different
methods.

Theorem 20.13. Let Cy,Cy,C3,Cy be a bounded configuration of four distinct circles in
the plane, each of which shares a common tangency point with each of the others. Let A
be the corresponding circle packing.

L3 his justifies the name “bounded” in regards to the configuration Cy, Cs, C3, Cy.
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Let 6 = 1.30561 ... be the Hausdorff dimension of the residual set of A and let ms be the
Patterson-Sullivan measure of the corresponding parabolic classical Schottky group T'.
Then the limit

exists, is positive, and finite. Moreover, there exists a constant C' € (0,+00) such that
NA(T; B
lim —A( 57 )

T—+o0 e

for every Borel set B C C with ms(0B) = 0.

== CTTL5(B)

20.3. Apollonian Triangle. Now we consider the Apollonian triangle. Let C7, Cy, C3 be
three mutually tangent circles in the plane having mutually disjoint interiors. Let Cj4 be
the circle tangent to all the circles C7, Cs, C5 and having all of them in its interior, i.e. the
configuration C4, Cy, C3, Cy is bounded.

We look at the curvilinear triangle 7 formed by the three edges joining the three tangency
points of C, Cy, C5 and lying on these circles. The bounded collection

G={CeA:CCT}

is called the Apollonian gasket generated by the circles C4, Cy, C3. Since 9T N A(T") = 9T
has Hausdorff dimension 1, since § > 1 and since ms is a constant multiple of )—dimensional
Hausdorff measure restricted to A(I'), we have that ms(0T") = 0. Another, a more general
argument for this, would be to invoke Corollary 1.4 from [20]. Therefore, as an immediate
consequence of Theorem we get the following result, also proved by Kontorovich and
Oh in [36] (see also [56]-[58]) with entirely different methods.

Corollary 20.14. Let Cy,C5,Cs be three mutually tangent circles in the plane having
mutually disjoint interiors. Let Cy be the circle tangent to all the circles Cp,Cs, C3 and
having all of them in its interior, i.e. the configuration Cy,Cy, Cs, Cy is bounded. Let A be
the corresponding (bounded) circle packing.

Let 6 = 1.30561 ... be the Hausdorff dimension of the residual set of A and let ms be the
Patterson-Sullivan measure of the corresponding parabolic classical Schottky group T.

If T is the curvilinear triangle formed by Cy, Cy and Cs, then the limit

, NA(T;T)
T—1>r-&r-loo 66T

exists, is positive, and finite; we just count the elements of G. Moreover, there exists a
constant C' € (0,400), in fact the one of Theorem 20.13|, such that

Y Nu(T; B)
TﬁlIJrrloo e&T

for every Borel set B C T with ms(0B) = 0.
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FI1GURE 5. Apollonian Triangle

Now we will provide a somewhat different proof of Corollary [20.14] by appealing directly
to the theory of parabolic conformal IFSs and avoiding the intermediate step of parabolic
Schottky groups. Indeed, let Cy be the circle inscribed in 7 and tangent to the circles Cf,
Cs and C3. Let x1, x5 and x3 be the vertices of the curvilinear triangle T, i.e., for i = 1,2, 3,
x; is the only element of the intersection K; N Ky. Let

be the Mobius transformation fixing the point z; and mapping the other vertices x; and
xy, respectively, onto the only points of the intersections Cy N C; and Cy N Cy. Then
S= {9017 ¥25 @3}
is a parabolic IFS defined on By, z; is a parabolic fixed point of ¢;, i = 1,2, 3, and
G ={p.(Cy) : we{l,2,3}},

see Figure 5. We therefore obtain Corollary [20.14] immediately from Theorem [12.6]
Remark 20.15. In the context of limit sets, such as circle packings, there is scope for
finding error terms in the above asymptotic formulae, see ex. [39] and [60]. It could be also
done using the techniques worked out in our present manuscript. However, in the general

setting of conformal graph directed Markov systems quite delicate technical hypotheses
might well be required.

Remark 20.16. For these analytic maps it would be equally possible to work with Banach
spaces of analytic functions, rather than Holder continuous functions. This would have the
advantage that the transfer operator operator is compact (even trace class or nuclear) and
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might help to simplify some of the arguments as well as being useful in explicit numerical
computations. On the other hand, working with Holder functions allows the results to be
applied to a far greater range of examples.

Remark 20.17. In higher dimensions, we can consider the packing of the sphere S? by
mutually tangent d-spheres. The same analysis gives a corresponding asymptotic for the
diameters of spheres. In an overlapping setting and with entirely different methods this
question has been addressed in Oh’s paper [55].

21. Fuchsian Groups

We recall that a Fuchsian group I is a discrete group of orientation preserving Poincaré

isometries acting on the unit disk
D={zeC: |z| <1}
in the complex plane. A Poincaré isometry means that the Poincaré metric
|dz|
1—[z?

is preserved, equivalently the map is a holomorphic homeomorphism of the disk D onto
itself. The limit set A(T') of T is a compact perfect subset of S' =D = {z € C: |z| = 1}.
Assume that I" is finitely generated and denote a minimal (in the sense of inclusion) set
of its generators by {gj}j;qﬂ where ¢g; = gj_l. Assume that ¢ > 2, so that I' is non-
elementary. Following [84] (see also [85]) we call I' non-exceptional if at least one of the
following conditions holds (corresponding to conditions (10.1)-(10.3) from [37]):

(1) D/T is not compact;
(2) The generating set has at least 5 elements (i.e., ¢ > 5) and every non-trivial relation
has length 5; and
(3) At least 3 of the generating relations have length at least 7.
In particular, every finitely generated parabolic Fuchsian group is non-exceptional as the
condition (1) above is satisfied. In the language of conformal GDMSs, C. Series proved in

[84] (see also [66], [67] for an alternative account and [85] where a more algebraic approach
is employed) the following:

Theorem 21.1. If ' is a non-exceptional Fuchsian group then there exists a finite irre-
ducible pre-parabolic GDMS Sr with an incidence matriz A, a finite set of vertices V' and
a finite alphabet E = {£1,4+2,---  £q} such that

(1) For every j € E the corresponding element of Sr is g; : Xy — Xi(j)
(2) All sets X, v €V are closed subarcs of S*
(3) The map E% 3> wr+— g, € T is a bijection
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(4) ML) = Ts:

(5) The map 7s,. : EY — Js. = A(') is a continuous surjection and it is 1-to-1 except
at countably many points, where it is 2-to-1.

Similarly to (but not exactly) as in Section given e € F we define
I.:={ywe€E, and w; =e}.
Then having p € A} we set
r,=r
Again, similarly as in Section [19] we denote
Ao(7) = —log |7/ (mr(p))| = = log |7, (7 (w))| = Ap(w)
for every w € By (y =1, €, =T,) and
A(Y) := —log(diam(~,(Y)))

p1

ifY C Xt(pl)' Also
Ap(w) = —log |7, ()]
ifwe E;
Let B denote a Borel subset of the set S'. Set
m,(I5T,B) :={y €, : \(y) <T and y(mr(p)) € B}

T,(0;T) = me(T; T, 9" = {y €T, : A\, (7) < T}

(03T, B) :={w e B, : \p(w) =1(w) <T and x,, € B},

mp(D3T) = my (T3 T.S") = {w € B) = Aw) = I() < T},

A0, T) = {y el : I(y,) <T}

With e := p; we further denote
D,(IT,B,Y):={yeT.: A,(Y)<T and ~(rr(p)) € B},

EDT BY) = {yeTe: A(Y) T and 4(¥)N B #0},
and
E;T,Y) =& T, Y)={yel.: A(Y)<T}.

~

We denote by Ne(I'; T, B), Ne(I; T'), N, (I; T, B), N,(I; 1), N(I; T'), De(I; T, B, YY), E.(I; T, B, Y)
and FE.(I';T,Y) the corresponding cardinalities.

As immediate consequences of Theorem [5.9) Theorem [8.1] Theorem [8.4] Theorems [11.2]
12.1} and [12.2] along with Theorem and Fuchsian counterparts of Proposition [19.5]
Observation and Proposition [19.8] following from [84] and [85], we get the following.
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Theorem 21.2. Let ' = <'yj);’-:1 be a finitely generated non-exceptional Fuchsian group.

e Let or be the Poincaré exponent of I'; it is known to be equal to HD(A(T)).
o Let mg,. be the Patterson-Sullivan conformal measure for G on A(T).

o Let g, be the Sp-invariant measure on A(T") equivalent to my,..

o firec F={£1,£2--- +q} and p € EY with p; = e.
Let B C S* be a Borel set with ms.(0B) = 0 (equivalently ps.(0B) = 0) and let Y C Xy
be a set having at least two distinct points. Then with some constant Co(Y) € (0,400], we
have that

Ne(D3T, B) 45 (§) N T) _ ¢50(8)

mesp (B)a lim

T3 00 edorT o 51—‘X5r TS4oo  erT n 5FX5F ’
_N,MT,B) 1 ONMT) 1
TETOO e(SrT - 5FX5F lu(sl“(B)? Tgl}}oo eaFT - 5]_"X5F’

N,(I;T 1
lim p(:T)
T—otoo T OrXsp
D¢(I; T, B,Y)
i 2P - i 2)
. Ek(F>T7Bay) _
T1—1>r—ir-1<>o eorT Ce(y)m5r (B)>
A = Gy
In addition, Co(Y') > 0 is finite if and only if
Y NnQ(Se) =0,

wn particular if I' has no parabolic points, i.e. if it is convex co-compact.

We would like to add that the geodesic flow of a non-compact surface was coded by a
sususpension flow over countable shift in [I5] and was, in particular, used to get appropriate
counting results.

Theorem [13.1| - Theorem hold for the conformal GDMS Sr, associated to the group
I', without changes. Therefore, we do not repeat them here. However, as in Section |19
we present the appropriate versions of Theorems [15.1] and [15.2] as their formulations are
closer to the group I'. In order to get appropriate expressions in the language of the group
I' itself, given p € EY°, and an integer n > 1, we set

[ ={n:weE}CT,
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Furthermore, we define a probability measure y, on I'} by setting that

—0Ap(7)
Z’yeH € P

—0A
Zyerg e~ ()

for every set H C I'}. As an immediate consequence of Theorem we get the following.

(21.1) pn(H) ==

Theorem 21.3. IfT' = <’yj>?:1 is a finitely generated mon-exceptional convex co-compact
(i. e. without parabolic fized points) Fuchsian group, then for every p € EY we have that

A
lim Lty = Xps-

n—-+o0o FE n
Now define the functions A,, : I') — R by the formulae

An(’}/) _ Aﬁ(’V\)/ﬁ_ Xn.

As an immediate consequence of Theorem [15.2] we get the following.

Theorem 21.4. IfT' = (7]-)?:1 is a finitely generated mon-exceptional convex co-compact
(i. e. without parabolic fixed points) Fuchsian group, then for every p € EY the sequence of
random variables (A,,)2, converges in distribution to the normal (Gaussian) distribution
No(o) with mean value zero and the variance o> = P’ (8) > 0. Equivalently, the sequence

(pn © A1), converges weakly to the normal distribution Ny(o?). This means that for

every Borel set F' C R with Leb(0F) = 0, we have
1
(21.2) Hm i (ASN(F)) = / e 12 gt
n—-+o0o 271'0' r

21.1. Hecke Groups. A special class of Fuchsian parabolic (so non-exceptional) groups
are Hecke groups. These are easiest to express in the Lobachevsky model of hyper-
bolic geometry and plane rather than in the Poincaré one. The 2-dimensional hyperbolic
(Lobachevsky) plane is the set

H:={z € C:Imz > 0}

endowed with the Riemannian metric
|dz|
Imz
Given € > 0 the corresponding Hecke group is defined as follows

[oi=(z— —1/z, 2 2+ 1+e€).

This group has an elliptic element order 2 which is the map z — —1/z and one (conjugacy
class) of parabolic elements which is the map z — z 4+ 1 + €. Its (parabolic) fixed point
is co. In particular all the limit sets A(T';) are unbounded, and therefore the Hecke groups
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I'. do not really fit into the setting of our current manuscript. However, any Mobius
transformation

H:D—H

is an isometry with respect to corresponding Poincaré metrics and the map
I.oy— H'oyoH
establishes an algebraic isomorphism between I'. and the group
I.:={H 'oyoH:vyeTl.}

Of course, the conjugacy H between . and T. congregates elements of . and I'. viewed
as isometric actions. The groups [. are Fuchsian parabolic (so non-exceptional) groups
acting on D and perfectly fit into the setting of Section 21} In particular, Theorem [21.2
holds for them.
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