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Abstract

The cell cycle is an inevitable source of population heterogeneity, that cre-

ates predictable discontinuities. By summarising the canonical understanding of the

major steps within the bacterial cell cycle into a mechanistic model, the Cooper-

Helmstetter model is able to formally describe a number of population properties

such as age, DNA and volume distributions. Although this model successfully de-

scribes many different attributes of a bacterial population, it is limited to exponential

growth conditions. Outside of rigorous growth environments, bacterial populations

contain innate temporal features that make them difficult to formalise theoretically

using traditional mechanistic or equation based mathematical models. To model

bacterial population cell cycle outside of exponential growth, the single cell cycle

mechanistic model was inspected and expanded. A new individual based model

was developed and a novel method to track the growth of a population using mea-

sured optical density data alone was developed. Together these new features made

for the Heterogeneous Multiphasic Growth simulator, and were used to explore the

chromosomal DNA dynamics of bacterial populations in disparate growth regimes.

The effects of the recA1 mutation on the dynamics of the cell cycle was exam-

ined through optimisation to measured data. Furthermore, predictive modelling

of theoretical effects of gene copy number and partition noise on synthetic genetic

constructs expressed as ordinary differential equations were explored theoretically.

By explicitly simulating each member of a population using such a method, a wide

range of different aspects of bacterial population may be approached theoretically

with more ease, and throughout more diverse growth dynamics.

ix



Chapter 1

Introduction

1.1 Overview

Single celled populations are, by their very nature, heterogeneous systems. In an

effort to control for such a feature, it is standard practice to be experimentally rigor-

ous instead of embracing it as an inevitable feature of the system. For example, the

broad experimental steps of quantifying bacterial genetic or protein expressions, in-

volves sampling after long-term incubation in a constant rich media, such that each

cell in the population grows at their metabolic maxima in the given growth condi-

tions and assures that each member of the population experiences the same growth

environment (Cooper [1969]). Furthermore, it is seen as valid to compare population

quantifications if the two different populations are grown in the same environment

and at the same growth rate, since it is assumed that the same heterogeneity is

experienced by the two populations. Nevertheless, such a methodology renders the

output of a measurement the reflection of a statistical property of the predominant

molecular state of the population that cannot be used as a reliable estimation of

discrete intracellular concentrations (Lidstrom and Konopka [2010], Dubnau and

Losick [2006]). Although the origins of heterogeneity are diverse and predominantly

still to be appreciated, under these stringent experimental conditions and thanks to

decades of experimental work, some aspects of their heterogeneity may be predicted

when they depend on known biological mechanisms (Cooper [1969], Lidstrom and

Konopka [2010]). For instance, bacteria in a culture having similar growth rates

do not have coordinated cell cycles (Skarstad et al. [1985], Keasling et al. [1995])

and many genes have differential expression based on the growth cycle state of the

cell (Sobetzko et al. [2012]). Understanding sources and the dynamics of this het-

erogeneity helps to mathematically formalise such systems that are in turn used to
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predict them (Portle [2009], Stokke et al. [2012]).

The field of Engineering has adopted, with very high success, abstraction of

complex dynamical systems into simplified models, usually described as a series of

ordinary differential equations (ODE) (Mellodge and Kachroo [2008], Gershenfeld

[1999]). This has proven to be a very useful technique at obtaining insights into

the behaviour of a system without the need to physically build it, and has led to

improved design. The field of biology, since the 1990’s and the growth of “omics”

technologies, has experienced an aggressive increase in the amount and precision

of data available from a range of different biological systems. Thanks to this, the

same type of mathematical formalisation has been attempted on biological systems,

mainly through the field of systems biology, in the hopes of achieving the same

degree of predictive power (Alberghina and Westerhoff [2007]). Although the field

has accomplished a great deal, it has overall fallen short of its promises, due to

biological systems being greatly more complex and sophisticated than human en-

gineered devices (Lazebnik et al. [2003]). Where physical systems lend themselves

relatively well to this type of abstractions, biological systems have proven to be

more difficult (Lazebnik et al. [2003]). In this writer’s perspective, this emanates

from the very nature of biological systems. Where physical engineered devices are

created with subunits that perform a particular and well-defined function whose

input and output may be robustly tested, and can be connected to one another in a

controlled manner; it is nearly impossible to achieve the same level of confinement

of biological subunits. The efficiency of a particular protein can be nonlinearly and

asynchronously influenced by relatively small changes in the system, that causes a

lot of uncertainty in the validity of measurements and in turn causes imprecisions

in different ranges of conditions of simulations (Moser et al. [2012]). Whereby mod-

elling promised to help explain many aspects of biological systems that are difficult

to study, biologists find themselves to be increasing needed to measure with higher

precision such systems to satisfy the modellers needs.

Synthetic biology on the other hand tries to leverage knowledge of biological

systems by their forward design. In silico designs are implemented in vitro by in-

serting synthetic genetic materials or genetically modifying a cell to perform a novel

function using well defined wet lab biological practices (Andrianantoandro et al.

[2006]). Just as electrical devices have well defined datasheets from manufacturers

that contain schematic diagrams, connection diagrams and minima and maximum

requirements and characteristics; catalogues such as the bioBrick project attempt to

quantify genes and genetic modules in terms of their function and performance with

the same approach (Shetty et al. [2008]). Using an engineering approach to describe
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biological systems, there have been many successes such as the repressilator (Elowitz

and Leibler [2000]), the toggle-switch (Gardner et al. [2000]) to name a few. How-

ever, optimising a desired function via an engineered metabolic pathway requires

careful and labour-intensive optimization of the degree to which various genes are

expressed (Moser et al. [2012]). Even well-defined processes; such as transgene copy

number, genomic integration site, promoter strength, translational efficiency, and

culture conditions, that generate proteins of interest, all impact and are impacted

by the state of the cell in manners that is difficult to predict and typically requires

high throughput screening or evolutionary selection for such properties. Indeed,

because the plasmid vectors contain the blueprint of the system requires a scaffold

to be expressed (i.e. the cell), and its expression is influenced by the state of the

cell, it is equally important to formally describe the properties of the cell as well as

the integrated designed system. However, the cell has received little attention due

to the belief that similar stringent growth conditions across different experiments is

enough to make the population experience “steady state”, and thus can be easily

mathematically described (Abner et al. [2014]).

In this research, single cell and population “steady state” is considered to

be an oversimplification that clouds the predictive capabilities of the field. A new

growth strategy is proposed that does not assume any steady state properties of the

population and thus allows for its simulation in a wider range of growth conditions.

This is combined with a mechanistic model of the bacterial cell cycle, simulated in

parallel and heterogeneously to reflect the dynamics of measured bacterial popula-

tion. The result is a robust framework for the simulation of a bacterial populations

in a wide range of growth conditions, where any native or foreign genetic system may

be explored in silico in situations that reflect with more accuracy the heterogeneous

conditions in which they are expressed in.

1.2 Biological Background

1.2.1 The Central Dogma of the Cell Division Cycle

Escherichia coli (E. coli) has long been the focus of a large swathe of scientific

study due to its very large prevalence in nature and its ease of culture in laboratory

conditions (Blount [2015]). This motile, fast-growing, unicellular, gram-negative,

facultative anaerobe is particularly tenacious and able to grow on a multitude of

carbon sources and growth conditions (ex: aerobic and anaerobic). Today, it is the

preferred organism for genetic manipulation due to its ability to host conjugative

plasmids as well as non-conjugative plasmids. Methods for genetic manipulation,
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chromosomal and extra-chromosomal, are well established and relatively easy to use

(Shetty et al. [2008]). Furthermore, its simple circular chromosome of 4.6 million

base pairs has been sequenced and extensively studied including many knock-out

mutants that facilitate its use as the organism for genetic manipulation (Blount

[2015]).

The central dogma of the cell division cycle (in allusion to Francis Crick’s

molecular biology dogma) fundamentally defined how one thinks of the links be-

tween chromosome replication and cellular division (Haeusser and Levin [2008]). It

breaks down the events of the cell cycle into three successive, temporally defined,

physiological phases referred to as the BCD (See Figure 1.1). The C phase repre-

sents the minimal time required to replicate a single chromosome, experimentally

measured to be ≈ 40 min (Michelsen et al. [2003], Keasling et al. [1995]). Upon

termination of replication, another phase starts called the D phase, experimentally

measured to last a minimal time of ≈ 20 min. After that time has passed, the

cell divides into two daughter cells. If the doubling time of the cell is larger than

that of the C and D phases combined, then the B phase emerges as the difference

in time between the doubling time of the cell and the sum of the C and D phases

(B = τ −C +D, where τ is the doubling time of the cell). Separating the cell cycle

events in this manner laid the groundwork in defining the control mechanisms of

the cell cycle, and formalised the timing of initiation and replication that permits

the cell to have overlapping rounds and thus have a doubling time smaller than

C + D (Zaritsky [2015]). Unlike eukaryotic cells, that have very stringent phases

controlled by checkpoints and that need a complete replication event to begin mi-

tosis, bacteria are able to divide faster than the minimal recorded time to divide

a chromosome. To achieve this paradoxical condition, the cell undergoes multiple

rounds of replications, where it either inherits an already replicating chromosome or

performs multiple replication initiations within a single cell cycl. Subsequently, this

enables the cell to initiate the division process faster than if a full replication event

was required (Browning et al. [2004], Keasling et al. [1995], Abner et al. [2014]).

The development of the BCD model can be traced back to the 60’s “Copen-

hagen School” movement of study of bacterial physiology, with the motto “Look, do

not touch”, that investigated the physiological properties of bacteria under diverse

growth conditions and growth rates (Bremer et al. [1996], Fishov et al. [1995], Nei-

dhardt [1999]). During that time, examination of populations state by way of strin-

gent exponential growth conditions, uncovered many fundamentals of the physiology

and the connections between chromosome replication, cell growth and viability of

the bacterial cell (Zaritsky [2015]). Indeed, development of the “baby machine” (also
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B Phase

C Phase

D Phase C1 Phase

D Phase

C2 Phase

Figure 1.1: Illustration of the BCD model of the E. coli cell cycle. The left-hand side
figure shows the cell cycle for slow growing bacteria. The different phases of growth
are spatially well defined. The-right hand side shows the cell cycle with overlapping
rounds of replication, where the cell inherits a partially replicated chromosome that
terminates soon after division and starts the division process.

called the membrane-elution technique), enabled the generation of cell cycle coordi-

nated populations. Through such a device, the rate of replication was observed not

to be a direct linear consequence of the rate of growth (Helmstetter and Cummings

[1964], Helmstetter and Cooper [1968]). Furthermore, through the use of thymine

mutants grown in thymine limited media, the division rate was observed not to be

a direct consequence of growth rate and instead proved to have strong links with

the chromosome replication pattern (Zaritsky and Pritchard [1973]). These obser-

vations articulated the BCD model bacterial cell cycle with chromosome replication

patterns as the main mode of control of the bacterial cell cycle.

Replication Initiation

By studying the number of replication events compared to mass changes of bacteria,

Donachie [1968] derived that the mass at initiation was a function of the number

of origins of replications, where each could be assigned a constant mass regardless

of the growth rate (also called critical mass). This observation led to the theory

of a growth-independent positive-acting factor initiating chromosome replication,

whereby accumulation to a critical concentration of a factor enabled the activation

of replication of each chromosome simultaneously (Donachie [1968]). Although,

as will be seen, the true mechanism of action is more complicated, the elegance

of this formulation can be attested by the vast amount of literature and the still

highly predictive models of the bacterial cell cycle that have been derived from this

constant (Stokke et al. [2012], Abner et al. [2014], Keasling et al. [1995], Michelsen

5



et al. [2003]).

With the advent of molecular biology and knock-out experiments, a clearer

picture of the molecular actors for the replication events has been uncovered (see

Figure 1.2). All bacteria contain a highly conserved initiator protein, DnaA, that

interacts with a 9-bp recognition sequence commonly called the DnaA box (Kaguni

[2006], Messer [2002]). This protein becomes activated by ATP hydrolysis and thus

has two forms: activated, referred to as DnaA-ATP, and inactivated form called

DnaA-ADP (Messer [2002]). The E. coli chromosome contains a single origin of

replication (oriC ) that includes five successive DnaA boxes whereby, upon bind-

ing of roughly 10-20 DnaA-ATP, unwinds the downstream AT rich region of the

chromosome (Boye et al. [2000], Messer [2002], Schumann [2006]). Although the

concentration of DnaA is constant in a cell, its activated form peaks at initiation

and drops drastically thereafter by a number of mechanisms that will later be de-

scribed (see Section 1.2.1). This initial complex imports the rest of the replication

actors to form the replication bubbles, including a replicative DNA helicase (DnaB),

a helicase-loader (DnaC) for further unwinding, a DNA primase (DnaG) and DNA

polymerase III complex (Messer [2002], Schumann [2006]). The two replication bub-

bles then continue bi-directionally along the circular chromosome until they meet

at the termination sequence on the geographical opposite side of oriC (see Section

1.2.1).

Thus, the critical mass theory posed by Donachie [1968], that predicted the

existence of a positive actor on initiation, seems to have a molecular candidate in

DnaA. However, the control of chromosome replication is not solemnly controlled

by a positive actor, where many aspects of the initiation mechanism are negatively

controlled (Likhoshvai and Khlebodarova [2014]).

Eclipse Period

In the 70’s, an interesting observation was made using a thymine-limited strain of

E. coli, a nucleobase required for the DNA strand. By limiting the concentration of

thymine in the media, Zaritsky [1970] is able to extend the replication rate without

affecting the growth rate of the cell. The author noticed that after a significant time

following replication initiation, although the conditions for critical mass is achieved,

the chromosome does not initiate a new replication event. A predictable amount of

time was required before a new replication event could occur. This minimal time

between successive replication events was called the eclipse period and revealed the

existence of at least a single negative regulation for initiation. From these findinfs,

further knock-out experiments and molecular techniques have identified three nega-
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Figure 1.2: Simplified illustration of the main steps in the initiation of replication
and the actors in the eclipse period. Sub-figure I shows the oriC, composed of
five DnaA boxes and an AT rich region downstream and further down of a datA
loci. Upon the growing pool of activated DnaA (DnaA-ATP) (sub-figure II), an
increasing number of them bind to the DnaA boxes causing the unwinding of the
At rich regions. Upon unwinding the single strand DNA is coated with DnaA and
imports the replisome machinery that include helicases for further unwinding of
the DNA and polymerases for synthesising a new strand. Sub-figure III shows the
identified mechanisms that cause the eclipse period: 1) RIDA, where the protein Hda
upon binding of DNA polymerase causes the inactivation of DnaA into DnaA-ADP
(Kaguni [2006]). 2) Competitive binding of the protein SeqA to the DnaA boxes
with DnaA (Schumann [2006]). 3) Sequestration of DnaA, where upon synthesising
of a new strand past the DatA loci, a higher number of DnaA are bound to these loci
and sequestered away from the oriC DnaA boxes (Bogan and Helmstetter [1997]).
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tive regulation mechanisms: sequestration, regulatory inactivation of DnaA (RIDA)

and titration. All prevent premature re-initiation, where mutations in many of the

actors of these regulators cause the over-initiation of replication (Schumann [2006],

Cooper [2012]).

The first, sequestration of newly replicated oriC, came from the surpris-

ing observation that the origin of replication contains a high number of GATC

sequences, targets of Deoxyadenosine (dam) methyltransferase (Bogan and Helm-

stetter [1997]). These loci before and upon initiation of replication are methylated,

but as the replication progresses the addition of new unmethylated nucleotides to

the chromosome generates a hemimethylated site at the oriC. Although in vitro

these sites are methylated by dam methyltransferase within a minute, in vivo these

remain hemimethylated for up to one third of the replication time (Wilkinson [2009],

Boye et al. [2000]). It was later uncovered that the protein SeqA, that has a high

affinity to hemimethylated sites, binds specifically to the oriC in that state, and

sequesters the oriC from further initiation (Condition 2 in Figure 1.2). Although

for E. coli K-12 dam methyltransferase is not required for viability, it has still been

measured to be an important is central to the initiation of replication. Indeed, oriC

isolated in vitro from dam- cells have a greatly reduced initiation effeciency, which

may be rescued with the addition of purified WT dam methyltransferase proteins

(Lobner-Olesen et al. [2005], Smith et al. [1985]).

Next, RIDA is the main mechanism by which the active form of DnaA is

inactivated (Condition 1 in Figure 1.2) (Donachie and Blakely [2003]). The forma-

tion of a complex composed of the protein Hda (named as homologous to DnaA)

and DNA Polymerase III hydrolyses DnaA-ATP into DnaA-ADP and consequently,

this negative feedback system reduces the concentration of active DnaA in the cell

after the successful opening of oriC (Schumann [2006], Cooper [2012]). The last

identified mechanism is the titration of DnaA (Condition 3 in Figure 1.2). Bioinfor-

matics analysis of the bacterial chromosome revealed the existence of the datA locus

containing a high number of DnaA boxes (Robert [2015]). Although not essential

for viability, it is theorised that upon initiation the replication of the chromosome

once it progresses past the loci, causes the formation of four datA loci that titrate

excess DnaA proteins and restrains the possibility of another initiation event due

to transient localised high concentration of DnaA (Hansen et al. [1991]). Indeed,

adding extra copies of this loci causes the delay of initiation (Løbner-Olesen and

Skarstad [2003]).

Even if these control elements can be summarised by the existence of an

eclipse period, the consequence on initiation timing is not settled. von Freiesleben
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et al. [2000] report 25 to 30 min while Browning et al. [2004] report that the repli-

cation forks must progress past ≈ 33% of the chromosome before a new replication

event is permitted. Furthermore, many report that these three negative control ele-

ments ensure that initiation occurs once and only once per cell cycle (Robert et al.

[2014], Messer [2002], Olsson [2003], Boye et al. [2000]). Although this rule is true for

cells with a doubling rate of ≥ 60 min, defining it in this manner is misleading since

under fast growth, multiple initiation events have been observed with the formation

of multifork replication events (Trojanowski et al. [2017], Youngren et al. [2014],

Nielsen et al. [2007]), an event that is particularly visible upon nutritional shift-up

(Kepes et al. [1987], Wallden et al. [2016], Ho and Amir [2015]). More research must

be done to uncover the role of the three aformentioned negative controls have on

the pattern of chromosomal initiation.

Chromosome Elongation and DNA damage

After a successful initiation event the replication of the chromosome proceeds bi-

directionally withg a lagging and a leading strand (Cooper [2012], Streips et al.

[2002]). As previously mentioned, for fast growing cells (τ ≤ 60 min), the replica-

tion time has been measured to last ≈ 40 min and progresses at a constant rate.

Considering the size of the genome (4.6 mbp), this translates to ≈ 1000 nucleotides

per seconds (Alberts [2017]). During that replicative process, it is commonplace for

the cell to experience replication fork pause, stall or even collapses, during which

the prospect of double stranded breaks increases substantially (Schumann [2006]).

These arise not only through replicative errors, mispairing of bases, abnormal DNA

structures (such as cross-linked DNA) or from ongoing RNA transcription, but also

from outside sources such chemical or physical agents (Ultraviolet (UV) radiation)

that cause DNA damage before or during the replicative process (Streips et al.

[2002], Courcelle and Hanawalt [2003], Schumann [2006]).

Because it is paramount for all organisms to faithfully copy their genetic

material, bacterial cells have a number of mechanisms such as nucleotide-excision

repair, base-excision or mismatch excision that ensure that small errors are swiftly

repaired (Courcelle and Hanawalt [2003]). However, if the damage becomes too

extensive, the SOS repair mechanism is activated and blocks the cell cycle to repair

such deleterious incidents. The basic mechanism is the following: the LexA protein

negatively regulates transcription of at least 32 genes identified to have a range

of actions including cell cycle arrest and DNA repair (Goodman [2000]). Upon

severe DNA damage that leads to the exposure of large portions of single stranded

(ssDNA) either by exonucelolytic digestion, double stranded breaks converted to
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ssDNA by exonuclease V or replication of lesion containing templates, the protein

RecA is upregulated (Cox et al. [2000], Schumann [2006], Michel [2000]). The RecA

protein then binds to ssDNA with high affinity, whereby upon binding it activates

the autocatalytic cleavage of LexA while simultaneously maintaining the structural

integrity of the chromosome. Depressing the concentration of LexA causes the up-

regulation of the genes that it repressed (among them RecA) who repair the DNA

lesions (Cooper [2012], Schumann [2006]). As the damaged strand gets repaired,

the number of bound RecA decreases and subsequently the concentration of LexA

increases, that in turn switches off its regulon genes. For a schematic representation

of the SOS repair mechanism see Figure 1.3.

The C time, as described by the BCD model, encompasses all the replication

events that have been described here, including the extension time of the replicative

strand and the hurdles due to DNA damage and replication errors that must be

dealt with for the successful production of a sister chromosome.

Termination

To conclude a successful replication event, termination of replication and separation

of the two chromosomes must occur. Due to the bi-directionality of replication, one

may speculate it simply terminates when the two bubbles randomly meet. However,

there are stringent control mechanisms that prevent the replication forks from not

only “crashing” into each other, but obligate the two to meet precisely at a location

180◦ from the oriC on the chromosome, guided by termination regions (Ter) (Duggin

and Wilce [2005], Schumann [2006]). Ter sites, contrary to their name, are not

sequences that dissemble the replication complex, but instead act as unidirectional

barriers of replication. Indeed, these highly conserved 22 base pair sequences interact

specifically with a single Tus protein, a polar contra-helicase, that stops separation

of DNA strands in a polar manner by inhibiting the unwinding activity of DnaB

helicase (Duggin and Wilce [2005], Schumann [2006]).

Although most representations of the bacterial chromosome describe a sin-

gle termination point (terC ), there are in fact ten different Ter regions along the

chromosome, organised and orientated in such a fashion that five Ter sites block

the clockwise fork movement and the other five block the anti-clockwise fork move-

ment (Duggin and Wilce [2005], Schumann [2006]). terC is commonly referred to as

the termination site because it is the first that is met by either replication bubble.

Moreover, the reason for such a high number of Ter sites is still unknown. Bacillus

subtilis (B. subtilis) contains only two while having the same replication mechanism

(Schumann [2006]). Some argue that the others act as fail-safe in case the replication
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Figure 1.3: Simplified illustration of the main steps in the SOS repair mechanism. I)
Before activation, LexA represses the expression of the RecA protein, and the family
of SOS repair proteins. The replisome, upon reaching an error in the DNA strand,
cannot progress. II) The exposed single stranded DNA strands are coated with
RecA, whereby cause the degradation of the LexA protein. This causes a positive
feedback on the expression of RecA while expressing the SOS repair protein family
that fixes the error. Upon repair the replisome may progress and the system returns
to WT.
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fork does go past any Ter sites, while others argue that they act more like “speed

bumps”, that slow the replication fork progression (Duggin and Wilce [2005], Schu-

mann [2006]). Although, knock-out experiments demonstrate that even without Ter

sites or Tus proteins viability of the cell is not affected, some experimental evidence

links the Ter sites to the correct partitioning of chromosome at division (Duggin

and Wilce [2005]).

Chromosome Partitioning

The mechanisms of chromosome partition and division are much less known than

that of chromosome replication. To date, there are three different major theo-

ries including the train-on-track model (where the chromosome move freely inside

the cell), the replication factory model and the replicon model that propose differ-

ent ways bacterial cells have such a stringent repartition of chromosomes between

daughter cells (Schumann [2006], Haeusser and Levin [2008]). What is known from

fluorescent in situ hybridization (FISH) and fluorescent tagging microscopy gener-

ally, is that terC and the oriC have distinct patterns of localisation along the cell

(Nielsen et al. [2006], Haeusser and Levin [2008]). Chromosome initiation has been

observed to be geographically located at the mid cell (or 1/4 and 3/4 for overlapping

rounds of replication with two oriC to be initiated). This led to the development

of the replication factory model, that states that all replication activities remain at

the mid cell while the sister strands migrate to the poles of the cell (Nielsen et al.

[2006]). Fluorescent tagging of oriC shows that the two subsequently separate to

each cell pole upon termination of replication at around the same speed as the cell

elongates, and remain there for the rest of the cell cycle (a process known as nu-

cleoid exclusion) (Wu and Errington [2012]). Due to the similarity in segregational

speed and cell elongation some have proposed, through the the replicon model, that

the chromosome attaches to the membrane and progresses to each pole in a passive

manner due to cell growth (Lemon and Grossman [2001]). The Ter regions have

been observed to generally be located at the midcell during the whole process, right

until the onset of septation, where the two chromosomes migrate to the centre of

each daughter cell. The importance of the Ter sites for the correct partition of the

chromosome, may explain the existence of such high copies (Haeusser and Levin

[2008], Wang et al. [2005]).
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Cell Septation

The final step in the cell cycle is the separation of the mother cell into the daughter

cells by the division of the cell membrane (cytokinesis). The process begins with the

formation of a septal ring at the midcell by the polymerization of the tubulin-like

protein FtsZ into the Z ring (Weiss [2004], Haeusser and Levin [2008], Adams and

Errington [2009]). The correct positioning of the Z ring is guided by the MinC, MinD

and MinE proteins, who repress the formation of the septal ring on either of the cell

poles, leaving only the centre of the cell available. The mechanism of action is one

of oscillation, where an activated form of the protein (MinD-ATP) forms a complex

with MinC and assembles at a single cell pole that extends toward the midcell.

Once a MinC-minD complex is formed the MinE protein breaks the complex by

stimulating MinD ATPases activity (forming MinD-ADP). The low concentration

of MinE on the other cell pole causes the formation of the MinD-ATP and MinC

complex as the other cell pole is dissembling causing the oscillatory behaviour. This

is repeated many times during a cell cycle (with a single oscillation taking roughly

40 seconds) and keeps the inhibitory effect on FtsZ away from the mid cell (Weiss

[2004], Lutkenhaus [2007], Lutkenhaus and Addinall [1997]).

The timing and mechanism of cell constriction contains many unanswered

questions, where the Ftsz protein alone has been shown not to have sufficient con-

tractile force to separate the daughter cells (Ghosh and Sain [2008]). Some argue

that the Z ring provides a scaffold for other proteins that actually do the contrac-

tile work (Weiss [2004], Adams and Errington [2009]), while others argue that the

FtsZ is the main actor but requires the assistance of other proteins (Errington et al.

[2003], Adams and Errington [2009]). Nevertheless, a constriction force causes the

“pinching” of the cell membrane to form two daughter cells.

All these events in the chromosome partitioning and cell septation are sum-

marised by the D time in the BCD model. The formulation of a single rate for

all these cell cycle events has its origin in the lack of experimental evidence of the

molecular mechanisms of cell spetation and chromosome segregation at the time of

the model formulation. Indeed, upon discovery of a predictable time of replication

and the existence of overlapping rounds of replications, a similar predictable time

was inferred until division when compared with the doubling time (Cooper [1969]).

Numerous studies of the timing of FtsZ ring formation in the cell cycle all agree

that the termination of replication is not the trigger for the formation of the Z

ring, which happens before that, but do not exclude another part of the replication

process as the trigger (Den Blaauwen et al. [1999], Tsukanov et al. [2011]). More

experimental work is required to understand in more depth the control elements of

13



the bacterial septation and its link to the chromosome dynamics is required to be

more conclusive.

1.2.2 Population Heterogeneity and Biological Noise

Intrinsic and Extrinsic Noise

Noise in biology may be categorised as either intrinsic or extrinsic in relation to the

system of interest (Hilfinger and Paulsson [2011], Elowitz et al. [2002], Lidstrom and

Konopka [2010]). The former relates to the inherent stochasticity of biochemical re-

actions that may have large downstream noise propagation effects on the dynamics

of the system as a whole. The latter encompasses all other influences, that may in-

clude physical properties of the environment such as acidity and temperature, as well

as the biological properties such as concentrations of proteins or of required com-

pounds from upstream biochemical networks that the system depends on. Defining

what constitutes intrinsic and extrinsic noise is very much dependent on the system

of interest (Lidstrom and Konopka [2010]). For example, consider the reaction be-

tween a promoter sequence and its transcription machinery alone. One may define

the intrinsic noise as the stochasticity and efficiency in binding of the promoter to

the different members of the transcription machinery, while the concentration of

the transcription machinery and the promoter sequence may be sources of extrinsic

noises.

Perhaps the best example of the difference between the two types of noise

originates from the elegant experimental work by Elowitz et al. [2002]. The authors

incorporated two different fluorescent proteins, (cyan fluorescent protein (CFP) and

yellow fluorescent protein (YFP)), both with the same promoters on the E. coli

chromosome, on opposite sides and at equidistance from the oriC. This setup yields

three potential outcomes. At any given time either the cell expresses the two flu-

orescent proteins at equal proportion or the cell express one of the two preferably.

The former would translate to the main source of noise originating from an extrinsic

source since it is equally experienced by both genes, while the latter would translate

to an intrinsic noise source since each has different patterns of stochasticity. Using

inducible promoters with Isopropyl β -D-1-thiogalactopyranoside (IPTG) or strong

constitutive promoters, the cells expressed an equal portion of the two fluorescent

proteins. At the scope of the single cell, the fluctuations in the IPTG concentrations

from an external source or of the replication machinery is equally experienced by

both promoters. On the other hand, using a weak constitutive promoter made a cell

express a majority of either CFP or YFP, evidence of the higher levels of intrinsic
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noise, probably due to transient and stochastic effects of expression of the genes.

Balanced Growth and Population to Cell Quantification

The importance of one source of noise over another is very much context and sys-

tem specific. Indeed, as the Elowitz et al. [2002] example shows, if one measures

the fluorescent intensities at the population level, then regardless of the construct

or experimental conditions, the measurements would return the same proportion

of CFP and YFP. Thus, at the population level, all the conditions described by

the authors would be sources of intrinsic noises. Because population averages are

still commonly used as a means of studying synthetic genetic constructs (SGC) and

cell expressions in general, it may prove to be problematic when trying to draw

conclusions of their dynamics at the single cell level. As stated by Taheri-Araghi

et al. [2015], “population-averaged data and correlations are inconclusive as the av-

eraging process masks causal effects at the cellular level”. Today a large amount

of single cell quantification techniques are available including flow cytometry, single

cell microscopy and microfluidic devices, yet a large portion of the field of synthetic

biology still relies on population averages. For example, consider the use of fluo-

rescence over OD, a method that is commonly used as a characterisation technique

of synthetic genetic circuits (SGC) (Heinze [2012]). This experimental procedure

ensures that one can compare the fluorescent signal of two independent time points

or experiments, by taking into account the increase in fluorescence differences due

to cell concentration changes (Carbonell and François [2015]). From this type of ex-

periment no conclusions of the behaviour of the SGC at the single cell level can be

made, since the expression of one cell over another cannot be distinguished. With

such data, one cannot ascertain if for example the circuits behave in a bi-stable

manner or if indeed each cell expresses average values (Portle [2009]).

Furthermore, cell heterogeneity within a population is an inevitable source

of noise. Again, in the Elowitz et al. [2002] work, the authors noticed that RecA

knock-out with their two IPTG inducible constructs caused the transient expression

of one fluorescence protein preferably. As seen in Section 1.2.1, RecA is paramount

to the SOS repair mechanism, where such a mutation probably causes chromosome

heterogeneity by replication errors and DNA damage, such that it has an effect on

the expression of the two constructs on the chromosome. Another example is the

work by Tan et al. [2009], that observed non-intended bistable behaviour of their

SGC due to its metabolic load combined with innate cell metabolic heterogeneity.

To mitigate the problem, it is common practice to grow cells in balanced

growth, achievable in batch culture when the population has been growing expo-
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nentially for a substantial amount of time, or under chemostat conditions where

exponential growth may be maintained indefinitely as a result of the constant influx

of fresh media and efflux of the device (Moser et al. [2012]). Under these conditions,

the population heterogeneity has been found to be predictable, and the physiologi-

cal parameters of bacterial populations have been found to be uniquely correlated

with growth rate (Bremer et al. [1996], Bipatnath et al. [1998], Abner et al. [2014]).

However, such features of the population are rarely taken into consideration when

studying SGC dynamics.

1.3 Theoretical Background

1.3.1 Cooper-Helmstetter Model

As covered in Section 1.2.1, the BCD model of the cell cycle separates into three

distinct phases. The C phase represents the time required to complete one round of

genomic DNA replication. Once the cell completes at least one round of replication,

the D phase represents the period during which the cell then undergoes segregation

of the chromosomes into two daughter cells to complete cell division. If the doubling

time is greater than the sum of the C and D periods, then another phase arises called

the B phase, which is simply the time required for the cell to accumulate enough mass

to initiate a new round of replication. Combined with the concept of critical mass

by Donachie [1968], and the age distribution of an exponentially growing bacterial

population (Figure 1.4), the following mathematical equations formalise the main

steps of the cell cycle, thereafter referred to as the Cooper-Helmstetter (CH) model

(Abner et al. [2014], Keasling et al. [1995]).

The DNA content of a single cell at an age a assuming the timer model

(Abner et al. [2014]); where 0 ≤ a ≤ τ given that 0 is the age of a newly divided

cell and τ is the age of a cell about to divide:

Ga = Gmother +
k∑

n=0

2nGn (1.1)

where Ga is the genetic content of the cell at time a, Gmother is the DNA content

inherited from the mother cell of a newly divided bacterial cell and n is the replica-

tion fork number. This value depends on the constant integer k where 2k represents

the number of origin of replication and l where 2l represents the number of origin

of termination, both for a cell at average age:
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k =

⌊
C +D

τ

⌋
(1.2)

l =

⌊
D

τ

⌋
(1.3)

The DNA content of a cell may be calculated given the replication rate (C), segre-

gation rate (D) and doubling time (τ) (note that the sign “|” represents modulo):

Gmother = (2k − 1)
τ

C
+ 2k

(C +D) | τ
C

− (2l − 1)
τ

C
− 2l

D | τ
C

(1.4)

In equation 1.1, Gn represents the amount of DNA that is synthesized for a given

replication fork (n):

Gn =
a− dn
bn

(1.5)

Where dn is the inherited replication fork DNA content and bn is the actively repli-

cated DNA content, both calculated using the following conditions:

1. If ai(n) < 0, then dn = 0, else dn = ai(n)

2. If a ≤ ai(n), then bn = 0

Else if ai(n) + C > a > ai(n), then bn = C

Else if a ≥ ai(n), then bn = (a− dn) · C
ai(n)+C

Condition 1 above removes the length of time from the start of the initiation to

enable the calculation of time past the initiation point only. The second condition

quantifies the progress of the replication forks, where the first line considers if time

a is before the initiation point, the second if it actively is being replicated and the

last line if it is past the initiation point in question.

The age distribution of a bacterial population growing exponentially has been the-

oretically determined to follow the following probability density function (Powell

[1958]):

PD(a) = 2 ln(2)e−a ln(2), 0 ≤ a ≤ 1 (1.6)

where PD(a) is the probability for a cell to be at age a, where 0 ≤ a ≤ 1, such that

a = 0 would correspond to a newly divided cell, and a = 1 is the age at which a cell

divides. An example of the output of the Cooper-Helmstetter (CH) model can be

found written in ANSI-C in the ori.c and ori.h attached files.
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Figure 1.4: Illustration of the age (PDF of Equation 1.6) distribution of an expo-
nentially growing population assuming balanced growth.

Examples of the output of the CH model on different individual cells at

different growth rates is illustrated in Figure 1.5. The CCSIM simulation software

provides a good interactive display of the timer’s model describing the DNA content

of a cell in an interactive way (Zaritsky et al. [2011]).

The right end plots include the idealised DNA distributions for populations

of bacterial cells in balanced growth, growing at their respective growth rate. Indeed

by combining the CH model with the probability density function (PDF) describing

the theoretical age distribution of a population growing exponentially (Equation 1.6,

and illustrated in Figure 1.4), the DNA distributions of such a population can be

calculated using the doubling time (τ), C and D times alone. This strategy has been

widely used to determine the C and D parameters, for example by fitting simulated

DNA distributions to experimentally measured DNA distributions sampled from

exponentially growing cultures (Stokke et al. [2012]).
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1.3.2 Individual Based Simulation

Individual based models (IBM) (also called agent-based models (ABM)) have been

described as “simulation models that treat individuals as unique and discrete en-

tities which have at least one property in addition to age that changes during the

life cycle” (Grimm and Railsback [2005]). The forefather of this type of approach

may be attributed to cellular automata (CA), one of the first examples of a dis-

crete dynamical system (Hadeler and Müller [2017]). Where continuous equations

describe time and space in a continuous fashion, such as ordinary differential equa-

tions (ODE) and partial differential equation (PDE); with IBM style modelling one

or all aspects of the model are defined in a discrete manner, be it time, space or

state of individuals. The classic example of CA called “the game of life”, depicts

a two-dimensional grid structure where each grid contains binary states (on/off),

and given an initial state at time 0, the model is advanced following deterministic

rules based on the state of the grid and its surrounding grid state. Given a starting

position and the rules provided, a wide range of states may be achieved including

homogeneity and oscillatory behaviours (Hadeler and Müller [2017]).

There are a certain number of biological problems for which continuous mod-

els do not capture the essentials, that become highly complex making them non-

approachable problems. For example, consider Turing pattern formation of bio-

logical systems through the inhibitor-activator model, where diffusive instabilities

cause local fluctuations that form complex patterns observable in nature (Hadeler

and Müller [2017]). These have been described precisely at the macroscopic level,

using Partial differential equations (PDE). However, such a representation does not

inform of the microscopic behaviour (MacDonald et al. [2011], Kondo and Miura

[2010]). If one considers Turing patterns chemically then a continuous represen-

tation is beneficial by its elegance and ability to derive more complex states from

such a definition. If however one considers the cellular organisation of such patterns

(in perhaps a grid-like structure) and would like to know the “state” of each cell,

then such mathematical representation does not capture the necessary complexities

(Hadeler and Müller [2017]). Thus the strategy used to explore theoretically differ-

ent biological structures and functions depends on the system of interest and the

specific properties that one wishes to formalise through them (see Figure 1.6).

One important feature of the IBM technique, is the ability to infer a novel

property from a system that is not a property of the individuals that it is made of,

a behaviour sometimes referred to as self-organisation or emergence (Lints [2005],

Tack et al. [2015]). A good example of the complex emergent behaviours that this

strategy may model is the development of “boids”. In 1986 in an effort to simulate
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the flocking patterns of birds, individual entities where given the following rules in

a 3-D plane; to not move too close to its neighbours (separation), to not move too

far from its neighbours (cohesion) and to follow the same direction as its neighbours

(alignment) (Reynolds [1987]). Without explicitly defining rules on how the cohort

as a whole should behave, posing the problem in this fashion returned the same

patterns as observed in nature. Thus, for such non-linear and stochastic problems,

IBM simulation strategies have proven to be quite useful (Hellweger and Bucci

[2009]).

1.3.3 Genetic Optimisation

Genetic optimisation or genetic algorithms are a special class of evolutionary algo-

rithm inspired from natural selection, that use inheritance, mutation, selection, and

crossover; behaviours that one typically finds in biological organisms (Tamaki et al.

[1996], Kumar et al. [2010]). The basic steps in the algorithm are the following:

given a number of individuals that constitute the population (the number of indi-

viduals is preserved throughout the optimisation procedure) each has their fitness

evaluated occrding to a user defined fitness function. The best scoring individuals

within that population are selected to be preserved for the next generation. This

same population has its parameters mutated and crossover occurs between individ-

ual members to generate a new population that in turn, has its fitness evaluated

for the next generation. The process is repeated until an end condition is satisfied

(Kumar et al. [2010]). By performing the optimisation in this fashion, statistically

the best individuals are preserved throughout the optimisation process, but where

lower scoring ones are able to co-exist and generate new offspring that might have a

higher fitness. This method is good at solving problems that contain a high number

of variables, such that an exact solution is difficult to find. This type of algorithm

is classed as a global search heuristic method (Kumar et al. [2010]).

1.4 Aims

The CH model describes the major events of the cell cycle mechanistically and com-

bined with the age distribution PDF in equation 1.6, is an undeniable robust method

of simulating for population cell cycle heterogeneity. However, by its assumption of

balanced growth, it is fundamentally limited to bacterial populations grown in very

stringent and particular experimental conditions. This limits the scope and practical

usability of the CH model, since researchers are commonly faced with populations

that are not grown in such ideal environments or do not produce perfectly sigmoidal
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growth curves where balanced growth is valid.

By removing equation 1.6 one can separate the aspects of the model where

assumptions of balanced growth are required (in the CH model presented above, that

is the age distribution and thus the assumption that the single cell and population

grow exponentially) and be left with a mechanistic model that has been shown to

be a valid summary of the major steps in the cell cycle. This research aims at using

this proven single cell model, expanding it with newer findings of the cell cycle, to

develop a new individual based modelling (IBM) framework for the simulation of

population cell cycle heterogeneity.

Thereafter, this research aims are using it in combination with a newly devel-

oped growth method to simulate for populations outside of assumptions of balanced

growth. Indeed, one difficulty of modelling populations that are not in balanced

growth are its temporal features. That is, its state is a consequence of a previous

state. It is theorised that by the emergent properties of the IBM simulation method

and by using a valid cell cycle model, one needs only substitute for a description

of growth that is valid under conditions and phases of growth outside of balanced

growth to simulate for temporal features of a population. Lastly, this research aims

at using the framework as an explorative tool for the optimisation of cell cycle

related features and mutations, and for the exploration of the potential effects of

population cell cycle heterogeneity on synthetic biology.
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Chapter 2

Materials and Methods

The experimental procedures were developped by Dr. Joshua Leonard and Dr. An-

drew H. Scarpelli. All experiments for TOP10 cells were performed at Northwestern

University in Chicago by Dr. Andrew H. Scarpelli and were used in the following

publication du Lac et al. [2016]. All experiments involving WT cells were generated

for this work at the University of Warwick by me.

2.1 Media and Bacterial Strains

Two different strains were used in this study. The MG1655 K-12 (F λ ilvG rfb-

50 rph-1) and the TOP10 strain (F- mcrA δ(mrr-hsdRMS-mcrBC) φ r-hsdRMS-

δ r-hsd nupG recA1 araD139 δ(ara-leu)7697 galE15 galK16 rpsL(StrR) endA1 λ-)

(Invitrogen).

The bacterium were grown in LB and glucose supplemented M9: Lysogeny Broth

Lennox (LB) media composition (Diluted in 1L H2O and 0.2 µm filtered):

10g Tryptone

5g Yeast extract

5g NaCl

M9 salts solution (with pH adjusted with NaOH to 7.2):

47.748722349 ·mM MgSO4

22.044883 ·mM KH2PO4

8.555784 ·mM NaCl

18.695083193 ·mM NH4Cl

M9 media for MG1655:
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47.748722349 ·mM MgSO4

22.044883 ·mM KH2PO4

20% (w/v) Glucose

For TOP10 cells the M9 media composition was the following M9 salts with 0.4%

glycerol, 0.2% casamino acids, and 1 mM thiamine hydrochloride. For the TOP10

cells, streptomycin was used at a final concentration of 50 µg ·mL−1. All cultures

were incubated at 37◦C with various shaking rates in batch culture (23 and 230

rotations per minute (rpm)), incubated from overnight cultures grown overnight

in LB. For TOP10 cells in 3mL with appropriate levels of streptomycin and for

MG1655 in 250mL shake flasks with 100mL of media for both the overnight and

experimental cultures.

2.1.1 Chromosomal DNA Quantification

For K-12 bacterial strain examination by flow cytometry, 500µL of sampled cultures

were fixed with 500µL pre-chilled high grade ethanol at -20 ◦C in 1.5µL eppendorf

tubes. The samples where then centrifuged at 5000rcf for 5min and the supernatant

was disregarded. The pellet was re-suspended in 500µL of a solution of ice-chilled

0.2µm filtered PBS with 12µg ·mL−1 of Hoechst 33342 stain for an OD600 of 0.01.

The solution was then left on ice in the dark for a minimum of 30 minutes and

a maximum of 8 hours until flow cytometry analysis. The samples were analysed

using the flow cytometer BD LSRFortessa (FSC: 646, SSC: 243, UV53: 498) with

a maximum of 100000 cells and a minimum of 10000 cells. The experiments were

performed three times, and the results presented are the sum of these three runs.

For TOP10 bacterial strains examination by flow cytometry, sampled cultures

were diluted 5 µL culture into 200 µL ice-chilled PBS. For OD600 under 0.5, 1

µL culture into 200 µL ice-chilled PBS. For OD600 between 0.5 and 2.0, and 0.5

µL culture into 200 µL ice-chilled PBS. For OD600 over 2.0, 800 µL ice chilled

ethanol was then added to this solution. The solution was gently shaken, and then

immediately spun with a microcentrifuge for 5 minutes at 1000xg. Ethanol solution

was discarded and pelleted cells were then re-suspended in 500 µL chilled PBS, and

spun a second time in the same conditions. Cells were then re-suspended in 500 µL

chilled PBS with 1 µL ·mL−1 DAPI, and immediately placed in a 4 ◦C refrigerator

until samples could be run on the flow cytometer. Cells were run on the flow within

24 hours of collection. Samples were analysed on an LSR II (BD)). A minimum of

2000 individual cells (typically out of 25000 events) was analysed per sample.
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2.2 Computational Methods and Packages

2.2.1 Normalising Fluorescence to Genomic Content

Flow cytometry returns the relative fluorescence intensities (in this work) of stained

bacterial chromosomes. These are a collection of discrete values that are typically

binned into histograms, for easier human interpretation, by most analysis software.

To convert these fluorescence intensities to their DNA content equivalents, one must

use a standard population with known DNA content as a means of comparison

(Michelsen et al. [2003]). To generate such standard the bacterial population was

grown for a prolonged amount of time in batch culture, such that the population copy

number falls to integer amounts of chromosome (Michelsen et al. [2003], Skarstad

and Boye [1993b]).

Furthermore, to enable the quantitative comparison between simulated and

measured DNA distribution, the simulated population must be convoluted to re-

flect experimentally measured DNA distributions. Indeed, the latter reflect the

accumulated experimental variation associated with both labelling (e.g., variable

efficiencies of fixation, permeabilisation, and binding of DAPI or Hoechst to DNA)

and detection (e.g., variability in the signal measured by flow cytometry given a

fixed quantity of DAPI or Hoechst in a single sample). Therefore, even if a popula-

tion of cells included a discrete and uniform amount of DNA per cell, the measured

DNA distribution would be “spread” by these other sources of variability, and this

spread must be quantified. It has been observed that the spread increases linearly

with increasing fluorescence intensity (Michelsen et al. [2003]).

From these fits, two important parameters were calculated. From the means

of the Gaussians, a calibration curve for relating discrete numbers of chromosomes

to flow cytometry channels was generated (levels of DAPI or Hoechst associated flu-

orescence per cell). Notably, the standard deviation of the peaks followed the same

pattern observed in previous reports (Michelsen et al. [2003]) (Figure 2.1); with an

increasing amount of DNA, the standard deviation of the peaks increases linearly.

This makes sense physically, since when more DAPI or Hoechst labelling takes place,

the variability associated with both labelling and quantifying cell-associated DAPI

or Hoechst would also increase. These parameters enabled the conversion of sim-

ulated DNA distributions to simulated measured DNA distributions by Gaussian

blurring. Due to the potential for variation in measured fluorescence values between

flow cytometry runs performed on different days, the calibration was repeated on

each day. For K-12 cells, each peak may be interpreted as having 2n, where n is

an integer for each subsequent peak, while for TOP10 each peak corresponds to an
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Figure 2.1: Example of computational deconvolution of DNA distributions using
the ipf11 MATLAB package to identify a sum of Gaussian distributions that is
maximally consistent with the measured data. The scatter plot in blue in the top
subplot represents TOP10 DNA distribution measured by flow cytometry with DAPI
stained chromosomes after 24h incubation in LB at a shaking rate of 230 rpm. The
global, sum of Gaussian fit, is in red and the individual Gaussian fits to the peaks
are in green. Because recA1 expresses the aberrant phenotype (see Setion 3.2.2),
each peak corresponds to an increase each peak, from left to right, is interpreted
to have 1, 2, 3, 4 chromosome copy numbers. The bottom left hand subplot plots
the chromosome copy number to the fluorescent channels, and fit to a first order
polynomial function. The bottom right hand subplot is the width of the fit Gaussian
(standard deviation) plotted against the fluorescent channels, also fit with a first
order polynomial function. These former functional form is used to convert measured
DNA distributions to their chromosome equivalents, while the latter is used to
convolute the simulated data to enable the quantitative comparison between the
two. Taken from du Lac et al. [2016].
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increase in one chromosome equivalent.

2.2.2 Computational Packages

All up to date files may be found here: https://github.com/Melclic/HMG.

Files returned by the flow cytometer (fcs), were analysed using the python

package fcsparser (version 0.1.4) with python3. For the spline fitting procedure,

a script written in python3 using the following packages: the spline method was

imported from the Wave Analysis for Fatigue and Oceanography (WAFO) package

(version 0.3.1), the scientific packages numpy (version 1.13.1) and scipy (version

0.19.1). For noise convolution and nonlinear regression scipy packages signal and

stats were used. For sensitivity analysis the Sensitivity Analysis Library in Python

(SAlib) package was used (version 1.1.0). For computing the sum of Gaussians the

interactive peak finding package (ipf11) in MATLAB was used (version 12.1).

For the cell cycle model, the program was written in ANSI-C including C

Standard Libraries: stdbool.h for boolean data types, time.h for measuring execution

time, string.h for string handling, math.h for basic mathematical operations, stdio.h

for input/output of files and stdlib.h for memory management. For solving ODE

in ANSI-C, the GNU Scientific Library (GSL) was used including: gsl matrix.h for

allocating and creating matrices, gsl odeiv2.h for defining the ODE system, and

gsl errno.h for error handling. To compile the model the gcc compiler was used

(version 6.3.0).

For the genetic optimisation, the Distributed Evolutionary Algorithms (DEAP)

package (version 1.0.2) was used with the AeMuLambda algorithm, with a Gaus-

sian mutation function (µ = 0.0, σ = 0.005, probability = 0.75) in combination

with the native python3 package multiprocessing (version 2.6). For the generation

of Sobol sequences for the start of the optimisation procedure the python sobol seq

(version 0.1.2) packages was used. To connect to the ANSI-C model, the native

ctypes (version 2.5) was used.

All were compiled and ran on a Linux Ubuntu (64bit) 24-core Intel(R)

Xeon(R) CPU E5-2620 v2 @ 2.10 GHz, 250GB RAM.
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Chapter 3

Model Development

This chapter reviews the currently available formal mathematical descriptions of the

cell cycle at the single cell and population levels, and examines the implications of

this theory and the experimental evidence to support it. Three different aspects of

the cell cycle, and their interplay, are studied:

1. Growth dynamics: the observed single cell growth dynamics and the mathe-

matical formalisation that ensued. The growth dynamics of bacterial popula-

tions are also considered, how population growth is modelled and how single

cell growth links to the population growth heterogeneity. A new strategy

of tracing bacterial growth based on the conversion of OD readings to their

volumetric equivalent is introduced.

2. Chromosome dynamics: Modelling of chromosome dynamics for a bacterial

cell population is discussed. How and when the cells trigger the initiation of

their chromosomes, the speed at which they replicate, and the consequence on

the DNA content for the cell and population.

3. Cell division: This process and its consequences are considered fundamental

and yet arguably the least well understood aspect of the cell cycle. Particular

focus is given to how single cell division patterns influences the volume and

DNA homoeostasis of the population.

The three distinct physiological features of the cell cycle; cell growth, chro-

mosome replication and cell division are intimately linked, and thus in the litera-

ture they are often described as one unbroken chain of events (Abner et al. [2014],

Keasling et al. [1995], Zaritsky et al. [2012]). However as will be explored, there

is no consensus as to the degree of their interdependence. More research is re-

quired to understand the degree and pattern of control each distinct physiological
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feature has over another, and the molecular links between them. The current way

one describes either qualitatively or quantitatively the links between cell growth,

chromosome replication and cell division is largely due to the fundamental work of

Cooper, Helmsteer and Bremer (CH model; see Section 1.3.1) in developing the first

rational mathematical description of how a population maintains volume homeosta-

sis and its link to the DNA dynamics at the single cell and the population levels

(Bremer et al. [1996], Abner et al. [2014], Keasling et al. [1995]). However, their

model was built using population data that do not truly represent individual cells,

and can thus obscure the understanding of the behaviour of individual cells within

that population (Osella and Lagomarsino [2013]). Recently, with the availability of

more precise single cell data, various features of this model have been able to be

revisited (Basan et al. [2015], Sauls et al. [2016], Harris and Theriot [2016], Wallden

et al. [2016]). Here, many of the assumptions of the CH model will be re-investigated.

3.1 Growth Dynamics

3.1.1 Single Cell Growth Dynamics

From experimental data, sometimes dating back as far as the 1970’s, of time series

confocal microscopy measuring the bacterial length or volume over the cell cycle,

two different theories have been proposed as to the dynamics of single cell growth:

linear growth and exponential growth (Pruitt and Kamau [2007], Abner et al. [2014],

Reshes et al. [2008]). Abner et al. [2014]’s theoretical investigation of single cell

growth reports a maximum difference of 6% between the two. Because of this small

difference, high single cell resolution of cell volume or length is required to be able

to distinguish with certainty if the exponential or linear growth law applies to single

cell growth. More accurate techniques, such as electron microscopy, usually requires

the fixation of the cell and the use of treatments that might inadvertently alter the

size of the cell (Kemp et al. [1993a]). More non-invasive methods include confocal

microscopy, light microscopy and flow cytometry (Reshes et al. [2008], Kemp et al.

[1993b]). Below are the two mathematical expressions of the exponential and linear

elongation laws:

Vexp = V0 · e
ln2
τ
·a = V0 · eµ·a (3.1)

Vlin = V0 +
V0

τ
· a (3.2)

where Vexp is the exponential functional form and Vlin is the linear function form.
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τ is the doubling time, and µ is the instantaneous growth rate that are related in

the following manner: µ = ln2
τ . V0 is the volume at birth and a is the age of the cell

where 0 ≤ a ≤ τ .

More recent experimental quantifications of single cell growth using high

powered confocal microscopes combined with microfluidic baby-machine devices,

suggests that cells grow exponentially (Wang et al. [2010], Taheri-Araghi et al.

[2015]). However, most of these studies rely on the length increase of a cell over

time and overlook the width, assuming that the latter does not change significantly

over a single doubling event when under the same growth conditions (Wang et al.

[2010], Taheri-Araghi et al. [2015], Campos et al. [2014]). Because of its rod shape,

a change in its width would have a greater impact on the volume compared to an

equal change in its length, and is thus a dangerous assumption (Reshes et al. [2008]).

There is a significant body of work that demonstrates that the width of a cell does

indeed change over time (Cooper [1988], Zheng et al. [2016], Trueba and Woldringh

[1980], Wang et al. [2010]). While some suggest that cell width decreases during

the cell cycle (Trueba and Woldringh [1980]), investigation of the single cell data

from Wang et al. [2010] (Figure 3.1) suggests that the width of the cell increases

≈ 0.13µm over a single cell cycle. The former uses invasive experimental techniques

that may influence the measurement outcomes, while the latter uses a non-invasive

experimental method but generates such noisy width data that in both cases it is

difficult to be conclusive. Because more experimental work is required to be able

to distinguish between linear and exponential growth, this model will assume that

individual bacterial cells grow exponentially.
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3.1.2 Balanced Growth

With the advent of the chemostat in the 1920’s, microbiologists were able to grow

bacteria in the same conditions and in the same physiological state for a prolonged

amount of time, something only achievable in batch culture with continuous reinoc-

ulation (Dalgaard et al. [1994]). This enabled the precise reproducible examinations

of the effects of defined media on bacterial population physiology and uncovered that

without external modifications of the environment, bacterial cells as a population

did not change over time (Dalgaard et al. [1994]). Under such growth conditions the

population is said to be in “steady state”, a thermodynamic term used to describe

a particular condition of a system that is in equilibrium, where its variables are

constant in time (Fishov et al. [1995]). This idealised formalisation for a system is

commonly applied in many different fields including engineering, economics, biol-

ogy, chemistry and others; typically as an approximation method since it offers solid

mathematical simplifications (Gonze [2013]).

To apply the same approach to bacterial populations it is necessary to in-

troduce the concepts of extensive and intensive variables. The former are variables

that describes a physical quantity of a system that depends on its size (for single

cells that includes volume, mass, DNA and protein for example) or describes the

quantity of a system (Akerlund et al. [1995]). The latter are all variables that do

not depend on the size of the system (for example temperature, molarity and distri-

butions of extensive parameters), where regardless of how many times the system is

subdivided the variable does not change (Fishov et al. [1995], Akerlund et al. [1995]).

Thus, when considering a growing population of single celled organisms, balanced

growth is defined as a situation where “every extensive property of the... system

increases by the same factor over a time interval” (Campbell [1957]), while steady

state growth applies only if both intensive and extensive parameters are independent

with time (Fishov et al. [1995]). True steady state for a bacterial population is only

achievable under growth in a chemostat, with a constant efflux of bacterial cells in

combination with a constant influx of fresh media (Wallden et al. [2015]). Hence, a

population that is in steady state is automatically in balanced growth, but the op-

posite is not necessarily true. Often when describing populations, steady state and

balanced growth are used alongside each other, when they describe two distinct con-

ditions. Furthermore, populations can be in steady state or balanced growth while

single cells, because of discontinuous processes such as chromosome replication that

make the extensive parameters of the cell change with time, are not in balanced

growth themselves, let alone steady state (Akerlund et al. [1995]). In conclusion, it

is perfectly valid to consider a bacterial population to be in balanced growth while
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the cells that constitute it are not. However, this top down approach studying the

state of individuals within a population makes it difficult to deduce the dynamics

and state of the individuals within a population if experimental procedures are not

stringent enough to assure that all the above conditions are met.

From the early works on chemostats, perhaps one of the most fundamental

findings ensued. Given two populations in two different environmental conditions

but with the same growth rate during balanced growth, the measured macromolec-

ular composition of these populations was found to be identical (Herbert [1961],

Bremer et al. [1996]). This includes all extensive parameters of the model, that are

observed to be unchanging for a population under conditions of balanced growth,

and depend only on the doubling time (τ) of the population (unless of course the

rate limiting factor for the growth of the population was an antibiotic that impeded

the ability of the bacterial cell to replicate its chromosome) (Michelsen et al. [2003],

Bremer et al. [1996]). If every cell in a population experiences the same growth

limiting factor, and is considered to be in balanced growth, it may be stated that

this population contains these following features. First the population is atemporal,

that is, regardless of when a sample is taken in a population that is in balanced

growth, every feature of the population should be the same. This implies the sec-

ond feature of the population, that it contains a predictable heterogeneity that may

be quantified deterministically (Keasling et al. [1995], Bremer et al. [1996], Allman

et al. [1991]). This is indeed how the CH model is framed and why it has such

powerful predictive tool for population cell cycle dynamics. However, as previously

mentioned, the experimental requirements to achieve a condition where the CH

model is valid can be difficult to acheive equally in batch culture as in chemostat

(Moser et al. [2012]).

3.1.3 Modelling Population Growth

Continuous Growth Models

A typical bacterial growth curve includes the lag phase, log phase, stationary phase

and death phase; all representing distinct conditions (Schumann [2006]). There are

many mathematical formulations that describe the growth of bacterial populations,

including but not limited are the models of Gompertz, Roberts, Monod, Logistic,

Malthusian and different derivations of the latter. It is important to explain their

characteristics and implied assumptions when one fits these growth models to infer

growth parameters from OD growth curves such as growth rate, lag time and other

features.
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The first and most distinguished model of population growth is the Malthu-

sian growth model, that proposes that a population grows at a rate which is propor-

tional to its size at any given time (Pruitt and Kamau [2007]). This simple exponen-

tial growth theory suggests that growth is constant since the population experiences

no growth limiting factors. It is thus only valid under early batch culture with an

abundance of media and space or in continuous cultures (Pruitt and Kamau [2007]).

Given that all populations experience limiting factors that inevitably restrict their

growth, the logistic model introduced a growth limiting factor dictated by the avail-

ability of a single essential factor (Pruitt and Kamau [2007], Tsoularis and Wallace

[2002]). This is usually defined as the carrying capacity of the environment of the

culture, which in the case of bacterial cells, would be dictated by conditions such as

available resources for growth, physical space, toxicity, etc... However, the logistic

functional form of growth does not explain the phenomenon of lag phase, and im-

plies that the growth of a population contains an inflexion point of maximal growth,

a concept which is disputed (Buchanan et al. [1997]). To overcome the limitations

of the Logistic equation, other models of population growth, such those proposed

by Gompertz, Richard and Bertalanffy have emerged, largely in order to describe

the lag phase quantitatively that are all children of the logistic function and thus if

the Malthusian growth model. The Monod equation is another type of population

growth model that uses the same functional form as the Michaelis-Menten equation,

describing enzyme kinetics, to summarise population growth by the consumption of

a single substrate (Zwietering et al. [1990], Buchanan et al. [1997]). This growth

model is widely used since it fits growth curves relatively well, while at the same

time providing an empirical explanation of the relationship between growth and

substrate availability (Monod [1949]).

It is sometimes difficult to identify one continuous growth model over another

given even a typical sigmoidal shaped growth curve. The R package grofit is a good

illustration of this problem for biologists, where the software provides the possibility

of iterating through a series of models and lets the user select the model that best

fits the growth curve input (Kahm et al. [2010]). Furthermore, it is often the case

that growth curves, especially from OD data, do not follow the traditional lag, log,

and stationary phases. For example, cells grown with complex media experience

diauxic growth (meaning double growth) reflecting the consumption of the easiest

accessible carbon source before the consumption of a more difficult one (Loomis

and Magasanik [1967]). Overall, continuous growth models may contain parameters

that, by not being tied to any specific biological function, lack mechanistic meaning

(Horowitz et al. [2010], Zhang et al. [2006]).
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Injection Growth: A Condition Independent Growth Strategy

Because of the lack of consensus, the non-mechanistic parameters of some continuous

growth models, and the many growth conditions that lead to non-classical sigmoidal

growth curves; a new method of tracing population growth was developped that

better suits the need for a reliable fit to OD data (Buchanan et al. [1997]).

Given that the growth curve reflects changes in population volume in the

following manner (Zhang et al. [2006]):

Vmean =
∆N

∆t
(3.3)

whereN is the number of bacterial cells, Vmean depends on the scale of the considered

time, t, the instantaneous growth is the first order derivative of that change where

(Zhang et al. [2006]):

Vinst =
dN

dt
= lim

∆t→0
(
∆N

∆t
) = µ (3.4)

Since Vmean and dN
dt both represent volumetric changes, it is theorised that the

instantaneous growth rate (Vinst) may be used outside of balanced growth (Zhang

et al. [2006]). Indeed, previously Vinst was used to deduce the state of a population

only under assumption of steady state (Abner et al. [2014], Keasling et al. [1995]).

Thus, instead of using a model and curve fit measured OD data to inform us of the

dynamics of the population, growth curves were fitted using a spline interpolation

method (Zhang et al. [2006]). This procedure ensures that the growth curve reflects

precisely the measured data, regardless of its shape while making no assumption as

to the dynamics of the population.

Often, OD data is used as a means of calculating the concentration of bacteria

in a sample where the agreed estimate is that an OD of 1 gives 8.0 · 108 · mL−1

cells (Sezonov et al. [2007]). OD is simply a quantitative measure of the refracted

light through a sample, and as a consequence such an estimate is known to be an

oversimplification (Volkmer and Heinemann [2011]). Certainly an increase in the

cell numbers in a sample would lead to an increase in diffracted light from the OD

reader. However, consider two bacterial samples, one with cells that are grown in

a rich media such as LB and another that is grown in a poor media such as M9

at equal cell concentration. Cells growing in a richer media are larger than the

ones grown in a poorer media (Volkmer and Heinemann [2011]). Thus, at equal

concentrations, the LB sample would return a larger OD than that of the M9 grown

population. From this knowledge, Volkmer and Heinemann [2011] measured the OD

of bacterial cells grown in a wide range of conditions with different growth rates,
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and normalised the measurements to the concentration of cells per mL through flow

cytometry analysis. The authors calculated the following constant:

3.6 µL ·OD−1
600 ·mL

−1 (3.5)

where the total volumetric concentration of a sample is unchanging regardless of the

growth conditions of the sample and the size of the cells. The authors conclude that

OD quantitatively reflects the total volume of a sample and not the cell concentratio

ot the volume of a single cells that populate such populations.

From the constant in Equation 3.5, one can calculate the change in volume

of a population (per mL−1) for a given time step:

Va+dt = 3.6 ∗OD600(a+ dt)− 3.6 ∗OD600(a) (3.6)

where OD600 is the measured OD at wavelength of 600 nm and a is the current

simulation time and dt the time step. Using Equation 3.6, one can convert an OD

growth curve to its volumetric equivalents and calculate the volumetric increase

given any arbitrary defined time step. By distributing these volumetric changes

among members of a population the growth of a population is simulated, where

regardless of the conditions of growth the simulated population would always follow

the input or measured volumetric changes. Indeed, simulating individual cells as

growing exponentially, as Keasling et al. [1995], is contingent on assuming that the

population is in balanced growth, while this method of growth may be used whatever

the dynamics of growth for a given population.

The question remains as to the relevance of this growth strategy to reflect

individual cell growth within a population. Indeed, knowledge of total volumetric

increase of a population does not reveal the true growth dynamics of individuals

within that population, since these volumetric changes must be distributed among

the members of the population. Experimental evidence suggests that single cells

grown in a range of different environments express growth rate distributions that

collapse onto their respective mean in a Gaussian manner (Wallden et al. [2015],

Taheri-Araghi et al. [2015]). However, not all members of a bacterial population

grow within the mean. The most striking example is the phenomenon of persis-

tence, where a subpopulation within an isogeneic culture grows at a reduced growth

rate as a means to resist the occurrence of environmental changes (Balaban et al.

[2004], Patra and Klumpp [2013]). Other related states include the non-culturable

state, the stationary phase contact-dependent inhibition and filamentation (Llorens

et al. [2010]). And indeed, it seems that this heterogeneity in conditions of growth
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is fundamental in the way bacterial cells adapt so quickly to changing environments.

Furthermore, cell death is an inevitable factor that, considering that the cell’s mem-

brane is not compromised, would also influence the distribution of recorded volumet-

ric changes from Equation 3.6 to the individual members of a population (Stewart

et al. [2005]). Because it is unclear what are the exact conditions and the rate of

occurance of these bacterial states, it will be assumed that they play a small role in

affecting total volumetric changes of a population as they grow in disparate growth

regimes.

Since growth rate has been measured to be normally distributed, both under

assuption of exponential growth and using the injection method, growth rate distri-

butions are assumed to be normally distributed. For exponential growth, each cell

sees its doubling time (τ) assigned at birth and division, randomly selected from a

normally distruted pool with a mean that is user defined at the start of the simula-

tion and standard deviation σVa (see Table 3.1) (Keasling et al. [1995]). However,

during injection growth, the HMG simulation framework forgoes the growth rate

parameter. To assure that the same observed Gaussian distribution of growth is

maintained, it was required to implement a new parameter called “injection devia-

tion”:

Va+dt = Va + Vinc ∗ InjectionDeviation (3.7)

where Vinc is the individual cell’s increase in volume as per the injection growth.

And InjectionDeviation is a parameter that is assigned at birth and division of

a cell, that is randomly selected from a normally distributed pool with mean of 1

and the same standard deviation σVa as for exponential growth in Table 3.1. By

keeping the same “injection deviation” parameter throughout the cell cycle just as

the doubling rate is assigned, the same volume distributions effects can be seen

compared to an exponentially growing population.

Furthermore growth rate is the only dependent parameter that links the C

and D times to the state of the cell. So in injection growth, there is a need to

link the C and D times to the physiological state of a cell to respect their respective

functional forms. Given that with the injection growth, each cell increases its volume

in a passive manner, this increase is employed to back-calculate the growth rate of

individual cells in the following manner:

µ =
Va+dt − Va
Va · dt

(3.8)

where µ is the instantaneous growth rate, Va is the volume of the cell at time a
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and dt the time step of the simulation. This calculation is performed at creation

or division only to resolve appropriate C and D times, in exactly the same manner

when a population is growing under exponential growth. This results in individual

cells containing a C and D rate that follows the growth pattern of the individual

cell. The individual cells are thus either grown assuming exponential growth or

injection growth as ilustrated by Figure 3.2.

Growth

Maximum
chromosome

reached?

Freeze
cell

True

False

Exponential
growthTrue False

Increase cell volume
using Malthusian

growth model

Increase cell volume
using injection growth

method

Figure 3.2: Flow chart describing the growth algorithm for a single cell in HMG. The
grey boxes represents the steps with some degree of stochastic noise (see Table 3.1).
The cell was either grown using an injection growth method or assumed exponential
growth. Growth was “frozen” if the maximal number of chromosomes was reached
(32 chromosomes maximum in this work), as to avoid crashes in the simulation.

Identifying Exponential Growth

Because population heterogeneity is extensively studied and well formalised using

the CH model, this knowledge is leveraged by generating the initial “seed” pop-

ulation assuming exponential growth and thus balanced growth. A method for

identifying the exponential (and post-exponential) phases of growth was required.

The results of the spline fit were analysed where the user is guided to the theoretical

area where exponential growth applies using a minimising the following equation

(Zhang et al. [2006]):
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d2(ln(f(t)))

dt2
(3.9)

Given the typical noise associated with OD measurements, particularly at low OD

values, this methodology leads to the definition of exponential growth as represent-

ing a temporal window over which the minimization condition is satisfied (thus,

any early inflection point, which also satisfies the minimization condition, is not

identified as the window of exponential growth).

The growth curves were analysed and fit using a spline fitting method. Be-

cause the HMG modelling framework does not implement cell death, if the decrease

is small, then the fitting protocol interprets it as stagnation. However when that

reduction is too large, when for example a bacterial culture is in death phase, then

that section of the growth curve is ignored. For example in Figure 4.7, the M9

23 rpm population, although cultivated for 24h as all other populations, returns

a substantial portion of the OD growth curve that is ignored due to the OD that

is excessively getting smaller. Furthermore, typical spectrophotometers have an

accurate range between 0.1 and 1.0. Consequently, even if from visual inspection

one could consider that the exponential section of the growth curve appears earlier

than the ones that where returned, because earlier OD’s are smaller than 0.1, they

are considered to be unreliable. Furthermore, earlier time points return low cell

concentration that may be too small for accurate analysis using flow cytometry.

As an illustrative example, consider Figure 4.1b, which demonstrates the

steps in identifying the section of the growth curve where exponential growth applies

without using a growth model. The top figure shows the spline fit given the original

measured OD data points, on a log scale. In this case, one would fit a first order

polynomial to the linear section of the growth curve and its slope would represent

the instantaneous growth rate of the exponentially growing section of the OD data.

The middle subplot shows the first order derivative of the natural log fit while the

bottom shows the second order derivative and is intended to show the section of the

growth curve that minimisation of Equation 3.9 identifies. Inspecting the growth

curve, one may consider that the exponential growth curve happens at around 100

min, because of the low OD, these values are ignored. More generally exponential

growth applies when the first order differential of the fit plateaus and thus when the

second order differential of the fit = 0. However, due to the noise of the OD data,

values close to 0 are accepted.
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3.1.4 Non-Balanced Growth

Although laboratory strains of bacteria are typically grown in ideal conditions, sat-

urated with a carbon source; naturally bacteria live in conditions where they experi-

ence long times in starvation and/or conditions of stress, where availability of carbon

source is intermittent at best (Kolter et al. [1993]). Genetic expression analysis of

cells in stationary phase compared to exponentially grown ones show that a pre-

dictable set of genes are activated, designated the Pex (postexponential) proteins

(Kolter et al. [1993]). It would thus make sense that naturally, bacteria prepare

themselves for starvation and stressful conditions, and it is of particular interest

to investigate this state of growth as much as exponential growth. For example,

it was noticed that industrial scale bacterial bioreactors with constant feed, after

inoculation’s exponential growth stabilised to a distinct population state that did

not resemble exponential one (Moser et al. [2012]). Despite this, research has largely

focused on exponential growing populations.

The bacterial population dynamics outside of stringent exponential growth

conditions was explored, where balanced growth does not apply. A population that

is outside of the exponential phase has innate temporal features that are indeed

difficult to predict with deterministic models, since its heterogeneity is a direct con-

sequence of the previous state of the population. A typical batch culture progressing

from log phase to stationary phase, is a good example of populations transitioning

from a condition of balanced to non-balanced growth conditions. Although the sta-

tionary phase is usually thought of as a phase of growth where the culture is depleted

of a carbon source, by its very definition, it applies when the number of cells does

not increase substantially with time (Ferenci [1999]). This may occur due to a wide

range of conditions, such as acidification of the environment, to a lack of oxygen, or

carbon limitations (Kolter et al. [1993], Ferenci [1999]).

It is proposed that the distribution and heterogeneity of extensive parameters

of bacterial population in non-balanced growth can be formally predicted given an

appropriate simulation method. Using the injection growth strategy, this method

of distributing the volumetric changes experienced at the population to single cell

level will be examined to see if it contains enough information to describe the same

elements of the population heterogeneity as when assuming balanced growth with

the CH model.
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Rate-Maintenance

In the 1970’s bacteriologists first performed nutritional shift-up experiments to in-

vestigate the growth patterns of bacteria. Upon shifting a population of cells to

a richer media, it is observed that “the rates of cell division were unchanged for

about an hour”, where following that time the cells increase their rates abruptly

(Kubitschek [1969], Cooper [1969], Zaritsky et al. [2012] ). It was assumed that

this delay is caused by the minimal time required for chromosome replication, seg-

regation and division, while other features of the cell increase immediately (Ho and

Amir [2015]). This dichotomy puzzled the biologists at the time, and coined the

term “rate-maintenance” to describe features of the cell that are preserved for a

significant amount of time after the shift in growth. In the cell cycle model these

include replication rate (C) and the division rate (D). The rate-maintenance fea-

ture of bacterial populations was implemented in the single cell model, as described

in Figure 3.12, by updating all cell cycle parameters upon division and not contin-

uously as a function of growth rate (dotted square on the bottom left describing

cell division). Implementing the cell cycle model in this fashion would in theory

return the rate-maintenance features as described in the literature. Indeed, with

both injection and exponential growth, the volumetric changes of the populations

are immediately reflected in the individual cells, while the cell parameters required

the event of a cell division before being updated. Although seemingly trivial, the

correct implementation of such a feature is important in the faithful reproduction

of the population dynamics. Because of this difference between volume growth and

DNA growth, it is observed that cells undergo multiple rounds of replication during

this one hour adaptation (Ho and Amir [2015]).

Case Study: The Shift-Up Experiment

To illustrate the requirement for a new modelling strategy to quantify population

heterogeneity throughout more diverse conditions of growth, a nutritional shift-up

experiment was performed (Figure 3.3 and Figure 3.4). This experiment consists

of growing a population of bacterial cells in a carbon poor growth environment,

and then transferring the cells to a richer carbon source. As a consequence, the

bacterial culture experiences two exponential growth conditions and a transition

period between the two that is akin to a controlled reversed diauxic growth; a known

behaviour of bacterial cells that are grown in two different sugars, where the most

easily accessible carbon source is used before the other (Zhang et al. [2006], Narang A

[2007]). In order of appearance: the first transition period is the lag phase from the
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transfer to the poor carbon source. Then the cells experience the carbon poor

exponential growth. Once the cells are transferred to a carbon rich environment,

the cells experience another transition period before entering the exponential phase

of the carbon rich environment.

Figure 3.3 shows the OD measurement of the experiment, where the two

exponential sections of growth are easily identified, and return doubling rates of

31.17 and 20.83 min for M9 and LB respectively. Once the culture was transferred

to a new growth media (≈ 375 min post-inoculation), there is a clear period of

time where the OD is unchanging. The DNA distributions that correspond to each

section are presented in Figure 3.4 along with the CH simulated DNA distributions.

For the transition period, an infinitely large doubling rate was used to illustrate that

this classic simulation method cannot reflect the measured DNA distributions, while

the other two were reasonably simulated using the CH model with the doubling rates

extracted from these sections of the growth curve. Later, this shift-up experiment

will be explored using the injection growth strategy.
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3.2 Chromosome Dynamics

3.2.1 Critical Mass and the Eclipse Period

Replication Initiation

Initiate next
oriC

Past Eclipse
Period?

FalseFalseFalse

True True
True

Initiation?Va ≥ Vi x oriC

Figure 3.5: Flow chart describing the replication initiation algorithm for a single
cell in HMG. When the volume of cell is larger or equal to the factor of critical
mass and the sum of oriC, then the HMG attempts to open a new replication fork.
If all previous replication forks are open, the algorithm checks if they are all past
the eclipse period (see Section 1.2.1) or if there are no opened replication forks, and
then the next replication fork is opened stochastically (grey box) (see Table 3.1).

The concept of critical mass is based on an observation made by Donachie

[1968], where the ratio of cell mass to replication origin is a constant. The gen-

eral consensus remains that critical mass is independent of the cell’s growth rate,

(Keasling et al. [1995], Osella and Lagomarsino [2013], Osella M [2017]), even if some

studies report that the initiation mass does change in different growth conditions

(Bates et al. [2005], Boye E [2003], Wold et al. [1994]). The literature consensus was

accepted, that the critical mass is indeed an accurate estimate of the ratio between

DNA content and volume of the cell and is independent of the cells growth condi-

tion. Implementation of critical mass was performed when the following condition

is met:

Va ≥ Vi ·
∑
|oriC| (3.10)

where a is the time age of the cell, Vi is the critical volume constant and |oriC |
is the sum of replication origins for a single cell. If the above condition is met a

new replication event would occur, where each available oriC opens for a new repli-

cation event. The observations of constant mass suggested a mechanistic function

of control of initiation related to its size, and this equation proposes that all oriC

open synchronously and non-randomly (Koppes and Von Meyenburg [1987]). For

synchronous replication, this constant elucidates the interplay between cellular mass

and DNA content, and formally explaines the observation that smaller cells had less

DNA content than larger cells. The central role of DnaA and other molecular mech-

anism such as RIDA as the molecular machinery behind this theory, was only later
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uncovered (see Section 1.2.1) (Amir [2014]).

Some reports suggest that initiation of an oriC occurs once and only once per

cell cycle. Where, upon initiation, an oriC may not initiate once again even if the

condition in Equation 3.10 is met (Messer [2002], Robert [2015], Boye et al. [2000],

Wang et al. [2010], Skarstad et al. [1986]). The combination of sequestration of the

oriC, titration of DnaA, and RIDA suggests that E. coli has a molecular mechanisms

by which it limits the initiation of its chromosome (Boye et al. [2000]). Single cell

analysis shows that multiple initiations within a single cell cycle has been observed

and thus must arise more than once per cell cycle on some occasions (Zaritsky et al.

[2011]). Thus in the HMG, no such restriction was made, where an oriC is able to

replicate twice (or more) within the cell cycle’s lifetime if the conditions of Equation

3.10 is met. However, because of the existance of many negative regulators in the

initiation of replication (see section 1.2.1) the “eclipse” period was implemented

(see Section 1.2.1). This is based on the observation that a minimal time is required

before that same origin of replication is able to be re-initiated after initiation, and

avoid the unwanted situation where two replication bubbles would run into one

another. The manner in which we implement the eclipse period is based on empirical

observations that the earliest observed reinitiation happens once the chromosome

has replicated at least 33% of its chromosome (Browning et al. [2004]). Thus, using

a rule based method, if the conditions are met where critical mass is reached and

all chromosomes have reached this 33% threshold, then another round of initiation

is made possible. A summary of the steps in the algorithm can be found in Figure

3.5.

3.2.2 Replication

Although some studies suggest that the rate of replication is constant for a given

strain and species (Abner et al. [2014], Zaritsky et al. [2012]), measured C rates

in different growth conditions and thus growth rates indicate that this is not the

case (Keasling et al. [1991], Allman et al. [1991]). Indeed, concatenation of measured

and calculated MG1655 strain C rates from four different sources plotted together in

Figure 3.6 suggests that constant replication time is an oversimplification. Keasling

et al. [1995] reports that the rate of C, is a function of population growth rate in the

form of a one-phase exponential function. Where when τ ≤ 60 min, the replication

time of bacteria is 43.2 min and at slower growth rates the time for a chromosome

to replicate increases exponentially:

C = 43.2 · (1 + 4.86 · e
−4.50
τ ) (3.11)
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The logic behind this equation makes instinctive biological sense: under fast

growth (doubling rate lower than ≈ 60 min) the cell contains all the macromolec-

ular content to saturate the replication machinery. The rate limiting step in this

case becomes the replication itself, and the speed at which the chromosome may

incorporate nucleotides on the replicating DNA strand. To accommodate this rate

limiting step in growth, bacterial cells undergo multiple rounds of replication on

chromosomes that have not yet finished replication, also called overlapping rounds

of replication (Cooper and Keasling [1998]). As a consequence, a chromosome that

is actively replicating may be inherited to the daughter cells upon division. This

permits the daughter cells to terminate the replication of a chromosome earlier than

the time it takes to replicate a complete chromosome and thus have a doubling

time that is less than that of the time it takes to replicate a complete chromosome

(Cooper [2012]). Because the successful replication of at least one chromosome is

required for division, if such a mechanism did not exist, then their doubling rate

could never be less than that of the replication time. During slower growth, how-

ever, the replication machinery is not as saturated and thus the rate limiting step in

replication becomes the availability of the macromolecular content of the cell that

can be dedicated to the replication of chromosomes. From the measured C rates

and measured growth rates, the relationship between the two is reported to be in

the form of exponential decay in relation to the doubling rate of the cell (Keasling

et al. [1995]).

Furthermore, there are many cases where different bacterial strains have

different rates of replication. This may include different growth environments, or

a mutant strain, or a combination of the two. For example, the K-12 AB1157 has

a C rate of 55 min with a doubling time of 28 min, whilst the K-12 CM735 has a

C rate of 44 min with a doubling time of 29 min (Allman et al. [1991]). Because

replication involves a complex machinery of DNA polymerases, helicases and β-

clamps and others (see Section 1.2.1), it can be expected that any slight difference

in the efficiency of any of these proteins, or their interaction, may have a large

downstream effect on the rate of replication.

48



0
0.

00
5

0.
01

0.
01

5
0.

02
0.

02
5

0.
03

0.
03

5
0.

04

5010
0

15
0

20
0

25
0

D
ou

bl
in

g 
R
at

e 
(μ

. m
in

-1
)

C (min)

K
ea

sl
in

g 
et

 a
l.

S
to

kk
e 

et
 a

l.
W

al
ld

en
 e

t 
al

.
M

ic
he

ls
en

 e
t 

al
.

K
ea

sl
in

g 
et

 a
l. 

Fi
t

Fi
t

F
ig

u
re

3.
6:

C
on

ca
te

n
at

io
n

o
f

a
ll

th
e

li
te

ra
tu

re
C

ra
te

s
of

K
-1

2
M

G
16

55
ce

ll
s

gr
ow

n
u

n
d

er
va

ri
ou

s
gr

ow
th

co
n

d
it

io
n

s,
an

d
m

ea
su

re
d

u
si

n
g

d
iff

er
en

t
m

et
h

o
d

s
(c

ir
cl

es
)

(s
ee

co
rr

es
p

on
d

in
g

p
ap

er
s)

.
T

h
e

so
li
d

li
n

e
w

as
ta

k
en

fr
om

K
ea

sl
in

g
et

al
.

[1
99

5]
,

th
e

d
ot

te
d

li
n

e

co
rr

es
p

on
d

s
to

th
e

b
es

t
fi

t
to

th
e

d
at

a
(c

ir
cl

es
),

w
h

er
e
C

=
44
.9

8
·(

1.
0

+
(5
.2

06
·e

−
4
.9
1
7

τ
h

))
.

49



Synchronous and Asynchronous Replication

For WT cells, the initiation of replication is synchronous on all oriC available at the

time of critical mass, such that the chromosome copy number for an individual cell

always follows a 2n copy number (where n is a non-negative integer) (Katayama et al.

[2010], Skarstad and Boye [1993a], Brewer and Fangman [1991]). However, reports of

mutant bacterial strains reveal that this rule does not always hold, where either long-

term incubation (Akerlund et al. [1995]), or drug treatments demonstrates that some

populations may contains cells with 3, 5, 6 etc... copy numbers (Allman et al. [1991],

Boye et al. [1988], Skarstad and Boye [1993a]). A review of the literature shows that

many different strains express this phenotype is known as the asynchronicity of

replication (or aberrant chromosome copy number) (Boye et al. [1988]). Knockout

experiments have also shown that many different proteins are important actors in

the process that yields the WT synchronous phenotype (Boye et al. [1988]). Among

the proteins where the mutant forms have been attributed to losing the synchronous

timing of replication include DnaA, Dam, RecA, SeqA, DatA and others (Boye et al.

[1988], Skarstad and Boye [1993a], Katayama et al. [2010]).

Globally the types of mutations that affect this phenotype can be classified

into two distinct categories: the ones that are involved in the initiation machinery

and the ones that are involved in faithful replication of the chromosome. The for-

mer category includes either mutations of the mechanisms involved in the eclipse

(see Section 1.2.1), such as the SeqA protein, as well as mutations in the initiation

of replication itself such as DnaA, that causes either random opening of oriC or

over-initiation (Boye et al. [1988], Skarstad and Boye [1993a]). Because chromo-

some replication is by nature error prone, and because cells are constantly exposed

to stresses that cause DNA damage such as oxidative stress and UV radiation,

bacterial cells possess different mechanisms to manage damage to their DNA, in-

cluding excision repair, mismatch repair, and the SOS response system (Courcelle

and Hanawalt [2003]). For repair involving templating by homologous DNA se-

quences, the RecA protein plays a central role in matching the damaged DNA to

its complementary sequence (Courcelle and Hanawalt [2003], Kuzminov and Stahl

[1997], Michel [2000]). RecA not only alleviates repression of DNA repair protein

expression through a co-proteolytic function that cleaves the repressor LexA, but

upon coating single stranded DNA, RecA catalyses the pairing to a complementary

strand (Courcelle and Hanawalt [2003], Michel [2000], Little et al. [1980]). A partic-

ularly popular mutated version of this protein called recA1 has been observed to be

active active, albeit at a reduced rate than its WT counterpart (Goodman [2000],

Allman et al. [1991], Cox et al. [2000], Courcelle and Hanawalt [2003]).
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Aberrant Chromosome Copy Number Case Study: recA1

The RecA is often mutated in laboratory strains used for the purpose of genetic

engineering (such as the TOP10 cell type). In the case of recA1, although still func-

tional, this version of the protein has an impaired ability to perform recombination

of inserted plasmid genetic material and as a consequence this increases the stability

of the inserted plasmid (Kuzminov [1995]). Unsurprisingly, such bacterial strains

are particularly sensitive to any type of DNA damage, and during normal laboratory

growth, a large population of anucleate cells may be observed under normal cultiva-

tion methods (Skarstad and Boye [1993a], Kuzminov [1995]). A few key observations

are particularly informative of the consequences of this RecA mutation. Early stud-

ies demonstrate that although recA1 cells contain aberrant chromosome copy num-

bers, timing and coordination of initiation is shown to not be affected when exposed

to high doses of UV (Skarstad and Boye [1993a], Zyskind et al. [1992]). Moreover

recA1 bacteria contain a higher number of free floating nucleotides than their WT

counterparts, and this phenotype is exacerbated by faster growth rates (Horii and

Suzuki [1968]). In vitro experiments show that WT RecA inhibits the nuclease ac-

tivity of RecBCD, and knock out experiments for this protein are more lethal to

the cell than are RecA knockouts (Kuzminov and Stahl [1997]). If, for any reason,

the replication fork is arrested long enough, then the arrest leads to double-stranded

breaks, and RecBCD is recruited and degrades the replicating strand (Courcelle and

Hanawalt [2003], Kuzminov [1995], Kuzminov [1999]). Furthermore, there seems to

be a RecA-independent damage avoidance mechanism which involves suppression

and removal of damaged strand by RecBCD during replication, which leads to the

collapse of the replicating strand, and as a consequence the chromosome returns to

its original form (Miranda and Kuzminov [2003], Kuzminov [1995]). Other evidence

suggests that recA1 mutant bacteria also experience whole chromosome degradation

(Skarstad and Boye [1993a]). Finally, the lack of functional RecA may affect the

synchronous segregation of chromosomes at division, such that a given complement

of chromosomes is divided less evenly between daughter cells in recA mutant strains

(Zyskind et al. [1992]).

Altogether, these observations led to summarise these recA-associated mech-

anisms for inclusion in the model in the following way, illustrated in Figure 3.8

dashed boxes. If the replicating strand encounters DNA damage (which it is unable

to repair due to the lack of a functional RecA), then a double stranded break oc-

curs. If the break occurs upstream of the replication fork, then RecBCD degrades

the replicating strand until it reaches the end of the other replication fork (Kuzmi-

nov [1999]), which leads to restoration of the replicating chromosome to its original
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state. If the double-stranded break occurs downstream of the replication fork, then

RecBCD degrades the whole chromosome. A concise mechanism to capture the

impact of RecA mutation was formulated and implemented in the cell cycle model,

which is summarised in Figure 3.7.
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Replicating chromosome

Whole
chromosome
degradation

Intact chromosome

Replicating
strand

degradation

RecBCD
rescue

RecBCD

Replication
fork

oriC

Figure 3.7: Summary of the simplified description of DNA double stranded damage
responses used simulations to represent the consequence of RecA mutation. Green
bars are the oriC, orange circles are the replication fork bubbles, the purple circle
is the RecBCD enzyme, each blue line is a single chromosome strand, and each
red line represents a newly replicated DNA strand. As described in the text, the
simulation captures two potential outcomes following DNA damage. In the first
scenario, a double-stranded break occurs at the replication fork, which leads to the
collapse of the replication fork (broken orange circle), which is subsequently rescued
by RecBCD, returning the chromosome to its original form. In the second scenario,
the double-stranded break occurs downstream of the replication fork, which instead
leads to degradation of the whole chromosome.
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DNA Replication

Degrade
replicating

strand

For each chromosome in cell

False
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Replication fork
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Initiation?

Chromosome
degradation?

Degrade
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For each replication
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Initiate segregation
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Figure 3.8: Flow chart describing the replication algorithm for WT and the aber-
rant chromosome copy number phenotype (see Figure 1.3) in HMG. The grey boxes
represent steps in the algorithm with some degree of stochastic noise (see Table 3.1).
The dashed lines represent the steps only applicable for cells that express the aber-
rant chromosome phenotype (TOP10 mutant), which includes whole chromosome
degradation and replication fork collapse. As the algorithm loops through all chro-
mosomes and replication forks it advances the timers by a pre-determined time step
(dt). If any of these timers exceeds the replication time (C ), then the chromosome
is replicated and the pair of replication forks were reset and the segregation timer
is initiated.
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3.3 Cell Division

Early quantification of size within populations of bacteria in balanced growth showed

that a given growth rate produced populations with narrow size distributions (Schaechter

et al. [1958]). These findings suggest that there must be a “conserved mechanism

responsible for coordinating cell composition and size with growth rate” (Vadia and

Levin [2015]). The division mechanism of a bacterial cell into daughter cells is central

in ensuring size homeostasis within a population, and indeed, the “very existence

of a stable cell size distribution indicates the presence of intrinsic mechanisms that

reduce cell size fluctuations” (Campos et al. [2014]). Many reports that investigated

the size distribution of populations show that, given a growth environment, bacte-

rial cells have a narrow distribution of sizes (Koch [1993], Sauls et al. [2016]). This

is perhaps the most important feature of a population of cells, since virtually all

extensive parameters are dependent on the control of division. An accurate account

of how a single cell makes the decision of dividing is central to HMG. If one assumes

that the critical mass theory of chromosome initiation is valid, the distribution of

bacterial size would inevitably dictate the control of the DNA content of a cell.

Three different theories of the control of division are the sizer, timer and adder

models are presented here.

3.3.1 Sizer model

The first model of division that guaranteed this conservation of size proposed that

a cell divides once it reaches a threshold size (independent of the critical mass for

chromosome initiation), and was inspired by the empirical observation that a cell

divides once it doubles its size (Cooper [1988]). One assumption of this “sizer” model

is that a smaller cell at birth would grow for a longer time than one that is born

larger, so as to accumulate enough mass to double. Another implied assumption is

that the cell contains a molecular mechanism that allows it to “know” its size and

consequently can divide once the size threshold is met. Even though a few molecular

mechanisms and potential individual proteins have been speculated to play a role in

this size detection mechanism, no consensus has so far been reached on the subject

(Robert et al. [2014]).

Despite this, this theory of division is used in modelling yeast and mammalian

cells, where it is believed that the commitment to division occurs upon reaching a

threshold size (Campos et al. [2014]), recent single cell quantitative measurements of

bacteria show that there is a strong statistical correlation between the size at birth

and the size at division, in contrast to the sizer model that implies that the size at
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birth and division have no correlation, since the size at division is constant (Campos

et al. [2014], Wang et al. [2010], Taheri-Araghi et al. [2015]). Furthermore, the size

of the mother and daughter cells seem to be correlated (Campos et al. [2014]).

3.3.2 Timer model

This model assumes that cell division is controlled by its age alone, where the cell

divides after a predictable time following birth. The development of the model was

based on the empirical observation that a population of cells growing in a constant

environment had a predictable time from birth to division (Cooper [2012]). This

theory was very much inspired by inferring that the doubling time of individuals in

the population, and the start of division within single cells, is tightly controlled by

the age of the cell and not its size (Robert et al. [2014]).

Unlike the “sizer” model of division, it does assume that there is a strong

correlation between the size of the cell at birth and division. However, the question

remains as to how population size homeostasis is maintained if all members of the

population have a strict doubling time. Under such a rule, larger cells would remain

larger than their smaller counterparts as they grow for the same amount of time

and rate. Indeed, the lack of control of their size with such a mechanism would

theoretically require the adjustment either of the elongation rate or of the divisional

time to compensate for this discrepancy if the population size homeostasis is to be

maintained. If not, the population would inevitably drift, and the simulated distri-

butions using this division rule show that they are too wide compared to measured

distributions (Robert et al. [2014]). Single cell analysis reveals that a timer model

with a strict global doubling rate is not mirrored in measured bacterial populations

in balanced growth, where larger cells grow for a shorter time than their smaller

counterparts on average (Campos et al. [2014]).

3.3.3 Adder model

With the advent of microfluidic devices, better confocal microscopes and better im-

age analysis software; accurate time-lapse tracking of single cells is greatly improved,

making tracking of bacterial lineages possible (Taheri-Araghi et al. [2015], Campos

et al. [2014]). This generated a new set of data that is much more accurate at

the single cell level, and in a constant environment thanks to microfluidic devices

(Campos et al. [2014], Taheri-Araghi et al. [2015]). A similar technique used in the

past included the use of agar pads (Bennett and Hasty [2009]). Although this also

enabled single cell tracking, these would essentially constitute batch culture situa-
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tions, while microfluidic mother machine devices permit the continuous culture of

cells and the generation of more rigorous datasets that allow the accurate measure-

ment of cells without environmentally induced fluctuations (Campos et al. [2014]).

With this new data some of the assumptions that were made about the division

patterns of bacteria could be confirmed or revisited.

This new scrutiny of the bacterial cell cycle revived an old theory of cell

growth called the “adder” model of growth. In short, it proposes that population

homeostasis may be maintained if one adds a constant amount of volume from birth

to division at every cell cycle. This was first argued theoretically by Voorn et al.

[1993], and again by Amir [2014], and later experimentally investigated upon single

cell population analysis (Campos et al. [2014], Taheri-Araghi et al. [2015]). The

major observation that led to the validation of the adder model was the statistical

link between the size at birth and the size at division. Indeed, it seems that the

size at division is dependent on the size at birth which, as we have seen, refutes the

“sizer” model.

One of the most interesting implications of the “adder” model is the dis-

appearance of the D period, where the initiation of the division steps is no longer

determined by the termination or initiation of replication; as the CH model seems

to suggest. Indeed, where the C period for example lends itself much more easily

to time control, defining segregation of chromosomes and division of the cells with

time control seems to be limiting since the recorded times are very variable (Adicip-

taningrum et al. [2015]). And indeed, concatenation of D times from the literature

into a single plot (Figure 3.9) makes for much more variable results than that of the

C times (Figure 3.6), making the generalisation of the D period much more difficult

(Zaritsky [2015]). More experimental evidence would be required to uncover the

molecular mechanism and actors for the control of bacterial division.
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3.4 CH Model: Linking Chromosome and Division Dy-

namics

3.4.1 Mixed Timer and Sizer Model

The most popular and most robustly studied model of the cell cycle is the Cooper and

Helmstetter model (CH). The authors pose that the cell cycle can be formalised using

a combination of the timer and sizer models, whose steps can be summarised in the

following way: a cell grows until it reaches a particular size, called the critical mass,

that is determined by the Donachie [1968] constant ratio between the chromosome

copy number and mass of the cell. From that point on, it becomes a timer model,

where the cell continues to grow for C+D amount of time, where C is the replicative

time and D is the segregation and division time (see introduction for complete

mathematical description of the CH model).

Termination of Replication Starts Division

Although the link between volume and DNA is robustly described through the

critical mass ratio, supported by the central role of the DnaA protein, there is

much more uncertainty as to the mechanism of control and timing for the start

of division (Taheri-Araghi et al. [2015]). Early experimental evidence suggests that

inhibiting DNA replication in turn inhibits replication (Maruyama and Lark [1961]),

and supports the idea that the two processes are closely linked. Some studies have

proposed that initiation of replication is the trigger for the control of division (Ho and

Amir [2015]). Measured timing of FtZ ring formation in different strains and growth

conditions seems to suggests that the formation of the roughly corresponds with the

start of the D period as defined by the CH model in wild type cells (Den Blaauwen

et al. [1999]). However overwhelming numbers of mutant perturbations demonstrate

that the timing of replication does not affect the division timing of a cell, where

perturbations to the replication initiation pattern have no effect on the Ftz ring

formation outcome and the resulting population size distributions (Bernander and

Nordström [1990], Tropini et al. [2014]). When, for example, cell dimensions were

perturbed, either by Ftz or mreB titration, the replication time was not affected

while the D time increased monotonically with increase in size (Zheng et al. [2016]).

Although there is certainly a mechanism of control of division by replication, or else

one would observe many more anucleate cells, the degree of the link doesn’t have

to be as strong or as direct as the one posed by the CH model. Because of the lack

evidence as to what controls the timing, this question remains open and requires
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timer ≥ D?
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timer initiated?
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Update C
Update D

Divide cell

Figure 3.10: Flow chart describing the segregation and division algorithms in HMG.
The grey boxes represent the steps where stochastic noise is applied (see Figure
1.3). Once the segregation timer has been initiated by the completion of at least
one chromosome replication (see Figure 3.8), then a pre-determined time step (dt)
is appended to the segregation timer (D). Once that timer exceeds the D time,
then the cell is divided where the DNA content and D timer reset. Lastly the cells
replication time (C ) and D parameters are re-generated.

more research.

Although not explicitly stated, the CH model implies that the termination

event of a replication triggers the segregation of the chromosomes and the constric-

tion of the mother into the daughter cells. For example, consider a cell that has

a doubling rate of 30 min, C of 40 min and D of 20 min. This situation would

lead to overlapping rounds of replication where a cell inherits an already replicating

chromosome and initiates a new round of replication before the current chromosome

finishes. The resulting replicating time is 10 min; combined with the constant D

time of 20 min leads to a doubling time of 30 min. It is clear that the termination

of replication starts the D timer. If initiation was the trigger and D alone was the

timer for segregation and division then the cell would have a doubling time of 20

min, which is not the case. Leaving aside the timings of the CH model, if indeed

initiation of replication was triggering the situation of overlapping rounds of replica-

tion, initiation of replication would imply that the mother cell passes to its daughter

cell the information to start the division, a scenario that does not seem to be likely.

One of the advantage of critical mass dictating the cell division in this fash-

ion is that it solves the problem raised in the previous section of the timer model

population drift when the cell age is the only factor dictating the growth dynamics.

For example, consider a population in balanced growth with a doubling time of 70

min, C of 40 min and D of 20 min. In this scenario, a cell at any given time has a

chromosome content of 1 ≤ chromosomes ≤ 2 and thus has no overlapping rounds
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of replication. Assuming that the critical mass is 1.0 (in this case this would be a

theoretical critical mass, where it may be multiplied into any true volumetric equiv-

alent), in a completely deterministic approach, the cell would be born with a volume

ratio of 0.906, and thus the cell requires the accumulation of 0.094 before initiation

and subsequent division may occur (that would take 10 min if the doubling time

is to be respected). If division is stochastic, a cell that is born with more than 1.0

of volume would initiate replication upon birth, while a cell that is born with a

mass of less than 1 requires time to grow before it is able to achieve the required

mass to initiate replication (also called the B period of growth). The result is two

different doubling times, the larger cell where τ = C +D and the smaller cell where

τ = B + C +D, and the population’s volume would converge to a single mean. In

short, the CH model assures a size homoeostasis by compensating for the drift that

would occur with age-based division by correcting the doubling time of the cell. A

summary of the steps in the algorithm of cell segregation and cell division may be

found in Figure 3.10.

3.5 Conclusion: The Model

3.5.1 Flow Chart

Most simulations of bacterial population dynamics start with a simple model of

growth, typically framed at the single cell level, which is then expanded to predict

the growth dynamics of populations (Stokke et al. [2012], Michelsen et al. [2003],

Keasling et al. [1995]). The objectives of this dissertation are not well served by this

approach, as it would be useful to have a model that operates in the reverse direction-

starting from simple, experimentally measured growth curves (OD vs time), such a

model would enable one to infer the growth dynamics of the individual cells within

such a population. To achieve this goal of describing chromosomal dynamics across a

heterogeneous population, an individual-based simulation framework was designed,

termed the heterogeneous multiphasic growth (HMG) simulator. This framework

comprises of two distinct innovations: an “injection growth” mechanism and a novel

individual based description of the bacterial cell cycle.

At the single cell level, the CH model approach is employed for formalising

the bacterial cell cycle, where the chromosome dynamics are dictated by the critical

mass and advanced using a timer (see Figure 3.12 for a complete summary of the

single cell cycle algorithm). The eclipse period was implemented where a new pair

of replication forks could not initiate until the previous ones are 33% completed

(Browning et al. [2004]). The division dynamics are governed by the termination of
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Figure 3.11: Injection-based strategy for connecting the HMG simulator to empirical
growth data. This cartoon summarizes the process by which empirical growth data
(example, a measured OD vs time curve) is used to “drive” the HMG simulator via
the volume injection method, where the open circles represent the sections of the
growth curve where DNA distributions were measured. Thus, in this illustration,
the simulation would contain three independent steps: (1) The region of exponen-
tial growth is identified. This exponential growth rate is used to drive the HMG
simulation from a single cell inoculate to a diversified population of exponentially
growing cells; (2) During post-exponential growth, the OD curve is used to calculate
the rate at which the overall cell volume (of the population) is increasing; (3) At
each time point, the calculated rate of volumetric change (per cell) is “injected” into
each cell in the population, each of which advances its cell state via the HMG algo-
rithm outlined in Figure 3.12. The dashed rectangles indicate that during each time
step of the simulation, a random subset of the population is taken forward into the
subsequent time step of the simulation in order to keep simulations computationally
tractable. Taken from du Lac et al. [2016].
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For each cell in population
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Maximum
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Freeze
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False

Exponential
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Increase cell volume
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growth model

Increase cell volume
using injection growth

method

Replication Initiation

Segregation

Cell division

DNA Replication

False TrueSegregation
timer ≥ D?

Append dt
to segregation

timer

Segregation
timer initiated?

True False

Update C
Update D

Divide cell

Degrade
replicating

strand

For each chromosome in cell

False

True

Replication fork
opened?

Is oriC
opened?

Initiation?

Chromosome
degradation?

Degrade
chromosome

For each replication
fork in the 

chromosome

Replication strand
degradation?

Open replication
fork

Initiate segregation
timer

Replicate
chromosome

Append dt to
replication fork timer

True

False

True

False

True

FalseTrue

False

True

False

Pair replication
timers ≥ C?

next cell...

next replication fork...

next
chromosome...

At each time step

Initiate next
oriC

Past Eclipse
Period?

FalseFalseFalse
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Figure 3.12: Flow chart of the single cell model. More descriptive explanations of the
different steps may be found in Figure 3.2, 3.5, 3.8 and 3.10. The model follows the
CH model with the addition of the injection growth method, the DNA degradation
from a mutated recA1 and the eclipse period. The greyed out parameters represents
the paramters that include a stochastic element, as described in Table 3.1. Taken
from du Lac et al. [2016].
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at least one pair of replication forks, and progresses using a timer (D phase). To

model for the asynchronicity phenotype for cells that contain a RecA mutant, the

model implements a stochastic possibility of a chromosome experiencing replication

fork collapse as well as whole chromosome degradation.

For population growth, the raw OD data was used as input, fitted with

a B-spline interpolation method with a smoothing parameter that minimises the

measurement error, while providing a smooth outcome (Figure 3.11) (Zhang et al.

[2006]). Using the minimizing function in Equation 3.9, the section of the growth

curve where balanced growth applies is identified. From the doubling rate calcu-

lated from that window, the model assuming Malthusian (exponential) growth is

populated. The rest of the growth curve was then selected, either until the end or

until the OD starts to decrease. Indeed, since implementing cell death is beyond the

scope of this research, the death phase of growth cannot be accounted for. Nonethe-

less, the selected portion of the growth curve that contains the transition phase and

the stationary phase is converted to its volumetric equivalent and normalised to the

balanced growth seed population. The simulation was then advanced, distributing

the volumetric changes calculated from Equation 3.6 equally among all members.

Using this method, it is postulated that it is possible to simulate a population

of cells outside of balanced growth. Indeed, the generation of the seed population

using Malthusian growth theory generates a population of cells whose distribution

has been extensively covered, and is atemporal. Using this population the model is

able to progress through the other phases of growth and reflect the population in

a temporal manner, where the distribution of the population is dependent on the

distribution of the previous population in time.

3.5.2 Inclusion of Stochastic Effects

One of the important characteristics of an IBM simulation strategy is the ability

to reflect the population heterogeneity in an emergent manner. This requires the

inclusion of a degree of stochasticity in the parameters of the single cell model in

a method that reflects the measured distributions. Population rates of replication

(C), division rates (D), the binary fission ratio between daughter cells, and the

growth deviations, all show distributions that are normally distributed (Keasling

et al. [1995]). This makes sense under the central limit theorem, where each of

these parameters imply a multitude of actors and thus would result in Gaussian

distributions (Taylor [1997]). The initiation of replication also contains stochastic

elements that need to be implemented in a different manner due to the way the

model is constructed. Indeed, there are recorded differences in timing of roughly
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Term Definition Value

Vi
Volume at initiation (also called critical
volume)

0.9µm3 ≡ 0.9fL

σVi Gaussian noise sd 10% for dt = 0.01min

Va Cell volume at cell cycle time a N/A

σVa Gaussian noise sd 5% for dt = 0.01min

µ Growth rate (min−1) N/A

τ Doubling time (min) N/A

C Genome replication time (min) N/A

σC Gaussian noise sd 5% for dt = 0.01min

D Genome segregation time (min) N/A

σD Gaussian noise sd 5% for dt = 0.01min

Division
asymmetry

Gaussian noise sd describing the asymme-
try of binary fission

10% for dt = 0.01min

Chance of
initiation

Given that critical mass is reached, prob-
ability that the oriC opens

4.01% for dt =
0.01min

Chance
of DNA
damage

Probability that the replication fork expe-
riences any damage

tbd

Ratio of
DNA dam-
age

If DNA damage occurs, ratio if that dam-
age causes replication fork collapse or
whole chromosome degradation

tbd

Table 3.1: Nomenclature of the different parameters in the model. N/A corresponds
to the parameters that depend on the conditions of growth. tbd = to be determined.
All simulation where performed with a time step of 0.01 min.
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4.01% between replication fork formation at the initiation moment of two oriC (in

synchronous populations, see Section 3.2.2) (Keasling et al. [1995]). The way this

feature was implemented is as follows. Given that critical mass is reached, every

oriC is flagged as being open for replication. Every oriC is then iterated through

a random number which is sampled from a normal distribution with a mean of

0 and a standard deviation of 1. If that number is larger than 1.75 then that

oriC is opened, and the iteration of the oriC continues until all oriC are opened.

All other Gaussian parameters are sampled randomly at birth and division from

a normally distribution with mean as determined from the population assignment

and the standard deviation with the parameters listed in Table 3.1. For growth,

under a Malthusian growth model, a random sampling of the growth rate at birth

is used. For the injection growth model, however, an injection deviation parameter

was implemented with a mean of 1 and with standard deviation as described in

Table 3.1, sampled at the birth of the cell. Given the amount of volume added at

a given time step, this parameter ensures that at the population level a cell grows

by a portion of the total, so as to reflect the same population distribution as under

Malthusian growth.
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Chapter 4

Model Examination and

Optimisation to recA1 Mutants

In this chapter the previously discussed developed model will be tested and explored.

The first part will include simulations compared to measured WT K-12 DNA dis-

tributions of bacterial population along different phases of the growth curve using

the injection growth method. Different aspects of the newly developed simulation

method will be discussed and tested. The second part involves optimisation of the

cell cycle model developed to measured population DNA distributions from a widely

used mutant bacterial strain, TOP10, that contains a known mutation in the RecA

protein that causes peculiar chromosomal dynamics. This aims at showing that us-

ing HMG to optimise for mechanistic features of the cell provides robust solutions

since they are not only tested in a wide range of disparate growth conditions, but

the problem is organised in the same way as the experimental measurements.

4.1 HMG Examination Experiments

4.1.1 Wild Type Cells

Aim

To test the ability of the HMG simulation protocol, to simulate for cell cycle prop-

erties of a population outside of exponential growth, DNA distribution of WT K-12

MG1655 bacterial cells was measured throughout different phases of batch culture

as the population progressed from exponential to stationary phases, at two different

shaking regimes. The different shaking rates provided large enough oxygenation dif-

ferences that it had a consequence on their growth rate (Riedel et al. [2013]). Two
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particularities of the model are investigated in detail.

Although these experiments and their corresponding simulations had for goal

the global validation of the HMG simulation framework, by matching the DNA dis-

tributions of measured population to the output simulated cell cycle DNA distribu-

tions, two peculiarities of the model are investigated.

First, the injection growth method as an accurate method for the simulation

of population growth throughout disparate conditions and phases of growth. At the

time of writing, no experimental quantification of C and D parameters outside of

balanced growth have been made. C and D functional forms as reported by Keasling

et al. [1995] and supported by other experimental measurements presented in Figure

3.6 and 3.9 are estimated from exponentially growing populations.

Second, the C and D functional forms applying outside of balanced growth.

Outside of these stringent growth regimes it is not unreasonable to assume that these

rates do not hold. The second aspect tested is the injection growth method as a

means of simulating growth of a population outside of exponential growth. Although

the injection method by definition strictly follows the OD growth curve, there are

some uncertainties as to how the volumetric changes are distributed. When under

assumption of balanced growth (where the Malthusian theory of growth applies), the

exponential function (Equation 3.1) implies that the volume increase is exponentially

proportional to the volume of the cell (Wallden et al. [2015]).

A further goal of this exercise is to inspect if formalising the heterogeneity of

a population in non-balanced growth using the HMG simulation is accurate enough

to reproduce measured distributions. DNA distributions are used as a proxy for the

output of the cell cycle, and it is assumed that if one is able to reproduce the same

DNA dynamics theoretically, one can describe the nature of the heterogeneity of the

cell cycle of a population accurately.

Experimental Results

The measured DNA content of the population is presented in Figure 4.2. At 230 rpm,

the first histogram that corresponds to the exponential DNA distribution (τ = 22.58

min) returns a population containing between 3 to 6 chromosomes. As the popu-

lation enters the transition phase, the DNA content progressively diminishes until

300 min post-inoculation, where the population contains a majority of cells with 2

chromosomes. After that time, the population can be said to be in stationary phase

since the OD stagnated completely (Figure 4.1). Consequently, the frequency of ini-

tiation becomes rare and a diminishing number of cells were actively replicating their

chromosomes causing the measured DNA content to fall to two distinct peaks with
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Figure 4.1: Spline fit to the measured OD from K-12 cells grown in LB with a
shaking rate of 230 rpm and 23 rpm. Exponential growth applies when the first
order differential stagnates, or when the second order differential is equal to 0, as
shown in grey (see Section 3.1.3). The asterisk shows the measured and simulated
DNA distributions that correspond to exponential growth.

1 and 2 chromosome equivalents. At the end of the experiment, the vast majority

of the population contains integer amount of DNA, with 1 and 2 chromosomes.

For the culture grown at 23 rpm (τ = 39.68 min), the exponential DNA dis-

tribution contains 1.5 to 3 chromosomes equivalent. This is maintained throughout

the transition phase until 360 min post-inoculation, where the population enters

stationary phase (Note that the distribution at 300 min post-inoculation does not

conform with the other DNA distributions. The most likely explanation that an

error in staining was made that caused the reduces fluorescence of this population

compared to the others). Similar to the 230 rpm culture, the population’s DNA

content falls to two discrete peaks, where at the end of the simulation a majority of

the cells have either 1 or 2 chromosomes in the population.
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with input the OD growth curve presented in Figure 4.1b. The first measured DNA
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Figure 4.2: Measured WT K-12 MG1655 bacteria grown in LB at two different
shaking rates, measured against simulated population using the HMG framework.
The simulated DNA distribution was spread using a in-house Gaussian blurring
protocol (see Section 3.1.3).
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Simulation Results

The results of the simulation are shown in Figure 4.2 and quite accurately reproduce

the measured exponential DNA distributions. Although not directly intended, it also

strengthens the case for the CH model as an accurate formalisation of a WT bacterial

population growing exponentially. The simulation was then brought forward using

the injection growth method throughout the rest of the growth curve, where the

DNA content of the simulated population was returned at the same time points as

the ones measured.

At 230 rpm, the simulated exponential distribution (240 min) mirrors the

measured DNA content well, despite containing a sub-population of cells with less

than 3 chromosomes that the measured DNA content does not have. The transition

phase is well emulated, with the same rate of decrease in the DNA content of the

population, until 300 min post-inoculation where the population contains a majority

of cells with 2 chromosome equivalents. As the population progresses through the

stationary phase, the simulated population returns populations containing 1 and 2

chromosomes equivalents. Although the globally frequencies of the simulated peaks

matched well the measured ones during that time, the simulated distribution perhaps

underestimated the frequency of cells with 2 chromosomes equivalent, compared to

the measured DNA distribution.

At 23 rpm, the exponential simulated DNA distribution returns a DNA con-

tent of 1.5 to 3 chromosome equivalents, while the measured one returns between

1 and 2. Although the measured DNA distribution returns a tail end of cells with

more than 2 chromosomes, it occurs at a much smaller frequency than the simu-

lated one. Overall it seems like the simulation returned a slight overestimation of

the DNA content of the population by 0.5 DNA chromosome equivalent. The two

subsequent (300 min and 360 min) simulated DNA distributions are complemen-

tary, with a majority of the cells with 2 chromosomes, and a large tail end portion

of the cells with decreasing amount of DNA. At 360 min post-inoculation the sim-

ulated population starts to have a sub-population with 1 chromosome, something

that does not happen in the measured population. The last two (420 min and 480

min) DNA distributions return distinct peaks of 1 and 2 chromosomes equivalent,

where a majority of the population contains 1 chromosome, and where the peak at

2 chromosomes is slowly decreasing. The measured DNA distributions exhibits a

similar behaviour. However, in the latter, there was a higher frequency of cells with

more than 2 chromosomes, and many more cells in between 1 and 2 DNA peaks;

evidence that some are actively replicating their chromosomes.
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Conclusions

Although individual DNA distributions sometimes do not overlap precisely with the

measured DNA content, and especially the frequency of DNA content commonly

does not match recorded ones, overall the DNA content of the population was well

represented using the HMG modelling framework, especially considering the large

sources of potential errors. Indeed, the pattern of DNA distributions as the growth

rate of the population diminishes from exponential growth to stagnation of growth

is very well reflected using the HMG simulation method. This validates the HMG

simulation framework, and confirms that this modelling strategy is accurate enough

to simulate the dynamics and heterogeneity of a population growing in non-balanced

growth conditions. It confirms that injection growth is an accurate enough method

to simulate for the growth heterogeneity of a population. Furthermore, the C and

D times in the functional form as described by Keasling et al. [1995] is an accurate

enough description of the rate of replication and segregation for WT MG1655 E.

coli.

4.1.2 Nutritional Shift-up Experiment

Aim

Unlike assumptions of balanced growth that may be simulated making atemporal

assumptions on the state of the population, all non-balanced growth is temporal by

nature, where its state is the function of a previous state. The nutritional shift-

up experiment is a good case study to examine the dynamics of non-balanced and

balanced growth by transitioning between two different growth regimes. This is also

a good case study to examine the features of rate-maintenance (see Section 3.1.4).

Experimental Results

WT MG1655 bacterial cells were extracted from an overnight culture and inoculated

into M9 minimal media supplemented with glucose. While still under exponential

growth, a sample of the M9 culture was diluted into LB media culture. Measured

OD from the shift up experiment, presented in Figure 4.3, reflects literature reports

of a lag phase transition period between the two growth regimes as the cells adapt

to the new growth environment (Kepes et al. [1985]). It must be reminded that

although the OD seems to decrease and thus instantaneous growth rate is < 0,

because the HMG modelling strategy does not take into account cell death, the

spline fitting method interprets any reduction in OD as stagnation instead (i.e.
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µ = 0). Nevertheless, as expected, cells in M9 media grow slower (τ = 31.17) than

in LB (τ = 20.83), with a transition lag phase between the two.

Simulation Results

By extracting the doubling rate from the linear sections of the OD growth curve

(Figure 4.3) the two exponential M9 and LB growth conditions may be approximated

using the CH model. The transition period between the two however, contained a

stagnating growth curve that translates to a doubling rate that approaches 0, and

thus cannot be simulated using the above-mentioned method. For the transition pe-

riod the HMG model was used with the results presented in Figure 4.4. To simulate

the shift-up experiment the following steps where undertaken: using the doubling

rate from the M9 exponential section of the growth curve a “seed” population was

generated under the assumption of exponential growth (τ = 31.17 min). Then the

rest of the OD growth curve was used as input to the HMG framework. This in-

cludes the LB exponential distribution (τ = 20.83 min), and as a consequence the

reported simulated DNA distribution was not generated under the assumption of ex-

ponential growth. It was merely inferred from the input OD that was itself growing

exponentially. Theoretically, there is no difference between a simulated population

under the assumption of exponential growth and one simulated using the injection

growth if the measured OD is increasing exponentially at the same rate (starting

from a random cell). Any difference here would thus come from temporal features

of the population.

Measured M9 exponential DNA content returned a majority of 2 chromo-

somes with a small sub-population with 1 chromosome and the last peak at 3 chro-

mosomes equivalent evidence that these cells chromosomes are being actively repli-

cated. On the same sub-plot, the CH DNA distribution major peak corresponds to

≈ 1.75 chromosomes with another major portion of the population that contains 3

chromosome equivalents. The simulated HMG DNA distribution returns a slightly

different distribution than the CH with the major peak returning 2 chromosomes

equivalent (in theory they should be very close since the same assumptions of ex-

ponential growth are made). Next the population DNA distribution in stationary

phase returns a large portion of its cells actively replicating their chromosomes with

a peak at 3 chromosomes, while still having a small sub-population of cells with 1

chromosome. Overall the HMG population matches well with the measured one,

albeit with the frequencies of the peaks not matching with the measured distribu-

tion. Upon entering the transition period, the population growth stagnates and as

a consequence, the cell cycle of the individuals slows. This is reflected in the mea-
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sured DNA distributions that return two major peaks at 1 and 2 chromosomes with

a small number of cells with more, that are still replicating their genetic material.

The HMG simulation mirrors these dynamics well, with also the major peaks corre-

sponding to 1 and 2 chromosomes equivalent, where again, the frequencies of the two

do not perfectly match the measured ones. Furthermore, the number of cells that

are replicating themselves seems to be underestimated with the HMG model, where

it returns no cells with more than 4 chromosomes while the measured data does. As

the population starts growing exponentially once again, the measured DNA distri-

bution major peak falls at around 2.75 chromosomes equivalent but is quite spread.

The HMG simulated DNA content returns the major peak at 3 chromosomes equiv-

alent and another at 2 with a tail containing more. The CH simulated distributions

contain a majority of cells with 3 chromosomes and a tail with more DNA content,

until around 6 chromosomes.

Overall, although the HMG simulation population frequency does not per-

fectly match the measured DNA content, it still predicts the dynamics of the DNA

content of the population well. The fact that the HMG and CH LB exponential

DNA distributions do not match, and that the HMG distributions better fits the

measured one shows a subtlety in the dynamics of the population that the HMG

distributions is able to capture that the CH one cannot. Given this difference, one

can argue that in fact the measured DNA distribution in LB is not in balanced

growth, or at least completely. With the high frequency of cells containing a single

chromosome, it is possible that the culture was not in exponential growth for a long

enough time to rid the population of cells that were physiologically still in the state

of lag phase.
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Population Properties

To gain a deeper understanding of the state of the simulated population as it tran-

sitioned through the shift-up growth dynamics and why the HMG simulated LB

DNA distribution does not match the CH one, in Figure 4.5, the distributions of

the models parameters are plotted. The M9 distribution corresponds to the “seed”

population. It was generated assuming exponential growth using the HMG frame-

work. All the parameters of the model are predictable since they are defined under

the assumption of exponential growth. The age distribution matches well with the

theoretical DNA distribution of a population growing exponentially. Both the C

and D distributions return normally distributed populations and both volume and

DNA have distributions that match well with the CH ones.

As the cells entered the transition phase, the population volume stagnated,

where individual cells within the population stop growing. Although the portion

of newborn cells is reduced, illustrated by the diminished ratio of cells with an age

close to 0, the volume of the population decreased substantially. This is driven

by cells where previously flagged for division expending their D time and dividing

when the growth of the population stagnated. As a further consequence, newborn

cells in the transition phase are assigned new C and D values that, due to the

stagnation of growth, leads to their respective maximas of 253.15 and 134.78 min.

The DNA distribution followed the same pattern, where population chromosome

copy number contained cells that are not actively replicating; with integer number

of chromosomes of either one or two copy numbers.

Upon entering the next exponential phase under LB media, the volume his-

togram returned a very sharp increase as the population starts accumulating more

volume. The DNA content of the population also increased with the majority of

the population containing 3 chromosome equivalents. However, considering that the

volume of the population is so large, the DNA content was quite small. The M9

exponential distribution for example, contained between 1 and 5 µm3 and contained

between 1 and 6 chromosome equivalents. The LB distribution on the other hand

contained a major peak of cells with 9µm3 and yet the maximal DNA content was

6 chromosomes equivalent. The reason for such a discrepancy becomes clear if one

considers the C and D times distributions. The population was composed of many

individuals with transition period parameters, while growing in the new regime. In

the simulation, a cell in the transition period that is not growing would suddenly

see its volume increase sharply as it enters the LB culture. These cells would reach

critical mass quite quickly, but would still have a replication, segregation and divi-

sion rates from the transition period. As a consequence, it would take a significant
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amount of time before the cell divides and updates their C and D parameters to

the LB exponential rates. This is supported by the age distribution that returned

a lot of cells that are old enough that if one traces back to the time they where

born would correspond to the transition period. Nevertheless, the majority of the

population simulated in the LB regime was composed of cells with fast growing pa-

rameters with a significant portion containing 2 chromosomes that belong to cells

that are still expressing the transition phase parameters that the CH model does

not account for. It must be noted that the eclipse period here blocks a significant

number of initiation events that could be occurring due to the large volume accu-

mulation compared to the number of chromosomes, and this plays a large role in

the dictating dynamics of the population under this growth regime.
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Conclusions

Simulating the cell cycle heterogeneity of a bacterial culture growing in such a

sharply changing environment truly tests the accuracy of the HMG framework to

reflect the growth and cell cycle dynamics of a bacterial population. One charac-

teristic of this model is the error propagation from one population state to another.

Although the M9 exponential distribution HMG distribution (and CH) reasonably

fits with the measured DNA content, it underestimated the number of cells in the

culture with 2 and 1 chromosomes. Once growth stagnated in the transition phase

the individual cells completed currently replicating chromosomes and divided while

not initiating new replication forks. As a consequence, the population fell to discrete

peaks of integer amounts of DNA that is very much dependent on the exponential

state of growth. Because the DNA was overestimated in the previous state subse-

quently the stagnating phase DNA content would also have an overestimated DNA

content. In the shift-up experiment case, this phenomenon may be observed where

the transition phase HMG distribution missed a whole sub-population of cells with

one chromosome equivalent and where the frequencies of each peak did not match

each other.

Inaccuracies in simulating the DNA content of exponential growing popu-

lations illustrates a known difficulty in deducing the state of the population from

the OD growth curve (Stokke et al. [2012]). Indeed, external factors such as mea-

surement error, fitting procedure error and human error may skew the calculated

doubling rate of cultures, from which the cell cycle state and heterogeneity is cal-

culated from. Furthermore, the measured M9 DNA distribution may itself not be

extracted from a population that is in balanced-growth. Although the culture was

sampled when growing exponentially, it may be that the population was not in that

state for a long enough time to rid its population from members that where still

transitioning from the lag phase of growth. The same phenomenon explains why the

results of the LB HMG DNA distribution fits with higher accuracy the measured

distribution than the CH generated one. As Figure 4.5 implies, the measured DNA

distribution contains a significant portion of its population with cells that are in

a previous non-balanced state of growth, instead of the current balanced growth

state. It can be expected that with longer simulation time at the same growth rate,

the population would slowly tend towards the same DNA distribution as the CH

simulated one, as these individuals that have not updated their parameters would

divide and thus adopt the new parameters.

In conclusion, updating the cell cycle parameters upon division seems to be

a valid approach at approximating DNA distributions from such a dynamic growth
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condition. Although it is unlikely that the cells contain such a stringent control

mechanisms for the replication and segregation and division, formalising the cell

cycle in this manner explains the observation of rate-maintenance, and supports

the view that metabolically these physiological features of the cell are not directly

linked. More experimental work would be necessary to investigate the molecular

actors that control such mechanisms.

4.2 Optimisation to recA1 Mutants

4.2.1 The Problem

It is common practice to optimise for the C and D rates of the CH model to fit

exponentially growing populations to their measured DNA distributions (Stokke

et al. [2012], Michelsen et al. [2003]). Different bacterial strains may have different

rates of replication, segregation and division due to a number of different mutations

or versions of proteins involved in the cell cycle (see Section 3.2.2). Consequently, it

can be difficult to use the CH model to match quantitatively the cell cycle properties

of mutant forms of bacteria, with the same ease as WT MG1655 or Br strains from

which the models parameters have been calculated from (Keasling et al. [1995],

Dennis and Bremer [1974]).

This research will focus on the recA1 mutation, a version of the DNA recom-

bination protein commonly used to reduce its participation in homologous recom-

bination for the purposes of genetic manipulation. Although viable, recA1 causes

a range of downstream affects on the dynamics of chromosome replication, where

the rescue of stalled replication forks and the rescue of damaged DNA damage have

been identified as being the most severe (sketched in Figure 3.7). Because the dy-

namics of the rescue of DNA damage through this mutation has largely only been

qualitatively investigated, and because the TOP10 bacterial strain is widely used

in genetic manipulation experiments, it is of particular value to investigate if the

HMG modelling framework may be able to reflect said dynamics quantitatively. At

the time of writing, there has not been experimental quantification of the rate of

DNA damage, and type, that this mutation causes.

4.2.2 Methods

Parameter Sensitivity

To zero in on the most likely parameters that may influence population DNA dis-

tributions, sensitivity analysis was performed on all the parameters of the model
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Figure 4.6: Total-order index sensitivity analysis for the optimized parameters.
These sensitivities were calculated based upon an initial ensemble (SOBOL se-
quence) of 12000 parameter sets. The error bars represent the 90% confidence
intervals. For this analysis, a base case was generated by simulating exponential
growth, using the following parameters: C: 40.0 min, D: 20.0 min, Partition Noise:
0.24, Chance of DNA Damage: 3.034, Ratio of DNA damage: −1.652. There-
fore, the sensitivity indices plotted here represent the degree to which changing any
model parameter shifts the simulated DNA distribution (under exponential growth)
compared to the base case.
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(excluding the noise parameters). As presented in Figure 4.6, the parameter that

influenced the greatest the DNA distribution of a population is the segregation and

division rate (D). Given that the volume of the cell dictates the DNA content,

through the critical mass constant, any change in the D times would cause a cell

accumulating more mass once a replication event has been accomplished, and con-

sequently would cause daughter cells to be larger with a longer D time. The ratio of

“chance of DNA damage” has the second largest influence on the DNA distribution

of a population, with the replication time (C) having almost the same impact. This

parameter sensitivity run does not show the fact that both C and D parameters are

dependent on growth rate, where with shorter doubling times a larger replication

time would have a larger impact on the subsequent DNA distribution. Nonetheless,

this method gives a good overview of the weight of each parameter. Surprisingly,

the partition noise (the ratio of chromosomes inherited by daughter cells upon di-

vision) has very little influence on the DNA dynamics of the population, and thus

this parameter was ignored in the optimisation process. This is caused by the ho-

moeostatic nature of critical mass. For example, consider a cell that contains 4

complete chromosomes, and a volume of 4µm3 (in this scenario critical mass is 1 for

simplicity) dividing into daughter cells. If partition noise is such that one daughter

inherits one chromosome and the other 3 chromosomes, but the volume is divided

equally, then the cell with a single chromosome would initiate replication immedi-

ately upon division, and after the eclipse period another quickly thereafter (with

a birth size of 2µm3, it supports the initiation of two oriC ). Meanwhile the other

cell with 3 chromosomes and a volume of 2µm3 would require the accumulation

of 1µm3 before initiating replication. The result is the cell that inherited a single

chromosome would create daughter cells with a single but already replicating chro-

mosome while the other cell would create daughter cells with 3 chromosomes that

would take a longer time to divide. With time these differences would attenuate

themselves depending on the growth rate.

Objective Function

For reliable mathematical optimisation one must define a valid objective function

and given the complexity of the problem at hand, it is critical that it is well posed.

As specified in the previous section, the parameters that were included in the op-

timisation protocol are C, D and the two DNA damage parameters “chance DNA

damage” and “ratio DNA damage”. Because as reported by Keasling et al. [1995]

and measured by others (Michelsen et al. [2003], Stokke et al. [2012], Wallden et al.

[2015]), the C and D rates are a function of the growth rate of the population and
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thus of the cell, and because the goal of this exercise is to explore the dynamics of

bacterial populations throughout a range of different growth regimes with changing

population growth rates, it was required to express these two parameters in their

functional forms:

C(µ) = C1 · e−C2µ + C3 (4.1)

D(µ) = D1 · e−D2µ +D3 (4.2)

the parameters for both these physiological features are C1, C2, C3, D1, D2, D3.

Both of these functional forms are the same as expressed by Keasling et al. [1995], i.e.

one phase exponential decay functions, where in this case the dependent variable,

growth rate, is expressed in instantaneous (per minute) instead of a fraction of

doubling time as the authors report (i.e. 1
τ per hour). In this functional form, C1

and D1 correspond to part their maxima values, where when µ = 0.0, C(0) = C1+C3

and D(0) = D1 + D3. The parameters C2 and D2 are the rate constants, where

the half-life of the equation is = ln(2)/C2 and = ln(2)/D2. C3 and D3 are the

plateau values. This type of equation is commonly used in many chemical and

biological processes to describe the behaviour of molecular processes where the rate

is proportional to the amount left of a central chemical, such as the dissociation of a

ligand to a receptor (Motulsky and Christopoulos [2004]). Regarding the other two

DNA damage parameters, because there is no evidence that their rate is a direct

consequence of the growth rate of the cell, there is no need to optimise them in

relation to the growth rate of the cell. In this implementation, the rate of DNA

damage is only indirectly a consequence of growth rate, in as much as the increase

in occurrence of DNA replication events increases the possibility that DNA damage

may occur.

Due to the biological realism of these parameters, the following boundary

conditions were set to avoid the optimisation algorithm finding biological infeasible

minima:

C(µ) ≥ 30min (4.3)

D(µ) ≥ 15min (4.4)

C(µ) > D(µ) (4.5)

Chance of DNA damage > 2.75 (4.6)

The C and D times minima are based on the lowest measured times recorded in the
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literature (Michelsen et al. [2003], Wallden et al. [2015], Keasling et al. [1995], Stokke

et al. [2012]). The observation that the replication time must strictly be larger than

segregation time is also based on literature accounts of measured replication and

segregation times. From all reports (Figure 3.6 and 3.9), Michelsen et al. [2003] only

documented one instance of a replication time (C) smaller than the segregation and

division time (D) of the cell (a difference of only one minutes). This difference can

be accounted for by the standard error of the quantification method used.

The boundary condition for the “Chance of DNA damage” parameter has a

set minima. This is done for purely practical reasons, since a value of DNA damage

that is too large would lead the cell to rarely experience a complete replication event,

would lead to the stagnation of the simulation and thus lose optimisation time.

Indeed, a value of 2.75 and simulations with dt = 0.01 would cause a ≈ 30% chance

that a replicating chromosome experiences DNA damage. Tests with the parameter

“chance of DNA damage” set at such a high value causes the simulation to stagnate.

The “Ratio DNA damage” represents the balance between DNA damage being either

a replication bubble collapse that leads to the collapse of the replicating strand or

double stranded break that leads to the degradation of the whole chromosome (See

Figure 3.7). A value of 0.0 would generate an equal portion of the two, where a

negative value would lead to more replication fork collapse than whole chromosome

degradation and a positive value the opposite.

In the optimisation protocol, every measured DNA distribution along the

growth curve is compared to its simulated counterpart, in the same chronological

order, as they progress the growth curve. In addition, similar to the raw data given

by the flow cytometer, the simulation returns a series of discrete DNA values from

each member of the population. To enable the analysis of the raw data, it is common

practice in analysis of the flow cytometry data to bin the output into histograms

(Michelsen et al. [2003]). To enable for a quantitative comparison between the mea-

sured and simulated results, the same bins were used for the simulation results and

the flow cytometer DNA. To compute the difference between the two, a previously

reported functional form is used to define an objective function for our optimiza-

tion (Skarstad et al. [1985]) that quantitatively compares the difference between two

histograms, called the “similarity score”:√√√√ m∑
i=1

(
√
yi −

√
Ni)2

m− 1
(4.7)

where i is the bin number, yi and Ni are normalised value of bin i for the measured

and simulated values respectively, and m is the total number of bins. Under such a
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formulation, the lower the score the more similar the two histograms being compared

are, where a value of 0 would represent perfectly similar histograms.

Genetic Algorithm

Because of the nature of the problem, the existence of a global optima is not guar-

anteed. In such a situation, a heuristic optimisation algorithm seems the most

appropriate approach to finding the best possible solution (Whitley [1994]). To this

end a genetic algorithm was used to optimise the model to fit the measured DNA

content along the growth curve. This optimisation method contains clear advan-

tages (reviewed in Section 1.3.3). It is multi-modal, that is, it may find multiple

local minima. Indeed, given that the problem has high dimensions (in this case 8 pa-

rameters), it is unlikely that any optimisation method would find the global minima,

if any exists (Whitley [1994]). Furthermore, to increase the chance of finding a min-

ima, a SOBOL sequence was generated and evaluated at the start of the simulation,

where the top sequences were used as the start to the optimisation algorithm.

A Gaussian mutation function was used as the operator to the genetic al-

gorithm to produce variation within the sequences, with µ = 0.0, σ = 0.08. The

probability that an individual being mutated was set to = 0.75, whose function used

the native Python random function, generating a pseudo-random number with the

range [0.0, 1.0). The result is a probability of 75% that any given member of the se-

quence is mutated. To generate crossover, a two-point crossover function was used,

where two members of a sequence are mated with another while keeping their posi-

tion. For example, the C1 of a sequence would be switched with the C1 of another

sequence.

4.2.3 Training

Growth Curves

The identified exponential sections of the growth curves return doubling rates that

are sound considering their respective growth curves. The fastest growth rate be-

longed to the culture grown in LB at 230 rpm with a doubling time of 47.92 min.

The culture grown in M9 at 230 rpm returns the second fastest growing population

with a doubling rate of 54.78 min, and the culture grown in M9 at 23 rpm but

slower doubling time of 59.14 min. The last and slowest growing culture was grown

in LB at 23 rpm with a doubling time of 167.88 min, and is surprising not only by

its large difference in doubling rate compared to the others but also to the fact that

the culture was grown in a richer media than the M9 culture at a similar shaking
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rate. However, considering the input OD, it was difficult to find a section of the

growth curve where the culture was clearly growing exponentially. There was most

likely an experimental error that caused this growth condition that should be ideal

for growth, to not be. Thanks to the nature of the fitting and simulation method,

since no assumptions are made as to what should be the dynamics of a population

in non-balanced growth, the simulation should accurately reflect the nature of the

different parameters.

Experimental Results

The two cultures grown in LB at different shaking rates (230 rpm and 23 rpm) were

used to train the model, with the histograms presented in the top of Figure 4.8.

TOP10 bacterial cells grown in LB at a shaking rate of 230 rpm returned an expo-

nential DNA distribution with relative high DNA content of 3 to 5 chromosomes.

As the population entered the transition phase the DNA content of the population

slowly decreased, where at around 6.5h, the DNA content settled to a population

with a majority of cells with 1 and 2 chromosomes. Still the population had a sub-

stantial number of cells that were actively replicating their chromosomes, as shown

from the large tail following the 2 chromosomes peak and the substantial numbers of

cells between 1 and 2 chromosomes peaks. From Figure 4.7, this corresponds quite

rigorously to the time when the culture entered an early stationary phase. As the

culture progressed through the stationary phase, the bacterial population contained

a growing number of cells with 1 and 2 chromosomes. This makes sense consider-

ing that the culture’s growth has stagnated and thus the bacterial cells within the

culture that were actively replicating their chromosomes with a chromosome copy

number of between 2 and 4 chromosomes would have created an offspring with 1 or 2

chromosomes equivalents while the ones that were not replicating their chromosomes

would not initiate a new replication event.

The culture grown at a shaking rate of 23 rpm, on the other hand, contained

almost the same DNA content throughout the growth curve, that only slightly in-

creases as the culture progressed through the stationary phase of growth. The most

likely explanation is that oxygen availability being the rate limiting factor in the

respiration of the cells in this particular growth condition, would cause the carbon

content of the LB solution to remain high enough to support the culture for a longer

amount of time than at higher oxygenation. This behaviour is also observed when

the same experiment was performed with WT K-12 cells also grown in LB at the

same shaking rate (Figure 4.1b).
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Optimisation Results

The results of the optimisation for the functional forms of C and D are presented

in Figure 4.9. The maxima value for the original and optimised functional forms

are 231.4 and 250.02 respectively. This translates to a difference of 18.62 for the

maxima C time for a cell that is not growing. Furthermore, the half-life values

of the equation are 304.41 and 319.7 for the original and optimised respectively.

The plateau values are 40.0 and 60.97 respectively and show a difference of 20.97.

Considering the nature of C on the simulated population, the effect of a change in

the rate of replication at faster growth rates controlled by the plateau value would

have a larger impact on the populations DNA content than one at slower growth

rates. These results are coherent with the observations that recA1 mutation causes a

reduced frequency in the rescue of damaged DNA, where one can expect that stalled

replication forks caused by damage that is not swiftly repaired, would lead to an

increase in the overall replication time of the population (Zyskind et al. [1992]).

On the other hand, the optimised D functional form returns virtually the

same plateau value, with a difference between the optimised and original of only

0.07. The major differences are between the maxima value of 80.89 and 100.59 for

the original and optimised respectively, that return an increase of 20.3, very similar

to the maxima increase in C. However, this increase is more significant due to the

smaller original value and since the sensitivity analysis shows that any change in

D has the largest impact on the downstream DNA content. As for the half-life,

the original functional forms returns a value of 121.3 while the optimised half-life is

137.07. Again, even if this seems like a small value, because of the high impact of

the D value on the DNA content of a population, an increase in the D time at faster

growth rates would lead to a larger accumulation in the DNA content of the cell.

These results of the optimisation are particularly interesting since they are closer

to the literature fit to the concatenation of reported D times presented in Figure

3.9, that may suggest that the functional form from Keasling et al. [1995] may be

inaccurate.

To illustrate the difference the parametrisation of the model makes on the

output DNA content, and the improvement of the optimisation, a simulation of the

HMG framework using the parameters as reported by the literature was plotted

along with the optimised simulation DNA content, and the similarity score between

the simulated and measured DNA content was reported on the bottom subplots on

Figure 4.8. By literature parameters, it is implied that the DNA degradation pa-

rameters created for recA1 mutants are not used in this simulation procedure. For

the culture grown at a shaking rate of 230 rpm, the HMG exponential DNA distri-
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bution using the literature parameters did not mirror the measured population DNA

content. The former returned between 3 and 5 chromosomes, while the simulation

using parametrisation from the literature returns a DNA content of 1 and 3 chromo-

somes. Assuming that there were no errors in both measurements and estimation

of the exponential doubling rate from the OD growth curve, the culprit must be

the parametrisation of the model. Although the difference is slight, the optimised

parameters returned a DNA content that is larger than the original parameters,

with a DNA content in between 2.5 and 3.5. This increase may be accredited to

the longer C time as described above. As the simulation progresses through the

transition phase and stationary phase, at a shaking rate of 230 rpm, the DNA con-

tent is maintained until 6.5h post-inoculation. At that time, the OD growth curve

starts to stagnate as the population enters the stationary phase. Before that, the

DNA distribution is the same as the exponential distribution, unsurprising since the

growth curve in Figure 4.7 returns a doubling rate that decreases only slightly.

The culture grown at a shaking rate of 23 rpm (Figure 4.8) returns a DNA

content in between 1 and 2 chromosomes for the exponential growing population,

and considering a doubling rate of 167.88 minutes, this fits well with CH model

DNA distribution. Nonetheless, the optimised exponential DNA distribution re-

turns a better fit to the measured one, where again the improvement is small. Both

simulated distributions during progress through the stationary phase are quite un-

changing, until the end where the DNA content increases slightly. Throughout the

simulation the optimised parameters return a better fit than the original parameters,

especially for the last measured time points in the simulation. The measured DNA

content never returns DNA distributions less than 1 chromosome equivalent while

both simulated populations do. The reason why the optimised parametrisation is

better being mainly due to minimal DNA content of each histogram being larger

than the original parameters. Lastly, the DNA distribution at 10h post-inoculation

is very much inaccurate with the original parameters, while optimised parametrisa-

tion is much more accurate.

The bottom sub-plot in Figure 4.8 shows the similarity score of the fits to

the measured data as specified in Equation 4.7. The line plot represents the mean

value, with its standard deviation. Although not consistently better, the optimised

parameters for the model report a better fit than the original parameters.

90



F
ig

u
re

4
.8

:
T

ra
in

in
g

o
f

th
e

H
M

G
si

m
u

la
to

r
fr

am
ew

or
k
.

T
h

e
H

M
G

si
m

u
la

to
r

w
as

“f
ed

”
gr

ow
th

cu
rv

es
fo

r
T

O
P

10
ce

ll
s

gr
ow

n
in

L
B

,
sh

ak
en

at
2
30

rp
m

or
2
3

rp
m

(F
ig

u
re

4.
7)

,
an

d
si

m
u

la
te

d
D

N
A

d
is

tr
ib

u
ti

on
s

w
er

e
co

m
p

ar
ed

w
it

h
th

os
e

w
h

ic
h

w
er

e
m

ea
su

re
d

em
p

ir
ic

al
ly

.
T

h
e

m
ea

su
re

d
D

N
A

d
is

tr
ib

u
ti

on
s,

sh
ow

n
h

er
e,

ea
ch

re
p

re
se

n
t

a
si

n
gl

e
ex

p
er

im
en

t,
ea

ch
of

w
h

ic
h

is
re

p
re

se
n
ta

ti
ve

of
tw

o
or

m
o
re

in
d

ep
en

d
en

t
ex

p
er

im
en

ts
.

T
h

e
fi

rs
t

co
lu

m
n

w
it

h
in

ea
ch

h
ea

t
m

ap
re

p
re

se
n
ts

th
e

ex
p

on
en

ti
al

gr
ow

th
p

h
as

e
(i

n
d

ic
at

ed
b
y

th
e

a
st

er
is

k
(*

))
,

a
n

d
al

l
su

b
se

q
u

en
t

ti
m

e
p

oi
n
ts

re
p

re
se

n
t

p
os

t-
ex

p
on

en
ti

al
gr

ow
th

.
T

h
e

si
m

u
la

to
r

w
as

ru
n

u
si

n
g

tw
o

d
iff

er
en

t
m

o
d

el
s

a
n

d
p

a
ra

m
et

ri
sa

ti
on

s:
th

e
fi

rs
t

m
o
d

el
w

as
b

as
ed

u
p

on
a

p
ri

or
d
es

cr
ip

ti
on

of
ex

p
on

en
ti

al
gr

ow
th

b
y

K
ea

sl
in

g
et

al
.

[1
99

5]
,

w
h

ic
h

o
m

it
s

an
y

co
n

se
q
u

en
ce

s
of

R
ec

A
m

u
ta

ti
on

,
an

d
th

e
se

co
n

d
(u

p
d

at
ed

an
d

op
ti

m
iz

ed
)

m
o
d

el
in

co
rp

or
at

ed
ou

r
d

es
cr

ip
ti

on
of

th
e

co
n

se
q
u

en
ce

s
o
f

R
ec

A
m

u
ta

ti
o
n

w
it

h
p

ar
am

et
ri

c
op

ti
m

iz
at

io
n

.
S

im
il

ar
it

y
sc

or
es

in
d

ic
at

e
th

e
d

eg
re

e
to

w
h

ic
h

ea
ch

p
re

d
ic

ti
on

m
a
tc

h
es

th
e

ob
se

rv
ed

D
N

A
d

is
tr

ib
u

ti
o
n

,
u

si
n

g
a

sc
or

in
g

fu
n

ct
io

n
d

es
cr

ib
ed

in
E

q
u

at
io

n
4.

7
(l

ow
er

sc
or

es
re

p
re

se
n
t

b
et

te
r

fi
ts

).
T

h
e

so
li

d
li
n

es
o
n

th
e

tw
o

b
ot

to
m

p
a
n

el
s

re
p

re
se

n
t

th
e

m
ea

n
si

m
il

ar
it

y
sc

or
e

ac
ro

ss
th

e
ti

m
e

co
u

rs
e,

an
d

th
e

sh
ad

ed
b

ox
es

re
p

re
se

n
t

th
e

st
an

d
a
rd

d
ev

ia
ti

on
of

th
es

e
sc

or
es

ac
ro

ss
th

e
ti

m
e

co
u

rs
e.

T
ak

en
fr

om
d

u
L

ac
et

al
.

[2
01

6]
.

91



In
st

an
ta

ne
ou

s G
ro

w
th

 R
at

e 
(μ

, m
in

-1
)

O
pt

im
iz

ed
 C

Li
te

ra
tu

re
 C

O
pt

im
iz

ed
 D

Li
te

ra
tu

re
 D

Time (min)

F
ig

u
re

4.
9:

R
es

u
lt

s
o
f

th
e

op
ti

m
is

at
io

n
of

th
e

fu
n

ct
io

n
al

fo
rm

s
of

C
an

d
D

co
m

p
ar

ed
w

it
h

th
e

K
ea

sl
in

g
et

al
.

[1
99

5]
fu

n
ct

io
n

al
fo

rm
s.

92



4.2.4 Results

Validation

To validate the optimisation, TOP10 cells in M9 minimal medium supplemented

with glucose were grown at the shaking rates of 230 rpm and 23 rpm (Figure 4.10).

The overall dynamics of the populations as they progressed through the growth

curve are similar as grown in LB (Figure 4.8). At a shaking rate of 230 rpm, the

exponential DNA distribution returns a chromosome copy number between 2 and

4. As the population transitions to the stationary phase, the DNA content slowly

descends to a majority of bacteria with 2 chromosomes. When in stationary phase,

a growing number of the population contains cells with a single chromosome, until

the end of the experiment, where the population is composed of an equal part of

cells with 1 and 2 chromosomes equivalent and a minority of cells with more. The

exponential DNA distribution returns a population between 1 and 3.5 chromosomes,

a distribution maintained for the period of the transition phase. Upon entering

the stationary phase, the DNA content slowly decreases as the majority of the

population contains cells with 2 chromosomes. At the end of the stationary phase,

a sub-population of bacteria with 1 chromosome emerges.

The optimised parameters provide a significant improvement over the orig-

inal parameters to emulate the measured DNA content, as shown in the bottom

similarity score sub-plots. At a shaking rate of 230 rpm, simulation of the expo-

nential distribution using the original parameters returns an underestimated DNA

content of 2 chromosomes. The optimised parameters, on the other hand, returns a

DNA content that is also centred around 2 chromosomes, but has significant larger

portion of its population with more and less as per the measured distribution. With

both the optimised and the literature parameters, the DNA content remained the

same for the first three hours after the exponential phase, as the cells are in the

transition phase of growth. Upon entering the stationary phase, both simulated

DNA distributions slowly reduce their DNA content to 1 chromosome equivalent,

with a small overlap at 2 chromosomes. The optimised parameters showed a greater

number of bacteria with 2 chromosomes equivalent compared to the original param-

eters and lead to a better similarity score to the measured distribution compared

with the original parameters.

The exponential measured DNA distribution at 23 rpm contained a majority

of cells with 2.5 chromosomes equivalents, but with a large tail above that peak. The

original parameter simulation return the major peak at 2 chromosomes, that is not

as spread as the measured DNA content. The optimised parameters on the other

93



F
ig

u
re

4
.1

0:
V

al
id

a
ti

o
n

o
f

th
e

H
M

G
si

m
u

la
to

r
fr

am
ew

or
k
.

T
h

e
H

M
G

si
m

u
la

to
r

w
as

“f
ed

”
gr

ow
th

cu
rv

es
fo

r
T

O
P

10
ce

ll
s

gr
ow

n
in

M
9,

sh
a
ke

n
at

2
30

rp
m

or
23

rp
m

(F
ig

u
re

4.
7)

,
an

d
si

m
u
la

te
d

D
N

A
d

is
tr

ib
u

ti
on

s
w

er
e

co
m

p
ar

ed
w

it
h

th
os

e
w

h
ic

h
w

er
e

m
ea

su
re

d
em

p
ir

ic
al

ly
.

T
h

e
m

ea
su

re
d

D
N

A
d

is
tr

ib
u

ti
on

s
sh

ow
n

h
er

e
ea

ch
re

p
re

se
n
t

a
si

n
gl

e
ex

p
er

im
en

t,
ea

ch
of

w
h

ic
h

is
re

p
re

se
n
ta

ti
ve

of
tw

o
or

m
o
re

in
d

ep
en

d
en

t
ex

p
er

im
en

ts
.

T
h

e
fi

rs
t

co
lu

m
n

w
it

h
in

ea
ch

h
ea

t
m

ap
re

p
re

se
n
ts

th
e

ex
p

on
en

ti
al

gr
ow

th
p

h
as

e
(i

n
d

ic
at

ed
b
y

an
as

te
ri

sk
(*

))
,

a
n

d
al

l
su

b
se

q
u

en
t

ti
m

e
p

oi
n
ts

re
p

re
se

n
t

p
os

t-
ex

p
on

en
ti

al
gr

ow
th

.
T

h
e

si
m

u
la

to
r

w
as

ru
n

u
si

n
g

tw
o

d
iff

er
en

t
m

o
d

el
s:

th
e

fi
rs

t
m

o
d

el
w

as
b

as
ed

u
p

o
n

a
p

ri
or

d
es

cr
ip

ti
on

of
ex

p
on

en
ti

al
gr

ow
th

b
y

K
ea

sl
in

g
et

al
.

[1
99

5]
,

w
h

ic
h

om
it

s
an

y
co

n
se

q
u

en
ce

s
of

R
ec

A
m

u
ta

ti
on

,
a
n
d

th
e

se
co

n
d

(u
p

d
at

ed
an

d
op

ti
m

iz
ed

)
m

o
d

el
in

co
rp

or
at

ed
ou

r
d

es
cr

ip
ti

on
of

th
e

co
n

se
q
u

en
ce

s
of

R
ec

A
m

u
ta

ti
o
n

w
it

h
p

a
ra

m
et

er
s

o
p

ti
m

iz
ed

b
as

ed
u

p
on

gr
ow

th
in

L
B

.
S

im
il

ar
it

y
sc

or
es

in
d

ic
at

e
th

e
d

eg
re

e
to

w
h
ic

h
ea

ch
p

re
d

ic
ti

o
n

m
at

ch
es

th
e

o
b

se
rv

ed
D

N
A

d
is

tr
ib

u
ti

on
,

u
si

n
g

a
sc

or
in

g
fu

n
ct

io
n

d
es

cr
ib

ed
in

E
q
u

at
io

n
4.

7
(l

ow
er

sc
or

es
re

p
re

se
n
t

b
et

te
r

fi
ts

).
T

h
e

so
li

d
li

n
es

o
n

th
e

tw
o

b
ot

to
m

p
an

el
s

re
p

re
se

n
t

th
e

m
ea

n
si

m
il

ar
it

y
sc

or
e

ac
ro

ss
th

e
ti

m
e

co
u

rs
e,

an
d

th
e

sh
ad

ed
b

ox
es

re
p

re
se

n
t

th
e

st
a
n

d
ar

d
d

ev
ia

ti
o
n

of
th

es
e

sc
or

es
ac

ro
ss

th
e

ti
m

e
co

u
rs

e.
T

ak
en

fr
om

d
u

L
ac

et
al

.
[2

01
6]

.

94



hand returned a very close fit, with not only a majority of cells with 2.5 chromosome

equivalents, but with a DNA content that is quite spread around that peak. This is

reflected through a lower similarity score. Both the original and optimised parame-

ters returned a DNA content that remained the same as the exponential distribution

to 6.5h. At that point the DNA content starts to diminish until reaching a majority

of cells with one chromosome. The optimised parameters returned a better fit for two

reasons. First the transition to the population with a single chromosome happened

later as per the measured DNA distributions, where for the original parameters the

population fell to a majority of cells with a single chromosome within the span of an

hour. In both the measured and optimised DNA content this happened much more

gradually. The optimised parameter showed a more progressive shift of a popula-

tion of 2.5 to 2 chromosomes from exponential to 7.5h post-inoculation and when

in long term stationary phase, more of the population contained 2 chromosomes as

the measured one.

DNA Degradation

The results of the optimisation for DNA damage returned the following minima:

Chance of DNA damage = 3.907 (4.8)

Ratio of DNA damage = −0.777 (4.9)

These results may be translated as an overall 0.467% chance that a repli-

cating chromosome experiences any type of DNA damage. Taking into account the

“Ratio of DNA damage”, this may further be translated as a 0.365% chance that a

replicating chromosome experiences a collapse in the replicating strand and a 0.102%

chance that the chromosome degrades. Although it may seem that these numbers

are small; simulation of a population using these parameters, depending on the

growth rate, causes the emergence of roughly 2% of anucleate cells. Zyskind et al.

[1992] reports from 2% to 10% of RecA mutant population developing anucleate

cells, depending on the version of the RecA mutant.

To experimentally determine if a cell strain returns the aberrant chromosome

copy number (as described in Section 3.2.2), it is common practice to perform a drug

treatment on an exponentially growing bacterial population with two antibiotics,

rifampicin and cephalexin. The former stops the initiation of new replication forks,

while allowing the ongoing replication forks to complete and the latter stops the cell

dividing (Michelsen et al. [2003], Stokke et al. [2012], Hill et al. [2012]). The result is

a population with integer numbers of chromosomes with no ongoing replication forks.
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Using Skarstad and Boye [1993a] measured data of drug treated WT and recA1 E.

coli, the HMG model was used to mimic the experimental steps of the authors and

see if the simulated outcome matched the measured one in the following way. First

the population was grown under assumption of exponential growth, to a 10000 cells.

Upon reaching that number, the model simulates for drug treatment by assigning

an unachievable critical mass to stop the occurrence of new replication forks, and

an unachievable D time to stop the cell dividing. The simulation progresses until

all replication forks complete to assure that the simulated population returns only

integer numbers of chromosomes. The results are presented in Figure 4.11.

The scatter plots represent the reproduction of Skarstad and Boye [1993a]

Figure 2.A. for WT MG1655 (orange) and Figure 2.E for ALS972 (blue) strains (a

RecA mutant). The WT strain contains almost exclusively individual bacteria with 2

and 4 chromosomes. There is a small number of cells with 3 chromosome equivalents,

caused by the stochastic nature of chromosome partitioning, chromosome initiation

and replication progression that may well lead the populations to contain individuals

with non 2n number of bacteria. The mutant RecA strain on the other hand clearly

expresses the aberrant chromosome copy number where the population contains a

significant number of cells with 3 chromosome equivalents and especially anucleate

cells.

The bar chart represents the simulated population using the original pa-

rameters (orange) as per Equation 3.11, or the optimised parameters (blue), after

exponential growth with τ = 40.0 min and a virtual drug treatment. The optimised

parameters returned a significant higher number of cells with 3, 1 chromosomes and

anucleate cells, while the majority of the population still contains two chromosomes

equivalents. The simulation using the original parameters on the other hand re-

turned a majority of cells with 2 and 4 chromosomes, with very few cells with 1

and 3 chromosomes and no anucleate cells. The latter correlates well with mea-

sured DNA content. The mutant simulation and measured did not have the same

frequency of each individual chromosome numbers. This is perhaps evidence that

the rate of DNA damage from the optimised parameters is too small compared to

the experimental reality.
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4.3 Discussion and Conclusions

The HMG simulation protocol successfully reproduces the heterogeneity of pop-

ulations as they progress through disparate growth regimes. Section 4.1.1 using

literature parametrisation successfully simulated measured DNA distribution from

exponential to late stationary growth. This demonstrates and confirms a few in-

teresting observations. The first is the robustness of the mechanistic description

of the cell cycle in the CH model. Although there may be some doubts on the

molecular candidates and their dynamics in the control of the cell cycle (Section

1.2.1), the CH model is a robust formal summary of the main steps in the cell cycle.

Features of rate-maintenance that were correctly simulated using HMG show that

the way the parameters are updated and the eclipse period are descriptive enough

to reflect such unusual growth dynamics. Next, the injection growth strategy being

an accurate method to simulate for the volumetric growth of bacterial populations

outside of balanced growth shows the central importance of the link between the cell

cycle state of bacterial cells from their volume accumulation. This link is very much

connected to the fundamental observation that the macromolecular contents of bac-

terial populations can be determined from the growth rate of the population alone

(Bremer et al. [1996]). And growth rate is simply defined as the rate of volumetric

increase of a population, or of a single cell, where this rate is enough to explain such

a fundamental metabolic behaviour of the cell. The question then becomes what is

the molecular mechanism that drives this behaviour?

The most widespread view is that bacterial cells actively monitor their envi-

ronment and report changes to the metabolism of the cell that subsequently react

to reported changes (Weart et al. [2007]). These include all types of stress responses

such as the heat shock response that causes the expression of various proteins, such

as chaperones, to protect the cell from the protein denaturation caused by the in-

creased temperature (Alberts [2017]). This also involves the detection of carbon

source, for example the infamous lac operon, that detects the presence of lactose as

a carbon source and in the absence of glucose, causes the expression of proteins that

enable the bacteria to transport and metabolise this specific carbon source (Schu-

mann [2006]). A more recent proposition is the existence of “flux sensors”, where

the metabolic fluxes would first passively be altered due to changes in abundance

in a particular nutrient and then these changes would be sensed by “flux sensors”

who report the flux rate downstream to the cell’s metabolism (Weart et al. [2007]).

Such a control mechanism would logically fit well with the manner in which the cell

cycle is described. Indeed, the injection growth method also increases the volume
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of individual cells from the total population OD in a passive manner, and the cell

cycle model then calculates the cell cycle state based on the volume accumulation

patterns. The dissociation between the volume increase and the metabolism of the

cell, and the causality from volume increase to the metabolic patterns seem to reflect

correctly how the cell is organised.

A difficulty involved the convolution of simulated DNA distributions to en-

able the quantitative comparison to measured ones. Indeed, because the DNA dis-

tributions were measured using flow cytometry, a fluorescence microscopy technique,

measurements of a discrete amount of DNA stained with DAPI or Hoetch returns a

spread that is normally distributed (Section 2.2.1). As a consequence, one needs to

convolute the DNA content from the simulation to enable the quantitative compari-

son. To perform such an action, the spread of the distinct peaks were measured after

24h of incubation, where the majority of the population returns integer amounts of

chromosomes. It was observed that these standard deviations of the Gaussians fit to

the peaks of integer amounts of chromosomes were linearly spread with the channel

increase returned by the flow cytometer. However, the results of the spread may

cause distinct and discrete DNA contents to overlap upon convolution, and might

not return precisely the same noise convolution.

Despite these hurdles, the optimisation method returned sound minimas.

Functional forms of the replication time (C) returned an increase in 21 min from

the original functional forms. Considering the nature of the recA1 mutation, that

produces a functional but reduced WT function in its SOS repair mechanism, repli-

cation errors would either fail to be repaired as we have implemented with the

DNA damage parameters, or would reasonably take a longer time to be corrected

as per the optimised C times. Furthermore, the results of the DNA damage return

sound values (Section 4.2.4). Although one would need to experimentally deter-

mine the rate of replication fork collapse and whole chromosome degradation for

this particular mutant strain, the optimisation results poses, soundly, that there is a

higher likelihood that a cell experiences replication fork collapse compared to whole

chromosome degradation (Michel et al. [1997], Kuzminov [1995], Goodman [2000]).

Lastly the optimised segregation rate (D) returns a functional form that resembles

the one as reported from the concatenation of literature D rates (Figure 3.9), where

at slower growth rates the D times reported by Keasling et al. [1995] are much lower

than both the optimised and the literature ones.
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Chapter 5

Predicting Cell Cycle and SGC

Properties Throughout

Disparate Growth Regimes

This chapter explores some of the ways the HMG model may be used to either

predict or calculate the dynamics of different aspects of the cell cycle. To illustrate

the predictive capabilities, the copy number of a chromosomal gene based on its

location and the input growth curve was calculated. Then to explore some the

potential uses of this approach to synthetic biology, an ODE solver was implemented.

The repressilator was used as an example and simulated in each cell in parallel with

the mechanistic model of the cell. The effects of two inherently cell cycle properties,

gene copy numbers and partition noise, on the repressilator are explored.

5.1 Determining Chromosomal Gene Copy Number

Biological noise may be categorised as being either intrinsic or extrinsic relative

to the system of interest. In short, intrinsic noise may be qualified to be “local”,

that is, stochasticity inherent to chemical reactions. Simulating such behaviours is

well characterised theoretically through the use of stochastic simulations, such as

the Gillespie algorithm (Gillespie [2007], Swain et al. [2002]). Extrinsic noise on

the other hand includes all other sources that may influence its dynamics. Because

of the large potential sources of extrinsic noise, it can be difficult to quantitatively

determine the influence of an individual source of extrinsic noise over another (Swain

et al. [2002]). In this chapter the influence of different aspects of the cell cycle as

a source of extrinsic noise on a given ODE is investigated through the use of the
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HMG modelling strategy.

Gene copy number may have detrimental affect on the organism. For exam-

ple, a human with an extra copy of chromosome 21 would develop Down’s Syndrome,

a condition caused by a metabolic shift due to the extra copy of this chromosome.

Although bacteria commonly have many versions of chromosomes that do not seem

to have such adverse effects, subtantial experimental evidence suggests that the

spatiotemproal location of a gene along the chromosome can have effects on its ex-

pression patterns (Slager and Veening [2016], Sobetzko et al. [2012], Couturier and

Rocha [2006]). Bryant et al. [2014] using a simple reporter cassette inserted at dif-

ferent positions along the chromosome, measured their corresponding outputs. The

authors report up to a 300-fold differences in expression based on the location of

the cassette. Although the authors conclude that copy number was not the sole

culprit for these variations in expression, this combined with the natural organisa-

tion of genes along the bacterial chromosomes suggests that the location of the gene

along the chromosome is an aspect that needs to be taken into consideration for

robust predictions on its expression patterns (Sobetzko et al. [2012]). Furthermore,

evidence suggests that due to chromosome compaction and folding into nucleoids,

parts of the chromosome that are more exposed than others have been shown to

have an effect on gene expression (Couturier and Rocha [2006]).

Because of chromosome replication, the amplitude and periodicity of a gene

copy number changes over the course of the cell cycle; the dynamics of which depend

on its location and on the dynamics of the cell cycle and leads to what is referred to

as trasnsient gene dosage (Slager and Veening [2016], Couturier and Rocha [2006]).

Bioinformatics investigation of chromosomal gene location based on their expression

patterns throughout the cell cycle reveals that genes are naturally organised so

that ones highly expressed in exponential growth are located closer to the oriC

than ones more important in the stationary phase of growth located closer to the

terC (Sobetzko et al. [2012]). For example, the NAP’s that constitute the family

of proteins that are responsible for the E. coli nuclei, are generally located close

to the oriC (Sobetzko et al. [2012]). Likewise, genes with similar functions have

been reported to be clustered together on the chromosome of bacteria (Slager and

Veening [2016]). It is theorised that due to the single origin of replication with bi-

directionality of the chromosome replication, the transient gene dosage effect causes

the chromosome to naturally evolve in this fashion keeping similar gene dosage for

a given cellular function (Slager and Veening [2016]).

Due to the natural organisation of the bacterial chromosome, and the poten-

tially heterogeneous expression levels due to the gene copy number differences under
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various growth conditions and within members of a same population, it can be of

particular value to be able to calculate this effect. With the CH model, one is able to

determine the gene copy number of a gene based on its relative location to the oriC,

but only for exponentially growing populations (Keasling et al. [1995]). With HMG,

the gene copy number from a wider range of conditions may be returned. In this

dissertation, two different scenarios are investigated, one where a user would like to

predict the gene copy number of a gene based on its location and a given growth

curve. Another where given a growth curve and a chromosomal gene location one

would like to deduce what the gene dosage affects are.

5.1.1 Predicting Gene Copy Number

To illustrate the copy number predictive feature of the model, the mean gene copy

number of a series of growth curves were generated with various gene locations

(Figure 5.1). Three different growth patterns are presented: fast growth (τ =

30 min), slow growth (τ = 80 min) and shift-up (τ = 50 min and τ = 30 min)

for the exponential growth rates. In fast and slow growth, the simulation was

initiated assuming exponential growth and then brought forward using the injection

growth. Both these growth curves were generated where OD increase corresponds to

their respective doubling rate for 300 min. Then the OD gradually decreases until

stagnation for another 300 min. Lastly the OD remains the same for the last 100

min of the simulation to simulate for stationary phase. The OD was constructed in

a similar fashion for the shift-up experiment, where the initial seed population was

generated assuming exponential growth with τ = 50 min and the same OD change

was maintained for the first 100 min of the simulation. Then the OD gradually

decreases for 100 min until stagnation that is maintained for another 100 min. Next

the OD increases until reaching exponential growth (τ = 30 min) and maintained

over the following 200 min window. Lastly the OD decreases until stagnation for

the last 200 min of the simulation.

The population with a doubling time of 80 min had a low gene copy number

throughout the simulation. When growth stagnates, the population converges to

single gene copy numbers. The standard deviation is low throughout, since a small

number of cells were replicating themselves. At faster growth (τ = 30 min) the gene

copy number and the standard deviation was larger, evidence of the larger number

of actively replicating chromosomes. As population growth stagnates, just like the

slower growing counterpart, the gene copy number slowly decreases and converges

to a single copy number.

As was covered in Section 3.1.4, the shift-up experiment is particularly inter-
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esting because of the rate-maintenance feature of a population. As the simulation

starts in exponential growth, the gene copy number is the same as the fast grow-

ing one. As the population begins to stagnate, the copy number of the population

converges to a single copy number. However, once the population growth increases

once again as it enters the second exponential phase, the gene copy number increases

drastically. This burst returns a gene copy number that is particularly sharp for

genes located close to the oriC. Although there is an increase in gene copy number

for genes close to the terC this increase is less pronounced. As the population OD

stagnates once again the gene copy number quickly falls, but with a higher gene

copy number and more spread than that of the initial exponential growth. As the

growth has stagnated, the population would not initiate a new rounds of replication

and although with longer simulation time the gene copy number would decrease

slightly, these gene copy number would be maintained. Thus, two populations that

are in stagnation do not necessarily have the same DNA content, as it depends on

the previous pattern of growth.

5.1.2 Calculating Gene Copy Number

Given a measured growth curve, one may use the HMG to determine the gene

copy number as a population progresses through different growth regimes in batch

culture. In Figure 5.2 the OD data from the SU (Figure 3.3) and WT K-12 cells

grown in LB at 23 rpm and 230 rpm experiments (Figure 4.1) was used as input to

the HMG reporting for the copy number as per Figure 5.2.

The results are very similar to Figure 5.1 for both the fast and slow growth

conditions, where the only difference is that the measured OD’s have a smoother

degree of change in the gene copy number than that of the constructed ones. Globally

the shift-up experiment returns the same dynamics, with only slight differences. The

bottom right plot for shift-up with the three genes close to the terC shows a small

burst in gene copy number right as the population enters the stationary phase.

Although one would expect the copy number of these genes to be higher during

exponential growth compared to the stationary, this burst shows that at this small

moment in time, the number of completed chromosomes is high.

5.1.3 Conclusion

Overall this simulation returned three observations. The first is that genes located

closer to the oriC would have a larger transient copy number than genes located

closer to the terC. The second that the spread of genes copy number within a

104



0.
11 51015 51015

50
10

0
15

0
20

0

51015

10
0

20
0

30
0

50
10

0
15

0
20

0

Ti
m

e 
Po

st
 E

xp
on

en
ti
al

 P
ha

se
 (

m
in

)

OD Mean Gene Copy Number

0.
1

0.
5

0.
9

0.
2

0.
3

0.
4

0.
7

0.
8

0.
9

F
ig

u
re

5.
2:

P
o
p

u
la

ti
o
n

av
er

ag
e

g
en

e
d

o
sa

ge
fr

om
th

re
e

th
eo

re
ti

ca
l

gr
ow

th
re

gi
m

es
(f

as
t

(τ
=

22
.5

8
m

in
),

sl
ow

(τ
=

39
.5

8
m

in
),

sh
if

t-
u

p
(τ

=
31
.1

7
m

in
).

T
h

re
e

ge
n
es

ar
e

ac
co

u
n
te

d
fo

r
at

d
iff

er
en

t
d

is
ta

n
ce

s
fr

om
th

e
o
ri

C
,

w
h

er
e

0.
0

is
th

e
o
ri

C
an

d
1.

0
is

th
e

te
rC

,
il

lu
st

ra
te

d
o
n

th
e

ri
g
h
t

h
an

d
si

d
e.

105



population is greater for gene located closer to the oriC than ones located closer to

the terC. And lastly even if a population is in exponential growth, the features of

the population may not reflect as deterministically as the CH model predicts. Thus,

depending on the growth conditions, the state of a population is determined by its

growth history, where long term incubation in a constant environment is required

to guarantee generating a population with cell cycle heterogeneity as predictable as

the CH model does.

5.2 HMG ODE Simulation

One facet of synthetic biology is its attempt at using mathematical guidance for

the rational design of genetic systems for novel purposes (MacDonald et al. [2011]).

In this forward design approach, one typically creates ODE’s that describe the

dynamics and interactions of each part of a genetic system (Purnick and Weiss

[2009]). Among the classic examples are the repressilator, the toggle switch, and

other transcriptional AND/NOR gates (Osella and Lagomarsino [2013]). In the

design of synthetic genetic circuit (SGC), it is common practice to ignore the state

of the cell and study the dynamics of the construct in isolation when its expression

is a consequence of the metabolism of the cell (Osella and Lagomarsino [2013]). If

indeed the metabolism of the cell is taken into consideration, it is usually done with

a simple growth rate parameter that describes the influence of the cell’s metabolism

on the SGC and only in rare occasions are the influence of a given SGC on the

growth of the cell (Marguet et al. [2010], Osella and Lagomarsino [2013], Freudenau

et al. [2015]). Making generalisation of the conditions of the expression of SGC may

lead to unforeseen consequences on its expression. For example Tan et al. [2009],

by expressing an inducible positive-feedback circuit system, noticed the emergence

of bistability in expression of the reporter that was not intended in the design. The

authors find that the interactions with the cell’s metabolism is the culprit, where

expression of the SGC causes growth retardation that in turn causes the observed

phenotype.

To control for the inherent heterogeneity of bacterial populations that may

influence the expression patterns of a SGC, a typical experimental procedure in char-

acterisation of a part includes growing the bacteria exponentially from an overnight

culture and sampling when reaching an OD of 0.1 (Heinze [2012]). The exponential

growth ensures that balanced growth applies while the consistent OD ensures that

the growth environment is the same. Under these growth conditions the hetero-

geneity of the population is considered to be predictable (see Section 3.1.2). Thus
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two different constructs would theoretically endure the same influence from the

population heterogeneity and single cell heterogeneity and as a result, population

level measurements of the SGC or the proteins they generate are considered to be

comparable. As a consequence, top down assumptions about the mechanism of

the expression of a gene are made from population data since the heterogeneity is

considered to be predictable (Stokke et al. [2012], Kell et al. [1991], Bremer et al.

[1996], Dennis and Bremer [1974]). Although this makes sense theoretically, it can

sometimes be difficult to perform such experiments. SGC frequently influence and

interplay with the metabolism of the cell in unpredictable ways that may render

many assumptions that are made about the population and cell invalid (Tan et al.

[2009], Portle et al. [2007], Portle et al. [2009]).

With the HMG, the innate heterogeneity from the cell cycle of populations

may be approached, theoretically, with more ease and outside of exponential growth.

For the purposes of genetic engineering, an ODE solver was included in the HMG

with the GNU Scientific Library (GSL), and combined with the mechanistic repre-

sentation of the cell cycle, the influence of many aspects of the cell cycle may be

studied. In this section the repressilator is used as a case study, and the influence

of partition noise and transient gene dosage is investigated. This classic example of

the forward design of synthetic biology is particularly good because of its reported

difficult experimental application, where the amplitude of the construct are lost af-

ter a few generations within the population, and stable oscillations are difficult to

perform experimentally (Potvin-Trottier et al. [2016]).

5.2.1 Partition Extrinsic Noise

Because proteins are usually quite stable (longer lifetime than the doubling of a

cell), modelling their degradation rate in bacteria is usually simplified by the dilu-

tion rate experienced from the growth and division of the cell they are expressed in

(β = µ · ln2) (Osella and Lagomarsino [2013]). In this model, the effect of dilution

is not explicitly modelled and the original degradation terms from the ODE models

are used instead. However the partition noise of a bacterial cell may have a large

influence on the downstream heterogeneity of the population, such that it may affect

the dynamics of a given SGC (Lloyd-Price et al. [2014]). Huh and Paulsson [2011]

have shown that the noise associated with random partitioning can be indistinguish-

able to the stochastic effects of intrinsic noises on a system, even when one traces a

reported protein at the single cell level.

Here the classic repressilator was implemented individually in each cell, vary-

ing the partition noise of its species upon division, to see the influence of the cell
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cycle on a given ODE system. The original repressilator functional form was used:

ṁi = −mi +
α

(1 + pni )
+ α0 (5.1)

ṗi = −β · (pi −mi) (5.2)

where m is the mRNA concentration and p is the protein concentration for the three

genes (i). The parameters used in the simulation were α0 = 0.03, α = 300.0, n = 2.0

and β = 0.2.

The instinctive way to implement the partition of the species of the ODE

model seemed to be passive to the volume of daughter cells at division. A larger

daughter cell would proportionally receive more members of each species of the ODE

model than its smaller counterpart. However, the results return very predictable re-

sults (not shown), where the individual ODE’s in the population behave as predicted

since they experience very little extrinsic noise from the cell cycle. Implementing

partition noise in this manner causes each specie of the ODE model to have their

concentration reduced at the same ratio relative to each other. This results in the

phase of the daughter cells to be exactly the same as the mother cell. Thus the

population follows original oscillations.

Evidence suggests that upon division, the partition of long life mRNA is not

equally distributed among daughter cells (Golding et al. [2005]). To test the effect

of partition noise on the phases of the population ODE, a new random parameter

was introduced that randomly distributed the partition of the ODE species into

the daughter cells. This is based on a Gaussian distribution with mean 0.5 (where

0.5 is perfect partitioning between daughter cells) and varying standard deviation

(σ = 0.05, σ = 0.15 and σ = 0.25). Figure 5.3 shows what happens to the oscillatory

behaviour of the repressillator at the population level when the partition noise is

increased. The top subplot is simulated with σ = 0.05 deviation. The amplitude of

the oscillations decreases very slowly, but globally remains the same after relatively

long simulation times. This means that the daughters cells at division essentially

retains the same relative proportion of ODE species as their mother cell. Because

there are no other sources of noise on the ODE, the simulation returns a population

that shares the same phase. The middle subplot and bottom subplot show the results

of the simulation with a partition noise of σ = 0.15 and σ = 0.25. In these cases,

there is clear dampening of the oscillations, evidence that the population becomes

less synchronised as the partition noise is large enough that some cells upon division

receive a different proportion of the three proteins such that a daughter cell may

end up in another phase compared to the mother cell. In other words, with a
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large enough partition noise, the repressilator at the population level converges to

a stable fixed point, the spread of which is dependent on the partition noise (Osella

and Lagomarsino [2013]).

Since the HMG framework may handle non balanced growth parameters,

and both these ODE’s do not have growth rate parameters, the growth curves from

Section 4.1.1 (WT LB 23 rpm and WT LB 230 rpm) and 3.1.4 (shift-up) were used

as input. The results show that the partition noise is not growth rate dependent, at

least under these growth rates.
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5.2.2 Transient Chromosomal Gene Copy Number

Equations 5.1 does not take into account the effects of gene copy number on the

expression of mRNA’s and the repressilator as a whole. Although commonly the

repressilator is encoded in vitro in high copy pBR322 plasmids, others have inves-

tigated the theoretical effects of the oscillations at the single cell and population

level based on the locations of the three cassettes that make up the repressilator

based on their location on the chromosome (Elowitz and Leibler [2000], Osella and

Lagomarsino [2013], Bennett et al. [2007]). To this end, Equations 5.3, 5.4, 5.5, 5.6

and 5.7 by Bennett et al. [2007] express the gene copy number as a function of the

expression of the mRNA:

ẋi = −2κ+x
2
i + 2κ−yi + σmi − γpxi (5.3)

ẏi = κ+x
2
i − κ−yi − k+yid0,i + k−dr,i (5.4)

˙d0,i = −k+ykd0,i + k−dr,i (5.5)

˙dr,i = k+ykd0,i − k−dr,i (5.6)

ṁi = αd0,i − γmmi (5.7)

where i ∈ {1, 2, 3}, j ∈ {2, 3, 1}, k ∈ {3, 1, 2}. d0,i is the concentration of promoter i

that is open and dr,i is the concentration of promoter i that is repressed and mi the

concentration of mRNA. xi and yi are the monomer and dimer concentration of the

protein from gene i. κ are the dimerisation rates, k is binding rate of the dimers

to their corresponding promoters as they are repressed, α the transcription rates, σ

the translation rate and γ the degradation rates. To focus on the effect of gene copy

number extrinsic noise on the repressilator, the model assumes that the partition

of the species of ODE at division is done proportionally to the volume distribution

between daughter cells.
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Figure 5.5: Graphic representation of Equations 5.3, 5.4, 5.5, 5.6 and 5.7 of the
three promoters of the repressilator on the chromosome.
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To investigate the effect of gene dosage based on the location of the gene along

the chromosome on the repressilator model, the same growth rate under exponential

growth was used (τ = 60 min). The gene copy numbers and their standard deviation

were returned for three genes located at a series of relative distances from the oriC

in Figure 5.7. The gene dosage is illustrated in the middle subplot and shows, as

expected, that the gene concentrations for the genes located closer to the oriC is

larger than for genes located closer to the terC. Due to the low cell concentration

at the start of the simulation the gene copy number and phases show sharp changes

between 0 and 300 min simulation time. From 300 to 600 min simulation time, the

oscillations become regular, albeit stochastically. During that time the amplitude

of the oscillations becomes smaller while the phase become larger. From 600 min

to the end of the simulation, the population contains a majority of cells in phase

with the highest mean gene copy number that corresponds to the gene closest to

the oriC.

Despite a larger mean copy number of gene 2, the frequency of cells in the

population that are in that gene’s phase is smaller than that of gene 3 when having a

smaller copy number. Although this may seem counter-intuitive because the product

of gene 1 inhibits the production of gene 2, and because the copy number of gene 1

is the highest, there is a higher expression rate of monomer for gene 1 whose dimer

restricts gene 2. In turn, having a smaller protein concentration from gene 2 means

that gene 3 can express itself more freely.

To have a greater picture of the gene dosage effect, the distance between

each gene is brought closer together and the output population phase is returned in

Figure 5.7. As the different genes are brought closer together, the difference in copy

number between the three genes of the repressilator diminishes and the frequency

of cells in their respective phases become increasingly similar, while at the same

time the amplitude of the oscillations from each of the phases diminish. It is only

once the gene locations overlap on the bottom subplot that the population actually

oscillates between each phase. However, the oscillations seem to be decreasing, where

the oscillatory behaviour of the population seems to be progressively lost. This is

almost comparable to Figure 5.3 bottom subplot, of the original repressilator with a

very high partition noise (σ = 0.25). Thus, it seems that the effect of chromosomal

genetic heterogeneity alone, at this growth rate, is enough to disturb the oscillatory

behaviour of this ODE model of the repressilator, in the same fashion as previously

observed.

114



0

0.
51 0

0.
51

20
0

40
0

60
0

80
0

0

0.
51

123 123

20
0

40
0

60
0

80
0

123

S
im

ul
at

io
n 

Ti
m

e
(m

in
)

Normalised Population Phase Frequency

MeanGeneCopyNumber

0
.1

0
.5

0
.9

0
.3

0
.5 0
.7

0
.5

0
.5 0
.5

F
ig

u
re

5
.7

:
M

ea
n

p
op

u
la

ti
on

p
h

as
es

a
n

d
ge

n
e

co
p
y

n
u

m
b

er
s

fr
om

th
e

R
ep

re
ss

il
at

or
w

it
h

co
n

si
d

er
at

io
n

fo
r

th
e

ge
n

e
d

os
ag

e
eff

ec
t

(E
q
u

at
io

n
s

5.
3)

si
m

u
la

te
d

u
si

n
g

th
e

H
M

G
as

su
m

in
g

ex
p

on
en

ti
al

gr
ow

th
(t
a
u

=
60
.0

)
m

in
w

it
h

va
ry

in
g

ge
n
e

lo
ca

ti
on

s
al

on
g

th
e

ch
ro

m
o
so

m
e.

T
h

e
th

re
e

ge
n

es
w

er
e

p
la

ce
d

at
:

10
%

,
50

%
an

d
90

%
fr

om
th

e
o
ri

C
fo

r
th

e
to

p
su

b
p

lo
t

30
%

,
50

%
an

d
70

%
fr

om
th

e
o
ri

C
fo

r
th

e
m

id
d

le
su

b
p

lo
t,

an
d

a
ll

at
50

%
fr

om
th

e
o
ri

C
fo

r
th

e
b

ot
to

m
su

b
p

lo
t.

T
h

e
le

ft
h

an
d

si
d

e
sh

ow
s

th
e

n
or

m
al

is
ed

m
ea

n
p

o
p
u

la
ti

on
p

h
a
se

s
w

h
il

e
th

e
ri

gh
t

h
an

d
si

d
e

sh
ow

s
th

e
ge

n
e

co
p
y

n
u
m

b
er

fo
r

th
e

th
re

e
ge

n
es

.
T

h
e

p
h

as
e

is
d

et
er

m
in

ed
b
y

th
e

h
ig

h
es

t
co

n
ce

n
tr

a
ti

o
n

o
f

th
e

th
re

e
d

im
er

p
ro

te
in

s.

115



Similar to Section 5.2.1, as the HMG framework may handle non-balanced

growth conditions, simulation of the ODE model was performed with different gene

dosages across the shift-up, LB 230 rpm and LB 23 rpm conditions with WT K-12

cells to investigate the effects of changing OD of the population on a given SGC.

The results of the simulations are shown in Figure 5.8. The mean and stan-

dard deviation of the chromosome content of a population reduces significantly be-

tween the periods of exponential and stationary phase. Hence, the growth rate

seems to have an influence on the oscillatory behaviour of the population since it

affects the DNA content and its spread. With a faster growth rate, there is a larger

amount of differences in copy number between each gene based on their location

that in turns affects the oscillatory behaviour of the repressilator (see Figure 5.7).

This can be seen between the LB 230 rpm and LB 23 rpm population, where the

slower growing population oscillates when the genes are far apart, while the faster

growing ones do not since faster growing population experience a more severe gene

dosage difference than slower growing populations. Furthermore, the SU, by shift-

ing from a slower to faster growth environment illustrates this phenomenon as well.

During slower growth rates, regardless of how far apart the genes are the popula-

tion oscillates and is maintained as the population enters the stationary phase of

growth as the DNA content in these instances is small and consequently the gene

dosage differences are small. As the population enters the faster state of growth,

depending on the distance between each gene, then the population phase is either

equally distributed or contains a majority of cells in phase corresponding to gene 1,

then gene 3 and lastly gene 2.
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5.3 Discussion and Conclusions

HMG is able to return the gene dosage of any gene on a chromosome as a population

progresses throughout different growth dynamics. The results generally show that

fast growing populations return a higher copy number than a population growing

slowly, due to higher transient gene dosage effects. However, the degree of the

copy number and the heterogeneity within a population is highly dependent on the

location of the gene along the chromosome as well as the growth dynamics of the

population as a whole. Genes located closer to the oriC have a higher gene copy

number for a longer cell cycle time than ones located closer to the terC. This is

particularly apparent with the shift-up experiment after LB growth that shows a

high copy number for genes located close to the oriC.

Due to the nature of the HMG framework, the addition of an ODE solver

facilitates the study of the effects of heterogeneity on a given SGC. In this section

the effects of partition and gene dosage on the repressilator are explored. The

results of the simulation assuming exponential growth are consistent with other

works that have explored these sources of extrinsic noise on the system analytically

(Bennett et al. [2007], Osella and Lagomarsino [2013], Gonze [2013], Bierbaum and

Klumpp [2015]). The partition noise of molecular species of the repressilator only

weakly affects the oscillations, while the gene dosage heterogeneity if expressed on

the chromosome has a disastrous effect. One would however expect that partition

noise would have a larger effect by reducing the copy number of the species of the

model, where stochastic effects due to unequal partitioning would have a greater

impact. Elowitz et al. [2002] showed that the intrinsic noise on a given SGC may be

increased with a weaker promoter, and although there are a number of factors that

come into play in the author’s construct, partition noise is definitely a key player in

these cases. The novelty lies in the ability to determine the extent of these types of

extrinsic noises on a given SGC a posteriori, upon providing the growth dynamics

of a given population.
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Chapter 6

Summary, Conclusions and

Further Work

6.1 Summary

The development of HMG first and foremost involved the revision and thorough

inspection of the CH single cell cycle model. Much of the original way the cell

cycle is described in the CH model remained the same with HMG. That included

the trigger of the cell cycle expressed with the critical mass theory from Bremer

et al. [1996] and chromosome replication and cell segregation described with two

distinct timers, C and D respectively. Because the goal was not only the faithful

prediction of population cell cycle dynamics but the exploration of a large parameter

space through optimisation, it was important to have a deep understanding of the

consequence of every assumption made in the CH model, and the evidence of such

mechanisms with newer research and findings. Particular attention was given to

the consequences of describing the start of segregation with the end of chromosome

replication and the different theories that dictate single cell division patterns such

as the sizer model, the timer model and the adder model of division. Although the

adder model of cell division could be a very interesting aspect of the cell cycle model

to explore, the classic mixed timer and sizer model was used for the HMG.

The eclipse period, a well established feature of the cell cycle that was not

originally included within the CH model, was added in the HMG. The consequences

of such a mechanism, called rate-maintenance, was experimentally measured and

simulated using the HMG. Rate-maintenance was shown to be important for the

faithful simulation of bacterial cell cycle throughout changing growth dynamics.

This was a particularly important feature since one of the objectives of this disserta-
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tion was the exploration of the cell cycle throughout non-balanced growth dynamics

performed by the study of bacterial populations in the transition and stagnation

phases of growth.

The cell cycle model was further expanded with the addition of the canonical

mechanism of recA1 mutation on the cell cycle of a single cell. Because of the central

role of the RecA protein in the SOS repair mechanism, there is a large body of work

that suggests that the recA1 mutation causes the bacteria to have an impaired

ability to repair errors in replication and some DNA damage. With the HMG,

this is expressed with the degradation of a replicating strand or the degradation

of whole chromosomes during replication. Because the rate of occurrence of such

events had not been experimentally quantified, these parameters were optimised and

the results were shown to accurately reflect measured aberrant chromosome copy

numbers. This endeavor presented the HMG as a tool for the optimisation of new

features the cell cycle in silico, given a growth curve and appropriate population

measured experimental data.

During the development of the model, many growth models were reviewed

and their assumptions and implications were inspected in an effort to identify the

best type of growth model for the simulation of populations outside of assumptions

of exponential growth. The conclusion was that all continuous models are inappro-

priate for purposes of simulation of populations during disparate growth regimes.

Consequently, a novel growth method was developed that uses the constant between

OD and total population volume from Keasling et al. [1995]. OD data was converted

to their volumetric equivalent and distributed to individual cells in the population.

This method was named the injection growth method, since it passively adds volume

to each cell following a given OD input growth curve.

Lastly the HMG frameworks ability to be used as a predictive tool for gene

copy numbers was illustrated in Section 5.1. Given either a measured or input

growth curve, the HMG is able to determine the population mean gene copy number,

and inspect the heterogeneity within the population as it progresses throughout

different growth regimes. In Section 5.2, the integration of an ODE solver in each

cell and simulated in parallel with the cell cycle model, created a marriage between

the discrete and continuous modelling strategies. This permits the in silico analysis

of cell cycle heterogeneity influencing a given ODE system.
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6.2 Conclusion

The development of an IBM simulation method for the specific use of modelling

cell cycle heterogeneity of bacterial populations, and especially the addition of an

ODE solver that is influenced by the cell cycle, has not been done to date (includ-

ing Keasling et al. [1995] Monte Carlo simulation). There are a large number of

IBM software packages, with only a few that have been applied to specific biologi-

cal problems, such as ecological and intra-species interactions (ex: INDISIM-SOM)

(Gras and Ginovart [2006]), or 3-dimensional organisation of colony formation (ex:

BacSim) (Kreft et al. [1998]). With HMG, a number of inherent mechanistic fea-

tures of the bacterial cell cycle and its emergent behaviour as a population may

be explored theoretically. Simulation using HMG under assumptions of exponential

growth faithfully reproduces measured DNA distributions (that are also in par with

CH model simulation results). Thereafter, in combination with the injection growth

method, HMG is descriptive enough to simulate for the dynamics of populations

outside of exponential growth and throughout a wider range of growth regimes than

could be previously achieved. Indeed, the injection growth method developed in

this research has been shown to be a valid approach at describing the volumetric

changes of a population throughout a wide range of growth conditions. The as-

sumptions made on how these population volumetric changes are redistributed to

the individuals within the population are certainly an oversimplification (see Sec-

tion 3.1.3), but nonetheless seem to be descriptive enough that the downstream cell

cycle effects are correctly reflected using this method. Through the CH model, one

was able to determine the chromosomal content of a population theoretically only if

the population was growing exponentially. With the HMG, another boundary was

explored of post-exponential population cell cycle dynamics. However, the accuracy

of such a modelling method is bound by the accuracy of its parameterisation, and

more meticulous experimental data would serve the HMG framework well.

There is a large body of work in the field of ecology that use optimisation of

agent based models (ABM) or IBM to explore for the required underlying behaviours

of the agents to reflect global observations. This approach is equally applicable to

the study of bacteria, as shown in Section 4.2. In this example, the HMG framework

was successfully used to optimise for the canonical effects of recA1 mutants on the

SOS repair mechanism and ultimately the cell cycle. This version of the protein

is widely used for the purposes of genetic engineering. For example, Elowitz et al.

[2002] who designed two SGCs inserted in the bacterial chromosome to distinguish

between extrinsic and intrinsic noise, used a RecA null mutant to increase the
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intrinsic noise from the cell cycle. The results of the optimisation show that for

recA1, the minimal replication time for a single chromosome increases by 20 minutes

overall. Due to the central role of this protein in the SOS repair mechanism, and

because this particular version of the mutant has a reduced function compared

to its WT counterpart, it is expected that any DNA damage in the replicative

process that would require the participation of RecA to be repaired, would take

a longer time to be overcome thus increasing the overall replicative time. The

segregation and duplication rate (D) optimised to recA1 data did not yield results

that are specific to this mutant strain. Indeed, the optimisation results returned

the same minimal time as literature reports at fast growth rates, while at smaller

growth rates contained a longer time. This result differs from the functional form

proposed by Keasling et al. [1995] and instead agrees with the functional fit to

concatenation of literature parameters (Figure 3.9) for WT K-12 bacterial cells.

Lastly the rate of DNA degradation returned by the optimisation, caused by the loss

of a fully functional RecA seems to be sound. Loss of a fully functional RecA causes

the collapse of replicating forks with a higher proportion than whole chromosome

degradation, and where the production of anucleate cells and the ratio of aberrant

chromosomes seem to be in par with literature reports (Section 4.2). Overall the

optimisation procedure was surprisingly successful, and probably stems by the fact

that the optimisation was framed in very much the same way the original data was

measured in. Posing the problem in this way reflected the emergent properties of

the system, where searching the parameter space of the individuals instead of the

population directly makes for a more difficult problem to solve, but more precise

results that are more easily interpretable.

The innate influence of heterogeneity from a growing bacterial population on

the expression of genetic networks was explored in Chapter 5, through the specific ex-

amples of gene dosage and partition noise. Copy number control has been the focus

of a large body of work on human disorders (Stranger et al. [2007], Schwanhäusser

et al. [2011]) and eukaryotes in general, but is overall lacking in the field of bac-

teriology. There are a few theoretical investigations (Bennett et al. [2007], Gonze

[2013], Paijmans et al. [2016]), and a few experimental procedures to control for

the copy number heterogeneity in bacteria (Wang and Kushner [1991]). However,

the influence of such a factor is largely ignored in the prediction of gene expression.

Investigation of chromosomal gene dosage revealed that gene copy number is highly

dependent on both its location on the chromosome and the growth dynamics of

the population (Sobetzko et al. [2012]). One must thus take into consideration both

these aspects, and with the HMG one is able to determine such features of a popula-
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tion equally a priori and a posteriori throughout exponential and post-exponential

growth. This may prove useful in deconvoluting experimental quantification of gene

expression at the population level, or to predict the required growth dynamics to

meet a particular gene copy number. The effects of gene dosage were further investi-

gated by implementing an ODE solver in the framework, modelling the repressilator,

and studying its effects. First, partitioning noise from expression of the repressilator

was investigated. The results showed that the oscillatory behaviour in a population

was maintained unless a very high partition noise was enforced. Then, given a range

of different gene distances between the three genes of the repressilator, the oscillatory

behaviour of the construct was evaluated with different growth patterns. The re-

sults showed to have a considerable impact if one considers that there is a one to one

ratio between copy number of transcription rate (where for example twice the gene

numbers lead to twice the transcription rate). Although the original repressilator

experiment was expressed in plasmids and not on the chromosome, transient gene

copy number differences combined with unequal partitioning for the three products

of the genes of the repressilator could explain why this construct was observed to

loose its oscillatory behaviour after a few generations.

The combination of a mechanistic description of the bacterial cell cycle and

an ODE solver opens the door to a whole set of exploration of a given SGC be-

haviour in a population. Its design can take into account the heterogeneity of a

bacterial population. For example, consider the following works: Portle et al. [2007]

and Portle et al. [2009]. The authors explore the dynamics of two different well char-

acterised SGC, the repressilator and toggle-switch. Using inducible versions with

aTc and IPTG and using different GFP reporter half-lives, it was found that the

repressilator expressed three different bi-threshold states and multiplicities, while

the toggle switch showed two unimodal and one bimodal behaviour based on the

concentration of inducers. Although the authors propose ODE models that quali-

tatively reflect their findings, it would be of particular interest to reproduce their

findings using the HMG, that takes into account extrinsic noises from the cell cycle

as well as the intrinsic noise from the construct and concentration of the inducible

promoters. A diffusion reaction of IPTG or aTc from the media to the individual

cells would need to be implemented, but thanks to the fact that throughout this

and their work bacteria are grown in well mixed environment, it should be relatively

easy to implement. Generally with the HMG, one can investigate the cell cycle’s

role in different SGC modelled as ODEs.
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6.3 Further Work

With more recent single cell data, many assumptions of the bacterial cell cycle are

put to question, that were covered in the model development section (Chapter 3).

These may further be explored with the HMG simulation framework, and would

require the simultaneous quantification of single cell volumetric and DNA content

(technically feasible with microfluidic devices combined with microscopy). The main

source of uncertainty in the formalisation of the bacterial cell cycle is the D period

and its timing. Experimental quantification of the D time returns much more vari-

able values at a single growth rate than its C counterpart (Figure 3.9), and the

triggers for the period have been shown to not be controlled by the end of the repli-

cation process as proposed by the CH model. This suggests that although there

must be a link between the two, or blocking the replicative process would not block

the division process, the link needs not be as strong as suggested by the CH model.

Furthermore, it would be particularly interesting to implement the adder

model (See Section 3.3.3), and explore to see if population size homeostasis is main-

tained with the same dynamics as measured experimentally and particularly if DNA

distributions derived from such population also behave as measured. Indeed, the

adder model of growth does not negate the critical mass theory, and the two may

be combined (Campos et al. [2014]). The results would be a model with critical

mass that describes the chromosome dynamics, and the adder model that describes

the volumetric dynamics and division of bacterial population, only in this case the

chromosome dynamics would have no influence on the division time of the cell.

Another aspect that must be taken into consideration is cell death, and may

be considered a limitation of the HMG model. Indeed, if at a given timestep there is a

significant amount of cell death, then the distribution of total population volumetric

growth would be influenced since the increase would be subdivided to a smaller

population. It is assumed that such an influence on the global volumetric changes is

minor, but there are conditions and strains where cell death has a larger influence.

For example, the recA1 formed a number of anucleate cells due to whole chromosome

degradation. These cells were taken out of the pool of cells in the simulation and

thus where treated as dead cells. Thus implementation of the canonical cell death

rates would be particularly important for the HMG method.

The HMG framework may prove to be useful for the field of synthetic biol-

ogy for the design and prediction of SGC, but would require the implementation of

plasmid dynamics in the framework. Although there are some chromosomal genetic

manipulations used in the field, the use of plasmids as vectors for the purposes of
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genetic engineering is overwhelming. Furthermore, there is quite a large diversity of

different origin of replication that dictate the copy number, replication dynamics and

partition dynamics of plasmids that need to be taken into consideration. One fam-

ily, called minichromosomes, has an oriC shared with chromosomes while needing

an external supply of DnaA to replicate themselves. Their behaviour is very close

to chromosomes ones, and thus, have already been implemented in HMG. However,

more experimental work would be required to see the influence of minichromosomes

on the replication of chromosomes and measure different aspects of their heterogene-

ity at the single cell level before it may be predictive. Other types of plasmid, have

independent negative-feedback replicative initiation mechanisms with different de-

grees of relaxed or stringent controls that dictate their copy number, that would also

require more experimental work to model their mechanistic replicative behaviour.

Moreover, for some plasmids a mechanistic description would prove not to be useful,

such as ColE1. Indeed, Kuo and Keasling [1996] show through their Monte Carlo

investigation of the high copy number plasmid ColE1, that due to the replicative

and partitioning nature of this specific plasmid, that it is more appropriate to de-

scribe it using continuous equations than through mechanistic ones. Nevertheless,

an accurate description of some low copy plasmid dynamics throughout disparate

growth regimes would prove to be useful for the study of plasmid behaviour in vitro

as well for the design of the SGC; especially considering that some evidence suggests

that low copy plasmids can perform as well or better than their more popular high

copy counterparts (Jones et al. [2000]).

In this research, cell cycle heterogeneity was only studied as it may influence

a given SGC and not the other way around. The expression of a given SGC has

an influence on cell metabolism by using part of its transcription and translation

machinery (also called metabolic load or burden) (Ebersbach and Gerdes [2005]).

Depending on the strength of the promoter and the copy number of a SGC, then its

expression has a range of different influences on the cells metabolism. With HMG,

the cell’s metabolism is summarised in the doubling time term (τ) and could be

modulated by a SGC to simulate for metabolic load, or one could either extend the

model and implement for example pools of ribosome, ATP, DNA polymerase, etc...

and have a more descriptive single cell model.

On the computational side, there are a few improvements that can be done.

First is the implementation of the Systems Biology Markup Language (SBML) stan-

dard into the ODE solver. Indeed, in its current form, a user must hardcode a given

a set of ODE equations into the model and compile it before running it. This is

impracticable and even unapproachable for many that are not familiar with coding.
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Furthermore, using a quite powerful machine (see Section 2), simulation of ODE

models combined with the cell cycle model returned very slow execution time as

the number of individuals in the simulation > 5000, evidence of the high computing

power required to solve the problem. One of the possibilities is to use Message Pass-

ing Interface (MPI) as a means of leveraging parallel computing to make simulating

a larger number of individuals more efficient (a solution particularly attractive since

MPI is compatible with the GSL ODE solver). Furthermore, in HMG, because ODE

are solved at the single cell level, implementation of a stochastic ODE solver would

be useful to account for the influence of intrinsic noise on a given a set of ODE

equations.

The inherent complexity of biological systems is partly attributed to their

heterogeneity, be it molecular, temporal or genetic. Ironically, this heterogeneity

is the aspect of these systems that makes them so powerful and at the same time

so difficult to understand, let alone control. This work takes the view that if one

desires to successfully and robustly manipulate such systems, one needs to be able

to understand and predict such an aspect of biological systems. With the HMG, one

may theoretically study the heterogeneity of the cell cycle and its potential influence

on SGC with more ease. However much more research is required to understand

the dynamics of a bacterial population as it progresses in disparate growth regimes,

and our limited ability to predict it only attests for our limited understanding of

how bacterial cells grow and divide.
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