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Abstract: 

It is highly desirable to discover photovoltaic mechanisms that enable a higher efficiency of 

solar cells. Here, we report that the bulk photovoltaic effect, which is free from the 

thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric 

(piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including 

silicon, by mediation of flexoelectric effect. We introduce strain gradients using either an 

atomic force microscope or a micron-scale indentation system, creating giant photovoltaic 

currents from centrosymmetric single crystals of SrTiO3, TiO2, and Si. This strain-gradient-

induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the 

absence of a p-n junction. This finding may extend present solar cell technologies by boosting 

the solar energy conversion efficiency from a wide pool of established semiconductors. 

 

Main Text: 

Since its first observation in the nineteenth century, the photovoltaic (PV) effect has been studied 

intensively for scientific interest and as a sustainable energy source to replace fossil fuels and 

reduce carbon emissions (1-3). In 1954, the first high-power modern silicon solar cells were 

invented in which the photoexcited carriers were separated by a built-in electrical field developed 
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at a p-n junction (4). By virtue of the appropriate bandgap energies of the semiconductors in a p-n 

junction solar cell, sunlight is efficiently absorbed, resulting in considerable power conversion 

efficiency. Nowadays, silicon PV cells are the mainstay of the modern solar industry, contributing 

more than 1% of global electricity supply. Nevertheless, PV cells based on p-n junctions have a 

photovoltage limited by the bandgap energy of the constituent semiconductors and an ultimate 

efficiency constrained by the Shockley-Queisser (S-Q) limit (5).  

 

The ferroelectric materials exhibit a photovoltaic effect distinct from that of p-n junctions, called 

the bulk photovoltaic (BPV) effect (6, 7). Under uniform illumination, a homogeneous 

ferroelectric material gives rise to a current under zero bias (short-circuit current; ISC) that depends 

on the polarization state of the incident light and produces an anomalously large photovoltage well 

exceeding its bandgap energy. This peculiar PV effect originates from the asymmetric distribution 

of photoexcited nonequilibrium carriers in k-space caused by the absence of centrosymmetry in 

the material (7). Owing to its distinctive charge separation mechanism, solar cells based on the 

BPV effect can in principle exceed the S-Q limit (8). However, a substantial BPV effect is 

generally found in wide-bandgap noncentrosymmetric materials, such as ferroelectric BaTiO3 (8) 

and BiFeO3 (9), leading to an overall extremely low device efficiency under solar illumination. 

Hence, one way to enhance the efficiency may be to realize the BPV effect in semiconductors with 

more favorable bandgaps, regardless of their crystalline symmetry.  

 

Flexoelectricity is an electromechanical property that reflects a coupling between an electric 

polarization and a strain gradient (10, 11). In centrosymmetric materials, a strain gradient breaks 

its inversion symmetry, resulting in a polarization with a preferred direction and enabling a 
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piezoelectric composite containing no piezoelectric elements (11, 12). Likewise, one can 

hypothesize that a strain gradient allows the manifestation of the BPV effect in materials that are 

originally centrosymmetric. Here, we propose and demonstrate that the BPV effect can be induced 

in any semiconductor by mediation of the flexoelectric effect. Given that flexoelectricity is a 

universal property of all materials, ranging from bio-materials (13) to semiconductors and 

dielectrics (14) to 2D materials such as graphene (15), this strain-gradient-induced BPV effect, 

termed here the flexo-photovoltaic (FPV) effect, is allowed for all symmetry classes. Thus, the 

devices based on the FPV effect can be fabricated with silicon or any other semiconductors.  

 

To demonstrate our idea, we explored the PV effect induced by a point force exerted onto the 

surface of centrosymmetric materials including a SrTiO3 single crystal and a rutile TiO2 single 

crystal (See Section S1 of (20)). The point force was exerted by the tip of an atomic force 

microscope (AFM), inducing local inhomogeneous strain at the tip/surface contact area and, 

therefore, a local breaking of centrosymmetry (16, 17). In our experiments, we used a custom-

made photoelectric atomic force microscope (Ph-AFM) consisting of an AFM-based system 

equipped with a customized current amplifier/filter system and an optical system (18). The optical 

system allows us to illuminate a sample surface with a 405-nm laser properly polarized by a half-

wavelength plate. A conductive AFM tip applies a local force on a sample surface and 

simultaneously collects the resultant PV current. A brief schematic of the Ph-AFM setup is shown 

in Figs. 1A and B.  

 

SrTiO3 single crystal is one of the ideal systems to study the flexoelectric effect thanks to its simple 

cubic centrosymmetric lattice and large dielectric permittivity (14, 19). Unlike its sister material 
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BaTiO3, ordinary SrTiO3 crystals do not exhibit the BPV effect because they have a center of 

inversion symmetry. But, with illumination around the contact area on a (001)-face of SrTiO3 

crystal, we observed that ISC exhibits a large transient peak as the loading force is increased from 

1 PN to 18 PN (Fig. 1C), which is reproducible, proven by repeated exertion/withdrawal of the 

loading force.  

 

To show that the giant enhancement of ISC by the point force is not confined to SrTiO3 crystals or 

a cubic structure, we investigated the force-induced PV current in a single crystal of rutile TiO2, 

which is well-known for its photoelectric applications such as dye-sensitized photovoltaic cells 

and photocatalysis. As in the case of SrTiO3, large negative ISC appears once a large force is exerted 

on a TiO2 (100) face. Figure 1D shows a stable current under the 15 PN force, confirming that the 

force-induced PV effect is not a transient effect in this material. Although it depends on contact 

conditions and locations, the point force exerted by the AFM tip gives rise to a substantial current 

density up to about 1 A/cm2 at the nanoscale contact area. This is over three orders of magnitude 

higher than ISC (0.3 mA/cm2) obtained from a Schottky junction between TiO2 and Pt under the 

same illumination condition (See Section S6 of (20)).  

 

The current density increases more than 100 times by simply increasing the loading force from 1 

to 15 PN (Fig. 1E). This cannot be explained with an increase of the contact area with the loading 

force because a contact area increases at most ~6 times with a 15 times larger contact force in a 

simple elastic sphere contact model (See Section S2 of (20)). Moreover, a 100 times increase of 

the contact area with an AFM tip is unphysical. It should be note that ISC turns to a positive value 

when loading the conductive AFM tip on a (001)-face of the TiO2 crystal in contrast to the negative 
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value of ISC on its (100)-face (Fig. 1F). The fact that the direction of the PV current depends on 

the crystallographic orientation of the TiO2 crystal indicates that the observed PV effect cannot be 

merely attributed to a probable Schottky contact formed by the TiO2 surface and the Pt-coating of 

the AFM tip.  

 

A potential origin of this PV current enhancement is the BPV effect. As hypothesized, it is likely 

that a point force exerted on a crystal surface generates a local strain gradient, resulting in local 

centrosymmetry breaking and, thus, a local BPV current under illumination, i.e., the FPV effect, 

in the absence of a p-n junction and an appropriate band alignment. Given that both the 

flexoelectric response and the BPV effect depend on the crystallographic orientation (18,19,21), 

our results suggest a predominant role of the strain gradient and the resultant FPV effect in the 

enhanced local PV current. 

 

The strain gradient induced by a sphere contact has a complex spatial distribution with giant strain 

gradient values in an elastic material, as described in Section S2 of (20). An AFM tip apex can be 

approximated as a hemisphere and the distribution of strain gradient induced by the AFM tip can 

be calculated analytically with the Hertzian model and the Boussinesq’s calculation (22). Figure 

2 shows the spatial distributions of the z-component of the calculated strain and its derivative with 

respect to z under ~15.7 PN force with a 10-nm-radius contact area at the origin. The strain gradient 

is as large as 107 m-1. Interestingly, we found that the ISC density and the volume beneath the AFM 

tip being subject to a strain gradient larger than 1 u 106 m-1 show similar dependence on the exerted 

force (Fig. 1E); the detailed process to obtain the relative volume can be found in Fig. S9 of (20)). 

It is expected that the giant strain gradients induced by the AFM tip break local symmetry, leading 
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to the manifestation of the BPV effect locally under illumination. However, a relationship between 

the complex distribution of the strain gradient and the BPV properties should be quite intricate and 

deep theoretical considerations are required. 

 

The main characteristic of the BPV effect is a periodic dependence on the angle between the PV 

current and the light polarization, stemming from its tensorial nature (21). For the present case, 

this dependence is predicted to be:  

 ( )2
2FPV o z zI I A B cosS D= +   (1) 

where 𝐼𝐹𝑃𝑉  is the PV current, 𝐼0 is a light intensity, 𝐴𝑍 and 𝐵𝑍 are effective BPV coefficients of 

the locally deformed crystal, and 𝛼 is the polarization angle of the incident light with respect to 

the top surface edge as described in Section S3 of (20). The FPV effect should inherit the 

distinctive feature of the BPV effect and exhibit a sinusoidal dependence on the incident light 

polarization angle with a period of 180q. Indeed, ISC measured by a conductive AFM tip in the 

configuration illustrated in Fig. 1B on the SrTiO3 (010) and TiO2 (001) surfaces exhibits a light 

polarization dependence in accord with Eq. 1, as seen in Fig. 3. The sinusoidal behavior upon 

rotating the light polarization provides strong evidence that the underlying mechanism of the force-

induced PV effect is the BPV effect generated by local symmetry breaking due to inhomogeneous 

strain, namely the FPV effect.  

 

The FPV effect should be neither confined to ionic crystals nor restricted to nanoscale geometries. 

Firstly, we performed the same experiment (as in Fig. 1) on an HF-passivated surface of a 

commercial p-type Si (001) crystal. Similarly, ISC increased two orders of magnitude from ~5 pA 

with the 1 PN loading force to ~0.5 nA with the 15 PN loading force (Fig. 4A and Section S7 of 
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(20)). Secondly, the FPV effect could also be demonstrated using a home-built indentation system 

that deforms a semiconductor using a conductive tungsten probe needle with a radius of about 10 

Pm (Fig. S1 of (20)). Figure 4B shows crystallographic orientation dependent photocurrent-

voltage (I-V) characteristics of the SrTiO3 crystal acquired under 4 N mechanical force exerted by 

the probe needle and 405 nm laser illumination directly to the probe contact area as in Fig. 1A. 

These linear I-V characteristics are similar to those of ferroelectrics under illumination (23). The 

oscillating PV current with the rotating light polarization, which is well fitted with Eq. 1 (Fig. 4C), 

demonstrates the FPV effect under the indentation force in the micrometer scale. The 

crystallographic orientation dependent PV current is also observed on the TiO2 crystal by the 

indentation system (Fig. S2 of (20)). The persistence of the FPV effect from the nanoscale (AFM) 

to the micrometer level is promising for future device design and potential applications. The FPV 

effect is not related to a plasmonic effect found in the tip-enhanced Raman scattering because only 

an atomically sharp tip coated with Ag or Au shows the plasmonic enhancement in the visible 

range (24), whereas we used platinum or tungsten probes ranging from the nanoscale to the 

micrometer scale. Likewise, a potential cubic-to-tetragonal phase transition induced in a SrTiO3 

single crystal under a large hydrostatic pressure (>6 GPa) should not play a large role here because 

of the centrosymmetric nature of the induced tetragonal phase (25).  

 

We emphasize here four main features of the FPV effect. First, the separation of the photoexcited 

carriers in the FPV effect is controlled by the local symmetry and the resultant local BPV effect, 

in which the power conversion efficiency can in principle exceed the S-Q limit (8). Second, to 

obtain a high photocurrent from any semiconductor, only a strain gradient generator, such as a 

sharp probe with a sufficient loading force is necessary. This should be distinguished from the 
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previous reports that a strain gradient modifies a bandgap, but the charge separation in the 

photoelectric process still requires a proper band alignment (26) or a nanostructure (27, 28). Third, 

whereas the BPV effect is allowed only in non-centrosymmetric materials, the FPV effect is 

universal. It is allowed by symmetry in all materials thanks to the universal nature of the strain-

gradient-induced centrosymmetry breaking. The FPV effect can be realized not only in ionic 

crystals (SrTiO3 and TiO2) and covalent crystals (Si), but is also relevant to any semiconductors 

ranging from organic-inorganic hybrid perovskites to semiconducting polymers and even 

topological insulators. For instance, the topological insulator Bi2Te3 with a centrosymmetric 

structure exhibits the BPV effect by means of the flexoelectric effect (29). Finally, given that the 

BPV effect consists of asymmetric quantum mechanical processes such as photoexcitation, 

relaxation, recombination, and scattering, we demonstrate that one can readily control the quantum 

mechanical processes by macroscopic tool such as an AFM tip and a probe needle. 

 

The configuration of our photovoltaic indentation system is very simple and the FPV effect can be 

increasingly significant with material dimensions decreasing into the nanoscale where 

flexoelectricity is more important (11). Thus, an important strain engineering route for improving 

the final performance of solar cells and optoelectronic devices is now open. For example, a tandem 

solar cell can be easily fabricated by combining an array of indenters and a conventional p-n 

junction, enabling a higher efficiency because the FPV effect can be designed to add to the existing 

PV current generated by the buried p-n junction. Given that the lattice mismatch at the interfaces 

and crystallographic disorders in epitaxial and polycrystalline thin film solar cells give rise to 

substantial strain gradients (30-32), the associated FPV effect would dramatically impact the 

performance of these solar cells, which however remains largely unexplored. In addition to 
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inorganic solar cells, the FPV effect is also likely to play an important role in flexible and 

stretchable electronics based on organic and polymeric semiconductors. Not only the bending of 

flexible organic devices at a macroscopic level (33) but also the folding and entanglement of the 

polymeric chains in a nanoscale level would generate sizable strain gradients (34), which 

redistribute the electron cloud of π-molecular orbits, modifying the electronic transport and 

inducing the FPV effect under illumination (15, 35). The detailed effects of strain gradient and 

FPV effect on the nanoscale electronic properties remain an open question.  
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Fig. 1 Force-induced photovoltaic effect in centrosymmetric SrTiO3 and TiO2 single crystals. 

(A) Setup for illumination around the contact area. The tip loading force is controlled by the 

feedback loop of atomic force microscope. (B) Setup for illumination on the side surface. The 

sidewise illumination geometry has been chosen to avoid the effect of Fresnel reflection and have 

light absorption being independent of the light polarization. Evolution of the photocurrent induced 

and collected by a conductive AFM tip with a high loading force on (C) SrTiO3 (001) face and (D) 

TiO2 (100) face. (E) The loading force dependence of the induced photocurrent density and the 

relative volume subject to the strain gradient higher than 1 u 106 m-1. (See Fig. S9 of (20)) (F) 

Positive photocurrent measured on TiO2 (001) face with a 15 μN force applied by the AFM tip.  

 

Fig. 2 Spatial distributions of strain and strain gradient induced by an ideal spherical 

indenter. (A) The z-component of strain and (B) its partial derivative with respect to z. The 

contact area with a radius of 10 nm is centered at the origin, and the force is pointing upward. 

The positive (negative) value of the strain means a tensile (compressive) strain along the z-axis. 

 

Fig. 3 Light polarization dependence of the force-induced photocurrent. The sinusoidal 

dependence of the photocurrent measured on (A) SrTiO3 (010) face and (B) TiO2 (001) face 

under 405 nm laser illumination. The red lines are the fits to Eq. 1.   

 

Fig. 4 Flexo-photovoltaic effect extended to covalent crystal and to the micrometer scale. 

(A) Force-induced photocurrent on (001) Si crystal measured by Ph-AFM under illumination of 

the top intended surface. (B) Current-voltage characteristics measured on (001) and (111) faces 
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of a SrTiO3 crystal by the micro-indenter applying a 4 N force and illumination of the top 

intended surface. (C) The light polarization dependence of the photocurrent on a SrTiO3 (010) 

face measured by the micro-indenter under illumination on the side surface. The red line is the 

fitting of experimental data with Eq. 1. Because the polarization angle origin of the micro-

indenter is not coincident with the Ph-AFM setup, the oscillating ISC has a phase shift compared 

with Fig. 3B. 
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