
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 

Original citation: 
Wang, Miaoyi, Gustafsson, Ove J. R., Siddiqui, Ghizal, Javed, Ibrahim, Kelly, Hannah G., Blin, 
Thomas, Yin, Hong, Kent, Stephen J., Creek, Darren J., Kempe, Kristian, Ke, Pu 
Chun and Davis, Thomas P. (2018) Human plasma proteome association and cytotoxicity of 
nano-graphene oxide grafted with stealth polyethylene glycol and poly(2-ethyl-2-
oxazoline). Nanoscale. doi:10.1039/C8NR00835C 
 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/101297  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge.  Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher statement: 
First published by Royal Society of Chemistry 2018   
http://dx.doi.org/10.1039/C8NR00835C  
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see the 
‘permanent WRAP URL’ above for details on accessing the published version and note that 
access may require a subscription. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://dx.doi.org/10.1039/C8NR00835C
http://wrap.warwick.ac.uk/101297
http://dx.doi.org/10.1039/C8NR00835C
mailto:wrap@warwick.ac.uk


1 
 

Human plasma proteome association and cytotoxicity 

of nano-graphene oxide grafted with stealth 

polyethylene glycol and poly(2-ethyl-2-oxazoline) 

 

Miaoyi Wang,† Ove J. R. Gustafsson,¶,≈ Ghizal Siddiqui,‡,≈ Ibrahim Javed,† Hannah G. Kelly ‖,∏ 

Thomas Blin,† Hong Yin,∫ Stephen J. Kent,‖,∏ ,◊ Darren J. Creek,‡ Kristian Kempe,†* Pu Chun Ke†* 

and Thomas P. Davis†,§* 

 

† ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of 

Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia 

¶ ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries 

Institute, University of South Australia, University Boulevard, Mawson Lakes, SA 5095, Australia 

‡ Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 

3052, Australia 

‖ ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of 

Melbourne, Melbourne, VIC 3000, Australia 

∏ Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, 

The University of Melbourne, Melbourne, VIC 3000, Australia 

◊ Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central 

Clinical School, Monash University, Melbourne, Australia 

∫ CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia 

§ Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom 

Email: thomas.p.davis@monash.edu; kristian.kempe@monash.edu; pu-chun.ke@monash.edu 

 

≈These authors contributed equally to the presented work.  

 

KEYWORDS: nano-graphene oxide, PEG, PEtOx, proteomics, protein corona 

  



2 
 

ABSTRACT 

Polyethylene glycol (PEG) is a gold standard against protein fouling. However, recent studies have 

revealed surprising adverse effects of PEG, namely its immunogenicity and shortened bio-circulation 

upon repeated dosing. This highlights a crucial need to further examine ‘stealth’ polymers for 

controlling the protein ‘corona’, a new challenge in nanomedicine and bionanotechnology. Poly(2-

ethyl-2-oxazoline) (PEtOx) is another primary form of stealth polymer that, despite its excellent 

hydrophilicity and biocompatibility, has found considerably less applications compared with PEG. 

Herein, we performed label-free proteomics to compare the associations of linear PEG- and PEtOx-

grafted nano-graphene oxide (nGO) sheets with human plasma proteins, complemented by 

cytotoxicity and haemolysis assays to compare the cellular interactions of these polymers. Our data 

revealed that nGO-PEG enriched apolipoproteins, while nGO-PEtOx displayed a preferred binding 

with pro-angiogenic and structural proteins, despite high similarities in their respective top-10 

enriched proteins. In addition, nGO-PEG and nGO-PEtOx exhibited similar levels of enrichment of 

complement proteins. Both PEG and PEtOx markedly reduced nGO toxicity to HEK 293 cells while 

mitigating nGO haemolysis. This study provides the first detailed profile of the human plasma protein 

corona associated with PEtOx-grafted nanomaterials and, in light of the distinctions of PEtOx in 

chemical adaptability, in vivo clearance and immunogenicity, validates the use of PEtOx as a viable 

stealth alternative to PEG for nanomedicines and bionanotechnologies.   
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INTRODUCTION  

The rapid development of functional nanomaterials has enabled many advances in diagnostics, 

bioimaging and drug delivery in the past decades.[1, 2] Nanoparticles (NPs) grafted with specific 

polymers such as polyethylene glycol (PEG) become suspended in the aqueous phase and 

biocompatible. PEGylation also discourages protein fouling as the polymer layer acts as an entropic 

spring to fend off the surface adsorption of biomolecules. Collectively, these features have 

consolidated PEGylation as a ‘gold standard’ for surface functionalization in biomedical and 

engineering applications.[3] 

It is well established that NPs readily adsorb a ‘corona’[4-7] of proteins upon introduction into a 

biological milieu, a phenomenon resulting from hydrophobic, electrostatic and van der Waals 

interactions as well as hydrogen bonding between the NPs and proteins in the fluid environment. The 

transformation from bare NPs to NP-protein complexes usually confers the NPs with improved 

suspendability and a new biological identity that drives in vivo interactions and clearance of the NPs.[8, 

9] Binding with NPs could also impact the conformation of adsorbed proteins, thereby inducing 

exposure of new epitopes and potentially altering protein function. For example, activated phagocyte 

recognition of a protein corona via enriched complement components may lead to decreased systemic 

retention for a particular NP,[10, 11] a characteristic undesirable for drug delivery. Accordingly, surface 

functionalization to incorporate ‘stealth’ polymers is a logical solution to minimize and control the 

protein corona for effective design and targeted delivery of nanomedicines.[12] 

PEG is by far the most commonly used polymer for creating ‘stealth’ NPs. However, PEG is not 

biodegradable and the in vivo accumulation of PEGylated therapeutics can cause the production of 

anti-PEG antibodies to accelerate blood clearance and severe hypersensitivity reactions following 

administration.[3, 13-18] In addition, the heavily crowded patent landscape of PEG has also triggered 

intensive search for alternative stealth polymers.[19-21]  
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Poly(2-oxazoline)s (POx) are an emerging class of polymers,[22] which provide access to highly 

functional polymers with tuneable properties simply by changing their side chain.[23, 24] The 

possibility to introduce functional groups at the α-, and ω-polymer chain ends and, contrary to PEG, 

in the side chains makes POx available for a wide range of post-polymerization modifications,[23, 25] 

which can be exploited, e.g. for high drug loadings in polymer-drug conjugates.[26] In particular, the 

short homologues poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx) have 

been demonstrated to be valuable alternatives to PEG with similar water-solubility, biocompatibility 

and stealth/protein repellent properties.[27] Moreover, PMeOx and PEtOx offer potential benefits over 

PEG, including (i) relatively low viscosities of their aqueous solutions, (ii) depending on molecular 

mass, they can be excreted in urine and have so far yet to show accumulations in organs, and (iii) 

they are considered non-immunogenic and to date no POx-antibodies in human populations have been 

reported.[28] In terms of their interaction with proteins, limited studies performed with full serum have 

only looked into the mass deposition of proteins rather than the detailed composition of protein 

corona.[29, 30] One recent study has examined the antifouling capacity of poly(organosiloxane) (POS) 

NPs grafted with linear PEG and PEtOx exposed to fetal calf serum.[31] However, an in-depth 

comparison of the stealth performance and protein corona profile of PEtOx versus PEG against 

human plasma proteins remains lacking despite the large number of studies into POx-based particles 

for biomedical applications and the high relevance of such data for the development of nanomedicine 

and bionanotechnology.[32] Furthermore, research on the protein corona has almost exclusively 

adopted spherical or cylindrical NPs, overlooking the importance of NP shape in determining corona 

formation. Nano-graphene oxide (nGO), specifically, is a one-atom thin, 2D nanomaterial with small 

lateral dimensions and a large surface area. nGO possesses exceptional electronic, photothermal and 

mechanical properties and has found many biomedical applications.[33-39] Here we detail the human 

plasma protein association of a novel nanomaterial, PEtOx-grafted nGO (nGO-PEtOx), in 

comparison with that of PEG-grafted nGO (nGO-PEG). Liquid chromatography coupled to mass 

spectrometry (LC-MS/MS) was used post synthesis for label-free quantitation (LFQ) of proteins 
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present in the NP protein coronas. Although both nGO-PEG and nGO-PEtOx exhibited superior 

antifouling compared to bare nGO, they were each associated with different subsets of plasma 

proteins essential to major physiological functions. In addition to the comparable corona profiles 

observed for high abundance opsonins, there was a significant enrichment of apolipoproteins 

(APOA1/A2/C1/A4/H, CLU) for nGO-PEG, and pro-angiogenic, structural and acute-phase plasma 

proteins for nGO-PEtOx, respectively. Together, this study provides the first report on the unique 

corona proteome in human plasma and in vitro toxicity profiles of nGO-PEG and nGO-PEtOx, 

implicating PEtOx as a viable stealth polymer alternative to PEG for biomedical and biotechnological 

applications. 

 

MATERIALS AND METHODS 

Materials 

A nano-graphene oxide (nGO, ~50×100 nm in lateral dimensions) suspension was obtained from 

Sigma-Aldrich. PEG and PEtOx polymers with amine end groups (MW: 2,000 g/mol) were 

synthesized according to protocols described previously.[40, 41] The polymers were designed to have 

the same molecular weight in order to minimize any size-induced variability. All other chemicals 

were obtained from Sigma-Aldrich and used as received unless otherwise specified. 

NMR spectroscopy 

Nuclear magnetic resonance (NMR) spectra were recorded using a Bruker UltraShield 400 

spectrometer running Bruker Topspin, version 1.3 and operating at 400.13 MHz for 1H. Deuterated 

chloroform (CDCl3) was used as solvent. Chemical shifts were recorded in parts per million (ppm), 

referenced to residual solvent frequency 1H NMR: CDCl3 = 7.26. 

Size exclusion chromatography  

DMAc size exclusion chromatography (SEC) was performed using a Shimazu modular system 

consisting of a SIL20AD automatic injector, a DGU12A degasser, a CTO10A column oven, a 
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LC10AT pump, a RID10A differential refractive-index detector, and a SPD10A Shimadzu UV/Vis 

detector. A 50×7.8 mm guard column followed by three KF-805L columns in series (300×8 mm linear 

columns, bead size: 10 μm, pore size: 5,000 Å maximum) were used for the analyses. N,N’-

Dimethylacetamide (DMAc, HPLC grade, 0.03% w/v LiBr) with a flow rate of 1 mL/min and a 

constant temperature of 50 °C was used as the mobile phase. The samples were filtered through 0.45 

μm filters prior to injection. The instrument was calibrated using commercially available linear 

polystyrene standards (0.5-2,000 kDa, Polymer Laboratories). Chromatograms were processed using 

Cirrus 2.0 software (Polymer Laboratories).  

nGO functionalization procedures   

nGO (2 mg/mL) was treated with probe sonication for 5 min in an ice bath to ensure its dispersity. 

The first step of the reaction was to convert the OH groups on the nGO surface to –COOH groups via 

conjugation of acetic acid moieties. NaOH (2.4 g) and chloroacetic acid (2.0 g) were added to the 

nGO aqueous suspension (10 mL) and bath-sonicated for 5 h. This step functionalized nGO by 

carboxylation. The carboxylated nGO suspension was then neutralized by repeated washing with 

Milli-Q water through centrifugation (supernatant was removed after each centrifugation cycle). 

Eppendorf centrifuge 5804 was used and set for 10 min and 16,300 g for each washing cycle. Purified 

carboxylated nGO was then diluted with Milli-Q water to an optical density of 0.4 at 808 nm. Then a 

solution of linear PEG or PEtOx with an amine end group (10 mg/mL) was added to the diluted 

carboxylated nGO suspension and the mixture was bath-sonicated for 10 min. Next, N-(3-

dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) was added to make the final EDC 

concentration of 10 mM. The mixture was stirred at room temperature for 24 h, and the reaction was 

terminated by β-mercaptoethanol (50 mM). The mixture was dialyzed in Milli-Q water for 12 h and 

then centrifuged at 16,300 g for 30 min to obtain pure nGO-PEG and nGO-PEtOx from the pellets. 

nGO-PEG and nGO-PEtOx were re-dispersed in Milli-Q water for further use. The concentrations of 

nGO-PEG and nGO-PEtOx were determined by lyophilization. The grafting density of PEG and 

PEtOx polymers was calculated to be ~0.18 and 0.16 polymer chains/nm2, respectively, according to 
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percentage weight losses of the polymers obtained by thermogravimetric analysis (TGA) and the 

physical dimensions of the nGO (50×100 nm, double-sided polymer grafting).  

Thermogravimetric analysis  

Thermogravimetric analysis (TGA) measurement was implemented using a PerkinElmer Pyris 1 

TGA and Pyris 1 software measuring at a rate of 20 °C/min from 100 °C to 700 °C (hold at 100 °C 

for 1 min to eliminate water).  

Dynamic light scattering and zeta potential  

The hydrodynamic sizes and zeta potentials of the nGO suspensions (at 0.1 mg/mL in Milli-Q water) 

were acquired at room temperature using a dynamic light scattering device (Zetasizer Nano ZS, 

Malvern Instruments) with Zeta software 7.03, refractive index 1.33, absorption 0.010, viscosity 

0.8872 cP, temperature 25 °C, and equilibration time 120 s. DTS-1070 cells were used for 

measurements at a backscattered angle of 173° and a wavelength of 633 nm. The measurements were 

carried out for each sample in triplicate, using folded capillary zeta cells. 

Transmission electron microscopy and energy-dispersive X-ray spectroscopy 

nGO (bare nGO , nGO-PEG and nGO-PEtOx) suspensions at a concentration of 0.1 mg/mL were 

pipetted onto glow discharged (15 s) 400 mesh copper grids (Formvar film, ProSciTech) and allowed 

60 s of adsorption. Excess solution volume was drawn off using filter paper and the grids were washed 

twice using Milli-Q water, with excess removed. The grids were stained with 1% uranyl acetate for 

30 s and excess stain drawn off. The grids were completely air-dried. High resolution imaging and 

EDX elemental analysis were performed on a Tecnai G2 F20 transmission electron microscope (FEI, 

Eindhoven, Netherlands) operating at 200 kV. The experiment was repeated three times.  

Infrared spectroscopy 

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra were generated using a 

Shimadzu IRTracer 100 FTIR spectrometer with a GladiATR 10 single reflection ATR accessory. 
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The spectra were acquired in the mid-infrared region of 4,000-800 cm-1 at resolution of 8 cm-1 (512 

scans) and analyzed by LabSolution IR software.  

Raman spectroscopy 

Raman spectra were acquired using an inVia confocal Raman microscope (Renishaw). The three 

types of nGO (bare, nGO-PEG- and nGO-PEtOx) with or without plasma protein coatings, as well as 

the plasma protein control in aqueous solution (0.5 mg/mL), were mounted on microscope slides and 

air-dried. The dried samples were excited by a laser line at 785 nm, with a power of 500 mW. Spectra 

were stored with in-built WiRE 2.0 software. 

Collection and processing of healthy donor human plasma proteins 

Details of the method are described in a previous publication.[21] Blood was collected from three 

different healthy donors after obtaining informed consent for any experimentation in this study, in 

accordance with the University of Melbourne Human ethics approval 1443420 and the Australian 

National Health and Medical Research Council Statement on Ethical Conduct in Human Research. 

All experiments were performed in compliance with the relevant laws and institutional guidelines of 

Monash University Occupational Health & Safety. The proteomic experiments and follow-up 

analysis were done using the plasma from the three donors to ensure robust results. The analysis of 

the abundance of coronal proteins was performed by taking average of the three replicates, and only 

those that were statistically significant were presented. 

Corona formation and isolation 

Bare, PEG- and PEtOx-grafted nGO (1 mg/mL) in 10 mM phosphate-buffered saline (PBS) were 

mixed with plasma proteins to make a final concentration of 0.2 mg/mL in 1 mL suspension. The 

nGO-plasma mixtures were incubated at 37 °C for 24 h to obtain hard protein coronae. The samples 

were then centrifuged at 16,300 g for 15 min at room temperature to isolate nGO-‘hard’ protein 

corona complexes from the remaining plasma, a common methodology in the field. The supernatant 

was completely removed and the nGO-protein corona pellets were washed 3× with 10 mM fresh PBS. 



9 
 

Following the washes, 50 μL of 5% β-mercaptoethanol (Sigma-Aldrich) in a 4× reducing loading dye 

(240mM Tris, pH 6.8, 8% SDS, 40% glycerol, 0.04% (w/v) bromophenol blue) was added to each 

nGO sample and incubated at 95 °C for 5 min. The nGO samples were pelleted by centrifugation for 

3 min at 21,100 g at 4 °C, and the supernatants (20 μL) of each sample were resolved on a pre-cast 

1D PAGE gel (Mini-PROTEAN® TGXTM, Bio-Rad Laboratories) using 1× mix of a 10× premixed 

electrophoresis buffer (25 mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3, BioRad) at 200 V/0.04 A/8 

W for 5 min. The gel was incubated in Instant Blue stain (Expedion Ltd) for 30 min on a shaker to 

fix and visualize the protein bands. Milli-Q water was then used to de-stain the gel for 1 h (fresh 

Milli-Q water every 20 min) prior to further processing.  

In-gel proteolytic digestion, plasma control sample preparation, LC-MS/MS analysis and label-free 

quantification 

The entire region of the gel containing resolved proteins was excised and subjected to an in-gel trypsin 

digestion procedure, as described previously.[21] Briefly, peptides were extracted, dried in a Speed-

Vac, and stored at -20 °C until analysis. On the day of analysis, samples were reconsituted in 20 μL 

of 2% acetonitrile (ACN), 0.1% formic acid and LC-MS/MS analysis with data-dependent acquisition 

was carried out as previously described with minor modifications.[42] Reconsituted samples were 

loaded at a flow rate of 15 μL/min onto a reversed-phase trap column (100 μm × 2 cm), Acclaim 

PepMap media (Dionex), which was maintained at a temperature of 40 °C . Peptides were then eluted 

from the trap column at a flow rate of 0.25 μL/min through a reversed-phase capillary column (75 

μm × 50 cm) (LC Packings, Dionex). For label-free proteomic analysis, the HPLC gradient was set 

to 98 min using a gradient that reached 30% ACN after 63 min, 34% after 66 min, 79.2% after 71 

min for 6 min, following which there was an equilibration phase of 20 min at 2% ACN. Peptide 

sequences (and protein identity) were determined using MaxQuant software (version 1.6.0.1) by 

matching the human protein database (Homo sapiens, uniprot-proteome_UP000005640.fasta) and 

label free quantification of identified proteins was then performed as previously described.[21] 
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Protein hit filtering methods and significance 

Experiments were replicated three times to assess reproducibility. Only proteins detected in three 

replicates (LFQ intensity > 0) were used for further analyses. LFQ intensity was used to approximate 

the relative protein abundance between the different types of nGOs, while intensity was used to 

represent the protein abundance for each type of nGO individually. A student’s t-test was used to 

evaluate the significance of differences observed across the three independent replicates between 

nGO-PEG and nGO-PEtOx, and p-values < 0.05 were considered significant.  

Protein informatics and network annotation  

The MaxQuant output (protein_groups.csv) was filtered to remove all proteins with less than one 

unique peptide, and with zero values for LFQ intensity across the nGO-PEG and nGO-PEtOx 

experiments. Additional processing included log2 transforms, means, standard deviations, LFQ ratios 

and t-tests. Protein sequences and annotations were extracted from the UniProt Human proteome 

(uniprot-proteome_UP000005640.fasta) by matching to protein identifiers in the filtered protein list. 

For the matched set of protein sequences, the grand average of hydropathy (GRAVY), isoelectric 

point (pI), and molecular weight (MW) were calculated. To produce a contextual human plasma 

proteome background, a non-glycosylated PeptideAtlas build was downloaded (20170801-063918 – 

to recall the results used, visit this link db.systemsbiology.net/sbeams/cgi/shortURL?key=cga2kglb 

– provided in supplementary material) and both the protein identifiers and sequences were extracted 

from the UniProt *.fasta file: GRAVY, pI and MW were calculated for these sequences (as above) 

and used as a background proteome. The complete R data import, processing and presentation code, 

as well as session information that includes computer, software and package versions, are detailed in 

supplementary information.[43, 44]  Proteins were submitted for matching of uniprot identifiers to 

STRING identifiers (http://www.uniprot.org/uploadlists/). The subset of matched STRING 

identifiers were used for protein network analysis with a whole genome background using the online 

resource STRING (v10.5, string-DB.org/).[45] Interactions were defined by database and 

experimentally determined sources at a confidence interaction score of 0.7 (medium). No additional 
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possible interactors were added. Color highlighting was used to emphasize gene ontology (GO) terms 

enriched by the analysis, and color halos were used to indicate PEG- or PEtOx-enrichment. All plots 

were formatted further in InkScape (inkscape.org) or used directly. 

HEK 293 cell viability assay 

For the cell viability assay, nGO, nGO-PEG, nGO-PEtOx, PEG and PEtOx of different concentrations 

were first diluted in PBS to make up stock suspensions. A black/clear bottom Costar 96 well plate 

was coated with poly-L-lysine for 20 min at 37 °C and then washed 3× in DPBS to promote cell 

adhesion. Human embryonic kidney 293 (HEK 293 from ATCC) cells, one of the most commonly 

used cell models for nanotoxicity studies, were seeded at a density of 10,000 cells per well in 200 μL 

complete DMEM (Sigma, 10% FBS) and incubated overnight at 37 °C and 5% CO2. Media was then 

refreshed and samples were added into the wells to make up the final tested concentrations. After 

treatment for 24 h, media was aspirated and wells were washed 3× in DPBS and then 100 μL pre-

diluted (1 in 10 dilution) alamarBlue in media was added to each well. The plate was returned to 

incubator for 3.5 h before endpoint fluorescence was read on a Flexstation 3 plate reader (Molecular 

Devices) with excitation at 544 nm and emission at 590 nm. Percentage cell viability was determined 

as comparative fluorescence intensity to untreated cells after deduction of background fluorescence. 

Experiments were conducted in triplicate. 

Red blood cell (RBC) haemolysis assay  

The haemolysis assay was slightly modified according to previously published protocols.[46, 47] Briefly, 

freshly drawn healthy human donor blood (50 μL) was added to 1.5 mL Eppendorf tubes, containing 

approximately 2.5×108 RBCs. The blood was washed 5× in PBS (pellets centrifuged down using 500 

g and supernatant removed) and then diluted in PBS. Then nGO, nGO-PEG, nGO-PEtOx with and 

without plasma protein corona as well as PEG and PEtOx polymers diluted in PBS were added to the 

tubes containing RBCs to make final concentrations of 100, 50, 20, 10 and 5 μg/mL and incubated at 

37 °C for 2 h. There were no other assay components to interfere with the nGO derivatives interacting 
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with the cells. Following incubation, supernatants (100 μL) of the tubes were transferred to a clear 

bottom Costar 96 well plate and the absorbance was read on a Flexstation 3 plate reader (Molecular 

Devices) at 570 nm (haemoglobin released from haemolytic RBCs). RBCs treated with Milli-Q water 

and PBS alone were used as positive and negative control. Percentage haemolysis was calculated 

from absorbance measured after normalization. Samples containing RBCs (RBCs were fixed by 2.5 % 

paraformaldehyde and PBS was replaced by ethanol using gradient dilution from 20% to 100% of 

ethanol) were mounted on SEM specimen stubs coated with carbon tapes and images were taken 

using an ORION NanoFab scanning helium ion microscope. 

 

RESULTS AND DISCUSSION 

PEG and PEtOx with primary amine end groups (MW ~2000 Da, determined by NMR; Figure S1, 

Electronic Supplementary Information or ESI) were successfully synthesized using a two-step 

reaction according to published protocols (Scheme 1).[40, 41] Size exclusion chromatography (SEC) 

revealed mono-modal traces with narrow molecular weight distributions for both polymers (Đ, PEtOx 

= 1.06, PEG = 1.06, Figure S1). nGO was first functionalized by carboxylation, and then the two 

types of polymers were grafted onto the surface of nGO by N-(3-dimethylaminopropyl)-N’-

ethylcarbodiimide hydrochloride (EDC) coupling.[48, 49] The average lateral dimensions (50×100 nm) 

of bare nGO (carboxylated before polymer grafting) and PEG- and PEtOx-grafted nGO were 

estimated from TEM images (Figure 1). Successful grafting of the polymers was first confirmed using 

ATR-FTIR and energy-dispersive X-ray spectroscopy (EDX) (Figures S2 and S3). ATR-FTIR 

detected the characteristic chemical bond peaks associated with nGO (e.g. OH stretch at 3,340 cm-1) 

and their attached polymers (e.g., ether bond at 1,100 cm-1 for PEG and amide C=O stretch at 1,630 

cm-1 for PEtOx). Although not definitively quantitative, EDX identified nitrogen from the amide bond 

linking nGO to the polymers (apart from the nitrogen from PEtOx) which also confirmed successful 

grafting. To precisely quantify the amount of polymers grafted, TGA was performed on the three 

types of nGO. The grafting density of the polymers was estimated by the percentage weight losses 
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obtained from TGA (Figure S4), where PEG (decomposed from ~307 to 434 °C) and PEtOx 

(decomposed from ~321 to 473 °C) occupied 31.4% and 29.5% of the total mass of nGO-PEG and 

nGO-PEtOx, respectively. The hydrodynamic sizes (z-average sizes) and zeta potentials of bare nGO, 

nGO-PEG and nGO-PEtOx were determined by dynamic light scattering (DLS) (Table 1). The 

hydrodynamic sizes of the PEG- and PEtOx-grafted nGO sheets (318.5 and 291.2 nm, respectively) 

were smaller than bare nGO (364.2 nm), indicating improved suspension due to surface 

functionalization. No large agglomerates were observed for the samples, according to the 

hydrodynamic z-averages of the nGO derivatives measured by DLS. The nGO, nGO-PEG and nGO-

PEtOx were relatively monodisperse, with PDI < 0.3. The zeta potentials ranged from -40.8 mV for 

nGO to -31.4 mV for nGO-PEG and -25.2 mV for nGO-PEtOx, indicating good colloidal 

suspendibility.  

Raman spectra revealed the characteristic G and D bands of all three types of nGO, with the G band 

red-shifted by ~6 and 7 cm-1 in PEGylated and PEtOxylated nGO spectra, respectively. When bare 

nGO, nGO-PEG and nGO-PEtOx were coated with plasma proteins, all the G bands further red-

shifted by ~8, 6 and 7 cm-1, respectively (Figure S5). To determine the composition of plasma proteins 

in the nGO coronas, a proteomic study was undertaken using label-free LC-MS/MS analysis. This 

enabled an in-depth investigation of the antifouling capacities of PEG- and PEtOx-grafted nGO, as 

compared to bare nGO, which was used as a control. Compared to bare nGO, both nGO-PEG and 

nGO-PEtOx bound much smaller amounts of total protein which can be clearly observed from the 

heatmap of a global comparison of the protein abundance levels (Figure S6). Although this confirmed 

the strong antifouling capacities of both PEG and PEtOx, the polymers did bind distinct proteins. The 

LC-MS/MS analysis identified 129 proteins associated with all three types of nGO and 37 unique 

proteins associated with either two or one type of nGO, obtained from three replicate experiments.  

 

The 10 most abundant proteins for bare nGO, nGO-PEG and nGO-PEtOx coronas, as well as for 

plasma, are listed in Table 2. As expected, the abundance distributions of corona proteins associated 
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with the three nGO nanomaterials were different from that of the plasma. For example, serum albumin 

[gene name: ALB (uniprot identifier: P02768)], the most abundant protein in plasma, was the most 

abundant for bare nGO, eighth for nGO-PEG and not in the top 10 for nGO-PEtOx. Overall, PEG 

and PEtOx displayed very comparable binding preferences for the top 10 most abundant proteins, 

which supports the viability of PEtOx as a surface modifier for nano-systems. Key differences in the 

top 10 include the presence of apolipoprotein A-I [APOA1 (P02647)] and serum albumin [ALB  

(P02768)] on nGO-PEG as well as complement C3 [C3 (P01024)] on nGO-PEtOx.  

To more closely evaluate differences in corona composition, unique protein binders were considered. 

The Venn diagram in Figure 2a highlights the numbers of proteins which were bound to one, two, or 

all three nGO types. A total of 17 proteins were unique to one type of nGO, out of which 11 were 

unique to bare nGO (Table 3, Figure 2a). Of the unique nGO-associated proteins, it is worth noting 

that many were immunoglobulins, which suggests that rapid blood clearance of nGO opsonized by 

antibodies may occur without a stealth polymer coating: detected immunoglobulins included IGKV2-

29 (A2NJV5), IGHV6-1 (A0A0B4J1U7), IGKV2-28 (A0A075B6P5), IGLV1-40 (P01703) and 

IGLV3-10 (A0A075B6K4) (Table 3). 

Focusing on relative enrichment of proteins in the evaluated coronas between nGO-PEG and nGO-

PEtOx revealed significant disparities among a number of proteins. The log2 normalized abundance 

ratio of nGO-PEG versus nGO-PEtOx are presented in Figure 2b, with arbitrary ratio thresholds set 

to 0.5 and 2.0. Overall, 15 and 8 proteins were found to be significantly enriched in the corona of 

PEG- and PEtOx-grafted nGO, respectively. Angiogenin [ANG, P03950] exhibited a fold change of 

0.08, or the highest relative affinity for nGO-PEtOx, while vitamin K-dependent protein S [PROS1 

(P07225)] and transthyretin [TTR (P02766)] both exhibited mean fold differences of 6.71, the highest 

relative affinities for nGO-PEG. Some additional proteins enriched on nGO-PEG included multiple 

apolipoproteins – APOA1 (P02647), APOA2 (V9GYM3), APOC1 (K7ERI9), APOA4 (P06727), 

APOH (P02749), CLU (P10909) and the complement proteins CFB (B4E1Z4), CFI (G3XAM2) and 
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C4BPA (P04003) (Table 4). In contrast, nGO-PEtOx enriched pro-angiogenic protein [ANG 

(P03950)], structural protein [FBLN1 (B1AHL2)], acute phase proteins [SAA1 (P0DJI8), SAA2-A4 

(A0A096LPE2)] as well as complement components [C4B (P0C0L5), C8B (F5GY80), C1QC 

(P02747)], making this particle enrichment profile quite distinct from nGO-PEG (Figure 2b, Table 

4).  

A qualitative assessment of calculated – primary sequence specific – characteristics of the corona 

proteins was also undertaken, including GRAVY, pI and MW. Figure 3 shows the GRAVY/pI 

distributions (MW/pI in Figure S7) for the quantified proteins, with point color representing the fold-

change bin to which the log2-normalized ratios of mean PEG: mean PEtOx LFQ intensity value 

belong. These points were overlaid onto a contextualizing non-glycosylated human plasma protein 

background from PeptideAtlas. Here, it was assumed that the matched database sequence for the 

identified protein was identical to that of the nGO-associated protein sequence. The quantified 

proteins appeared to cluster with the general protein characteristics of the plasma background, with 

no major trends apparent. A slight but visually discernible trend included nGO-PEG enriched proteins 

exhibiting more acidic pI values, as compared to nGO-PEtOx. Eight of the top ten nGO-PEG enriched 

proteins (PROS1, TTR, CLU, APOA1, APOC1, SERPINF1, B2M and APOA4) have pI values in the 

range of 5.0-6.5, and the outliers were C4BPA and APOA2. No such trend was apparent for nGO-

PEtOx enriched proteins.  

To further contextualize the relative composition differences of these coronas, a protein network 

analysis was performed using the STRING resource (string-db.org). This allowed identification of 

network associations and associated GO terms. Figure 4 highlights the resulting protein network and 

the colors of the nodes (proteins) indicate enrichment for a particular GO term. Complement 

activation is highlighted in red as an enriched biological process (BP), enzyme regulator activity is in 

blue as an enriched GO molecular function (MF), and finally complement and coagulation cascades 

is in green as an enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The halos 
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in Figure 4 indicate those protein significantly regulated (see red protein ratios in Figure 2b), which 

were enriched on nGO-PEG (yellow) or nGO-PEtOx (black). Both PEG and PEtOx functionalized 

nGO bound complement components that are part of the coagulation cascade (Figure 4). The 

implication here is that both nanomaterials may be similarly susceptible to reduced biocirculation. 

Overall, the split enrichment of different complement and coagulation components by nGO-PEG and 

nGO-PEtOx, and the over-representation of apolipoproteins by nGO-PEG could have profound 

implications in vivo following administration of nGO-based nanomedicines, which should be studied 

in the future. 

Figure 5 shows a comparison of top 10 abundant corona proteins associated with PEGylated and 

PEtOxylated nGO (incubated in human plasma) in the present study with that of POS NPs (incubated 

in fetal calf serum) extracted from the literature.[31] Interestingly, completely different sets of proteins 

were observed between the two different NP cores, even if the surface modifications were similar. 

Serum albumin which is a globular protein is the most abundant corona protein for the spherical POS 

NPs, whereas rod-like fibrinogen represents the highest corona protein level for the 2D nanomaterial 

nGO. This comparison, though of limited validity due to the different experimental conditions 

employed (incubation time, biological media, corona extraction methodologies, etc.), still indicates 

that the shape of NP cores is likely as important as NP surface coating in determining protein binding 

and corona formation. 

In addition to the proteomic study, HEK 293 cell viability was 51.3±7.1% when exposed to 100 

µg/mL of bare nGO (Figure 6a). However, both PEG- and PEtOx-grafted nGO largely ameliorated 

the cell viability to above 80%. In contrast, no obvious toxicity was observed for the three types of 

nGO or the polymers at 50 μg/mL or lower, which confirmed the good biocompatibility of nGO and, 

in particular, stealth polymer-grafted nGO. The RBC haemolysis assay further revealed that both 

nGO-PEG and nGO-PEtOx induced negligible damage to cell membranes, while the presence of 

protein coronas largely mitigated haemolysis induced by nGO, nGO-PEG and nGO-PEtOx at 
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concentrations up to 100 μg/mL (Figure 6b). Images from helium ion microscopy clearly illustrated 

haemolytic damage of RBCs induced by bare nGO (Figure 6d), and the absence of obvious damage 

in the other samples through the protection of plasma proteins (Figure 6g) or stealth polymers PEG 

and PEtOx (Figures 6e,f,h,i). 

 

CONCLUSION 

We have characterized and compared human plasma corona proteome associations of linear PEG- 

and PEtOx-grafted nGO sheets and augmented the examination with viability and haemolysis assays. 

Although ample similarities have been observed for the strong antifouling capacities of both nGO-

PEG and nGO-PEtOx, there were notable differences in the protein corona compositions of the two 

types of nanomaterials. Specifically, nGO-PEG enriched a number of apolipoproteins, suggesting its 

higher affinity for association with lipophilic environments such as cell membranes. In contrast, nGO-

PEtOx displayed a preference for enriching pro-angiogenic, structural binding and acute phase 

proteins, among others. In addition, PEG- and PEtOx-grafted nGO displayed enrichment of different 

complement proteins (CFB, CFI, C4BPA for nGO-PEG, while C4B, C8B, C1QC for nGO-PEtOx) 

indicating comparable phagocytic recognition. Overall, nGO-PEG and nGO-PEtOx showed a very 

similar antifouling capacity, although neither was able to completely prevent protein binding. Both 

nGO-PEG and nGO-PEtOx were biocompatible, as corroborated by the HEK 293 cell viability and 

RBC haemolysis assays. In connection with existing literature, this study has further implicated the 

role of the NP substrate in determining their surface protein enrichment. Together, this study has 

provided a first comprehensive comparison on the stealth capacities and corona composition of PEtOx 

versus PEG against the human plasma proteome and, in light of the advantages of PEtOx over PEG 

in chemical adaptability, low viscosity, clearance, and non-immunogenicity,[28] should prove valuable 

for the continued development of nanomedicine and bionanotechnology. Towards that end, more in-

depth protein corona studies on POx-grafted particles and surfaces will be necessary in the near future 

to gain further insights on the biological effects of the stealth polymer. 
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FIGURES  

 

 

Scheme 1. Synthesis of PEG and PEtOx and their grafting onto nGO (carbon: brown, oxygen: red, 

hydrogen: blue). 

 

 

 

Figure 1. TEM images of the three types of nGO sheets. Scale bars: 100 nm. Pseudo-colors for nGO-

PEG and nGO-PEtOx.  
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Figure 2. (a) Venn diagram representing the common and unique proteins associated with three nGO 

surface chemistries: bare (nGO), PEG (nGO-PEG) and POx (nGO-PEtOx). The result was acquired 

following 24 h incubation with human plasma proteins. (b) Log2 normalized protein abundance ratio 

plotted against log2 normalized mean (N = 3) nGO-PEG:nGO-PEtOx protein LFQ intensity values 

with arbitrary ratio cut-offs of 0.5 and 2 (dashed black lines). Red dots represent coronal proteins that 

are significantly different in abundance (t-test mean LFQ intensity values) between nGO-PEG and 

nGO-PEtOx. Proteins are identified by their respective unique identifiers.   

(a) (b) 
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Figure 3. The pI vs GRAVY distributions for corona proteins on nGO-PEG and -PEtOx are presented. 

Spot color indicates the abundance bin to which each protein belongs – based on log2 normalized 

ratio of mean LFQ (nGO-PEG):mean LFQ (nGO-PEtOx). The grey dots represent a non-glycosylated 

plasma background from Peptide Atlas (20170801-063918) without abundance information. Proteins 

are annotated with their respective gene names for clarity. GRAVY and pI ranges were manually 

selected. 
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Figure 4. Protein network analysis using the STRING resource (v10.5, string-db.org). The network 

was generated from 82 matched gene name entries (N = 134 total), using experiments and databases 

as active interaction sources, a minimum required interaction score of 0.7 (high confidence), no 

additional interactors and a whole genome background. Gene ontology (GO) annotations generated 

as part of the analysis were added, including complement activation in red (biological process [BP]), 

enzyme regulator activity in blue (molecular function [MF]) and complement and coagulation 

cascades in green (KEGG). Color halos indicate those proteins which were significantly different, 

determined by t-test of mean LFQ intensity values: PEG-enriched are yellow and PEtOx-enriched are 

black. 
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Figure 5. Comparison of top 10 most abundant corona proteins of PEGylated and PEtOxylated nGO 

and that of poly(organosiloxane) (POS) NPs from ref 31. 
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Figure 6. (a) Viability of HEK 293 cells determined using alamarBlue after treatment with different 

concentrations (100, 50, 20 and 10 μg/mL) of nGO, nGO-PEG, nGO-PEtOx, PEG polymer and 

PEtOx polymer for 24 h. Values were expressed as means ± SD (N = 3). (b) Haemolysis assay using 

red blood cells treated with different concentrations (100, 50, 20, 10 and 5 μg/mL) of nGO, nGO-

PEG, nGO-PEtOx w/o plasma protein corona as well as PEG and PEtOx polymers for 2 h. Values 

were expressed as means ± SD (N = 3). Images of red blood cells alone (c) and red blood cells treated 

for 2 h with nGO (d), nGO-PEG (e) and nGO-PEtOx (f) (100 μg/mL) as well as nGO (g), nGO-PEG 

(h), nGO-PEtOx (i) with plasma protein coatings. Images acquired using a scanning helium ion 

microscope. Scale bars: 1 μm.  
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TABLES  

 

Table 1. Zeta potentials and hydrodynamic sizes of the nGO sheets in Milli-Q water. 

Nanomaterials  Zeta potential (mV) Hydrodynamic size (nm) PDI 

nGO -40.8 ± 0.6 364.2 ± 5.6 0.23 ± 0.01 

nGO-PEG -31.4 ± 0.5 318.5 ± 4.8 0.20 ± 0.01 

nGO-PEtOx -25.2 ± 0.5 291.2 ± 4.4 0.22 ± 0.01 

 

 

 

Table 2. Top-10 most abundant proteins associated with each type of nGO. 

No. Bare nGO nGO-PEG nGO-PEtOx Plasma 

1 Serum albumin Fibrinogen alpha chain Fibrinogen alpha chain Serum albumin 

2 Fibrinogen gamma chain Fibrinogen gamma chain Fibrinogen beta chain Ig heavy constant gamma 1 

3 Complement C4-B Fibrinogen beta chain Fibrinogen gamma chain Fibrinogen beta chain 

4 
Inter-alpha-trypsin inhibitor 

heavy chain H4 

Inter-alpha-trypsin inhibitor 

heavy chain H4 

Inter-alpha-trypsin inhibitor 

heavy chain H4 
Complement C3 

5 Ig heavy constant gamma 1 Ig heavy constant gamma 1 Ig heavy constant gamma 1 Serotransferrin 

6 Fibrinogen alpha chain Apolipoprotein A-I Kininogen-1 Apolipoprotein A-I 

7 Fibrinogen beta chain Gelsolin Gelsolin Alpha-1-antitrypsin 

8 Complement C3 Serum albumin Complement C3 Fibrinogen alpha chain 

9 Gelsolin Kininogen-1 Vitronectin Haptoglobin 

10 Apolipoprotein B-100 Apolipoprotein B-100 Apolipoprotein B-100 Alpha-2-macroglobulin 
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Table 3. Proteins unique to the nGO coronas. 

 Uniprot IDs Gene names Protein names 

Bare nGO A2NJV5 IGKV2-29 Immunoglobulin kappa variable 2-29 

 A0A0B4J1U7 IGHV6-1 Immunoglobulin heavy variable 6-1 

 A0A075B6P5 IGKV2-28 Immunoglobulin kappa variable 2-28 

 P98160 HSPG2 
Basement membrane-specific heparin sulfate proteoglycan 

core protein 

 P06702 S100-A9 Protein S100-A9 

 P01703 IGLV1-40 Immunoglobulin lambda variable 1-40 

 Q14520 HABP2 Hyaluronan-binding protein 2 

 P05109 S100A8 Protein S100-A8 

 E5RH81 CA1 Carbonic anhydrase 1 

 Q9NQ79 CRTAC1 Cartilage acidic protein 1 

 A0A075B6K4 IGLV3-10 Immunoglobulin lambda variable 3-10 

nGO-PEG Q9UGM5 FETUB Fetuin-B 

 Q8WUA8 TSKU Tsukushin 

nGO-PEtOx P48740 MASP1 Mannan-binding lectin serine protease 1 

 P26572 MGAT1 
Alpha-1,3-mannosyl-glycoprotein 2 beta-N-

acetylglucosaminyltransferase 

 Q15485 FCN2 Ficolin-2 

 O15335 CHAD Chondroadherin 
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Table 4. Protein abundance ratio of nGO-PEG versus nGO-PEtOx (less than 0.5 and greater than 2.0 is the fold 

difference threshold, and only proteins that are significantly different between nGO-PEG and nGO-PEtOx are 

listed). 

Uniprot IDs Protein names (Gene names) Mean abundance ratio p value 

P03950 Angiogenin (ANG) 0.08 0.02 

B1AHL2 Fibulin-1 (FBLN1) 0.14  < 0.01 

P0DJI8 Serum amyloid A-1 protein (SAA1) 0.17 0.02 

A0A096LPE2 Serum amyloid A-4 protein (SAA2-A4) 0.28 < 0.01 

P0C0L5 Complement C4-B (C4B) 0.41  < 0.01 

F5GY80 Complement component C8 beta chain (C8B) 0.42 < 0.01 

P34096 Ribonuclease 4 (RNASE4) 0.46  0.01 

P02747 Complement C1q subcomponent subunit C (C1QC) 0.49 0.04 

F5H8B0 Coagulation factor VII (F7) 2.02 < 0.01 

P05546 Heparin cofactor 2 (SERPIND1) 2.23 0.02 

B4E1Z4 Complement factor B (CFB) 2.38  0.01 

G3XAM2 Complement factor I (CFI) 2.44 0.01 

P02749 Apolipoprotein H (APOH) 2.64 0.01 

P06727 Apolipoprotein A-IV (APOA4) 2.82 < 0.01 

P61769 Beta-2-macroglobulin (B2M) 2.89 < 0.01 

P36955 Pigment epithelium-derived factor (SERPINF 1) 2.94 < 0.01 

K7ERI9 Apolipoprotein C-I (APOC1) 3.02 0.02 

V9GYM3 Apolipoprotein A-II (APOA2) 3.34 < 0.01 

P10909 Clusterin (CLU) 3.57 < 0.01 

P02647 Apolipoprotein A-1 (APOA1) 3.91 < 0.01 

P04003 C4b-binding protein alpha chain (C4BPA) 4.35 0.04 

P02766 Transthyretin (TTR) 6.71 < 0.01 

P07225 Vitamin K-dependent protein S (PROS1) 6.71 0.02 
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