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Abstract

Functional magnetic resonance imaging (fMRI) is a non-invasive method for studying

the human brain that is now widely used to study functional connectivity. Functional

connectivity concerns how brain regions interact and how these interactions change

over time, between subjects and in different experimental contexts and can provide

deep insights into the underlying brain function.

Multiregression Dynamic Models (MDMs) are dynamic Bayesian networks that describe

contemporaneous, causal relationships between time series. They may therefore be

applied to fMRI data to infer functional brain networks. This work focuses on the MDM

Directed Graph Model (MDM-DGM) search algorithm for network discovery. The Log

Predictive Likelihood (model evidence) factors by subject and by node, allowing a fast,

parallelised model search. The estimated networks are directed and may contain the

bidirectional edges and cycles that may be thought of as being representative of the

true, reciprocal nature of brain connectivity.

In Chapter 2, we use two datasets with 15 brain regions to demonstrate that the

MDM-DGM can infer networks that are physiologically-interpretable. The estimated

MDM-DGM networks are similar to networks estimated with the widely-used partial

correlation method but advantageously also provide directional information. As the

size of the model space prohibits an exhaustive search over networks with more than

20 nodes, in Chapter 3 we propose and evaluate stepwise model selection algorithms

that reduce the number of models scored while optimising the networks. We show that

computation time may be dramatically reduced for only a small trade-off in accuracy. In

Chapter 4, we use non-local priors to derive new, closed-form expressions for the model

evidence with a penalty on weaker, potentially spurious, edges. While the application

of non-local priors poses a number of challenges, we argue that it has the potential to

provide a flexible Bayesian framework to improve the robustness of the MDM-DGM

networks.
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Chapter 1

Inferring Brain Connectivity with Functional MRI

1.1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a neuroimaging modality that offers

a number of advantages: it is non-invasive and allows whole-brain coverage. It has high

spatial resolution and relatively high temporal resolution, meaning the brain may be

imaged in almost real time. Subsequently, fMRI has become a widely-used technique

for examining both normal and pathological human brain function.

A century of neuroscience research has established that at the macroscopic level the

brain is organised into a collection of distinct anatomical regions, each with its own

highly specialised function. This specialisation has been referred to as functional seg-

regation (Friston et al., 2013). One example is the visual cortex, where it has long

been established that different aspects of an image (e.g. colour, motion, orientation)

are processed separately in different cortical areas (Zeki and Shipp, 1988). Communica-

tion within and between these localised, specialised regions has been termed functional

integration and is achieved through the extensive afferent, efferent and intrinsic myeli-

nated axonal nerve fibres that compose the structural architecture of the brain (Zilles

and Amunts, 2015). Deeper insights may be obtained by considering the activation and

communication of brain regions over time, during a particular task or at rest. Func-

tional MRI, in combination with appropriate statistical models, provides a powerful

tool for inferring time-varying patterns of brain connectivity.

1.2 Thesis Outline

A typical fMRI scan measures the activity of a set of anatomical regions over the

course of a few minutes (see the next section for more details). A number of method-

ologies have been developed which aim to infer brain connectivity from this type of

data. Network models treat the brain as a collection of nodes (anatomical regions) and

edges (connections between regions) and provide a powerful framework to model both

structural and functional connectivity (Sporns, 2014). Approaches based on network

modelling range from simple descriptions of the data to detailed models with a definite

biophysical interpretation (Smith, 2012).

As well as the ability to infer the presence of connections between anatomical regions,
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deeper insights may be obtained with models that also estimate the orientation of

connections (i.e. the direction of information flow). Methods which allow bidirectional

edges and cycles (thereby modelling feedback loops) may be desirable as they are likely

to be more representative of the underlying brain function. Some models of brain

connectivity also provide an estimate of the strength of the influence of one region over

another. If these estimates are dynamic, it is possible to model how the strength of

the influence changes over time. It may also be advantageous to be able to estimate

networks and (potentially dynamic) connectivity strengths for individual subjects, as

well as at the group level.

Costa (2014) developed two algorithms for network discovery using fMRI, based on

the Multiregression Dynamic Model (MDM) of Queen and Smith (1993). The MDM-

Integer Programming Algorithm (MDM-IPA) and MDM-Directed Graph Model (MDM-

DGM) searches may be used to infer networks and provide dynamic connectivity esti-

mates both for individual subjects and at the group level. These connectivity estimates

are the regression coefficients of a Dynamic Linear Model (West and Harrison, 1997).

While the MDM-IPA constrains each network to be a directed acyclic graph (DAG),

the MDM-DGM permits cycles and bidirectional edges. Using simulated data, Costa

et al. (2015) showed the MDM-IPA could perform as well as, or better than, a number

of competing methods for inferring the presence and direction of edges. The MDM-IPA

and MDM-DGM algorithms were also applied to real fMRI data with 11 brain regions

(Costa, 2014; Costa et al., 2015, 2017).

Focusing on the MDM-DGM, in this thesis we extend the work of Costa (2014) and

Costa et al. (2015, 2017) in a number of directions. To further explore the behaviour of

the MDM-DGM search on real data, we made use of two fMRI resting-state datasets.

The original experiment was designed to explore differences in connectivity between

brain regions, specifically relating to trait and induced anxiety. Previous analysis of

this data was reported in Bijsterbosch et al. (2015). We began by validating the MDM-

DGM search by comparing the estimated networks with partial correlation networks as

partial correlation is an established method for edge detection (see section 1.5.1). Given

the close correspondence of the networks estimated by these two methods, we used two

advantageous features of the MDM-DGM, the ability to infer the orientation of edges

and the ability to provide time-varying connectivity weights, in order to further explore

the role of certain brain regions in trait and induced anxiety. Results are presented in

Chapter 2.

To gain fundamental insights into brain function, it is desirable to work with networks

with much larger numbers of brain regions than have typically been used in models of

directed connectivity. However, as will be discussed in Chapter 3, the most significant

limitation in terms of the computational complexity of the MDM-DGM algorithm is the

size of the model space, which increases exponentially with the number of brain regions.

Using stepwise regression methods, forward selection and backward elimination, the

size of the model space increases quadratically with the number of regions. Stepwise

2



methods therefore have the potential to allow the extension of the MDM-DGM to much

larger networks. The performance of these algorithms is assessed in Chapter 3.

MDM-DGM fMRI networks (which we will present in Chapter 2) tend to contain a

number of connections which occur inconsistently across subjects and have low connec-

tivity strengths. We hypothesised that these connections were potentially spurious. In

order the increase the sparsity of the networks, we considered non-local priors (Johnson

and Rossell, 2012; Rossell and Telesca, 2017) to include a penalty on the model evi-

dence for unnecessarily complex models. One advantageous feature of non-local priors

is that the expressions for the penalised model evidence are closed-form. However, this

approach also presents a number of theoretical and computational challenges, as will

be discussed in Chapter 4.

This chapter introduces the use of functional Magnetic Resonance Imaging to infer

dynamic, directed brain activity. For the remainder of this section, some of the key

concepts are introduced, including the basic physiology behind the fMRI signal, the

nature of functional brain networks and the insights into brain function that may be

possible with this type of inference. In section 1.3, some of the methods that have been

developed to date are outlined, with a particular focus on Bayesian networks and state-

space models. The Multiregression Dynamic Model and the Dynamic Linear Model,

which will be the focus of this work, are described in detail in section 1.4. Section 1.5

reviews some commonly-used algorithms for network discovery with fMRI data and our

search procedure, the MDM Directed Graph Model (MDM-DGM) search, is outlined

in section 1.6. Further discussion of the MDM-DGM, with a particular focus on the

inference of graphs with cycles, is provided in section 1.7.

1.2.1 BOLD fMRI and Resting-State Networks

Functional MRI measures the blood oxygenation level-dependent (BOLD) contrast.

Increased neuronal activity causes increased cerebral blood flow (CBF), increased cere-

bral blood volume (CBV) and oxygen consumption (CMRO2). The increase in cerebral

blood flow is greater than the increased oxygen consumption, resulting in a decrease

in the total amount of deoxygenated hemoglobin (dHb). As deoxyhemoglobin is para-

magnetic, the magnetic resonance signal is reduced in its vicinity, so a decrease in

dHb results in a positive BOLD contrast. For a detailed review of the origins of the

BOLD signal, see Mark et al. (2015). The BOLD signal is a hemodynamic response

to neuronal activity, occurring at much slower timescales (hundreds of milliseconds to

seconds) than the activity of the underlying neurons which occurs at the millisecond

scale (Shmuel and Maier, 2015). This hemodynamic response is known to vary between

cortical regions, subjects and experimental paradigms (Handwerker et al., 2012) and

the exact mechanisms behind the coupling of neural activity, metabolism and hemody-

namics are still an active area of research (for reviews see Ugurbil (2016) and Keilholz

et al. (2017)).

Brain activity accounts for 20 % of the body’s energy consumption, and most of this
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energy is used on spontaneous activity, rather than task-based responses (Fox and

Raichle, 2007). This has motivated the field of resting-state fMRI, where patterns

of activity that are biophysically-meaningful and reproducible across subjects may be

extracted from the scans of people at rest rather than engaged in a particular task.

Spontaneous infra-slow (< 0.1 Hz) fluctuations in the BOLD response were shown to be

strongly correlated between the motor cortices by Biswal et al. (1995) and since then a

number of resting-state networks have been identified. In these networks, brain regions

can interact strongly even though they may be spatially-distant. Resting-state networks

not only show a strong correspondence with task-activation networks (Smith et al.,

2009), but have been used to successfully predict task-based activation for individual

subjects (Tavor et al., 2016).

There is strong evidence that resting-state fMRI has a neural basis. Keilholz (2014)

provides a review of the use of electrophysiological techniques such as EEG (electroen-

cephalography) and invasive intracranial recordings to explore the relationship between

patterns of resting-state BOLD connectivity and the underlying neuronal processes.

The relationship between BOLD response and the underlying electrophysiology is com-

plex and it is likely that the BOLD signal arises from multiple electrophysiological

processes. Resting-state networks have been found to have distinct spectral ‘finger-

prints’, composed of multiple frequency bands of the EEG signal (Mantini et al., 2007)

and resting-state connectivity patterns (correlation matrices) from (intracranial) elec-

trocorticography recordings have been shown to correlate with fMRI data (Foster et al.,

2015).

Using resting-state fMRI and diffusion spectrum imaging, a non-invasive method for

determining structural (anatomical) connectivity, as well as a computational model,

Honey et al. (2009) showed that structural connectivity was a good predictor of resting-

state connectivity. Cortical regions that were connected anatomically exhibited stronger

and more consistent resting-state connectivity when compared with anatomically un-

connected regions. However, the reverse was not true, resting-state connectivity was

an unreliable predictor of the underlying structural connectivity.

1.2.2 Functional vs. Effective Connectivity

The discovery of synchronised temporal activity across spatially-distant brain areas has

given rise to the field of resting-state fMRI connectivity with a large body of research

dedicated to the development and validation of methods for resting-state connectivity

analysis. These methods range from simple descriptions of the data (e.g. full and partial

correlation methods) to detailed biophysical models, which map the underlying neural

activity to the observed hemodynamic response (Smith, 2012). Some of these meth-

ods will be reviewed later in this chapter. Central to fMRI connectivity modelling is

the distinction between functional and effective connectivity, first described by Friston

et al. (1993). Functional connectivity considers statistical dependencies between two

neuronal systems, while effective connectivity describes the influence of one neuronal
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system over another (Friston et al., 2013). Functional connectivity models correla-

tions between brain regions, so the estimated connectivity is undirected, while effective

connectivity methods are able to make inferences about directed connectivity (Smith,

2012). While methods that include directional information clearly have the potential to

provide a much richer understanding of the data (and the underlying brain function),

these models require careful interpretation, may be computationally-intensive and rely

on specific and often different definitions of causality (see, for example, Henry and

Gates (2017) for review).

1.2.3 Dynamic Functional Connectivity

The original research into resting-state functional connectivity assumed that connec-

tivity was static over the duration of a typical fMRI scan, i.e. over periods over several

minutes. However, in recent years, evidence has emerged which suggests temporal dy-

namics on much shorter timescales (Chang and Glover, 2010). This has motivated the

development of a number of methods which aim to quantify this dynamic functional

connectivity. As the exact relationship between the underlying neural activity and

the observed dynamics in the BOLD signal is still unclear, interpretation of dynamic

functional connectivity requires caution. Careful data preprocessing is necessary to

remove the effects of head motion without destroying any true dynamics present in the

BOLD signal (Laumann et al., 2016). Inappropriate statistical analysis can also lead

to the erroneous detection of dynamic functional connectivity. Sliding window meth-

ods divide the time series into (sometimes overlapping) intervals and infer dynamics

by comparing the estimated functional connectivity between these intervals. Laumann

et al. (2016) used a sliding-window approach to test for dynamic connectivity on BOLD

time series that had been simulated to be stationary, finding that most ‘dynamic’ con-

nectivity could be attributed to sampling variability. For a detailed review of dynamic

functional connectivity analysis, including discussion of the sliding window method, see

Hutchison et al. (2013). It should also be emphasised that detection of dynamics using

a statistical method does not in itself provide any information about the dynamics of

the underlying system (Hindriks et al., 2016).

1.3 Modelling Functional and Effective Connectivity

In this section, we review models for estimating directed connectivity from fMRI data.

This section focuses on model equations and interpretation. The application of some of

these models as a basis for network discovery algorithms is reserved until section 1.5.

1.3.1 Bayesian Networks

Inferred directed brain networks from fMRI data relies on a number of concepts from

the field of graphical models. Many of the methods developed to date (including the

Multiregression Dynamic Model) are Bayesian network methods. Basic concepts and

notation are defined in this subsection.
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Graphical Models

A graph may be defined by G = {V,E}, where V is some set of vertices or nodes and

E is the set of edges (or connections) between the nodes. Two nodes are adjacent if

an edge exists between them, e.g. in Figure 1.1a, node 1 and node 2 are adjacent, as

are node 2 and node 3, but node 1 and node 3 are not (i.e. there is no edge between

node 1 and node 3). If each node represents a variable, then a graph may be used to

represent interactions between a set of variables. These interactions may be undirected

(as in Figure 1.1a) or directed (Figure 1.1b-1.1e), with arrows to denote the direction

of influence. Directed edges can be used to represent causal relationships, so if there is

an arrow from node 1 to node 2, representing the influence of the variable Y(1) on the

variable Y(2), we have the interpretation that Y (1) causes Y (2). For any directed edge,

the node from which the edge originates is called the parent and the node to which the

arrow points is the child (Spirtes et al., 2000). If Pa(i) and Ch(i) denote the parents

and children of node i respectively, then, for example, Figure 1.1c has Pa(2) = {1,3},

Ch(1) = {2} and Ch(3) = {2}. If a node has no parents, e.g. node 1 (and node 3), its

parent set may be denoted by the empty set as Pa(1) = {∅}.

A directed acyclic graph (DAG) is a directed graph which contains no cycles. The

graphs in Figure 1.1b and 1.1c obey the DAG principle. Examples of non-DAGs, or

directed cyclic graphs (DCGs), are shown in Figures 1.1d and 1.1e.

If there is a direct or indirect path from node i to node j, node j is a descendant of node

i (Spirtes et al., 2000). The graph in Figure 1.1b is an example of a chain graph, where

node 1 influences node 2 which influences node 3. There is an indirect influence of node

1 on node 3 and node 3 is a descendant of node 1. If the influence of node 2 on node 3

is known, the activity of node 3 may be explained without knowledge of node 1. This

may be expressed more formally in terms of conditional independence. Let the graph

in Figure 1.1b be represented by the set of variables Y = {Y (1), Y (2), Y (3)}. The

indirect nature of the influence of node 1 is described by the conditional independence

relation

Y (3)áY (1) ∣Y (2)

which may be read as: node 3 is conditionally independent of node 1 given node 2.

Given a set of conditional independence relations, a graph G may be represented by a

probability distribution P. A graph and its associated distribution satisfies the Causal

Markov Condition if and only if for every vertex i in V, i is independent of V ∖{Pa(i)∪
Ch(i)} given Pa(i). In other words, given its parents, node i is independent of its

non-descendants (Spirtes et al., 2000; Mumford and Ramsey, 2014).
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(d)

Directed Cyclic Graphs
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3

(e)

1 2

3

Figure 1.1: Example graphs for a 3 node network.

The Markov condition means the probability distribution P factorises as

p[Y (1), . . . , Y (n)] =
n

∏
i=1

p[Y (i) ∣Pa(i)]

where n is the number of nodes in the graph G. If the graph is acyclic, then, for some

ordering of the nodes, its probability distribution will obey the Bayesian decomposition

rule, such that it may be expressed as

p[Y (1), . . . , Y (n)] = p[Y (1)]p[Y (2) ∣Y (1)], . . . , p[Y (n) ∣Y (1), . . . , Y (n − 1)].

A graph with an associated probability distribution of this form comprise a Bayesian

network, B = {G,P}. These concepts are illustrated in Figure 1.2 where a conditional

probability may be obtained for each node in the graph as follows

Graph (i) pY (1) = p[Y (1) ∣∅]

Graph (ii) pY (2) ∣Y (1) = p[Y (2) ∣Pa(2)]

Graph (iii) pY (3) ∣Y (1),Y (2) = p[Y (3) ∣Pa(3)].

The probability distribution associated with the DAG in graph (iv) is therefore

Graph (iv) p[Y (1), . . . , Y (3)] = p[Y (1) ∣∅]p[Y (2) ∣Pa(2)]p[Y (3) ∣Pa(3)].
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(i)
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3

(ii)

1 2

3

(iii)

1 2

3

(iv)

1 2

3

Figure 1.2: The probability distribution associated with a Bayesian network can
be expressed in terms of a set of conditional probabilities.

Markov Equivalence

Consider the two graphs in Figure 1.3. Their associated joint probability distributions

are

Graph (i) p[Y (1), Y (2), Y (3)] = p[Y (1)]p[Y (2) ∣Y (1)]p[Y (3) ∣Y (2)]

Graph (ii) p[Y (1), Y (2), Y (3)] = p[Y (1) ∣Y (2)]p[Y (2)]p[Y (3) ∣Y (2)].

Both graphs imply that conditional on node 2, node 1 is independent of node 3. Graphs

with the same conditional independence structure are said to be Markov equivalent.

Bayesian networks that are Markov equivalent will have the same skeleton (undirected

graph) (Mumford and Ramsey, 2014). A Bayesian network cannot distinguish between

Markov equivalent graphs.

(i)

1 2

3

(ii)

1 2

3

Figure 1.3: Example of Markov equivalent graphs. Graphs are said to be Markov
equivalent if they share the same conditional independence relations.

Dynamic Bayesian Networks

An extension is a dynamic Bayesian network. Imagine there are T observations from n

nodes so that at each time t there is an n×1 vector Y⊺
t = {Yt(1), Yt(2), . . . , Yt(n)}. Using
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a first-order Markovian transition model, the joint probability distribution factors as

p[Y1, . . . ,YT ] = p[Y1]
T

∏
t=2
p[Yt ∣Yt−1]

= p[Y1]
T

∏
t=2

n

∏
i=1
p[Yt(i) ∣Pa(i)t]

where Pa(i)t contains the parents for node i in time-slice t or t−1 (Bielza and Larrañaga,

2014). For a more in-depth discussion, see Costa (2014) and Bielza and Larrañaga

(2014).

A detailed review of Bayesian networks for fMRI data is provided by Mumford and

Ramsey (2014). Some network discovery algorithms which rely on Bayesian network

principles will be reviewed in section 1.5.

1.3.2 Structural Equation Models

Consider the graph in Figure 1.4a. Let this graph represent a system about which some

inference is to be made, i.e. let each node represent a brain region with some activity

and each edge an interaction between the regions. The strength of the influence of one

node on another is represented by the connection weights α and β. The graph in Figure

1.4a has a corresponding structural equation model (SEM), described by the equations

in Figure 1.4b.

The variables of any SEM are split into substantive variables and error variables. The

variables represented by each node are the substantive variables and the error terms

represent the effect of any causes other than the substantive ones, such as the effect of

exogenous variables. The equations in Figure 1.4b describe a linear SEM. In a linear

SEM, every substantive variable is a linear function of the other substantive variables

and its associated error (Spirtes et al., 2000). For example, the edge Y (1) → Y (2)
(in Figure 1.4a) means that the variable Y (1) appears in the right hand side of the

equation for Y (2):

Y (2) = αY (1) + εY (2)

so that Y (1) may be described as a direct, substantive cause of Y (2).

More generally, consider a set of n brain regions, represented by a graph with n nodes.

For each region, there is a BOLD time series with length T such that at time t, there

is an n × 1 vector of observations Y⊺
t = {Y (1), . . . , Y (n)}. This system may be written

in matrix form as

Yt = G0Yt + εt (1.3.1)

where the n × n matrix G0 is called the path coefficient matrix and ε is a n × 1 error

vector. Each component of G0 specifies an instantaneous effect between two regions
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Y (2)
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⎟
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+
⎛
⎜
⎝

εY (1)
εY (2)
εY (3)

⎞
⎟
⎠

(b) SEM equations

Figure 1.4: Inferring connectivity strengths with path analysis. A linear structural
equation model consists of a graph with a corresponding set of equations. The path coefficient
matrix is lower triangular and each entry represents a connectivity strength.

and the absence of a connection is represented by a zero (Penny et al., 2004; Chen

et al., 2011). If the path coefficient matrix is lower triangular (as in Figure 1.4b),

the structural equation model will represent a directed acyclic graph. An SEM that

represents a directed acyclic graph is said to be recursive, while a non-recursive SEM

may be used to model a directed cyclic graph (Spirtes, 1995).

In an SEM, the presence of an arrow from Y (1) to Y (2) means that Y (1) causes

Y (2). These causal relationships are assumed a priori rather than inferred from the

data so SEM methods involve estimating the set of connection strengths represented

by the entries in the matrix G0 (Penny et al., 2004). It is possible to solve for G0 by

rearranging equation 1.3.1 as

Yt = A0εt

where the matrix A0 = (I −G0)−1 is called the mixing matrix. Under certain assump-

tions, this matrix may be estimated by independent component analysis (ICA) and,

with appropriate permutation and normalisation, the matrix of connectivity strengths

G0 may be obtained (Shimizu et al., 2006; Lacerda et al., 2012). Algorithms for both

acyclic and cyclic graphs exist and will be discussed in more detail in section 1.5.

1.3.3 Structural Vector Autoregressive Models

Consider two time series from two brain regions Y(1) and Y(2). Let Yt−1(r) be a

vector containing all observations from region r up until time t − 1, so that we may

write Yt−1(1)⊺ = {Y1(1), . . . , Yt−1(1)} and Yt−1(2)⊺ = {Y1(2), . . . , Yt−1(2)}. If a better

prediction for Yt(2) at time t can be obtained using Yt−1(1) than using only Yt−1(2),
then it may be said that Y(1) Granger-causes Y(2) (Granger, 1969; Mannino and

Bressler, 2015). Granger causality is often implemented through vector autoregressive

(VAR) models of the form

Yt =
K

∑
k=1

GkYt−k + εt.
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where each coefficient matrix Gk describes effects k steps back in time and, as usual,

εt is an error vector.

An extension, which combines SEM and VAR models, is the structural vector autore-

gressive (SVAR) model, described by

Yt = G0Yt +
K

∑
k=1

GkYt−k + εt

(Hyvärinen et al., 2010). Structural equation models describe instantaneous connec-

tivity. Let the (j, i)th coefficient of the matrix G0 be denoted by G
(j,i)
0 . The definition

of causality in an instantaneous SEM may be stated as follows: Y (i) causes Y (j) if

G
(j,i)
0 > 0. Similarly, denote the (j, i)th coefficient of the matrix Gk by G

(j,i)
k , where

this coefficient represents the effect of the variable Yt−k(i) on the variable Yt(j). Using

this framework, Hyvärinen et al. (2010) provide a definition of causality for the SVAR

model such that Y (i) is said to cause Y (j) if at least one of the coefficients G
(j,i)
k

is significantly non-zero for k ≥ 0. Note that Granger causality does not assume any

particular underlying causal mechanism (Mannino and Bressler, 2015).

Instantaneous or within-sample connectivity may be thought of as connectivity that

occurs at much faster timescales than the temporal resolution of the data (Smith et al.,

2013). Functional MRI causal searches often focus on contemporaneous connectivity. It

was noted by Granger (1969) that causal effects may appear contemporaneous when the

data are sampled at much slower rates than the underlying generational process. This

is the case with fMRI data as the underlying neuronal processes occurs at much faster

timescales than the measured BOLD signal, due to the relatively slow hemodynamic

response (Henry and Gates, 2017).

1.3.4 State-Space Models

As the BOLD signal is an indirect measure of neuronal activity, models of directed con-

nectivity which only consider the observed response may be unreliable, as the estimated

‘causal’ effects may arise due to variations in the timing of the hemodynamic response,

rather than reflecting a true causal relationship between the brain regions of interest.

As mentioned in section 1.2.1, the hemodynamic response is known to vary between

cortical regions, as well as between subjects and populations (Handwerker et al., 2012).

To overcome this, the state-space model framework, which is the focus of this section,

defines directed connectivity in terms of a set of latent or state variables, which may

then be related to the measured response. Assume each individual cortical region gives

rise to an individual observation at time t so that for a system with n brain regions,

θ⊺t = {θt(1), . . . , θt(n)} is an n × 1 vector representing some ‘true’ state of the system

at time t. Let the state variables θ⊺t represent the activity of neurons in a cortical

area, so that they may be said to represent some quasi-neural variable. The behaviour

of these state variables is governed by a state equation. The state variables are then

related to the measured variables (the BOLD response) through an observation equa-
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tion. Let there be an n-dimensional random vector Y⊺
t = {Yt(1), Yt(2), . . . , Yt(n)} with

a corresponding set of observed values y⊺t = {yt(1), yt(2), . . . , yt(n)}.

Let N(⋅, ⋅) denote the multivariate normal distribution with some mean vector and

covariance matrix. A linear dynamical system (LDS) may be described by

Observation equation Yt = Fθt + vt vt ∼ N(0,V) (1.3.2a)

State equation θt = Gθt−1 +wt wt ∼ N(0,W) (1.3.2b)

where G is a n × n state transition matrix, which describes directed interactions be-

tween hidden states. The coefficients of the matrix G may be interpreted as connectiv-

ity strengths, where the diagonal and off-diagonal elements control ‘intrinsic’ (within

region) and ‘extrinsic’ (between region) effective connectivity respectively (Kahan and

Foltynie, 2013). The n × n observation matrix F defines a linear relationship between

the hidden states and the measured response. The n-dimensional vector wt is the state

evolution noise and the n-dimensional vector vt is the observation noise. Both are

assumed to be zero-mean (multivariate) Gaussian with (time-invariant) covariances W

and V respectively (Roweis and Ghahramani, 1999).

It is possible to define some set of n known, exogenous inputs to the system at time

t, via an n-dimensional vector ut = {ut(1), . . . , ut(n)}. These external inputs might

be, for example, the timings of a stimulus presented to a participant in a task-based

fMRI study; these external variables are known because they are controlled by the

experimenter. Let the strength of influence of these inputs be determined by an n × n
coefficient matrix D. The state equation 1.3.2b may now be extended to become

θt = Gθt−1 +Dut +wt wt ∼ N(0,W).

If the coefficient matrices G, D and W are allowed to vary with time, but it is assumed

only a small (<< T ) number of distinct matrices exist, indicated by some index s with

some associated transition probability p(st = i ∣ st−1 = j), the state equation becomes

that of the Switching Linear Dynamic System (SLDS) model, developed for BOLD

data by Smith et al. (2010) and Smith et al. (2012):

θt = Gstθt−1 +Dstut +wt wt ∼ N(0,Wst).

The altered neuronal activity θt may then change the neuronal activity of other regions,

via the off-diagonal elements of G (or Gt if this matrix varies with time). These inputs

directly influence the neuronal activity, and may be referred to as driving inputs. Ad-

ditionally, it is also possible to specify modulatory inputs, which change the underlying

neurodynamics (that is, the intrinsic and extrinsic connection strengths) (Penny et al.,

2005). The coupling of brain regions in the presence of a modulatory input xt(j) may

be described by an n×n coefficient matrix Cj (Ryali et al., 2011). The effects of these
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two different types of input become clear if the state equation is extended as

θt =
⎛
⎝
G +

J

∑
j=1

xt(j)Cj
⎞
⎠
θt−1 +Dut +wt wt ∼ N(0,W)

This is the state equation of the Multivariate Dynamical Systems (MDS) model of Ryali

et al. (2011).

Both of these models operate in a discrete time framework. The LDS state equation

may be expressed in continuous time, see Smith et al. (2013) for a detailed explanation

of the parallels between the discrete and continuous time frameworks. Let θ̇ be the

first derivative of θ and Θ be some set of time-invariant connectivity parameters (Razi

and Friston, 2016). Define Θ = {G̃, C̃1, . . . , C̃J , D̃,Θ
h}, where Θh represents the pa-

rameters of the hemodynamic model and, following Smith et al. (2013), the ∼ notation

indicates continuous time variants of the matrices outlined above. The state equation

of the widely-used, deterministic Dynamic Causal Model (DCM; Friston et al. (2003))

is

θ̇ =
⎛
⎝
G̃ +

J

∑
j=1

u(j)C̃j
⎞
⎠
θ + D̃u.

Changes to the rate of change θ̇ are known as second-order or bilinear effects (Kahan

and Foltynie, 2013).

θ(1)

θ(2)

G(2,1)

(a) Driving inputs

θ(1)

θ(2)

G(2,1)

G(1,1)

G(2,2)

(b) Modulatory inputs

Figure 1.5: Illustration of a state-space framework for models of effective connec-
tivity. The neuronal activity of a region i is represented by an (unobservable) state variable
θ(i) that varies in discrete or continuous time. (a) Driving inputs directly influence neuronal
activity while modulatory inputs (b) affect neuronal activity indirectly by altering the connec-
tivity strengths between nodes (the elements of G). See Ryali et al. (2011) and Kahan and
Foltynie (2013) for more specific illustrations of MDS and DCM respectively.

Within this general framework, illustrated in Figure 1.5, a stimulus ut(i) causes a

change in some quasi-neural variable θt(i) which in turn causes a change in the measured

response Yt(i), for some cortical region i at time t. The change in θt(i) may also cause
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a change in some other region(s), e.g. θt(j) via the coefficient G(j,i). Estimation of

causal interactions is then equivalent to the estimation of the coefficient matrices (G,

Gst or G̃, and Cj or C̃j , j = 1, . . . , J). These types of models define causality in

terms of the effect that one neural system exerts on another, in response to an input.

To extend DCM to resting-state data, where there are no known external inputs, it

becomes necessary to estimate not just the effective connectivity but also the hidden

neuronal states that drive the endogenous activity of the system. This may be achieved

with a stochastic DCM where the state equation becomes

θ̇ =
⎛
⎝
G̃ +

J

∑
j=1

ujC̃j
⎞
⎠
θ + D̃ (u +w(u)) +w(θ)

and w(θ) and w(u) describe fluctuations in the states and hidden causes respectively

(Li et al., 2011). However, inversion of stochastic models in the time domain is

computationally-intensive. Alternatively, spectral DCM (spDCM) works in terms of

the cross-spectra of the observed time series. Rather than estimating the (time-varying)

hidden states, spDCM estimates their (time-invariant) covariance (Friston et al., 2014;

Razi and Friston, 2016).

In order to more fully account for the hemodynamic response, these models replace the

simple linear mapping in equation 1.3.2a by a more biophysically-informed relationship.

For an individual region i, write

zt(i) = [θt(i), θt−1(i), . . . , θt−L+1(i)]⊺ (1.3.3a)

Yt(i) = b⊺(i)Φzt(i) + vt(i) vt(i) ∼ N(0, V ) (1.3.3b)

where the hemodynamic response is represented by the product b⊺(i)Φ, where b(i)
provides region specific weights for the set of bases contained in Φ. These basis vectors

span most of the variability in observed hemodynamic responses (Penny et al., 2005;

Smith et al., 2010). The BOLD response is therefore modelled by the convolution of

the hemodynamic response with the quasi-neural variable θt(i) L steps back into the

past plus some zero-mean, uncorrelated, Gaussian observation error (Penny et al., 2005;

Ryali et al., 2011). Observation models of this form are used in the SLDS and MDS

models. DCMs, in comparison, use a more complex biophysical model (see Stephan

et al. (2007) for a detailed description).

1.4 Multiregression Dynamic Models

1.4.1 The Multiregression Dynamic Model Equations

Imagine extending the linear dynamical state equations 1.3.2a and 1.3.2b so that the

state transition matrix G and the observation matrix F, as well as the state and

observation covariances W and V, may vary with time. As before, for a graph with n

nodes, at some time t, there is an n-dimensional vector Y⊺
t = {Yt(1), Yt(2), . . . , Yt(n)}

with observed values for each node y⊺t = {yt(1), yt(2), . . . , yt(n)}. Each observation
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Yt(r) has a distribution determined by a pr × 1 state vector θt(r), so for each node r,

there is a linear dynamical system described by

Obs. equation Yt(r) = Ft(r)⊺θt(r) + vt(r) vt(r) ∼ N[0, Vt(r)] (1.4.1a)

state equation θt(r) = Gt(r)θt−1(r) +wt(r) wt(r) ∼ N[0,Wt(r)] (1.4.1b)

where the observation matrix F has been replaced by a column vector with the same di-

mension as θt(r). Denote the set of observations up to and including time t for region r

by Yt(r)⊺ = {Y1(r), . . . , Yt(r)}, where the superscript indicates that we are considering

all observations up to and including time t, rather than an individual time point.

Similarly define Xt(r)⊺ = {X1(r)⊺, . . . ,Xt(r)⊺} and Zt(r)⊺ = {Z1(r)⊺, . . . ,Zt(r)⊺}
with corresponding vectors of observations xt(r)⊺ = {x1(r)⊺, . . . ,xt(r)⊺} and zt(r)⊺ =
{z1(r)⊺, . . . ,zt(r)⊺} such that

Xt(r)⊺ = {Yt(1), Yt(2), . . . , Yt(r − 1)} 2 ≤ r ≤ n

Zt(r)⊺ = {Yt(r + 1), . . . , Yt(n)} 2 ≤ r ≤ (n − 1).

The column vector Ft(r) may then be defined as a known but arbitrary function of

xt(r) and yt−1(r). It should not depend on zt(r) or yt(r).

Denote a block diagonal matrix by blockdiag{}. Define Gt = blockdiag{Gt(1), . . . ,Gt(n)}
and Wt = blockdiag{Wt(1), . . . ,Wt(n)} where Gt(r) is the state matrix for node r

and Wt(r) is the state variance for node r. These matrices may depend on past

observations xt−1(r) and yt−1(r) but nothing else. The observation variance is de-

noted Vt(r) such that Vt = {Vt(1), . . . , Vt(n)}. The observation and state error vectors,

vt = {vt(1), . . . , vt(n)} and w⊺
t = {wt(1)⊺, . . . ,wt(n)⊺} respectively, are mutually in-

dependent with time, and the variables vt(1), . . . , vt(n) and wt(1), . . . ,wt(n) are also

mutually independent.

Finally, define some initial information to describe the system at time t = 0, given any

information D0 that is known a priori. Let θ0 follow some distribution with moment

parameters m0 and C0, where m0 is a vector m0 = {m0(1), . . . ,m0(n)}. Like Gt(r)
and Wt(r), C0 is block diagonal and each C0(r) is a pr×pr square matrix independent

of everything except the past observations contained in xt−1(r) and yt−1(r).

Queen and Smith (1993) call {Yt}t≥1 a Multiregression Dynamic Model (MDM) if it is

governed by n observation equations, a state equation1 and initial information, defined

1Note that Queen and Smith (1993) refer to this as the system equation. For consistency with the
state-space framework as outlined previously, we refer to the latent variables as the state variables
when describing the MDM and DLM.
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as

Obs. equations Yt(r) = Ft(r)⊺θt(r) + vt(r) vt(r) ∼ [0, Vt(r)] (1.4.3a)

State equation θt = Gtθt−1 +wt wt ∼ (0,Wt) (1.4.3b)

Initial information (θ0 ∣D0) ∼ (m0,C0) . (1.4.3c)

As C0 is block diagonal, the parameters for each variable are mutually independent at

time t = 0 and the following conditional independence results hold:

Result 1

Given the observations up until time t, θt(r) are mutually independent

án
r=1 θt(r) ∣ yt.

Result 2

Given the observations up until time t for nodes 1,. . . ,r, θt(r) is independent of the rest

of the past data

θt(r)á zt(r) ∣ xt(r),yt(r).

It follows from Result 1 that if the state variables θ0 = {θ0(1), . . . ,θ0(n)} are indepen-

dent at time t = 0, the parameters associated with each variable remain independent

over time and may be updated independently given data yt. Result 2 states that, given

the current and previous observations from indexed series 1, . . . , r, the state vector θt(r)
is independent of the data from (r + 1), . . . , n.

The joint one-step-ahead forecast distribution for the MDM factors by node as

p(yt ∣yt−1) =
n

∏
r=1
∫
θt(r)

p[yt(r) ∣xt(r),yt−1(r),θt(r)]p[θt(r) ∣yt−1]dθt(r)

=
n

∏
r=1
∫
θt(r)

p[yt(r) ∣xt(r),yt−1(r),θt(r)]p[θt(r) ∣xt−1(r),yt−1(r)]dθt(r).

Each observation follows a conditional, univariate Bayesian dynamic model.

The probability of the data over all time is

p[y] =
T

∏
t=1

p[yt ∣yt−1] =
T

∏
t=1

n

∏
r=1

p[yt(r) ∣xt(r),yt−1(r)]. (1.4.4)

A full outline of MDM theory, including proofs for results 1 and 2, may be found in

Queen and Smith (1993). The strength of the MDM is that it decomposes a complex

multivariate system into n univariate ones (Queen and Smith, 1993). The individual

probabilities p[yt(r) ∣xt(r),yt−1(r)] have a closed-form and may be calculated from the

Dynamic Linear Model, as outlined in the next section.
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1.4.2 The Dynamic Linear Model

We restrict our attention to linear Multiregression Dynamic Models, where the error

distributions are Gaussian and the column vector Ft(r) is a linear function of xt(r) with

dimension pr×1. Under these assumptions, the MDM equations 1.4.3a,1.4.3b and 1.4.3c

as outlined by Queen and Smith (1993) may be simplified so that we may consider each

individual node r in terms of a univariate Dynamic Linear Model (DLM), as described

by West and Harrison (1997). If each state matrix Gt(r) is a pr × pr identity matrix

and the observation variance is assumed to be constant over time, the DLM equations

are

Obs. equation Yt(r) = Ft(r)⊺θt(r) + vt(r) vt(r) ∼ N[0, φ(r)−1]

State equation θt(r) = θt−1(r) +wt(r) wt(r) ∼ N[0,Wt(r)]

Initial information θ0(r) ∣D0 ∼ N[m0(r),C0(r)] .

At each time t, there is a pr × 1 state vector θt(r). The pr × 1 state error vector is

denoted by wt(r) and follows a mean-zero multivariate normal distribution with pr×pr
covariance matrix Wt(r). The observation variance is assumed to be normally- and

independently-distributed with mean-zero and constant variance φ(r)−1. At time t = 0,

any information known about the system may be represented in the initial information

set D0. This may include, for notational convenience, the (known) values of Ft(r) for

all t. The pr × 1 prior mean vector m0(r) and pr × pr covariance matrix C0(r) must be

specified a priori.

As the state variance Wt(r) is unknown, it is encoded through a scalar discount factor

δ(r) ∈ [0.5,1], such that

Wt(r) =
1 − δ(r)
δ(r) Ct−1(r) (1.4.6)

where Ct−1(r) is the posterior variance of the state variable θt(r) at time t − 1. From

equation 1.4.6, it is straightforward to see that if δ(r) = 1, Wt(r) = 0 for all time, and

the corresponding model is static. Lower values of δ(r) treat the state variance as some

fraction of the posterior variance at the previous time point; while this fraction is fixed,

Ct−1(r) (and therefore Wt(r)) may vary over time.

The posterior variance then becomes the ‘prior’ variance Rt(r) at time t, that is,

Rt(r) = Ct−1(r) +Wt(r) =
Ct−1(r)
δ(r) .

The posterior variance Ct(r) is updated at each time point t using the most recent

observation yt(r).

The variances in the DLM that we need to estimate, the prior variance Rt, the fore-

cast variance Qt and the posterior variance Ct, may all be expressed as a product of
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the observation variance (inverse precision) φ(r)−1 and a ‘starred scale-free’ variance

parameter (West and Harrison, 1997, p.109), denoted by a ∗, i.e.

Rt(r) = φ(r)−1 R∗
t (r) Qt(r) = φ(r)−1Q∗

t (r) Ct(r) = φ(r)−1 C∗
t (r).

Defining ‘scale-free’ variances in this way allows for these variance expressions to be

updated via the DLM updating equations without any knowledge of φ(r)−1.

Define Dt = {D0, y1(r), . . . , yt(r)}, this is the initial information and the set of obser-

vations available up to and including time t. Denote the posterior mean for θt(r) at

time t as mt(r), and the forecast mean at time t as ft(r). Then the system evolves

according to

Posterior at time t − 1 p[θt−1(r) ∣φ(r),Dt−1] ∼ N[mt−1(r), φ(r)−1C∗
t−1(r)]

Prior at time t p[θt(r) ∣φ(r),Dt−1] ∼ N[mt−1(r), φ(r)−1R∗
t (r)]

One-step forecast p[Yt(r) ∣φ(r),Dt−1] ∼ N[ft(r), φ(r)−1Q∗
t (r)]

Posterior at time t p[θt(r) ∣φ(r),Dt] ∼ N[mt(r), φ(r)−1C∗
t (r)]

with the parameters updated through

ft(r) = Ft(r)⊺mt−1(r)

Q∗
t (r) = Ft(r)⊺R∗

t (r)Ft(r) + 1

mt(r) = mt−1(r) +
R∗
t (r)Ft(r)[Yt(r) − ft(r)]

Q∗
t (r)

C∗
t (r) = R∗

t (r) −
R∗
t (r)Ft(r)Ft(r)⊺R∗

t (r)
Q∗
t (r)

.

At t = t0, the prior on the precision is

p[φ(r) ∣D0] ∼ G (n0(r)
2

,
d0(r)

2
) (1.4.8)

where G(⋅, ⋅) denotes the gamma distribution with shape and rate parameters. The

prior hyperparameters n0(r) and d0(r) must be specified a priori. Specification of

the hyperparameters will be discussed further in subsection 1.6.1. At any time t, the

updated prior on the precision is

p[φ(r) ∣Dt] ∼ G (nt(r)
2

,
dt(r)

2
) (1.4.9)
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with the hyperparameters updated at each time point using

nt(r) = nt−1(r) + 1

dt(r) = dt−1(r) +
[Yt(r) − ft(r)]2

Q∗
t (r)

.

At time t, the updated estimate for the observation variance is given by

St(r) =
1

E [φ(r) ∣Dt]
= dt(r)
nt(r)

Let T⋅(⋅, ⋅) denote the t-distribution with degrees of freedom, and location and scale

parameters. The final marginal distributions are then

Posterior at time t − 1 p[θt−1(r) ∣Dt−1] ∼ Tnt−1(r)[mt−1(r),Ct−1(r)] (1.4.10a)

Prior at time t p[θt(r) ∣Dt−1] ∼ Tnt−1(r)[mt−1(r),Rt(r)] (1.4.10b)

One-step forecast p[Yt(r) ∣Dt−1] ∼ Tnt−1(r)[ft(r),Qt(r)] (1.4.10c)

Posterior at time t p[θt(r) ∣Dt] ∼ Tnt(r)[mt(r),Ct(r)]. (1.4.10d)

The estimates for the scale parameters are

Rt(r) = St−1(r)R∗
t (r) Qt(r) = St−1(r)Q∗

t (r) Ct(r) = St(r)C∗
t (r).

Retrospective Distributions

Equations 1.4.10b and 1.4.10c give the one-step ahead forecast distributions for θt(r)
and Yt(r). The one-step forecast for Yt(r) provides a simple, closed-form formula

for the likelihood stated in equation 1.6.1 while θt(r) estimates the strength of the

regressors (the parent nodes) at time t given data y1(r), . . . , yt(r). When examining

the behaviour of θ(r) over time, it is informative to consider not only the one-step

estimates, but also retrospective estimates, {θT (r),θT−1(r), . . . ,θ1(r)} given all the

data, y(r) = {y1(r), . . . , yT (r)}. These may be obtained in a similar, one-step manner

via the recursive relations outlined below. In order to maintain the notation used by

West and Harrison (1997), the (r) notation is dropped temporarily so that θt(r) =
θt, φ(r) = φ etc. Then the bracket notation denotes the parameters k steps back in

time.

We have

p(θt−k ∣Dt) ∼ Tnt[at(−k),
St
St−k

R∗
t (−k)] k ≥ 0. (1.4.11)
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The parameters of this distribution may be obtained using the recursive relations

at(−k) = mt−k +Bt−k[at(−k + 1) −mt−k] at(0) = mt

Rt(−k) = Ct−k +Bt−k[Rt(−k + 1) −Rt−k+1]Bt−k Rt(0) = Ct (1.4.12a)

where

Bt = CtR
−1
t+1.

Note that CtR
−1
t+1 = φ−1φC∗

t (R∗
t+1)−1 and R∗

t (0) = C∗
t . For unknown variance φ−1, we

may write equation 1.4.12a in terms of St, its best estimate at time t:

StR
∗
t (−k) = St−kC∗

t−k +Bt−k[StR∗
t (−k + 1) − St−kR∗

t−k+1]Bt−k

= St−k [C∗
t−k +Bt−k [

St
St−k

R∗
t (−k + 1) −R∗

t−k+1]Bt−k] .

Dynamic Linear Model theory is outlined in detail in West and Harrison (1997, Chapter

4).

Using these relations, it is possible to construct

p[θt(r) ∣y(r)] ∼ TnT (r)[µt(r),Σt(r)] (1.4.13)

with

µt(r) = mt(r) +Ct(r)Rt+1(r)−1[µt+1(r) −mt(r)] (1.4.14a)

Σ∗
t(r) = C∗

t(r) +C∗
t(r)R∗

t+1(r)−1[Σt+1(r) −R∗
t+1(r)]C∗

t(r)R∗
t+1(r)−1 (1.4.14b)

Σt(r) = ST (r)Σ∗
t(r). (1.4.14c)

In this work, we use mt(r) and Ct(r) to denote the parameters of equation 1.4.10d

(that is, estimates for θt(r) given the observations up until time t). We use µt(r) and

Σt(r) to denote the parameters of equation 1.4.11 (estimates for θt(r) given all the

data y(r)).

1.4.3 MDM Interpretation

In this section, we describe the application of the MDM to fMRI data. We highlight

some relevant features, which may be compared and contrasted to the models outlined

above (in section 1.3).

MDMs describe contemporaneous, causal relationships between time series

We are interested in the dependence of node r on some set of parent nodes Pa(r).
Algorithms for discovering the parent set will be described in detail in section 1.6. For

20



now, assume for each r there is some known parent set at time t and this parent set

is contained in the vector Xt(r). It follows that the column vector Ft(r) is a linear

function of the parents of Yt(r).

We may write

Yt(r)á{Yt(1),Yt(2), . . . ,Yt(r − 1)} ∖ Pa[Yt(r)] ∣Pa[Yt(r)],Yt−1(r)

which may be read as: given the values of the parent nodes up to and including time

t, and the values of itself up to time t− 1, node r at time t is independent of any nodes

that are not in its parent set.

An MDM describes a dynamic Bayesian network. At each time t, there is a Bayesian

network representing contemporaneous, causal relationships between the time series.

For each variable in the parent set Pa[Yt(r)] ⊆ {Yt(1), . . . , Yt(n)}, there is a directed

arc from the parent to Yt(r) (Queen and Albers, 2009). When applied to fMRI data,

MDMs allow us not only to model connectivity that is directed, but also to distinguish

between Markov equivalent graphs (Costa, 2014; Costa et al., 2015, 2017).

The state vector θt(r) provides a measure of connectivity strength

Each Yt(r) is modelled by a regression Dynamic Linear Model where its parents are lin-

ear regressors (Queen and Albers, 2009). Using a Dynamic Linear Model, we may obtain

estimates for the regression coefficients θ̂t(r), which may be interpreted as instanta-

neous connectivity strengths. Note that if Yt(r) has no parents, it may be modelled by

any appropriate DLM (Queen and Albers, 2009). The DLM parameter estimates are

t-distributed (see equations 1.4.10d and 1.4.11) and can be quickly computed through

one-step updating.

The Dynamic Linear Model estimates time-varying connectivity

As stated in equation 1.4.6, the dynamics are controlled by a single, scalar parameter,

the discount factor δ(r). As an individual DLM is fitted to each node r, δ(r) may vary

between nodes, hence the connectivity strengths are allowed to vary over time as much

as is appropriate for the data. This includes the stationary model with δ(r) = 1.

To fit a DLM, with some parent set Pa(r), we need to specify the following parameters:

the discount factor δ(r) and the prior hyperparameters m0(r), C∗
0(r), n0(r) and d0(r).

Because the DLM is specified in terms of one-step updating relations, with a new prior

at each time t based on the distributions at time t−1 (see equations 1.4.10a to 1.4.10d),

it is possible to choose weakly-informative values for the prior hyperparameters, such

that, after a small number of initial time points, the effect of the prior hyperparameters

on the updated parameter estimates θt(r) is negligible. This was shown in Costa (2014).

The interpretation of the state variables and the nature of causality are therefore very

different in the DLM/MDM framework than the linear dynamical systems models (e.g.

SLDS, MDS) and Dynamic Causal Models described in section 1.3. While the MDM is a
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state-space representation, we do not interpret the connectivity in terms of hidden neu-

ronal states and the observation equation does not explicitly model the hemodynamic

response. However, it provides a flexible and computationally-efficient framework to

model dynamic, directed connectivity.

1.5 Network Discovery

In this section, we review methods for network discovery, some of which are based on

the models outlined in section 1.3. In a now highly-cited paper, Smith et al. (2011)

assessed the performance of a number of methods for network discovery, using a set of

simulations designed to replicate fMRI data. Specifically, they assessed the ability of

each method to detect the presence of edges and, where relevant, the ability to correctly

identify directionality. The sensitivity of the methods to detect edge presence was

quantified using the mean fractional rate of detecting true connections, a metric termed

c-sensitivity. This metric uses the 95th percentile of the false positive distribution as

a threshold, so that an edge with a higher connection strength than this threshold is

considered a true positive (Smith et al., 2011). Additionally, d-accuracy, obtained by

subtracting the connection strength in one direction from the connection strength in

the opposite direction for each true connection and expressed as a mean fraction over

subjects and edges, quantifies the effectiveness of a method of detecting directionality.

(The definition of ‘connection strength’ varied across methods.) The c-sensitivity of

these methods applied to human resting-state fMRI data was assessed by Dawson et al.

(2013): in this study, the ground truth was based on detailed anatomical knowledge

of the primate visual cortex, assuming that functional connectivity is reflective of the

underlying anatomical connectivity.

1.5.1 Partial Correlation for Functional Connectivity

When inferring connectivity, we are interested in detecting the presence or absence

of direct relationships between any two brain regions. If it is assumed there are no

unmeasured regions that act as a common cause, the partial correlation between regions

i and j, that is, the correlation when the influence of all other measured regions has been

regressed out, may be interpreted as a direct influence between i and j. If data Y⊺ =
{Y(1), . . . ,Y(n)} are assumed to be drawn from a zero-mean, multivariate Gaussian

with n×n covariance matrix Σ and precision (inverse covariance) matrix Θ = Σ−1, then

zero elements in the precision matrix correspond to conditional independence relations,

such that a matrix of partial correlations may be represented by an undirected graph.

This graph is undirected because partial correlation networks are symmetric.

The partial correlation Πij between region i and region j is

Πij = −
Θij√
ΘiiΘjj

(Marrelec et al., 2006). In practice, the precision matrix is unknown and must be

estimated from the data. Adopting the notation of Friedman et al. (2008), let S denote
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the sample covariance matrix. Then the maximum likelihood estimate (MLE) for the

precision matrix is given by

Θ̂ = arg max
Θ∈Nn

[log ∣Θ∣ −Tr(SΘ)]

where Nn denotes the family of n × n positive-definite matrices. However, a unique

solution (a unique precision matrix) only exists if Σ is positive-definite. This will not

be the case if the number of observations T is smaller than the number of nodes n

and, even in the case where n < T , the MLE may be ill-behaved (Pourahmadi, 2011;

Hinne et al., 2015). For this reason, the graphical LASSO (Least Absolute Shrinkage

and Selection Operator) method adds a penalty term to the MLE via a shrinkage

parameter λ:

Θ̂ = arg max
Θ∈Nn

[log ∣Θ∣ −Tr(ΘΣ) − λ∣∣Θ∣∣1]

(Friedman et al., 2008; Banerjee et al., 2008). One drawback of these methods is

that both the maximum likelihood estimate and the penalised maximum likelihood

estimate provide a point estimate so there is no quantification of the reliability of the

estimate. Instead it may be advantageous to use a Bayesian framework which specifies

a posterior distribution over Θ. For further discussion, and an application developed

for fMRI functional connectivity inference, see Hinne et al. (2015).

Partial correlation and regularised partial correlation (e.g. the graphical LASSO) only

estimate functional connectivity and therefore only provide a description of the data

(Smith, 2012). However, in both the Smith et al. (2011) and Dawson et al. (2013) stud-

ies, these methods proved to be some of the best-performing for correctly identifying

edge presence: both partial correlation and regularised partial correlation achieved c-

sensitivities of above 90 % on the simulated data (Smith et al., 2011), and c-sensitivities

of 81 % and 84 % respectively on the human fMRI data (Dawson et al., 2013). These

methods are also computationally-efficient and may readily be applied to larger-scale

networks (i.e. networks with more than 20 brain regions). These reasons led Smith

(2012) to recommend partial correlation, and ideally regularised partial correlation

methods, to be some of the best approaches for functional connectivity estimation, as

well as Bayesian network methods detailed in the following sections.

1.5.2 PC Algorithm

The Peter-Spirtes, Clark-Glymour (PC) algorithm is a method for Bayesian network

discovery based on testing for conditional independence relations in the data. It consists

of a two-step procedure, where the first step estimates edge presence and the second

step orientates these edges to produce a directed or partially directed graph. The PC

algorithm does not allow cycles, so an edge that cannot be oriented is returned as an

undirected edge. An outline of the PC procedure is shown in Figure 1.6.

On both simulated and real data, the PC algorithm proved successful at identifying
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edge presence, with c-sensitivity of above 90 % reported in the Smith et al. (2011) study

and 77 % in the Dawson et al. (2013) study. However, its d-accuracy, a test of its ability

to identify directionality (at the individual subject level), was found by the Smith et al.

(2011) study to be no greater than chance.

1
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Step Instruction Graph

0. Start with complete undirected graph (a)

1a. Compute zero order independencies (b)

Y (1)áY (3), Y (2)áY (3)

1b. Compute first order independencies (c)

Y (1)áY (4) ∣Y (2)

2. Orientate edges, return (partially) directed graph (d)
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Figure 1.6: Illustration of the PC algorithm. The ‘true’ structure to be estimated is the
directed cyclic graph on the top left. The PC algorithm begins with the complete, undirected
graph in (a), and uses conditional independence to remove edges (as in (b) and (c)). Edges
may then be orientated, for example, Y (4) is a collider because it is a common neighbour of
Y (2) and Y (3) but is not in the conditioning set that rendered them independent. As the
algorithm doesn’t allow cycles, and both Y (1) → Y (2) and Y (1) ← Y (2) could be true, this
edge remains undirected and a partial DAG (d) is returned (Spirtes et al., 2000; Mumford and
Ramsey, 2014).

1.5.3 GES and IMaGES

Another Bayesian network method tested by Smith et al. (2011) was the Greedy Equiv-

alence Search (GES). Following Chickering and Meek (2002), two graphs G and G′ are

equivalent if they have the same probability distribution and the same independence

constraints. Let ξ denote an equivalence class such that the equivalence of G and G′

(written as G ≈ G′) implies G ∈ ξ(G′) and G′ ∈ ξ(G).

A graph G is included in a graph H if every probability distribution and independence

constraint in G is also in H, and this may be denoted by G ≤ H. Then if G ≤ G′ or

G′ ≤ G, and the number of edges between the two graphs differs by one, the equivalence

classes ξ1(G) and ξ2(G′) are said to be adjacent.

The Greedy Equivalence Search (GES) algorithm uses a score equivalent scoring crite-

rion, where any DAGs within an equivalence class have the same score. It begins with

an empty graph, scoring adjacent equivalent classes until it reaches a local maximum.

This forward equivalence search (FES) proceeds such that if G ≤ G′, the algorithm
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moves from ξ1(G) to ξ2(G′). Once the local maximum is reached, a backward equiva-

lence search moves between adjacent equivalence classes which have one less edge, until

this single edge removal fails to improve the score (Chickering and Meek, 2002).

Imagine we have fMRI time series data with length T for S subjects. Denote the

maximum likelihood estimate for subject s by MLs and the number of free parameters

(the number of directed edges plus the number of nodes) by k. A widely-used scoring

criterion is the Bayesian information criterion (BIC)

BIC = −2 loge(MLs) + k loge(T ).

In the Smith et al. (2011) study, like the partial correlation methods and PC algorithm,

GES achieved c-sensitivities of over 90 %. In the Dawson et al. (2013), it performed less

well, with a c-sensitivity of ∼60 %, although the authors note that Bayes net methods

have the best performance out of all methods when the metric is based on the sepa-

ration between the numbers of expected and unexpected connections, rather than the

c-sensitivity (Dawson et al., 2013). Like the PC algorithm, the ability of GES to deter-

mine directionality was limited, with d-accuracy of less than 60 % (where the chance

level is 50 %) reported by Smith et al. (2011).

An extension to GES is the Independent Multisample Greedy Equivalence Search (IM-

aGES) algorithm uses a BIC score combined over subjects

BIC = − 2

S

S

∑
s=1

loge(MLs) + c k loge(T )

where c is a penalty term to remove weaker (and potentially spurious) edges (Mumford

and Ramsey, 2014). IMaGES was developed by Ramsey et al. (2010) and applied to

the simulation data of Smith et al. (2011) in Ramsey et al. (2011). Using this method,

edge identification could be as much as 100 %.

1.5.4 LiNGAM and LOFS

Table 1.1 shows the steps of the LiNG discovery algorithm. Consider an incorrect model

represented by the path coefficient matrix G∗, such that

Y = G∗Y + r

where r are the residuals. By writing

Y = (I −G0)−1ε = (I −G∗)−1r

it is straightforward to see that the residuals of the incorrect model G∗ are linear

combinations of the residuals of the correct model G0

r = (I −G∗)(I −G0)−1ε.
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If NG() is some measure of ‘non-Gaussianity’, then for the correct model NG(εi) =
NG(ri). For any other model there will be, for some a, a score NG(a + ε). As, by

the Central Limit Theorem, the sum will be more Gaussian of any of its summands,

it is possible to infer the correct model by maximising the non-Gaussianity of the

residuals (Ramsey et al., 2011; Mumford and Ramsey, 2014). This is the basis of the

LiNG Orientation Fixed Structure (LOFS) algorithms of Ramsey et al. (2011, 2014).

Of particular relevance are LOFS-R1 and LOFS-R4 (Rule 1 and Rule 4), as these

algorithms return graphs which may contain cycles. Given an undirected graph (which

may be found with the PC algorithm, or GES or IMaGES), LOFS-R1 considers each

node individually, choosing the set of parents (from the adjacent edges in the undirected

graph) that maximises a score of non-Gaussianity, e.g. the Anderson-Darling statistic

for normality. If an edge cannot be orientated, it can be returned undirected. As can

be seen in Figure 1.7d, it is possible for this algorithm to identify cycles and 2-cycles

(bidirectional edges). Ramsey et al. (2011) note that a 2-cycle may be due to actual

feedback between two nodes, or an unrecorded, latent common cause (or both). LOFS-

R4 is a simplified implementation of the LiNG algorithm (see Table 1.1), which does

not permit self-loops. Edges which are absent in the undirected graph are replaced by

zeros in the coefficient matrix, and the non-Gaussianity is maximised for each row of

WICA (the matrix obtained by independent component analysis) (Lacerda et al., 2012;

Ramsey et al., 2014).

In the Smith et al. (2011) and Dawson et al. (2013) studies, LiNGAM performed very

poorly, in both cases achieving c-sensitivities of less than 20 % and direction accuracy

only marginally above the level of chance. However, extensions based on the LiNG

procedure have been more successful. Pairwise LiNGAM, for example, orientates each

adjacent edge individually based on a log-likelihood ratio

1

T
logL(X → Y ) − 1

T
logL(Y →X)

where positive values imply that X → Y is more likely and negative values imply the

converse (Mumford and Ramsey, 2014). Using the Smith et al. (2011) data, Hyvärinen

and Smith (2013) showed that pairwise LiNGAM could correctly orientate more than

75 % of edges correctly, or 100 % using a group analysis.

A comparison of procedures for edge orientation based on non-Gaussianity is provided

in Ramsey et al. (2014).
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Step Instruction

0. Y = (I −G0)−1ε = Aε

1. Independent component analysis WICA = A−1.

2. Permute rows of WICA to get W̃.

A unique permutation gives a diagonal without zeros.

3. Normalise W̃ to get W̃′.

The diagonal of W̃′ is all ones.

4. Calculate Ĝ0 = I − W̃′.

5. Find G̃0 = PĜ0P⊺.

G̃0 is strictly lower triangular.

Table 1.1: The LiNG family of algorithms. The LiNGAM algorithm constrains G0 to be
strictly lower triangular. The SEM is acyclic and there is a unique solution. Under the weaker
constraint that the diagonal of G0 may not contain any ones, the more general LiNG algorithm
returns many admissible models, which may contain cycles (Shimizu et al., 2006; Lacerda et al.,
2012).

1

2 3
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(a) True

1

2 3

4

(b) GES or IMaGES

1

2 3
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(c) Pairwise LiNGAM
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4
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2 3

4

1

2 3

4
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2 3

4
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(d) LOFS (R1)
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Figure 1.7: Procedures for edge orientation based on measures of non-Gaussianity.
(a) The underlying graph to infer. (b) A search procedure (e.g. GES or IMaGES) finds the
skeleton (undirected graph). (c) Pairwise LiNGAM infers directionality by calculating the log-
likelihood ratio for each adjacent edge individually. (d) LOFS (R1) also considers each node
individually, the parent set which gives the highest score of non-Gaussianity for the regression
residuals is chosen.
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1.5.5 Dynamic Causal Modelling

Model selection in a DCM framework involves calculating the model evidence (marginal

likelihood) of the data y given some model M via

p(y ∣M,u) = ∫
Θ
∫
θ
p(y,θ,Θ ∣M,u)dθ dΘ

where u are the external inputs, θ are the hidden states and Θ contains set of ordinary

differential equations and parameters that model the hemodynamic response (Razi and

Friston, 2016). In order to be able to score millions of candidate models, Friston et al.

(2011) provide the following approximation to the model evidence. Consider the full

model MF where every connection exists and is reciprocal. The model evidence is

denoted p(y ∣MF ). All the other models are nested within this completely connected

model. Let the parameters of the fully connected model be represented by ΘF and the

parameters of a nested model Mj be represented by Θj . Then Θj = 0 denotes ΘF

with some subset of the parameters set to zero. It is possible to write

p(y ∣Mj) = p(y ∣Θj = 0,MF ) =
p(Θj = 0 ∣y,MF )p(y ∣MF )

p(Θj = 0 ∣MF )
.

The log model evidence is then

loge[p(y ∣Mj)] = loge[p(Θj = 0 ∣y,MF )] − loge[p(Θj = 0 ∣MF )] + loge[p(y ∣MF )].

As the loge[p(y ∣MF )] term will be present for every model, it can be discarded. The

first term may be approximated by a conditional Gaussian density loge[q(Θj = 0 ∣MF )].
The term p(Θj = 0 ∣MF ) is the prior probability that Θj = 0.

Unlike the other methods reviewed here, Friston et al. (2011) stipulate that all con-

nections must be reciprocal as this, they argue, best represents the underlying biology.

This has the advantage of significantly reducing the number of models scored by their

method (Henry and Gates, 2017). See also Rosa et al. (2012).

1.6 MDM Directed Graph Model Search

One of the main strengths of the MDM is that the likelihood may be written in the

form

p[y] =
T

∏
t=1

n

∏
r=1

p[yt(r) ∣xt(r),yt−1(r)]

where xt(r) contains the observations of some set of parent nodes up until time t and

each p[yt(r) ∣xt(r),yt−1(r)] follows a univariate t-distribution (see equation 1.4.10c).

As the observed values of the parent nodes at time t are contained in the observation

vector Ft(r), which is assumed, for notational convenience, to be included in the initial

information set D0, we may easily convert each individual likelihood into DLM notation

by writing p[yt(r) ∣Dt−1]. As each observation vector contains the values of some set

28



of parent nodes, we are implicitly conditioning on some model with these parents.

Throughout this work, some model i for node r with parent set Pai(r) is denoted by

Mi(r) and the model evidence is

p[y(r) ∣Mi(r)] =
T

∏
t=1

p[yt(r) ∣Mi(r),yt−1(r)].

Within the MDM framework, xt(r) is defined in such a way that for any MDM, the joint

distribution (equation 1.4.4) will have an associated graph that is a DAG. However,

in order to perform a search over the model space, we utilise the fact that the joint

likelihood factors by node and find the highest scoring set of parents for each node

individually. This approach is termed the MDM-DGM or Directed Graph Model search.

We may then consider the highest-scoring model that is also a DAG. The MDM-IPA

(Integer Programming Algorithm), outlined in the next section, provides one way to

find this graph.

The number of candidate sets of parents per node is N = 2n−1, so the total number of

models to score is n2n−1. The posterior model probability p[Mi(r) ∣y(r)], again at the

level of the individual node, is

p[Mi(r) ∣y(r)] = p[y(r) ∣Mi(r)]p[Mi(r)]
∑Ni=1 p[y(r) ∣Mi(r)]p[Mi(r)]

.

It follows that maximising the model probability is equivalent to maximising the like-

lihood, if the prior model probability p[Mi(r)] is assumed to be equal across all N

potential models.

1.6.1 Implementation of the MDM-DGM Search

In practice, model selection is performed by maximising the Log Predictive Likelihood

(LPL) over the set of models M(r) = {M1(r), . . . ,MN(r)} according to

LPL[Mi(r)] =
T

∑
t=15

loge{p[yt(r) ∣Pai(r),Dt−1]}. (1.6.1)

The sum is from t = 15 (rather than t = 1) to minimise any effect of the choice of prior hy-

perparameters. Values for the hyperparameters are chosen so that the priors are weakly

informative. The values were m0(r) = 0, C∗
0(r) = 3 Ipr and n0(r) = d0(r) = 0.001, where

pr denotes the number of regressors in the candidate model. In the Dynamic Linear

model, we condition on initial information set Dt−1 = {D0, y1(r), . . . , yt−1(r)} (see sec-

tion 1.4.2) so, at any time t, we have the updated prior distributions

p[θt(r) ∣φ(r),Dt−1] ∼ N (mt−1(r), φ(r)−1
C∗
t−1(r)
δ(r) )

p[φ(r) ∣Dt−1] ∼ G (nt−1(r)
2

,
dt−1(r)

2
) .
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It follows that in practice the non-informative prior is replaced by a prior that is in-

formed by the first few data points. We choose to disregard any influence of these

initial data points on the prior model probability, assigning equal prior model proba-

bility p[Mi(r) ∣Dt−1] to all models (at time t = 15). Maximising the posterior model

probability then corresponds to maximising the Log Predictive Likelihood, conditional

on Dt−1. We prefer model Mi(r) over Mj(r) if

LPL[Mi(r)] > LPL[Mj(r)].

1.6.2 Loge Bayes Factors for Model Comparison

Throughout this work, we use loge Bayes factors to compare the evidence for different

models. For two models i and j, we have

logeBFij = loge{p[Mi(r) ∣y(r)]} − loge{p[Mj(r) ∣y(r)]}

= LPL[Mi(r)] − LPL[Mj(r)].

The loge Bayes factor has been referred to as a ‘weight of evidence’ and may be in-

terpreted as a relative measure of how well two models Mi(r) and Mj(r) predict the

data y(r). To quantify the evidence for different models, we adopt the values proposed

by Kass and Raftery (1995) for the natural logarithm of a Bayes factor and say that

there is evidence forMi(r) overMj(r) if logeBFij > 1. If logeBFij > 3, the evidence is

strong ; if logeBFij > 5, the evidence is very strong. Negative values indicate evidence

to prefer model Mj(r) over Mi(r). If logeBFij is between −1 and 1, models Mi(r)
and Mj(r) can be though of as being equivalent and we say that there is no evidence

that one should be preferred over the other.

1.6.3 MDM Integer Programming Algorithm

The algorithm for finding the MDM which best fits the data involves calculating the

Log Predictive Likelihood LPL[Mi(r)] for all the candidate combinations of parents

Pai(r) for each node r individually, and then, if necessary, constraining the graph to be

acyclic. These two steps comprise the MDM-IPA (Integer Programming Algorithm),

described by Costa (2014), Costa et al. (2015) and Costa et al. (2017). The MDM-IPA

is illustrated in Figure 1.8. The first step performs an MDM-DGM search. However, as

can been seen in Figure 1.8 (a), the resulting graph may not be a DAG. The algorithm

then compares the LPL for each M̂(r), and the lowest-scoring model is replaced by

the next highest scoring model for that node. This process repeats until the resulting

graph has no cycles or bidirectional edges. Applications of the MDM-IPA to resting-

state fMRI data may be found in Costa (2014), Costa et al. (2015) and Costa et al.

(2017).
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Step Instruction Graph

1. Find P̂ a(r) for r = 1, . . . , n. (a)

2. Which LPL[M̂(r)] is lowest?

Replace lowest scoring parent set. (b)

3. If new graph is a DAG, terminate. (c)

If not, repeat step 2.

1

2 3

4

(a)

1

2 3

4

(b)

1

2 3

4

(c)

Figure 1.8: Illustration of the MDM-IPA. (a) The MDM-DGM search finds parents for
each node individually so the resulting graph has the bidirectional edge 1↔ 2. (b) If the model
with P̂ a(1) = {2} has the lowest LPL, the MDM-IPA algorithm will replace P̂ a(1) = {2} with
the next highest scoring parent set, in this example, P̂ a(1) = {4}. (c) The graph in (b) now
contains a cycle 1 → 2 → 4 → 1. If the model with P̂ a(1) = {4} still has the lowest LPL, the
MDM-IPA algorithm will replace P̂ a(1) = {4} with the next highest scoring parent set, e.g.
P̂ a(1) = {∅}. The resulting graph is now a DAG and the algorithm will terminate.

1.7 DAGs and Cyclic Graphs

When reviewing network discovery algorithms (Figures 1.6, 1.7 and 1.8), we have as-

sumed that there is a single ‘true’ structure that we wish to infer, describing the rela-

tionship between 4 nodes. In this system, there is reciprocal connectivity between node

1 and node 2. If we assume that this bidirectional edge represents a genuine feedback

loop between two nodes, rather than the presence of an unmeasured confounder, it is

therefore interesting from the standpoint of understanding the underlying physiology.

While the MDM-DGM algorithm is able to estimate graphs with cycles and bidirec-

tional edges, doing so violates the principles of the MDM as outlined by Queen and

Smith (1993): an MDM describes a dynamic acyclic Bayesian network. As previously

discussed, the MDM-IPA algorithm is one way to impose a DAG constraint (see Figure

1.8) but in this work, we focus on the MDM-DGM because, as will be shown in the next

chapter, permitting cycles and bidirectional edges enables us to capture behaviour that

is likely to be more plausible physiologically. In doing so, we no longer have a strict

definition of causality but nonetheless, we argue that the MDM-DGM is still a useful

data-driven method for discovering correlations and predictive relationships between

brain regions.
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Chapter 2

Network Discovery with the MDM-DGM

2.1 Introduction

In this chapter, the MDM-DGM search is applied to two fMRI datasets with 15 brain

regions, one a resting-state dataset (we also refer to this dataset as the ‘safe’ dataset)

and the other a task condition where the participants were anticipating electric shock

(‘anticipation of shock’). Given these datasets, we first assess the ability of the MDM-

DGM to detect edge presence, using partial correlation matrices for comparison. We

construct an MDM-DGM network for each subject for both the ‘safe’ and ‘anticipa-

tion of shock’ data and compare the two experimental conditions based on the edges

found to be consistently present or absent across subjects using a method based on

the Binomial test. We also construct group networks by combining the LPL scores

over subjects and use these group networks to show how we may obtain estimates for

the time-varying connectivity strengths θ̂t(r). Given these connectivity strengths, we

test for differences between the two experimental conditions, ‘safe’ and ‘anticipation of

shock’, over all subjects and based on group splits using measures of trait and induced

anxiety. Taken together, these analyses will illustrate some of the key strengths, and

potential weaknesses, of the MDM-DGM for the discovery and analysis of functional

brain networks.

2.2 Datasets

We considered data consisting of BOLD time series from 17 brain regions, extracted

from scans for 32 participants (14 male, all right-handed, 18-40 years, mean age 24.8

years). The voxel size was 2 mm3 and regions of interest (ROIs) were extracted either

functionally or using the Harvard-Oxford template. The 17 extracted ROIs were the or-

bitofrontal cortex (OFC), dorsolateral prefrontal cortex (DLPFC), amygdala (Amyg),

anterior insula (AntIns), posterior insula (PostIns), primary and secondary somatosen-

sory cortices (SI, SII) (all from both the left and right hemisphere), the ventromedial

prefrontal cortex (VMPFC), the anterior mid-cingulate cortex (aMCC) and the peri-

aqueductal gray (PAG). As the primary and secondary somatosensory cortices were

both highly correlated between the two hemispheres, these regions were replaced with

their mean time series (SI-LR and SII-LR). This set of 15 ROIs is considered in this

chapter.
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Data were obtained under two experimental conditions: in both, participants were in-

structed to ‘lie still, keep their eyes open, and stay awake’. In the second condition,

participants were additionally told they would receive randomly timed electric shock

stimuli sometimes close together and sometimes with long gaps between stimuli (Bijster-

bosch et al., 2015, their emphasis). In practice, they received intermittent shocks for

the first 5 and last 2 minutes of a 22 minute scan, leaving a 15 minute section where they

were anticipating but not receiving shocks. The data analysed in this chapter therefore

consist of two 15 minute scans for each participant, a resting-state scan, which we also

refer to as the ‘safe’ scan, and an ‘anticipation of shock’ scan. The repetition time (TR)

was 1140 milliseconds, giving time series with 790 time points.

Prior to the fMRI sessions, participants completed questionnaires to assess trait anx-

iety and depression. Using eight standardised measures of negative affect, the first

component of a principle component factor analysis gave a factor score, which could

be interpreted as a measure of trait anxiety. After each scan, participants were asked

to rate how anxious they felt after each scan on a Visual Analogue Scale (VAS), where

1 was not at all and 7 was very much. The difference between the two scores pro-

vided a measure of induced anxiety. Responses were significantly higher after the scan

where the participants received the electric shocks (paired t-test, t = 2.84, p = 0.008),

indicating the ‘shock’ scan led to induced anxiety (Bijsterbosch et al., 2015).

More information about the data, including preprocessing steps and the trait and in-

duced anxiety metrics, may be found in Bijsterbosch et al. (2015).

2.3 MDM-DGM Network Discovery

Given the datasets described above, we estimated an MDM-DGM network for each of

the 32 participants, for both of the experimental paradigms, ‘safe’ and ‘anticipation of

shock’. As described in the previous chapter, section 1.6, we chose the set of parents

P̂ ai(r) that maximised the Log Predictive Likelihood for each node r individually,

r = {1, . . . ,15}.

Models were scored using a C++ implementation of the Dynamic Linear Model available

in the multdyn package for R1,2. We have developed this package for the application

of the MDM-DGM to fMRI time series and it contains functions which allow the user

to perform an exhaustive search over all candidate models for networks with up to

20 nodes. More details, including estimates of computation time and solutions for

networks with more than 20 nodes, will be provided in the next chapter.

The chosen discount factor was the value of δ(r) in the range δ(r) ∈ [0.5,1] which gave

the highest LPL (grid search, step size 0.01). The discount factor for the winning model

1R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2017. URL https://www.R-project.org/

2Schwab, S., Harbord, R., Costa, L., and Nichols, T. multdyn: Multiregression Dynamic Models, 2017b.
URL https://CRAN.R-project.org/package=multdyn. R package version 1.5.1
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M̂i(r) for each subject, node and experimental condition, is shown in Figure 2.1. The

number of parents chosen for each subject, node and experimental condition, is plotted

in Figure 2.2. Figure 2.1 shows that the optimal discount factor varies considerably

between the nodes. For some nodes (e.g. the amygdala, the anterior and posterior insula

and the PAG), the discount factor is consistently one or close to one, indicating the

best model is a stationary (or near stationary) model, with static connection strengths.

For other nodes, the chosen discount factor is consistently less than one, with greater

variation over subjects, indicating that a dynamic model, with time-varying connection

strengths, provides a better fit to the data.

The median values for both the discount factor and the number of parents appear

similar for the two experimental conditions, with the notable exception of the VMPFC,

where both the median discount factor and the median number of parents are visibly

lower for the ‘anticipation of shock’ data.

2.4 Analysis Based on Partial Correlation

In addition to the MDM-DGM networks, a partial correlation matrix was also estimated

for each participant for the resting-state (‘safe’) dataset3. As discussed in the previous

chapter, partial correlation is a widely-used method for discovering functional brain

networks and has been shown to have good sensitivity for detecting the presence of

true connections on both simulated and real fMRI data (Smith et al., 2011; Dawson

et al., 2013). For this reason, we use partial correlation networks as a tool to validate

the MDM-DGM networks. We would expect that an undirected edge with a high

(absolute) partial correlation would be replaced by a directed edge in the MDM-DGM

network and this edge may or may not be bidirectional.

The lowest (absolute) partial correlation for which an edge was present in the corre-

sponding MDM-DGM network was 5.2 × 10−4 (below the 5th percentile of all partial

correlations), while the highest partial correlation for which an edge was absent was

0.49 (above the 95th percentile), so it may be concluded that, in itself, the absolute

partial correlation between two regions is a poor predictor of whether an edge is present

or absent in an MDM-DGM network. This is likely due in part to the fact that the

MDM-DGM estimates directed edges, so a strong undirected partial correlation may

be replaced by a directed edge in an MDM-DGM network. For example, the undi-

rected edge VMPFC − OFC-L with partial correlation 0.49 becomes the directed edge

VMPFC → OFC-L in the MDM-DGM network for this individual subject.

3Kim, S. ppcor: Partial and Semi-Partial (Part) Correlation, 2015. URL https://CRAN.R-project.

org/package=ppcor. R package version 1.1
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Figure 2.1: The optimal discount factor δ(r) for each subject across nodes and ex-
perimental conditions. For some nodes (e.g. the right posterior insula) δ(r) is consistently
close (or equal) to one, suggesting the connectivity is static. For other nodes (e.g. the VMPFC),
lower discount factors allow dynamic connectivity estimates. The Dynamic Linear Model cap-
tures information that would be lost in a static Bayesian regression model. The VMPFC is
the only region where there is a noticeable difference between the two experimental conditions,
with median values of 0.82 and 0.50 for the ‘safe’ and ‘anticipation of shock’ data respectively.
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Figure 2.2: The number of parents for each subject across nodes and experimental
conditions. The VMPFC displays the most noticeable difference in the number of parents
with median values of 3 and 0 for the ‘safe’ and ‘anticipation of shock’ data respectively.
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2.4.1 A Method to Quantify Consistency Over Subjects

To quantitatively compare the partial correlation and MDM-DGM networks, we used a

method for assessing whether edges were significantly present or absent (over subjects)

based on one-sided Binomial tests. Let S denote the number of subjects and Es denote

the number of edges (excluding the diagonal) in the MDM-DGM network for subject

s. The maximum number of possible edges is n2 − n, where, as usual, n is the total

number of nodes. The partial correlation matrices were thresholded by selecting the

Es edges with the highest absolute partial correlation. If Es was an odd number, the

Es − 1 edges with the highest absolute partial correlations were selected, to maintain

the symmetry of the partial correlation matrices. To construct a group-level network,

one-sided Binomial tests were used to assess whether each edge could be judged to be

significantly present or absent. The probability of an edge occurring in a homogenous

network was defined empirically, using the average proportion of subjects with an edge

over the (n2 − n) possible edges

π̂present =
1

S

S

∑
s=1

Es
(n2 − n) .

The probability of an edge being absent in a homogenous network was then π̂absent =
1− π̂present. These values were π̂present = 0.37 and π̂absent = 0.63. Significant edges after

false discovery rate (FDR) correction4 (α = 0.05) are shown in Figure 2.3. See also

Costa (2014) and Costa et al. (2015, 2017) for similar analyses with a different dataset.

Strong, inter-hemispheric connectivity is present for both the partial correlation and

MDM-DGM networks (Figures 2.3a and 2.3b), in particular OFC-L↔OFC-R, DLPFC-

L ↔ DLPFC-R and Ant-Ins-L ↔ AntIns-R. Both networks also predict strong, bidirec-

tional connectivity between the OFC and the DLPFC, the somatosensory cortices and

the posterior insula and the secondary somatosensory cortex. This bidirectional con-

nectivity would disappear if the networks were constrained to be acyclic. The networks

agree that the periaqueductal gray has no parents or children. The differences between

the two networks are shown in Figure 2.3c. One noticeable difference between the two

networks is that the MDM-DGM estimates that the VMPFC has no parents. The par-

ents found for the VMPFC by the partial correlation analysis, the aMCC, the Amyg-R

and the AntIns-R, are not present in the MDM-DGM network, highlighting the po-

tential of the MDM-DGM to capture asymmetries that are missed by an (undirected)

partial correlation method. It should be noted here that this behaviour is consistent

with the fact the VMPFC is known to play a top-down role in the regulation of negative

emotion (see, for example, Motzkin et al. (2015)).

4All false discovery rate correction in this chapter used the Benjamini-Hochberg procedure (Benjamini
and Hochberg, 1995).
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(a) Partial correlation, significant edges
(safe)
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(b) MDM-DGM, significant edges (safe)
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(c) Difference, significant edge presence

Figure 2.3: Partial correlation and MDM-DGM estimate similar networks but
MDM-DGM also infers directionality. Edges found to be significantly present or absent
using a Binomial test and FDR correction with α = 0.05 for (a) the partial correlation matrices
and (b) the MDM-DGM matrices. Purple (positive values) indicates a high proportion of
subjects (at least 19 out of 32, or 59 %) share an edge, while green (negative values) indicates
an edge is absent in a high proportion of subjects (at least 27 out of 32, or 84%). (c) Differences
in the number of subjects when the partial correlation and MDM-DGM networks disagree on
whether the presence of an edge is significant. Purple (positive values) indicates the MDM-
DGM network has a higher number of subjects with a particular edge than the network based
on partial correlations; green (negative values) indicates the reverse. The largest differences are
aMCC → VMPFC (-15 subjects), Amyg-R → VMPFC (-14 subjects) and AntIns-R → VMPFC
(-10 subjects) and AntIns-L → DLPFC-L (-12 subjects).
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2.5 Safe vs. Anticipation of Shock: Comparing Networks

An identical analysis was performed to compare the networks for the ‘safe’ and ‘an-

ticipation of shock’ data. (The value of π̂present for the ‘anticipation of shock’ data

was 0.36, so the mean over the two conditions gave a value of 0.37 as in the previous

analysis). Figure 2.4 shows edges that are significantly present or absent for the ‘safe’

(Figure 2.4a, as Figure 2.3b) and ‘anticipation of shock’ (Figure 2.4b) datasets. Figure

2.4c shows the edges that are significantly present in one network but not the other.

The edges with the largest differences were VMPFC → Amgy-L, VMPFC → aMCC,

DLPFC-L → aMCC, and SI-LR → Amyg-R, which were significant in the ‘anticipa-

tion of shock’ network but not the ‘safe’ network, and OFC-L → aMCC and SI-LR

→ DLPFC-R, which were significant in the ‘safe’ network but not the ‘anticipation of

shock’ network. However, it should be noted that none of the edges that were signif-

icantly present in one network were significantly absent in the other, suggesting the

evidence for a difference between the networks is inconclusive.

This method for significance testing allows the consistency over subjects to be quanti-

fied. For the partial correlation network, 45 % of the edges were found to be significantly

present or absent, while for the MDM-DGM networks, it was 48 % for the ‘safe’ data

and 50 % for the ‘anticipation of shock’ data. Because the Binomial method as de-

scribed above uses π̂present = 0.37 as a threshold, only a relatively low percentage of

subjects (59 %) need to share an edge for it to be found to be significant. Figures 2.5a

and 2.5b show the edges which are present for at least 90 % of subjects (29 out of 32)

for the ‘safe’ and ‘anticipation of shock’ networks. These two networks are identical,

except for 3 edges missing from the ‘anticipation of shock’ network: DLPFC-L → OFC-

L, DLPFC-L → DLPFC-R and Ant-Ins-R → aMCC. However, these edges all occur

in at least 84 % of subjects, so it may be concluded that the strongest edges (when

‘strongest’ is defined as being shared by the highest number of subjects) are present in

both the ‘safe’ and ‘anticipation of shock’ networks.

2.6 Loge Bayes Factor Evidence for Model Differences

Another way to assess the significance of any differences between the networks is to fit

the chosen set of parents for one dataset to the other dataset and compare the LPL

scores. If, for a particular subject, the chosen parents for node r for the ‘safe’ data

are P̂ a(r)safe, we compare the difference between the score for this parent set and

the chosen parents for the ‘anticipation of shock’ data P̂ a(r)shock. As discussed in

section 1.6, the loge Bayes factor may be used to assess the strength of the evidence for

one model over another, with a loge Bayes factor of less than 1 interpreted as a lack

of evidence for any difference between two models. Therefore, if the loge Bayes factor

between P̂ a(r)safe and P̂ a(r)shock on the same dataset (‘safe’ or ‘anticipation of shock’)

is less than 1, we may conclude that both parent sets explain the data equally well.

Conversely, higher values indicate that the chosen parent set has better explanatory

power and a difference between the two parent sets may therefore be capturing some

significant difference between the two experimental conditions.
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(a) MDM-DGM, significant edges (safe)
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(b) MDM-DGM, significant edges
(shock)
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(c) Difference, significant edge presence

Figure 2.4: MDM-DGM networks are similar for the ‘safe’ and ‘anticipation of
shock’ conditions. Edges found to be significantly present or absent using a Binomial test
and FDR correction with α = 0.05 for the two datasets (a) ‘safe’ and (b) ‘anticipation of
shock’. Purple (positive values) indicates a high proportion of subjects (at least 19 out of 32,
or 59 %) share an edge, while green (negative values) indicates an edge is absent in a high
proportion of subjects (at least 27 out of 32, or 84%). (c) Differences in the number of subjects
when the ‘safe’ and ‘shock’ MDM-DGM networks disagree on whether the presence of an edge is
significant. Purple indicates the MDM-DGM safe network has a higher number of subjects with
a particular edge than the MDM-DGM shock network; green values indicate the reverse. There
is evidence for the edges SI-LR → DLPFC-R and OFC-L → aMCC in the ‘safe’ (resting-state)
networks but not the ‘anticipation of shock’ networks. Conversely, there is evidence for the
edges VMPFC → Amyg-L, VMPFC → aMCC, DLPFC-L → aMCC and SI-LR → Amyg-R in
the ‘shock’ networks but not the ‘safe’ networks. Note that the maximum number of subjects
by which these edges differ is 7.

39



aMCC

Amyg−L Amyg−R

AntIns−L AntIns−R

DLPFC−L DLPFC−R

OFC−L OFC−R

PAG

PostIns−L PostIns−R

SII−LRSI−LR

VMPFC

(a) Safe
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(b) Anticipation of shock

Figure 2.5: Edges shared by > 90 % of subjects for (a) ‘safe’ and (b) ‘anticipation of
shock’ datasets. The MDM-DGM networks are identical, except edges DLPFC-L → OFC-L,
DLPFC-L → DLPFC-R and Ant-Ins-R → aMCC, which are found for 88 %, 88 % and 84 % of
subjects respectively in the ‘anticipation of shock’ network.

Results of this analysis are shown in Figure 2.6a. Using the loge Bayes factor crite-

ria specified in Kass and Raftery (1995), only a small percentage of models may be

thought of as being equivalent: when fitting the chosen parents for the ‘safe’ data to

the ‘anticipation of shock’ data, 7.3 % of models have a loge Bayes Factor of less than

1, while the number is 6.5 % when fitting the chosen parents for the ‘anticipation of

shock’ data to the ‘safe’ data. In comparison, 89 % of models have a loge Bayes Factor

greater than 5, suggesting very strong evidence for a difference. This number is also

89 % when fitting the chosen parents for the ‘anticipation of shock’ data to the ‘safe’

data.

Looking at Figure 2.2, the median number of parents chosen for each node was com-

parable between the two experimental conditions. However, Figure 2.6b shows that

the median number of parents that are different between the ‘safe’ and ‘anticipation of

shock’ conditions was between 3 and 5. The fact that, at the individual subject level,

the chosen parent sets tend to differ this much may explain the high loge Bayes factor

differences that are seen in Figure 2.6a.

In a similar analysis, we asked what percentage of parent sets were ‘better’ (had a higher

LPL score) than the chosen parent set for the other dataset. This behaviour is explored

in Figure 2.6c. When fitting the chosen parents for the ‘safe’ data to the ‘anticipation

of shock’ data, 58 % of models were within the top 5 % of highest scoring models, 34 %

were within the top 1 %. Fitting the chosen parents for the ‘anticipation of shock’ data

to the ‘safe’ data, 57 % were within the top 5 % of highest scoring models and 32 % were

within the top 1 %. This suggests that, while there is evidence of a significant difference

between the chosen parent sets for the two experimental conditions, the parent set for

the other condition may still provide one of the best models out of the large model

space of possible candidates.

40



0
20

40
60

80
10

0
12

0

lo
g e

 B
ay

es
 fa

ct
or

V
M

P
F

C

O
F

C
−

L

O
F

C
−

R

D
LP

F
C

−
L

D
LP

F
C

−
R

A
m

yg
−

L

A
m

yg
−

R

A
nt

In
s−

L

A
nt

In
s−

R

P
os

tIn
s−

L

P
os

tIn
s−

R

aM
C

C

S
I−

LR

S
II−

LR

PA
G

Node

Safe to shock Shock to safe

(a)

0
2

4
6

8
10

N
um

be
r 

of
 p

ar
en

ts

V
M

P
F

C

O
F

C
−

L

O
F

C
−

R

D
LP

F
C

−
L

D
LP

F
C

−
R

A
m

yg
−

L

A
m

yg
−

R

A
nt

In
s−

L

A
nt

In
s−

R

P
os

tIn
s−

L

P
os

tIn
s−

R

aM
C

C

S
I−

LR

S
II−

LR

PA
G

Node
(b)

0
20

40
60

80
10

0

P
er

ce
nt

ag
e 

of
 m

od
el

s

V
M

P
F

C

O
F

C
−

L

O
F

C
−

R

D
LP

F
C

−
L

D
LP

F
C

−
R

A
m

yg
−

L

A
m

yg
−

R

A
nt

In
s−

L

A
nt

In
s−

R

P
os

tIn
s−

L

P
os

tIn
s−

R

aM
C

C

S
I−

LR

S
II−

LR

PA
G

Node

Safe to shock Shock to safe

(c)

Figure 2.6: Evidence for a difference between the ‘safe’ and ‘anticipation of shock’
conditions. (a) For each subject and each node r, the loge Bayes factor was calculated as the
difference between the highest scoring parent set for the ‘safe’ data P̂ a(r)safe and the highest

scoring parent set for the ‘anticipation of shock’ data P̂ a(r)shock fitted to the ‘safe’ data, and
vice versa. For ease of visualisation, outliers are not shown. (b) The number of parents that
are different between the two experimental conditions. (c) The percentage of models with a
higher LPL than the chosen parent set for the other dataset.
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2.7 Construction of an MDM-DGM Group Network

In the previous sections, the ‘safe’ and ‘anticipation of shock’ data, as well as the partial

correlation matrices, were analysed at the group level by considering edge presence and

absence. However, it is also informative to fit a ‘common’ or group network, which

may be constructed by summing the Log Predictive Likelihood over subjects for each

node, and then choosing the winning set of parents based on these summed scores.

Denote this group network by M̂G = {M̂(1)G , . . . ,M̂(r)G , . . . ,M̂(n)G}, where each

model represents some set of chosen parents P̂ aG = {P̂ a(1)G , . . . , P̂ a(r)G , . . . , P̂ a(n)G}.

The networks based on the ‘safe’ and ‘anticipation of shock’ data may be denoted by

M̂Gsafe and M̂Gshock . Let M̂Gsafe+shock denote an overall group network constructed

by summing the LPL scores over experimental conditions as well as subjects. A group

network of this form may be thought of as a ‘best’ estimate of the network as it is based

on all the subjects’ data taken together.

The group networks M̂Gsafe and M̂Gshock are shown in Figures 2.7a and Figure 2.7c.

Figures 2.7b and 2.7d show the percentage of subjects that have this edge using the

individual MDM-DGM networks. The same strong, inter-hemisphere connections are

present in the group networks, as well as the connections between the OFC and the

DLPFC, and the insula (anterior and posterior) and the somatosensory cortices. The

VMPFC is parentless is both networks, but is estimated to be the parent of most

of the other ROIs, notably more than were found to be significant in the previous

analysis (Figure 2.4). In fact, some of the edges in the group networks are only present

in the individual networks for a few subjects, e.g. the connection OFC-L → PAG is

present in the group network for the ‘anticipation of shock’ data but only occurs for

2 subjects in the individual networks. That the group networks are denser than the

individual networks may be emphasised by the fact that the median number of edges

in a individual network for the ‘safe’ data was 79.5 (the maximum was 103), while the

number of edges in the group network was 102. For the ‘anticipation of shock’ data,

the median number of edges was 77 (maximum 92), while the number of edges in the

group network was 91. The number of edges in the combined network was 100.

Figure 2.8 shows the difference between the two group networks. It can be seen that

some edges were found in the group network for an experimental condition even if

the same edge occurred for fewer subjects in the individual subject networks for this

condition.
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(a) Group network, M̂Gsafe
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(c) Group network, M̂Gshock
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Figure 2.7: MDM-DGM group networks for the ‘safe’ and ‘anticipation of shock’
datasets. (a) The group network M̂Gsafe

for the ‘safe’ data, obtained by maximising the sum
of the LPL scores over subjects. (b) The percentage of subjects that have each edge in the
group network, the minimum is 19 % (6 subjects). (c), (d) are as (a) and (b) but for the
‘anticipation of shock’ data with group network M̂Gshock

. The minimum number of subjects
that have an edge in the group network is 6.2 % (2 subjects).
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(a) Safe not shock
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(b) Shock not safe

Figure 2.8: MDM-DGM group networks differ between the ‘safe’ and ‘anticipation
of shock’ datasets. Edges that occur only in the (a) ‘safe’ and (b) ‘anticipation of shock’
data, plotted as the difference in the number of subjects that have an edge in the individual
networks. Purple indicates more subjects have an edge in the ‘safe’ data, and green that more
subjects have an edge in the ‘anticipation of shock’ data.

Figure 2.9 shows the results of an identical analysis to that in Figure 2.6, except that

this time the scores for winning parent sets P̂ a(r)Gsafe and P̂ a(r)Gshock for each group

model, M̂Gsafe and M̂Gshock , were compared to the chosen parents in the individual

networks. The loge Bayes factors suggest there is strong evidence to prefer the parent

sets of individual subject networks to the parent sets of the group model, with the

median number of parents that are present in one network but absent in the other

around 4 across the nodes. From Figure 2.9c, it is clear that for some nodes, such as

the OFC and the DLPFC, the parent sets of the group models are consistently some of

the highest scoring across subjects. In comparison, for the VMPFC and the PAG, there

are subjects where the parent set of the group network is one of the worst performing

models. We conclude that, for some nodes in particular, the parent sets of the group

network may not be reflective of the parent sets of the individual networks.

2.8 Analysis of MDM-DGM Connectivity Strengths

Another advantageous feature of the MDM-DGM is that, alongside network discovery,

we may obtain estimates for the time-varying regression coefficients θ̂t(r), which may

be interpreted as the instantaneous connectivity strength between two brain regions

at time t. In this subsection, we assume a fixed network structure across subjects

and analyse connectivity within and between subjects using θ̂t(r) as a measure of

connectivity. Rather than treating an edge as simply present or absent, each edge (in

the network) instead has an associated connectivity strength that may be stronger or

weaker between subjects or experimental conditions.

For each node r, given some set of parents P̂ a(r)G , a Dynamic Linear Model may be
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fitted to obtain dynamic estimates for the parameter vector θ(r) = {θ1(r), . . . ,θT (r)}
given data y(r). Let j denote an intercept term and pr be one more than the number

of parents in P̂ a(r)G , such that θt(r) = {θ1t(r), . . . , θjt(r), . . . , θprt(r)}. The index i

then denotes a parent in P̂ a(r)G so long as i ≠ j. For each subject s and each time

point t, there is a pr × 1 parameter vector θ̂t(s, r) with pr × 1 location vector µt(s, r)
and pr × pr scale matrix Σt(s, r) (see equations 1.4.14a−1.4.14c). For each parent i, we

define metrics d̄ir and µ̄ir where

dit(s, r) =
µit(s, r)√
Σiit(s, r)

so that

d̄ir =
1
S ∑

S
s=1 ( 1

T ∑
T
t=1 dit(s, r))

SD( 1
T ∑

T
t=1 dit(s, r)) /

√
S

and

µ̄ir =
1
S ∑

S
s=1 ( 1

T ∑
T
t=1 µit(s, r))

SD( 1
T ∑

T
t=1 µit(s, r)) /

√
S
.

These metrics provide a standardised and unstandardised t statistic for each edge, and

so may be used to test whether, across subjects, the estimates for θ̂t(r) are significantly

different from zero. Applying false discovery rate correction (α = 0.05) allows a thresh-

old for d̄ir to be determined. Results for the ‘safe’ and ‘anticipation of shock’ data,

fitted to the group networks M̂Gsafe and M̂Gshock are shown in Figures 2.10c, 2.10d,

2.10e, 2.10f alongside the magnitude of the partial correlations for comparison (Figure

2.10a and Figure 2.10b). It can be seen that positive values of d̄ir and µ̄ir correspond to

positive partial correlations and negative values of d̄ir and µ̄ir to negative partial corre-

lation, providing further evidence that the MDM-DGM captures behaviour that would

be captured using a partial correlation method, while also incorporating directionality.

For example, the edges VMPFC → AntIns-L and VMPFC → AntIns-R have a negative

mean partial correlation, as well as a negative d̄ir and µ̄ir ‘connectivity strength’. In

agreement with the analysis based on the individual networks, the d̄ir and µ̄ir met-

rics estimate strong connectivity between the orbitofrontal and dorsolateral prefrontal

cortices, between the primary and secondary somatosensory cortices and between the

hemispheres of the anterior insula. The presence of strong functional connectivity be-

tween brain regions that are anatomically close is widely supported in the literature,

see, for example, Honey et al. (2009). Unlike the previous analyses based on edge

presence, using this approach the PAG, while remaining childless, is estimated to have

parents with relatively low but still significant connectivity strengths.
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Figure 2.9: Evidence for a difference between the group and individual subject
networks. (a) For each subject and each node r, the loge Bayes factor was calculated as
the difference between the highest scoring parent set for each subject and the highest scoring
parent set for the group network for the ‘safe’ data (purple) and the ‘anticipation of shock’ data
(green). For ease of visualisation, outliers are not shown. (b) Difference between the number
of parents in the individual and group models for the ‘safe’ (purple) and ‘anticipation of shock’
(green) data. (c) The percentage of models with a higher LPL than the parent set in the group
model for the ‘safe’ data (purple) and the ‘anticipation of shock’ data (green).
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(a) Mean partial correlation (safe)
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(b) Mean partial correlation (shock)
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(d) Anticipation of shock
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(f) Anticipation of shock

Figure 2.10: The state vector θ̂t(r) provides a measure of connectivity strength.
(a) The mean partial correlations over subjects, white indicates an (absolute) mean partial
correlation less than 0.02. (b) The standardised t statistic d̄ir for the ‘safe’ data after false
discovery rate correction (α = 0.05) on the corresponding p-values. (c) As (b) but for the
‘anticipation of shock’ data. (d) and (e) As (b) and (c) but using the unstandardised t
statistic µ̄ir. 47



To compare the ‘safe’ and ‘anticipation of shock’ networks based on connectivity strength,

we fitted the parent set of the model M̂Gsafe+shock and obtained the following paired t

statistic for each edge:

dpaired =
1
S ∑

S
s=1 (d̄i(s, r)safe − d̄i(s, r)shock)

SD (d̄i(s, r)safe − d̄i(s, r)shock) /
√
S

µpaired =
1
S ∑

S
s=1 (µ̄i(s, r)safe − µ̄i(s, r)shock)

SD (µ̄i(s, r)safe − µ̄i(s, r)shock) /
√
S

where

d̄i(s, r) =
1

T

T

∑
t=1
dit(s, r) µ̄i(s, r) =

1

T

T

∑
t=1
µit(s, r)

Significant edges (p < 0.05) are shown in Figure 2.11. However, none of the edges found

to be significant survived false discovery rate correction (α = 0.05).

In Figure 2.6, we showed that the ‘safe’ and ‘anticipation of shock’ parent sets for

each node differed by a median of 3 to 5 parents and had loge Bayes factors that

indicated strong evidence for a difference. This might seem to conflict with our failure

to detect statistically significant differences between the two conditions. To further

explore this behaviour, Figure 2.12 plots the absolute value of the unstandardised t

statistic µ̄ir for each subject and each edge in the group networks M̂Gsafe and M̂Gshock .

It is straightforward to see that the strongest, most consistent edges also have the

highest connectivity strengths. We showed in Figure 2.5 that the most consistent edges

are shared across experimental conditions. From this, we may conclude that it is the

weaker edges, in both presence and connectivity strength, that give rise to the observed

differences between the networks. While it is possible that this is a reflection of real

but subtle differences between the two conditions, it may be the case that the MDM-

DGM tends to find overly-complex models. This is something we will come back to in

Chapter 4.
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(a) dpaired
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(b) µpaired

Figure 2.11: A paired t-test does not find a significant difference between the
connectivity strengths for the ‘safe’ and ‘anticipation of shock’ datasets. Purple
indicates a higher value for the ‘safe’ data, green indicates a indicates a higher value for the
‘anticipation of shock’ data. None of these edges survive false discovery rate correction (α =
0.05).
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Figure 2.12: Edges shared by a high proportion of subjects have stronger connec-
tivity strengths. The absolute value of µ̄ir for each edge in the networks M̂Gsafe

and M̂Gshock

against the proportion of subjects which have the edge in the individual networks. The dotted
line indicates the significance threshold. It can be seen that all edges shared by more than 70 %
of subjects have an (absolute) connectivity strength above the significance threshold.
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2.9 Detecting Differences Based on Trait and Induced Anxiety

We used the MDM-DGM to see if we could detect differences between the subjects

based on measures of trait and induced anxiety. Based on a mean split, we grouped

the subjects into no induced anxiety (S = 14) and induced anxiety (S = 18) using the

VAS difference measure and low trait anxiety (S = 19) and high trait anxiety (S = 13)

using the Factor Scores measure. These measures are detailed in Bijsterbosch et al.

(2015) and described briefly in section 2.2. We then performed two-sample t-tests,

using the d̄ir and µ̄ir metrics for connectivity strength, to assess whether any of the

connectivity strengths were significantly different between subgroups. The t statistics

that were found to be significant (p < 0.05) are shown in Figure 2.13 for the ‘safe’

dataset and Figure 2.14 for the ‘anticipation of shock’ dataset. However, none of these

edges survived false discovery rate correction (α = 0.05).
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(a) Induced anxiety d̄ir
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(b) Induced anxiety µ̄ir
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(c) Trait anxiety d̄ir
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Figure 2.13: Differences between the ‘safe’ networks when the subjects are split
based on induced and trait anxiety. Significant edges (p < 0.05, before FDR adjustment)
are shown in terms of the t statistic for a two-sample t-test, purple indicates a higher value
for the ‘safe’ data and green a higher value for the ‘anticipation of shock’ data. None of these
edges survive false discovery rate correction (α = 0.05).
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(b) Induced anxiety µ̄ir
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(d) Trait anxiety µ̄ir

Figure 2.14: Differences between the ‘anticipation of shock’ networks when the
subjects are split based on induced and trait anxiety. Differences between the ‘an-
ticipation of shock’ networks when the subjects are split based on induced and trait anxiety.
Significant edges (p < 0.05, before FDR adjustment) are shown in terms of the t statistic for a
two-sample t-test, purple indicates a higher value for the ‘safe’ data and green a higher value
for the ‘anticipation of shock’ data. None of these edges survive false discovery rate correction
(α = 0.05).

2.10 Discussion

In this chapter, we have used the two datasets of Bijsterbosch et al. (2015) to discover

and analyse directed, functional connectivity networks using the MDM-DGM search.

In this section, we review some of the features of the MDM-DGM search outlined in

this chapter and the previous one, highlighting some key strengths and weaknesses.

MDM-DGM estimates dynamic, directed connectivity

As partial correlation networks have been shown to have good sensitivity for detecting

edge presence, we used partial correlation networks to assess the ability of the MDM-
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DGM to infer edge presence. The MDM-DGM recovers very similar networks to the

partial correlation networks. This is noticeable because the MDM-DGM networks tend

to be symmetric, with strong connectivity between the hemispheres. We can model this

bidirectional connectivity because we do not constrain the MDM-DGM networks to be

acyclic. The VMPFC showed reasonably consistent asymmetric connectivity and using

the group-level analyses it was was found to have no parents but multiple children.

This is consistent with its known top-down and regulatory role in the processing of

negative emotion (Bijsterbosch et al., 2015; Motzkin et al., 2015).

Given a set of parents discovered by the MDM-DGM search, we can fit a Dynamic

Linear Model and obtain estimates for the strength of the connectivity. Like partial

correlation, these estimates may be positive or negative, but unlike partial correlation,

for the case where the discount factor δ(r) < 1, these estimates may vary over time. As

δ(r) is chosen for each node by maximising the Log Predictive Likelihood, the amount

of dynamics in the regression coefficients is data driven and the case where δ(r) = 1

allows for a static model if this provides the best fit to the data.

MDM-DGM can estimate both subject and group level networks

The MDM-DGM search consists of calculating a (log) likelihood that factors by subject

and by node. Not only is this hugely advantageous from a computational perspective,

as the model search may readily be parallelised, but it also allows us to construct

and analyse individual subject networks. It is straightforward to sum the scores to

obtain a group-level network. We constructed an MDM-DGM network for each subject

for both the ‘safe’ and ‘anticipation of shock’ data, finding that around half of the

edges are consistently present or absent across subjects and experimental conditions.

Some differences between the ‘safe’ and ‘anticipation of shock’ conditions were detected

between the individual networks, and between group networks, but these differences

tended to be limited to a small number of subjects.

Given the group networks, we obtained estimates for the time-varying connectivity

strengths θ̂t(r). These showed that connectivity (e.g. connectivity between the or-

bitofrontal and dorsolateral prefrontal cortices) that was consistent over subjects in

terms of edge presence was associated with high connectivity strengths.

Further analysis comparing the loge Bayes factor to assess model fit suggested strong

evidence for a difference between the chosen parent sets for each experimental condi-

tion, but due to the lack of a statistically significant difference between the networks,

we hypothesise that this is being driven by the presence of less consistent edges with

smaller connection strengths. This may be because there are real but subtle differences

between the networks, although if this were the case, we might expect these differences

to become more pronounced in the splits based on anxiety metrics. Alternatively, we

may hypothesise that these inconsistent edges with low connectivity weights are spuri-

ous, or at least, not as physiologically interesting as the stronger edges, and therefore

compromise the robustness of the estimated networks. We will explore methods to
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minimise the impact of these ‘spurious’ edges in Chapter 4.

MDM-DGM networks are consistent between ‘safe’ and ‘anticipation of

shock’

When comparing the ‘safe’ and ‘anticipation of shock’ networks, the MDM-DGM did

not find any significant differences that survived false discovery rate correction, even

when the subjects were split into low and high anxiety subgroups. However, the consis-

tency between the estimated networks lends support to the validity of the MDM-DGM

approach. As discussed in section 1.2.1, it has been shown that resting-state networks

strongly correlate with their associated task-based networks (Smith et al., 2009; Tavor

et al., 2016) and this behaviour is apparent in the results presented here.
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Chapter 3

Scaling-up the MDM-DGM with Stepwise Regression

3.1 Introduction

While the MDM-DGM search allows us to construct biophysically-plausible networks

and test a number of hypotheses, it would be desirable to be able to work with networks

with many more nodes, encompassing many more brain regions. The more brain re-

gions that may be included, the more it is possible to interpret functional connectivity

in terms of the underlying architecture and to be able to say that the direct connectivity

that we estimate represents a true direct causal influence, rather than the influence of

other, unmeasured regions. However, for many of the widely-used methods for directed

connectivity, networks with more than a handful of nodes have not been computation-

ally feasible. As the number of nodes increases, so does the number of combinations of

directed edges, and methods such as IMaGES and DCM, as well as the MDM-IPA and

MDM-DGM, become severely limited by the size of the model space (Henry and Gates,

2017), although recently methods for larger networks have emerged. For example, Razi

et al. (2017) demonstrate a spectral DCM approach using an empirical dataset with 36

brain regions. In this chapter, we show how the size of the MDM-DGM model space

grows exponentially, making a search impossible for network with more than 20 nodes.

In order to construct larger MDM-DGM networks in reasonable computational time,

we consider stepwise methods which, as we will show, dramatically reduce the number

of models it is necessary to score.

3.1.1 MDM-DGM Computation Time

As previously described, the Log Predictive Likelihood has closed-form and factors

by node and by model (candidate set of parents). The search over the model space

may therefore be readily parallelised and can be performed very quickly. Using a

MacBook Pro, 2.7 GHz Intel Core i5, 8GB RAM running R version 3.4.0 and the C++
implementation available in the multdyn package (Schwab et al., 2017b), the run time

for the all-parent model for an individual node (number of nodes n = 15) for a single

value of the discount factor was 0.004 seconds. A grid search over a range of discount

factors (δ(r) ∈ [0.5,1], step size 0.01) is therefore achievable in around 0.2 seconds and

a search over all N = 2n−1 (16,384) candidate sets of parents may be performed in less

than an hour. We use the term exhaustive to refer to an MDM-DGM model search
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which scores every candidate model. Estimates for the run times of the MDM-DGM

exhaustive search are provided in Table 3.1. It is immediately clear that while a 15

node network may be scored in a reasonable amount of time, networks with only a

few additional nodes require significantly more computation time, such that it is not

feasible to perform an exhaustive search on networks with more than 20 nodes.

No. of nodes No. of models Approx. run time

5 16 3.2 seconds

10 512 1.7 minutes

15 1.6 × 104 55 minutes

20 5.2 × 105 29 hours

50 5.6 × 1014 3.6 × 106 years

Table 3.1: Estimated run time of the MDM-DGM, per subject, per
node, for increasing numbers of nodes. The approximate computation time
to score an individual model (with 790 time points) was 0.2 seconds, using a C++
implementation available in the multdyn package for R. A parallelised model
search over 15 nodes may be performed in less than a hour but, as the size of the
model space increases exponentially, an exhaustive model search is not feasible
for more than 20 nodes.

3.1.2 MDM-DGM Computational Complexity

Table 3.1 is based on the assumption that the run time of an individual model is

approximately the same regardless of the number of parents in the candidate model. In

this subsection, we provide a more rigorous assessment of the computational complexity

of the MDM-DGM search. As part of this, we examine the Dynamic Linear Model

as implemented in the dlm.lpl function in the multdyn package for R (Schwab et al.,

2017b). This function uses one-step updating to calculate the Log Predictive Likelihood

for a specified set of parents and discount factor. It takes as inputs the time series

of a particular node r and the time series of the parents in the parent set, a scalar

value of the discount factor and values for the prior hyperparameters at time t = 0.

The dimensions of the hyperparameters m0(r) and C∗
0(r) depend on the number of

parents. The computational complexity of scoring an individual model (candidate set

of parents) using this function is determined by the number of parents and the number

of time points T ; complexity increases linearly with the number of time points. To find

the parents for an individual node, for each candidate parent set, this function is called

for a fixed number of potential values of δ(r) (usually 51, δ(r) ∈ [0.5,1], step size 0.01),

that is, the function is called 51 ×N times.

Table 3.2 shows how the complexity of a single iteration in the Dynamic Linear Model

depends on the number of parents. The updating relations are those described in section

1.4.2. For compactness, the r notation is dropped for the rest of this subsection. At

time t, the vectors Ft, mt and At have length pr where pr is the number of parents plus

one to account for an intercept, so the all-parent model has pr = n. The matrices R∗
t ,
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Rt, C∗
t and Ct have dimension pr × pr. It follows that the complexity (and subsequent

computation time) depends quadratically on the number of parents in the model being

scored. However, as previously stated, the number of models increases exponentially

with the number of nodes n, so this increase in computational complexity will be

dwarfed by the increase in the size of the model space.

Calculation Dimension Complexity

R∗
t = C∗

t−1 / δ pr × pr O(n2)
Rt = R∗

t−1St−1 pr × pr O(n2)
ft = F⊺

tmt−1 − O(n)
Q∗
t = 1 +F⊺

tR
∗
tFt − O(n2)

Qt = Q∗
t St−1 − O(1)

et = Yt − ft − O(1)
At = R∗

tFt /Q∗
t pr × 1 O(n2)

mt = mt−1 +Atet pr × 1 O(n)
nt = nt−1 + 1 − O(1)

dt = dt−1 + e2t /Q∗
t − O(1)

St = dt /nt − O(1)
C∗
t = R∗

t −AtA
⊺
tQ

∗
t pr × pr O(n2)

LPL − O(1)

Table 3.2: Computational complexity of the Dynamic Linear Model.
The first column shows the updating steps of the Dynamic Linear Model needed to
calculate the Log Predictive Likelihood as implemented in the multdyn package
for R. The second column shows the dimension of the output, ‘−’ indicates a
scalar and pr is the number of parents plus one to include an intercept. The
third column is the computational complexity of the calculation. The complexity
of a single iteration is therefore quadratic.

3.2 Forward Selection and Backward Elimination

We explore stepwise methods for model selection: our goal is to recover the same

sets of parents without scoring all 2n−1 combinations. We exploit the fact that the

LPL factors by node so the highest-scoring set of parents may be found for each node

individually. We consider two complementary stepwise methods: forward selection (FS)

and backward elimination (BE) (see, for example, Davison (2003), Chapter 8).

Forward selection starts by scoring the zero parent (intercept-only) model and all the

one parent models. The parent (if any) which gives the biggest increase in the LPL

is selected for inclusion. The algorithm then scores all the two-parent models which

include this parent and so on, until the inclusion of additional parents does not increase

the LPL. Figure 3.1b illustrates how this process may reproduce the graph in Figure

3.1a. The algorithm first scores the model with Pa(4) = {∅} (Step 1) and then Pa(4) =
{1}, Pa(4) = {2}, Pa(4) = {3} (Step 2). Suppose after these first two steps P̂ a(4) = {3}.
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The third step is to score Pa(4) = {1,3} and Pa(4) = {2,3}, replacing P̂ a(4) = {3} with

P̂ a(4) = {1,3}. The final model to score is Pa(4) = {1,2,3}, which will fail to increase

the LPL, so the algorithm successfully returns the same parent set as the MDM-DGM.

Backward elimination (BE) obeys similar principles. It begins by scoring the model that

includes all n− 1 candidate parents, removing parents one at a time until doing so fails

to increase the LPL. This procedure is shown in Figure 3.1c, where Step 1 scores the

model with parents Pa(4) = {1,2,3} and Step 2 scores Pa(4) = {1,2}, Pa(4) = {1,3}
and Pa(4) = {2,3}, choosing the ‘correct’ model P̂ a(4) = {1,3}. Step 3 then scores

Pa(4) = {1} and Pa(4) = {3} but neither improve the LPL so the algorithm terminates.

The maximum number of models that can be scored (per node) using these methods is

Nstep = 1+∑(n−1)
k=1 (n−k). While this is 88 % of the total for a 4 node network (i.e. these

methods may end up scoring 7 out of the 8 candidate sets of parents), for a 15 node

network, the maximum number of models that can be scored is 106 out of 16,384 (or

0.65 % of the total). The dramatic reduction in the size of the model space for models

with increasing numbers of nodes is shown in Table 3.3.

No. of nodes No. of models % of total Approx. run time

5 11 (16) 69 2.2 seconds

10 46 (512) 9 9.2 seconds

15 106 (1.6 × 104) 0.65 21 seconds

20 191 (5.2 × 105) 0.036 38 seconds

50 1226 (5.6 × 1014) 2.2 × 10−10 4.1 minutes

Table 3.3: Stepwise methods dramatically reduce the number of mod-
els to score. As the number of nodes increases, the maximum number of models
that may be scored by either forward selection or backward elimination, as a per-
centage of the total number of candidate models, significantly decreases.

The example in Figure 3.1b assumes that the LPL for the zero-parent model is lower

than for the selected one-parent model with Pa(4) = {3}. If this is not the case, the

algorithm will terminate, returning the Pa = {∅} as the winning model and the stepwise

solution will have two missing parents. Similarly, consider the backward elimination

example if the winning model in the exhaustive search is Pa(4) = {3}, rather than

Pa(4) = {1,3} and that Pa(4) = {1,2,3} has an higher score than Pa(4) = {1,2},

Pa(4) = {1,3} or Pa(4) = {2,3}. The algorithm will terminate, returning Pa(4) =
{1,2,3} as the winning model and the stepwise solution will have two extra parents.

To avoid these errors, we simply need to remove the instruction to terminate if the

LPL cannot be improved. As can be seen in Table 3.3, the stepwise algorithms score

such a tiny fraction of the model space that any computational speed-up that may be

obtained from instructing the algorithm to terminate will be negligible.

These two methods were run on the 15 node resting-state (‘safe’) data, using code we
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Figure 3.1: Illustration of stepwise algorithms for the MDM-DGM. To goal is to
discover the same parent set as an exhaustive MDM-DGM search e.g. the parent set shown in
(a). The forward selection (FS) algorithm in (b) begins with the zero-parent (intercept-only)
model, adding parents one at a time. The backward elimination (BE) algorithm in (c) begins
with the all-parent model and removes parents one at a time.
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have made available1. As our aim is to recover the same networks as those found by

the exhaustive search, we quantify performance in terms of the number of edges (out

of a possible 210, for each subject) that are the same (present or absent) as in the

exhaustive networks. It is also informative to distinguish missing edges (edges present

in the exhaustive network but absent in the stepwise network) and extra edges (edges

absent in the exhaustive network but present in the stepwise network). Note that we

use the terms ‘correct’ and ‘incorrect’ (as well as ‘missing’ and ‘extra’) only the context

of comparison of the stepwise to the exhaustive networks, not with any reference to

‘correctness’ of the network as a reflection of the underlying physiology.

The algorithms described here, like the MDM-DGM exhaustive search, assume that

there is a single maximum LPL and a single winning set of parents. Therefore, the

choice of parent to include or exclude may be based on an LPL that is only fractionally

higher and there may be other parents that may be included or excluded giving a model

with equivalent evidence in terms of the loge Bayes factor. For this reason, it is also

informative to assess the performance of the stepwise algorithms in terms of loge Bayes

factors. If the winning parents for node r in an exhaustive search are P̂ a(r), as before,

and the winning parents in a forward selection or backward elimination search are

P̂ a(r)step, then we may argue that the stepwise algorithm has discovered an equally

correct model if LPL[P̂ a(r)] − LPL[P̂ a(r)step] < 1. In line with Kass and Raftery

(1995), a loge Bayes factor of less than 1 indicates that there is no evidence to prefer

one model over another.

3.2.1 Performance of Forward Selection and Backward Elimination

Results of forward selection and backward elimination algorithms applied to the 15

node resting-state data are presented in Figures 3.2 and 3.3. The performance of these

algorithms is reasonably good. In the case where the algorithm terminated if at any step

no improvement in the LPL was obtained, forward selection correctly identified 91.2 %

of edges on average (minimum 82.9 %, maximum 97.1 %, s.d. 3.7 %). Of the incorrectly

specified edges, across subjects, 79.2 % were missing. This is clear from Figure 3.2b: the

plot on the left hand side shows the number of missing edges and the plot on the right

hand side the number of extra edges, compared to the exhaustive search. Figures 3.2a

and 3.2c show the improved performance obtainable when the algorithm iterates until

the all-parent model. In this case, 95.3 % of edges are correctly identified on average

(minimum 89.5 %, maximum 99.5 %, s.d. 2.5 %). Looking at Figure 3.2c, it is clear that

this increase in performance occurs because the number of missing edges is significantly

reduced.

Backward Elimination performed comparably, correctly identifying 90.9 % of edges

(minimum 79 %, maximum 98.1 %, s.d. 4.1 %) when the algorithm terminated if it

reached a local maximum. Of the incorrectly specified edges, across subjects, 76.6 %

1Schwab, S., Harbord, R., Costa, L., and Nichols, T. multdyn: Multiregression Dynamic Models, 2017a.
URL https://CRAN.R-project.org/package=multdyn. R package version 1.6
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were extra. The numbers of missing and extra edges over subjects are shown in Figure

3.3b. In the case where the algorithm continued to the zero-parent model, backward

elimination correctly identified 95.5 % of edges on average (minimum 88.1 %, maximum

100 %, s.d. 2.8 %).

It is clear (and not unexpected) that forward selection tends to miss edges whereas the

converse is true for backward elimination. From Figures 3.2b and 3.3b, it can be seen

that these errors occur relatively uniformly across the 15 nodes, rather than there being

particular nodes where the stepwise method is more or less successful at identifying the

correct parents, although the number of extra parents for the VMPFC (consistently

predicted to be parentless in the group analyses) is noticeable when using backward

elimination.

When the algorithm runs until the all-parent model, the number of edges missed using

forward selection is reduced from 6.9 % (of the total number of edges) to 2.5 %, mean-

ing the total numbers of missing and extra edges are now roughly equivalent (53.8 %

missing, 46.2 % extra). For backward elimination, the number of extra edges is reduced

from 6.9 % (of the total number of edges) to 2.2 %, and again the total numbers of miss-

ing and extra edges are now roughly equivalent (51.5 % missing, 48.5 % extra). Another

test of the effectiveness of these methods is to calculate the loge Bayes factor between

the parent sets found by the exhaustive and stepwise searches. Results are shown in

Figure 3.4. For forward selection, 76.7 % of models (out of S×n = 480) had a loge Bayes

factor of zero. For a further 5.8 %, the loge Bayes factor was less than 1, while 9.4 %

had a loge Bayes factor greater than 1 (but less than 3), indicating evidence to prefer

the model discovered by the exhaustive search. Only 8.1 % had a loge Bayes factor

greater than 3, indicating strong evidence for a difference. For backward elimination,

the results were almost identical, with a loge Bayes factor of zero for 76.2 % of models

and a loge Bayes factor of less than 1 for 10 %, while 8.1 % had a loge Bayes factor

greater than 1 (but less than 3) and only 5.6 % had a loge Bayes factor greater than 3.

It may be concluded that these methods can successfully reproduce the MDM-DGM

exhaustive networks when the number of nodes n = 15. For this dataset, the perfor-

mance of forward selection and backward elimination is equivalent, and the accuracy

is comparable over subjects.
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Figure 3.2: The performance of forward selection. (a) For each subject, the percentage
of edges correctly identified by the forward selection algorithm when the algorithm terminates
if a local maximum is found (green) and when the algorithm terminates at the all-parent model
(purple). (b) The number of missing (left) and extra (right) edges across all subjects using the
algorithm that terminates if a local maximum is found. (c) The reduction in the number of
‘missing’ and ‘extra’ edges when the algorithm continues until the all-parent model.
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Figure 3.3: The performance of backward elimination. (a) For each subject, the per-
centage of edges correctly identified by the backward elimination algorithm when the algorithm
terminates if a local maximum is found (green) and when the algorithm terminates at the zero-
parent (intercept-only) model (purple). (b) The number of missing (left) and extra (right)
edges across all subjects using the algorithm that terminates when a local maximum is found.
(c) The reduction in the number of ‘missing’ and ‘extra’ edges when the algorithm continues
until the zero-parent model.
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Figure 3.4: Loge Bayes factor comparison between the parent sets discovered by ex-
haustive and forward selection and exhaustive and backward elimination searches.
Plotted values are for the case when the stepwise algorithm fails to find the set of parents
identified by an exhaustive search. Whiskers show the minimum and maximum values.

3.3 Combining Forward Selection and Backward Elimination

Due to the significant reduction in the size of the model space using stepwise methods, it

is feasible computationally to run both forward selection and backward elimination: for

a 15 node network, this means scoring 212 models per subject, per node (assuming the

termination constraint is removed). We may then compare the scores for the winning

models using each method and, if they are different, select the set of parents with

the higher LPL. Results are shown in Figure 3.5a. Mean accuracy for edges correctly

identified was 98.3 % (minimum 95.2 %, maximum 100%, s.d. 1.4 %) and for 7 out of the

32 subjects the exhaustive MDM-DGM networks were reproduced in full (i.e. 100 % of

edges were correctly identified). The worst performance still identified 95.2 % of edges

correctly. Looking at Figure 3.5b, again we can see that the small proportion of edges

that were incorrectly specified were not associated with a particular node (or nodes)

and that the ratio of missing to extra edges was almost equal (52.2 % missing (0.9 % of

the total number of edges); 47.8 % extra (0.8 % of the total number of edges)). This is

further illustrated in Figure 3.5c, which shows the number of missing and extra edges

per subject.

Finally, we look at the loge Bayes factors for the misspecified models (see Figure 3.6).

Across all subjects and all nodes, the stepwise algorithm returned a different parent set

for 40 out of 480 (8.3 %). However, out of these, 22 had a loge Bayes factor difference

of less than 1. This meant that, using the combined forward selection and backward

elimination algorithm, for only 3.7 % of cases the stepwise algorithm returned a parent

set where it could be argued that the parent set identified by the exhaustive search

should be preferred.

63



Subject

P
er

ce
nt

ag
e 

of
 e

dg
es

 id
en

tif
ie

d 
co

rr
ec

tly
90

92
94

96
98

10
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

(a)

V
M

P
F

C

O
F

C
−

L

O
F

C
−

R

D
LP

F
C

−
L

D
LP

F
C

−
R

A
m

yg
−

L

A
m

yg
−

R

A
nt

In
s−

L

A
nt

In
s−

R

P
os

tIn
s−

L

P
os

tIn
s−

R

aM
C

C

S
I−

LR

S
II−

LR

PA
G

Child

PAG

SII−LR

SI−LR

aMCC

PostIns−R

PostIns−L

AntIns−R

AntIns−L

Amyg−R

Amyg−L

DLPFC−R

DLPFC−L

OFC−R

OFC−L

VMPFC

P
ar

en
t

0

3

(b)

V
M

P
F

C

O
F

C
−

L

O
F

C
−

R

D
LP

F
C

−
L

D
LP

F
C

−
R

A
m

yg
−

L

A
m

yg
−

R

A
nt

In
s−

L

A
nt

In
s−

R

P
os

tIn
s−

L

P
os

tIn
s−

R

aM
C

C

S
I−

LR

S
II−

LR

PA
G

Child

PAG

SII−LR

SI−LR

aMCC

PostIns−R

PostIns−L

AntIns−R

AntIns−L

Amyg−R

Amyg−L

DLPFC−R

DLPFC−L

OFC−R

OFC−L

VMPFC

P
ar

en
t

0

3

Subject

N
um

be
r 

of
 in

co
rr

ec
t e

dg
es

 
 (

ou
t o

f a
 p

os
si

bl
e 

21
0)

0
2

4
6

8
10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Missing Extra

(c)

Figure 3.5: Combining forward selection and backward elimination. (a) The per-
centage of edges correctly identified by the combined FS and BE algorithm. (b) The number
of missing (left) and extra (right) edges across all subjects. (c) The number of missing and
extra edges across nodes for each subject.
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Figure 3.6: Loge Bayes factor comparison between the parent sets discovered by
exhaustive and combined forward selection and backward elimination searches.
Plotted values are for the case when the stepwise algorithm fails to find the set of parents
identified by an exhaustive search. Whiskers show the minimum and maximum values. In-
terestingly, the noticeable difference for the SI-LR results from a single region (the AntIns-L)
being present in the stepwise parent set but absent in the exhaustive parent set.

3.4 Accuracy of Stepwise Methods for Increasing Numbers of Nodes

In this section, we explore whether we might expect the accuracy of forward selection

and backward elimination to be maintained, or compromised, as the number of nodes

increases. As it is not feasible to run an exhaustive search on large networks, we

consider smaller networks, specifically subnetworks of the 15 node ‘safe’ dataset with

6, 8, 10 and 12 nodes (as detailed in Table 3.4). We compared the performance of the

stepwise approaches (without the termination instruction) on these smaller networks

with the performance on the 15 node networks. Results are shown in Figures 3.7 - 3.9.

Subnetwork Nodes

6 VMPFC, OFC-L, OFC-R, aMCC, DLPFC-L, DLPFC-R

8 Subnetwork 6, Amyg-L, Amyg-R

10 Subnetwork 8, AntIns-L, AntIns-R

12 Subnetwork 10, Post-Ins-L, Post-Ins-R

Table 3.4: Brain regions included in the subnetworks of the 15 node ‘safe’
dataset.

Figure 3.7 shows the accuracy for forward selection and backward elimination, both

individually and combined, where, as in Figures 3.2a, 3.3a and 3.5a, accuracy is defined

as the number of edges correctly identified as present or absent when the stepwise
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networks are compared with the networks found in an exhaustive search. There is a

small but noticeable reduction in accuracy as the number of nodes increases: in the

8 node subnetwork, the combined forward selection and backward elimination method

reproduced the exhaustive networks with 100 % accuracy for all 32 subjects whereas

for the 10 node subnetworks, there were 3 subjects with 2 or 3 incorrect edges. For 12

nodes, the median is still 100 %, falling to 98.6 % for the 15 node network. While this

reduction in accuracy is small, it emphasises that we should not assume the accuracies

observed with small numbers of nodes will necessarily be maintained for larger networks.

As the size of the model space increases exponentially, the number of ‘incorrect’ models

also increases exponentially. However, as previously discussed, assessing ‘correctness’

in terms of a single model (the model with the highest Log Predictive Likelihood)

may not be the most appropriate method. As we showed in Figures 3.4 and 3.6,

the reduction in accuracy can be mitigated by relaxing our definition of correctness to

allow models where there is insufficient evidence for a difference i.e.where LPL[P̂ a(r)]−
LPL[P̂ a(r)step] < 1.

Figure 3.8 shows that for increasing numbers of nodes, the loge Bayes factor when

comparing the ‘best’ model to the second best (i.e. the parent set with the second

highest LPL) tends towards lower values. As the size of the model space increases, we

might expect the number of models with equivalent evidence to increase also. This is

confirmed in Figure 3.9a, which shows the number of ‘equivalent’ models using logeBF

< 1 and logeBF < 3. It is interesting to compare Figure 3.9a with Figure 3.9b, which

shows the number of models with equivalent evidence as a percentage of the total

number of models (the size of the model space). As the number of nodes increases,

the number of equivalent models increases but decreases as a percentage of the size

of the model space. This suggests that, within a very large model space, there will

be a relatively small number of models which provide a good fit to the data. Further

discussion will be provided in Chapter 5.
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Figure 3.7: The accuracy of the stepwise approaches decreases as the number of
nodes increases. Boxes show the accuracy of forward selection, backward elimination and
combined forward selection, backward elimination for subnetworks of the 15 node resting-state
(‘safe’) data. Accuracy is expressed as the percentage of edges correctly identified over the
whole network for each subject.
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Figure 3.8: The loge Bayes factor for the highest scoring vs. the next highest
scoring model decreases as the number of nodes increases. Boxes show the loge Bayes
factor comparing the highest scoring with the second highest across all subjects and nodes for
subnetworks of the 15 node resting-state (‘safe’) data. For easier visualisation, outliers are not
shown.
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Figure 3.9: The number of models with equivalent evidence increases as the number
of nodes increases, but decreases as a percentage of the model space. (a) For
subnetworks of the 15 node resting-state (‘safe’) data, we found the number of models with a
loge Bayes factor of less than 1 (green) and less than 3 (purple) compared to the highest scoring
model, across all subjects and nodes. (b) As (a) but expressed as a percentage of the size of
the model space. For easier visualisation, outliers are not shown.

3.5 Discussion

In this chapter, we have exploited the fact that the Log Predictive Likelihood of the

MDM-DGM factors by node in order to replace an exhaustive model search with a

stepwise one. For a resting-state network with 15 nodes, stepwise regression methods

can successfully reproduce the networks estimated by an exhaustive search over the
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model space. We have shown that forward selection and backward elimination may be

used in isolation, but combining the results of both allows for greater accuracy, as much

as 100 % in some cases. The reduction in the size of the model space is so dramatic that

these methods may readily be combined without compromising the massive reduction

in computation time that they offer.

While these methods may readily be applied to networks of with 50 or even hundreds

of nodes, it should be noted that there is no guarantee the performance of the stepwise

algorithms would be replicated on larger networks. As mentioned in Chapter 1, section

1.5, for networks with numbers of nodes close to the number of time points require

a regularisation term to ensure the stability of the partial correlation matrix. As we

showed in the previous chapter, the MDM-DGM tends to detect multiple edges with

low connectivity strengths which may be potentially spurious. The following chapter

considers how we might introduce a penalty term to ensure more robust edge detection,

while potential extensions to the model selection algorithms will be discussed in Chapter

5. For the moment, we conclude that stepwise methods allow fast reconstruction of

small networks, and, if interpreted with due caution, may allow the MDM-DGM to be

applied to much larger networks than have previously been feasible.
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Chapter 4

Dynamic Linear Models with Non-Local Priors

4.1 Motivation

As shown in Chapter 2 (see Figure 2.12), when fitting the MDM-DGM to individual

subject data, there is a strong correspondence between the consistency of an edge over

subjects and the magnitude of θ̂t(r). Returning to the 15 node resting-state (‘safe’)

dataset, this behaviour is illustrated in Figure 4.1, which shows the location parameter

µt(r) (see equation 1.4.14a) over all subjects and all time for the parents of the ante-

rior mid-cingulate cortex (aMCC). The numbers at the bottom show the proportion of

subjects that had each parent. The parent set of the group model M̂Gsafe contained

10 parents but in the individual networks only half of these parents were shared by

more than 59 % of subjects (the threshold for significance defined by the Binomial test

method, see Chapter 2, section 2.4.1). From Figure 4.1, the secondary somatosensory

cortex and the anterior insula, which occur in a higher proportion of subjects, have

noticeably higher values of µit(r). As previously discussed, we might expect that the

consistent edges with high connectivity strengths are more likely to represent genuine,

physiologically-interesting relationships, whereas the more inconsistent edges may po-

tentially be spurious. Therefore in order to improve the robustness of the MDM-DGM

networks, it may be desirable to impose a penalty on the Log Predictive Likelihood to

reduce the model evidence for unnecessarily complex models. We use non-local priors

for penalised model selection within a Bayesian framework. As we will show, non-local

priors penalise models with regression coefficients that are near zero at individual time

points, or consistently near zero over all time. We focus on extending the work of

Johnson and Rossell (2012) and Rossell and Telesca (2017), developed for Bayesian

linear models, to the Dynamic Linear Model. One major advantage of non-local pri-

ors (in the form we introduce here) is that we retain closed-form expressions for the

model evidence. As we will show in this chapter, the ‘dynamics’ of the Dynamic Lin-

ear Model present some methodological challenges. However, we argue that non-local

priors provide a novel and flexible extension to the DLM with the potential to improve

the stability of the MDM-DGM networks.
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Figure 4.1: Correspondence between the consistency of edge presence and connec-
tivity strength for the aMCC. Boxes show µit(r) over all subjects and all time for the
parents of the aMCC when the group model (green) and the all-parent model (purple) were
fitted (flat lines represent parents absent in the group network M̂Gsafe

. For easier visualisation,
outliers are not shown). Numbers at the bottom show the proportion of subjects that were
found to have this parent in the individual networks.

4.2 Introduction to Non-Local Priors

Consider a simple Bayesian linear model with a single regression coefficient θ. There

are two candidate models

M0 ∶ θ = 0

M1 ∶ θ ≠ 0.

Let the prior on θ follow a normal distribution with mean µ = 0 and variance σ2 so that

we may write

p(θ ∣M1) ∼ N(0, σ2).

As the normal distribution is symmetric and centred around zero, it is straightforward

to see that this prior assigns the highest probability to the values of θ that are closest

to zero. Imagine replacing this prior with a prior distributed as

p(θ) ∼ ZN(0, σ2) θ2h

where Z is a normalisation constant and h is an integer known as the order of the

density (see section 4.3). A non-local probability density of this form is shown in

Figure 4.2 (solid blue line, h = 1). This density is close to zero when θ is close to zero

and assigns higher probability to values of θ that are not to close but not too far from
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Figure 4.2: A univariate normally-distributed prior and its non-local
equivalent.

This simple example illustrates the basic principle behind a non-local prior. A full

discussion of the theoretical basis of non-local priors is provided in Rossell and Telesca

(2017). Some of the key ideas, which we draw upon in order to incorporate a non-local

prior into the Dynamic Linear Model, are described below.

Let Mj denote some candidate model with parameters of interest θ(j) ∈ Θ(j) ⊆ Θ and

let φ(j) be a fixed-dimension nuisance parameter. Define M0 to be a submodel of

Mj with parameters θ(0). If we can specify a function f (j)[θ(j), φ(j)] in such a way

that f (j)[θ(j), φ(j)] → 0 as θ(j) → θ(0), then any non-local prior is proportional to

a local prior p[θ(j), φ(j) ∣Mj] multiplied by this function f (j)[θ(j), φ(j)]. We use the

superscript NL to indicate a non-local prior, writing

pNL[θ(j), φ(j) ∣Mj] ∝ f (j)[θ(j), φ(j)]p[θ(j), φ(j) ∣Mj].

This representation is always possible because

pNL[θ(j), φ(j) ∣Mj] =
pNL[θ(j), φ(j) ∣Mj]
p[θ(j), φ(j) ∣Mj]

p[θ(j), φ(j) ∣Mj]

= f (j)[θ(j), φ(j)]p[θ(j), φ(j) ∣Mj].

Assume that pNL[θ(j), φ(j) ∣Mj] is proper (we will discuss normalisation in the follow-

ing sections). Denote the model evidence under a local prior by mj(y), i.e. mj(y) =
p(y ∣Mj). The model evidence under a non-local prior is

mNL
j (y) =mj(y)∫

φ
∫
θ
f (j)[θ(j), φ(j)]p[θ(j), φ(j) ∣y]dθ dφ (4.2.1)

that is, it is equal to the model evidence under a local prior multiplied by the expec-

72



tation of the function f (j)[θ(j), φ(j)] with respect to the posterior distribution of the

model parameters (Rossell and Telesca, 2017).

4.2.1 The Bayes Factor under a Non-Local Prior

Following Rossell and Telesca (2017), write

gj(y) = ∫
φ
∫
θ
f (j)[θ(j), φ(j)]p[θ(j), φ(j) ∣y]dθ dφ.

Assuming a uniform prior on the model probabilities p(Mi) and p(Mj), the Bayes

factor for models Mi and Mj under a non-local prior is

BFij =
mi(y) gi(y)
mj(y) gj(y)

so we may write

logeBFij = loge[mi(y)] − loge[mj(y)] + loge[gi(y)] − loge[gj(y)].

Imagine a simple example with two regressors and a single observation. Suppose we

have

Y = θ(1) + F2 θ
(2)

where θ(1) represents an intercept (which should not be penalised under a non-local

prior) and θ(2) is the regression coefficient of interest. Our two candidate models are

therefore

M0 ∶ θ(2) = 0

M1 ∶ θ(2) ≠ 0.

Let the model evidence for the intercept-only model be the same under the local and

non-local priors. The loge Bayes factor is then

logeBF01 = loge[m0(y)] − loge[m1(y)] − loge[g1(y)]

and it follows that low values of g1(y) (0 < g1(y) < 1) will reduce the evidence forM1.

This behaviour is illustrated in Figure 4.3, which shows the how the evidence for the

sparser model increases under a non-local prior.
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Figure 4.3: Illustration of the influence of a non-local prior on the loge Bayes factor
and posterior model probabilities. We performed a Bayesian regression with a single time
point using Y = 0, F⊺ = {1,2}, φ−1 = 1 and R∗ = τI2 for local priors (h = 0) and non-local
priors (h = 1, h = 2) with varying τ . (a) The loge Bayes factor is the evidence for model M0

over modelM1. (b) The posterior model probabilities forM0. Higher values of the dispersion
parameter τ and the order of the density h increase the evidence for the sparser model.

4.3 Candidate Non-Local Priors

In this section, we consider potential forms of the function f (j)[θ(j), φ(j)]. We start

by detailing the product moment (pMOM) non-local prior, as applied to a Bayesian

linear model by Johnson and Rossell (2012). Given this framework, we show how

it may be extended and modified so that we may apply similar non-local priors to

the Dynamic Linear Model. While we focus on product moment non-local priors, it

should be noted that Rossell and Telesca (2017) have also developed product inverse

moment and product exponential moment non-local prior formulations; the application

of product inverse moment non-local priors for the Bayesian linear model is described

in Johnson and Rossell (2012).
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4.3.1 Product Moment Non-Local Priors

Consider a Bayesian linear regression model with vector of regression coefficients θ

with dimension p × 1. Let Y⊺ = {Y1, . . . , YT } represent a random vector corresponding

to a set of T observations y⊺ = {y1, . . . , yT }. Define a matrix of real numbers F with

dimension T × p. In multiple linear regression, it is usual to denote F and θ by X

and β respectively. We use our notation for consistency with the notation of West

and Harrison (1997) for Dynamic Linear Models and by Queen and Smith (1993) for

Multiregression Dynamic Models. By adopting this notation, the parallels with the

Dynamic Linear Model are clearer and the formulae for DLMs with non-local priors

follow more naturally from the those presented in Johnson and Rossell (2012).

Bayesian linear regression is described in full in Chapter 9 of O’Hagan (2004). Obser-

vations are modelled using the linear relation

Y = Fθ + v vt ∼ N (0, φ−1) .

Conditioning on unknown, constant observation variance φ−1, the observations are dis-

tributed as

p (Y ∣θ, φ) ∼ NY(Fθ, φ−1IT ) .

The coefficient vector θ is normally-distributed with p × 1 mean vector a and p × p
covariance matrix R = φ−1R∗ so that

p(θ ∣φ) ∼ Nθ(a, φ−1R∗) . (4.3.1)

As with the Dynamic Linear Model, in a Bayesian linear regression model there is a

gamma-distributed prior on the precision with shape n0

2 and rate d0
2 :

p(φ) ∼ Gφ(
n0
2
,
d0
2
) .

Returning to the non-local prior framework, let the vector of regression coefficients

θ be the parameters of interest and the observation variance φ−1 be a nuisance pa-

rameter. Suppose there are two candidate models Mj and Mk where Mk is nested

in Mj and contains one less regressor θi such that θ(j) = {θ1, . . . , θi, . . . , θp} and

θ(k) = {θ1, . . . , θ(i−1), θi = 0, θ(i+1) . . . , θp}. Model selection may therefore be framed

as testing the following hypotheses

Mj ∶ θi ≠ 0

Mk ∶ θi = 0.
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Define a function

f (j)[θ(j), φ(j)] =
p

∏
i=1

θ2hi
φ−h

.

where h is an integer. It is straightforward to see that f (j)[θ(j), φ(j)] → 0 as θ(j) → θ(k).

As a non-local prior may be expressed as the product of a local density and the function

f (j)[θ(j), φ(j)], we may write

pNL(θ ∣φ,h) ∝ p(θ ∣φ)
p

∏
i=1

θ2hi
φ−h

If we introduce some normalisation constant Z and dispersion parameter τ > 0, this

is the product moment non-local prior described in Johnson and Rossell (2012) and

Rossell and Telesca (2017):

pNL(θ ∣φ, τ, h) ∼ ZNθ(0, φ−1τ R∗)
p

∏
i=1

θ2hi

(φ−1τ)h
.

The behaviour of this prior (in the univariate case) is illustrated in Figure 4.4. Figures

4.4a and 4.4b show how the strength of the penalty is influenced by the two parameters,

dispersion parameter τ and the order of the density h. The effect of these parameters

is to increase or decrease the width of the window around zero. The (φ−1τ)h term in

the denominator allows the normalisation constant Z to be calculated independent of

φ and τ . As shown in Appendix 4.A, if γ = φ 1
2 τ−

1
2θ, the normalisation constant is

1

Z
=∫

γ
Nγ(0,R∗)

p

∏
i=1
γ2hi dγ.

4.3.2 DLM-pMOM Non-Local Priors

In the Dynamic Linear Model, the vector of regression coefficients θ is replaced by pr×1

the state vector θt(r) for node r at time t. Imagine a Bayesian linear model as outlined

above with T = 1. Replace equation 4.3.1 with the prior of the Dynamic Linear Model

at some time t

p[θt(r) ∣φ(r),Dt−1] ∼ Nθt(r)[at(r), φ(r)
−1R∗

t (r)] . (4.3.2)

It should be noted that this ‘prior’ may depend on the previous observations, i.e. it is

conditioned on Dt−1.

Consider replacing equation 4.3.2 with a pMOM prior of the form

pNL[θt(r) ∣φ(r), hr,Dt−1] = Zt(r)Nθt(r)[at(r), φ(r)
−1R∗

t (r)]
pr

∏
i≠j
θi(r)2hr (4.3.3)

where hr is the order of the density. There are a number of subtle but important

differences between this non-local prior and the one described by Johnson and Rossell
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(2012) for the Bayesian linear model. We make the distinction clear by referring to

our application as a Dynamic Linear Model Product Moment (DLM-pMOM) prior. As

we wish to apply this prior at each individual time point, we cannot assume that the

mean at(r) is zero for all t. The effect this has on the pMOM-like prior is illustrated in

Figure 4.4c. The (time-dependent) normalisation constant Zt(r) will therefore depend

on φ(r). For this reason, we drop the scaling by φ(r)−hr in the denominator of the

DLM-pMOM prior. However, it is still possible to obtain a closed-form expression in

terms of the DLM one-step distributions (see Appendix 4.A). We obtain

1

Zt(r)
=∫

θt(r)
Tnt−1(r)[at(r),Rt(r)]

pr

∏
i≠j
θi(r)2hr dθt(r).

As previously discussed, Johnson and Rossell (2012) define a dispersion parameter τ ,

which controls the strength of the penalty by scaling the covariance of the regression

coefficients. However, recall that in the Dynamic Linear Model, the prior covariance is

defined via

R∗
t (r) =

C∗
t−1(r)
δ(r) .

A dispersion parameter will therefore influence the system in the same way as the

discount factor δ(r), affecting the width of the distribution of θt(r) around its mean

value. For this reason, we drop τ and note that lower values of δ(r) will increase the

variance and consequently the strength of the penalty. If we fix δ(r), the only control

we have over the strength of the penalty is the order of the density hr. This behaviour

will be explored further in section 4.5.

A final difference is that, when applying the Dynamic Linear Model to fMRI time series,

it is desirable to include an intercept term. We do not wish there to be any penalty

associated with this intercept term. Denote the intercept by the subscript j such that

θt(r) = {θ1t(r), . . . , θjt(r), . . . , θpt(r)} where θit(r) corresponds to a parent of node r

at time t for all i ≠ j. It is then straightforward to exclude the intercept from the

product term. Calculation of the normalisation constant Zt(r) is then with respect to

the marginal distribution p[θi≠j,t(r) ∣φ(r),Dt−1].
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Figure 4.4: Examples of a univariate product moment non-local prior. Each non-
local prior density is proportional to a product a normal density with mean µ and variance σ2

(grey, dashed line) and f[θ] = θ2h. The parameter h is the order of the density (solid blue line
h = 1, solid purple line h = 2). Both h and dispersion parameter τ influence the strength of the
penalty via the width of the window around zero, as shown in (a) and (b). If µ is non-zero,
the non-local prior distribution loses its symmetry, as shown in (c).
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Again consider two models Mj(r) and Mk(r) where Mk(r) is nested in Mj(r). Be-

cause the regression coefficients now vary over time, model selection may be interpreted

as a hypothesis test such that

Mj(r) ∶ θit(r) ≠ 0 for some t

Mk(r) ∶ θit(r) = 0 ∀t.

We are interested in models where a particular regressor (the connectivity from a par-

ticular brain region) is non-zero at least one time point. However, a DLM-pMOM

non-local prior will penalise the case θit(r) = 0 for any t. The hypothesis test corre-

sponding to model selection will become

Mj(r) ∶ θit(r) ≠ 0 ∀t

Mk(r) ∶ θit(r) = 0 ∀t.

This is potentially problematic in the Dynamic Linear Model, where θit(r) may be

far from zero at some time points and zero, or close to zero, at other time points,

particularly for lower values of the discount factor δ(r). Imagine a time series where

some brain region i influences another region r for some period of time after which

its influence becomes close to zero. Alternatively, imagine a change point (or multiple

change points) where the connectivity switches from high positive to high negative

values. Both of these cases may represent underlying physiological changes that it

would be desirable to detect and these models may be unduly penalised using a DLM-

pMOM prior.

This is illustrated in Figure 4.5, which shows the one-step and retrospective estimates

(mit(r) and µit(r) respectively) for the edge DLPFC-L → OFC-L in a model with par-

ents VMPFC, DLPFC-L and Amyg-L. For both subjects, the estimates are consistently

above zero. However, for the subject in Figure 4.5b, with δ(r) = 0.9, the estimate falls

through zero at around 300 seconds.
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Figure 4.5: The time-varying regression coefficient for the edge DLPFC-L → OFC-
L in the model with parent set VMPFC, DLFPC-L and Amyg-L. The one-step and
retrospective estimates are denoted by mit(r) and µit(r) respectively. (a) For a subject with a
discount factor δ(r) that is close to one, the dynamic regression coefficient is consistently above
zero. (b) For a subject with a lower value of the discount factor δ(r), the dynamic regression
coefficient takes both high positive and near zero values.

4.3.3 DLM-Quadratic Form Non-Local Priors

To address the potential limitations of the DLM-pMOM non-local prior, consider a

penalty function

f[θ(j)(r), φ(j)(r)] =
pr

∏
i≠j

∑Tt=1 θ2hrit

[φ(r)−1]hr .
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It follows that this function will only be equal to zero if θit(r) = 0 for all time t.

Restricting our attention to the case where hr = 1, we can specify a non-local prior of

the form

pNL[θ(r) ∣φ(r),D0] ∝ p[θ(r) ∣φ(r),D0]
pr

∏
i≠j

θi(r)⊺θi(r)
[φ(r)−1]hr .

where θi(r)⊺ = {θi1(r), . . . , θit(r), . . . , θiT (r)}. Rather than being defined in terms of

the one-step prior distributions of the Dynamic Linear Model, this non-local prior

is defined in terms of the joint distribution of the state variables over all time θ(r) =
{θ1(r), . . . ,θt(r), . . . ,θT (r)}. This is a vector with dimension prT ×1. As will be shown

in section 4.4.2, the local distribution is multivariate normal with prT × 1 mean vector

a(r) and prT×prT covariance matrix R(r) = φ(r)−1R∗(r). We introduce the underscore

notation to denote parameters of the Dynamic Linear Model joint distributions. We

have

pNL[θ(r) ∣φ(r),D0] ∝ Nθ(r)[0, φ(r)−1R∗(r)]
pr

∏
i≠j

θi(r)⊺θi(r)
φ(r)−1 .

If this prior has mean a(r) = 0, the normalisation constant ZQF (r) may be obtained

without knowledge of φ(r) via

1

ZQF (r)
= ∫

γ(r)
Nγ(r)[0,R∗(r)]

pr

∏
i≠j

γi(r)⊺γi(r)dγ(r)

as shown in Appendix 4.A.

The final form of this non-local prior is therefore

pNL[θ(r) ∣φ(r),D0] = ZQF (r)Nθ(r)[0, φ(r)−1R∗(r)]
pr

∏
i≠j

θi(r)⊺θi(r)
φ(r)−1 . (4.3.4)

We call the density described by equation 4.3.4 a Dynamic Linear Model Quadratic

Form (DLM-QF) non-local prior. The behaviour of this type of prior in the simplest

case is illustrated in Figure 4.6.
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Figure 4.6: Example of a DLM-QF non-local prior. Imagine a simple model with one
regressor and two time points, θ1 and θ2. The prior covariance matrix was constructed using
F1 = F2 = 1, δ = 0.95 and φ = 1. The marginal p(θ1) is shown in (a) for C∗

0 = 0.1 (blue)
and C∗

0 = 0.5 (purple). Dotted and solid lines indicate local and non-local priors respectively.
(b) and (c) The conditional distributions p(θ2 ∣ θ1 = 0) and p(θ2 ∣ θ1 = 0.2) (using the same
parameter values as in (a)). Note that if θ1 = 0, the non-local prior distribution is that of a
pMOM prior.
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4.3.4 The Dynamic Linear Model Joint Distributions

The additive non-local prior outlined in this section is defined in terms of the joint prior

distribution, i.e. the distribution over all time before any observation is made. We have

the state vector θ(r)⊺ = {θ1(r)⊺, . . . ,θT (r)⊺} where each θt(r) is a pr × 1 vector, such

that θ(r) has dimension prT ×1. Using the Dynamic Linear Model equations, the joint

distributions p[θ(r) ∣φ(r),D0], p[y(r),θ(r) ∣φ(r),D0] and p[θ(r) ∣y(r), φ(r),D0] may

be constructed. Full derivations are provided in Appendix 4.B. The key results are

summarised here.

The joint prior distribution is multivariate normal

p[θ(r) ∣φ(r),D0] ∼ N[a(r), φ−1(r)R∗(r)]

where a(r) is the pr × 1 vector

a(r) = E [θ(r)] =
⎛
⎜⎜⎜
⎝

m0(r)
⋮

m0(r)

⎞
⎟⎟⎟
⎠

and R∗(r) is the prT × prT matrix

R∗(r) =

⎛
⎜⎜⎜⎜⎜
⎝

C∗
0(r) +W∗

1(r) C∗
0(r) +W∗

1(r) ⋯ C∗
0(r) +W∗

1(r)
C∗

0(r) +W∗
1(r) C∗

0(r) +∑2
t=1 W∗

t(r) ⋯ C∗
0(r) +∑2

t=1 W∗
t(r)

⋮ ⋮ ⋱ ⋮
C∗

0(r) +W∗
1(r) C∗

0(r) +∑2
t=1W

∗
t(r) ⋯ C∗

0(r) +∑Tt=1 W∗
t(r)

⎞
⎟⎟⎟⎟⎟
⎠

.

Recall that m0(r) is pr × 1 vector and C∗
0(r) is a pr × pr matrix, and that these hyper-

parameters must be specified a priori.

Note that W∗
t(r) implicitly depends on Ft(r), the discount factor δ(r) and the (scale-

free) prior variance C∗
0(r) because of the recursive relation

W∗
t(r) =

1 − δ(r)
δ(r) C∗

t−1(r)

= R∗
t−1(r) −R∗

t−1(r)Ft−1(r)[1 +Ft−1(r)⊺R∗
t−1(r)Ft−1(r)]−1Ft−1(r)⊺R∗

t−1(r)

where

R∗
t−1(r) =

C∗
t−2(r)
δ(r) .

The joint distribution of Y(r) and θ(r), conditional on φ(r) and D0, is

⎛
⎝
Y(r)
θ(r)

RRRRRRRRRRR
φ(r),D0

⎞
⎠
∼ N

⎛
⎝
⎛
⎝
F(r)⊺a(r)

a(r)
⎞
⎠
, φ(r)−1

⎛
⎝

Q∗(r) F(r)⊺R∗(r)
R∗(r)F(r) R∗(r)

⎞
⎠
⎞
⎠
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where F(r) is a prT × T block diagonal matrix

F(r) =

⎛
⎜⎜⎜⎜⎜
⎝

F1(r)
F2(r)

⋱
FT (r)

⎞
⎟⎟⎟⎟⎟
⎠

and Q∗(r) is a T × T matrix

Q∗(r) = F(r)⊺R∗(r)F(r) + IT .

The joint posterior distribution is then multivariate Gaussian

p[θ(r) ∣Y(r), φ(r),D0] ∼N[m(r), φ(r)−1C∗(r)]

where m(r) is prT × 1 vector

m(r) = a(r) +R∗(r)F(r)Q∗(r)−1[y(r) −F(r)⊺a(r)]

and C∗(r) is the prT × prT matrix

C∗(r) = R∗(r) −R∗(r)F(r)Q∗(r)−1F(r)⊺R∗(r).

4.4 The Model Evidence under a Non-Local Prior

Recall equation 4.2.1, which states that the model evidence under a non-local prior will

have the form

mNL
j [y(r)] =mj[y(r)]∫

φ(r)
∫
θ(r)

f[θ(r), φ(r)]

p[θ(r), φ(r) ∣y(r)]dθ(r)dφ(r).

For any of the non-local priors described in the previous section, we can express the

penalty function as f[θ(r), φ(r)] = g[θ(r)]H[φ(r)] so that, assuming that we are

implicitly conditioning on some model Mj(r), we may write

pNL[y(r)] = Z∗(r)∫
φ(r)

p[φ(r)]H[φ(r)]

(∫
θ(r)

p[y(r) ∣θ(r), φ(r)]p[θ(r) ∣φ(r)] g[θ(r)]dθ(r))dφ(r)

where Z∗(r) is the appropriate normalisation constant. With some rearrangement,

pNL[y(r)] = Z∗(r)p[y(r)]∫
φ(r)

p[φ(r) ∣y(r)]H[φ(r)]

(∫
θ(r)

p[θ(r) ∣y(r), φ(r)] g[θ(r)]dθ(r))dφ(r). (4.4.1)
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We therefore need to evaluate

∫
φ(r)

p[φ(r) ∣y(r)]H[φ(r)]∫
θ(r)

p[θ(r) ∣y(r), φ(r)] g[θ(r)]dθ(r)dφ(r).

4.4.1 The Model Evidence under a DLM-pMOM Non-Local Prior

Under a DLM-pMOM non-local prior, equation 4.4.1 is evaluated at each time point

pNL[yt(r) ∣Dt−1] =Zt(r)p[yt(r) ∣Dt−1]

∫
φ(r)

p[φ(r) ∣Dt−1]∫
θt(r)

p[θt(r) ∣φ(r),Dt−1] g[θt(r)]dθt(r)dφ(r)

=Zt(r)p[yt(r) ∣Dt−1]ETnt(r)[mt(r),Ct(r)]

⎡⎢⎢⎢⎢⎣

pr

∏
i≠j
θ2hrit

⎤⎥⎥⎥⎥⎦
. (4.4.2)

4.4.2 The Model Evidence under a DLM-QF Non-Local Prior

Given the joint distributions (outlined in subsection 4.3.4), we need to evaluate

pNL[y(r) ∣D0] = ZQF (r)p[y(r) ∣D0]∫
φ(r)

p[φ(r) ∣y(r),D0]H[φ(r)]

(∫
θ(r)

p[θ(r) ∣y(r), φ(r),D0] g[θ(r)]dθ(r))dφ(r).

The integral term is

∫
φ(r)

p[φ(r) ∣y(r),D0]φ(r)(pr−1)
⎛
⎝∫θ(r)

p[θ(r) ∣y(r), φ(r),D0]
pr

∏
i≠j

θi(r)⊺θi(r)dθ(r)
⎞
⎠
dφ(r).

The prior on the precision is proportional to a gamma distribution with probability

density

p[φ(r) ∣y(r),D0]φ(r)(pr−1)

= 1

Γ [T+n0(r)
2 ]

[d0(r) + d̃(r)
2

]
T+n0(r)

2

φ(r)
2(pr−1)+T+n0(r)

2 exp{−φ(r) [d0(r) + d̃(r)
2

]}

where d̃(r) = y(r)⊺Q∗(r)−1y(r).

It follows that we need to evaluate

∫
φ(r)

p[φ(r) ∣y(r),D0]φ(r)(pr−1)EN[m(r),φ(r)−1C∗(r)]

⎡⎢⎢⎢⎢⎣

pr

∏
i≠j

θi(r)⊺θi(r)
⎤⎥⎥⎥⎥⎦
dφ(r)

=
Γ [ν(r)2 ]

Γ [T+n0(r)
2 ]

[d0(r) + d̃(r)
2

]
−(pr−1)

ETν(r)[m(r),C(r)]

⎡⎢⎢⎢⎢⎣

pr

∏
i≠j

θi(r)⊺θi(r)
⎤⎥⎥⎥⎥⎦
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where ν(r) = 2(pr − 1) + T + n0(r) is the adjusted degrees of freedom of the posterior

distribution. The adjusted degrees of freedom influence the estimated variance ST (r)
because

ST (r) = E[φ(r) ∣y(r),D0] =
d0(r) + d̃(r)

ν(r) .

The final form of the model evidence under a DLM-QF non-local prior is therefore

pNL[y(r) ∣D0] = ZQF (r)p[y(r) ∣D0]

Γ [ν(r)2 ]

Γ [T+n0(r)
2 ]

[d0(r) + d̃(r)
2

]
−(pr−1)

ETν(r)[m(r),C(r)]

⎡⎢⎢⎢⎢⎣

pr

∏
i≠j

θi(r)⊺θi(r)
⎤⎥⎥⎥⎥⎦
. (4.4.3)

4.5 Application of a DLM-pMOM Non-Local Prior

In this section and the next, we illustrate the behaviour of the the DLM-pMOM and

DLM-QF non-local priors when applied to real data. Returning to the 15 node, resting-

state dataset, we consider a subnetwork with 4 nodes: the orbitofrontal cortex, the

dorsolateral prefrontal cortex, the amygdala (all left hemisphere) and the ventromedial

prefrontal cortex. As an example, we focus on discovering the parent set (out of the

8 possible candidates) for the OFC-L in this subnetwork. As can be seen from Figure

4.7, the DLPFC-L, found to be a parent in the group model, is associated with higher

values of µit(r) than the VMPFC or the amygdala. The amygdala was only found to be

a parent in the (sub)network of one subject and has consistently low values for µit(r).
Therefore, we would expect the non-local prior to strongly penalise any model which

contains the amygdala.

86



−
2

−
1

0
1

2

Parent

µ i
t(r

)

VMPFC DLPFC−L Amyg−L

0.38 0.81 0.031

Group All−parent

Figure 4.7: Correspondence between the consistency of edge presence and connec-
tivity strength for the OFC-L subnetwork. Boxes show µit(r) over all subjects and all
time for the parents of the OFC-L when the group model (green) and the all-parent model
(purple) were fitted (flat lines represent parents absent in the group network; for easier visu-
alisation, outliers are not shown). Values at the bottom show the proportion of subjects that
were found to have this parent in the individual subject networks.

4.5.1 Implementation of a DLM-pMOM Non-Local Prior

From the form of equation 4.4.2, it is clear that calculating the penalised model evidence

under a DLM-pMOM non-local prior is simply a case of calculating the normalisation

term

1

Zt(r)
=ETnt−1(r)[at(r),Rt(r)]

⎡⎢⎢⎢⎢⎣

pr

∏
i≠j
θ2hrit

⎤⎥⎥⎥⎥⎦

and the posterior expectation term

ETnt(r)[mt(r),Ct(r)]

⎡⎢⎢⎢⎢⎣

pr

∏
i≠j
θ2hrit

⎤⎥⎥⎥⎥⎦

at every time t. We know the location and scale parameters, and the degrees of freedom,

at each time point from the DLM updating relations. Closed-form, computationally-

efficient formulae for expectation of the product of normally- or t-distributed random

variables raised to some power are available in Kan (2008) and may be implemented

using the eprod function in the mombf package for R1,2. For small numbers of parents,

1R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2017. URL https://www.R-project.org/

2Rossell, D., Cook, J.D., Telesca, D., and Roebuck, P. mombf: Moment and Inverse Moment Bayes
Factors, 2017. URL https://CRAN.R-project.org/package=mombf. R package version 1.9.5
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these calculations are very fast and calling the eprod function at each time point is

feasible. However, the computational effort increases exponentially with the model size

(Johnson and Rossell, 2012) so for larger networks it may be necessary to approximate

these expectation terms. One straightforward approach would be assume θit(r) to be

independent of the other θt(r) so that

ETnt(r)[mt(r),Ct(r)]

⎡⎢⎢⎢⎢⎣

pr

∏
i≠j
θ2hrit

⎤⎥⎥⎥⎥⎦
≈
pr

∏
i≠j

ETnt(r)[mt(r),Ct(r)] [θ
2hr
it ] .

As this non-local prior is specified individually at each time point, as with the local

case, we can discard the first few time points and only implement the penalty term

once the model is influenced by the data and not the choice of prior hyperparameters3.

4.5.2 The Effect of δ(r) on the Penalty Strength

Figure 4.8 shows the relationship between the number of parents in a model and the

chosen discount factor δ(r).

As previously discussed, under a DLM-pMOM prior the discount factor will influence

the strength of the penalty via its influence on the ‘prior’ variance R∗
t(r). Lower values

of δ(r) increase the prior variance and in turn the width of the window around zero.

This effect can be seen clearly in Figure 4.9a, which shows the relationship between

the discount factor and the Log Predictive Likelihood or the penalised Log Predictive

Likelihood with hr = 1 and hr = 2 for an individual subject.

It follows that we would expect the chosen value of the discount factor (the δ(r) with

the highest LPL score) to increase (tend towards the static model, where δ(r) = 1)

under a DLM-pMOM prior. This is indeed what is found, shown across all 32 subjects,

in Figure 4.9b.

To fully understand this behaviour, Figure 4.10 shows the penalty strengths for the 8

candidate parents sets when the discount factor is optimised for each parent set and

each hr (Figure 4.10a), when the discount factor is optimised for each parent set for

the local model (Figure 4.10b) and when the discount factor is fixed across all parent

sets (Figure 4.10c). From Figure 4.10a, we can see that, somewhat counterintuitively,

the strength of the penalty decreases as the number of parents increases. The all-

parent model (VMPFC, DLPFC-L, Amyg-L) has higher values of δ(r) and this results

in a smaller penalty than for the model which has the Amyg-L as a single parent. As

discussed above, our aim is to incorporate a penalty term that reduces the likelihood

of models which contain regressors with consistently low coefficients, in this case the

amygdala. Figure 4.10b illustrates that we still see this behaviour when we fix δ(r)
at its chosen value under the local model. This behaviour may be avoided by fixing

3Note that, in Figures 4.9, 4.10 and 4.13, we calculated the model evidence and optimised δ(r) by
summing from t = 50 (i.e. discarding the first 49 time points), rather than t = 15 as in previous
chapters.
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δ(r) across all the candidate parent sets. As is clear from Figure 4.10c, the penalty

strength now increases with the number of parents. It is not desirable to fix the discount

factor in this way, as doing so would mean compromising one the key strengths of the

Dynamic Linear Model, its ability to choose the amount of variance that best fits the

data. However, looking at Figure 4.8, it is clear that for models with higher number

of parents, the range of chosen discount factors is much narrower (between 0.9 and 1),

suggesting the undue severity of the penalty would mostly be of concern for the sparser

models.

4.6 Application of a DLM-QF Non-Local Prior

4.6.1 Implementation of a DLM-QF Non-Local Prior

Given the limitations of the DLM-pMOM prior, we also developed the DLM-QF prior.

From equation 4.4.3, calculating the penalised model evidence involves calculating the

normalisation constant ZQF (r), the posterior expectation term and additional terms

which arise from the scaling by φ(r) in the penalty term. Recall that the matrices

R∗(r) and C(r) have dimension prT × prT , so for the 15 node dataset with T = 790,

these matrices would have dimension 11850× 11850 for the all-parent model. We make

the approximations

EN[0,R∗(r)]

⎡⎢⎢⎢⎢⎣

pr

∏
i≠j

γi(r)⊺γi(r)
⎤⎥⎥⎥⎥⎦
≈
pr

∏
i≠j

EN[0,R∗(r)] [γi(r)⊺γi(r)]

ETν(r)[m(r),C(r)]

⎡⎢⎢⎢⎢⎣

pr

∏
i≠j

θi(r)⊺θi(r)
⎤⎥⎥⎥⎥⎦
≈
pr

∏
i≠j

ETν(r)[m(r),C(r)] [θi(r)⊺θi(r)]

These allow fast, straightforward computation of the normalisation and posterior ex-

pectation terms. The adjustment term

Γ [ν(r)2 ]

Γ [T+n0(r)
2 ]

[d0(r) + d̃(r)
2

]
−(pr−1)

is easily calculated from the one-step distributions because d0(r) + d̃(r) = dT (r).
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Figure 4.8: As the number of parents increases, the discount factor δ(r) tends
towards higher values. Using the 15 node resting-state data, for each subject and each
node, we calculated the median δ(r) for models with each number of parents. Whiskers show
minimum and maximum values.
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Figure 4.9: Under a DLM-pMOM prior, the optimum δ(r) is higher than in under a
local prior. (a) The (penalised) Log Predictive Likelihood against the discount factor δ(r) for
an individual subject, for the parents VMPFC and DLPFC-L. (b) This behaviour is consistent
across subjects (whiskers show minimum and maximum values). As the order of the density
and the number of parents increase, the optimal discount factor is pushed towards 1 (the static
model).
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Figure 4.10: The effect of the discount factor δ(r) on the strength of the penalty.
The ‘penalty strength’ is the difference between the Log Predictive Likelihood under a local
prior and under a DLM-pMOM prior with hr = 1 (blue) and hr = 2 (purple), each box is across
subjects and outliers are not shown. In (a) the discount factor was optimised for each hr, in
(b) the discount factor was the optimal discount factor for the local prior (hr = 0) and (c) the
discount factor was fixed (for each subject) at its median value across all parent sets and all
orders hr = 0, hr = 1 and hr = 2.
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4.6.2 Sensitivity to C∗
0(r)

Recall the form of the joint (local) prior:

⎛
⎜⎜⎜⎜⎜
⎝

θ1(r)
θ2(r)
⋮

θT (r)

RRRRRRRRRRRRRRRRRRRRRRR

φ(r),D0

⎞
⎟⎟⎟⎟⎟
⎠

∼ N

⎛
⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

0

0

⋮
0

⎞
⎟⎟⎟⎟⎟
⎠

, φ(r)−1
⎛
⎜⎜⎜⎜⎜
⎝

C∗
0(r) +W∗

1(r) C∗
0(r) +W∗

1(r) ⋯ C∗
0(r) +W∗

1(r)
C∗

0(r) +W∗
1(r) C∗

0(r) +∑2
t=1 W∗

t(r) ⋯ C∗
0(r) +∑2

t=1 W∗
t(r)

⋮ ⋮ ⋱ ⋮
C∗

0(r) +W∗
1(r) C∗

0(r) +∑2
t=1W

∗
t(r) ⋯ C∗

0(r) +∑Tt=1 W∗
t(r)

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟
⎠

.

As previously discussed, one advantage of the one-step relations is that we use the first

few time points to obtain empirical values for the hyperparameters m0(r), C∗
0(r), n0(r)

and d0(r). However, using the DLM-QF prior, we obtain a form of the model evidence

in terms of all the data and calculate the normalisation constant ZQF (r) independent

of any observation y1(r), y2(r) etc. This means the prior hyperparameter C∗
0(r) will

influence both the likelihood (in the local model) and the strength of the penalty. While

this may be advantageous in that we may potentially use C∗
0(r) to control the amount

of sparsity we wish to impose, it also means it is necessary to give careful consideration

when specifying a value. For this reason, the rest of this section explores the effect of

the choice of C∗
0(r) on the local and non-local models. We fitted the all-parent model to

the OFC-L, using C∗
0(r) = 3 Ipr (a diffuse, non-informative value) and C∗

0(r) = C∗
T (r),

which may be thought of as the ‘best’ estimate as it has been informed by all the data

y(r). Note that the values C∗
T (r) are typically much smaller than 3 Ipr , see Figure

4.11.
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Figure 4.11: The posterior scale parameter C∗

T (r) across subjects for each parent
in the subnetwork. Values are for the optimum discount factor δ(r) ∈ [0.5,1], step size 0.02.

We compared the estimates for the time-varying regression coefficients under the two

values of C∗
0(r), that is, the one-step posterior estimates mt(r) and the retrospective

estimates µt(r). Results are shown in Figure 4.12. Figure 4.12a shows the difference
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(for a single subject) between each mit(r) for each parent node for t = 1, . . . , T (left),

t = 15, . . . , T (centre) and t = 50, . . . , T (right). It is clear that the largest discrepan-

cies occur for the initial time points as the largest outliers disappear when these first

few time points are discarded. Figure 4.12b shows that comparable behaviour is ob-

served for the retrospective posterior mean µit(r), although (as would be expected),

the magnitude of the outliers is smaller.

Figure 4.13 shows the normalisation term, the posterior expectation term and the

DLM-QF penalty (across subjects). As would be expected from Figure 4.12, the pos-

terior expectation term is much less strongly affected by the choice of C∗
0(r) than the

normalisation term.
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Figure 4.12: The influence of the prior hyperparameter C∗

0(r) on the estimates for
the regression coefficients. (a) The difference in posterior mean of the one-step distribution
mt(r) for C∗

0(r) = 3 Ipr and C∗

0(r) = C∗

T (r) for an individual subject, over all time (left), with
the first 14 time points removed (centre) and with the first 49 time points removed (right). It is
clear that by removing the initial time points, the difference is strongly reduced and the effect
of the choice of C∗

0(r) is minimised. (b) As (a) but for the retrospective posterior mean µt(r).
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Figure 4.13: The influence of the prior hyperparameter C∗

0(r) on the strength of the
penalty. When the penalty term of the DLM-QF prior (right) is divided into its component
terms, it can be seen that the normalisation term is strongly influenced by the choice of C∗

0(r).
We first calculated the penalty with C∗

0(r) = 3Ipr and the optimal discount factor δ(r) for
the local model. We then used C∗

0(r) = C∗

T (r) as the prior hyperparameter and re-optimised
δ(r). Boxes show the (absolute) difference between the loge normalisation term (green), the
loge posterior expectation (blue) and the overall loge penalty (purple).

4.7 Discussion

In this chapter, we have derived two closed-form expressions for the model evidence

which incorporate a penalty on weaker, and therefore potentially spurious, edges. The

DLM-pMOM prior extends the pMOM prior of Johnson and Rossell (2012) to the Dy-

namic Linear Model. One clear advantage of this type of prior is that it may be imple-

mented at each time point, thereby maintaining some of the computational-efficiency of

the one-step distributions, although exact calculation of the expectation of the product

of random variables will become prohibitively slow as the number of parents increases,

making some kind of approximation necessary. The main drawback of the DLM-pMOM

prior is that the discount factor δ(r) influences the strength of the penalty in such a

way that low values of δ(r) (e.g. δ(r) = 0.5) will introduce a severe penalty. Therefore,

we may inadvertently end up penalising parent nodes with physiologically-interesting,

time-varying connectivity, in favour of a more static model. As the optimum discount

factor, at least on the data considered here, tends to be higher (suggesting stationary

or near stationary connectivity strengths) for models with larger number of parents,

the DLM-pMOM prior, with some fixed δ(r), may be appropriate.

However, in this work, we attempted to overcome the limitations of the DLM-pMOM

non-local prior by constructing the joint prior distribution of the Dynamic Linear

Model. While this allows us to specify a form for the penalty that may be considered

more appropriate for dynamic, biological data, we must now be much more cautious in

our specification of the prior hyperparameter C∗
0(r) and further work is necessary to
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fully quantify the effect of the choice of C∗
0(r) on both the local and non-local models.

4.A The Normalisation Constant under a Non-Local Prior

Consider a local prior density that follows a multivariate normal distribution

p(θ ∣φ) ∼ Nθ(0, φ−1R∗) .

with a non-local prior term f(θ, φ) that may be expressed as f(θ, φ) = g(θ)H(φ). We

require that

∫
φ
∫
θ
pNL(θ, φ ∣ τ, hr)dθ dφ = 1

or equivalently that

∫
φ
p(φ)H(φ) (∫

θ
p(θ ∣φ) g(θ)dθ)dφ = 1.

4.A.1 The Normalisation Constant under a pMOM Non-Local Prior

Under the pMOM non-local prior of Johnson and Rossell (2012), g(θ) = ∏pi=1 θ2hi and

H(φ) = φhpτ−hp.

The inner integral is

∫
θ
Nθ(0, φ−1τR∗)

p

∏
i=1
θ2hi dθ.

Write θ = φ− 1
2 τ

1
2γ and dθ = φ−

p
2 τ

p
2 dγ (because dθ = ∣J∣dγ where J is the Jacobian).

Then, by changing the variable of integration, the inner integral is

∫
θ
Nθ(0, φ−1τR∗)

p

∏
i=1
θ2hi dθ

= (2π)−
p
2φ

p
2 τ−

p
2 ∣R∗∣−

1
2 ∫

θ
exp{−φ

2
[θ⊺(τR∗)−1θ]}

p

∏
i=1
θ2hi dθ

= (2π)−
p
2 ∣R∗∣−

1
2 ∫

γ
exp{−1

2
[γ⊺(R∗)−1γ]}

p

∏
i=1

[φ−
1
2 τ

1
2γi]

2h
dγ

= φ−hp τhp∫
γ
Nγ(0,R∗)

p

∏
i=1
γ2hi dγ.
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Then, because H(φ) = φhp τ−hp, the normalisation constant is

1

Z
= ∫

φ
p(φ)H(φ) (∫

θ
p(θ ∣φ) g(θ)dθ)dφ

= ∫
φ
p(φ)(∫

γ
Nγ(0,R∗)

p

∏
i=1
γ2hi dγ)dφ

= ∫
γ
Nγ(0,R∗)

p

∏
i=1
γ2hi dγ.

When the non-local prior is mean-zero, the integral over θ may be calculated without

knowledge of φ or τ .

4.A.2 The Normalisation Constant under a DLM-pMOM Non-Local

Prior

We have g[θt(r)] = ∏pri≠j θ
2hr
it . We need to find, for each time t,

1

Zt(r)
=∫

φ(r)
∫
θ(r)

p[θt(r) ∣φ(r),Dt−1]p[φ(r) ∣Dt−1] g[θt(r)]dθt(r)dφ(r)

=∫
φ(r)

p[φ(r) ∣Dt−1]∫
θt(r)

p[θt(r) ∣φ(r),Dt−1] g[θt(r)]dθt(r)dφ(r)

=∫
φ(r)

p[φ(r) ∣Dt−1]Eθt(r){g[θt(r)] ∣φ(r),Dt−1}dφ(r)

=Eφ(r){Eθt(r){g[θt(r)] ∣φ(r),Dt−1}} = Eθt(r){g[θt(r)] ∣Dt−1}

where Eθt(r){⋅} and Eφ(r){⋅} denote expectations with respect to the distribution of

θt(r) and φ(r) respectively.

We know the marginal distribution of θt(r) is

p[θt(r) ∣Dt−1] ∼ Tnt−1(r)[at(r),Rt(r)]

where Rt(r) = St−1R∗
t(r).

4.A.3 The Normalisation Constant under a DLM-Quadratic-Form Non-

Local Prior

Under a DLM-QF non-local prior, we have g[θ(r)] = ∏pri≠j θi(r)⊺θi(r) and H[φ(r)] =
φ(r)(pr−1).

Write θ(r) = φ(r)− 1
2γ(r) so that θi(r)⊺θi(r) = φ(r)−1γi(r)⊺γi(r) and dθ(r) = φ(r)−

prT
2 dγ(r).
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Then, by changing the variable of integration, the inner integral is

∫
θ(r)
Nθ(r)[0, φ(r)−1R∗(r)]

pr

∏
i≠j

θi(r)⊺θi(r)dθ(r)

= (2π)−
prT
2 φ

prT
2 ∣R∗∣−

1
2 ∫

θ(r)
exp{−φ(r)

2
[θ(r)⊺[R∗(r)]−1θ(r)]}

pr

∏
i≠j

θi(r)⊺θi(r)dθ(r)

= (2π)−
prT
2 ∣R∗∣−

1
2 ∫

γ(r)
exp{−1

2
[γ(r)⊺[R∗(r)]−1γ(r)]}

pr

∏
i≠j

[φ(r)−1γi(r)⊺γi(r)]dγ(r)

= φ(r)−(pr−1)∫
γ(r)
Nγ(r)[0,R∗(r)]dγ(r).

Then, because H[φ(r)] = φ(r)(pr−1), the normalisation constant is

1

ZQF (r)
= ∫

φ(r)
p[φ(r) ∣D0] (∫

γ(r)
Nγ(r)[0,R∗(r)]dγ(r))dφ(r)

=∫
γ(r)
Nγ(r)[0,R∗(r)]

pr

∏
i≠j

γi(r)⊺γi(r)dγ(r).

4.B Derivation of the DLM Joint Distributions

Here we provide a more detailed derivation of the results presented in section 4.3.4.

The Dynamic Linear Model equations are

Obs. equation Yt(r) = Ft(r)⊺θt(r) + vt(r) vt(r) ∼ N[0, φ(r)−1] (4.B.1)

State equation θt(r) = θt−1(r) +wt(r) wt(r) ∼ N[0,Wt(r)] (4.B.2)

Initial information θ0(r) ∣D0 ∼ N[m0(r),C0(r)] (4.B.3)

From equation 4.B.2, it is straightforward to show that at any time t, prior to any

observations, the expectation of θt(r) is simply the expectation of θ0(r) because

E [θt(r)] = E [θt−1(r)] +E [wt(r)]
= E [θ0(r)] +E [w1(r)] + ⋅ ⋅ ⋅ +E [wt(r)]

and E [wt(r)] = 0 for all t.

Employing the single underline notation to denote mean and variance (or location and

scale) parameters defined over all time, rather than at an individual time point, we
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may define the prior expectation a(r), with dimension prT × 1 as

a(r) = E [θ(r)] =
⎛
⎜⎜⎜
⎝

E [θ0(r)]
⋮

E [θ0(r)]

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

m0(r)
⋮

m0(r)

⎞
⎟⎟⎟
⎠
.

By the same logic, the variance of θt(r) may be expressed as

Var[θt(r)] = Var[θt−1(r)] +Var[wt(r)]
= Var[θ0(r)] +Var[w1(r)] + ⋅ ⋅ ⋅ +Var[wt(r)]
= C0(r) +W1(r) + ⋅ ⋅ ⋅ +Wt(r).

The covariance of θt(r) with some past value of itself θt−k(r) is

Cov[θt−k(r),θt(r)] = Cov[θt−k(r),θt−k(r) +wt−k+1(r)+, . . . ,+wt(r)] = Var[θt−k(r)] .

The joint covariance structure, denoted R(r), is then

R(r) =

⎛
⎜⎜⎜⎜⎜
⎝

C0(r) +W1(r) C0(r) +W1(r) ⋯ C0(r) +W1(r)
C0(r) +W1(r) C0(r) +W1(r) +W2(r) ⋯ C0(r) +W1(r) +W2(r)

⋮ ⋮ ⋱ ⋮
C0(r) +W1(r) C0(r) +W1(r) +W2(r) ⋯ C0(r) +W1(r) +W2(r)+, . . . ,+WT (r)

⎞
⎟⎟⎟⎟⎟
⎠

.

As with the one-step distributions, it is possible to write R(r) = φ(r)−1 R∗(r), so that

we may express the joint prior as

⎛
⎜⎜⎜⎜⎜
⎝

θ1(r)
θ2(r)
⋮

θT (r)

RRRRRRRRRRRRRRRRRRRRRRR

φ(r),D0

⎞
⎟⎟⎟⎟⎟
⎠

∼ N

⎛
⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

m0(r)
m0(r)

⋮
m0(r)

⎞
⎟⎟⎟⎟⎟
⎠

, φ(r)−1
⎛
⎜⎜⎜⎜⎜
⎝

C∗
0(r) +W∗

1(r) C∗
0(r) +W∗

1(r) ⋯ C∗
0(r) +W∗

1(r)
C∗

0(r) +W∗
1(r) C∗

0(r) +∑2
t=1 W∗

t(r) ⋯ C∗
0(r) +∑2

t=1 W∗
t(r)

⋮ ⋮ ⋱ ⋮
C∗

0(r) +W∗
1(r) C∗

0(r) +∑2
t=1W

∗
t(r) ⋯ C∗

0(r) +∑Tt=1 W∗
t(r)

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟
⎠

.

We now use a similar approach to find the joint distribution p[y(r),θ(r) ∣φ(r),D0].
Combining equations 4.B.1 and 4.B.2, we may write

Yt(r) = Ft(r)⊺[θt−1(r) +wt(r)] + vt(r)
= Ft(r)⊺[θ0(r) +w1(r) + ⋅ ⋅ ⋅ +wt(r)] + vt(r).

In the MDM, Ft(r) is a known linear function, independent of everything except xt(r)
(observations of the parent nodes) and yt−1(r) (Queen and Smith, 1993). It follows

that

E [Yt(r)] = Ft(r)⊺E [θ0(r)]

(see also West and Harrison (1997) pp. 638-9). We define the joint prior expectation
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for Y(r) as a vector with length T

E [Y(r)] =

⎛
⎜⎜⎜⎜⎜
⎝

F1(r)⊺E [θ0(r)]
F2(r)⊺E [θ0(r)]

⋮
FT (r)⊺E [θ0(r)]

⎞
⎟⎟⎟⎟⎟
⎠

= F(r)⊺a(r)

The prT × T matrix F(r) is a block diagonal matrix defined so that

F(r) =

⎛
⎜⎜⎜⎜⎜
⎝

F1(r)
F2(r)

⋱
FT (r)

⎞
⎟⎟⎟⎟⎟
⎠

F(r)⊺θ(r) =

⎛
⎜⎜⎜⎜⎜
⎝

F1(r)⊺θ1(r)
F2(r)⊺θ2(r)

⋮
FT (r)⊺θT (r)

⎞
⎟⎟⎟⎟⎟
⎠

.

With this definition of F(r), and the vector for the observation variance v(r) = {v1(r), . . . , vT (r)}
corresponding to the variance matrix φ(r)−1 IT , it follows that the variance of Y(r) is

Cov[Y(r),Y(r)] = Cov[F(r)⊺θ(r) + v(r),F(r)⊺θ(r) + v(r)]

= F(r)⊺Var[θ(r)]F(r) +Var[v(r)]

= φ(r)−1[F(r)⊺R∗(r)F(r) + IT ] = φ(r)−1Q∗(r)

The covariance structure of Y(r) and θ(r) is

Cov[Y(r),θ(r)] = Cov[F(r)⊺θ(r) + v(r),θ(r)] = F(r)⊺Cov[θ(r),θ(r)] = F(r)⊺Var[θ(r)] .

Now we construct the joint distribution of Y(r) and θ(r) (conditional on φ(r) and D0)

⎛
⎝
Y(r)
θ(r)

RRRRRRRRRRR
φ(r),D0

⎞
⎠
∼ N

⎛
⎝
⎛
⎝
F(r)⊺a(r)

a(r)
⎞
⎠
, φ(r)−1

⎛
⎝

Q∗(r) F(r)⊺R∗(r)
R∗(r)F(r) R∗(r)

⎞
⎠
⎞
⎠
.

West and Harrison (1997) (pp. 638-9) provide a simpler example based on constant

matrices.

It follows from the properties of the multivariate Gaussian that

p[Y(r) ∣θ(r), φ(r),D0] ∼N[F(r)⊺θ(r), φ(r)−1IT ]

p[θ(r) ∣Y(r), φ(r),D0] ∼N[m(r), φ(r)−1C∗(r)]
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with

C∗(r) = R∗(r) −R∗(r)F(r)Q∗(r)−1F(r)⊺R∗(r)

m(r) = a(r) +R∗(r)F(r)Q∗(r)−1[y(r) −F(r)⊺a(r)] .
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we have presented a number of extensions to the work of Costa (2014),

Costa et al. (2015) and Costa et al. (2017), focusing on the Multiregression Dynamic

Model Directed Graph Model (MDM-DGM) search. Using this algorithm, we may infer

directed fMRI networks and obtain dynamic estimates for the connectivity weights. As

discussed in Chapter 1, a number of competing methods exist and these differ from

the MDM-DGM in a number of regards. For example, methods such as Multivariate

Dynamical Systems (MDS; Ryali et al. (2011)) and Switching Linear Dynamic Systems

(SLDS; Smith et al. (2010)) use a state-space framework, representing neuronal activity

by a set of latent (state) variables, which are then mapped to the observed BOLD

response. By comparison, in the MDM-DGM, the state variables represent time-varying

connectivity strengths. Network discovery involves finding the set of parent nodes

that maximise the model evidence. As the model evidence is closed-form and the

parents are found for each node individually, the model search of the MDM-DGM

is computationally-efficient and may readily be parallelised. Unlike some other fMRI

Bayesian network discovery methods, MDM-DGM networks are not necessarily acyclic.

Without acyclicity, we lose the definition of contemporaneous causality described by

Queen and Albers (2009). The MDM-Integer Programming Algorithm (MDM-IPA)

algorithm of Costa (2014) and Costa et al. (2015, 2017) provides a method by which

the MDM-DGM networks may be constrained to be DAGs. However, we argue that

the ability to infer cycles and bidirectional edges is advantageous as it allows networks

with a more biophysical interpretation. For example, we showed in Chapter 2 that the

MDM-DGM networks estimate strong inter-hemispheric connectivity, a feature that

would be missed if an acyclicity constraint was imposed.

Unlike Dynamic Causal Modelling (DCM), the MDM-DGM has no generative model

relating the observed BOLD response to the underlying biophysical processes (Friston

et al., 2003, 2011). However, the ability of the MDM-DGM to infer directed and

dynamic connectivity allows us deeper insights than a method such as partial correlation

(an established method for inferring edge presence). In Chapter 2, we showed that the

MDM-DGM search could estimate directed, physiologically-interpretable networks for
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a system with 15 brain regions. We constructed both individual and group networks

for two experimental conditions, ‘safe’ and ‘anticipation of shock’ (Bijsterbosch et al.,

2015). We used partial correlation to validate the MDM-DGM networks, showing that

the networks estimated by both methods were very similar. Interestingly, using the

MDM-DGM we found that the ventromedial prefrontal cortex (VMPFC) had multiple

children but few or no parents, an insight not possible using an undirected method such

as partial correlation. We also performed an alternative analysis using the time-varying

estimates for the regression coefficients, although we were unable to detect statistically

significant differences between the two experimental conditions, or between subgroups

using splits based on measures of trait and induced anxiety. Possible extensions to

these analyses are discussed in section 5.2.

During our analysis of these networks, we identified two limitations of the MDM-DGM,

which became the focus of the following two chapters. Firstly, the size of the model

space increases exponentially, limiting an exhaustive search over all the candidate par-

ent sets to networks with no more than 20 nodes. In Chapter 3, we showed that stepwise

algorithms could reproduce the 15 node networks with as much as 100 % accuracy. As

these algorithms score only a tiny fraction of the model space, a dramatic reduction in

computation time is possible. Potential improvements to the model selection procedure

are discussed in section 5.3.

As we touched upon in Chapter 3, the performance of the MDM-DGM on larger net-

works is yet to be established. As other connectivity methods are applied to larger

number of nodes (see, for example, Razi et al. (2017)), these will provide a benchmark

for comparison.

The second limitation was that while the MDM-DGM search identified some edges that

were highly consistent across subjects and had high values of the regression coefficients,

it also tended to identify weaker, less consistent edges that compromised the robustness

of the estimated group networks. In Chapter 4, we considered non-local priors as a

potential method to incorporate a penalty on the model evidence. We developed two

non-local prior formulations, the DLM-pMOM non-local prior, which is implemented at

the level of the one-step distributions, and the DLM-QF non-local prior, which is defined

using the joint (over time) distributions of the Dynamic Linear Model. Advantageously,

under these non-local priors the model evidence retains its closed-form. However, as

discussed in Chapter 4, a number of theoretical and computational challenges must be

addressed before these non-local priors may be applied appropriately to larger networks.

Some of these challenges are discussed briefly in section 5.4.

5.2 Point Estimate vs. Bayesian Model Averaging

Throughout this work, we have assumed that there is a single ‘best’ model (set of

parents for each node) which can be found by maximising the Log Predictive Likelihood.

When we obtain estimates for the dynamic regression coefficients, we are conditioning
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on a single model M̂(r), such that

µt(r) = E{θ(r) ∣y(r),M̂(r)}. (5.2.1)

However, as discussed in Madigan and Raftery (1994), conditioning on a single model

fails to account for model uncertainty. As we showed in Chapter 3, there is typically

a small subset of models that may be thought of as having equivalent evidence (loge

Bayes factor ± 1, Kass and Raftery (1995)). It would be straightforward to replace

equation 5.2.1 with the Bayesian Model Average (BMA)

E{θ(r) ∣y(r)} =
N

∑
i=1

E{θ(r) ∣y(r),Mi(r)}p[Mi(r) ∣y(r)] (5.2.2)

where the posterior model probabilities are

p[Mi(r) ∣y(r)] = p[y(r) ∣Mi(r)]p[Mi(r)]
∑Ni=1 p[y(r) ∣Mi(r)]p[Mi(r)]

as outlined in Chapter 2, section 1.6.

However, as argued by Madigan and Raftery (1994), it makes sense to discard the large

number of models which predict the data much less well (when using Bayes factors as

a measure of model fit). They define some subset of models, relative to the model with

the maximum posterior model probability max{p[Mj(r) ∣y(r)]}, for which the Bayes

factor evidence for a difference is inconclusive, based on some threshold c

A′ = {Mi(r) ∶
max{p[Mj(r) ∣y(r)]}

p[Mi(r) ∣y(r)] ≤ c} .

For example, c ≤ 20 would correspond to a loge Bayes factor of ≤ 3. To exclude

unnecessarily complex models, any model Mj(r) is rejected if there is a model Mi(r)
nested inMj(r) and p[Mi(r) ∣y(r)] > p[Mj(r) ∣y(r)]. More formally, there is a subset

of models

B = {Mj(r) ∶ ∃Mi(r) ∈ A′,Mi(r) ⊂Mj(r),
p[Mi(r) ∣y(r)]
p[Mj(r) ∣y(r)] > 1} .

Madigan and Raftery (1994) propose replacing equation 5.2.2 with equation 5.2.3, which

only includes models in the subset A = A′ /B

E{θ(r) ∣y(r),A} =
N

∑
i=1

E{θ(r) ∣y(r),M̂(r)}p[Mi(r) ∣y(r),A]. (5.2.3)

As we showed in Chapter 3, section 3.4, for MDM-DGM networks with 12-15 nodes,

there is a large model space containing a small number of parent sets with comparable

loge Bayes factor evidence. This type of model averaging may be an effective method
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for analysing the dynamic regression coefficients.

5.3 Alternative Model Selection Strategies

In Chapter 3, we considered forward selection and backward elimination individually.

However, the term stepwise regression often refers to algorithms which use forward

selection and backward elimination principles, where at each stage a regressor (parent)

may be added (as in forward selection) but at the same step a previously included parent

(or parents) may be removed (Hocking, 1976; Davison, 2003). Figure 5.1 illustrates the

basic principle behind this type of search. When used in isolation, forward selection

cannot recover the parent set Pa(4) = {1,3} if the parent set Pa(4) = {2} has a

higher Log Predictive Likelihood than either Pa(4) = {1} or Pa(4) = {3}. However,

if after scoring Pa(4) = {1,2,3}, the algorithm may also score Pa(4) = {1,3} (i.e. test

the removal of parent 2), it can now return the parent set found using an exhaustive

search.

Implementing a search of this kind may be a natural extension to the approaches

explored in Chapter 3, although the number of models scored using this type of method

would have to be determined empirically, as in principle this algorithm could score much

larger regions of the model space. One advantage of the combined method presented in

Chapter 3 is that the number of models in the reduced model space is fixed. Another

limitation of this method is that it is still a search that assumes there is a single local

maximum. In order to implement equation 5.2.3, we require an algorithm that returns

the subset of models with equivalent evidence. The Occam’s window algorithm, a

variant of the greedy search based on the principles outlined in the previous section,

provides a possible alternative to the stepwise search. Consider two modelsM0(r) and

M1(r) where M0(r) is nested in M1(r) and let OR be a positive constant (OR may

be zero). Using this algorithm, there are three options

1. There is conclusive evidence for the simpler model. Reject M1(r).

log{p[M0(r) ∣y(r)]
p[M1(r) ∣y(r)]} > OR

2. The evidence is inconclusive. Consider M0(r) and M1(r).

−log(c) ≤ log{p[M0(r) ∣y(r)]
p[M1(r) ∣y(r)]} ≤ OR

3. There is conclusive evidence for the more complex model. Reject M0(r).

log{p[M0(r) ∣y(r)]
p[M1(r) ∣y(r)]} < −log(c)

For more details see Madigan and Raftery (1994) and Raftery et al. (1997).
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(a) MDM-DGM exhaustive search
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1 2 3

4
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(b) Stepwise regression

Figure 5.1: A stepwise regression algorithm has the potential to improve accuracy.
If at step 2, P̂ a(r) = {2}, forward selection alone will not be able to identify the model in (a)
found by an exhaustive search. However, the ‘correct’ parent set can be found if an additional
step (step 5) removes parent 2 after the inclusion of parents 1 and 3.

5.4 Development of Non-Local Priors

In Chapter 4, we considered two candidate non-local priors for the Dynamic Lin-

ear Model. However, theoretical and computational considerations at this stage cur-

rently prohibit a penalised model search over a network of with enough nodes to be

physiologically-interesting. In order to implement a DLM-pMOM prior, we might con-

sider whether it is possible to de-couple the discount factor δ(r) from the penalty term.

We showed empirically in Chapter 4 that the optimal δ(r) tends to be higher (closer

to 1) as the number of parents increases, suggesting that the highly dynamic regression

coefficients that will be unduly penalised with a DLM-pMOM prior are likely to be a

feature of models with small numbers of parents. In this work, we did not fully explore

this behaviour. One possible extension might be to place a prior on the discount factor,

so that we may quantify the variance associated with our estimate.

Using the joint distributions of the Dynamic Linear Model, we introduced the DLM-QF

non-local prior, focusing on the necessity of specifying an appropriate value for the prior

hyperparameter C∗
0(r). There are a number of ways which we could go about this: the

first would be to consider a penalty term proportional to ∏pri≠j θi,t>t′(r)⊺θi,t>t′(r) and

use the first t′ − 1 time points to train the model. Another option would be to put a

hyperprior on C∗
0(r) in order to formally incorporate our uncertainty about our choice

of value, although we note that implementation of such a prior may not be trivial.
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Marrelec, G., Krainik, A., Duffau, H., Pélégrini-Issac, M., Lehéricy, S., Doyon, J.,

and Benali, H. Partial correlation for functional brain interactivity investigation in

functional MRI. NeuroImage, 32(1):228–237, 2006.

Motzkin, J. C., Philippi, C. L., Wolf, R. C., Baskaya, M. K., and Koenigs, M. Ventro-

medial prefrontal cortex is critical for the regulation of amygdala activity in humans.

Biological Psychiatry, 77(3):276–284, 2015.

Mumford, J. A. and Ramsey, J. D. Bayesian networks for fMRI: a primer. NeuroImage,

86:573–582, 2014.

Neuwirth, E. RColorBrewer: ColorBrewer Palettes, 2014. URL https://CRAN.R-

project.org/package=RColorBrewer. R package version 1.1-2.

O’Hagan, A. Kendall’s Advanced Theory of Statistics, Volume 2B: Bayesian inference,

volume 2B. Arnold, 2004.

Penny, W., Ghahramani, Z., and Friston, K. Bilinear dynamical systems. Philosophical

Transactions of the Royal Society of London B: Biological Sciences, 360(1457):983–

993, 2005.

109



Penny, W. D., Stephan, K. E., Mechelli, A., and Friston, K. J. Modelling functional

integration: a comparison of structural equation and dynamic causal models. Neu-

roImage, 23:S264–S274, 2004.

Pourahmadi, M. Covariance estimation: The GLM and regularization perspectives.

Statistical Science, pages 369–387, 2011.

Queen, C. M. and Albers, C. J. Intervention and causality: forecasting traffic flows

using a dynamic Bayesian network. Journal of the American Statistical Association,

104(486):669–681, 2009.

Queen, C. M. and Smith, J. Q. Multiregression dynamic models. Journal of the Royal

Statistical Society. Series B (Methodological), pages 849–870, 1993.

R Core Team. R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria, 2017. URL https://www.R-

project.org/.

Raftery, A. E., Madigan, D., and Hoeting, J. A. Bayesian model averaging for linear

regression models. Journal of the American Statistical Association, 92(437):179–191,

1997.

Ramsey, J. D., Hanson, S. J., Hanson, C., Halchenko, Y. O., Poldrack, R. A., and

Glymour, C. Six problems for causal inference from fMRI. NeuroImage, 49(2):

1545–1558, 2010.

Ramsey, J. D., Hanson, S. J., and Glymour, C. Multi-subject search correctly identifies

causal connections and most causal directions in the DCM models of the Smith et

al. simulation study. NeuroImage, 58(3):838–848, 2011.

Ramsey, J. D., Sanchez-Romero, R., and Glymour, C. Non-Gaussian methods and

high-pass filters in the estimation of effective connections. NeuroImage, 84:986–1006,

2014.

Razi, A. and Friston, K. J. The connected brain: causality, models, and intrinsic

dynamics. IEEE Signal Processing Magazine, 33(3):14–35, 2016.

Razi, A., Seghier, M. L., Zhou, Y., McColgan, P., Zeidman, P., Park, H.-J., Sporns,

O., Rees, G., and Friston, K. J. Large-scale DCMs for resting state fMRI. Network

Neuroscience, 2017.

Rosa, M. J., Friston, K., and Penny, W. Post-hoc selection of dynamic causal models.

Journal of Neuroscience Methods, 208(1):66–78, 2012.

Rossell, D. and Telesca, D. Nonlocal priors for high-dimensional estimation. Journal

of the American Statistical Association, 112(517):254–265, 2017.

Rossell, D., Cook, J.D., Telesca, D., and Roebuck, P. mombf: Moment and Inverse

Moment Bayes Factors, 2017. URL https://CRAN.R-project.org/package=mombf.

R package version 1.9.5.

110



Roweis, S. and Ghahramani, Z. A unifying review of linear Gaussian models. Neural

Computation, 11(2):305–345, 1999.

Ryali, S., Supekar, K., Chen, T., and Menon, V. Multivariate dynamical systems models

for estimating causal interactions in fMRI. NeuroImage, 54(2):807–823, 2011.

Schwab, S., Harbord, R., Costa, L., and Nichols, T. multdyn: Multiregression Dynamic

Models, 2017a. URL https://CRAN.R-project.org/package=multdyn. R package

version 1.6.

Schwab, S., Harbord, R., Costa, L., and Nichols, T. multdyn: Multiregression Dynamic

Models, 2017b. URL https://CRAN.R-project.org/package=multdyn. R package

version 1.5.1.

Shimizu, S., Hoyer, P. O., Hyvärinen, A., and Kerminen, A. A linear non-Gaussian

acyclic model for causal discovery. Journal of Machine Learning Research, 7(Oct):

2003–2030, 2006.

Shmuel, A. and Maier, A. Locally measured neuronal correlates of functional MRI

signals. In fMRI: From Nuclear Spins to Brain Functions, pages 105–128. Springer,

2015.

Smith, J. F., Pillai, A., Chen, K., and Horwitz, B. Identification and validation of effec-

tive connectivity networks in functional magnetic resonance imaging using switching

linear dynamic systems. NeuroImage, 52(3):1027–1040, 2010.

Smith, J. F., Pillai, A. S., Chen, K., and Horwitz, B. Effective connectivity modeling

for fMRI: six issues and possible solutions using linear dynamic systems. Frontiers

in Systems Neuroscience, 5:104, 2012.

Smith, J. F., Chen, K., Pillai, A. S., and Horwitz, B. Identifying effective connectivity

parameters in simulated fMRI: a direct comparison of switching linear dynamic sys-

tem, stochastic dynamic causal, and multivariate autoregressive models. Frontiers

in Neuroscience, 7, 2013.

Smith, S. M. The future of FMRI connectivity. NeuroImage, 62(2):1257–1266, 2012.

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E.,

Filippini, N., Watkins, K. E., Toro, R., Laird, A. R., et al. Correspondence of the

brain’s functional architecture during activation and rest. Proceedings of the National

Academy of Sciences, 106(31):13040–13045, 2009.

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F.,

Nichols, T. E., Ramsey, J. D., and Woolrich, M. W. Network modelling methods for

fMRI. NeuroImage, 54(2):875–891, 2011.

Soetaert, K. shape: Functions for Plotting Graphical Shapes, Colors, 2014. URL

https://CRAN.R-project.org/package=shape. R package version 1.4.2.

Spirtes, P. Directed cyclic graphical representations of feedback models. In Proceedings

111



of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages 491–498.

Morgan Kaufmann Publishers Inc., 1995.

Spirtes, P., Glymour, C. N., and Scheines, R. Causation, prediction, and search. MIT

press, 2000.

Sporns, O. Contributions and challenges for network models in cognitive neuroscience.

Nature Neuroscience, 17(5):652, 2014.

Stephan, K. E., Weiskopf, N., Drysdale, P. M., Robinson, P. A., and Friston, K. J.

Comparing hemodynamic models with DCM. NeuroImage, 38(3):387–401, 2007.

Tavor, I., Jones, O. P., Mars, R. B., Smith, S. M., Behrens, T. E., and Jbabdi, S. Task-

free MRI predicts individual differences in brain activity during task performance.

Science, 352(6282):216–220, 2016.

Ugurbil, K. What is feasible with imaging human brain function and connectivity

using functional magnetic resonance imaging. Philosophical Transactions of the Royal

Society B: Biological Sciences, 371(1705), 2016.

West, M. and Harrison, P. J. Bayesian Forecasting & Dynamic Models. Springer, 2nd

edition, 1997.

Xie, Y. knitr: A General-Purpose Package for Dynamic Report Generation in R, 2017.

URL https://yihui.name/knitr/. R package version 1.17.

Zeki, S. and Shipp, S. The functional logic of cortical connections. Nature, 335(6188):

311–317, 1988.

Zilles, K. and Amunts, K. Anatomical basis for functional specialization. In fMRI:

From Nuclear Spins to Brain Functions, pages 27–66. Springer, 2015.

R Packages

R Core Team. R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria, 2017. URL https://www.R-

project.org/

Csardi, G. and Nepusz, T. The igraph software package for complex network research.

InterJournal, Complex Systems:1695, 2006. URL http://igraph.org

Kim, S. ppcor: Partial and Semi-Partial (Part) Correlation, 2015. URL https:

//CRAN.R-project.org/package=ppcor. R package version 1.1

Jurasinski, G., Koebsch, F., Guenther, A., and Beetz, S. flux: Flux Rate Calcula-

tion from Dynamic Closed Chamber Measurements, 2014. URL https://CRAN.R-

project.org/package=flux. R package version 0.3-0

Neuwirth, E. RColorBrewer: ColorBrewer Palettes, 2014. URL https://CRAN.R-

project.org/package=RColorBrewer. R package version 1.1-2

112



Rossell, D., Cook, J.D., Telesca, D., and Roebuck, P. mombf: Moment and Inverse

Moment Bayes Factors, 2017. URL https://CRAN.R-project.org/package=mombf.

R package version 1.9.5

Schwab, S., Harbord, R., Costa, L., and Nichols, T. multdyn: Multiregression Dy-

namic Models, 2017b. URL https://CRAN.R-project.org/package=multdyn. R

package version 1.5.1

Soetaert, K. shape: Functions for Plotting Graphical Shapes, Colors, 2014. URL

https://CRAN.R-project.org/package=shape. R package version 1.4.2

Xie, Y. knitr: A General-Purpose Package for Dynamic Report Generation in R,

2017. URL https://yihui.name/knitr/. R package version 1.17

113


