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Linear Time Parameterized Algorithms for Subset Feedback

Vertex Set∗

Daniel Lokshtanov† M. S. Ramanujan‡ Saket Saurabh§¶

Abstract

In the Subset Feedback Vertex Set (Subset FVS) problem, the input is a graph
G on n vertices and m edges, a subset of vertices T , referred to as terminals, and an
integer k. The objective is to determine whether there exists a set of at most k vertices
intersecting every cycle that contains a terminal. The study of parameterized algorithms for
this generalization of the Feedback Vertex Set problem has received significant attention
over the last few years. In fact the parameterized complexity of this problem was open until
2011, when two groups independently showed that the problem is fixed parameter tractable
(FPT). Using tools from graph minors Kawarabayashi and Kobayashi obtained an algorithm
for Subset FVS running in time O(f(k) · n2m) [SODA 2012, JCTB 2012]. Independently,
Cygan et al. [ICALP 2011, SIDMA 2013] designed an algorithm for Subset FVS running
in time 2O(k log k) · nO(1). More recently, Wahlström obtained the first single exponential
time algorithm for Subset FVS, running in time 4k · nO(1) [SODA 2014]. While the 2O(k)

dependence on the parameter k is optimal under the Exponential Time Hypothesis (ETH),
the dependence of this algorithm as well as those preceding it, on the input size is at least
quadratic. In this paper we design the first linear time parameterized algorithms for Subset
FVS. More precisely, we obtain the following new algorithms for Subset FVS.

• A randomized algorithm for Subset FVS running in time O(25.6k · (n+m)).

• A deterministic algorithm for Subset FVS running in time 2O(k log k) · (n+m).

Since it is known that assuming the Exponential Time Hypothesis, Subset FVS cannot
have an algorithm running in time 2o(k)nO(1), our first algorithm obtains the best possible
asymptotic dependence on both the parameter as well as the input size. Both of our algo-
rithms are based on “cut centrality”, in the sense that solution vertices are likely to show
up in minimum size cuts between vertices sampled from carefully chosen distributions.
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1 Introduction

Feedback Set problems constitute one of the most important topics of research in parameter-
ized algorithms [3, 4, 6, 7, 9, 10, 27, 24, 33, 40, 44]. Typically, in these problems, we are given
an undirected graph G (or a directed graph) and a positive integer k, and the objective is to
“hit” all cycles of the input graph using at most k vertices (or edges or arcs). Recently, there
has been a lot of study on the subset variant of Feedback Set problems. In these problems,
the input also includes a terminal subset T ⊆ V (G) and the goal is to detect the presence of
a set, referred to as a subset feedback vertex set, that hits all T -cycles, that is, cycles whose
intersection with T is non-empty. In this paper we consider the following problem.

Subset Feedback Vertex Set (Subset FVS)
Instance: A graph G on n vertices and m edges, a subset of T of V (G),

and a positive integer k.
Parameter: k

Question: Does there exist a k-sized vertex subset S that intersects every T -cycle?

Subset FVS generalizes Feedback Vertex Set as well as the well known Multiway Cut
problem. In this paper we explore parameterized algorithms for Subset FVS. In parameter-
ized complexity each problem instance has an associated parameter k and a central notion in
parameterized complexity is fixed parameter tractability (FPT). This means, for a given instance
(x, k), solvability in time τ(k) · |x|O(1), where τ is an arbitrary function of k.

The study of parameterized algorithms for the Subset FVS problem has received significant
attention in the last few years. The existence of an FPT algorithm for Subset FVS was shown
only in 2011, when two groups independently gave FPT algorithms for the problem. Using tools
from graph minors Kawarabayashi and Kobayashi obtained an algorithm for Subset FVS with
running time O(f(k) · n2m) [27] (also see [24]). Independently, Cygan et al. [10] combined
iterative compression [38] with Gallai’s theorem [11] to obtain an algorithm for Subset FVS
with running time 2O(k log k) · nO(1). Cygan et al. asked whether it is possible to obtain an
algorithm for Subset FVS running in time 2O(k) ·nO(1). Wahlström [44] resolved this question
in the affirmative by giving an algorithm for Subset FVS, with running time 4k · nO(1). It
is known that under the Exponential Time Hypothesis (ETH) [20], Feedback Vertex Set
does not not admit an algorithm with running time 2o(k) · nO(1) [8]. Since Subset FVS is a
generalization of Feedback Vertex Set, it follows that assuming ETH, Subset FVS also
does not admit an algorithm with running time 2o(k) · nO(1).

The focus of this paper is the second component of the running time of parameterized
algorithms, that is, the running time dependence on the input size n. This direction of research
is as old as the existence of parameterized algorithms, with classic results, such as Bodlaender’s
linear time algorithm for treewidth [1] and the cubic time algorithm of Robertson and Seymour
for the disjoint paths problem [43]. A more recent phenomenon is that one strives for linear
time parameterized algorithms that do not compromise too much on the dependence of the
running time on the parameter k. The gold standard for these results are algorithms with
linear dependence on input size as well as provably optimal (under ETH) dependence on the
parameter. New results in this direction include parameterized algorithms for problems such as
Odd Cycle Transversal [21, 41], Subgraph Isomorphism [12], Planarization [23, 26]
as well as a single-exponential and linear time parameterized constant factor approximation
algorithm for Treewidth [2]. Other recent results include parameterized algorithms with
improved dependence on input size for a host of problems [16, 28, 29, 30, 31, 32].

The running time dependence on the input size for all the previous algorithms for Subset
FVS is quite far from being linear. Recently, the methods behind the 4k · nO(1) time algorithm
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of Wahlström have been applied to give linear time FPT algorithms [22] for several problems,
including the edge-deletion variant of Unique Label Cover. In this paper we design the first
linear time parameterized algorithms for Subset FVS. The first algorithm is randomized with
one-sided error, and obtains linear dependence on n as well as single exponential dependence
on k.

Theorem 1. There is an algorithm that, given an instance (G,T, k) of Subset FVS runs in
time 25.6kkO(1)(m + n) and either returns a subset feedback vertex set of size at most k or
concludes correctly with probability at least 1− 1

e that no such set exists, where m = |E(G)| and
n = |V (G)|.

The second algorithm is deterministic at the cost of a slightly worse dependence on the
parameter k.

Theorem 2. There is an algorithm that given an instance (G,T, k) of Subset FVS runs in
time 2O(k log k)(m + n) and either returns a subset feedback vertex set of size at most k, or
correctly concludes that no such set exists.

Methodology. Both algorithms begin by applying simple preprocessing rules to ensure that
there are no irrelevant vertices or edges and that every vertex is sufficiently connected to the
terminals. While the preprocessing rules are quite easy to state, applying some of the rules
exhaustively in linear time is non-trivial. We achieve this by using a classic algorithm of Hopcroft
and Tarjan [18] to decompose a graph into its 3-connected pieces.

At this point the randomized algorithm of Theorem 1 exploits the following structural in-
sight. Consider a graph G that does have a subset feedback vertex set S of size at most k.
G − S has no T -cycles, and a graph without any T -cycles is essentially a forest where some of
the terminal-free regions have been replaced by arbitrary graphs. A terminal-free region here
is a connected component of G − T − S. The terminal-free regions may only interact with
neighboring terminals via single edges. That is, for every connected component C in G−T −S
and every t ∈ T , there is at most one edge between C and t. Since a forest has average degree at
most 2, at least half the regions interact with at most two other terminals in this way. Any such
“degree two” region can be separated from the terminals by removing the solution S, as well as
the two edges leaving the region in G − S. On the other hand the preprocessing rules ensure
that every vertex has sufficient flow to the terminals, in particular the rules ensure that each
“degree two” region must have at least one neighbor in the solution. From this we infer that
the vertices of S appear very frequently in small cuts between vertices in “degree two regions”
and terminal vertices. Our algorithm is based on a random process which is likely to produce a
vertex v which is in a “degree two region”. The algorithm then samples a small set A such that
A separates v from the terminal, and with good probability A has a large intersection with the
solution S. At this point the algorithm guesses the intersection of the set A with the solution
S, removes A ∩ S from the graph and starts again. The difficult part of the analysis is to show
that whenever the algorithm guesses that a set X is a subset of the solution, the algorithm is
correct with probability at least 1

2O(|X|) .
The deterministic algorithm of Theorem 2 is based on the same ideas as the randomized

algorithm, but is quite far from being a “direct derandomization”. An attempt at a “direct
derandomization” of the algorithm of Theorem 1 could look like this. The randomized algorithm
essentially selects a vertex and claims that this vertex is a part of the solution. The analysis
basically shows that for any optimal solution S of size at most k, the probability that the
randomized algorithm selects a vertex in S is at least 1/25.6. Suppose that we could compute
deterministically for each vertex v, the probability p(v) with which v is selected. We know that∑

v∈S p(v) ≥ 1
25.6 . Thus there must be a vertex in v ∈ S such that p(v) ≥ 1

25.6k . However,
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∑
v∈V (G) p(v) = 1, implying that the number of vertices v such that p(v) ≥ 1

25.6k is at most
25.6k. This gives us a candidate set of size 25.6k, out of which a vertex must be in the solution.
We can now guess this vertex, decrease k by 1, and re-start. The main problem with this
approach is that we are unaware of an algorithm to compute p(v) for all vertices v in linear
time. The engine behind the algorithm of Theorem 2 is a different random process which also
ensures that solution vertices are picked with high probability, but for which the probabilities
p(v) are efficiently computable.

Related work: Apart from Subset FVS, the subset variants of Directed Feedback Ver-
tex Set and Odd Cycle Transversal have also been studied. Chitnis et al. [7] showed that
the Subset Directed Feedback Vertex Set is FPT. Kakimura et al. [24] initiated the
study of Subset Odd Cycle Transversal and proposed an FPT algorithm for this problem
using graph minors theory. Subset FVS has also been studied in the realm of approximation
algorithms [13, 14]. The current best approximation algorithm for Subset FVS has factor
8 [14]. Kakimura et al. [25] and Pontecorvi and Wollan [39] gave an Erdős-Pósa type result for
Subset FVS. In particular, Pontecorvi and Wollan proved that there exists a constant α such
that for all graphs G,T ⊆ V (G), and a positive integers k, either there exist k vertex disjoint
T -cycles, or there exists a subset-fvs X with |X| ≤ αk log k.

2 Preliminaries

All graphs we consider are undirected and finite, unless explicitly stated otherwise. When
considering multigraphs we allow self loops (but not more than one per vertex) and any number
of multiple edges. We use [n] as an abbreviation for {1, . . . , n}. For a graph G we denote its
vertex set by V (G) and the edge set by E(G). An edge between vertices u and v is denoted
by uv, and is identical to the edge vu. If there are multiple edges between u and v, then uv
denotes any one of these edges. Removing a vertex v from the graph means removing v and all
edges incident to v. This graph is denoted by G − v. Removing a set Z of vertices is denoted
by G− Z and means removing all vertices in Z one by one. The subgraph G[V ′] induced by a
vertex set V ′ is G− (V (G) \ V ′). It is possible to add a vertex v to a graph G. In this case the
vertex v is added to the set V (G) and some specified edges incident to v are added to E(G).
We denote by G+ (v,E) the graph obtained from G by adding v to V (G) and E to E(G). Here
all edges in E are required to be incident to v.

The open neighborhood of a vertex v in graph G contains the vertices adjacent to v, and
is written as NG(v). The open neighborhood of a set S ⊆ V (G) is defined as

⋃
v∈S NG(v) \ S.

Thus, if G is simple then dG(v) = |NG(v)|. When the graph G is clear from context we omit
the subscript.

A cut vertex is a vertex whose removal increases the number of connected components. A
graph is biconnected (or 2-connected) if it is connected and does not contain any cut vertices.
The biconnected components of a graph G are its maximal biconnected subgraphs. It is well
known that the biconnected components of a graph form a partition of its edge set. Similarly, a
connected graph is triconnected (or 3-connected) if there is no set of at most two vertices whose
removal disconnects the graph.

A separation of a graph G is a pair (L,R) of subsets of V (G) such that L ∪R = V (G) and
there are no edges between L \R and R \L in G. The intersection L∩R is called the center of
the separation, and the size |L ∩R| is the order of the separation.

Given a path P (cycle C), we refer to the number of edges in P (C) as the length of P (C)
and denote it by |P | (respectively |C|).

If P is a path from a vertex in X to a vertex in Y , we say that P is an X-Y path. If X
contains a single vertex x, we say that P is an x-Y path. Two paths that do not share any
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vertices are called vertex disjoint. Two paths P1 and P2 such that the internal vertices of P1

are disjoint from P2 and vice versa are called internally vertex disjoint paths. For a graph G
and T ⊆ V (G), a path with both endpoints in T but no internal vertices in T is called a T -path.
A cycle which intersects T is called a T -cycle. A subset feedback vertex set of a graph G and
terminal set T ⊆ V (G) is a set S ⊆ V (G) such that G− S does not contain any T -cycles.

Contracting an edge uv amounts to removing the vertices u and v from the graph and
making a new vertex w which is adjacent to all vertices in N(u) ∪ N(v). When working with
multigraphs the number of edges from w to a vertex x in N(u) ∪N(v) is the number of edges
from u to x plus the number of edges from v to x.

Tree decompositions and the Tutte Decomposition A tree decomposition of a graph G
is a pair (F, χ), where F is a tree and χ : V (F ) → 2V (G) is a function such that the following
conditions are satisfied:

1. For each edge uv ∈ E(G) there is a node b ∈ V (F ) such that {u, v} ⊆ χ(b).

2. For each v ∈ V (G) the nodes in {b | v ∈ χ(b)} induce a non-empty connected subtree
of F .

The sets χ(b) for b ∈ V (F ) are called bags of the tree decomposition. We will assume that
the reader is familiar with tree decompositions and their basic properties. For an introduction
to tree decompositions, see [11]. We extend the definition of χ so that it also may take subsets
of vertices of F as input. In particular, for B ⊆ V (F ) we define χ(B) =

⋃
b∈B χ(b). The width

of a tree decomposition is the maximum size of a bag in the decomposition, minus 1. The
tree-width of a graph G is the minimum width of any tree decomposition of G. A useful fact is
that a graph G has tree-width at most 1 if and only if G is a forest [11].

It is possible to decompose any graph “in a tree-like fashion” into triconnected parts. While
the idea of a triconnected part is similar in spirit to that of a biconnected component, a tri-
connected part in our context is not necessarily a subgraph of the input graph and is more
conveniently stated using tree decompositions. The concepts of torsos and adhesions are
needed to state this decomposition theorem. For a graph G and vertex set M ⊆ V (G), the
graph torso(G,M) has vertex set M . Two vertices u and v have an edge between each other
in torso(G,M) if uv ∈ E(G[M ]), or there is a path from u to v in G with all internal vertices
in V (G) \M . For a tree decomposition (F, χ) of G and edge ab ∈ E(F ) the set χ(a) ∩ χ(b) is
called an adhesion of the tree decomposition (F, χ).

Definition 2.1. A Tutte decomposition of a connected graph G is a tree decomposition (F, χ)
of G with the following properties.

(a) The size of the largest adhesion of (F, χ) is at most 2.

(b) For each b ∈ V (F ) the graph torso(G,χ(b)) is triconnected.

(c) For each set B ⊆ V (F ) such that at most one node in B has a neighbor outside of B,
G[χ(B)] is connected.

(d) There is no pair of distinct nodes b, b′ ∈ V (F ) such that χ(b) ⊆ χ(b′).

When representing a Tutte decomposition in memory, we store some additional information
besides the tree and the bags corresponding to the nodes, to allow computations on the decom-
position to be performed efficiently. For each edge ab ∈ E(F ), we store the adhesion χ(a)∩χ(b)
between the two bags.

Proposition 2.1 ([18, 17]). There is an algorithm that, given an n-vertex m-edge graph G,
runs in time O(n+m) and outputs a Tutte decomposition (F, χ) of G, where |V (F )| = O(n).
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We will also need the following fact about Tutte decompositions. Although it follows im-
plicitly from the decomposition given in [11], we give a proof here for the sake of completeness.

Proposition 2.2. Let (F, χ) be a Tutte decomposition of G and b ∈ V (F ) be a node such that
|χ(b)| ≥ 4. For every pair of distinct vertices u, v ∈ χ(b), either uv are adjacent in G or there
are at least 3 vertex disjoint paths from u to v in G.

Proof. Suppose u and v appear in the same bag χ(b) of size at least 4, but that there exists a
separation L,R of order at most 2 such that u ∈ L \R and v ∈ R \ L. Pick u, v, L and R and
such that |L ∩R \ χ(b)| is minimized. Let Z = L ∩R.

If u and v are non-adjacent in torso(G,χ(b)) then there are 3 vertex disjoint u-v paths in
torso(G,χ(b)), and since torso(G,χ(b)) can also be obtained from G by vertex deletions, edge
deletions and edge contractions, we infer that there are 3 vertex disjoint u-v paths in G as well.
Thus u and v are adjacent in torso(G,χ(b)) . Since u and v are non-neighbors in G it follows
that there is an edge bb′ ∈ E(F ), such that χ(b)∩χ(b′) = {u, v}. Let B be the vertex set of the
connected component of F − bb′ that contains b′, we have that χ(B) ∩ χ(b′) = {u, v} and that
G[χ(B)] is connected. Thus Z ∩ χ(B) 6= ∅.

Let P = χ(B) and Q = χ(V (G) \ B). Then, (P,Q) is a separation with P ∩ Q = {u, v}
and χ(b) ⊆ Q. Since Z ∩ χ(B) 6= ∅, it follows that |Z ∩ χ(b)| ≥ 1 and that there exists a
vertex z ∈ χ(b) \ ({u, v} ∪ Z). The vertex z is either in L \ R or R \ L. We assume without
loss of generality that z ∈ L \ R. Consider now the separation (L ∩ Q,R ∪ P ). We have that
(L ∩Q) ∩ (R ∪ P ) = {u} ∪ (Z \ (P \Q)), and Z ∩ (P \Q) 6= ∅. Therefore, (L ∩Q,R ∪ P ) is a
separation of order at most 2. Furthermore Z ∩ (P \Q) ∩ χ(b) = ∅ while u ∈ χ(B). It follows
that |(L ∩Q) ∩ (R ∪ P ) \ χ(b)| < |(L ∩R) \ χ(b)|. Finally z ∈ χ(b) ∩ ((L ∩Q) \ ((R ∪ P )) while
v ∈ χ(b)∩ ((R∪P ) \ (L∩Q)). This contradicts the choice of u,v, L and R, thus completing the
proof of the proposition.

2.1 Important Separators

We review important separators, as well as some related results. Let G be a graph, let X,S ⊆
V (G) be vertex subsets. We denote by RG(X,S) the set of vertices of G reachable from X in the
graph G− S and we denote by NRG(X,S) the set of vertices of G− S which are not reachable
from X in the graph G−S. We drop the subscript G if it is clear from the context. Let G be a
graph and let X,Y ⊂ V (G) be two disjoint vertex sets. A subset S ⊆ V (G) \ (X ∪ Y ) is called
an X-Y separator in G if RG(X,S) ∩ Y = ∅ or in other words there is no path from X to Y in
the graph G− S. We denote by λG(X,Y ) the size of the smallest X-Y separator in G. If there
is an edge in G with one endpoint in X and the other in Y , then λG(X,Y ) =∞. If G is clear
from context we omit the subscript.

An X-Y separator S1 is said to cover an X-Y separator S if R(X,S1) ⊃ R(X,S). Note
that the definition of covering is asymmetric; the reachability set is taken from X and not from
Y . We say that an X-Y separator S1 dominates another X-Y separator S if S1 covers S and
|S1| ≤ |S|. An X-Y separator is said to be inclusionwise minimal if none of its proper subsets
is an X-Y separator.

Definition 2.2. Let G be a graph, X,Y ⊂ V (G) be disjoint vertex sets and S ⊆ V (G) be
an X-Y separator in G. We say that S is an important X-Y separator if it is inclusionwise
minimal and there does not exist another X-Y separator S1 such that S1 dominates S.

Important separators were first defined by Marx [35], and have found numerous applications
since then [6, 34, 36, 42]. The crucial property of important separators that has led to this
widespread use is the fact that there are not too many important X-Y separators of small size.
This is formalized in the following statement.
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Lemma 2.1 ([5, 36]). The number of important X-Y separators of size at most k is at most
22k−λ(X,Y ), where λ(X,Y ) denotes the size of the smallest X-Y separator in G. The set of
important X-Y separators of size at most k can be enumerated in time O(4kk(m+ n)).

The following proposition is a crucial component of the proof of Lemma 2.1, and also features
prominently in several arguments using important separators.

Proposition 2.3 ([5, 36]). For any disjoint X and Y such that there is no edge from X to
Y there is a unique important X-Y separator A of size λ(X,Y ). Furthermore every important
X-Y separator A′ 6= A covers A. Finally, there is an algorithm that given G, X, Y and k, runs
in time O(k(n+m)) and either correctly concludes that λ(X,Y ) > k or returns A.

At certain points in our algorithm, we do not need to find the important separator of the
minimum size and it is sufficient to compute a minimum separator. For this, we use the following
proposition which follows from the classic Max-Flow algorithm of Ford and Fulkerson [15] and
provides a witness that the given separator actually has the minimum possible size.

Proposition 2.4. Given a graph G with n vertices and m edges, disjoint sets X,Y ⊆ V (G), and
an integer k, there is an algorithm that runs in time O(k(n+m)) and either correctly concludes
that there is no (X,Y )-separator of size at most k, or returns a minimum (X,Y )-separator ∆
and a collection of |∆| pairwise internally vertex-disjoint X − Y paths.

We now prove a “sampling” analogue of Lemma 2.1. The proof of this lemma is an easy
adaptation of the proof of Lemma 2.1.

Lemma 2.2. There is a randomized algorithm SampleImp that given as input a graph G, disjoint
and non-adjacent vertex sets X and Y integer k, and rational deletion probability 0 < p < 1,
runs in time kO(1)(m + n) and outputs an X-Y separator S of size at most k or fail. For
each important X-Y separator A of size at most k, the probability that S = A is at least
p|A|(1− p)|A|−λ(X,Y ).

Proof. On input (G,X, Y, k, p) the algorithm first checks whether there is a path from X to
Y in G. If no such path exists the algorithm returns ∅. If there is a path from X to Y but
k = 0 the algorithm returns fail. Now the algorithm either correctly concludes that no X-Y
separator S of size at most k exists, or computes the unique X-Y important separator Z of
size λ(X,Y ) by invoking Proposition 2.3. Given Z the algorithm picks an arbitrary vertex
z ∈ Z. With probability p the algorithm proceeds as follows: first it makes a recursive call to
SampleImp(G− z,X, Y, k− 1, p). Let S′ be the set returned by the recursive call, the algorithm
returns {z} ∪ S′. Otherwise (i.e with probability 1− p) the algorithm proceeds as follows: first
it makes a recursive call to SampleImp(G − z,X ∪ {z}, Y, k − 1, p). Let S′ be the set returned
by the recursive call, the algorithm returns S′. If the recursive calls fail to return a set, the
algorithm also fails.

First, observe that the algorithm terminates because in each recursive call either the number
of vertices of G decreases or n − |X| decreases. Now we show that if the algorithm returns a
set S, then this set is always an X-Y separator in G. We show this by an induction on the
recursion depth of the algorithm. In the base case the algorithm only returns ∅ if there are no
X-Y paths. Consider now a recursive call to the algorithm that makes at least one recursive
call and then returns a set S. If the algorithm returns S = S′ then we know by the induction
hypothesis that S = S′ is an X ∪ {z}-Y separator in G. If the algorithm returns S = S′ ∪ {z}
then it follows from the induction hypothesis that S′ is an X-Y separator in G − z, implying
that S is an X-Y separator in G.

Thus, what is left is to prove that for every important X-Y separator A of size at most k,
the probability that S = A is at least p|A|(1−p)|A|−λ(X,Y ). We prove the statement by induction
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on 2k − λ(X,Y ). If 2k − λ(X,Y ) < 0 then λ(X,Y ) > k and there is no X-Y separator of size
at most k. If 2k−λ(X,Y ) = 0 then it must be the case that k = 0 and the algorithm outputs ∅
which is the unique important X-Y separator (of any size). Consider now the execution of the
algorithm on an instance (G,X, Y, k, p), let λ = λ(X,Y ) and assume that the statement holds
for all smaller values of 2k − λ. We distinguish between the following two cases. Either the
vertex z ∈ Z that the algorithm picks is in A or it is not.

If z ∈ A then, with probability p the algorithm makes the recursive call SampleImp(G −
z,X, Y, k − 1, p). Suppose that it does. In G − z, A \ z is an important (X,Y ) separator
and λG−z(X,Y ) ≥ λG(X,Y ) − 1. Thus, by the induction hypothesis the probability that the
recursive call outputs A\z is at least pk−1(1−p)k−1−(λ−1) = pk−1(1−p)k−λ. Since the probability
that G makes the recursive call is p it follows that the probability that G outputs A is at least
p · pk−1(1− p)k−λ = pk(1− p)k−λ.

If z /∈ A then, by Proposition 2.3 A covers Z and therefore z is reachable from X in G−A.
Thus A is an important (X ∪ {z})-Y separator. Furthermore, since Z is the unique important
(X,Y ) separator of size at most λ, it follows that Z covers all other (X,Y ) separators of size
at most λ. Thus there can not be any (X ∪ {z})-Y separators in G of size at most λ, implying
λG(X ∪ {z}, Y ) ≥ λ + 1. Thus, by the induction hypothesis the recursive call outputs A
with probability at least pk(1 − p)k−(λ+1). Since the algorithm makes the recursive call with
probability (1 − p) it follows that the probability that G outputs A is at least (1 − p) · pk(1 −
p)k−(λ+1).

All that remains is to bound the running time of the algorithm. The algorithm makes at
most one recursive call, which means that the recursion tree is actually a path. In each node
of the recursion tree the most expensive operation is the call to Proposition 2.3, which takes
O(k(n + m)) time. Furthermore the recursion depth is at most 2k − λ ≤ 2k, since in each
recursive call either k decreases and λ decreases by at most 1, or λ increases by 1 while k
remains unchanged. Thus the running time of the algorithm is kO(1)(n+m), as claimed.

3 Preprocessing

In this section we describe some reduction rules that are applied on the input instance (G,T, k)
of Subset FVS. These rules will be useful both for the randomized and for the deterministic
algorithms. For Rules 3.1, 3.2 and 3.3 we execute each rule exhaustively before proceeding to
the application of the next rule. After a rule has been applied exhaustively and the reduction
proceeds to the next rule, the procedure does not look for possibilities to apply the previous
rules. After Rule 3.3 has been applied the reduction algorithm will try to apply either one of
Rule 3.4, Rule 3.5 or Rule 3.6, until none of these rules can be applied. The algorithm will not
look for opportunities to apply Rules 3.1, 3.2 and 3.3 after it is done with Rule 3.3. The only
exception is that in some cases when Rule 3.6 is applied, the algorithm re-starts the reduction
procedure from Rule 3.1. This is discussed in more detail later in the section.

Reduction Rule 3.1. If an edge e is not contained in any T -cycle, then remove e.

Any solution before e is deleted is a solution after, and vice versa. Hence Rule 3.1 is safe.
It is not immediately obvious how to apply Rule 3.1 exhaustively in linear time. To that end
we will use the following lemma.

Lemma 3.1. An edge e is contained in a T -cycle if and only if e is not a bridge and the
biconnected component of G containing e contains a terminal.

Proof. For the forward direction, suppose e = uv is contained in a T -cycle C. Then e is not a
bridge, as we can go from u to v in G − e along C. Further C contains a terminal t. If u 6= t
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then C gives two disjoint paths from u to t. Similarly, if v 6= t there are two disjoint paths from
v to t. Hence u, v and t are in the same biconnected component.

For the reverse direction, suppose the edge uv is not a bridge, and the biconnected component
of G containing e also contains a terminal t. If t = u or t = v then we can complete uv to
a T -cycle by going back from v to u in G − e, since e is not a bridge. If t /∈ {u, v}, then by
Menger’s theorem there are two paths from t to {uv} that intersect only in t. These paths,
together with the edge uv form a T -cycle. This completes the proof of the lemma.

Using Lemma 3.1 we may apply Rule 3.1 exhaustively in linear time.

Lemma 3.2. Rule 3.1 can be applied exhaustively in time O(n+m).

Proof. We may partition E(G) into the edge sets of its biconnected components in linear
time [19]. For each biconnected component C that does not contain any terminals, we re-
move all edges in C. If a biconnected component C contains exactly one edge e, then e is a
bridge and can be removed. Note that removing all the edges from a biconnected component
leaves all the other biconnected components untouched (and biconnected). Hence one pass of
this algorithm over all biconnected components applies Rule 3.1 exhaustively.

Removing edges can create vertices of degree 0, which we can remove, since they do not
appear in any T -cycle. Note that after we apply Rule 3.1 exhaustively, there are no vertices of
degree 1, as these would be incident to a bridge.

Reduction Rule 3.2. Delete vertices of degree 0.

After Rule 3.1 and Rule 3.2 have been applied exhaustively, every vertex is in a T -cycle.
Indeed, every vertex is in a T -cycle if and only if there are no vertices of degree 0 and every
edge is in a T -cycle.

Observe that if every non-terminal vertex v is in a T -cycle, there cannot exist any separation
(L,R) of order at most 1 such that L∩ T = ∅ and v ∈ L \R. In such a case v cannot be in any
T -cycle. We now give a reduction rule for such separations of order 2.

Reduction Rule 3.3. If there exists a separation (L,R) of G such that G − R and G[L] are
connected, L ∩ R = {u, v}, L ∩ T = ∅ and L \ R 6= ∅, then delete all vertices in L \ R and add
the edge uv.

Observe that if a separation (L,R) of G satisfying the prerequisites of Rule 3.3 exists, and
every vertex is in a T -cycle, then G[R] must be connected (otherwise there is a vertex in L
which is not part of any T -cycle).

Lemma 3.3. Rule 3.3 is safe.

Proof. Let G′ be the graph output by Rule 3.3. Since G′ can be obtained from G by contracting
all edges in G[L] (except uv), if (G,T, k) is a “yes” instance then so is (G′, T, k).

For the reverse direction, assume there exists a subset feedback vertex set S such that G′−S
has no T -cycle. We claim that G − S has no T -cycle either. Suppose for contradiction that
G \ S contains a T -cycle C. Then C must contain a terminal t, which is in R \ L and a vertex
p ∈ (V (G′)\V (G)), hence p ∈ L\R. But then, since (L,R) has order 2, C must contain both u
and v. In G′ there is an edge from u to v and thus G′ \S contains a T -cycle, a contradiction.

Observe that Rule 3.3 maintains the property that every vertex is in a T -cycle. Indeed, any
T -cycle C which contains a deleted vertex must contain both u and v, which have an edge in
e ∈ E(G′) \ E(G). Adding e to C and removing all vertices of V (G) \ V (G′) from C yields a
T -cycle C ′ in G′ which contains all vertices of C ∩ V (G′).
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We say that a non-terminal vertex v is reducible by Rule 3.3 if there exists a separation (L,R)
satisfying the conditions of Rule 3.3, such that v ∈ L \R. In other words v would be deleted if
we applied Rule 3.3 on (L,R). A vertex which is not reducible by Rule 3.3 is irreducible by the
same rule. Showing that Rule 3.3 can be applied exhaustively in linear time is non-trivial. To
achive this goal we will exploit the Tutte decomposition.

Lemma 3.4. Rule 3.3 can be applied exhaustively in linear time.

Proof. From G, make a graph G′ by adding a new vertex τ and making τ adjacent to all
vertices in T . Let T ′ = T ∪ {τ}. Compute a Tutte decomposition (F, χ) of G′ in linear time,
using Proposition 2.1. Let B be the set of all nodes b in V (F ) such that χ(b) ∩ T ′ 6= ∅. Since
G′[T ′] is connected the properties of tree decompositions ensure that F [B] is a connected subtree
of F .

Consider an edge ab ∈ E(F ) such that a /∈ B and b ∈ B. Removing the edge ab from
F produces two trees, Fa and Fb with a ∈ V (Fa) and b ∈ V (Fb). Set L = χ(V (Fa)) and
R = χ(V (Fb)) \ {τ}. We claim that Rule 3.3 can be applied on (L,R).

By the properties of tree decompositions (L,R ∪ {τ}) is a separation of G′ and so (L,R) is
a separation in G. Further, by the properties of Tutte decompositions, the order of (L,R) is at
most 2. Also, since no bag in a Tutte decomposition is a subset of another bag, it must be the
case that L \R 6= ∅. Furthermore, since B ∩V (Fa) = ∅ it follows that T ∩L = ∅. Let p ∈ L \R.
Since p is in some T -cycle the order of the separation (L,R) must be at least 2 and hence it
must be exactly 2. Thus (L,R) satisfies the prerequisites of Rule 3.3.

Let L ∩ R = {u, v}. We apply Rule 3.3 on (L,R), i.e delete L \ R and add the edge uv in
G. When applying the reduction rule to (L,R) we update the graph G′ as well by removing
the vertices in L \ R and adding the edge uv. Removing the subtree Fa from F yields a Tutte
decomposition of the updated G′ since adding the edge uv ensures that torso(G′, χ(b)) stays
triconnected, even after L \R is deleted. After performing the rule, updating G′ and the Tutte
decomposition of G′, we may again look for an edge ab ∈ V (F ) such that a /∈ B and b ∈ B, and
repeat the reduction process until no such edge exists. This can clearly be done in linear time.

Suppose now that the algorithm has reduced all edges ab ∈ V (F ) such that a /∈ B and
b ∈ B, and that such edges no longer exist. Since B 6= ∅ it follows that B = V (F ). Define
Q = {b ∈ V (F ) | |χ(b)| ≥ 4} and let U =

⋃
b∈Q χ(b) \ T ′. We claim that all vertices in U are

irreducible by Rule 3.3.
Suppose for contradiction that there exists a separation (L,R) of G that satisfies the condi-

tions of Rule 3.3, but that (L \R) ∩ U 6= ∅. (L,R ∪ {τ}) is a separation of G′ of order at most
2. Furthermore T ′ ⊆ R \ L. Let p be a vertex in (L \ R) ∩ U . Since p is in U , it follows that
there exists a node b ∈ V (F ) such that χ(b) ≥ 4 and p ∈ χ(b). Since every bag contains a node
from T ′ there is a node t′ ∈ χ(b) ∩ T ′. Now, because p ∈ L \R and t′ ∈ (R ∪ {τ}) \ L it follows
that p and t are non-adjacent, and hence, By Proposition 2.2 there are three vertex disjoint
paths from p to t in G′. But each of these paths must intersect with L ∩ (R ∪ {τ}) = L ∩ R,
and |L ∩ R| ≤ 2 yielding the desired contradiction. We conclude that for each vertex p ∈ U , p
is irreducible.

Let P = V (G) \ (U ∪N [T ]). Every reducible vertex is in P . We claim that G[P ] is a forest.
We define a function χ′ : V (F )→ 2P as follows: χ′(b) = χ(b)∩P . (F, χ′) is a tree decomposition
of G[P ]. Since every node b of F such that χ(b) ∩ P 6= ∅ satisfies |χ(b)| ≤ 3, and χ(b) ∩ T ′ 6= ∅,
it follows that |χ′(b)| ≤ 2. Thus the tree-width of G[P ] is at most 1 and hence G[P ] is a forest.

Next we show that every vertex p /∈ P has at most one neighbor in a connected component of
G[P ]. For a contradiction, suppose otherwise. Then G′[P ∪ p] contains a cycle C, and therefore
the Tutte decomposition must contain a bag b such that |χ(b) ∩ C| ≥ 3. But χ(b) contains
a vertex from P , and hence |χ(b)| ≤ 3. But then χ(b) may not also contain a vertex in T ′,
contradicting that all bags do.
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We prove that at this point, every vertex with at least three neighbors is irreducible. Consider
a vertex p ∈ P such that |N(P )| ≥ 3, and suppose that there is a separation (L,R) satisfying
the conditions of Rule 3.3, such that p ∈ L \R. Let L ∩R = {u, v}. Since L \R ⊆ P it follows
that G[L \ R] is a tree. Let ` be the number of leaves of the tree except for p, and r be the
number of neighbors of p in L∩R. Since p has degree at least 3 it follows that `+ p ≥ 3. Each
of the leaves of the tree are in some T -cycle, and hence they all are adjacent to at least one of u
or v. Thus there are at least 3 edges between {u, v} and L \R. Without loss of generality u is
incident to at least two of these edges. If u ∈ P this contradicts that G[P ] is a forest, because
G \ R is connected. If u /∈ P this contradicts that a vertex outside of P may not have two
neighbors in the same component of G[P ].

It follows that the only remaining reducible vertices have two neighbors, both non-terminals.
For each such vertex p we can apply Rule 3.3 on the separation (N [p], V (G)\{p}). This amounts
to deleting p and adding an edge between p’s neighbors. Note that this operation may never
turn an irreducible vertex v reducible, since it cannot decrease the number of vertex disjoint
paths from v to T . Applying Rule 3.3 on all non-terminals with two non-terminal neighbors
can be done in linear time, and after this there are no reducible vertices left. This concludes
the proof.

If Rule 3.3 cannot be applied it follows that every non-terminal vertex is either adjacent to
a terminal or has at least three internally vertex-disjoint paths to T . All the following reduction
rules maintain this property, unless explicitly stated otherwise.

Reduction Rule 3.4. Short-circuit every degree 2 non-terminal and if a degree 2 terminal t
has a terminal neighbor t′, contract the edge tt′.

The correctness of Reduction Rule 3.4 for non-terminals follows from the observation that
if there is a vertex v of degree 2 then every cycle, and in particular every T -cycle must pass
through both of v’s neighbors. Thus there exists an optimal solution which avoids v, and hence
it is safe to contract any edge incident to v. If t is a terminal of degree 2 and t has a terminal
neighbor t′, then any subset feedback vertex set that contains t could just as well have contained
t′ instead. Thus we can contract the edge tt′. Note that an application of Rule 3.4 may create
multi-edges. We would like to get rid of multiple edges between the same two vertices. Though
we cannot safely remove all of them, we can indeed remove the ones not incident to a terminal,
and ensure that there are at most three edges between any pair of vertices.

Reduction Rule 3.5. If there are at least 3 edges between any two vertices, delete all but two
of the edges. If there are two edges between two non-terminals, delete one of the edges.

The correctness of Reduction Rule 3.5 follows from the fact that no T -cycle contains both
of the edges between two non-terminals, or more than two edges incident to the same vertex.
The reason we keep double edges between a terminal and a non-terminal is that these constitute
T -cycles all by themselves.

Reduction Rule 3.6. Remove self-loops on non-terminals. If a terminal t has a self-loop
remove t from the graph and decrease k by 1.

A self-loop on a non-terminal is never a part of a T -cycle and may be removed. In addition,
terminal with a self-loop must be in every subset feedback vertex set. It is important to note
and briefly discuss the following possible consequence of an application of Rule 3.6.

Remark 1. An application of Rule 3.6 may cause a vertex to no longer be part of any T -cycle,
or make a vertex which is irreducible by Rule 3.3, reducible. In this case we need to re-start the
reduction procedure from Rule 3.1. However, an application of Rule 3.6 on a terminal decreases
k. Therefore, such a re-start can only happen at most k times.
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Lemma 3.5. There exists a O(k(n+m)) time algorithm Reduce that given as input an instance
(G,T, k), returns an equivalent instance (G’,T’,k’) with the following properties.

• |V (G′)| ≤ |V (G)|, |E(G′)| ≤ |E(G)| and k′ ≤ k.

• Every non-terminal vertex has degree at least 3.

• Every terminal vertex has degree at least 2.

• Every terminal vertex of degree 2 has only non-terminal neighbors.

• Every vertex is in a T -cycle.

• For every non-terminal v, either v is adjacent to a terminal or there are at least three
internally vertex disjoint paths to T .

• Between any pair of vertices there are at most two edges.

• Between any pair of non-terminals there is at most one edge.

Proof. The algorithm applies the reduction rules in order. That is, it first applies 3.1 exhaus-
tively using Lemma 3.2. Then it applies Rule 3.2 exhaustively in linear time. After this all
vertices are in a T -cycle and all rules that will be applied, except possibly for Rule 3.6 maintain
this property. The algorithm now applies Rule 3.3 exhaustively in linear time using Lemma 3.4.
After this the algorithm applies Rules 3.4 and 3.5 exhaustively. Note that applications of
Rule 3.5 may create new possibilities to apply Rule 3.4 and vice versa, but both rules maintain
the two properties that (a) every vertex is in a T -cycle and (b) every vertex is irreducible by
Rule 3.3. If at any point a vertex with a self-loop is created then the algorithm immediately
executes Rule 3.6. If a self-loop is removed from a non-terminal, this preserves both property
(a) and (b). If the rule removes a terminal then k is decreased and the algorithm restarts the
reduction procedure from scratch, starting with Rule 3.1. Since this can happen at most k times
the total running time of the algorithm is O(k(n+m)) as claimed.

Consider now an instance after the reduction procedure is finished. Then, since every vertex
is in a T -cycle every vertex has degree at least 2. Since non-terminals of degree 2 are reduced
by Rule 3.4 there are no non-terminals of degree 2. Since terminals of degree 2 with at least
one terminal neighbor are reduced by Rule 3.4 every terminal vertex of degree 2 has only non-
terminal neighbors. After we have exaustively applied Rule 3.3 we have that every non-terminal
v, either v is adjacent to a terminal or there are at least three internally vertex disjoint paths
to T . All the rules after this maintain this property. The only exception is Rule 3.6 applied to
terminals, but if this rule is ever applied the reduction restarts from scratch. Hence, for every
non-terminal v, either v is adjacent to a terminal or there are at least three internally vertex
disjoint paths to T . The two last properties are ensured by Rule 3.5.

We will refer to instances satisfying the conclusions of Lemma 3.5 as reduced instances.

3.1 Structural Properties of Reduced Instances

Before commencing with the algorithms we need to make some observations on the structure of
reduced instances that do not contain double edges. Even though reduced instances may contain
double edges, these are always incident to a terminal and constitute T -cycles all by themselves.
Since every subset feedback vertex set must contain at least one of the two endpoints of such
a double edge, our algorithms will quickly get rid of double edges by branching. We start by
inspecting the structure of instances that do not contain any T -cycles.

Lemma 3.6. Let G be a graph and let T ⊆ V (G) be a set such that G has no T -cycles. Then
(a) G[T ] is a forest, (b) for every connected component C of G − T and connected component
CT of G[T ] there is at most one edge between C and CT , and (c) contracting all edges of which
both endpoints are non-terminals yields a forest.
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Proof. For (a) observe that any cycle in G[T ] is a T -cycle. For (b) observe that if there are two
edges between C and CT then G[C ∪ CT ] contains a T -cycle.

For (c), suppose that contracting all edges with both endpoints non-terminals yields a graph
containing a cycle C. Every edge of C must have at least one endpoint being a terminal, and
thus C contains a terminal. But then C corresponds to a T -cycle in G, a contradiction.

Let G be a graph and let T be a subset of V (G) such that G does not contain a T -cycle.
Next we define the notion of a terminal forest. While the definition might look technical at a
first glance, a terminal forest is just the forest obtained from G by contracting all the edges with
both endpoints non-terminals, rooting the trees in the forest at arbitrary roots and providing
a function χ that maps each vertex v of the forest to the vertex set in G which was contracted
into v. In order to keep the presentation simple, in the next definition, we misuse notation
by treating the function χ as one that can output either vertex sets (non-terminals) or single
vertices (terminals).

Definition 3.1. Let G be a graph and let T be a subset of V (G) such that G does not contain
a T -cycle. A terminal forest of G is a pair (F, χ), where F is a forest of rooted trees and χ :
V (F )→ {T} ∪ 2V (G)\T is a function with the following properties:

(a) Each tree Ti in F can be associated to a unique connected component Ci in G; for each
b ∈ V (Ti), χ(b) ⊆ Ci.

(b) ∪b∈V (F )χ(b) = V (G) and for any pair of vertices b, b′ ∈ V (F ), χ(b) ∩ χ(b′) = ∅. That is, χ
partitions the vertex set V (G).

(c) For every b ∈ V (F ), χ(b) 6= ∅ and the graph G[χ(b)] is connected.

(d) For every edge uv ∈ E(G) such that u, v /∈ T there exists b ∈ V (F ) such that u, v ∈ χ(b).

(e) For every edge tv ∈ E(G) such that t ∈ T and v ∈ V (G) there exists a bt ∈ V (F ) and
bv ∈ V (F ) such that χ(bt) = t, v ∈ χ(bv) and btbv ∈ E(F ).

From Lemma 3.6 it follows directly that every graph G that does not have a T -cycle has a
terminal forest. In addition, note that there can be multiple terminal forests for a single graph.
This is because F is a forest of rooted trees and technically, this implies a different terminal
forest for every different rooting of the trees in F .

For a terminal forest (F, χ) of G we define the function χ− : V (G)→ V (F ) so that χ−(u) is
the unique node b ∈ V (F ) so that u ∈ χ(b). We extend χ− to vertex sets of G in the following
manner: χ−(S) =

⋃
u∈S χ

−(u).
As mentioned earlier, Definition 3.1 abuses notation - χ can output either vertex sets (non-

terminals) or single vertices (terminals). When χ(b) outputs a terminal t it is sometimes con-
venient to treat it as the set {t} containing the terminal. In the forest F the child-parent and
descendant-ancestor relations are well defined. We can extend these relations to vertices in G
in a natural way; u is a child/parent/ancestor/descendant of v if and only if χ−(u) is a child/-
parent/ancestor/descendant of χ−(v). We can also extend the relations to allow comparisons
between a vertex u in the graph G and a node b in F , in particular u is a child/parent/ances-
tor/descendant of b if and only if χ−(u) is. We will refer to the nodes b of F such that χ(b) ∈ T
as terminal nodes, and to the other nodes as non-terminal nodes.

Observation 3.1. Let (F, χ) be a terminal forest of a graph G that has no T -cycles. There is
no bb′ ∈ E(F ) such that both b and b′ are non-terminal nodes.

Proof. Suppose such an edge bb′ exists, then χ(b) and χ(b′) are subsets of the same connected
components of G, and therfore there must be an edge uv ∈ E(G) such that χ−(u) = b and
χ−(v) = b′. But this contradicts property (d) of terminal forests.
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Observation 3.2. Let (F, χ) be a terminal forest of a graph G that has no T -cycles. Let
bb′ ∈ E(F ). There is exactly one edge between χ(b) and χ(b′).

Proof. Suppose there is no edge between χ(b) and χ(b′). Let C be the vertex set of the compo-
nent of F containing bb′, then G[χ(C)] is disconnected, contradicting Property (a) of terminal
forests. Suppose there are at least two edges. By Observation 3.1 at least one of b and b′ is a
terminal node, without loss of generality it is b. Let t = χ(b). Suppose t has at least two edges
to χ(b′). Since G[χ(b′)] is connected there is a path between the two edge endpoints in G[χ(b′)].
But this path together with t forms a T -cycle in G, yielding a contradiction.

Definition 3.2. Let G be a graph and T ⊆ V (G) be such that G has no T -cycles. We say that
a terminal t′ ∈ T is an effective descendant of t ∈ T \ {t′} with respect to a terminal forest
(F, χ) of G if we have that χ−(t) is a descendant of χ−(t′) and there is a path from χ−(t) to
χ−(t′) in F with internal vertices disjoint from χ−(T ). We drop the explicit reference to (F, χ)
if it is clear from the context.

To better understand the definition of effective descendants it is helpful to construct the
effective descendant graph. This is a directed graph with vertex set T . Each vertex in T has
arcs to all of its effective descendants.

It is easy to see that the effective descendant graph is obtained from F by contracting, for
all terminals t, all edges to t’s non-terminal children, and then orienting edges from parents to
descendants in F . This leads to the following observation.

Observation 3.3. The effective descendant graph is a forest of rooted trees.

Definition 3.3. Let G be a graph with no T -cycles. A terminal t is called good with respect
to a terminal forest (F, χ) if t has at most one effective descendant with respect to a terminal
forest (F, χ). We drop the explicit reference to (F, χ) when it is clear from the context.

The following observation follows from the fact that any rooted tree has at least as many
leaves as vertices with at least two children.

Observation 3.4. Let G be a graph with no T -cycles. At least |T |/2 terminals are good.

Finally we prove a lemma about the structure of reduced instances, and how a potential
subset feedback vertex set interacts with the rest of the graph.

Lemma 3.7. Let (G,T, k) be a reduced instance and S be a subset fedback vertex set of G. Let
(F, χ) be a terminal forest of G \ S. Then the following holds.

• For every leaf b of F , χ(b) has at least one neighbor in S.

• For every non-terminal leaf b in F such that χ(b) has exactly one neighbor in S, this
neighbor is a terminal.

• For every non-terminal node b ∈ V (F ) that has degree 2 in F , χ(b) has at least one
neighbor in S.

Proof. Consider a leaf b of F . If b is a terminal node then χ(b) = t, and since t has degree at
least 2, t must have a neighbor in S. If b is a non-terminal leaf then b either has a parent b′ in
F or it does not.

We first argue the case when b does not have a parent in F . Then, as G is connected,
χ(b) has a neighbor in S. If χ(b) only has one neighbor v in S then v separates χ(b) from all
terminals. Thus, unless v is a terminal none of the vertices in χ(B) are part of any T -cycles.
We conclude that v is a terminal. On the other hand, suppose that b has a parent b′ in F .
Then, by Observation 3.1 b′ must be a terminal node. Let t = χ(b′). By Observation 3.2 t has
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a unique neighbor in χ(b), call this neighbor v. Since v is in a T -cycle, χ(b) does not contain
any terminals and t only has one edge to χ(b), χ(b) must have at least one more neighbor.
Moreover, this neighbor must be in S. Suppose now that χ(b) has exactly one neighbor in S
say w. Suppose for contradiction that w is a non-terminal. The vertex v has degree 3, it has
exactly one edge to t and at most one edge to w. Thus v must have at least one more neighbor
v′ ∈ χ(b). But then v and w are non-terminals that separate v′ from T in G. Thus v′ is reducible
by Rule 3.3, contradicting that G is reduced. Thus w must be a terminal.

Finally consider a non-terminal node b ∈ V (F ) that has degree 2 in F , and let b1 and b2 be
the neighbors of b. By Observation 3.1 both b1 and b2 are terminal nodes, and by Observation 3.2
there are exactly two edges from χ(b1)∪χ(b2) to χ(b). Suppose now that χ(b) contains a vertex
u which is not incident to either of these edges. If u is adjacent to a terminal, this terminal
is in S. Otherwise, since u is irreducible by Rule 3.3 it follows that there are three internally
vertex disjoint paths from u to T . At most two of these paths intersect with χ(b1) ∪ χ(b2),
implying that the third must intersect with S∩N(χ(b)) proving that S∩N(χ(b)) is non-empty.
Suppose now that every vertex of χ(b) is incident to an edge to χ(b1) ∪ χ(b2). Then |χ(b)| ≤ 2.
If χ(b) = {v} then v has degree at least 3 (by Lemma 3.5). At most two of the edges incident
to v have an endpoint in χ(b1) ∪ χ(b2), which implies that at least one must have an endpoint
in S. If |χ(b)| = 2, let χ(b) = {u, v} where u is incident to the edge to χ(b1) and v is incident
to the edge to χ(b2). Since u has degree at least 3, u must have a neighbor in S.

4 A randomized linear time Algorithm for Subset FVS

We now describe the randomized algorithm for Subset FVS. The algorithm, called SolveSFVS,
is given in Algorithm 1. The algorithm runs in time kO(1)(n + m) and has one-sided error.
Except for applying Lemma 3.5, whenever the algorithm decreases k by x it also removes x
vertices from the graph. Thus, whenever the algorithm outputs succeed, the input instance is
a “yes” instane. The difficult part is to show that if the instance is a “yes” instance then the
algorithm returns succeed with probability at least γk, for a constant γ = 1

25.6 . The remaining
part of the analysis is essentially devoted to the following lemma and its proof.

Lemma 4.1. If (G,T, k) is a “yes” instance, then Algorithm SolveSFVS outputs succeed on
(G,T, k) with probability at least γk for γ = 1

25.6 .

The algorithm SolveSFVS makes use of some probability constants, 0 < αt, αv, β, p < 1.
These constants are set so as to maximize the success probability of the algorithm. The exact
values of the constants are not important for any of the arguments, except for the final calcu-
lations. As a result, for the sake of simplicity, we provide the exact values only when we arrive
at the final calculations and the reader may think of all the constants as 1

2 , and consider γ as
256 until arriving at the final calculations, where we give the exact values which are tweaked in
order to optimize the success probability.

We will prove Lemma 4.1 by induction on k. Towards this we analyze the algorithm when
run on a “yes” instance (G,T, k). Let S be a subset feedback vertex set of G of size at most k,
and let (F, χ) be a terminal forest of G \ S.

The algorithm starts by reducing the instance using Lemma 3.5 and performing some sanity
checks; if G already does not have any T -cycles we are done, on the other hand if there are
T -cycles but k ≤ 0 the input instance is a “no” instance (since we assumed the input instance
was a “yes” instance, this does not happen). This lets us assume that the input instance is
reduced, that k ≥ 1 and that S 6= ∅.

Now, if G has a double edge uv then either u or v is a terminal, since G is reduced by
Lemma 3.5. Thus at least one of u and v is in S. The algorithm selects x from {u, v} uniformly
at random. Therefore, the probability that x is in S is at least 1

2 . If x ∈ S then the recursive call
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Input : An instance (G,T, k) of Subset FVS.
Output: succeed if the algorithm has found a subset feedback vertex set in G of size at

most k, or fail.

1 (G,T, k)← Reduce(G,T, k)
2 if G has no T -cycles and k ≥ 0 then return succeed;
3 if k ≤ 0 then return fail;
4 if there exists a double edge uv then
5 pick x from {u, v} uniformly at random.
6 return SolveSFVS(G− x, T \ {x}, k − 1)

7 pick t from T uniformly at random.
8 with probability (1− αt):
9 return SolveSFVS(G− t, T \ {t}, k − 1)

10 if |N(t) ∩ T | ≥ 2 then
11 with probability 1

2 :
12 pick z from N(t) ∩ T uniformly at random.
13 return SolveSFVS(G− z, T \ {z}, k − 1)

14 if N(t) \ T = ∅ then return fail;

15 pick v from N(t) \ T uniformly at random.
16 with probability (1− αv):
17 return SolveSFVS(G− v, T \ {v}, k − 1)
18 let T̄ = {t}
19 insert each z ∈ T \ {t} with probability 1− β.
20 let G′ = G− {vt ∈ E(G) | t ∈ T̄}+ (τ, {τt | t ∈ T})
21 A? ← SampleImp(G′, v, T̄ ∪ {τ}, k + 1, p)
22 if |N(v) ∩ T̄ | ≥ 2 or A? \ T = ∅ or |A?| = 1 then
23 return SolveSFVS(G−A?, T \A?, k − |A?|)
24 pick y? from A? \ T uniformly at random.
25 return SolveSFVS(G− (A? \ {y?}), T \ (A? \ {y?}), k − |A|+ 1)

Algorithm 4.1: Algorithm SolveSFVS for Subset FVS

of the algorithm succeeds with probability at least γk−1 by the induction hypothesis. Hence the
probability that the algorithm outputs success is at least 1

2 · γ
k−1 ≥ γk. It remains to consider

the case when G has no double edges.
If G has no double edges the algorithm picks a random terminal t ∈ T . By Observation 3.4,

at least half the terminals in G \ S are good. Thus, with probability at least 1
2 , the vertex t is

either in S or a good terminal of G\S. Let Tg be the set of good terminals of G\S. Let success
be the event that the algorithm outputs succeed. We have that

P [success] ≥ P [t ∈ S ∪ Tg] · P [success | t ∈ S ∪ Tg] ≥
1

2
P [success | t ∈ S ∪ Tg]

Now, P [success | t ∈ S ∪ Tg] can be lower bounded as follows

P [success | t ∈ S ∪ Tg] ≥ min (P [success | t ∈ S], P [success | t ∈ Tg]) .

With a constant probability (1 − αt) the algorithm puts t in the solution and calls itself
recursively on G − t with terminal set T \ t and budget of k − 1. If t ∈ S then G − t has a
solution of size at most k−1. By the induction hypothesis the recursive call will output success
on (G− t, T \ t, k − 1) with probability at least γk−1. Thus

P [success | t ∈ S] ≥ (1− αt)γk−1 (1)
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We now define a set of events related to the execution of algorithm SolveSFVS. The event
linei is that the algorithm executes line i (if the algorithm reaches line i in some of the recursive
calls this does not count). We have that

P [success | t ∈ Tg] ≥ P [line10 | t ∈ Tg] · P [success | line10 ∧ t ∈ Tg] (2)

≥ αt · P [success | line10 ∧ t ∈ Tg]

Consider now the case that the algorithm reaches line 10, and that t ∈ Tg. By Lemma 3.5,
t has degree at least two. Observe that since t is good, t has at most two neighbors in T which
are not in S - the parent of t in F and at most one child of t. We consider the following four
cases: (1a) |N(t) ∩ T | ≥ 3, (1b) |N(t) ∩ T | = 2 and N(t) ∩ T ∩ S 6= ∅, (1c) |N(t) ∩ T | = 2 and
N(t) ∩ T ∩ S = ∅ and (1d) |N(t) ∩ T | ≤ 1. With each of the cases we associate the event that
the case occurs.

We first consider case (1a). Starting from line 10, the algorithm reaches line 12 with proba-
bility 1

2 . Then, since |N(t)∩T \S| ≤ 2 it follows that the probability that the vertex z, selected
from N(t) ∩ T on line 13, is in S is at least 1

3 . Thus, we conclude that

P [success | line10 ∧ t ∈ Tg ∧ (1a)] ≥ 1

6
· γk−1. (3)

Case (1b) is similar to case (1a), except that now the probability that z is in S is at least 1
2 ,

because at least one out of two vertices in N(t) ∩ T are in S. Thus,

P [success | line10 ∧ t ∈ Tg ∧ (1b)] ≥ 1

4
· γk−1. (4)

In case (1c), line 11 is executed, and with probability 1
2 the algorithm skips to line 14. In

this case, |N(t) ∩ T | = 2 and therefore t has at least one neighbor that is a terminal. Hence
by Lemma 3.5 t has degree at least 3. Thus t has at least one non-terminal neighbor, implying
that the algorithm does not return fail in line 14. Furthermore, since t’s parent is a terminal, all
non-terminal neighbors of t are either in S or children of t in F . Let C be the set of non-terminal
children of t in F . We have that

P [success | line10 ∧ t ∈ Tg ∧ (1c)] ≥ 1

2
· P [success | line15 ∧ t ∈ Tg ∧ v ∈ S ∪ C] (5)

In case (1d) the algorithm skips directly to line 15. If t has exactly one terminal neighbor
then by Lemma 3.5 t has degree at least 3, and so t has at least two non-terminal neighbors.
If t has no terminal neighbors it also has at least two non-terminal neighbors. At most one of
these non-terminal neighbors is the parent of t in F . Thus, when a non-terminal neighbor v of
t is picked in line 15, the probability that v is in S ∪ C is at least 1

2 . It follows that

P [success | line10 ∧ t ∈ Tg ∧ (1d)] ≥ 1

2
· P [success | line15 ∧ t ∈ Tg ∧ v ∈ S ∪ C] (6)

Since the four cases (1a) . . . (1d) are exhaustive, we may conclude that

P [success | line10 ∧ t ∈ Tg] ≥ min

(
1
6 · γ

k−1

1
2 · P [success | line15 ∧ t ∈ Tg ∧ v ∈ S ∪ C]

)
The algorithm resolves that it “knows” that v ∈ S ∪C but does not know whether v ∈ S or

v ∈ C in exactly the same way that it resolved “knowing” t ∈ S ∪ Tg but not knowing whether
t ∈ S or t ∈ Tg. In particular, the algorithm recurses on (G\v, T, k−1) with probability 1−αv.
This yields the following bounds.

P [success | line15 ∧ t ∈ Tg ∧ v ∈ S] ≥ (1− αv)γk−1 (7)

P [success | line15 ∧ t ∈ Tg ∧ v ∈ C] ≥ αv · P [success | line18 ∧ t ∈ Tg ∧ v ∈ C] (8)

16



Plugging all of the above bounds together we get the following bound for P [success].

P [success] ≥ min


1
2 · (1− αt) · γ

k−1

1
12 · αt · γ

k−1

1
4 · αt · (1− αv) · γ

k−1

1
4 · αt · αv · P [success | line18 ∧ t ∈ Tg ∧ v ∈ C]

(9)

At this point we need to lower bound P [success | line18 ∧ t ∈ Tg ∧ v ∈ C]. Starting at
line 18 the algorithm does the following. First it makes some of the terminals “undeletable”
by putting them into T̄ , samples an important separator from v to the set of terminals (but
without deleting the undeletable ones), and either puts the entire separator into the solution,
or puts the separator minus a randomly chosen vertex into the solution. The trickiest part of
the proof is to show that with good probability the set which is put into the solution is either a
subset of S or of another optimal solution to the instance. Towards this goal we need to prove
a few “pushing lemmata”.

Assume that t ∈ Tg and that v ∈ C (recall that C was the set of non-terminal children of t
in F ). Let b = χ−(t) and b′ = χ−(v). Since t is good, t has at most one effective descendant.
Thus b′ is either a leaf or a degree 2 vertex of F . We define the event leaf as b′ being a leaf of
F , and the event deg2 as b′ having degree 2. If b′ has degree 2 this means that t has exactly
one effective descendant t′ and that χ−(b′) is the parent of χ−(t′) in F . We distinguish between
two cases, either vt′ ∈ E(G) or not. We define the event adj which is that vt′ ∈ E(G), and the
event nadj which is that vt′ /∈ E(G).

4.1 Pushing Lemmata

We now prove a series of lemmas about how one can modify a solution by “pushing” the solution
vertices towards the terminals. In the following two lemma statements, G is a graph, T is a
set of terminals and S is a subset feedback vertex set of G. Further, (F, χ) is a terminal forest
of G − S, b is a terminal node in F and b′ is a non-terminal child of b in F . Also, t = χ(b)
and v is the unique neighbor of t in χ(b′) (assuming the existence of b and b′, the existence and
uniqueness of v is guaranteed by Observation 3.2). Furthermore A = N(χ(b′)) ∩ S and T̄ ⊆ T
is a set of terminals such that t ∈ T̄ and T̄ ∩ A = ∅. Finally, G′ is the graph obtained from
G by adding a new vertex τ , making τ adjacent to all vertices of T , and removing all edges
between v and vertices in T̄ . Lemma 4.2 will be applied to analyze the event leaf, as well as in
the deterministic algorithm of Section 5.

Lemma 4.2. If b′ is a leaf node of F , then A is a v-τ separator in G′. Further, for any v-τ
separator A′ (in G′) that dominates A, the set (S \A)∪A′ is a subset feedback vertex set of G.

Proof. To see that A is a v-τ separator in G′ observe that NG′(χ(b′)) = A and that χ(b′)∩T = ∅.
We now move to the second statement, namely that (S \A)∪A′ is a subset feedback vertex set
of G.

Suppose not. Then G − ((S \ A) ∪ A′) contains a T -cycle C. Let L′ be the set of vertices
reachable from v in G′ −A′, plus A′. Let R′ = (V (G′) \ L′) ∪A′. (L′, R′) is a separation in G′,
since L′ \R′ are exactly the vertices reachable from v, while R′ \L′ are the vertices not reachable
from v in G′−A′. A key observation is that since A′ dominates A, we have that χ(b′) ⊆ L′ \R′
and that A \A′ ⊆ L′ \R′.

All edges of G that are not in G′ are incident to v. Let L = L′ ∪ {v} and R = R′ ∪ {v}, it
follows that (L,R) is a separation in G. Since G − S has no T -cycles it follows that C must
contain some vertex of A \A′. We know that A \A′ ⊆ L′ \R′ = L \R. Furthermore, since C is
a T -cycle, C must contain a terminal z. Since A′ separates v from τ it follows that L′ ∩T ⊆ A′.
Since v is not a terminal it follows that L∩T ⊆ A′. Since C is disjoint from A′ this means that
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z /∈ L, implying that z ∈ R \ L. But then C contains a vertex in L \ R and a vertex in R \ L,
which implies that |C ∩ L ∩R| ≥ 2. However, the only vertex in L ∩R which is not in A′ is v,
contradicting that C ∩A′ = ∅.

Lemma 4.3 will be applied to analyze the event deg2 ∨ adj.

Lemma 4.3. If t has a unique effective descendant t′, b′ is adjacent to χ−(t′) (in F ), v is
adjacent to t′ and t′ is in T̄ , we conclude the following. A is a v-τ separator in G′. Further, for
any v-τ separator A′ (in G′) that dominates A, (S \A)∪A′ is a subset feedback vertex set of G.

The proof of Lemma 4.3 is identical (word by word!) to the proof of Lemma 4.2, and
therefore omitted.

For the last lemma statement we need to change the definition of A. Suppose t has a unique
effective descendant t′, b′ is adjacent to χ−(t′) (in F ), v is non-adjacent to t′. Let y be the
unique neighbor of t′ in χ(b′). We define Q to be the set of vertices reachable from v (including
v) in G− (S ∪ {y, t}), and define A = N(Q) \ {y, t}. Just as before, T̄ ⊆ T is a set of terminals
such that t ∈ T̄ and T̄ ∩ A = ∅. Finally, G′ is the graph obtained from G by adding a new
vertex τ , making τ adjacent to all vertices of T , and removing all edges between v and vertices
in T̄ . Lemma 4.4 will be applied to analyze the event deg2 ∨ nadj.

Lemma 4.4. If t has a unique effective descendant t′, b′ is adjacent to χ−(t′) (in F ), v is
non-adjacent to t′ and t′ is in T̄ , we conclude the following. Let y be the unique neighbor of t′

in χ(b′). Then A ∪ {y} is a v-τ separator in G′. Further, for any v-τ separator A′ (in G′) that
dominates A∪{y}, if A′ ∩ T̄ = ∅ then y ∈ A′ and (S \A)∪ (A′ \ {y}) is a subset feedback vertex
set of G.

Proof. To see that A ∪ {y} is a v-τ separator in G′ observe that the set of vertices reachable
from v in G′ \ (A ∪ {y}) is exactly Q and that Q ∩ T = ∅. We now show that y ∈ A′. We have
that G′[Q] is connected, and contains a neighbor of y, since G′[χ(b′)] is connected. Since A′

dominates A ∪ {y}, all vertices in Q are reachable from v in G−A′. Since t′ ∈ T̄ we have that
t′ /∈ A′. If y /∈ A′ then there is a path from v to τ in G′ −A′; via Q to y, then to t′ by the edge
yt′ and finally to τ . This contradicts that A′ separates v from τ . We conclude that y ∈ A′, and
proceed to the last statement, namely that (S \ A) ∪ (A′ \ {y}) is a subset feedback vertex set
of G.

Suppose not. Then G − ((S \ A) ∪ A′) contains a T -cycle C. Let L′ be the set of vertices
reachable from v in G′ − A′, plus A′. Let R′ = (V (G′) \ L′) ∪ A′. (L′, R′) is a separation in
G′, since L′ \ R′ are exactly the vertices reachable from v, while R′ \ L′ are the vertices not
reachable from v in G′−A′. A key observation is that since A′ dominates A∪{y}, we have that
Q ⊆ L′ \R′ and that A \A′ ⊆ L′ \R′.

All edges of G that are not in G′ are incident to v. Let L = L′ ∪ {v} and R = R′ ∪ {v}, it
follows that (L,R) is a separation in G. Since G − S has no T -cycles it follows that C must
contain some vertex of A \ (A′ \ {y}) = A \ A′. We know that A \ A′ ⊆ L′ \ R′ = L \ R.
Furthermore, since C is a T -cycle, it must contain a terminal z. Since A′ separates v from τ in
G′ it follows that L′ ∩ T ⊆ A′. Since v is not a terminal it follows that L ∩ T ⊆ A′. Since C is
disjoint from A′ \{y} and y is not a terminal, this means that z /∈ L, and hence z ∈ R\L. Thus
C contains a vertex in L \ R and a vertex in R \ L, implying that |C ∩ L ∩ R| ≥ 2. However,
the only two vertices in L ∩R which are not in A′ \ {y} are v and y. Thus C ∩ L ∩R = {v, y}.

It follows that C contains path P from v to y with at least one internal vertex, and all of its
internal vertices in R \ L. The internal vertices of P are disjoint from S \ A and disjoint from
A \ A′, since A \ A′ ⊆ L. Thus P is disjoint from S. However, all paths between v and y in
G \ S with at least one internal vertex must intersect Q \ {v}. But Q ⊆ L, contradicting that
the internal vertices of P are disjoint from L.
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4.2 Final Analysis of Algorithm SolveSFVS

Recall that in order to lower bound the success probability of Algorithm SolveSFVS, all that
remained was to lower bound P [success | line18 ∧ t ∈ Tg ∧ v ∈ C]. Thus we consider the case
that t ∈ Tg and that v ∈ C (C is the set of non-terminal children of t in F ). This case is split
in three subcases: leaf, deg2 ∧ adj, and deg2 ∧ nadj. In all cases the algorithm selects a subset
T̄ ⊆ T as follows, t is in T̄ , and every other terminal is put into T̄ with probability 1− β. We
now consider these cases one by one.

4.2.1 Handling the subcase v ∈ C ∧ leaf

First we lower bound P [success | line18∧t ∈ Tg∧v ∈ C∧leaf]. In this case, let A = N(χ(b′))\{t}.
Since v is in a T -cycle we have that |A| ≥ 1. The probability that A∩ T̄ = ∅ is β|A∩T |. Assume
now that A ∩ T̄ = ∅. The algorithm defines G′, and G′ is exactly the graph defined in the
beginning of Section 4.1. By Lemma 4.2, A is a v-τ separator in G′. Furthermore A∩ T̄ = ∅ so
A is a v-({τ}∪ T̄ ) separator in G′. Hence, either there exists an important v-({τ}∪ T̄ ) separator
A′ which dominates A, or A is itself an important v-({τ} ∪ T̄ ) separator in G′. In this case we
let A′ = A. In either case, by Lemma 4.2, (S \ A) ∪ A′ is a subset feedback vertex set of G of
size at most |S| ≤ k. Furthermore, since A′ dominates A and separates v from τ , it follows that
A ∩ T ⊆ A′.

The algorithm samples an important v-({τ}∪T̄ ) separator A? using Lemma 2.2, with deletion
probability p. By Lemma 2.2 the probability that A? = A′ is at least p|A|(1 − p)|A|−λ, where
λ = λG′(v, {τ} ∪ T̄ ) ≥ 1 since v is in a T -cycle.

At this point we distinguish between two cases, either λ = 1, or λ ≥ 2. We consider first the
case where λ = 1. In this case there exists a vertex z that separates v from τ in G′. Let C be the
connected component of G′ − z that contains v. We prove that z is a terminal vertex. Suppose
not, since v has degree at least 3 (in G) by Lemma 3.5, and the only potential neighbors of
v outside of {t, z} are in C, v has a neighbor u in C. But then u is separated (in G) from T
by {v, z} contradicting the conclusion of Lemma 3.5 that u has three internally vertex disjoint
paths to T . We conclude that z is a terminal vertex.

The set {z} is a v-({τ} ∪ T̄ ) separator, and since z is a terminal, {z} is an important v-
({τ} ∪ T̄ ) separator of size λG′(v, {τ} ∪ T̄ ). By Lemma 2.3 every important v − ({τ} ∪ T̄ )
separator Â (except {z}) covers {z}. Consider an important v− ({τ}∪ T̄ ) separator Â. If z ∈ Â
then Â = {z} since Â is a minimal v − ({τ} ∪ T̄ ) separator. But if z /∈ Â then z is reachable
from v in G′ \ Â, since Â covers {z}. But z is adjacent to τ , contradicting that Â separates v
from τ . We conclude that {z} is the only important v − ({τ} ∪ T̄ ) separator, of any size.

Thus, if λ = 1 we have that A? = A′ = {z}. By Lemma 4.2 the set S? = (S \ A) ∪ A? is
a subset feedback vertex set of G, and |S?| ≤ |S| ≤ k. Since |A?| = 1 the algorithm calls itself
recursively on (G−A?, T \A?, k − |A?|), which is a “yes” instance since A? ⊆ S?.

By the induction hypothesis the recursive call outputs succeed with probability at least γk−1.
Hence,

P [success | line18 ∧ t ∈ Tg ∧ v ∈ C ∧ leaf ∧ λ = 1] ≥ β · γk−1 (10)

We now consider the case that λ ≥ 2. Thus the probability that A? = A′ is at least
p|A|(1− p)|A|−2. If A? = A′ then we conclude that S? = (S \A)∪A? is a subset feedback vertex
set of size at most k. Assume now that A? = A′. Note that since λ ≥ 2, |A?| ≥ 2.

At this point we distinguish between two cases, either A ⊆ T or not. We first consider
the case that A is not a subset of T . If A? ⊆ T then the algorithm calls itself recursively on
(G−A?, T \A?, k−|A?|), which is a “yes” instance since A? ⊆ S?. By the induction hypothesis
the recursive call outputs succeed with probability at least γk−|A

?|. If A? \ T 6= ∅ then the
algorithm picks a random y? ∈ A? \ T , and calls itself recursively on (G− (A? \ {y?}), T \ (A? \
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{y?}), k − |A?|+ 1), which is a “yes” instance since A? ⊆ S?. By the induction hypothesis the
recursive call outputs succeed with probability at least γk−|A

?|+1. Thus, in either case (A? ⊆ T
or A? * T ) the recursive call outputs succeed with probability at least γk−|A

?|+1. Thus,

P [success | line18 ∧ t ∈ Tg ∧ v ∈ C ∧ leaf ∧ λ ≥ 2 ∧A * T ] ≥ (11)

≥ β|A∩T | · p|A|(1− p)|A|−2 · γk−|A|+1

≥ β|A|−1 · p|A|(1− p)|A|−2 · γk−|A|+1

Note that in Equation 11 we have |A| ≥ 2.
Consider now the case that A ⊆ T . Since A? = A′ dominates A and separates v from τ we

have that A∩T = A ⊆ A?. Since |A?| ≤ |A| it follows that A? = A, and therefore that A? ⊆ T .
The algorithm calls itself recursively on (G − A?, T \ A?, k − |A?|), which is a “yes” instance
since A? ⊆ S?. By the induction hypothesis the recursive call outputs succeed with probability
at least γk−|A

?|. Hence,

P [success | line18 ∧ t ∈ Tg ∧ v ∈ C ∧ leaf ∧A * T ] ≥ β|A| · p|A|(1− p)|A|−2 · γk−|A| (12)

In Equation 12 we have |A| ≥ 2. To summarize the leaf case, we have:

P [success | line18 ∧ t ∈ Tg ∧ v ∈ C ∧ leaf] ≥ min


β · γk−1

βa−1 · pa(1− p)a−2 · γk−a+1 (a ≥ 2)
βa · pa(1− p)a−2 · γk−a (a ≥ 2)

4.2.2 Handling the subcase v ∈ C ∧ deg2 ∧ adj

Next we lower bound P [success | line18 ∧ t ∈ Tg ∧ v ∈ C ∧ deg2 ∧ adj]. In this case t has an
effective descendant t′ and v is adjacent both to t and to t′. Further, b′ has degree 2 in F , thus
the neighbors of b′ in F are exactly χ−(t) and χ−(t′). Let A = N(χ(b′)) \ {t, t′}. We show that
A 6= ∅.

For a contradiction, suppose A = ∅. Since v has degree at least 3 by Lemma 3.5, and the
only potential neighbors of v outside of A ∪ {t, t′} are in χ(b′), v has a neighbor u ∈ χ(b′). But
then u is separated (in G) from T by v, contradicting the conclusion of Lemma 3.5 that u has
three internally vertex disjoint paths to T . We conclude that A 6= ∅.

The probability that A∩ T̄ = ∅ and that t′ ∈ T̄ is (1−β)β|A∩T |. Assume now that A∩ T̄ = ∅
and that t′ ∈ T̄ . The algorithm defines G′, and G′ is exactly the graph defined in the beginning
of Section 4.1. By Lemma 4.3, A is a v-τ separator in G′. Furthermore A ∩ T̄ = ∅ so A is a
v-({τ} ∪ T̄ ) separator in G′. Hence, either there exists an important v-({τ} ∪ T̄ ) separator A′

which dominates A, or A is itself an important v-({τ} ∪ T̄ ) separator in G′. In this case we let
A′ = A. In either case, by Lemma 4.3, (S \ A) ∪ A′ is a subset feedback vertex set of G of size
at most |S| ≤ k. Furthermore, since A′ dominates A and separates v from τ , it follows that
A ∩ T ⊆ A′.

The algorithm samples an important v-({τ}∪T̄ ) separator A? using Lemma 2.2, with deletion
probability p. By Lemma 2.2 the probability that A? = A′ is at least p|A|(1 − p)|A|−λ, where
λ = λG′(v, {τ} ∪ T̄ ). We show that λ ≥ 1. Suppose not, then the connected component of
G′ = G \ {vt, vt′} that contains v does not contain any terminals. Since the degree of v is at
least 3 in G, v has a neighbor u in this component. But then v separates u from T contradicting
that u is in a T -cycle. Thus the probability that A? = A is at least p|A|(1− p)|A|−1. If A? = A′

then we conclude that S? = (S \ A) ∪ A? is a subset feedback vertex set of size at most k.
Assume now that A? = A′

Since both t and t′ are in T̄ ∩ N(v), the algorithm calls itself recursively on (G − A?, T \
A?, k−|A?|), which is a “yes” instance since A? ⊆ S?. By the induction hypothesis the recursive
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call outputs succeed with probability at least γk−|A
?|. Hence,

P [success | line18 ∧ t ∈ Tg ∧ v ∈ C ∧ deg2 ∧ adj] ≥ (1− β)βa · pa(1− p)a−1 · γk−a (a ≥ 1)

4.2.3 Handling the subcase v ∈ C ∧ deg2 ∧ nadj

Now we lower bound P [success | line18∧t ∈ Tg∧v ∈ C∧deg2∧nadj]. In this case t has an effective
descendant t′ and v is adjacent to t, but not to t′. Then by Observation 3.2 t′ has exactly one
neighbor in χ(b′), call this neighbor y. Further, b′ has degree 2 in F , thus the neighbors of
b′ in F are exactly χ−(t) and χ−(t′). We define Q to be the set of vertices reachable from v
(including v) in G − (S ∪ {y, t}), and define A = N(Q) \ {y, t}. Observe that Q ⊆ χ(b′). We
show that A 6= ∅.

For a contradiction, suppose A = ∅. Since v has degree at least 3 by Lemma 3.5, and the
only potential neighbors of v outside of A ∪ {t, y} are in Q, v has a neigbors u ∈ Q. We have
that u is separated (in G) from T by {y, v}, contradicting the conclusion of Lemma 3.5 that u
has three internally vertex disjoint paths to T . We conclude that A 6= ∅.

The probability that A∩ T̄ = ∅ and that t′ ∈ T̄ is (1−β)β|A∩T |. Assume now that A∩ T̄ = ∅
and that t′ ∈ T̄ . The algorithm defines G′, and G′ is exactly the graph defined right before
the statement of Lemma 4.4. By Lemma 4.4, A ∪ {y} is a v-τ separator in G′. Furthermore
(A ∪ {y}) ∩ T̄ = ∅ so (A ∪ {y}) is a v-({τ} ∪ T̄ ) separator in G′. Hence, either there exists an
important v-({τ}∪T̄ ) separator A′ which dominates (A∪{y}), or (A∪{y}) is itself an important
v-({τ} ∪ T̄ ) separator in G′. In this case we let A′ = (A ∪ {y}). In either case, by Lemma 4.4,
y ∈ A′ and (S \ A) ∪ (A′ \ {y}) is a subset feedback vertex set of G of size at most |S| ≤ k.
Furthermore, since A′ dominates A ∪ {y} and separates v from τ , it follows that A ∩ T ⊆ A′.

The algorithm samples an important v-({τ}∪T̄ ) separator A? using Lemma 2.2, with deletion
probability p. By Lemma 2.2 the probability that A? = A′ is at least p|A|(1 − p)|A|−λ, where
λ = λG′(v, {τ} ∪ T̄ ). We show that λ ≥ 2.

Suppose not, then there exists a vertex z that separates v from {τ} ∪ T̄ in G′. Since t′ ∈ T̄
and G′[Q∪{y, t′}] is a connected set containing both v and t′ it follows that z ∈ Q∪{y}, which
means that z is not a terminal. Let C be the connected component of G′ \ z that contains v,
since v has degree 3 or more in G (by Lemma 3.5), v has at least one neighbor u /∈ {t, z}. Then
u ∈ C and so u is a non-terminal. But then u is a non-terminal separated in G from T by {v, z}
contradicting the conclusion of Lemma 3.5 that u has three internally vertex disjoint paths to
T . We conclude that λ ≥ 2. Thus the probability that A? = A′ is at least p|A|+1(1− p)|A|−1. If
A? = A′ then we conclude that S? = (S \A) ∪ (A? \ {y}) is a subset feedback vertex set of size
at most k. Assume now that A? = A′.

Since t is the only terminal neighbor of v except for the terminals in A, v has exactly one
neighbor in T̄ . Further, y ∈ A′ = A? so A? contains at least one non-terminal. Finally we
showed that λG′(v, {τ} ∪ T̄ ) ≥ 2 and therefore |A?| ≥ 2. It follows that the algorithm proceeds
to line 24 where it picks a non-terminal vertex y? ∈ A? \ T . With probability 1

|A?\T | the vertex

y? is equal to y. Since A ∩ T ⊆ A? it follows that 1
|A?\T | ≥

1
|A\T |+1 . Assume now that y? = y.

At this point the algorithm calls itself recursively on (G − (A? \ {y?}), T \ (A? \ {y?}), k −
|A?| + 1), which is a “yes” instance since (A? \ {y}) ⊆ S?. By the induction hypothesis the
recursive call outputs succeed with probability at least γk−|A

?|+1 = γk−|A|. Let a = |A| and
r = |A ∩ T |, then

P [success | line18 ∧ t ∈ Tg ∧ v ∈ C ∧ deg2 ∧ nadj] ≥ (1− β)βr · pa+1(1− p)a−1 · γk−a

a− r + 1

Here a and r must satisfy a ≥ 1 and a ≥ r ≥ 0.
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4.2.4 Completing the proof of Lemma 4.1 and the randomized algorithm for Sub-
set FVS

Since the three cases leaf, deg2 ∨ adj and deg2 ∨ nadj are exhaustive if the algorithm reaches line
18, t ∈ Tg and v ∈ C, the following inequalty summarizes the bounds for P [success | line18 ∧ t ∈
Tg ∧ v ∈ C]

P [success | line18 ∧ t ∈ Tg ∧ v ∈ C] ≥ min



β · γk−1

βa−1 · pa(1− p)a−2 · γk−a+1 (a ≥ 2)
βa · pa(1− p)a−2 · γk−a (a ≥ 2)
(1− β)βa · pa(1− p)a−1 · γk−a

(1− β)βr · pa+1(1− p)a−1 · γk−a

a−r+1 (a ≥ r ≥ 0)

Here a ≥ 1 in all inequalities, unless a ≥ 2 is specified. Inserting this into the Equation 9 yields
the following bounds for P [success].

P [success] ≥ min



1
2 · (1− αt) · γ

k−1

1
12 · αt · γ

k−1

1
4 · αt · (1− αv) · γ

k−1

1
4 · αt · αv · β · γ

k−1

1
4 · αt · αv · β

a−1 · pa(1− p)a−2 · γk−a+1 (a ≥ 2)
1
4 · αt · αv · β

a · pa(1− p)a−2 · γk−a (a ≥ 2)
1
4 · αt · αv · (1− β)βa · pa(1− p)a−1 · γk−a
1
4 · αt · αv · (1− β)βr · pa+1(1− p)a−1 · γk−a

a−r+1 (a ≥ r ≥ 0)

Here a ≥ 1 unless a ≥ 2 is specified. In order to complete the inductive proof of Lemma 4.1 we
need to prove that the right hand side is at least γk. At this point we plug in the following values
for the probability constants in the algorithm: αt = 0.92, αv = 0.83, β = 0.48 and p = 0.91.
Recall that γ = 1

25.6 . For the first four bounds, we get the following outcome.

1

2
· (1− αt) · γk−1 ≥ γk · (25.6 · 1

2
· (1− 0.92)) ≥ γk

1

12
· αt · γk−1 ≥ γk · (25.6 · 1

12
· 0.92) ≥ γk

1

4
· αt · (1− αv) · γk−1 ≥ γk · (25.6 · 1

4
· 0.92 · (1− 0.83)) ≥ γk

1

4
· αt · αv · β · γk−1 ≥ γk · (25.6 · 1

4
· 0.92 · 0.83 · 0.48) ≥ γk

For the next bound, we have

1

4
· αt · αv · βa−1 · pa(1− p)a−2 · γk−a+1 ≥

≥ γk · (25.6 · 0.48 · 0.91 · (1− 0.91))a−1 · 0.92 · 0.83

4
· 0.91

1− 0.91

≥ γk

In the last transition we used that a ≥ 2. Similarly, for the third last bound we have

1

4
· αt · αv · βa · pa(1− p)a−2 · γk−a ≥

≥ γk · (25.6 · 0.48 · 0.91 · (1− 0.91))a · 0.92 · 0.83

4
· 1

(1− 0.91)2

≥ γk
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Again, in the last transition we used that a ≥ 2. For the second to last bound have

1

4
· αt · αv · (1− β)βa · pa(1− p)a−1 · γk−a ≥

≥ γk · (25.6 · 0.48 · 0.91 · (1− 0.91))a · 0.92 · 0.83

4
· 1− 0.48

1− 0.91

≥ γk

For the last bound we obtain the following expression.

1

4
· αt · αv · (1− β)βr · pa+1(1− p)a−1 · γk−a

a− r + 1
≥

≥ γk · (25.6 · 0.91 · (1− 0.91))a · 0.48r

a+ 1− r
· 0.92 · 0.83

4
· (1− 0.48) · 0.91

1− 0.91

≥ γk · (25.6 · 0.48 · 0.91 · (1− 0.91))a · 0.92 · 0.83

4
· (1− 0.48) · 0.91

1− 0.91

≥ γk

We conclude that P [success] ≥ γk, which proves Lemma 4.1 .
Having Lemma 4.1 at hand we are ready to prove the main result of this section.

Theorem 3. There is a O(25.6k ·kO(1) · (n+m)) time algorithm for Subset FVS. If the input
instance is a “no” instance the algorithm outputs fail, if the input instance is a “yes” instance
the algorithm outputs succeed with probability at least 1− 1

e .

Proof. The algorithm simply runs Algorithm SolveSFVS 25.6k times on the input instance.
If either of these runs result in a succeed, then the algorithm outputs succeed. If all of the
runs of SolveSFVS return fail, the algorithm returns fail. The running time bound for this
algorithm follows directly from the running time bound of Algorithm SolveSFVS. Further, since
SolveSFVS always returns fail on “no” instances, this algorithm will also always output fail on
“no” instances.

Consider now a run of this algorithm on a “yes” instance. By Lemma 4.1 the probaility that
a particular run of SolveSFVS returns fail is at most (1− 1

γk
), where γ = 25.6. The probability

that all 25.6k runs return fail is at most (1 − 1
25.6k

)25.6k ≤ 1
e . Thus the probability that the

algorithm returns succeed is at least 1− 1
e , as claimed.

5 A deterministic linear time algorithm for Subset FVS

In this section we design a deterministic algorithm for Subset FVS running in time 2O(k log k) ·
(m + n). This algorithm could be thought of as a weak derandomization of the algorithm
presented in the previous section. The algorithm uses the structural properties developed in
the previous sections for the randomized algorithm. The main ingredient of the algorithm is
a “deterministic sampling subroutine”, that outputs a set of size polynomial in k, and whose
intersection with any subset-fvs of size at most k is non-empty.

5.1 Finding nice independent sets

In this section we introduce the notion of “nice independent sets” which form the crucial in-
gredient in the sampling lemma we prove in the next section. The independent sets that we
define have the following important property. Either they intersect a solution or there are many
vertex disjoint paths from them to some subset-fvs of size at most k avoiding a large piece of
the graph, that themselves have large flow between vertices of the independent set. These are
crucially used in the sampling algorithm.
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Definition 5.1. Let G be a graph, I ⊆ V (G) be an independent set and γ be a positive integer.
We say that I is γ-separating if for any pair of vertices x, y in I, we have that λG(x, y) ≤ γ.

Definition 5.2. Let G be a graph and I ⊆ V (G). The closure of I in G is an induced subgraph,
denoted by closure(I,G), obtained by taking the union of connected components of G − I that
have at least two neighbors in I.

Definition 5.3. Let G be a graph, X ⊆ V (G), I be an independent set in G − X and δ be a
positive integer. We say that I is a δ-nice independent set with respect to X, if there exists a
subset I∗ ⊆ I that satisfies the following properties.

• |I∗ = {w1, . . . , w`}| ≥ δ.

• There exists an induced subgraph H of G − X containing I∗ such that for any partition
(A,B) of I∗ we have that λH(A,B) = λG−X(A,B).

• There exists a family of paths Pi = wi · · · bi, i ∈ {1, . . . , `}, such that bi ∈ X. Let P ′i
denote the subpath of Pi that contains all but the last vertex, then the family of paths P ′i ,
i ∈ {1, . . . , `}, are pairwise disjoint and Z = ∪`i=1V (P ′i ) \ I∗ does not intersect V (H).
That is, Z ∩ V (H) = ∅.

We say that I∗ certifies the niceness of I.

In what follows we prove the existence of big nice independent sets.

Lemma 5.1. Let (G,T, k) be an instance of Subset FVS, T̃ ⊆ T be a set of terminals with
degree at least 3 in G and let G be reduced. Then in time O(|T̃ |2k(m + n)), either we output
a (k + 1)-separating independent set I ⊆ T̃ , such that for any subset-fvs S of size at most k
that is disjoint from T̃ , I is a δ-nice independent set with respect to S; or report that every S

intersects T̃ . Here, δ = |T̃ |
4 .

Proof. We first test whether G[T̃ ] is a forest. If G[T̃ ] is not a forest then we report that every
S intersects T̃ . So from now onwards we assume that G[T̃ ] is a forest. We find a maximum
independent set, say I, in G[T̃ ]. Since G[T̃ ] is a forest, we can find I in linear time. Furthermore,
since G[T̃ ] is a forest, and hence bipartite, we have that |I| ≥ |T̃ |/2. We first show that I is a
(k + 1)-separating independent set or every S intersects T̃ . Suppose there exists a subset-fvs S
that is disjoint from T̃ . Then for every pair of vertices x, y ∈ I, there is at most one internally
vertex disjoint path between them in G − S and thus x can be disconnected from y in G − S
with at most one vertex z (here z /∈ {x, y}). Thus x can be disconnected from y in G by deleting
S∪{z}. This implies that λG(x, y) ≤ k+1. So if there exists a subset-fvs S that is disjoint from
T̃ we have that I is a (k+ 1)-separating independent set. Thus, given I, we check for every pair
of vertices x, y ∈ I whether λG(x, y) ≤ k + 1. If for any pair we have that λG(x, y) > k + 1 we
report that every S intersects T̃ . This task can be carried out in time O(|T̃ |2k(m + n)) using
Proposition 2.4.

Let S be an arbitrary subset-fvs of size at most k that is disjoint from T̃ . We will show that
I is a δ-nice independent set with respect to S. Let G∗ = G − S. Consider a terminal forest
(F, χ) of G∗ with respect to I. Let Q ⊆ I be the set of good terminals, that is, a subset of I
that have at most one effective descendant in F . By Observation 3.4 we have that |Q| ≥ |I|/2.
Let closure(Q,G − S) be the closure of Q in G − S. Define H = G∗[V (closure(Q,G − S) ∪Q].
We need to show that for any partition (A,B) of Q, we have that λH(A,B) = λG∗(A,B). To
prove this it is sufficient to show that no vertex in V (G∗) \ V (H) appears on any path between
a vertex in A and a vertex in B in G∗. Suppose that this is not the case and let P be a path
between a vertex in A and a vertex in B in G∗ that violates this property. That is, P is a
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path from a vertex x in A to a vertex y ∈ B, and there is a vertex w on P that is also in
V (G∗)\V (H). Since x, y ∈ Q, there is a subpath P ′ of P such that the end vertices belong to Q
and all the internal vertices belong to V (G∗) \V (H). But this implies that the internal vertices
are connected and have two neighbours in Q and thus should be the part of closure(Q,G− S),
a contradiction. This proves the claim that λH(A,B) = λG∗(A,B).

For every vertex in q ∈ Q we associate a set of vertices Aq ⊆ V (G∗) \ V (closure(Q,G− S))
such that G[Aq] is connected.

• If |N(q) ∩ S| ≥ 1 then Aq = {q}.

• So assume now that N(q) ∩ S = ∅. Let τ = χ−1(q). Since q has at most one effective
descendant in F and has degree at least three in G, there is one child of τ , say uq, such
that χ(uq) ∩ I = ∅. We set Aq = χ(uq). By the properties of terminal forests we have
that G[Aq] is connected. Furthermore, observe that G[Aq] is a connected component of
G∗ \ {q} and thus V (Aq) does not intersect with V (closure(Q,G− S)).

Observe that by our construction, the sets {Aq | q ∈ Q} are pairwise disjoint. Next we claim
that for every vertex q ∈ Q there is a vertex vq (could be equal to q itself) in Aq such that
|N(vq) ∩ S| ≥ 1. Towards a contradiction assume that N(Aq) ∩ S = ∅. Let x be the unique
neighbor of q in Aq (recall that if q will have two neighbours then it would imply a T -cycle in
G−S). However, this implies that xq is a bridge in G and hence Reduction Rule 3.1 would have
been applicable; a contradiction to the assumption that G is reduced. Now for every q ∈ Q,
we define the path Pq as follows. Let bq denote a neighbour of vq in S and Lq denote the path
from uq to vq in G[Aq] and let the path Pq = qLqbq. Let P ′q, q ∈ Q, denote the subpath of Pq
that contains all but the last vertex bq, then the family of paths P ′q, i ∈ {1, . . . , `}, are pairwise

disjoint and Z = ∪`q∈QV (P ′q) \Q does not intersect V (H). This completes the proof.

Now we prove the lemma for the case when the set of degree 2 terminals is large.

Lemma 5.2. Let (G,T, k) be an instance of Subset FVS, T̃ ⊆ T be a set of degree 2 terminals

and let G be reduced. Then in time 2O(|T̃ |)(m + n), either we output five (k + 1)-separating
independent sets I1, I2, I3, I4 and I5 in N(T̃ ) such that for any subset-fvs S of size at most k
that is disjoint from N [T̃ ], there exists a j ∈ {1, 2, 3, 4, 5} such that Ij is a δ-nice independent

set with respect to S; or report that every S intersects N [T̃ ]. Here, δ = |T̃ |
40 .

Proof. We first add an edge between a pair of vertices a, b ∈ N(T̃ ) if λG(a, b) ≥ k + 2. Let
G′ denote this supergraph. Observe that, using Proposition 2.4, we can construct G′ in time
O(|T̃ |2k(m + n)). The reason we construct G′ is that it ensures that any independent set in
G′[N [T̃ ]] has the property that it is a (k + 1)-separating independent set in G. We start with
the following claim.

Let G∗ = G− S. Consider a terminal forest (F, χ) of G∗ with respect to T̃ . Each tree Fi in
F is rooted at ri ∈ V (Fi). Let R = {r1, . . . , r`} denote the set of roots. Let T̃good be the subset
of T̃ that consists of good terminals (that is, they have at most one effective descendant in T̃ ).

By Observation 3.4 we have that |T̃good| ≥
˜|T |
2 . Let ut and vt denote the neighbors of t ∈ T̃good.

Note that χ−1(ut) 6= χ−1(vt), else we will have T -cycle in G[{t} ∪ χ(χ−1(ut))] ⊆ G − S. This
implies that either χ−1(ut) is a child of χ−1(t) or χ−1(vt) is a child of χ−1(t). Now for every
vertex t ∈ T̃good we associate a neighbor ut such that h = χ−1(ut) is a child of χ−1(t). We denote
ut by sph. Observe that if χ−1(t) is not in R then it has a unique child. Let X = {ut | t ∈ T̃good}
and I∗ = {χ−1(w) | w ∈ X}. Given Y , it would be easier to work with the following definition
of X. That is, I∗ = {sph | h ∈ Y }. We first show that I∗ is an independent set.

Claim 5.1. G′[I∗] is an independent set and |I∗| ≥
˜|T |
2 .
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Proof. We first show that G[I∗] is an independent set. Before prove the main claim, we collect
two useful facts.

1. The graph G is reduced and thus N(T̃ ) ∩ T = ∅ and thus I∗ ∩ T = ∅.
2. Since every child has a unique parent, for any pair of vertices x, y ∈ I∗, we have that
χ−1(x) 6= χ−1(y).

Next we show the desired claim. Suppose I∗ is not an independent set, then this implies
that there exist vertices x, y ∈ I∗ such that xy is an edge. Since, x, y /∈ T , by the properties of
(F, χ), there exists some b ∈ V (H) such that x, y ∈ χ(b). Since χ partitions V (G∗) this would
imply that χ−1(x) = χ−1(y), a contradiction. This implies that I∗ is an independent set.

For every pair of vertices x, y ∈ I∗, there is at most one internally vertex disjoint path
between them in G∗ and thus we can disconnect x from y with at most one vertex, say z,
that is not equal to x and y (this exists as there is no edge between x and y). Hence, we can
disconnected x from y in G by deleting S ∪ {z}. This implies that λG(x, y) ≤ k + 1, and thus
xy /∈ E(G′). From this we conclude that I is an independent set in G′ as well.

The size bound on |I∗| follows from the fact that |T̃good| ≥
˜|T |
2 .

For every, h ∈ Y , let border(h) denote the vertices in χ(h) that have neighbors in V (G∗) \
χ(h). By the properties of terminal forests and by the definitions of sph we have the following.

Observation 5.1. For every h ∈ Y , |border(h)| ≤ 2 and sph ∈ border(h).

Let h ∈ Y , such that |border(h)| = 2 and let δh = border(h) \ {sph}. We now define an
auxilliary graph Gh as follows. We start with the graph G[χ(h)]. Let τ and τS be two new
vertices. Add directed edge from a vertex in N(S) ∩ χ(h) to τS , add the directed edge (δh, τ)
and finally add the directed edge (τS , τ). Of course for edges, say uv, for which no direction is
specified, we have directed edges (u, v) and (v, u). Now we have the following claim.

Claim 5.2. Let h ∈ Y , such that |border(h)| = 2. Then either |N(sph) ∩ S| ≥ 1 or there are
two vertex disjoint paths from sph to τ in Gh.

Proof. Assume that N(sph)∩S = ∅. Since G[χ(h)] is connected, there exists a path, say P , from
sph to δh. Let (FT , χT ) denote a terminal forest of G−S with respect to T . Of course, (F, χ) is
a terminal forest of G− S with respect to T̃ . Let h′ ∈ V (FT ) such that sph ∈ χT (h′). Clearly,
χT (h′) ⊆ χ(h). (It could be very well be true that χT (h′) = χ(h).) Observe that χT (h′)∩T = ∅
and let δh′ denote the last vertex on P from χT (h′).

Let t denote the terminal in T̃good such that χ−1(sph) is a child of χ−1(t). Since t is good,
there exists at most one other terminal say t′ (in our case exactly one) such that χ−1(sph) is a
parent of χ−1(t). Furthermore, t′ is a neighbor to δh. Let h′′ be the child of h′ such that χ−1

T (t′)
is a node in the subtree of FT rooted at h′′. We denote this tree by FT (h′′).

Notice that 1 ≤ λGh
(sph, τ) ≤ 2. Indeed, deleting δh and τS from Gh disconnects sph from

τ in Gh. This implies that λGh
(sph, τ) ≤ 2. For the other inequality notice that Pτ is a path

from sph to τ in Gh. For a contradiction assume that there are no two vertex disjoint paths
from sph to τ in Gh. Then, by Menger’s theorem this implies that there exists a vertex w such
that deleting w from Gh disconnects sph from τ in Gh. Clearly, w is on the path P . Now we
distinguish between the following two cases.

1. Suppose w ∈ χT (h′). Let RGh
(sph, w) denote the set of vertices of Gh reachable from sph in

the graph Gh−{w}. We first show that δh′ /∈ RGh
(sph, w). Suppose not, then take a path

to δh′ from sph using vertices from RGh
(sph, w and then go along the path P and reach δh

and then take the edge (δh, τ). This implies that we have shown path from sph to τ that
avoids w, a contradiction. Thus, we have shown that δh′ /∈ RGh

(sph, w), which in turn
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implies that RGh
(sph, w) ∩ χT (V (FT (h′′)) = ∅. Next we show that RGh

(sph, w) ⊆ χT (h′).
Suppose not, then there exists another neighbour h∗ (not equal to h′′) of h′ in FT and
|χT (h∗) ∩ RGh

(sph, w)| ≥ 1. Let xy be the edge such that x ∈ RGh
(sph, w) ∩ χT (h′) and

y ∈ RGh
(sph, w) ∩ χT (h∗). We know that G is reduced and hence every edge participates

in a T -cycle. In particular there is a T -cycle C that intersects S and use the edge xy.
Let P be the path on C from y to a vertex in S such that it does not use the edge xy
and all the internal vertices do not belong to S. Clearly, all the internal vertices of this
path belong to χT (V (FT (h∗))). Here, FT (h∗) denote the subtree of FT rooted at h∗. This
implies that there is a path from sph to τ in Gh that avoids w, a contradiction. Thus, we
assume that RGh

(sph, w) ⊆ χT (h′). We know that sph is a non-terminal and hence it has
degree at least three in G. Furthermore, since none of its neighbours are in S, there exists
a neighbor in RGh

(sph, w), say z, such that z is not equal to t or w. But then w and sph
disconnects z from all the terminals T . This leads to a contradiction that G is reduced,
as Reduction Rule 3.3 is applicable now.

2. Suppose w /∈ χT (h′). We will reduce this to previous case. Since every path from sph
to w must pass through δh′ , we have that RGh

(sph, δh′) ⊆ RGh
(sph, w) and thus δh′ also

separates sph from τ in Gh. However, δh′ ∈ χT (h′) and thus we end up in the previous
case.

This completes the proof of the claim.

Next we prove the following claim.

Claim 5.3. For every h ∈ Y , we have that |N(χ(h)) ∩ S| ≥ 1.

Proof. We distinguish two cases. If |border(h)| = 2 then the claim follows from Claim 5.2. So
assume that |border(h)| = 1. Let t denote the terminal in T̃good such that χ−1(sph) is a child of
χ−1(t). We know that G is reduced and hence every edge participates in a T -cycle. Consider
the edge t sph. In particular there is a T -cycle C that intersects S and uses the edge t sph. Let
P be the path on C from sph to a vertex in S such that it does not use the edge t sph and all the
internal vertices do not belong to S. Since |border(h)| = 1, all the internal vertices of P are in
χ(h) and thus the last vertex on this path has a neighbour in S. This concludes the proof.

Now for every vertex h ∈ H we define two paths Ph and Lh.

• First we deal with the case when |border(h)| = 1. Let guard(h) denote a vertex in χ(h)
such that guard(h)∩S 6= ∅. In this case take Ph = sph and Lh to be a path from guard(h)
to sph with all the internal vertices in χ(h) \Ph.

• Now assume that |border(h)| = 2. If |N(sph) ∩ S| ≥ 1 then Ph = sph and Lh = sph.
So assume that N(sph) ∩ S = ∅. Now, by Claim 5.2 we know that there are two vertex
disjoint paths from sph to τ in Gh. Let P1 and P2 denote these paths. By the construction
of Gh one of these paths pass through δh, say P1, define Ph to be the subpath from sph
to δh. Again, by the construction of Gh, the path P2 must have τS on it. Let x and y be
two neighbours of τS on P2, clearly one of them is τ(= x) and the other is some vertex
y ∈ χ(h) such that |N(y)∩S| ≥ 1. Also the subpath of P2, say P ′2, from sph to y is entirely
contained in χ(h). We denote y by guard(h) and let Lh = P ′2.

Let
H = G∗[V (G∗) \

( ⋃
h∈Y

(χ(h) \Ph)
)
].

That is obtain the graph H by deleting vertices of χ(h), h ∈ Y from G∗ but leaving the vertices
of the special path Ph. Next we have to prove the following.
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Claim 5.4. For any partition (A,B) of I∗ we have that λH(A,B) = λG∗(A,B).

Proof. Since H is a subgraph of G∗, we have that λH(A,B) ≤ λG∗(A,B). Next we show
the other direction of the proof. That is, λH(A,B) ≥ λG∗(A,B). Let η = λG∗(A,B). Let
P = {P1, . . . , Pη} be a family of vertex disjoint paths in G∗, between A and B, such that the
number of vertices outside V (H) is minimised. That is |(∪ηi=1V (Pi))\V (H)| is minimum among
all η sized family of pairwise vertex disjoint paths between A and B in G∗. Since λH(A,B) <
λG∗(A,B), there exists a path, say P ∈ P such that there exists a vertex w ∈ V (P ) \ V (H).
This implies that there exists a h ∈ Y such that w ∈ (χ(h)\Ph). Also, note that w /∈ border(h).
Thus, w is an internal vertex on P and both its neighbors belong to χ(h). This in turn implies
that P contains both the vertices of border(h). In fact, P contains a subpath, say P ′, with
its endpoints being the vertices in border(h) and w belongs to this path. Since the paths in P
are pairwise vertex disjoint and |border(h)| = 2, we have that P is the only path that contains
vertices from χ(h). Now we replace the subpath P ′ by Ph and obtain a path P ∗. Clearly,
P ′ = (P ∪ {P ∗}) \ {P} is a family of pairwise vertex disjoint paths and the number of vertices
from outside V (H) is strictly smaller than |(∪ηi=1V (Pi))\V (H)|. This contradicts the minimality
of our choice of family of paths. From this, we conclude that there exists a family of vertex
disjoint paths between A and B in G∗ of size λG∗(A,B) such that all the vertices on these
paths belong to V (H). From this we conclude that λH(A,B) ≥ λG∗(A,B). This completes the
proof.

Clearly, by our construction the family of paths Q = {Lh | h ∈ Y } satisfies the last property
in the definition of nice independent sets.

If there exists a subset-fvs S that is disjoint from N [T̃ ] then by Claim 5.1 we know that

G′[N [T̃ ]] has |T̃ |2 -nice independent set I∗ with respect to S. Let W = N(T̃ ), we know that

|W | ≤ 2|T̃ |. Next we give an algorithm that either reports that there is no subset-fvs that is
disjoint from N [T̃ ] or find an independent set that contains large fraction of I∗. Towards this
we do as follows.

For i = 1 to 5 do as follows:

• If W 6= ∅, find a maximum independent set Ii in G′[W ] and set W := W − Ii;
else return Ii as an empty set.

Set |W | = ∆ and let I1, . . . , I4, I5 be the set of independent sets. If |I1| < ∆
4 then we

conclude that there is no subset-fvs of size at most k that is disjoint from N [T̃ ]. This follows
from Claim 5.1. Indeed, if there is a subset-fvs of size at most k thenG′[N [T̃ ]] has an independent
set of size at least |T̃ | and hence of size at least ∆

4 . From now onwards we assume that |I1| ≥ ∆
4 .

Next we have the following claim.

Claim 5.5. There exists j ∈ {1, 2, 3, 4, 5} such that |Ij ∩ I∗| ≥ |T̃ |40 .

Proof. For i ≥ 2, we say that Ii is good if |Ii| ≥ ∆
4 −

(i−1)∆
40 . It could be the case that all the

independent sets are good. We know that |I∗| ≥ ∆
4 . Since every independent set is good, the

number of vertices of W they cover is at least
∑5

i=1(∆
4 −

(i−1)∆
40 ) ≥ ∆ and thus some independent

sets cover at least |I
∗|
5 ≥

∆
20 ≥

|T̃ |
20 vertices of I∗. Now let i ≥ 2 be the first integer such that

|Ii| < ∆
4 −

(i−1)∆
40 . This implies that at least ∆

4 − (∆
4 −

(i−1)∆
40 ) = (i−1)∆

40 vertices of I∗ are

distributed among I1, . . . , Ii−1 and hence one of them contains at least ∆
40 ≥

|T̃ |
40 vertices of

I∗.
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Thus, we have shown that one of the independent sets has larger intersection with I∗. We
can find the desired independent sets in time 2O(|T̃ |) by trying all possible subsets of N(T̃ ) and
checking whether they are independent. This concludes the proof of Lemma 5.2.

5.2 Deterministic sampling

In this section we give an algorithm that, given an instance (G,T, k) of Subset FVS with
sufficiently many terminals, finds a set whose size is upper bounded by a polynomial in k, that
intersects with every subset-fvs of size at most k. We first prove a probabilistic statement that
shows that if we have a nice independent set I of large size then for any random partition of
I, any minimum vertex cut between these two parts intersects a subset-fvs of size at most k.
Finally, we use this probabilistic statement to define a scoring scheme on the vertex set of G
and show that the first O(k4) vertices of highest score must intersect every solution of size at
most k.

Lemma 5.3. Let (G,T, k) be an instance of Subset FVS, S be a subset-fvs of size at most k and
I be an independent set such that I is a δ-nice independent set with respect to S. Furthermore,
let (A,B) be a random partition of I. Then, with probability at least 1

2 any minimum vertex cut
C between A and B intersects S. Here δ = 1000k.

Proof. To prove our claim, we first make an auxiliary bipartite graph H with the vertex set
S ∪ I. Now we know that I is a δ-nice independent set with respect to S and hence there exists
a subset I∗ ⊆ I that satisfies the following properties.

• |I∗ = {w1, . . . , w`}| ≥ δ.

• There exists an induced subgraph H̃ of G − S containing I∗ such that for any partition
(A,B) of I∗ we have that λH̃(A,B) = λG−S(A,B).

• There exists a family of paths H = {Pi = wi . . . bi | i ∈ {1, . . . , `}}, such that bi ∈ S. Let
P ′i denote the subpath of Pi that contains all but the last vertex, then the family of paths
P ′i , i ∈ {1, . . . , `}, are pairwise disjoint and Z = ∪`i=1V (P ′i ) \ I∗ does not intersect V (H̃).
That is, Z ∩ V (H̃) = ∅.

We add an edge between wi and bi in the bipartite graph H. Clearly, the number of edges in
H is at least ` ≥ δ.

For subsets X,Y of I such that X ∩ Y = ∅, we define

score(X,Y ) =
∑
v∈S

min{|NH(v) ∩X|, |NH(v) ∩ Y |} =
∑
v∈S

min{dX(v), dY (v)}.

Observe that if (A,B) is a random partition (that is, every vertex is placed in A with probability
1/2) of I then (A∩I∗, B∩I∗) is a random partition of I∗. We denote (A∩I∗, B∩I∗) by (A∗, B∗).
We first show that with probability at least 1/2, score(A∗, B∗) ≥ k+1. This would immediately
imply that with probability at least 1/2, score(A,B) ≥ k + 1.

Let H ′ := H[S ∪ I∗]. With every vertex v ∈ S, we associate a random variable Xv and for
every vertex u ∈ I we associate a random variable Yu. A random variable Yu takes 1 if u ∈ A∗
and 0 otherwise. Let d(v) = dH′(v); that is, the degree of a vertex in the graph H ′. Similarly

define N(v) = NH′(v). Let Xv =
∑

u∈N(v) Yu. Clearly, the expectation of Xv, E[Xv] = d(v)
2 .

Now we do some filtering in S, let S̃ = {v | d(v) ≥ 100}. For every vertex v ∈ S̃, using Chernoff
bounds (see [37, page numbers 70-71, Corollaries 4.9 and 4.10]) we can show that

Pr

(
Xv <

d(v)

10

)
≤ e

−8d(v)2

25d(v)

≤ e
−8×100

25 = e−32.
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We can similarly bound that Pr(Xv >
9d(v)

10 ) ≤ e−32. Let

J =

{
v
∣∣∣ v ∈ S̃ ∧ (

Xv <
d(v)

10
or Xv >

9d(v)

10

)}
.

Let Zv, v ∈ S̃ be a random variable that is 1 if v ∈ J and 0 otherwise. Clearly,

Pr(Zv = 1) = Pr

(
Xv <

d(v)

10
or Xv >

9d(v)

10

)
≤ Pr

(
Xv <

d(v)

10

)
+ Pr

(
Xv >

9d(v)

10

)
≤ 2e−32.

ZJ =
∑

v∈S̃ d(v)Zv be a random variable. Then, the expectation of ZJ ,

E[ZJ ] =
∑
v∈S̃

d(v)E[Zv] ≤ 2e−32
∑
v∈S̃

d(v)

Thus the expected sum of degrees in the set J is upper bounded by Λ = 2e−32
∑

v∈S̃ d(v). Now

by Markov’s inequality we have that Pr(ZJ > 2Λ) ≤ E[ZJ ]
2Λ ≤ 1

2 . Define S∗ = S̃ \ J . Then with
probability at least 1

2 , we have that∑
v∈S∗

d(v) =
∑
v∈S̃

d(v)−
∑
v∈J

d(v) ≥ (1− 2e−32)
∑
v∈S̃

d(v),

and for every vertex v ∈ S∗, we have that d(v)
10 ≤ dA∗(v) ≤ 9d(v)

10 . This implies that d(v)
10 ≤

dB∗(v) ≤ 9d(v)
10 . Hence,

score(A∗, B∗) =
∑
v∈S

min{dA∗(v), dB∗(v)}

≥
∑
v∈S∗

min{dA∗(v), dB∗(v)}

≥ 1

10

∑
v∈S∗

d(v)

≥ (1− 2e−32)

10

∑
v∈S̃

d(v)

Observe that the number of edges in H and H ′ is the same, that is, at least 1000k. Since every
vertex in S \ S̃ has degree at most 100, we have that

∑
v∈S̃ d(v) ≥ 900k. Thus, we have that

score(A∗, B∗) ≥ (1− 2e−32)90k ≥ k+ 1. This implies that score(A,B) ≥ k+ 1 which proves the
claim.

Let C be a minimum vertex cut between A and B in G. We need to show that with proba-
bility at least 1

2 , C ∩S 6= ∅. With probability at least 1
2 , we know that score(A,B) ≥ k+ 1. For

a contradiction assume that C ∩S = ∅. Let G∗ = G−S. We know that λH̃(A,B) = λG∗(A,B).
By Menger’s theorem we know that A can be disconnected from B in G∗ by λG∗(A,B) vertices.
This implies that λG(A,B) ≤ λG∗(A,B) + |S| = λH̃(A,B) + |S| ≤ λH̃(A,B) + k. Next we show
that if a minimum vertex cut between A and B does not include S then the size of any vertex
set separating A from B in G has size at least λG∗(A,B) + k + 1. This will lead to our desired
contradiction.
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Let P be a family of vertex disjoint paths of size λG∗(A,B)(= λH(A,B)) between A and B
in H. We also have a family of paths H whose internal vertices are disjoint from V (H). For each
v ∈ S, define score(A,B)[v] = min{dA(v), dB(v)}. It means that we have score(A,B)[v] number
of paths in H that start at vertices in A and end at v – let A be a set of such paths of size
score(A,B)[v]. Similarly, we have score(A,B)[v] number of paths in H that start at vertices in B
and end at v – let B be a set of such paths of size score(A,B)[v]. We arbitrarily pair paths from
A and B and get score(A,B)[v] paths from A to B that are internally pairwise vertex disjoint
but for the vertex v ∈ S. Thus we can obtain a family of paths D of size score(A,B) from A to
B that are internally pairwise vertex disjoint but for the vertices in S. Observe that no path in
D intersects the set of internal vertices of any path in P. Now any minimum vertex cut from A
to B in G must intersects every path in P and D. However, if it does not use vertices in S then
it at least needs |P|+ |D| ≥ λG∗(A,B) + score(A,B)[v] ≥ λG∗(A,B) + k+ 1 vertices. However,
we know that λG(A,B) ≤ λG∗(A,B) + k and thus we have proved that any minimum vertex
cut C between A and B in G must intersect S. This concludes the proof of the lemma.

Now we prove the main sampling lemma of this section.

Lemma 5.4. Let (G,T, k) be an irreducible instance of Subset FVS and |T | ≥ αk. There
is an algorithm that runs in time 2O(k)(m + n) and either reports that the given instance is a
no-instance or outputs a set Z of size at most O(k4) such that there exists a solution S of size
at most k such that |S ∩ Z| ≥ 1. Here, α = 80× 103.

Proof. The algorithm first tests whether it has a T -cycle of size 2. If yes, then it returns its
vertices as the desired Z. So from now onwards we assume that there is no T -cycle of size 2 in
G, which also implies that G does not have parallel edges. Let β = 40× 103. Since |T | ≥ αk we
have that either the number of terminals whose degree is at least 3 in G is at least βk or the
number of terminals whose degree is equal to 2 in G is at least βk.

Number of terminals of degree at least 3 is at least βk. Let T̃ ⊆ T be a set of terminals
of size βk with degree at least 3 in G. We first add T̃ to the set Z we are constructing. This
takes care of all subset-fvs of size at most k that intersects T̃ . Now we need to take care of
all those subset-fvs that are disjoint from T̃ . Now we apply Lemma 5.1 and either obtain a
1000k-nice independent set, I, that is k + 1 separating or that there is no subset-fvs of size at
most k that is disjoint from T̃ . If it returns that there is no subset-fvs of size at most k that is
disjoint from T̃ then the algorithm returns the current Z. So assume that we have 1000k-nice
independent set, I, that is k + 1 separating. Let S be a subset-fvs of size at most k that is
disjoint from T̃ . Lemma 5.1 implies that I is a 1000k-nice independent set with respect to S.
Let (A,B) be a random partition of I. Then by Lemma 5.3 we know that with probability
at least 1

2 any minimum vertex cut C between A and B intersects S. We use this fact to find
vertices in S. Towards this we do as follows.

1. For every vertex v ∈ V (G) define a variable score[v] which is initialized to 0.

2. For every partition (A,B) of I, find a minimum sized vertex cut C and for every vertex
v ∈ C add 1 to score[v]. Recall that since I is k+1 separating |C| ≤ 2500k2(k+1) = O(k3).
Thus we can find the desired C in time O(k3(m+ n)) using Proposition 2.4.

3. Sort the vertices of G in the decreasing order of their score. For any vertex v ∈ V (G),
score[v] ≤ 21000k and thus we can sort the vertices in time O(21000kn) using bucket sort.

4. Let X be the first 5000k3(k + 1) vertices of highest score.

5. Output Z := Z ∪X.
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Clearly, |Z| = O(k4) as desired. What remains to prove is that |Z ∩ S| ≥ 1. Towards this
we show that |X ∩ S| ≥ 1. Let (A,B) be a random partition of I. Then by Lemma 5.3 we
know that with probability at least 1

2 any minimum vertex cut C between A and B intersects
S. This implies that for half of all possible partitions, the corresponding minimum sized vertex

cut C intersects S and thus there is a vertex v ∈ S such that score[v] ≥ 2|I|

2k . Since, Λ =∑
v∈V (G) score[v] ≤ 2|I|2500k2(k + 1), we have that the number of vertices with score at least

2|I|

2k is upper bounded by 5000k3(k+1). This implies that indeed the first 5000k3(k+1) vertices
of highest score contain a vertex from S. This concludes the proof for this case.

Number of terminals of degree 2 is at least βk. Let T̃ ⊆ T be a set of terminals of size
6000k of degree 2 in G. We first add N [T̃ ] to the set Z we are constructing. Clearly, the size
of |Z| = O(k) until now. This takes care of all the subset-fvs of size at most k that intersects
N [T̃ ]. Now we need to take care of all those subset-fvs that are disjoint from N [T̃ ]. Now we
apply Lemma 5.2 and either obtain five (k + 1)-separating independent sets I1, I2, I3.I4 and I5

in N(T̃ ) such that for any subset-fvs S of size at most k that is disjoint from N [T̃ ] there exists
a j ∈ {1, 2, 3, 4, 5} such that Ij is a 1000k-nice independent set with respect to S; or report
that every S intersects N [T̃ ]. If it returns that there is no subset-fvs of size at most k that is
disjoint from N [T̃ ] then the algorithm returns the current Z. So assume that we are in the other
case. From now onwards the proof for this case is identical to the case of number of terminals
of degree at least 3 is at least βk. Thus, we only point out the differences. We know for every
subset-fvs S of size at most k, there is some Ij that is 1000k-nice independent set and k + 1
separating. Now we apply the algorithm described in the case of number of terminals of degree
at least 3 is at least βk on each Ij , j ∈ {1, 2, 3, 4, 5} and obtain Xj . Let X := ∪5

j=1Xj . As
before we can show that |S ∩X| ≥ 1. We output Z := Z ∪X. This concludes the proof.

5.3 Deterministic algorithm for Subset FVS

In this section we design the claimed deterministic algorithm for Subset FVS. Observe that
Lemma 5.4 from the previous section is useful when the number of terminals is at least αk. To
deal with the case when the number of terminals are small we design an algorithm for Subset
FVS running in time |T |O(k)(m+ n). We first give an algorithm for a slightly different version
of the problem, namely, Disjoint Subset FVS. An input to Disjoint Subset FVS is an
undirected graph G, a subset of terminals T , and a positive integer k and the objective is to
determine whether G has a subset-fvs of size at most k that is disjoint from T .

Lemma 5.5. Disjoint Subset FVS can be solved in time |T |O(k)(m+ n).

Proof. Let (G,T, k) be an instance to Disjoint Subset FVS. We solve the problem by a
recursive branching algorithm. If there is no T -cycle then we are done. Otherwise, we first
apply Lemma 3.5 and obtain an equivalent instance (G′, T ′, k) such that G′ is irreducible. For
clarity we also denote (G′, T ′, k) by (G,T, k). If G[T ] has a cycle then return that the given
instance is a no-instance. Now, by Observation 3.4 we know that if there exists a subset-fvs S
of size at most k then half of the terminals are good. In particular, we know that there exists
a terminal t ∈ T such that it does not have any effective descendant in some terminal forest of
G − S. Furthermore, let ut and vt denote the two neighbours of t in G. Let T̄ = T . Finally,
for a vertex v, G̃v is the graph obtained from G by adding a new vertex τ , making τ adjacent
to all vertices of T , and removing all edges between v and vertices in T̄ . Then either ut ∈ S
or vt ∈ S, or for one of them, say ut, by Lemma 4.2, there exists an important ut-τ separator,
disjoint from T̄ , that is contained in a subset-fvs of size at most k. Let W = {{ut}, {vt} | t ∈ T}.
For every wt ∈ W , we use the algorithm of Lemma 2.1 to construct the set Swt consisting of
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every important ({wt}, τ)-separator of size at most k in G̃wt . We now clean the family Swt , by
removing any set in Swt that intersects T̄ . Let

Pk =
⋃

{wt}∈W

Swt ,

be those important separators that are disjoint from T̄ . We can construct Sk in time O(4kk(m+
n)|T |) using Lemma 2.1. Now we know that if there exists a subset-fvs of size at most k that
is disjoint from T then it must contain either a set from W or a set from Pk. Therefore, we
branch on the sets in W or one of the vertex cuts in Pk: for every S′ ∈ Pk ∪W , we recursively
solve the Disjoint Subset FVS instance (G−S′, T, k− |S′|). If one of these branches returns
a solution S, then clearly S ∪ S′ is a subset-fvs of size at most k in G.

The correctness of the algorithm is clear from Lemma 4.2. We claim that the search tree
explored by the algorithm has at most (2|T |)k8k leaves. We prove this by induction on k, thus
let us assume that the statement is true for every value less than k. This means that we know
that the recursive call (G−S′, T, k− |S′|) explores a search tree with at most (2|T |)k−|S′|8k−|S′|
leaves. Note that the value of k − |S′| is always nonnegative and the claim is trivial for k = 0.
Let µ(k) denotes the number of leaves in the search tree when the parameter is k. For our
computation we will also need the following known result. Let G be an undirected graph and
letX,Y ⊆ V (G) be two disjoint sets of vertices. If S is the set of all important (X,Y )-separators,
then

∑
S∈S 4−|S| ≤ 1 [8]. We have the following recurrence on µ(k).

µ(k) =
∑

{wt}∈W

µ(k − 1) +
∑

{wt}∈W

∑
S′∈Swt

µ(k − |S′|)

=
∑

{wt}∈W

(2|T |)k−18k−1 +
∑

{wt}∈W

∑
S′∈Swt

(2|T |)k−|S′|8k−|S′|

≤ (2|T |)k8k−1 + (2|T |)k−18k
∑

{wt}∈W

∑
S′∈Swt

8−|S
′|

≤ (2|T |)k8k−1 + (2|T |)k−1 8k

2

∑
{wt}∈W

∑
S′∈Swt

4−|S
′|

≤ (2|T |)k8k−1 + (2|T |)k 8k

2
(since

∑
S′∈Swt

4−|S
′| ≤ 1)

≤ (2|T |)k8k−1(1 + 4) ≤ (2|T |)k8k.

As the height of the search tree is at most k, it has O(k(2|T |)k8k) nodes. Due to Lemma 2.1,
the time spent at each node is O(4kk(m + n)|T |), and we conclude that the total time of the
algorithm is upper bounded by |T |O(k)(m+ n). This completes the proof.

Now we give an algorithm for Subset FVS running in time |T |O(k)(m+ n).

Theorem 4. Subset FVS can be solved in time |T |O(k)(m+ n).

Proof. Let (G,T, k) be an instance to Subset FVS. We solve the problem by first guessing
the intersection of solution with T and then calling the algorithm for Disjoint Subset FVS.
In other words, for every X ⊆ T of size at most k, we want to find a solution that include
X and is disjoint from T \X. To obtain the desired solution we delete X from G and obtain
an instance (G − X,T \ X, k − |X|) of Disjoint Subset FVS. We finally solve the instance
(G − X,T \ X, k − |X|) of Disjoint Subset FVS using Lemma 5.5 in time |T |O(k)(m + n).
If for any X, we get a solution S′ of size at most k − |X| for the corresponding instance
(G−X,T \X, k− |X|) of Disjoint Subset FVS, then clearly X ∪ S′ is a subset-fvs of size at
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most k for G. Since the number of subsets of size at most k in T is upper bounded by k|T |k,
the claimed running time follows.

Finally, we combine Lemma 5.4 and Theorem 4 and give the main theorem of this section.
That is, a deterministic algorithm for Subset FVS running in time 2O(k log k)(m+ n).

Theorem 5. Subset FVS can be solved in time 2O(k log k)(m+ n).

Proof. Let (G,T, k) be an instance to Subset FVS. We first apply Lemma 3.5 and obtain
an equivalent instance (G′, T ′, k) such that G′ is reduced. For brevity we denote (G′, T ′, k)
by (G,T, k). Set α = 48000. The problem is solved by a recursive branching algorithm. It
distinguishes two cases based on whether |T | ≥ αk or |T | < αk.

In the former case we apply Lemma 5.4 and in time 2O(k)(m+n) either find out that the given
instance is a no-instance or obtain a set Z of size O(k4) such that there exists a solution S of
size at most k such that |S∩Z| ≥ 1. Therefore, we branch on the choice of one of these vertices:
for every vertex z ∈ Z, we recursively solve the Subset FVS instance (G−{z}, T \ {z}, k− 1).
If one of these branches returns a solution S, then clearly S ∪ {z} is a subset-fvs of size at
most k in G. In the case when |T | < αk, we apply Theorem 4 and solve the problem in time
|T |O(k)(m+ n) = 2O(k log k)(m+ n).

In every branch of the algorithm k drops by 1 and thus the number of leaves in the search
tree is upper bounded by |Z|k and since the height of the tree is at most k, the number of
nodes in the search tree is upper bounded by k|Z|k. The time we spend at every node is either
2O(k)(m+ n) or |T |O(k)(m+ n) ≤ 2O(k log k)(m+ n) time. In either case the total time spend at
any node is upper bounded by 2O(k log k)(m+ n) and thus the running time of the algorithm is
upper bounded by k|Z|k2O(k log k)(m+ n) = 2O(k log k)(m+ n). This completes the proof.
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