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SUMMARY

Exact solutions to sto ch astic , capacitated , multi-commodity, 

m ulti-stage production/inventory models are in  general computationally 
in tra c ta b le . The p ractica l app lication of such models is  therefore 

in h ib ited . In th is  thesis a general sto chastic , capacitated , multi- 

commodity, m ulti-stage production/inventory model w ith lin ea r cost 
structure is  proposed. Under convexity conditions i t  is  a stochastic 

lin e a r program. A good computationally e f f ic ie n t  approximate solution 

technique is  developed and some numerical re su lts  reported.

I t  is  important to assess the m erit of approximate techniques 
and th is is  done s t a t is t ic a l ly  by re p lica t iv e  sim ulation . But the 

accuracy of th is  method improves only as the square root of the number 

of sim ulation t r ia ls  made, so i t  is  important to e lim inate any unnecessary 

v a r ia b i l i t y  in  each t r i a l .  I t  is  proposed that th is  be done by the 

use of control s t a t i s t ic s .  Several novel control s t a t is t ic s  are developed, 

the most powerful being a martingale control s t a t is t ic  constructed 

independently for each t r ia l  from information provided by the approx

imate technique being tested.

Results are reported of testing the approximate solution 

technique developed fo r the general model, ordinary lin e a r programming 

ignoring a l l  the stochastic  elements in  the problem, and two other 
approximate techniques, by re p lica t iv e  sim ulation. These suggest that 

the penalty incurred by ignoring the stochastic nature of the problem 
is  s ig n if ic a n t , but that f i r s t  order deviations from optimal decisions 

may lead only to second order pena lties . This is  a desirable feature 

of the stochastic models, for i t  indicates that approximate solution 

techniques to stochastic programs may be more re lia b le  than would be 

supposed from the approximations made.
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1. MEDIUM TERM PRODUCTION PLANNING

This thesis develops and stud ies a dynamic stochastic model 

fo r use in  medium term production and inventory planning. In th is  

context 'medium term' planning is  intended to mean decisions about 

such aspects of the production system as production leve ls  of individual 

fin ished products and manpower le ve ls  for d iffe ren t categories of 

employee. Short term scheduling problems which involve a detailed 

analysis of the day to day running o f the production system and which 

examine, fo r  example, which components can be produced in which order 

on what machine, are very sp ec ific  to the industry and plant being 

studied and are excluded. Also excluded are long term strateg ic  

problems which, fo r example, a rise  in  decisions to expand or con

tra c t  production f a c i l i t i e s ,  to produce a new product lin e  or to 

enter new markets.

The problems addressed herein are e sse n tia lly  of a ta c tica l 

nature and ty p ic a lly  concern the se tting  of monthly or quarterly 

production targets, workforce leve ls and buffer stocks over a planning 

horizon o f a year. Some authors re fe r  to th is as production smoothing. 

There are two principal aspects of th is  problem that require further 

d iscussion .

F irs t ly »  there is  a trade o ff between holding large quantities 

of products in stock and frequent changes of production and manpower 

le v e ls . Fluctuating demand might be handled by continually  varying 

the production rate and h iring or lay ing  o ff sections of the workforce, 

but keeping stocks of fin ished items low. However these changes are
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often expensive so i t  might be more pro fitab le  to keep the production 

rates and manpower leve ls  constant w h ilst meeting fluctuations in 

demand from high stock le v e ls . In general the best decision w ill l ie  

between these two extremes. Determination of p recise ly  what the best 

decisions are involves quantification  of the costs involved and study 

of the appropriate mathematical model of the system.

Secondly, the demand requirements themselves are ra re ly  known 

exactly  in the medium term fo r they depend on future decisions made 

by customers who are outside the control of the production system.

These demand requirements may only be known p ro b a b ilis t ic a lly . There 

is  an obvious trade o ff between producing only as much as can d e fin ite ly  

be sold , which keeps stock le v e ls  low but takes l i t t l e  advantage of 

the l ik e ly  demand, and producing so much that demand can always be 

sa tis f ie d  which r is k s  carrying inordinately large stocks. Determin

ation of the best production ta c tic s  in the face of th is  problem 

involves the decision maker's attitude toward r is k ,  quantification of 

the uncertainty in  demand and the study of the appropriate p ro b ab ilis tic  

mathematical model.

The problem is  usually  further complicated by constra ints on 

permissible production rates and items that can be held in stock. These 

may require the production of items to stock in order to take most 

advantage of the peak in c y c lic a l or seasonal demand.

Of the two aspects discussed above the former is  easier both 

from the point o f view of acquiring su ff ic ie n t  cost data and in the 

necessary an a lys is  of the mathematical models. The la t te r  problem is
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much more d i f f ic u l t  from both points of view. The quantification  of 

the uncertainty in  future demand is  a d i f f ic u l t  task and stochastic 

models present formidable problems both in  th e ir theoretical and 

computational aspects. However.it is  in  a sense more general fo r 

models designed to handle the la t te r  problem can e a s ily  be extended 

to handle the former problem but not v ice-versa . The model developed 

in th is thesis although motivated by the uncertainty problem is  designed 

to handle both. I t  is  presented in Chapter 5. In order to explain 

the structure of the work some problems associated with stochastic 

models need to be discussed. This is  now done.
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2. STOCHASTIC PROGRAMMING

Models used for the an a ly s is  of the problems outlined above 

f a l l  n a tu ra lly  into the ambit of stochastic programming. This is  

the study of certa in  models (sto chastic  programs) which e x p lic it ly  

incorporate random variab les into  th e ir formulation and which reduce 

to determ in istic  mathematical programmes as the v a r ia b i l i t y  in the 

random variab les tends to zero. The formulation of such models 

has not only been motivated by production planning problems but also 

by the need to control water resources and to tackle problems aris ing  

from economic and fin an c ia l planning. Each source of "rea l world" 

problems has generated d if fe re n tc la s s e s  of stochastic programs.

But there is  much common ground between them and theoretical study 

has led to th e ir  being c la s s if ie d  on the basis of th e ir more abstract 

p roperties. In consequence most classes of stochastic programmes 

have something to o ffe r in the modelling o f production systems. A 

b r ie f review of stochastic programming from th is  viewpoint is  there

fore given in  Chapter 2. However, fo r the medium term production/ 

inventory problems described above, one c lass of stochastic  programs 

is  more natural to use than any o ther. This is  the c la s s  of active 

multistage programs. Each stage can be id entified  with time periods 

in the "real world" problem, ty p ic a lly  months or quarters, and decisions 

which must be made a t each stage are only allowed to depend on the 

re a lisa t io n s of random variab les in previous (and possib ly the present) 

stages and the d istribu tio ns o f the random variables in  la te r  time

periods conditional on these re a lisa t io n s . Thus production decisions 

are only allowed to depend on the demand in previous time periods and 

not that in future ones.
f
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Unfortunately, in genera l, exactly  optimal so lutions to m ulti

stage stochastic  programs reduce at best to dynamic programming 

methods and these become computationally in tractab le  as the number 

of commodities being modelled increases . This is  shown in  Chapter 4 

which develops some dynamic programming models. Approximate solution 

methods are therefore of in te re s t . This thesis contains a general

isa tion  and development of one o f the most promising approximate 

methods due to Beale, Forrest and Taylor [4  ] .  Their method is  

described in Chapter 3 and the development of i t  is  presented in 

Chapter 6 .

I t  is  important to assess the merit of approximate solution 

techniques. The way in  which th is  is  done is  now reviewed.



3. THE EVALUATION OF APPROXIMATE SOLUTION TECHNIQUES

The optimal u t i l i t y  returned by the objective function of,and 

the optimal decision given by,an approximate solution method to a 

stochastic  model may be in erro r. Th is can be tested on s u f f ic ie n t ly  

simple examples by comparisons with those obtained by a method known 

to be exac t. However, th is  comparison may be misleading i f  i t  is  

used to assess the suboptimality of the decisions recommended by 

the approximate method. F ir s t ly ,  the u t i l i t y  gained by a c tu a lly  

using an approximate solution technique may be very d iffe re n t from 

that returned by the model's objective function . Secondly,deviations 

from the optimal decisions are not in  themselves important. What is  

important is  the drop in u t i l i t y  consequent upon them and th is  may 

be hard to gauge.

The method suggested in th is thesis  fo r handling these problems 

is  that o f s ta t is t ic a l sim ulation. The environment within which the 

stochastic  program operates is  modelled on a computer. The random 

variab les in the problem are simulated by pseudo-random numbers. Under 

the in fluence of these,and the control of the approximate method being 

tested , the stochastic process then evolves from the f i r s t  time period 

in  the problem to the time horizon. Th is is  known as a simulation 

t r i a l .  I t  is  repeated a large number o f times in order to assess the 

performance of the approximate solution method s t a t is t ic a l ly .

Unfortunately s ta t is t ic a l estimates of attribu tes of in te rest 

in the process made in th is  way are unacceptably inaccurate. This 

problem i s  overcome by the use of control s t a t is t ic s .  These are

-6-
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described and developed in Chapter 7, but the application of them 

requires the derivatio n  of formulae sp e c ific  to the process being 

simulated and the algorithm tested. These formulae are derived in 

Chapter 8 for the approximate solution algorithm developed in Chapter

6. However the formulae are not re str ic te d  to th is algorithm . This 

is  shown in Chapter 9 which reports the resu lts  of simulation experiments 

in which four approximate algorithms were tested on two simple 

examples. The re s u lts  of these experiments suggest that f i r s t  order 

deviations in the decisions made by approximate algorithms from th e ir 

tru ly  optimal values produce only second order deviations in  the 

u t i l i t y  rea lised  by using algorithm from it s  optimal va lue. This 

is  a very desirab le feature of the process for i t  indicates that the 

suboptimality of approximate solution methods may be very much smaller 

than the approximations made by i t  might suggest. The thesis ends with 

a b rie f summary and conclusions in Chapter 10, in which suggestions 

are made for fu rth e r research.



4 . THESIS PLAN

This thesis is  devoted to the study and development of stochastic 

models fo r medium term production planning. I t  divides into three parts . 

Part I reviews established models and solution techniques. Chapter 2 

surveys stochastic programming and Chapter 3 presents an exposition 

of the methods of Beale , Forrest and Taylor [ 4 ] .  Part I I  deals with 

novel contributions to modelling production/inventory problems. Chapter 

4 describes some dynamic programming techniques, suggests an e f f ic ie n t  

algorithm fo r the single-commodity case, and reports some computational 

experience with i t .  Chapter 5 presents a f a i r ly  general production/ 

inventory model and describes an application of i t  to a production/ 

manpower/inventory planning problem. In Chapter 6 an approximate 

solution technique to i t  is  developed, and some numerical re su lts  are 

given. The work contained in both Chapters 5 and 6 is  a generalisation 

and extension of that of Beale et a l .  [ 4 ] ,  I t  is  important to assess the 

merit of approximate techniques and th is is  done in Part I I I .  Chapter 

7 describes the techniques of re p lica t ive  simulation and control 

s t a t is t ic s .  I t  develops some novel ways of constructing control 

s t a t is t ic s .  Some of these are based upon the derivation of a martingale 

for each simulation t r ia l  from information about the process provided 

by the algorithm being tested. Detailed formulae for the computation 

of these are derived in  Chapter 8. Chapter 9 describes simulation 

experiments which test both approximate algorithms and the e fficacy  

of the control s t a t is t ic s .  The re su lts  are reported and conclusions 

drawn from them. This thesis is  concluded with a b rie f summary in 

Chapter 10.



CHAPTER 2

A REVIEW OF STOCHASTIC PROGRAMMING TECHNIQUES

FOR MEDIUM TERM PRODUCTION PLANNING



1. INTRODUCTION

The principa l d if f ic u lt y  o f studying production/inventory 

problems is  that decisions have to be made in the face of uncerta in ty , 

not ju s t  of unreliab le  data, but also that in future decisions made by 

others, fo r example customers, over whom the decision maker has no 

contro l. Analysis of the consequent uncertainty in the system is  

essentia l in the determination o f the best production strategy and 

other sa lie n t aspects of the production/inventory system ,p articu larly  

safety stocks. These have tra d it io n a lly  been studied by s t a t is t ic a l  

methods in  iso la tio n  from the re s t  of the system. See, fo r example, 

Whitin [ 6 1 ] ,  Nador [ 4 2 ]  and Chapter four of Hadley and Whitin [26 ] .  

Properly, however, they ought to be studied in the context o f the whole 

production process by appropriate modelling.

Stochastic programs form the natural choice of models to use 

in th is  context. Much attention has been devoted to them, although 

i t  has been more directed to a study of th e ir abstract properties 

than computationally e ffe c tive  methods of so lution. This chapter 

presents a b r ie f review of the principa l forms of stochastic programs.

The d iffe ren t forms that have been proposed are surveyed in Section

2. These divide into  two categories : the passive and the a c t ive  

forms. The former, in which decisions are made a fte r the outcome 

of the random variab les in the problem becomes known,may be o f importance 

in streg ic  planning where the decision maker may want to assess the 

impact of a new production f a c i l i t y  on the probability d is tr ib u tio n  

of h is total revenue. Since the concern of th is  thesis is  with 

ta c t ic a l or medium term planning problems, these models are only of



passing in te re st here. However, a b r ie f  description of them has been 

included fo r the sake of completeness.

The active  stochastic programs require  decisions to be made 

before the outcomes of some or a l l  of the random variab les in the 

problem are known, and themselves d iv ide into two types: the single 

or two-period problems and the more general multi-stage problems. The 

former a re , of course, simpler and the theory behind them better 

developed than for the la t t e r . However production/inventory problems 

are better modelled by m ulti-stage a c tive  programs, each stage 

representing a unit of time, say a month or quarter, so i t  is  these 

that are o f most in te rest here. A d iscussion of single and two stage 

programs is  given below in order to present a c leare r picture of 

the com plexities that arise  in  the ir m ulti-stage genera lisations, and 

also because some of the techniques used to handle them can be extended 

to the multi-period case. A review of the approaches that have been 

adopted fo r the solution of active  stochastic  programs is  given in 

Section 3 and the chapter is  concluded wi th a summary in Section 4.
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2 .1 . The Basic Structure of Stochastic Models

Nearly a l l stochastic  models whose formulation has been motivated 

by the need to tack le  production planning problems divide naturally 

into a f in ite  number of d iscrete time periods. Key attrib u tes of the 

system being modelled are considered to be fixed during each period, 

but may, of course, vary between time periods. The models are then 

formulated in terms of these key a ttr ib u te s , some of which may be 

random va riab les . I t  is  assumed that the decision maker wishes to 

maximise or minimise some function of these a ttrib u tes subject to the 

constraints imposed upon them by the system.

One of the most established classes of models used for determ

in is t ic  production planning is  that of lin e a r programs. These have 

the merit of being straightforward to formulate and solution methods 

for them are well-advanced. Developments of the simplex algorithm 

have enabled computer programs to be w ritten which solve very large 

lin ea r programs indeed. Thus lin ea r programs have formed the natural 

starting  point fo r the development of stochastic models. The concern 

of th is  chapter w i l l  be with these stochastic lin ea r programs

"max" c Tx over x subject to "Ax = b" (1)

where b ,c and x are column vectors and A is  a m atrix , and (A ,b ,c ) are 

random va riab les . There are two d iffe ren t interpretations to th is 

problem. In the passive approach the decision x is  made a fte r the

2. THE MODELS STUDIED
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random variab les (A ,b ,c ) are rea lised  and the objective function 

and constraints are well defined. In the active approach some or 

a l l  of the x 's  must be chosen before a l l  the random variab les are 

rea lised  and so both the objective function and the constraints have 

to be more ca re fu lly  specified . The former approach is  discussed 

f i r s t .

2 .2 . The Passive Approach

In th is  approach otherwise ca lled  the "wait and see" problem 

by Madanasky [3 9 ]  or "d istribu tion" problem by Vajda [54 ] ,  the 

decisions x are taken a fte r the random variables (A ,b ,c ) are realised 

in the program

max z = c Tx over x subject to Ax = b. (2)

So i t  is  desired to construct an optimal map or decision ru le  from 

the outcome space of the random variab les to the decision space.

I t  can be shown th eo re tica lly  (See Dempster [ 17]) that the 

outcome space can be partitioned into a f in ite  set of decision regions 

such that the optimal decision, x ° , is  constant in each decision 

region. Furthermore, each decision region can be iden tified  with 

a basis of ( 2) and the decision regions form a c e llu la r  structure 

whose faces have Lebesgue measure zero.

Having found the set of decision regions and the optimal

decision ru le
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x°  a x ° (A ,b ,c ) ( 3)

the problem is  then to compute the d is trib u tio n  function of 

z = CT x ° (A ,b ,c ) .

The characterisation  of th is  d istrib u tio n  function in  terms 

of general random (A ,b ,c ) has not yet been obtained, but special 

cases in which A and c (dually  A and b) are fixed  have been studied. 

For example, Bereanu [6  ] has treated the case where there is  only 

a sing le random variab le in  the problem and la te r  extended his work 

[ 7 ] to the case where A is  stochastic  but imposing re s tr ic t io n s  

on the random va riab les .

In general, the a lte rn a tive  ac tive  approach is  a more natural 

one for the modelling of production planning problems and i t  is  th is 

to which attention is  now directed .

2 .3 . The Active Approach

In th is  approach, also known as the "here and now" approach, some 

or a l l  of the decision variab les must be chosen before the outcome of 

a l l  the random variab les in the problem is  known. When the process is  

e x p l ic it ly  periodic and the decision variab les and random variab les 

pertain to ind ividual time periods, i t  is  common to make the decision 

variab les in each period a function of the random va riab les realised  

up to (and perhaps including) that period.

•A
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Care must be exercised over the defin itions of the objective 

function and co n stra in ts . The ob jective  function is  designed to 

model the decision maker's preference about how the system should 

behave. There are three such models commonly treated in the l i t e r 

ature . These are

(a) E-models, in  which i t  is  assumed that the decision maker has

a neutral a ttitude towards r is k  and so wishes to maximise (minimise) 

h is expected p ro fit  (cost) ,

(b) P-models, in  which i t  is  assumed that the decision maker wishes 

to maximise (minimise) the p ro b ab ility  of his p ro fit  (cost) being 

greater (le s s  than) some target va lu e , and

(c ) V-models, in  which i t  is  assumed that the decision maker wishes 

to minimise the total v a r ia b i l i t y  o f his p ro fit  or cost.

See, for example Charnes and Cooper [ 9 ] fo r a further discussion 

of such models with reference to chance constrained programming. The 

m ajority of work published in th is  area deals with E-models. In 

what follows reference w il l  only be made to these. However, P and V 

model analogues should be read ily  apparent.

There are two a lte rn a tive  interp retations of the constraints 

Ax = b. They can be regarded as holding almost surely ( a .s . )  i . e .  

with p robab ility  one, or with some prescribed high p ro bab ility . The 

la t te r  approach is  known as chance constrained programming.

The remainder of th is  sub-section w ill be devoted to one or two 

stage models. Their genera lisation to many stages leads to an even 

greater va rie ty  of in terp retations and is  discussed in Section 2.4 

below.
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The two-stage model in which the constra in ts hold almost surely 

is  now addressed. E x p lic it ly  stated i t  is

A,B and R are matrices and b .c .d .r .x  and y are vecto rs. Formally 

th is  is  ca lled  the two stage stochastic lin e a r program with recourse.

The in i t ia l  d ec is io n , x , must be made before the random variab les 

(A ,B ,b ,c ,d ) a re  rea lised ; the rea lised  constra in t discrepancy b - Ax 

y ie ld s  a loss by the second stage which is  to choose a recourse decision 

y  to

Minimise dTy subject to By = b-Ax, y 2 0 . (7)

The problem i s  considerably sim plified  i f  the recourse m atrix, B, 

is  fixed  and equal to (1 ,-1 ) where I is  the id en tity  m atrix. Dempster 

[ 1 7 ]  refers to the problem thus obtained as that with simple recourse. 

Beale [ 3 ] and Wets [58 ] re fer to i t  as the complete problem.

The s in g le  stage chance constrained problem may be written

Max E {c Tx - min d^y} (5)x y

subject to Rx

Ax + By = b a .s .  

and x 2 0, y 2 0, a .s .

( 6 )

( 8 )

over x and sub ject to

P{Ax s b} 2 a 

and P( x * 0} 2 B

(9)

( 1 0 )
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where A,b and c are random va ria b le s , a and 3 l ie  between 0 and 1, 

and the decision x must be chosen before the random variab les are 

re a lise d . There are a va r ie ty  of ways in which the constra ints may 

be regarded. The two principal ones are

(a) Total chance co n stra in ts , where (9) may be written

P {(Ax)i sb., Vi}ia (11)

and

(b) Jo in t chance constra in ts where (9) may be w ritten

P {(A x)1 s b j}  * c y  V i. (12)

Usually 6 is  taken to be 1, so (10) holds almost su re ly , but Charnes 

and Kirby [12 ] allow  3 to be less than one.

The study of such models fo r general random A ,b , and c is  very 

complex. Usually authors r e s t r ic t  the ir attention to the case where 

only b is  random. See, fo r example, M ille r and Wagner [41 ] and 

Charnes, Kirby and Raike [13 ] .  However, I s h i i ,  Shiode, Nitshida 

and Iguchi [34 ] study a model in which one row of the technology 

matrix is  random.

Under certa in  conditions the two-stage stochastic lin ea r program 

with recourse is  equivalent to the single stage chance constrained 

problem. Gartska [23 ] reviews resu lts dealing with th is  equivalence.

Just as the active  approach provides a more natural setting for 

the modelling of production planning problems, so multi-stage versions 

of i t  are more appropriate than single or two stage programs. These 

are summarised below.
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2 .4 . M ulti-stage Versions of the Active Problem.

In multi-stage problems, the process being modelled divides 

na tu ra lly  into time periods. Each decision variab le  and random 

variab le can be associated with a particu lar time period. I t  w ill 

be expedient to review those models in which the constraints hold 

almost sure ly f i r s t .  Four principal variants have received attention . 

The most general is  discussed f i r s t .

(a ) The General Lower Triangular Model 

E x p lic it ly  stated i t  is

subject to l V u = bt  a -s *

u=0 for t = 0 ...........T (14)

where the A ^ 's  are m atrices, the bt 's ,  ct 's and xt ‘ s are vectors.

rea lised  a t period t .  Let a l l the random variab les realised in period 

t be a function of a more general random variab le  Then the 

decisions x t are re stric ted  to be functions o f

When a l l  the A ^ 's  are id e n t ica lly  zero for u s t-2 the 

following problem is  obtained

r TMax E l c  ̂ x t (13)

t =0
t

and xt  * 0 a .s .

A* , b.. and c f are random variab les for a ll t i l ,  and are supposedtu t t

i . e .  x t  = x (15)



(b) The S ta ircase  Model

Max E (16)

t =0

subject to A x  o o = bo

-B x + Ai x i = b, a .s .  o o  1 1  1 (17)

and xt a 0.

Again, the t tĥ  stage decision is  re s tr ic te d  to be a function 

of the random variab les rea lised  up to and including that period.

The special case when only the b 's are random has received attention 

from Dantzig [15 ] ,  Wets [57 ] and Birge [ 8 ] .

(c )  The Control Theoretic Formulation

This is  a special case of the sta ircase  problem in which only 

the b's are random. I f  the decision variab les x t are partitioned 

into ( y l ,  u J )T where y . is  a state variab le  and u. a control va riab le , 

and i f  the system matrices At and Bt can be correspondingly partitioned

and i f  the random vector bt is  partitioned correspondingly into

A,t

and Bt

( 0, 5^)T then the constra ints become
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Ft* t  + Gt Ut  = *t+ I 

and V t + Dtut s et

Gaalman [ 20] studies a special case of th is where (18) 1s

*t+ l = V t  + Bt ut +Ct 5 t  <19)

and the process evolves over the in f in it e  horizon. Using modern 

control theoretic techniques and making assumptions about the 

d is trib u tio n  of the random variab les and s ta b il it y  of the process, 

Gaalman derives the optimal decision rules ut as a function of the state 

v a r ia b le  y^ _j. However, the non-negativity constraints on ut and 

y t have been dropped and h is model cannot handle capacitated production/ 

inventory systems that are of in te re st here.

(d) The Multi-Stage Recourse Problem

This is  a natural multi-stage generalisation of the two-stage 

stochastic  program with recourse. Dempster [ 17] w rites i t  as

subject to

Max {E
X i ‘A

t=i

-m in d^y }
y

(20)

A01 X1
= b0

A11 X1 - » I
= bj a .s . ( 21)

k u \  • V t = bt  a .s .

u=l

and i  0 a .s .
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In general Atu> Bt> t>t and c t are random fo r t i l .  I f  these 

t  th stage random variab les are regarded as functions of a more general 

random v a ria b le , ? t , then the decisions xt are re stric ted  to be 

functions of  ̂ and the recourse decisions y t are re str ic ted

to be functions of

I t  can be shown that the multi-stage general triangular problem

(a) is  equivalent to the multi-stage recourse problem (d ) , fo r each 

can be regarded as a special case of the o ther.

To see th is  le t  the superscript a or d denote an attrib u te  

pertaining to problem (a) or (d) re sp ective ly . Then to show that 

problem (a) is  a special case of problem (d) set yd = xd+1 and

xt  “  x t+l* Then x t is  a 'function and furthermore ^

Aat  is  defined to be -Bd and Aau to be Adu-1 then

k - V ad yd Rd vd
bt " * Atu u ‘ Bt xt 

u=l

X
a
u*

Also defining to be cd+1 - dd for 1 s t  ¡s T - l ,  

cd and ca to be -dd i t  is  seen that

ca to be c? and 
o 1

Max E l cd xd-min dd yd = Max E £ c® x* . 

xd t-i yd xa t=0

To show that problem (d) is  a special case of problem (a ) ,

p artit io n  x t according to
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and corresponding p a rtit io n  c“ :

" » )
a

c t = fo r 1 s t  < T - l

a
co = and c .

-d:

i t  is  seen that x“ is  a function of ^ ...........1 and

T J  .  T ,T . J  .
Max E J  c l x? = Max E { 7 c? x :. - min d* y^}

** t-0 *d fl ,d

Also i f  Â u is  correspondingly partitioned into (A û+1 »0) for 

0 s u s t - l  and (0 ,-B b) fo r u = t ,  then

bt '  l A*tu <  
u=0 

tp . d d n d d
l \ u  *u - Bt  V

U=1

so problem (d) is  a special case of problem (a) and therefore the 

problems are equivalent.



Hence the sta ircase  problem (b) and the control theoretic 

problem (c) can be regarded as special cases of the multi-stage 

recourse problem (d ) .

(e ) Multi-stage Chance Constrained Problems

The single stage chance-constrained problem generalises eas ily  

to the multi-stage case, although there is  a greater va rie ty  of 

possib le in terpretations of the constra in ts . As in the multi-stage 

recourse problem the technology matrix has a lower triangular block 

s tru c tu re . In general terms the model may be stated 

T T
Max E l ct x [ (21)

t=l

over x and subject to

P{^llxl 5 bl* * al 
P{A21x1+A22x2< b2) * a2

t

Pi l Atuxu 5 bt } 2 ° t ( 22)
U=1

and (P  xt  2 0} 2 (23)

the Atu 's  are m atrices, the bt 's ,  c t 's and xt 's  are vectors and

Â  , bx and c . are in  general random variab les for t i l .  I ftu t  t  3

Atu ’ bt and Ct are re 9arclecl as bein9 functions of a more general

t th stage random va ria b le , Et> then the decisions x fc are restric ted
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to be functions of Most authors re s t r ic t  th e ir  attention

to the case o f fixed technology matrices Atu when in certa in  cases 

the problem is  equivalent to the m ulti-stage recourse problem (d ), 

Gartska [23 ] .  The fu rther re s tr ic t io n  that the matrices At  should 

a l l  be of dimension (1 x l )  is  also made in  most of the l it e ra tu re . 

The d iffe ren t ways in which the p robab ility  of the constra in ts (22) 

and (23) can be interpreted needs fu rthe r d iscussion.

I f  the p ro b ab ilitie s  in (22) and (23) are computed using the 

jo in t  d is trib u tio n  of a l l  the random variab les in the problem then 

Charnes and Kirby [ 1 1 ]  term the problem one of "to ta l chance 

constra in ts". I t  was th is  approach that Charnes, Cooper and Symonds 

[10 ] used in  th e ir o rig ina l formulation of a chance-constrained 

problem to model the production of heating o i l .

I f  the p ro b ab ilitie s  in (22) and (23) are computed using the 

d istribu tio n  of conditional on the rea lised  values of ^ , . . . , 5  1 

then the problem is  termed one of "conditional chance constra ints" 

by Charnes and Kihby [11 ] .

E isn er, Kaplan and Soden [ 1 8 ]  also  considered another in te r

pretation which they ca lled  the "conditional-go" approach. At stage 

t  the u th stage constra in t (where u > t) is  regarded as not actually  

being revealed until the u th stage. So the p ro bab ilitie s in  (22) 

are computed with the marginal d istrib u tio n  of given j

i . e .  the u th stage constra int becomes 
u

PI I Auvx#(5l... 5v.llsbulEl... (24>
V=1

where t < u.

Other varian ts of the problem a r ise  out of d iffe ren t choices of 

admissible decision ru le s . This is  discussed in Section 3 on solution

methods below.



3. METHODS OF SOLUTION

In th is  section some solution techniques that have been proposed 

for the stochastic programs presented above w ill be b r ie f ly  discussed. 

Since production planning problems are more naturally modelled by the 

active  or "here and now" stochastic programs than the "passive" or 

"wait and see" va r ie ty  i t  is  the so lution of the former which is  of 

in te rest here; lin e s  of attack on the la t t e r  have already been b r ie f ly  

mentioned.

The two or single-stage active  stochastic  programs are easier 

to solve than th e ir  multi-stage counterparts. Exact computationally 

e ffe c tive  methods of solution have been devised for the former, but 

not fo r the la t te r  when there are many constra ints per stage, and 

these are necessary fo r the e x p lic it  modelling of many commodities.

The only e ffe c tive  approximate method th a t has been proposed is  that 

of Beale, Forrest and Taylor [ 4 ] which solves a simple production/ 

inventory model.

3 .1 . Two Stage Stochastic Programs with Recourse

As with the other stochastic programs, solution of the general 

case of (5) and (6) in which A ,B ,b ,c  and d are a l l  random is  very 

d i f f ic u l t  both th e o re tica lly  and computationally. Attention has usually 

been restric ted  to the special case in which only b is  random, although 

Evers[19 ] tackles a random A m atrix by Monte Carlo methods and 

El-Agizy [  1 ] has shown that i f  c is  random then i t  can without loss of 

generality be replaced by i t s  expected value and the corre lation between 

it s  components ignored.
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Dantzig [15 ]  tackled the problem with simple recourse 1n which 

only b is  random. He showed that the stochastic program is  equivalent 

to the determ inistic program

Here the recourse m atrix B has been partitioned into (1 ,-1 ) and the 

vectors d and y have been correspondingly partitioned into

F is  the d is trib u tio n  function of b. This program can be shown to be 

convex i f  (d+ + d’ ) z 0.

Solutions to the above program can be approximated by assuming 

a d iscrete  d istrib u tio n  for the random vector b, in which case a d iffe ren t 

recourse decision, y ,  must be associated with each point o f the d iscrete 

d is tr ib u tio n . Dantzig and Madanasky [16 ] adopt th is  approach and use 

decomposition methods to exp lo it the program's structure . Strazicky 

[52 ] takes th is approach further by using basis decomposition and reports 

some numerical re s u lts .

Wets [60 ] has investigated the derivation of determ inistic 

equivalents for problems with general fixed recourse.

Other approaches have been proposed by, fo r example, Van Slyke 

and Wets [  51] who use gradient methods and Garkska and Rutenberg [24 ]

who use la t t ic e  po in ts .

I (x-b)dF(b) + d 'T [ (b -x )d F (b )} 
'bsx 'bzx

subject to

Rx

Ax + y+ - y" = b

x,y+,y" 2 0 .

(^-) and (^ -) respective ly , and
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Of most in te rest in  modelling stochastic production planning 

problems are multi-period models. I t  1s to the solution of these that 

attention is  now d irected .

3 .2 . Multi-Stage Stochastic Programs with Almost Sure Constraints

These are stochastic  programs in  which the constra ints hold 

almost surely ( i . e .  with p robab ility one). As with the two-stage case, 

the solution of the general m ulti-stage recourse problem is  very 

d i f f i c u l t ,  although Wets [59 ] shows th eo re tica lly  that any solution 

algorithm fo r the two stage case can be extended to the multi-stage 

case.

Dantzig [15 ] was the f i r s t  to study the special case of programs 

with sta ircase  structure in  which only the righ t hand side vector, b, 

is  random. Again he suggested d isc re tiz in g  the d is trib u tio n  of b to 

derive an equivalent determ in istic  program. B irge [ 8 ] does the same 

and extends Dantzig's methods of exp lo iting  the structure to the problem 

thus generated by using large scale decomposition, partition ing  and 

basis fa c to r iza tio n . He presents a number of ways of doing th is one 

of which uses the in teresting  re su lt due to Wets [ 5 7 ]  that the s t a ir 

case problem thus d iscre tized  is  equivalent to a determ inistic convex 

program of the form

Max cTx + Q(x) 
x

subject to Ax 3 b 

x e D

where Q is  a concave function and D i s  a convex polyhedron.
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Birge [ 8  ] goes on to show that his techniques are rea lly  

methods of dynamic programming, d iffe rin g  only 1n the way in which 

decisions are approximated as functions of the state variab les .

3 .3 . Chance Constrained Problems

In discussing solution methods for these, the general multi-stage 

chance constrained problem w ill be addressed. Apart from Ish ii et a l .

[34 ] who only deal with a sing le stage model, solution methods have 

only been proposed fo r the case in which the technology matrices are 

f ix e d , i . e .  ju s t  b and c are random. As in the models in which the 

constra in ts hold almost su re ly , so lution techniques proceed by the 

derivation  of an equivalent determ inistic program. The ease with which 

these determ in istic programs can be solved depends upon the ir convexity 

p roperties. The work of Prekopa [43 ] ,  [44 ] and [45 ] on logarithm ically 

concave measures has shed much lig h t  on th is .

Usually authors re s t r ic t  th e ir  attention to searching for optimal 

f i r s t  order decision ru les in which the decision xt made a t stage t 

is  re stric ted  to be a lin ea r function of the random variab les already

re a lise d , ...........bf l ’ c t - l*  Charnes* Cooper and Symonds [ 10] adopted

th is  technique in  modelling the production of heating o i l .  The model 

which they studied had total chance-constraints and only the b's were 

random. Moreover, there was only one constra int per stage in their 

model. They were able to ca lcu late  the optimal linear decision ru les by 

dynamic programming starting  at the time horizon and working backwards.

In fa c t , piecewise lin ea r decision ru les are optimal for such a problem



as was shown by Charnes and Kirby [11 ] ,  even when there 1s more than 

one constra in t per stage. Kortonek and Soden [36 ] give another proof 

of th is re su lt  and also consider the case where the cost vector c 1s 

random. La te r, Charnes and Kirby [12 ] proved that piecewise lin e a r  

ru les are optimal under conditional chance co n stra in ts , although there 

they re s tr ic te d  th e ir attention to only one constra in t per stage. This 

enabled them to derive computationally e f f ic ie n t  solution techniques, 

involving in some instances a series of simple one variab le non-linear 

optim isation problems.

This completes the discussion of solution techniques fo r the 

stochastic models described in Section 2.
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4 . CONCLUSIONS

In th is chapter 1t has been proposed that production/inventory 

problems be modelled by stochastic programs. A review has been provided 

of those most frequently studied in  the l ite ra tu re  and the lin es of 

approach that have been suggested for th e ir  so lution . The stochastic 

programs divide into two c la sse s , the passive and the a c t iv e . The 

active  ones then d ivide into separate c lasses according to whether the 

constra ints hold only with some prescribed high probability (chance 

constrained programs) or almost surely ( 1 .e . with probability one), 

and according to whether one, two or many time periods or stages are 

modelled. Further d e ta ils  may be found in Sengupta and Tintner [48 ] 

who review stochastic lin ea r programming and Kirby [ 35] who surveys 

chance constrained programming.

The most useful c lass  of stochastic programs from the point of 

view of medium term production planning is  that of multi-stage active  

programs in which the constra ints hold almost su re ly . Unfortunately 

in general th is 1s the hardest c lass  to so lve . Approaches to the solution 

generally involve the d isc re tiza tio n  of the random variab les involved 

and the use of advanced large scale  programming techniques to take 

advantage of the structure of the problem thus generated. These can be 

shown to be equivalent to dynamic programming techniques, the other 

candidate for handling m ulti-stage active stochastic programs. These 

methods are unsuitable for tackling multi-commodity problems because 

of th e ir  computational complexity. See Chapter 4 for a discussion of 

dynamic programming techniques, th e ir merits and lim itation s.



In view of the d if f ic u lt y  of solving multi-stage active  problems 

exactly even i f  the random variab les are assumed to be d iscre te , 

approximate techniques deserve serious consideration. A promising 

method is  that of Beale , Forrest and Taylor [ 4  ] who study a simple 

multi-commodity production/inventory model which has an upper bound 

on the total production in any period. Their approach has provided 

one of the foundations of the research described in th is th es is , 

notably the development of a more general production/inventory model 

which is  described in  Chapter 5 and an approximate solution technique 

described in  Chapter 6 . Accordingly an exposition of the ir work is  

appropriate. This is  given in the next chapter.



CHAPTER 3

AN EXPOSITION OF "MULTI-TIME PERIOD STOCHASTIC SCHEDULING"

BY BEALE FORREST AND TAYLOR.
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1. INTRODUCTION

Beale, Forrest and Taylor [4 ] aim to provide a suite of computer 

programs that would enable production planners to obtain good re lia b le  

medium term production strateg ies in the face of uncertainty in the 

demand for th e ir products. The authors do th is  by studying a simple 

stochastic multi-product production/inventory model and proposing a 

computationally tractab le approximate solution technique. This technique 

is  numerically feasib le  in  the sense that the s ize  of problem that can 

be reasonably tackled (measured by the number of product lin es that 

can be treated in d iv id u a lly ) is  of the same order as the s ize  of 

problem that could be handled i f  the demand requirements were known 

with ce rta in ty .

Their paper has provided much of the Impetus for the research 

described in  Part I I  and so an exposition of th e ir  work together with 

a discussion of it s  merits and lim itations is  appropriate here. In 

an e ffo rt  to overcome the lim itations inherent in th e ir technique, a 

much more general production/inventory model was formulated in Chapter 

5 and studied in Chapter 6 .

The production/inventory model which they study is  given in Section

2 . They approximate i t  by a non-linear program and the method by which 

they do th is is  described in Section 3. Some co e ffic ien ts  in i t  are , 

however, s t i l l  unknown. They estimate these ite ra t iv e ly  by a process 

described in Section 4 . The chapter ends with a b rie f summary and 

conclusions in  Section 5.
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2. THE PRODUCTION/INVENTORY MODEL

Production, sales and inventory le ve ls  are to be planned fo r each 

of T time periods. Demand requirements fo r each time period are 

characterised by probab ility d is tr ib u tio n s . Production rates are con

sidered to be fixed during each time period but may vary between time 

periods. At the s ta rt  of any time period production levels are decided. 

During that period the demand is  rea lised  and at the end of i t  sales 

are made and stock leve ls  become apparent. A ll the costs are considered 

to be lin ea r in the production decisions made at the s ta rt o f , sa les 1n, 

and stock leve ls  realised  a t the end of.each time period. There is  an 

upper bound on the total production in each period. I t  is  assumed that 

the decision maker has a neutral attitude towards r is k  and so desires 

to maximise his total expected p ro fit .

Le t the column vectors pt , at> st and dt denote the production in ,

sales in , stock at the end o f , and demand in time period t .  Identify  

the i th component of each vector with the i th_ product.

Le t Cpt, Pt  and CSt be column vectors of un it production co sts , 

sale p rices and stockholding co sts . Let TCApt be the maximum total 

production permitted 1n each period and le t  1 be a vector of l ' s .

Then the model which Beale, Forrest and Taylor study may be 

e x p lic it ly  stated:

Maximise E j  pt at " CPt pt " 
t -1

( 1 )

over a t , pt and s t subject to

( 2)

(3 )
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t - i + pr at_st " 0 and (4)

a t ,pt  and S j i O
(5)

fo r t  ■ 1 , 2, t  * 0 Is  the In it ia l  or starting  state so sQ, for 

example, are the In i t ia l  stocks and are thus part of the model's 

Input data.

Notice that a l l  that is  ac tu a lly  required from a solution to the 

above model 1s the f i r s t  time period production decisions. In sub

sequent periods the model would be re-run w ith new starting  stocks 

and more accurate data.

The authors propose that the standard deviation of each component 

of the demand in each time period should be d ire c tly  proportional to 

i t s  mean, which in turn is  a lin ea r function of the sales in the 

previous time period.

I f  vt  1s a vector pertaining to the tth  time period, le t  v i t  be 

i t s  i th component. Then e x p lic it ly  stated th e ir demand model is

d1t * dMi t 1̂ + C1t nt  + R1t e1t) ( 6)

dM1t* B1ot + E Bi j t  aj t - l (7)
j

where nt and are independent real Gaussian random variab les , and 

Bio t ’ 8i j t * Ci t  Ri t  are known ^ xed constants. The term nt is  intended 

to model the global v a r ia b il it y  of a l l products in each time period 

and is  intended to model the v a r ia b il it y  in demand between individual 

products in each time period.
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Notice that apart from the in i t ia l  production leve ls p^ a ll 

the variab les in the model are actually random va ria b le s . This is  

because decisions made 1n future time periods are allowed to be 

functions of the demand realised up to that period.

The authors claim  that although the ir model is  simple, i t  can 

e as ily  be extended by the addition of extra constra ints to cover 

the more complicated problems that are l ik e ly  to be met in p ractice , 

without a lte ring  i t s  fundamental structure and approximate solution 

algorithm. This is  only partly true. The production constra int (2) 

can be replaced by a more re a l is t ic  set of technological constraints 

without a lte ring  th e ir  solution procedure. But th e ir  model cannot 

accommodate bounds on storage capacities or the cost of changes in 

production le v e l. Neither can a more comprehensive demand model, for 

example one in which the mean demand is  modelled as a lin ea r function 

of a moving average of past sa le s , be used with th e ir  solution 

procedure.
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3 . THE FORMULATION OF A NON-LINEAR PROGRAM

The authors id en tify  the crucia l quantity of In te rest in  their 

model to be the excess of supply over demand, and they are p a rticu la rly  

interested in  i t s  v a r ia b i l i t y .  They c a ll the excess of supply over 

demand in the t  th_ time period e^, where i t  is  defined by

can then be replaced by a co nstra in t which re s t r ic ts  sales to be less 

than both the stock ava ilab le  fo r sale and demand

i-e- a t s min ( s ^  + Pt .d t )

which can be equivalently w ritten

Substitution fo r dt given by (6) and (7) in ( 8) shows that the i th 

component of et is

j

The authors now take expected values in the problem defined by 

rows (1 ) , (2 ) ,  (4 ) ,  (9) and (10) to y ie ld  the problem

( 8)

2
and le t  the variance of i t s  1 th component be o ^ . The constra in t (3)

at * s t - l  + pt ‘  max ( et ’ ° ) ' (9)

Maximise l PtT5t + CptT pt  + C$t $t 

t=l

over at , pt , and ¡ t subject to

(12)



-36-

S TCAPt (13)

5t  - 5t - l  - Pt* “ bt (14)

at  - - pt+E{max(et ,0 ))
OV

I (15)

st+ l + Pt " at ’  s t ■ 0 and (16)

at ’ s t* Pt 

fo r t  ■ 1 ,2 , . . . , T .

* 0 (17)

The in i t ia l  production decision, pl t  has been treated for con

venience as a random variab le equal to i t s  expected value with prob

a b i l i t y  one. at ,p t , i t  and et denote the expected values o f at , pt> st 

and et resp ective ly . bt is  a vector whose 1 th_ component is  B.-ot and 

Bt is  a matrix whose ( 1 , j ) t h  component is

Thus the orig ina l problem has been approximated by one which 

would be a determ inistic lin ea r program except for the term

E{max(et ,0 ) }  (18)

They tackle  th is by supposing that ei t  can be treated as though i t  

has a normal d istrib u tio n  N(ei t ,c^t ) ,  whence the i th component of 

(18) i s

° 1 t f l ( i 1t / 01t ) {19)

where f 1 is  a function: F  -*• F  defined by

f^ x )  ■ £  (?+x)d*(0 .

$ being the Gaussian d istrib u tio n  function . Thus f j ( x )  is  the mean of a 

random variab le  whose d istribu tio n  is  that of a Gaussian random variab le
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with mode x but truncated a t zero such that the probab ility o f its  

being non-positive is  concentrated 1n a point mass at zero.

I f  the o 's were known, (19) could be substituted into (15) to 

y ie ld  a determ in istic  non-linear program. However, the a 's  are not 

known and have to be estimated. They derive a recursive procedure 

for th is  which is  described below.

Moreover, they assume that is  d ire c tly  proportional to the 

i th component o f the mean demand so they could set

ai t  = T1 t a i t

fo r some constant Ti t . But th is  would lead to paradoxical consequences. 

I f  i t  is  not desired to se ll a p a rticu la r product, say the k th , then 

skt 1 + pkt must be P0 S lt v̂e order to s a t is fy  (15) and (1 9 ).

The cause of th is paradox is  the assumption that the demand is  normally 

d istributed  so there is  always a po sitive  p robability that i t  w ill be 

negative. The authors avoid th is by instead setting

° 1t E T 1 t a' i t  and {20)

x i t " ° 1 t /dM1t (21)

where oi t  denotes an estimate of a1 t . Thus they enable sa fety stocks 

to be reduced considerably i f  i t  is  not desired to meet demand in 

f u l l .  However, th is  changes the structure of the problem. For i f  

i t  i s  not desired to meet demand in  fu l l  and a ^ d ^ ^  is  sm all, then 

the v a r ia b il it y  in  the problem represented by oi t  is  treated as being 

greatly  reduced, whereas i t  should not be.
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Substltutlng for E{max(et ,0 ) }  by (19) and (20) the 1 th 

component of constra int (15) can be w ritten

a i t " s1t - l " P i t  + T1t ai t f l (e i t / (T i t ai t ^  * 0 ^

The problem defined by (1 2 ), (1 3 ), (1 4 ) , (2 2 ), (16) and (17) is  

the non-linear program which they solve by the introduction of 

separable variab les to derive good f i r s t  time period production 

decisions. The ir procedure fo r estimating and hence Tn  iS  an 

ite ra t iv e  one. t  is  in i t i a l l y  set to i t s  minimum value ( i . e .  the 

value obtained by ignoring the stochastic v a r ia b i l i t y  in everything 

except demand), which is

/ (C ^  + R^) (23)

and then re-estimated. The procedure by which they do th is deserves 

further discussion which is  given below.



4 . RE-ESTIMATION OF THE STOCHASTIC VARIABILITY

In th is section the method whereby the authors re-estimate 

T1t  b r ie f ly  described. They im p lic it ly  assume, but do not 

e x p lic it ly  state that, a t any stage the state of the production/ 

inventory process which they model can be characterised by a 

state  vector £t , which they define by

« Î  - (« I»  *?> (24)

So a t the end of time period t ,  given the input data, the process is  

completely described by the stock le v e ls , s t and sa les ju s t  made, a^.

Therefore, the production decision made at the s ta r t  of time 

period t w ill be a function of the previous time period state vector 

Beale et a l .  assume that th is function can be approximated 

by a lin ea r one:

(25)

where p° is  a constant vector and A ^  and a|,^  are constant matrices. 

Only A ^  and A ^  need be estimated and the way 1n which they do 

th is  is  described below.

i s ,  of course, simply the i th diagonal entry of the dispersion

matrix of the excess o f supply over demand, et , and is  so

the authors desire to estimate the dispersion matrix of e t . This they 

do by using the above approximation to derive an expression for i t  in 

terms of the dispersion matrices of the previous time period state vector, 

£t _^, and demand d .̂



They then seek to derive  an expression for the dispersion matrix 

o f In terms o f those of ^t _1 and dfc. But to fa c i l i t a te  t lie lr  

an a ly s is  they make one fu rth e r approximation. They approximate

S1 t  " (e1 f w11 ) (26)

where wi t  are the slacks associated with (15) by

s1t " SC it  + SV it  e1t i 27)

Hence Sc i t  and Sv i t  are constants, the la t te r  being defined by

SV1t “  f 2 ^ ei t " wit^ °1 t^  

f 2 being a function: K -*■ F + such that

[f2(x)]2 = *(x) + [l-i(x)]*(x)x2-[l-2*(x)]*(x)-[<Mx)]2

where $ , * are the Gaussian probab ility density function and d is t r i

bution function re sp ective ly . I t  1s not necessary to estimate S ^ .

The merit of th is  value of Syi t  is  that I f  et were normally 

d istributed  then s i t  given by (26) has the same variance as i f  I t  were 

given by (27 ). Unfortunately th is  does not preserve the covariances 

between the si t , c fo r given t .  So the variance of the total number of 

items in stock 1s not preserved e ither.

So, having made the two approximations above, an expression for 

x .j£ in terms of the dispersion matrices of the previous time period 

sta te  vector, t̂  l , and demand,dt>Is  derived as Is  an expression for 

the dispersion matrix of in  terms of those of and d .̂



Regarding the dispersion matrix of the in i t ia l  position on the state 

space to be Id e n t ic a lly  zero they can then proceed forwards recursive ly  

estimating the t ^ ' s .

However, the procedure is  lim ited by the need to estimate the 

expected value of the et 's and the matrices of lin e a r coeffic ien ts 

of the production approximation (25 ). They can do the la tte r  estimation 

only by an an a lysis  of the fin a l tableau to the solution of th e ir non

lin ea r program and then only for the f i r s t  production decision 1n terms 

of the in i t ia l  stocks and sales ( i . e .  sales in the time period immediately 

preceeding the f i r s t ) .  They suggest the following way around this 

problem.

They f i r s t  solve the non-linear program with minimal estimates of 

the t i t ' s ,  namely those given by (2 3 ). This generates approximate 

values fo r at , s t »Pt  and et . Then starting  a t the beginning of the 

la s t  time period from a position given by sT_1 and a  ̂  ̂ they run th e ir 

variance estimation procedure for the la s t  time period only and re-solve 

the non-linear program, again fo r the la s t  time period only. This 

generates a new value for ê . and enables the co e ffic ie n t matrices 

and A ^  to be estimated. Their recursive variance estimation 

procedure can then be run forwards from the s ta rt  o f time period T-l 

to the end of time period T , assuming the dispersion matrix of to 

be id e n t ic a lly  zero, and the t ^ ' s re-evaluated. With these new values 

of the non lin ea r program is  re-run for the la s t  two time periods 

only .s ta rt in g  a t  ¡ T_2 and ¡ T_ 2> This enables Apj^ and A ^ j  to be 

estimated and the recursive t  estimation procedure run forwards for 

the la s t  three time periods, and so on, un til f in a l ly  the non linear 

program is  re-solved for a l l the time periods in the model.
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5. CONCLUSIONS

The paper by Beale, Fo rrest and Taylor presents a radical new 

way in which to handle a multi-commodity stochastic production/inventory 

problem by approximate techniques. Since the ir work provided a basis 

for the development of a more general stochastic model and approximate 

solution procedure in Chapters 5 and 6 an exposition of i t  has been 

presented here. This chapter has provided a summary and discussion 

of th e ir work which explains the crucia l steps that they took without 

detailing  the technical ca lcu la tio n s . E sse n tia lly ,th e y  derive a 

determ inistic non-linear program from the orig ina l stochastic problem 

involving only the expected values of the random va riab les , but without 

ignoring th e ir  v a r ia b il it y . Th is is  considered to be encapsulated in 

a random variab le  representing the excess of supply over demand.

Estimation of the v a r ia b ilit y  o f th is  random variab le  is  done ite ra t iv e ly  

by solving a sequence of non-linear programs. The f i r s t  is  solved with 

minimal estimates of i t s  v a r ia b i l i t y .  This provides the f i r s t  approximate 

so lu tion , which the authors term th e ir " f i r s t  pass", and i t  enables 

th e ir procedure which estimates the v a r ia b il it y  of supply over demand 

to be run over the la s t  time period and a non-linear program modelling 

the la s t  time period only to be formulated and solved. This provides 

information about the process enabling better estimates of the v a r ia b ilit y  

of supply over demand in  the la s t  time period to be made. These revised 

estimates are used in the formulation of a non-linear program modelling 

the la s t  two time periods, and so on until a non-linear program modelling 

a l l  the time periods in the model is  solved again. This the authors term 

th e ir " fu ll  method".



They te s t  th e ir approach on four simple examples. The f i r s t  

two are s u f f ic ie n t ly  simple to allow a dynamic programming solution 

to be obtained. This they do by re s tr ic t in g  the demand d istrib u tio n  

to d iscrete  va lues. They demonstrate that the so lution thus obtained 

agrees well with that yielded by th e ir approximate methods. They also 

used the examples to demonstrate the s e n s it iv ity  o f the in i t ia l  

production decisions to the valuation of the c losing  inventory.

Their method has been fu rthe r tested s t a t is t ic a l ly  along with 

other algorithms by re p lic a t iv e  sim ulation. To obtain su ffic ie n t 

accuracy by th is  method for a reasonable size  of experiment control 

s t a t is t ic s  were used. The theory behind them is  developed in  Chapters 

7 and 8, and the re su lts  of the experiment are given in Chapter 9.

These re su lts  show that th e ir method performs well in practice for 

the simple examples and y ie ld s  an expected revenue very close to that 

given by uie dynamic programing so lu tion . There was l i t t l e  difference 

in the performance of th e ir " f i r s t  pass" and " f u l l "  methods, but the 

examples had only four time periods in order to keep the computer time 

requirements of the simulation experiments reasonable. I f  there were 

more time periods in the model, the ir " fu l l"  method would out-perform 

th e ir  " f i r s t  pass" method. However, from the s im ila r ity  between the 

expected revenues accrued from using algorithms giving s lig h t ly  d iffe ren t 

production decisions and the dynamic programming method i t  may be inferred 

that f i r s t  order deviations from the optimal production rates produce 

only second order changes to the objective functio n . This shows that 

answers to stochastic  problems obtained by approximate methods may be 

re lia b le  in  p ractice .



CHAPTER 4

DYNAMIC PROGRAMMING APPROACHES TO PRODUCTION 

PLANNING
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1. INTRODUCTION

1 .1 . The Structure of Production Planning Models.

Production planning or smoothing problems are generally tackled 

by formulating a mathematical model of the production and commercial 

environment. This has been discussed in Chapter 2, but the essentia l 

points are worth re ite ra tin g  here.

The production environment is  usually  modelled over some fixed 

time in te rv a l, perhaps a yea r, which is  subdivided into time periods 

o f , sa y , a month or quarter. Key a ttr ib u te s  of the production/inventory/ 

workforce system, for example, production le v e ls , sales and stocks are 

then considered to change from one time period to the next and varia tion  

w ith in  each time period is  ignored. The model is  then manipulated and 

"solved" so as to provide the best in i t ia l  decisions (fo r example, 

f i r s t  time period production le v e ls ) ,  which optimise some a ttrib u te  

of in te re s t , fo r example, expected p ro f it .

The attention of th is  chapter is  p rim arily  directed towards 

dynamic programming solutions to models in which the stochastic elements 

are important i . e .  those models which d ire c t ly  involve uncertainty in 

some future attributes of the process. In th is  case attention is  

re s tr ic te d  to the maximisation o f expected p ro f it . Minimisation of 

expected loss or cost can be handled in exactly  the same way: ju s t  

consider maximising minus the expected cost.



1 .2 . The Basic  Elements of Dynamic Prograimring

The form of dynamic programming applied here w il l  be that 

re levant to f in ite  time horizon models as opposed to "steady state" 

models where discounted expected p ro fit  or average expected p ro fit 

per time period is  maximised over an in f in ite  horizon. The optim isation 

problem is  subdivided into subproblems pertaining to each time period. 

Each subproblem is  concerned with the maximisation of expected 

revenue from the time period in question to the time horizon. The 

optim isation must be performed fo r each possible state  of the system 

a t the s t a r t  of the time period, and the subproblems are solved back

wards in the sense that the f i r s t  subproblem is  that of maximising the 

expected la s t  time period p ro f it , the second subproblem is  that of 

maximising the expected p ro fit  in the la s t  two time periods and so 

on, u n til the la s t  subproblem which is  that of maximising the to ta l 

expected p ro fit  accrued in a l l  time periods. At each stage use is  

made of the re su lts  of the previous stage. The optimisation in the 

fin a l subproblem i s ,  of course, only performed for the in i t ia l  state  

of the system. This provides the optimal solution to such models where 

decisions have to be implemented over time.

1 .3 . Advantages and Disadvantages of Dynamic Programming

Although dynamic programming techniques theo re tica lly  provide 

re lia b ly  optimal so lu tio ns, computationally they su ffe r from the "curse 

of d im ensionality". This is  now explained. The state of the system at 

the s ta r t  o f any time period is known as the state space. This is  usually
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characterised by an m-dimensional vector, l . e .  a point in F m (m- 

dimenslonal Euclidean space). The optim isation fo r each subproblem 

(except the la s t )  must be performed for each possible value of the 

state variab le  a t the s ta r t  of the f i r s t  time period of the subproblem.

In p ractice , in dynamic programming approaches, the domain of possible 

state variab le  values is  covered by a grid and optim isation performed 

fo r each vertex of the g rid . I f  N grid points are taken for each 

state space dimension then the subproblem involves some Nm optim isations. 

Thus the computational complexity of the dynamic programming approach 

explodes exponentially with the number of s ta te  space dimensions. This 

is  a severe lim ita tio n  of the method which usu a lly  re s t r ic ts  i t s  

application to models with four or less s ta te  space dimensions. An 

approximate approach, which is  feasib le  i f  the number of state space 

dimensions is  sm all, is  to assume some parameterized functional form 

fo r the maximum expected future revenue as a function of the present 

state  variab le  value and to perform the optim isation over the parameters 

of the function .

Thus dynamic programming is  unable to handle the general m ulti- 

commodity production smoothing problem. M ultip le commodities must be 

aggregated to be amenable to th is  approach. However i f  the number of 

state  space dimensions is  sm all, dynamic programming may be e f f ic ie n t .

When the state space has only one dimension i t  may, indeed, be more 

e f f ic ie n t  than any other method. Moreover i t s  computational complexity 

expands only l in e a r ly  with the number of time periods in the model. This 

compares favourably with other approaches, fo r example, lin ea r programming, 

where the computational complexity would expand approximately as the cube 

of the number of time periods.



1 .4 . The Contents of the Chapter

The p rinc ip le  of dynamic programming is  treated more formally 

in  Section 2, f i r s t  in  a f a i r ly  general way and then applied to a 

simple production/inventory model. This model 1s tackled 1n detail 

in Section 3 , where i t  is  re stric ted  to one state space dimension and 

an e f f ic ie n t  algorithm fo r it s  solution is  derived. In Section 4 the 

multi-dimensional version is  discussed together with the d if f ic u lt ie s  

that i t  presents. The chapter ends with a discussion of the outcome 

of th is  investigation into dynamic programming techniques.
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2 . THE DYNAMIC PROGRAMMING APPROACH

2 .1 . A General Formulation

Suppose that the production/inventory system is  modelled as a 

Markov process. Characterize the state of the system or s ta te  variab le 

a t  the end of time period t  by the random vector q .̂ At the s ta r t  of 

the t  th time period suppose that controls x t are applied and random 

input y t  rea lised . In applications the state  variab le might represent 

stock le v e ls , the controls:production targets and the random input: 

demand.

Suppose that the revenue accrued in the t  th time period, V ,̂ is  

some prescribed function of qt l , x t and y

i.e . Vt i  Vt  (qM ,xt ,yt )

Suppose also that the state  space evolves from it s  value a t  the 

end of time period t -1 to that a t the end of time period t  according to 

some prescribed function of and y t

1 .e .  qt  - x t ,  y t ) .

Then the dynamic programming approach involves the solution of 

the following problem, Ft (qt _ 1) ,  fo r each possible value o f qt-1 and 

fo r  t = T, T -1 ,. . . , 1 ,T being the time horizon.

Problem Pf(qt _ i )  '
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Defining V = 0,

subject to qt = f t (qt - 1 . xt ,y t )

and ’V V V l* *
where St (q t l ) is  the set of perm issible controls at the s ta r t  of time 

period t  and Vt (qt _ i s  the maximum expected revenue accrued in time 

periods t to T in c lu s ive , given that the state space at the s ta r t  of 

time period t is  qt _ j .  This provides the optimal solution to such 

problems where the decision x t must be made at the s ta r t  of time period 

t .  See Bellman [ 5 ] ,

I f  y t has d istrib u tio n  function then the above problem 

might more u se fu lly  be w ritten  as:

Problem Pt (q t-1 )

Find Vt (qt  l ) = Max J t V ^ q ^ .x ^ )  + Vt+1( f t (qt . 1 ,x t ,5 ))> dFt ( 0  
x t

subject to xt  € s t^qt-l^

In practice a grid of possible values of qt _ j ,

{q j.’ j  ; i = 1 , 2, . . . , 1} must be constructed and I  problems,

P (q ( J> ), i = 1 ,2 , . . . ,1  solved at each stage. Thus at the (t+1) th 

stage values Vt+1(q [^ )  are found and at the following t th stage the 

function Vt+1(qt ) must be approximated by interpolation between the 

points Vt+*(qt ^ ) .
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However, th is  approximation may be considerably refined in 

the case of the sing le  state space dimension re s tr ic t io n  of the 

simple model discussed next. This is  done in Section 3.

2 .2 . A Simple Model

The simple model outlined in th is  section is  of a type d is

cussed by Beale e t a l . [ 4  ] ,  and as fa r as possible th e ir  notation 

w ill be used. I t  is  a simple production/inventory model in which 

demand is  uncertain and in  which there is  a simple upper bound on 

the total production in any time period.

Let the vectors pt>at ,s t  and dt represent production in , 

sales in , stock a t the end o f, and demand in period t  resp ective ly .

Let the i th component of these vectors be that pertaining to the i th 

product type. e .g . le t  p-t be the i th component of pt , the production 

of item i in time period t .

Let the vectors Pt> Cpt and Cs t  denote the u n it se llin g  p rice , 

production cost and inventory holding cost in time period t .

The ob ject of the analysis i s ,  then, to maximise the expected 

total revenue, V, from the f i r s t  time period u n til the time horizon at 

the end of the t  th time period:

T t  T  T

Maximise V = E l (P | at  ” Cp Pt  " c$t s t̂

over P j f P j  t=l
T *

subject to : l  p t  s Pt

s t - i  ♦ - \  - ! t  ■ 0

s .  - max(st _1 + pt -dt , 0) » 0,

*
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where a l l  vectors are by default column vectors, T denotes the 

transpose of a vector, l i s a  column vector of l ' s ,  and p* is  the 

maximum allowable total production in time period t .

The demand, dt , is  modelled in the following manner:

dt  = Bt ( l  *  $tet )

where, again, 1 is  a vector of 1 ' s and is  a m u ltivariate  normal 

random vector with d istrib u tio n  function Ft and with independently 

d istributed components. Bt  and are known, fixed system m atrices.

This problem can be decomposed into smaller dynamic programming 

subproblems in  the manner described in the next subsection.

2 .3 . Dynamic Programming Applied to the Simple Model

In order to apply dynamic programming to the simple model, the 

model is  considered to be Markov. It s  state variab le a t  the end of the 

t  th time period is  the stock leve l vector s t .

Denote the maximum expected revenue acquired from time periods 

t  to T in c lu s ive , given that the stock level at the s t a r t  of the t  th 

time period is  s _̂  ̂ by

vVi>-
Then the objective function of the t th time period subproblem 

is

Using the m aterials balance equation
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s t - l  + Pt ’  at - St "  0

to elim inate the sales va ria b le , a t , the t  th time period subproblem, 

Pt ( s t j )  is  more u se fu lly  w ritten  as fo llow s.

Find

* pist-l+itax{(pi*Cpt)pt-<pi+cst>E<stist-l>+E<vt+l(st>lst-l>1

where the maximisation is  performed over pt for each s t  ̂ and is  subject 

to

Q
.

V
I

and st  - max(st _ 1+pt -dt .O) = 0

where dt ‘ Bt ( l  + S t et ) = 0 .

Again, in  p ractice a su itab le  grid of points fo r st  ̂ on which 

to find  Vt (s t j )  must be devised, as must an interpo lation procedure to 

approximate from i t  Vt as a function of s t This i s  e a s ily  done in 

the case where st  ̂ has only one dimension and an e f f ic ie n t  solution 

algorithm can be devised. This i s  discussed in the next section.



3 . THE CASE OF A SINGLE DIMENSIONAL STATE SPACE

3 .1 . The S im p lifica tio n  Made

As has already been mentioned, a model with only one sta te  

space dimension o ffers considerable scope fo r computational t r a c ta b il it y  

and e ff ic ie n c y . There has been some in te rest shown in reducing the 

dimension of the state space in models with a multiple dimensional state 

space in order to achieve computational fe a s ib i l i t y . Dallenbach [14 ] 

ingeniously p artit io n s the state space of a manpower/production planning 

model in order to achieve one e ffe c t iv e  state space dimension. Thomas 

[53 ] adopts a s im ila r approach to a price/production planning model.

In general, however, the scope fo r  these tr ic k s  is  lim ited , and attention 

should be more properly directed to the problem of product aggregation 

and disaggregation. Gaalman [21 ]  provides optimal aggregation/dis- 

aggregation ru le s  for the now c la s s ic a l HMMS model of Holt, M odigliani, 

Muth and Simon [ 3 3 ] ,  but otherwise there is  l i t t l e  attention paid to 

the problem in  the lite ra tu re .

The remainder of th is  section w ill be devoted to the derivation 

of an e f f ic ie n t  algorithm for the solution of the single product version 

of the simple model discussed in section 2. Some attention w i l l ,  however, 

be paid to ways in which i t  might be extended to cope with more general 

problem co n stra in ts .

3. 2 .  Derivation of the t th Time Period Optimisation Subproblem.

In the one-product case the stock at the end of the t th time 

period depends on that a t the end o f the preceding period according to
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s t = max i ( s t - l  + pt '  Bt> '  BtStet ’ 0} 

where et is  a Gaussian random variable. For convenience set

r t = st - l  + pt ‘  Bt

and ot  “ Btst

Then s t  = {max r t - 0 ^ ,0 }

and E (stl s ^ j )  = r t Ft ( r t/ot ) - 0tGt ( r t /ot ) ,  

fx
where Gt (x ) = SdFJO *

Therefore the objective function of the t th time period sub

problem, Pt ( s t _ m a y  be written

v t (s t - i)  = PtBt + Max {gt ( r t ) - Cptp t + E(Vt+1(s t ) I s ^ ) }
Pt

where r t 3 s t _ j  + Pt " Bt

and gt ( r t ) = - (Pt + CSt) { r t Ft ( r t/ot ) -0tGt ( r t/at ) } .

I t  i s  now necessary to evaluate E(Vt+ (s^ )lst _ 1) .

Suppose that values for {s t> Vt+1(s t )}  are known only at discrete

points: { ( s t ) \  (Vt+1) 1 : 1 = 0 ,1 ..........1} where 0 = (s t )° < (s t ) 1 < (s t ) 1+1

for i =

Set

a i = [(Vt+1)i+1 - (Vt+1)i ]/[(st )1+1-(st )1].
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Then Vt+1(s t ) may be approximated by a piecewise lin ea r function of 

s t

i . e .  Vt+1(s t ) = (Vt+1) 1 + a j [ s t  - ( s t ) 1] 

for (s t ) i <; st  < ( s t ) i+1.

Let ? J ( r t ) = [ r t - ( s t ) i ]/o t< 

Then i t  is  seen that

E(V t+1 -r t /0t
(St)lSt-l) = i Vt+1(rt-ot5)dFt(5) + [ Vt+1(0)dFtU)

* “°° * r / n.
r t /at

1-1

■ l V r t>
1-0

where fo r i 2. 1, T^(r^) is  defined by

W  ■ 1 ot ( i {  - i )  dFt U )

l(V t+ l) 1 * 4  at 4 K F t ( i { )  - Ft ( 4 +1) )

■ 4  °t (Gt(4 > ■ v t f 1»
and T0( r t ) = (Vt+1)° (1 - Ft U ? )> .

I t  is  now convenient to define the function f  : IR - R  by

1-1
f t (x) - gt (x + Bt ) + Pt Bt + J  Tt (x  + Bt )

whence the t th time period subproblem Ft ( s t _ j )  can now be w ritten :
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Find for each st 1

vV j ) ■ "**  < V * t ) - V  pt >

where the maximisation is  over pt and is  subject to

°  s pt  s p* 

and xt -pt  = st _ r

3 .3 . The Form of the Solution to the Subproblem Pt

There are several possible approaches to the solution of the 

t th time period subproblem Pt given above. The most f le x ib le , in the 

sense of being able to cope with variants of the production or techno

logical constra in t, is  to take a piecewise lin ea r approximation to f  ̂

over a fixed  grid and do the maximisation by parametric lin e a r  program

ming, varying the element s t j on the righ t hand side . This would then 

generate a new set of points { (s^ _ j)"*, (V )̂1 >, these being the values 

of the rig h t hand side and objective function when the basis changes. 

However, before performing the parametric programming i t  is  more elegant 

to d ire c tly  approximate the demand d istrib u tio n  with a d iscrete  one 

rather than approximate f^ piecewise lin e a r ly  over a fixed g rid .

There i s ,  however, a more e f f ic ie n t  method of solution to Pt 

i f  f le x ib i l i t y  in the sense discussed above is  unimportant.

Consider the problem Pt ( s t _ 1) above. C learly  the maximising 

Pt is  a function of st _ j .  Denote i t  by p° ( s t _ j ) .  Then i f

0 < pt^st-l^ < Pt
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the problem is  equivalent to one of unconstrained optim isation and

f t^s t - l  + pt̂  * CPt = where f ' ( x ) = df/ dx- 

o
Define s t-1  to be that value of s t _1 a t which f£ (s t ^  - Cpt = 0 or 

in f in it y  i f  f ^ s ^ )  - Cpt > 0 for a l l  s t _1 > 0 or zero i f  f j . ( s t ) 

Cpt < 0 fo r a l l  s t_1 > 0.

I t  follows that

VV l >  = ' ft (st-1 + 9 \ )  - Cptp* i f  stml s sJ_j - p*

f t^St-l^ '  CPt^St - l " St - l ) l f  st-l '  pt St-1 * st-l

f t^s t - l* i f  s. , > st -1 J t -1

So agraph of \r against st _1 looks lik e

I t  remains to fin d  f£  e x p l i c i t ly . Now
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I f l
f t (x) * 9t(x-Bt ) + PtBt + £ T1(x-Bt ), so

M
fM x) ■ g{(x-Bt ) + l T ,(x-B f ) 

t  t  1 1=0 1 1

But gt(y) = -  (Pt + C$t)iy Ft (y/ot ) -a tGt (y/ot )}

so g'(y) -  Pt -  (Pt + Cst)Ft(y/at ).

1-1
Instead of ca lcu lating  l T ! (y ) by d iffe ren tia tin g  each T .

1=0 1 1

and summing, i t  is  better to d iffe re n tia te  

,t+ lfvt(y) » E(Vw |sw  + Pt - Bt - y)

y'ot
Vt+1(y-ot 5)dFt (5 ) + Vt+1 (0)

1 -o o y/a+
dF.(5)

for which £T.|(y) is  an approximation, and then approximate i t .

//a.

Now fy t (y)
/ /at

J  .0 0
Vt+1 (y-at5)dFt(0

and Vt+1 (s^) = dVt+^(st )/dst , may be approximated by the step function 

<*J - [(V t+1) 1+1 - (Vt+ l) 1] / [ ( s t ) 1+l - ( s ^ 1] 

fo r s t  : ( s t )1 s s t  < ( s t ) 1+1.

Again, setting

c[(y) ■ [y - (st)1]/at

i t  is  seen that



f;t(y)= i <4 - «;-‘ )Ftu;<,))
1=0

where a~̂  is  taken to be zero.

Substituting into the la s t  equation fo r f [ ( x )  the following is  

obtained:

' ¿ W  - pt  - (Pt  + Cs t )F t ((x _B t )/a t )

♦ i ( « ;  - « ; - i )F t ( 4 (x .B t ) )

1-0

Therefore a value for s°  ̂ can be obtained by solving

f*(x) - Cpt = 0.

3 .4 . An E f f ic ie n t  Algorithm for the Simple Model

The re su lts  of Section 3.3 can be expressed as an e ff ic ie n t  

algorithm in follow ing manner. The following procedure is  implemented 

for t  = T ,T - 1 ,. . . , 1 .

T + l 1
STEP 0: Set V ( s t ) equal to the unit value of the closing 

inventory. Set t = T .

STEP 1: Solve f^ (x) - Cpt = 0, the solution to which is  s“ ^ .
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STEP 2: Calculate for a fixed grid  of points which include

st - l  ‘  pt and s t - l  as adj acent po ints. Call these grid 

points ( s t l ) 1 and (vV = Vt ( ( s t  l ) i ) .

STEP 3: Estimate Vt ' ( s t _ 1) by a j  fo r ( s ^ ) 1 s < ( s t 1)1+1

where ctj. = [ (V l )1+1 - (Vt ) 1] / [ ( s t _ l ) i+ l - ( s ^ ) 1]  .

STEP 4: Set t = t-1 and return to step 1.

STEP 5: Calculate V1 ( sq) where sq is  the in i t ia l  stock le v e l. Stop.

This algorithm , despite the crud ity of i t s  estimates of Vt , 

appears to work w e ll. The estimation of V1 could e a s ily  be refined i f  

desired.

3 .5 . A Small Numerical Example

The following small example was solved using the algorithm 

described. I t  is  a four time period (season) model in which:

Unit se llin g  price ( a l l  seasons)

Unit production cost ( a l l  seasons)

Unit storage cost (a l l  seasons)

Total productive capacity (a l l  seasons) 

Mean demand in season 1 

2

3

4

10.0

5.0

2.0

35.0 units

20.0 units

25.0 units

35.0 units

45.0 units
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The stochastic element is  supplied by supposing that the demand 

is  normally d istributed with standard deviation 0.2236 times i t s  mean, 

su ita b ly  truncated to proscribe negative demand.

The resu lts are given below for two cases, f i r s t ly  when the 

c losing  inventory is  given it s  " fu l l"  value i . e .  10. 0/un it and 

secondly when given a "discounted" value of 9 .5 /u n it .

THE RESULTS

For case ( i )  : fu l l value of the closing inventory 

Expected production

12.6644 35.0000 35.0000 35.0000

Expected sales

19.2405 24.9849 34.8628 42.5230

Expected stocks

3.4239 13.4390 13.5763 6.0533

Expected objective function value

611.8112 489.8358 443.2149 298.6470

For case ( i i )  : discounted value of the closing inventory

Expected production

12.5692 24.8830 35.0003 35.0000

Expected sales

19.2140 24.9538 34.7385 41.7114

Expected stocks

3.3553 11.2844 11.5459 4.8345

Expected objective function value

608.6293 486.0849 425.2821 278.3607
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NOTE: The 'expected1 values given herein are not s t r i c t l y  the 

mathematical expected va lues, but those values that would re su lt 

from sta rtin g  each time period from the expected va lue of the 

state  va riab le .

In both cases the algorithm used about 28 seconds of C .P .U . 

time on a Burroughs 6700 machine. No special e f fo rt  was made to produce 

the most e f f ic ie n t  coding possible of the algorithm.
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4 - the case of a m ulti- dimensional state space

In the multi-dimensional state  space case the state space 

must be d iscretized  by a multi-dimensional g rid . The t th time period 

subproblem P^Cq^j) must then be solved fo r every value of the state 

vector at the end of the t th time period, j ,  which corresponds to 

a vertex of the g rid . As discussed in Section 1 .3 , th is leads to 

horrendous computational d if f ic u lt ie s  when the number of state space 

dimensions is  large.

This is  equivalent to a d isc re t iza t io n  of the stochastic input 

or demand a t least in the case o f the production/inventory model d is

cussed in Section 2 . For d isc re tiza tio n  of demand e ffe c tive ly  re s t r ic ts  

the controls (production targets) to a d iscre te  se t ; each d iscrete 

possible production decision being ju s t  su ff ic ie n t  to avoid a d iscrete 

demand point exceeding supply.

Choice of su itab le  points of d isc re tiza tio n  for the demand 

d istrib u tio n  is  d i f f ic u l t .  I f  the demand d istribu tio n  is  normal then 

su itab le  points and probab ility weights might be those of Gauss-Hermite 

quadrature, but even these are o f doubtful value in the multi-dimensional 

case .

In the non-stochastic or determ in istic case the problems of 

d istrib u tio n  d isc re tiza tio n  do not a rise  and those associated with the 

"curse of dim ensionality" can be mitigated by starting with a very 

coarse grid fo r the state space. Dynamic programming then y ie ld s the 

optimal path through vertices of the g rid , i . e .  optimal sequence of
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state  space re a lis a t io n s , and around th is  path a f in e r grid can be 

constructed, and so on. However, lin ea r programming methods, 

esp ecia lly  those associated with sta ircase  structured technology 

matrices (s e e , for example, Madsen [40 ] ,  fo r a review of such 

techniques) are more appropriate.
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5. CONCLUSIONS

The basic structure  of stochastic production planning models 

has been b r ie f ly  discussed and the application of dynamic programming 

to such models given. I t  has been shown that i f  the production planning 

model is  formulated as a Markov process whose state vector 

describes the state of the system, then dynamic programming involves 

the solution of a series of subproblems. Each subproblem is  the 

optimisation of the expected revenue from the current time period until 

the time horizon and must be performed for each possible state of the 

system a t the s ta r t  of the current period. The subproblems are solved 

recu rsive ly  backwards: the f i r s t  involving only the la s t  period, the 

second the la s t  two periods and so on. The solution to each subproblem 

is  necessary for the so lution of the next.

I t  has been shown that the computational complexity of the 

dynamic programming approach, although expanding lin e a r ly  with the 

number of time periods in  the model, explodes exponentially with the 

number of state space dimensions. I t  is  therefore unsuitable for 

multi-commodity models, but i t  may be very e f f ic ie n t  fo r single 

commodity ones. This has been discussed and an e f f ic ie n t  algorithm 

for the solution of a simple such model derived, and some computational 

experience reported.

So i f  aggregation and disaggregation schemes are read ily  

apparent, dynamic programming may provide a useful solution technique 

for stochastic production planning models when a l l the state space
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dimensions have been aggregated to form a single e ffe c tive  state 

space dimension. The d if f ic u lty  of providing such schemes for cap 

ac ita ted  models has motivated the multi-commodity model and approx 

imate solution technique which is  given in  the next two chapters.



CHAPTER 5

A GENERAL MODEL FOR PRODUCTION 

PLANNING
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1. INTRODUCTION

The formulation of multi-time period stochastic Markov models 

is  very natural in the study of medium term production planning and 

workforce scheduling problems, where i t  i s  desired to account d ire c tly  

fo r the varia tio ns in some inputs, p a rt ic u la r ly  demand. Medium term 

problems are here considered to be those w ith a planning horizon o f, 

say , a year which is  subdivided into decision periods of a month or 

quarter. Control decisions, fo r example production rates or workforce 

le v e ls , and system va ria b le s , fo r example stock le v e ls , are considered 

fixed  during each decision period. The problem, one of dynamic stoch

a s t ic  theory, is  well estab lished . See, fo r  example Dempster [ 17], 

Solutions to i t  are usually  approached by dynamic programming, but th is  

is  computationally re str ic te d  to cases in  which the state space has only 

one or two dimensions.

The study and use of such models has been severely lim ited by a 

lack of computationallytractable solution techniques. The one notable 

exception is  that of Beale et a l . [ 4 ] ,  which provides an approximate 

so lution to a simple production-inventory model, but is  capable of 

handling any reasonable number of products.

Simpler models have received much a tten tio n . Gaalman [20 ] 

tackles a multi-time period stochastic model with control-theoretical 

techniques, but i t  is  uncapacitated and, moreover, is  unable to handle 

the change in  the system state that would a r is e , fo r example, at the 

point of stock-out. Other multi-time period models are approached



through the methods o f chance constraints or dynamic programming.

See, for example Charnes, Cooper and Symonds [ J O ] ,  who aggregate 

to re s t r ic  th e ir attention  to a single product and use chance con

strained programming. Dallenbach [ ] 4 ]  and Thomas [5 3 ] ingeniously 

p artit io n  the state space and use dynamic programming to cope with 

two dimensions. M ulti-period models with many dimensions are gen

e ra l ly  only treated in  the determ inistic case. See Gabbay [[22] 

and Hax and Meal pC Q  fo r the treatment of such problems with 

extensions to a multi-echelon production process. A single period 

stochastic model is  tackled by Hodges and Moore [ [3 2 ] ,  who incorporate 

the randomness of the demand by a su itab le marginal analysis of the 

lin e a r programming so lu tio n . Two-period models reduce to the problem 

of stochastic programming with fixed recourse in  the sense of Wets [5 8 ]  . 

Theoretical aspects o f th is  problem have received much attention in 

the lite ra tu re  from, fo r example, Walkup and Wets [[56[] and Vadja [ [5 4 [] . 

Application to sing le  product inventory and manpower planning have been 

made by El-Agizy p  []  .

I t  is  in  p rin c ip le  desirable to have an exact solution to an O.R. 

model. But th is is  p a rt ic u la r ly  d if f ic u lt  fo r multi-time period 

stochastic programming, and furthermore the assumption that the relevant 

p robab ility d is tr ib u tio n s can be fu l ly  specified is  probably quite 

u n re a lis t ic . So we hence concentrate on "good approximate so lutions".

The model proposed in th is chapter is  a generalisation of that of 

Beale et al [ 4 ]  . The generalisations enable a much more general 

c lass  of production/inventory/workforce planning models to be handled
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than is  possible with th e ir model. An approximate solution technique 

i s  derived in chapter 6 . Th is is  also based upon th e ir work, but 

improvements are made to th e ir  method in addition to the necessary 

g enera lisa tio ns.

The model is  given e x p lic it ly  and discussed in section 2. An 

ap p lica tion  to a sp ec ific  production/inventory/workforce planning 

problem is  given in  section 3. The chapter ends with a b rie f summary 

and conclusions in  section 4 .

IA
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2. A DESCRIPTION OF THE MODEL

The model proposed below fo r the modelling of 

production planning problems is  of a d iscrete time, controlled 

stochastic  system. For a given solution algorithm, the process is  

Markov. A lso , apart from one constra int in each time period (con

s t ra in t  (5) below) the model is  l in e a r . Under certa in  convexity 

cond itions, which are derived and discussed in section 3.3 of chapter 

6 th is constra in t can be replaced by two equivalent lin ea r constraints 

and the model becomes a stochastic lin ea r program.

E x p l ic i t ly  stated i t  i s :

n T T
Maximise E( l dl t qt + d2txt ) U )

t=l

subject to:

rt = Rltqt-1 + R2tXt (2)

>t’ A (3)

qt ' q°t * V t - i  * V t  * ctwt * V t  {4)

wt = max (zt,0) (5)

2t ■ 2° * Ktqt-i * Ltxt ■ (6)

xt 2 0> (7)

Constraints (2) - (7) are fo r t  = 1 ,2 ,...,T. State t = 0 is  the in i t ia l  

or s ta rt in g  s ta te . Furthermore:

The qt are state variab les realised  at the end of time 

period t ,  the x t are control decisions made at the s ta rt  of time period 

t ,  the y t are the stochastic inputs realised during time period t ,zt 

represents the amount by which the stochastic input is  exceeded by 

some lin e a r  determ inistic function of the control and input state variab les
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fo r the time period, as a vector with positive or negative components, 

w h ils t wt defines the positive  component of zt .

q °. y ° .  2°  and r^ are fixed  vectors. At> Bt> Ct , Dt> Kt , Lt ,

Mt ’ Rl t  and R2t are fixed  system m atrices. dl t  and d2t are vectors 

of cost co e ffic ie n ts , also assumed fixe d , ê  are m u ltivariate  normal 

random vectors with zero mean and dispersion m atrix Disp (y t ) ,  and 

independent in  t i . e .  et and eu are independent i f  t  f u.

The objective function is  the simple maximisation of the expected 

value of a lin e a r combination of the state and control variab les 

from the sta rtin g  state u n til the time horizon. Any discount factor 

would be incorporated in the cost co e ffic ie n ts .

Constraints (2) and (7 ) are ca lled  the control constra in ts. They 

define the set o f feasib le  controls in the t th time period given the 

state space at the s ta r t  of that time period, qt j ,  which might be used 

to model permissible production le v e ls , fo r example. Defining th is 

set by

St (qt - 1 } = {x t :R l t qt - l  + R2t Xt 3 Pt* Xt  " 0} 

i t  must be stipulated that ->t (qt is  non-empty for a l l possible

qt - r
Constraint (3) w ill be referred to as the input constra in t. The 

input might be used to model demand for individual products. This 

constra int would allow the mean demand in each time period to be a 

lin ea r function of the state  space at the s ta r t  of that time period. 

Thus, by choice of a su itab le  state  space the dynamic lin ea r model
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and Bayesian forecasting techniques of Harrison and Stevens [29 ] can 

be incorporated w ithin the model.In addition two approaches to modelling 

the dispersion matrix of the random input given the previous time period 

state space, i . e .  the dispersion matrix of et> Disp (y t ) ,  are con

sidered.

(a) The 'ad d itive ' case in which Disp (y t ) is  fix e d , and

(b) The 'm u lt ip lica t ive ' case in which the standard deviation 

of ê . is  proportional to the mean of y .̂.

i . e .  (Disp (y t ) ) i j  * (E y t ) i (P®)^ (E y t ) ^  

where P° is  a given fixed m atrix .

Constraints (4 ) , (5) and ( 6) w ill be termed the evolution equations. 

Given the state  of the system and the controls applied at the s ta rt  of 

time period t these equations describe how the system evolves to the 

s ta rt  o f time period t+1 according to the rea lised  value of the t  th 

time period stochastic input y t *

So, a t the s ta r t  of time period t ,  the state  of the system is  

described by qt Control decisions x t are made and the system 

evolves through the evolution equations as the stochastic input yt is  

rea lised  to i t s  state at the s ta rt  of the next time period, qt , and 

revenue dl t Tqt + d ^ t  is  accrued*

Diagramatically the process may be thought of as:





3 . an a p p l ic a t io n  of the general model to a production/ manpower/

INVENTORY PLANNING PROBLEM

The purpose of th is  section is  to i l lu s t r a te  the kind of ap p li

ca tio n  encompassed by the general model which has motivated it s  formu

la t io n . Production, workforce and inventory levels are to be planned 

fo r each of T time periods. Production, manpower and speculative stock 

le v e ls  are decided at the s ta r t  of each period. Demand is  realised  

during that period a fte r  which the stocks and/or backorders become 

apparent. Provision is  made fo r production and workforce change costs, 

although these must be d ire c t ly  proportional to the changes made. 

Manpower leve ls can be adjusted by changing the workforce or overtime 

or short time (undertime) working. Speculative stock is  planned by 

earmarking some of the ava ilab le  stock as being not fo r sa le . This 

may be important in  the production of some products, where 

the sa le  price may be greater in  future time periods. Production can 

be increased by subcontracted work.

I t  is  assumed that backorders are always sa tis fie d  before the 

cu rren t demand, and at the end o f each time period stock in excess of 

the storage capacity must be discarded ( i . e .  thrown away or sold very 

cheaply ) ;  fo r the model is  capacitated not only with respect to plant 

production f a c i l i t i e s ,  but also with respect to storage f a c i l i t i e s .

For a given planning algorithm the model is  Markov. Decision 

and state  variab les are given below. I t  is  important that the 

consequence of decisions made a t  the s ta r t  of a time period which 

emerge only a fte r the demand is  rea lised  be modelled as state space



re a lisa t io n s . A fter these defin itions the necessary system constraints 

are discussed and given. These then have to be manipulated in order 

to re f le c t  the form o f the general model.

(a ) Decisions made a t  the s ta rt  of time period t

Description Notation

Increase/Decrease p lant production
xl t /x 2t

Subcontracted production
x3t

Increase/Decrease labour force
x4t/x 5t

Overtime/short time worked
x6t/x7t

Stock withheld
X8t

Backorders sa tis fie d  
(P lus slacks on control constra ints) X9t

(b) State variab les realised  at the end of time period t

Description Notation

Plant production level
ql t

Labour force employed q2t
Total stock level (includ ing stock withheld) q3t
Total backorder level q4t
Current sa les q5t
New backorders q6t
Stock discarded q7t

A ll the costs are lin e a r  in the variab les above, which are vectors. 

The i th component o f a variab le pertaining to stocks, sa le s , pro

duction or backorders re fe rs to the i th product category. The j  th
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component of a variab le pertaining to the labour force refers to the 

j  tĥ  category of employee. The labour force i t s e l f  is  not measured 

in  numbers of employees, but in  numbers of standard hours worked per 

time period ( i . e .  hours worked without over- or short-time ) .

(c )  The stochastic input in  time period t  is  ju s t  the demand, d̂ .. 

Again, d̂  is  a vector whose i tĥ  component is  the demand fo r the i th 

category of product.

(d) Necessary system constra ints fo r time period t .

I t  is  assumed that the technological contra ints on plant pro

duction can be modelled by bounds on a lin ea r function of the total 

hours worked and products made per period. Now the total number of 

hours worked is  the standard time of the labour force plus the over

time minus the short-time i . e .

q2t + X6t  ’  x7t '

I t  is  assumed that the model's cost structure w il l  proscribe simul

taneous over and short time working fo r the same category of employee. 

So the technological plant production constra ints are modelled by

R11̂ q2t + X6t  ‘  X7 t ) + R2tql t  5 r l t *  (1)

d , Rn* being fixed  system matrices and r . .  a fixed  system vector.
I t  Zt

Overtime is  lim ited to a fractio n  ( I/o ) of standard time and 

short time must be less than the standard time. This can be specified 

by the single constra int

aX6t + x7t * q2t*
( 2 )
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The labour force at the s ta r t  of the th time period must be 

balanced with that a t the end of the t  th time period , so

q2t  = q2t - l  + x4t " x5t *

S im ila r ly , the plant production must be balanced across time 

periods by

" i t  " " l t - l  * “ i t  '  x2t  • <4>

The total stock level a t  the end of-the t  th time period must 

be equal to that a t the s ta r t  plus the total production minus the sum 

of the sa le s , backorders f i l le d  and stock discarded. Therefore:

q3t = q3 t- l + ql t  + x3t ‘  q5t '  x 9t " q7t * ^

The backorders must also  balance: those at the end of the time 

period must be equal to those a t the s ta r t  plus any new backorders 

minus the backorders f i l le d .

q4t 3 q4 t - l  + q6t  " x 9 f  ^

I t  w ill be convenient in  the discussion of fu rth e r system con

s tra in ts  to define a new vecto r, st> representing the stock availab le 

fo r sales and backorders:

St  3 q3t- 1 + ql t  + x3t ‘  x8t* (7^

This must be constrained to be non-negative to proscribe the withholding 

of more stock than is  p h ys ica lly  present.
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Another s la ck , x n t  1s added to (2 ) and q2t 1s eliminated by 

substitu tion  from (3) to y ie ld

0 = q2 t- l + x4t ‘  x5t ‘  aX6t  " x7t '  x l l t *

Equations (3) and (4) are already in the appropriate form, so 

can be le f t  as they are.

I t  i s  convenient to substitute fo r ql t  given by (4 ) in equation

(7)

st = ql t - l  + q3 t- l + x l t  “ x2t + x3t ‘  x8t  ’

Addition o f a s la ck , x 12t to constra in t (8) now y ie ld s :

0 = ql t - l  + q3t- 1 + x l t  ‘  x2t  +

The addition of a slack x13t to

r 2t a x8t  + x13t •

Constraint (10) can be replaced

x9t 5 St

and x gt * q4 t l .

Addition of slacks Xj4t and xJ5t respectively to the inequalities and 

substitution for given by (8') in the f ir s t  yields

0 = ql t - l  + q3 t-1 + XI t  '  X2t + X3t '  X8t '  X9t '  X14t 

and 0 = q4t_1 - xgt * xi5t *

(10’ )

(10")

x3t '  X8t  ‘  X12t* 18 '

constra int (9) y ie ld s

O')

by the two inequalities
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Now equation (11) can be w ritten :

q5t = St  ’  x9t • max {S t " x9t ’  df 0K  

Setting zJ t  = s t  - xgt - dt

= ql t - l  + q3 t- l + Xl t  * X2t + X3t '  X8t '  x9t '  dt 

and substitu ting  fo r s t  given by (8 1) i t  is  seen that

q5t = ql t - l  + q3 t-1 + x l t  " x2t + x3t '  x8t '  x9t

- max (z l t ,0 ) .  (11']

Now i t  i s  necessary to manipulate equation (1 2 ). Substitution 

fo r q ra given by ( I T )  and z u  given by (14) y ie ld s

dt  " q5t 3 "z l t  + max ^ l t ’ 0^

= max (- z l t ,0 ) .

Therefore qgt * max (d  ̂ - d5t»0)

= maximax (-z^t>0 ) ,0 )

= max (- z l t ,0 ) ,

and (12) can be replaced by

q6t = max (z l t .O) - z l t  .

Elim ination of q5t given by (1 1 ') in  (13) y ie ld s 

q? t = maximax (z l t *°) + x 8t  '  r 2 t ’ 0  ̂ *

(12’ )
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But x8t * r 2t * 0 . Hence i f  z^t + xgt-ir2 t s 0 then q7t ■ 0,

otherwise q7t " z l t  + x8t " r 2 t ’ so

q7t = max (z u , r 2t - xg t) + X8t '  r 2 t ‘

Setting Z2t = Zl t  + x8t '  r 2t

=
' r 2t + ql t - l  + q3 t- l + Xl t ‘  x2t + x3t '  x9t '  dt* (15)

q7t = max (z2t* ° )  • (13'

I t  is  now possible to put (5) into the appropriate format by 

substitution fo r  qlt> q5t and q7t given by (4 ) ,  ( I T )  and (1 3 ') re 

sp ective ly . Th is y ie ld s

q3t = x8t + max ẑ l t ’ 0  ̂ '  ( 5 ‘ )

L a s t ly , substitu tion  for q6t given by (12 ') into (6) y ie ld s

q4t = q4 t- l • Xqt + max (z l t ’ 0) '  z l f  (6 ,)

Setting

wi t  = max (z i t ,0 ) fo r i ■ 1,2 (16)

and ylt * y2t ■ qt

the constra ints are in the form demanded by the general model. They 

are summarised below:
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and

rlt “ R2tqlt-1 + R1tq2t-1

+ Rltxlt  - Rltx2t + R2tX4t ‘  R2tX5t + R1tX6t + R1tX7t + x10t 

0 = q2t -1 + X4t ‘  X5t '  aX6t '  X7t " Xllt  

0 = ql t - l  + q3t-l + xlt  '  X2t + X3t ‘  x8t '  X12t 

r2t = X8t + X13t

( r :

0 = qlt - l  + q3t-l + xlt  

0

X2t + X3t '  X8t '  X9t ‘  X14t

q41-1 - *9t '  X15t

qlt - l + xlt ’  x2t

q2t-l + X4t '  X5t

X8t + Wlt  " W2t

q41-1 - x . qt + Wl f

q5t 3 ql t - l  + q3t -1 + Xlt  ‘  X2t + X3t " X8t '  X9t '  Wlt

q6t 3 Wlt  '  Zlt  

q7t 3 W2t

Zlt  = ql t - l  + q3t-l + Xlt  ‘  x2t + X3t X8t " X9t " ylt

c2t ' r2t + ql t - l  + q3t-l + xlt  '  X2t + x3t " X9t '  y2t

wi t  = max (z i t ,0 ) fo r 1 = 1,2

xit  2 0 for i = 1 ,2 ,...,15

Constraints ( l 1) ,  (2 * ) , ( 8 ' ) ,  (9 1) ,  (1 0 ') ,  (10") and (17) are the 

control constra in ts , although s t r ic t ly  they should be augmented by two 

additional constraints which imply that the plant production level ql t , 

and labour fo rce , q^t are positive
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i , e ' 0 = ql t - l  + x l t  ’  x2t " x 16t ( 18)

and 0 a q2 t- l + x4 t ■ x5t • x 17t <19>

where x16t and x J7t are two additional s la cks . For any q-t ^,

1 = 1 ,2 , . . . .7  there w ill always be feasib le  X jt , j  = 1 ,2 , . . . ,1 7 .

Constraints (4 ) , ( 3 ) ,  (5 ‘ ) ,  ( 6 * ) ,  (1 1 ') ,  (121) and (1 3 ') are 

the evolution equations. For any i 3 1 , . . . , 7  and fe a s ib le

X jt , j  = 1 , . . . ,1 7  i t  can be assumed that the probability of any qi t  

not being z 0 is  s u f f ic ie n t ly  small to be ignored. For ql t  and q2t

w ill be z 0 by the additional constra ints given above. q2t w i l l

always be > 0 because (wl t  - w2 t) z 0 for a l l  values of the stochastic

input dt> q4t is  always z 0 because

wl t  '  z l t  " max ( - z l f 0) 2 0

and Xgt s q4t  ̂ by control constra int (10 "). q5t w ill always be 

positive  i f  the demand is  positive fo r

ql t - l  + q3 t-1 + Xl t  " x2t + X3 t ‘  X8t '  x9t Z 0

by control constra int (1 0 ' ) ,  so some component of q5t> (q5t) i  say . ŵ 11 

only be negative i f  the corresponding component of wlt> (« l t ) i is  

positive  in which case

(q5t^i “ ■(* l t , 1

and (y u ) i is  simply - (d t ) i , so (q5 t ) .  w ill only be negative i f  the 

i th component of the demand is  negative! Although demand is  modelled 

along a m u ltivariate  normal d istrib u tio n  i t  may be assumed that the 

probab ility of any component of i t  being negative is  s u f f ic ie n t ly  small
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to be ignored. q6t w ill always be 2 0 because (wJ t  - z^ ) * q and 

(1 3 ') obviously implies that q7t w ill always be po sitive .

The state  vector qt ' s can e a s ily  be expanded so as to 

enable a Bayesian forecasting technique to be incorporated into the 

model.

The revenue accrued during the t tĥ  time period is  a lin ear 

function of qit> i = 1 ,2 , . . . ,7  and x ^ , j  = 1 ,2 , . . . ,9 .

The model w ill be convex (see section 3.3 of chapter 6) i f

Ct  s 0 , fo r a l l  t  = 1 , 2 , . . . . T

where nt is  a vector whose i jUi component represents the value of the 

i th component of qt in time period t .  Applying th is  to the model 

given above, i t  is  seen that i t  w ill be convex i f

(a ) (stock value - stockholding cost) + (backorder value - 

backorder holding cost) - (sa le  p r ic e ) - (cost of new backorder) 

is  negative for each time period, and

(b) (stock value - stockholding cost) - (cost of discarding stock) 

is  negative.

Although (b) may be assumed always to app ly , otherwise stock le f t  over 

a t the end of each time period would be thrown away regardless of 

whether there was any spare storage ca p ac ity . (a) may f a i l  to apply 

i f  i t  is  expedient to withhold stock when the sale price in a p articu la r 

time period is  very low compared with the un it value of the items in

stock.



4. CONCLUSIONS

The problem of medium term production planning has been addressed 

and a su itab ly general stochastic model has been proposed. An application 

of i t  to a more sp e c if ic  planning problem has been given in order to 

demonstrate it s  potentia l usefu lness. The approximate solution method 

proposed in the fo llow ing chapter is  capable of handling any reasonable 

number of product lin e s  and labour categories in the sense that the size 

of the problem th a t can be solved is  of the same order as the size  of 

problem that can be solved ignoring a l l  the stochastic elements. The 

only major lim ita t io n  of the model l ie s  in i t s  in a b il it y  to handle 

set up costs e .g . fixed  costs that might be incurred by the decision 

to produce any quantity  of a p a rticu la r product or to make any change 

to the workforce le v e l . Nevertheless i t  is  hoped that the model and 

the approximate so lu tion  technique may be of value in the f ie ld  of 

medium term planning.

For convenience, the problem posed by the general model w ill be 

termed the fu ll problem. I t  is  th is  problem which the following chapter 

addresses in the derivation of an approximate solution technique.
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1. INTRODUCTION

In the la s t  chapter a general planning model was introduced and 

an application to a production/inventory/workforce planning 

problem given. (Under certa in  conditions, which are derived and d is

cussed in  Section 2.3 be low ),th is model is  a stochastic  lin ea r 

program in the sense that i t  reduces to an ordinary lin e a r  program 

as the v a r ia b i l i t y  in the stochastic input tends to zero .

This chapter is  devoted to the derivation of an approximate 

solution technique to the general model. Attention has been devoted 

towards good approximate techniques because of the computational, 

in t ra c ta b ili ty  of exact ones. An exact solution to the model would 

require the fu l l  derivation of the optimal controls x t as functions 

of the preceeding state v a r ia b le ,q ^ . To appreciate the computational 

d if f ic u lt y  of th is , suppose that the problem is  d iscre tized  by taking a grid 

of points fo r each qt  ̂ and then solved by finding xt (q t j ) fo r each 

point on the g rid . Some such scheme is  necessary in any exact 

numerical approach. I f  the state space has n dimensions and N grid 

points are used for each dimension, then Nn function evaluations are 

required fo r each time period. This approach is  feasib le  only i f  n 

is  small when dynamic programming techniques could solve the discretized 

problem exac tly . However, th is  method is  of l i t t l e  p ractica l use when 

n is  large .

The method of solution proposed here is  computationally tractable 

for any reasonable number of state space dimensions. F i r s t ly  notice
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that In practice only the f i r s t  control decision, is  actually  

required , fo r a t the end of the f i r s t  time period better information 

would be ava ilab le  for the data on subsequent periods and the model 

would be re-run to determine x^.

The technique suggested here i s  a development of the algorithm 

proposed by Beale et a l . [ 4 ] ,  i t  requires the formulation of a 

reduced problem involving only the expected values of the stochastic 

input, state space and control decisions but does not eliminate the ir

v a r ia b i l i t y .  The state variables and control decisions are random vectors 

because the stochastic input is  spec ified  as a random vector. This

leads to the state variab le  being a random vector, and thus the control 

decisions, which are functions of the preceeding state variab le , are in 

general random vectors. For the purpose of th is  analysis the f i r s t  

control decision , x̂  is  regarded as a random variable equal to it s  

expected value with probability one, since x̂  is  only a function of 

qQ the in i t ia l  state of the system, assumed to be a known item of 

data. Thus the expected value of x^, returned by a solution to the 

reduced problem, is  the exact f i r s t  time period control decision.

The reduced problem is  a simple non-linear program which turns 

out to be convex i f  the orig inal or fu ll problem is  a stochastic 

lin ea r program. The reduced problem can be viewed as a form of 

"determ inistic equivalent" to the f u l l  problem although s t r ic t ly  the 

contraints on the expected values o f the random variables are implied 

by, but do not imply,the constra ints in the fu ll problem on the random

variab les themselves.
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However, more information is  required for the fu l l  formulation 

of the reduced problem than is  in i t i a l l y  a v a ila b le . This d if f ic u lty  

is  overcome by replacing the reduced problem by a sequence of restric ted  

reduced problems and solving them in turn : the solution to each re

s tr ic te d  reduced problem y ie ld s more information about the process 

which enables the formulation of the next re str ic te d  reduced problem.

The re s tr ic te d  reduced problems tend to an approximate version of 

the reduced problem. The computational e ffo rt  required to solve the 

sequence of re s tr ic te d  reduced problems is  notas great as might f i r s t  

be imagined, fo r  the next one in the sequence w ill be s im ila r  to the 

la s t  and considerable advantage can be taken of th is .

The matter i s  more fu l ly  discussed in  Section 6 , which is  devoted 

to computational aspects of the procedure and gives a small numerical 

example.

Section 3 is  devoted to the derivation and study of the reduced 

problem. The structure  of the re str ic ted  reduced problems is  given 

in Section 4 . However, the precise formulation of the re stric ted  

reduced problems requires further study o f the v a r ia b il it y  of the 

state v a r ia b le s . This is  done in Section 5. A summary of the method 

in Section 7 concludes the chapter.

Some prelim inary te ch n ica lit ie s  need to be tackled f i r s t  and 

these are addressed in  the next section where some convenient notation 

is  introduced.
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2. TECHNICAL PRELIMINARIES

2 .1 . Some Notational Conveniences

Throughout th is  chapter vectors are represented by lower case 

le tte rs  and matrices by upper case le t te r s . Vectors are , as usual, 

always taken to be column vectors unless otherwise stated. The 

superscript T w ill always denote the transpose of a matrix or vector.

Many vectors and matrices pertain to a p a rticu la r time period. 

That a matrix or vector pertains to the t th time period is  denoted 

by a subscript The i th component of such a vector is  denoted by

the su b scrip ts^ . For example, the i th component of the t th time 

period stochastic input is  denoted by y i ( ; .

I is  always used to represent the identity  m atrix , it s  dimension 

being obvious from the sense in  which i t  is  used.

2 .2 . Random Variables in the Problem

I t  has already been mentioned in the introduction to th is  chapter 

that the state va r ia b le , qt , the control decisions xt and the linking 

variab le are a c tu a lly  random variab les as well as the stochastic

input y t * This follows from the dependence of qt on zt> which is  a 

lin ea r function of y t , and the dependence of xt> by the Markovian 

nature of the system on the preceeding state va ria b le , q ^ j . Although 

x1 is  therefore a function of the in i t ia l  system sta te , qQ, which 

is  ju s t  part of the problem's input data, i t  is  treated for convenience 

as a random variab le equal to i t s  expected value with probability one.
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2 .3 . Representation of M ultivariate Random Vectors

Let x be a random vector. Denote it s  mean, E (x ) , by x and it s  

d ispersion m atrix by Disp ( x ) .

i . e .  Disp (x) = E((x- x) (x-x )T).

Disp (x ) i s ,  therefore, by d e fin ition  positive  sem i-defin ite.

Let x and y be m u ltivariate  random vecto rs. Denote th e ir co- 

variance m atrix by Cov (x ,y )

i . e .  Cov (x .y )  = E ((x - x ) (y - y )T) .

Now i f  M is  a positive  sem i-definite m atrix there always ex ists 

a lower trian gu lar matrix L such that M ■ LL^. To see th is  le t  M = 

(mi j ) ; L = (Ai j )  and given M define L by:

*11 =  ̂ mll 

*21 = m21/All
2

¿22 = ^(m22 ” 2̂1^

*31 = m31/ *U

*32 = m̂32 '  *31*21^*22

*33 = ^ m33 '  *31 " *32̂

*41 * m41A ll

*42 = m42 ‘  *41*21^*22

*43 = (m43 " *41*31 ‘  *42*32^*33 
2 2 2

*44 = m̂44 '*  41 ‘  *42 '*  43}

and so on.
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Square roots a l l  e x is t  because M 1s positive semi-definite and 

d iv is ions by zero do not occur for the same reason ( i . e .  the numerator 

is  zero whenever the denominator is  zero and the re su lt may be taken 

as ze ro ).

I f  x is  a random vecto r, le t  the lower triangu lar decomposition 

of Disp (x ) be Std(x)

I . e .  Disp (x ) = S td (x ) .(S td (x ) )T .

Then i f  x = 0 there always ex ists  a vector £, of zero mean unit variance 

independent components such that x can be represented by

x - S td (x ) .£ ,

for even i f  Disp (x ) and hence Std(x) are singular then one or more 

component o f £ w ill have no e ffe c t on x(and these components may be 

taken to have, say, a Gaussian d is tr ib u t io n ).

2 .4 . Representation of the Stochastic Input

The stochastic input is  considered to have a m ultivariate normal 

d is tr ib u tio n , whose mean may depend lin e a r ly  on the state space at 

the end of the previous time period.

i . e .  y t  -v N(yt , Disp (y t ))

where ^t = y t + Mt qt - l

for some constant vector y° and matrix Mt . Two separate cases are 

considered herein:
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(a) The additive case, in which Disp (y^) is  fixed

Q *v>
(b) The m u lt ip lica t ive , case, in which Disp (y t ) «= Yt P° Y , where

P° is  a fixed matrix and Ŷ  1s a diagonal matrix whose i th
a.

diagonal entry is  y..^..

So, in the add itive case y t may be represented by

y t  = y t  + Std(yt ) .n t

where Disp (y^) = Std (yt ) [S td (y t ) ] T and is  a random vector dis 

tributed as N (0 ,I ) .

W hilst in the m u ltip lica tive  case y t  may be represented by

where P° = S° (S ° )T and again nt is  a random vector distributed as 

N (0 ,I ) .  Notice that by d e fin itio n  P° must be a positive sem i-definite, 

symmetric m atrix.

This completes the prelim inary technical discussion. The formu

la tio n  of the reduced model is  tackled next.



3. THE REDUCED PROBLEM

3 .1 . Derivation of the Reduced Problem

For convenience the fu l l  problem or general model of Chapter 5 

is  re-stated here. I t  i s :

T t T
Maximise E{ £ dl t  qt + d2t x^} (1)

t= l

subject

and

to the follow ing constraints for t = 1 ,2 , . . . , T

r t  * Rl t  qt - l  + R2t xt ( 2)

h  = y t  + Mt  qt - l  + et (3)

qt  = qt  + At  qt - l  + Btx t  + Ct wt  + Dt  zt (4)

wt = max ( z t , 0) (5)

zt  = zt + Kt  qt - l  + Lt xt ‘  *t ( 6)

OA
I■4-»

X (7)

et is  a m u ltiva ria te  zero mean normal random vector whose dis 

persion m atrix is  Disp (y^).

In the following te x t , (2) w ill be referred to as the control 

constra in t, (3) as the input constra in t, and (4 ) ,  (5) and (6) are 

called  the evolution equations.
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The basic idea is  to replace the random veatorSin the fu ll 

problem by the ir expected values in such a way that th e ir randomness 

is  neither ignored nor se rio usly  distorted to formulate what w ill 

be called  the reduced problem. The objective function is  represented 

by simply replacing and x t by th e ir expected va lues, so i t  becomes

So the fu ll problem could be replaced by an equivalent determ inistic 

one i f  necessary and s u f f ic ie n t  constraints can be imposed upon qt and 

x For convenience write the constraints of the fu l l  problem as

resp e tive ly , and K°, A° and B° being fixed system matrices equal to 

(K t * Mt ) ,  (At + Dt K°) and (Bt  + D ^ )  re sp ective ly .

Now the necessary and su ff ic ie n t  constraints on the q̂  s and x̂  s 

implied by (9) are

Maximise l {d ^  qt + d2J  x t ) .  

t
(8)

qt = qt + Atqt -1 + Bt Xt + Ct max( zt ' ° )  + Dtet 

and xt € st(qt-1) ( 10)

(9)

where zt  = Zt  + Kt  qt - l  + Lt xt  + et

and S t (qt - i )  - ( x : r t  = Rl t qM  + Rz tx , n O } ,

1
z t

and q̂  being fixed  system vectors equal to (z ° - y °) and (q° + Dt z*)

(11)



So i f  the control decisions were unconstrained and i f  the d istribution  

of zt were a known function o f i t , then the fu l l  problem could be 

replaced by an equivalent determ in istic one whose objective function 

is  ( 8) and whose constra int se t is  defined by ( 11) and

The reduced problem is  constructed by approximating the control 

constra ints ( 10) by

and assuming that E{max(zt ,0 ) }  is  a function of zt i f  the dispersion 

matrix of z t> Disp (z t ) ,  were known. I t  is  therefore defined by the 

objective function (8) and the constraints (1 1 ), (12) and (13 ).

i . e .  that problem which would be obtained from the fu ll problem defined 

by ( 1 ) " ( 7) by replacing the random variab les with th e ir expected 

values in  a l l  rows except (5 ) .  Notice that the objective function 

value that would be returned by a solution to the reduced problem 

w ill always be greater than that returned by a solution to the fu ll 

problem. The evaluation of E{max(zt ,0 ) }  = wt  requires fu rther an a lysis .

( 12)

* t 6 V ^ t - i 5 (13)

Let oi t  = /(Disp U t ) )^  

and 51t = ( z . t  - z 1t )/o1 t-
(14)

Then 5 is  a zero mean, u n it variance random variab le . Now
1 t
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E(w1t) = E{max (z u ,0 ) }

= au  E{m ax(?.t , - z]t/on )) + i n

= ° 1t f i t  (z i t /a 1t } - <15)

where f i t  is  a real function defined by

f i t ( x ) = L  ( 5  + * ) d 6 i t ( 0 .  (16)

G,jt  being the d istrib u tio n  function o f

Defining the function f t :]Rn -*-Rn, (where n is  the dimension of 

zt ) by

(f^ (x )).j = f ̂  t (^ 1 ) *

the expected value of wt may be w ritten  as

E(wt ) - Zt  z t ) (17)

where is  a diagonal m atrix whose i th diagonal term is  o ^ .

The evolution equations may now be written in terms of the 

expected values of q̂ ., x  ̂ and y fc:

qt  = qt  + At qt - l  + Bt x t + Ct wt + Dt i t

1=
wt = L t V Zt V

( 18)

h  s Zt + Kt qt - l  + Lt * t  • * f

In the add itive case where Disp (y t ) is  fixed is  treated as a 

fixed m a trix , whereas in  the m u ltip lica tive  case i t  w ill be treated 

as being a lin ea r function of y t .



Summarising, the reduced problem involving only the expected values 

of the random variab les has been derived from the fu l l  problem 

involving the random variab les themselves. The constraints of the 

reduced problem are implied by those of the fu l l  problem. E x p lic it ly  

stated the reduced problem is :

Maximise £ (d ^  q̂  + d ^  x t ) 

t

subject to the following constraints for t  = 1 ,2 , . . . , T

r t  " Rl t  V l  + R2t  Xt

h  - y\ + Mt  V i

^ t = qt + At V i + Bt *t + ct " t + Dt zt

" t = Et  f t  "zt }

h  = zt + Kt V i + Lt *t '  h

and xfc * 0.

Unfortunately both I t and f t are , in general, unknown. In the 

sequence of re s tr ic te d  reduced problems derived from the problem above, i t  

was decided to approximate the d istrib u tio n  o f zt  by that of a m ulti

varia te  normal d is tr ib u t io n , whence f . t (x ) is  approximated by 

<f>(x) + x4>(x), where <M are the Gaussian p robab ility  density function 

and d istrib u tio n  function respective ly .
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Estimation of the standard deviation of z i s mre  d i f f ic u l t ,  

and i t  is  th is  quantity that the sequence of re str ic te d  reduced 

problems progressively estim ates. Information provided by the 

solution to one enables a better estimate of the standard deviation 

of z .^ , and hence E^, to be made for the formulation o f the next.

3 .2 . Randomised Decision Rules

Above i t  has been im p lic it ly  assumed that the control decisions 

xt are determ inistic functions of the preceeding state space r e a l is 

ations qt j .  That th is  is  not a re s t r ic t iv e  assumption in the sense 

that optimal decision ru le s may always be taken to have th is  property 

is  shown below. Although i t  is  in tu it iv e ly  reasonable that th is  

should be so, i t  is  not e n t ire ly  obvious. Moreover the exclusion of 

randomised decision ru les i s  necessary for the reduced problem to 

be a r e a l is t ic  re fle c tio n  o f the fu l l  one.

Suppose that randomised decision ru les are allowed in the fu l l 

problem, in p a rticu la r consider the e ffe c t of making x t  a randomised 

function of qt The decision x t w ill not a ffe c t the process, part

ic u la r ly  the revenue acquired,up to time period t .  So fo r a given 

value of the state vector a t  the s ta rt  of time period t ,  q ^ ,  consider 

the maximum expected revenue acquired from time period t onwards, 

given that the non-randomised decision x  ̂ is  made a t  the s ta rt of 

time period t .  Denote i t  by V*" (x t ) .

Now suppose that x  ̂ is  a randomised decision ru le  defined by
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P{xJ = x»>> « Xr  J  X1 ■  1 ,  X1 > 0 V1-.
1

R t i \I f  is  to be feasib le  then each point in the decision space '

must be feas ib le . I t  is  necessary to show that there ex ists  a feasib le

point in the decision space x° such that

Vl (x J )  * E A x J ) .

But th is  is  easy for set x° = x ^ , where x ^  is  such that 

V * ( x i^ )  i V^(xi^) fo r a l l  1 .L v

Then

E V l ( x J ) *  ? X i Vt ( x [ 1 ) )

1

s l X, V* (x ° ) 

i

= v V t>.

x° is  feasib le  since a l l  the x W r e  feasib le  and the assertion proved 
t t

for d iscrete  randomised decision ru le s . The argument can e a s ily  be 

extended to cover general randomised decision ru le s .

The consequence of th is  re s u lt  is  that there is  no merit in 

considering randomised decision ru le s , so without incurring any sub

optim ality the decision xt can be taken to be a determ inistic function

° f  qt . r
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3 .3 . Convexity and Stochastic Linear Programming

In th is  section a condition on the reduced problem w ill be 

derived, which when satisfied»ensures that i t s  objective function 

is  concave in  the decision variab les and moreover ensures that it s  

constraints can be replaced by equivalent ones which define a convex 

feasib le se t . Moreover, th is same condition when sa tis fie d  ensures 

that the fu l l  problem is  a stochastic lin e a r program in the sense 

that i t  reduces to a lin ea r program as the random varia tion  in the 

stochastic input tends to zero. In order to derive th is  condition i t  

w ill be assumed that the probability density function of zt e x is ts .

The reduced problem may be w ritten as :

Maximise J^d^ qt + d^  x t ) 

t

( 1 )

( 2 )

and xt  * 0 fo r a l l  t .

l o o  
where z t = z t  ’  y t

and B° = Bt + D ^ .



-101-

For convenience define Vt and by

Vt  " dl t  <»t + d2t  * t (3)

and V(t )  = 7 V .L u (4)
Uüt

Consider the system at the s ta r t  of time period t ,  and the 

process from time period t  u n til the time horizon. Now is  a 

fixed function of qu_  ̂ and xu* Regard as a function of qt l 

and x^. I t  is  necessary to provide conditions under which 

is  a concave function of Xp  This can be achieved by assuming 

that / t+1  ̂ is  a concave function of qt for fixed fo r u 2 t  + 1 , 

and providing conditions fo r which:

( i )  is  concave in  qt _ j  fo r fixed xu, u 2 t ,  and

( i i )  is  concave in  x fc for fixed qt _ j  and xu> u 2 t+1 .

This is  because = VT+1 can be regarded as existent but

id e n t ica lly  zero and hence concave in q_. Condition ( i i )  is  precise ly 

the concavity condition, w h ils t condition ( i )  is  necessary for the 

backwards induction.

Let gt (q t ) ■ d{t  5t  *  V(t+1 ) (qt ) • (5)

Since / t+1  ̂ is  a function of qt , then

v ( t )  “ d2tT * t  + (6)

Condition ( i )  is  s a t is f ie d  by gt being concave in  qt l  i .e .  

d^gf/dqt J being negative sem i-defin ite . ( I t  w ill be shown that 

the second derivatives e x is t  because, by assumption, the probability



density function of e x is t s ) . Condition (11) is  sa t is f ie d  by gt
2 - 2being concave in x t i . e .  d gt /dxt being negative sem i-defin ite . The 

former is  investigated f i r s t .

Now 3gt /3qu . i  * l 3W ^ i t - r 39t / 3\ t ‘ (7)
k

so a V ^ i t - i V i  = l 3\ t / 39i t - i 39j t - r 3V 39kt

k (8)

+ l t f k t/ 3* i t - i  A t ^ j t - i ^ V 35« * « -
k,&

For convenience le t  ( J ) ^  * 39j t 739i t - l  ^

and (H )1d * 32gt /3qi t 3qj t  • UO)

Then by assumption, H = (H.^) is  negative sem i-defin ite . The second 

term on the right-hand side of ( 8) is

JTHJ t11)

which is  negative sem i-defin ite , because for any vector y ,

yTJ THJy = ( J y )T H(Jy)

s 0,

because H is  negative sem i-defin ite .

Attention is  now directed to the f i r s t  term on the fight-hand side

of (8) ,  namely
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I 3\ t /3’it-i3’jt-r3st/3\ r  (12>
k

n°w 3qkt/ 3̂ i t_ i a (AJ)ki + I (ctKi awfi.t/3^it-i (13)
l

and

where o^  and are as defined in Section 3 .1 . 

Whence

where

3wu /3q) t - i  '  V 2

’ 'n(iu /0n>-(3”n /33n-l>'
00

'« < » 1 *  i „ «

(14)

Ĝ t (<) being the d is trib u tio n  function of ẑn  '  zt t^ °£ t*

For convenience set (M°)£ . = 3a£t/ 3qi t - r  For the additive model 

of the stochastic  input th is w i l l  be zero, but i t  need not be fo r 

the m u ltip lica tive  model.

So differentiating (13) with respect to q ^ j  it  is seen that

^kt^u-i^jt-i = l  {ct)k* » V ^ w V i *
SL

D iffe ren tia tin g  (14) with respect to qj t -1  i t  1s seen that

^ n ^ i t - i ^ j t - i  = (Jt )n (Jt )£j-5n *  

where ( O ^ j  is (Kt^ij " ( zi t /oi t ^ V i  j (17)
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and 5i t " ( 1/on ,d W - i i t /oi t ) * d 0)

dG t ( *) e x is ts  as a function by assumption, since i t  is  the probability 

density function of ( z^ "^ it^ 01t*

Writing

ikt(qt) ■ >9k<qt>/»qkt

i t  is  seen that ( 12) i s :

 ̂ E Ĉt^k£ C£t ^ A i  nkt • ^ 9)
k l

Since CJ, t  is  always non-negative, the matrix whose ( i , j ) —  component is  (19) 

w ill be negative semi-definite i f

l W k t s 0 f ° r  s "  *•
k

Setting nt to be the vector whose k th component is  nkt> i- e . 

n = dgt /dqt , i t  is  seen that the required condition is
t L L

nt(qt)T Ct * 0. (20)

A s im ila r  argument reveals that condition (1 i ) ,  i .e .  being 

concave in  x t fo r fixed qt l  and u 2 t+1 is  sa tis fie d  by the same 

condition.

So i f  (20) is  sa tis fie d  for a l l  t ,  then in the reduced problem 

the objective function is  concave in the decision variab les. The 

vector nt deserves further d iscussion. I t  is  equivalently defined by
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nt = dV^Vdqt ,

so i t s  1 th component may be regarded as the value of the i th com

ponent of q̂ . in  the t th time period. For example, i f  q.^ represented 

the stock level of item 1 at the end of time period t ,  then ni t  would 

be the unit value of item i at the end of that period a fte r the t th 

time period stockholding costs had been subtracted.

For the above condition to be usefu l, i t  is  necessary to show that 

the set of feasib le  conditions is  convex. Unfortunately, in general 

the constraint equations (2) do not define such a convex se t . However, 

under the convexity condition ( 20) i t  w ill be shown that they can be replaced 

by an equivalent set of constraints which do. I f  the problem defined 

by the equivalent set of constraints is  called the revised reduced 

problem, then under the concavity condition the optimal solution to 

the reduced problem is  the optimal solution to the revised reduced 

problem and v ice -ve rsa , so both problems can be regarded as being 

equivalent.

Although i t  is  not possible to determine nt before the reduced 

problem is  solved, i t  is  usually possible to in tu it iv e ly  put re lia b le  

bounds on i t .  An easy method of checking that the convexity condition 

holds in  p ractice is  given in Section 6 .4 .

The revised reduced problem is  the same as the reduced problem 

except that the evolution equation

wt = Zt  M Zt  Zt̂

of the reduced problem is  replaced by
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(21)

This w ill make no difference to the problem i f  there is  no increase in

where the decisions xu> u s t are held constant. Now

3gt / 3w1t ■ l 39t /aqkf ^ k t / 351t
k

and 3qkt/ 3« i t  is  simply (Ct )ki> and also 39t /3qkt is  nk t .

i . e .  V ^ i t ’ K t ^ k l *  
k

so inequality  ( 22) w ill be sa t is f ie d  i f  n j Ct s 0, which is  p recise ly  

the convexity condition (20 ). So under the convexity condition the 

revised reduced problem is  equivalent to the reduced problem. I t  

is  the former that is  now discussed.

I t  is  shown that the revised reduced problem is  convex by expressing 

i t  as the lim it  of a sequence of lin e a r programs PK as K « . The 

lin e a r program PK is  constructed as fo llow s.

Let k ^ ,  k ^ ,  k ^ ...........k ^  be a sequence of real numbers between

0 and 1 such that

p ro fit  made by increasing wt from zt ) .

i . e .  i f  3gt /3Wjt s 0 fo r a l l i ( 22 )

k( i )  * ( i+ l)/(K+2) .

Consider the i th component of inequality  (21 ). I t  is

(23)
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wi t  2 ° i t  f i t ( z 1t /oi t°-i • (24)

Now = 1 - t ( - x ) , where Gi t  is  the d istrib u tio n  function

of (z i t  - z^t )/o^t , which is  continuous by assumption. Define the

The lin ea r program PK is  constructed from the revised reduced 

problem by replacing (24) by the K lin ea r constra ints

“n  2 “u  ; i t * «it1 " u  • (26)

Since f 1t is  convex (because f 1t " (x )  = d Qjt (~x ) » which i s  a function 

by assumption, 1s always non-negative) the maximum error caused by 

th is  replacement w il l  be less than

sequence of real numbers a

1 j  = 0 ,1 ,2 , . . . . K (25)

Define the set o f constants c t ^ ,  0 ^ ,  j  = 1 ,2 , .  . . , K  by

when x = and x =

( j )  .  k( j- D

which tends to zero as K
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That (26) is  lin ea r fo llows from a , ,  being e ither constant 

(in  the additive case) or a lin ea r function of qt  ̂ (in  the 

m u ltip lica tive  case).

The feasib le  set defined by the constraints of PK is  convex 

for a l l  K and furthermore converges to the feasib le set of the 

revised reduced problem as K <=°. Hence the feasib le  set defined 

by the constra ints of the revised reduced problem is  convex.

To see that the convexity condition (20) is  su ffic ie n t to ensure 

that the fu l l  problem is  a stochastic  lin ea r program i .e .  that i t  

reduces to a lin ea r program as the stochastic varia tion  of the random 

input tends to zero, observe that as the v a r ia b ilit y  of the stochastic 

input tends to zero, a l l  the random variab les in the problem converge 

in p robab ility  to th e ir expected values and so the reduced problem 

converges to the fu l l  one. Under condition (20) the constra int

wt  = E(max(zt ,0 ) }

can then be replaced by the two equivalent lin ea r constraints

" t  2 'zt  

and wt  a 0,

whence the reduced problem and therefore the fu ll problem become 

ordinary lin ea r programs.
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4 . THE RESTRICTED REDUCED PROBLEM

4 .1 . Formulation of the Restricted Reduced Problem

The reduced problem is  a non-linear program derived from the 

o rig ina l f u l l  stochastic problem which involves only the expected 

values of the random va riab le s , rather than the random variab les them

se lves . Unfortunately i t s  formulation requires a knowledge of the 

d is tr ib u tio n  of z t> and th is  i s ,  in general, not ava ilab le . This 

problem is  circumvented by making some approximations and formulating 

a se ries of re s tr ic te d  reduced problems, the so lution to each providing 

information necessary fo r the formulation of the next. Under the 

approximations the so lutions to the re str ic ted  reduced problems tend 

to the so lution of the reduced problem. The apparent computational 

labouriousness of th is  approach is  mitigated su b stan tia lly  by the 

advantage th a t can be taken of the s im ila r ity  between the restric ted  

reduced problems. In order to formulate the re s tr ic te d  reduced 

problem, a f i r s t  approximation is  necessary. I t  i s :

Approximation 1: that zt can be treated as a m ultivariate  normal 

random vecto r.

This approximation is  reasonable since exact information about 

even the d is tr ib u tio n  of the stochastic input y t , is  in p ractice , very 

un like ly  to be a va ila b le ; characterisation by mean and dispersion 

m atrix is  the most that can be expected. So ca lcu la tio ns with the 

precise d is tr ib u tio n s of z fc assuming that the stochastic input is  

p recise ly  mul t iv a r ia te  normal may be unhelpful. In practica l applications 

where the p ro b ab ility  that wn  is  zero is  sm a ll, z . t  w ill be very nearly

normal.
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for  t  = 1,2,

where 1 .̂ i s  a diagonal m atrix whose i tĥ  diagonal component is  a ^ .

4 .2 .  The Separable Program

Separable programming versions can now be given of the re str ic te d  

reduced problem. The problems corresponding to the two models of 

the stochastic input now have to be c a re fu lly  d istinguished . The 

ad d itive  one is  treated f i r s t

(a )  The additive case.

This is  f a i r ly  stra ightforw ard . I t  w il l  be expedient to le t  
(k )

v i t  y f ° r  k = 1 » 2 ,. . . ,N  be a grid o f points for z-jt^a1 1 * Let

f j ^  = f 0( v - ) .  Introduce the separable variab les and fo r 

convenience define the vectors x | k ,̂ f  ̂ , v j.k  ̂ and m atrix by

, ( k ) ( k )

(kh . x(k)
t  '1 Ai t

■
f (k)
Ti t

(kh .
t  '1

v(k)
v i t

(k)\ .  
t  Mj "

x(k)
Xi tand (AV'/ )iJ * A}*' i = j

0 1 f  j .

Then the non-linear equation (8) becomes

-t • i4k) <k) ( 10 )
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(k) v (k) 
lt  vt %

( 1 1 )

(k)
t ( 12)

where (ot ) i = a^.

The separable lin e a r programming formulation of the problem thus 

obtained is :

Maximise £ (d jt qt + d2|  xt ) 

t

(k)

T -

over qt> x  ̂ and , 

subject to :

(13)

r t  = Rl t  qt - l  + R2t  Xt

h  = h  + Mt  qt - i

= qt + At  qt - i  + Bt * t  + ct " t  + Dt  h

5t mzt + Kt V i  + Lt V

* ,  ■ f ( k) 

i t  - 1 4 « , « «
k

(k)

(14)

ot = k
k

* t 2 °-

In p ractice , y t> wt and would be elim inated to give the

constraints
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r t  * Rl t  Rt -1 * RZt * t

Rt ■ "£ * A? v i  ♦ 6? v  i Ct 4 k) 4 k)
k

7 A(k) v(k) » z 1 + K° q + L  x L t  t  t  Nt  qt - l  Lt  t

where

’ t - ? 4 k ) - 5t i 0 -
k

1 ,o o 
2t = z t  - *t

q! = q? + Dt zi

Kt = Kt  - Mt

A°t - At + Dt K°t

and Bt = Bt + Dt  Lr

(15)

(kl
The grid {v^ k = 1 , 2 , . . . .N }  would be refined under the usual 

interpolation procedure. I f  the convexity condition derived in  Section 

3.3 is  s a t is f ie d  then no additional constra in t proscribing x j ^ ' s  

non-adjacent in  k from being positive is  required . However i f  i t  

does not hold then such a constra in t must be added. This is  common

place in non-linear programming and standard f a c i l i t ie s  are availab le  

in most good mathematical programming codes.

The above separable program requires values for the constraints 

, which are in i t i a l l y  unknown. A procedure fo r estimating is  

derived in Sections 4 .3  and 4.4 below a fte r derivation of the separable 

program for the m u ltip lica tive  model.
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(b) The M u lt ip lica t ive  Case.

In the m u ltip lica tive  case the standard deviation of each com

ponent of the stochastic  input is  d ire c tly  proportional to i t s  mean.

To handle th is  in the formulation of a separable programming version 

of the re str ic te d  reduced problem the following approximation is  used.

The m u ltip lica tive  approximation: that the standard deviation 

of each component of can be taken to be d ire c t ly  proportional to 

the mean of the corresponding component of y t , i . e .

1-*- <16>

for some constant x ^ .

Because of the ite ra t iv e  scheme of re stric ted  reduced problems 

th is  approximation is  not as re s t r ic t iv e  as i t  f i r s t  appears. There 

is  a fu l l  discussion of th is  in Section 4.3 below.

The an a lysis  now proceeds in a very s im ila r way to that fo r the 

additive model. Only minor modifications are needed and these are 

given below.

For qt-1 = qt _ l t  the stochastic input y t is  d istributed  as

N(Pt, Yt P°t 9t ) (17)

where Pt ■ y°t + Mt qt-1 (18)

and Yt is  a diagonal m atrix whose 1 th diagonal component is  y^t 

By the m u ltip lica tive  approximation, z^t is  d istributed  as:
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"< ilf ^1t T1t (19)

So the analysis proceeds as before with ( y . t ) replacing 

In p a rticu la r equation ( 8) becomes:

wt " \  Tt  f {1t ( 20)

where is  a diagonal matrix whose i tĥ  diagonal entry is  x ^ .

When introducing the separable va ria b le s , x j k\  the v j k  ̂ must 

be a grid of points fo r zi t / (y^t  T.jt )* The equations involving the 

separable va riab les , namely equations ( 10) - ( 12) therefore become:

wt  = l A*10 f [ k) ( 21)
k

¿ t  = l 4 k) v [k) ( 22)
k

and 4  Tt  = l x t k) • (23)
k

The separable program fo r the restric ted  reduced problem in the 

m u ltip lica tive  case can now be e x p lic it ly  stated:

Maximise £ (d ^  q̂  + xt ) 

t  
(k)over qt> x t and X̂  ' subject to :
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rt • ru  5t-1 + R2t *t

h ■ h -1

<t ■ q° * At V i + Bt *t + c

Et ■ V i + Lt *t - *

"t - i4k) 1F(k)
rt

Yt

l ^

( k )

(24)

* t  2 0 *

Again, in p ractice  y t> Yt> wt and ¿ t would be eliminated by 

substitution to give the constraints

r t  = Rl t  ^t-1 + R2t x t

5t ’  <•{+ A? qt - i  * B°t ; t  *  jj ct * t °  f ( k>

l A<k) v<k>. zj * K°t 5t_, ♦ Lt Xt
k

n » 0

xt * 0

where q j ,  z | ,  A °, B° and K° are as for the add itive case and the grid 

{ v [k ) , k 3 would be successively re fined .



-117-

The same remarks about the concavity of the ob jective  function 

apply as for the additive case . The t ^ s must be estimated, and a 

su itab le  procedure enabling th is  to be done is  given and discussed 

in Sections 4.3 and 4.4 below.

4 .3 . The Ite ra t iv e  Approach

In the formulation of the re stric ted  reduced problems above 

the -terms were s t i l l  unknown. This d if f ic u lt y  i s  tackled by the 

provision of a procedure by which ot is  estimated. This procedure, 

however, requires information about the process gained from a solution 

to the restric ted  reduced model in the f i r s t  place.

So the technique is  an ite ra t iv e  one. An in i t i a l  estimate of 

ot> a[°\ for each t  is  made and the re str ic te d  reduced problem solved 

with these values of the ot ' s .  From th is  solution a second estimate,

is  made for and the re s tr ic te d  reduced problem re-solved with
(21

th is  new value of This enables a th ird  estim ate, , of at to be 

made, and so on.

This is  conceptually straightforward in the case of the additive 

model. In the m u ltip lica tive  case , however, the Tt 's  have to be 

re-estimated and these are r e a l ly  functions of the y t 's ,  but have 

been treated as though they were constant by the m u ltip lica tive  

approximation. Thus the approximation can be seen to be one of making 

x [n) a function of y t n̂"^  (where y ^ n"^  is  the value of y t obtained 

from the solution to the n th re stric ted  reduced problem) rather than
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The in i t ia l  estimate of ot , ' is  obtained by setting oi t  to 

th e ir minimum possible values that would be consequent on qt  ̂ being 

fixed  rather than a random v a r ia b le . So in the additive case the 

in i t ia l  value of o-t  is

° n  = A m sp  (y t ) ) i i

w h ils t  in the m u ltip lica tive  the in i t ia l  estimate of x t is

TU = /(DisP ^ t ^ i i ^ i t *

which in th is  case is  constant in  y^.

Thus the in i t ia l  re s tr ic te d  reduced problem is  that which would 

be obtained by replacing qt> x t  and y t by q*, x£ and y * , where

= E(qt i qt - i = qt - i }

x t = E (xt l <*t-1 = qt - l } 

and y{ - E(yt |qt_1 - q*_j).

The re-evaluation procedures for the o^'s and x t 's  are given 

below. The additive and m u ltip lica tive  models are treated separately.
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5 . THE RE-FORMULATION OF THE RESTRICTED REDUCED PROBLEM

5 .1 . The Additive Case.

In th is  section a procedure fo r the re-evaluation of ô . is  derived 

fo r the problem with the additive model of the stochastic input. 

M odifications necessary for the m u ltip lica tive  model are given sub

sequently. One further approximation has been found necessary, and 

i t  i s  c le a r ly  stated and ju s t if ie d  with discussion as i t  is  introduced. 

The time required to numerically execute the re-evaluation procedure 

expands lin e a r ly  with the number o f time periods in the model.

Since is  the standard deviation of zit> to estimate i t  i t  

is  necessary to study the d is tr ib u tio n  of zt , and indeed to study 

the behaviour of a l l  the random variab les in the problem. To do th is 

i t  is  necessary to return to the evolution equations o f the fu ll 

problem. For convenience they are re-stated below.

Linder Approximation 1 , that z t can be treated as i f  i t  has a 

m u ltiva ria te  normal d is tr ib u tio n , i t  can be expressed by

where S td (z t ) is  the lower trian g u la r decomposition of Disp (z t )

( 1 )

wt = max ( zt , 0) ( 2 )

(3)

zt = ¿t + Std( zt )- et ( 4 )

suchthatD isp  (z t ) = Std(zt ) . (S td ( z t ) ) T as described in  Section 2 .3 , 

and et is  a vector of mutually independent Gaussian random va riab le s .



Also can be represented by

qt  = qt + Std(qt ) .Ç t (5 )

where Çt i s  a random vector with zero mean and dispersion matrix 

equal to the identity  m atrix .

The method of re-evaluating at  is  a recursive one and requires 

the estimation of Disp (-Z j), Disp (q ^ , Disp (z 2) ,  Disp (q2) , . . .  

and so on. I t  w ill be shown that Disp (z t ) can be expressed in 

terms of Disp (y t ) and Disp (qt _ 1) .  and also that Disp (qt ) can be 

expressed in  terms of Disp (y t ) ,  Disp (z t ) and Disp (qt j ) . But th is 

requires one la s t  approximation.

Approximation 2 : The control applied in each time period can be 

considered to be a lin ea r function of the state space a t  the s ta rt  

of that time period.

By the Markovian nature of the system, the decision ru le xt must 

be a function of the preceeding state  space, qt .̂ Estimation of the 

random va ria tio n  in zt requires that xu be assumed to be some known 

function o f qu_̂  for u s t ;  any improvement on the lin e a r approximation 

would require xu to be derived on a grid of points for qy j .  This is  

required in  any dynamic programming approach and is  p rec ise ly  the 

technique avoided here in the in te re st of computational t r a c ta b il it y .

( 6 )

where x° i s  a fixed vector and Nt a fixed m atrix .



The assumption that the decision ru le  is  lin ea r is  not as 

re s t r ic t iv e  as i t  might f i r s t  appear, fo r the approximation is  

only used for the re-estim ation of a and does not a lte r  the structure 

of the non-linear program whose fin a l solution provides the actual 

control decisions. Thus, the approximation does not re s t r ic t  the 

controls provided by the algorithm to be lin ea r decision ru le s .

An estimate of the lin ea r co e ffic ie n t m atrix , Nt> can be obtained 

from an an a lysis  of the la s t  solution to the non-linear program by 

using " f ic t it io u s "  variab les in  the manner described in Section 6 .2 . 

Better estimates of the N^s can be obtained ite ra t iv e ly  each time 

the non-linear program is  solved with a better estimate of the o^'s.

Now re ca ll the model of the stochastic input. I t  is

and nt is  a vector of mutually independent Gaussian random v a ria te s . 

Introduce some new notation. Define J t by

then combining (3 ) , (5 ) , (6) ,  (7 ) , (8) and (9) i t  is  seen that

h  " h  + s td (y t )<nt (7)

( 8 )

zt = ~Zt + J t Std(c’ t - l ) *?t - l  + Std(yt ) *T1t (10)

= zt +

Whence, since 5t _1 and nt are independent:



-122-

Disp(zt ) = J t Disp(qt l )J^ + Disp(yt ) 

and a . t  = /(D1sp (z t ) ) i i

(ID

So, having approximated x t  by a lin ea r function o f qt j  an 

expression fo r D isp(zt ) in terms of Disp (qt and Disp (yt ) has 

been derived.

I t  remains to estimate Disp (qt ) .  As with the estimation of 

Disp (z^.), th is  is  done re cu rs iv e ly . However, the ca lcu la tio ns are 

su b stan tia lly  more complicated since the lin e a r ana lysis  that has 

been used so fa r  is  no longer appropriate. For convenience, some of 

the ca lcu lations are deferred u n til Section 5 .3  and only the resu lts 

w ill be quoted here.

Combining equations (1 ) , (3 ) ,  (6) and (9 ) ,  q̂  may be expressed 

as

et is  a zero mean, m ultivariate normal random vector whose dispersion 

matrix is  Disp (y t ) ,  so the stochastic  input, y t is  being regarded 

as

(13)

where q* is  a fixed vector and Ht a fixed m atrix defined by

(14)

and Ht = At + + DtJ t  . (15)

IA
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h  * y t  + Mt qt - l  + ef  (16)

Therefore (qt - qt ) can be expressed by

v qt = Ht (qt - r * t - i ) + c t (v iit ) - Dt et* (17)

so Disp (q .̂) can now be evaluated:

Disp (qt ) = E {(q t -qt )(q t -qt ) T}

= Ht  Disp (qt - 1 )H  ̂ + Ct  Disp(wt )C7+Dt D isp(yt )D7

+ Ht Cov(qt_1,wt)C^ + Ct Cov(wt,qt_1)Ct

- Ct  Cov(wt ,e t )D  ̂ - Dt Cov(et ,wt )C7 , (18)

where advantage has been taken of the independence of et and qt 

I t  is  shown in  Section 5.3 that under Approximation 1 , that

can be treated as a m u ltiva ria te  normal random vector,

Cov (wt ,e t ) =-Ut  Disp (y t ) (19)

where Ut is  a diagonal vecto r, whose i th diagonal entry is  

$ (z i t //(D isp  (z t ) ) i i ) ,  i . e .  i>(zi t /T 1 t ) ,  4> being the Gaussian d is t r i 

bution function .

Also in that section i t  is  shown that

Cov (wt ,q t . 1) = UtJ t  Disp (q t-1 ) (20)
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For th is  ca lcu la tio n , again, only Approximation 1 is  required.

Combining equations (18 ), (19) and (20) and using (11) to 

substitu te  fo r Disp (z^ ), i t  is  seen that

D1sp(qt ) = Ft  Disp ( q ^ j F j  + Gt  D isp(yt )GT + C ^ c J ( 21)

where Ft  = Ht  + Ct Ut  J t ( 22)

Gt  = Dt  + Ct  Ut (23)

and = Disp (wt ) - Ut  Disp ( z t )Û (24)

The ca lcu la tio n  of Disp (wt ) under Approximation 1 , that zt 

is  normal, is  in p rincip le  straightforw ard . I t  is  given in Section 

5.3 where an expression fo r i t  in terms of z. and Disp (z ) is  derived.t  t
Summarising, a method has been provided whereby the solution to 

one re s tr ic te d  reduced problem can be used to re-estimate the o^'s 

and enable the formulation of the next re stric ted  reduced problem to 

be made. Under the assumption that the control decisions, xt> can be 

approximated by lin ea r functions of the preceeding state space values, 

qt _ j ,  an expression for the dispersion matrix of z t has been derived 

in  terms of the dispersion matrices of qt j and y^. An expression for 

the d ispersion matrix of qt has then been given in terms of the dispersion 

matrices o f qt-1 . y t and z T h e  method of re-evaluation of the ot 's 

is  as fo llo w s:

1. Set Disp (qQ) = 0 and calcu late and Disp (z^)

2. Calcu late Uj and Disp (w )̂

3. Calcu late Disp (q j)

4 . Calcu late o2 and Disp (z2)

5. Calcu late U2 and Disp (w2)

and so on u n t il the fin a l o has been calcu lated .
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Recalling  that qt-1  can be represented by

qt - l  = qt - l  + Std(qt - l K 5t - l  {30)

where E,^ is  another vector of mutually independent Gaussian random 

va ria b le s , and substitu ting  into expression (27) for the random
'V,

variab le  ŷ . and noting that

■ 4  * Mt  ’ t - i

I t  is  seen that y t  can be represented by

y t  = y t + M ^ t d f q ^ K ^ .  (31)

Consider now ẑ .. I t  can be represented by

zt = i t + Jt Std q̂t - l^ t - l  + Std ŷt^nt’ (32)

where Std (yt ) is  stochastic and therefore needs further examination. 

Combining (29) and (31) i t  is  seen that

(S td (yt )n t ) i B (y t  + MtStd(qt l )5 t _ 1 ) i ( s°n t ) i * (33)

Elim inating S td (yt )nt  from equations (32) and (33) i t  is  seen that

S t " S t  * (Jt std(S - i l s t - i ) t
o (34)

+ (y t  + Mt Std(qt _ i ) E t _ i ) i * ( s t ntN

“ * i t  + a1t  + 6i t  Yit *  say*
(35)



where ou  ■= ( J tStd(qt _ 1) ç t_1)1

Bi t  * (ÿ t  + Mt std (qt . i ) ç t . i ) i  (36)

and Y j t  a ( s t '

But a - t  is  independent of Y j t fo r a l l  ( i , j )  and B1t is  independent 

of Y j t  fo r a l l  ( i , j ) .  Also E (a -t ) = 0 and E (Y i t ) = 0. Therefore

(D1sp(zt ) ) 1j  - E { (a 1 + B^-j) (û j  +BjYj)>

■ E(V j ) *  E ( 6 ,6 j ) E ( ï l Y j ) •

But E(an aJ t ) - (J t D tsp lq ^ jU j)^  

and " >tT * " t  01,l> (qt - l )Kt )1j*

A,so E (T l t YJ t ) '  <P?>1j-

Thus, defining the matrix operation ® by

(*•»)«*(*)«•(»)„. (37)

Disp (z t ) may be w ritten  as:

Disp ( z t ) = J t  Disp (qt-l^ J t

+ (ÿ t  ÿ j  + Mt  D1sp(qt-1 )M )̂ a P°t . (38)

This is  the estimation equation fo r Disp (z t ) and replaces equation 

(11) of the additive model. Hence T^t is  now estimated by
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Tit  ■ /{ l  C(Jt )M(Ot )1k * 
jk

*  i i t 2 (p t , n l ^ u ' (39)

The estimation of Disp (qt ) is  the same as for the additive 

model except that /(D1sp ( z t ) )^  = y^t , so the i th diagonal 

entry of is  *(z^t/y^t T^t ) ,  and in the recursive expression fo r
'Vi 'U

Disp (q^.), Disp (y^) is  replaced by Yt  P° Ŷ  which has been shown 

to be equivalent to

(y t  y j  + Mt Disp ® p j. ( 40)

Therefore the recursion equation (¿1) becomes:

Disp (qt ) - Ft  Disp ( q ^ jF *  ♦ C ^ c J

♦ G^ty^J + Mt D1sp(qt_1)Mj) 0 P°]Ĝ  (41)

where Ft  = Ht  +

Gt =- ° t  + CtUt

and Et = Disp (wt ) - Ut  Disp ( zt )U^.

The ca lcu la tio n  of Disp (wt ) is  the same as before, being done 

under Approximation 1 , that zt can be treated as a m u ltivariate  

normal random vector, and i t  can be expressed in terms of zt and 

Disp (z^ ). The ca lcu la tio n s are in Section 5 .3 .

The same procedure can now be used to re-evaluate i t with 

equations (3 8 ) , (39) and (41) replacing equations (1 1 ), (12) and (21) 

re sp e c tive ly .
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5*3. Some Necessary Calculations

In sections 5.1 and 5.2 reference has been made to formulae from 

which Cov(wt ,e t ) ,  Cov(wt ,qt _1) and Disp(wt ) can be calcu lated . These 

are now derived. I t  is  convenient to restate the evolution equations 

in the form in which they have been used:

i t  ‘ + Ht V i  * ct “t '  °t ct

H ' ! t *  Jt V i  ‘ et

wt = max U t ,0)

where q̂  and z* are fixed vectors and Ht and are fixed matrices 

defined by

J t  = Kt  + Lt  Nt  - Mt

Ht  = At  + BtNt + Dt ° f

and e t  is  a zero mean m ultivariate normal random vector with d is

persion matrix Disp (y t ) .  Approximation 2 , that the control decisions 

can be treated as lin ea r functions of the preceeding state space has 

been used in the above representation of the evolution equations. 

Approximation 1 that zt can be treated as a m u ltivariate  normal 

random vector is  also necessary for a l l  the ca lcu la tio ns of th is 

sectio n .

(a ) The ca lcu la tio n  of Cov (wt>e )̂

Since et has zero mean 1t is  seen that 

Cov(wt ,e t ) = E(wt eJt)

E(max U t,0)ej).
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Under Approximation 1 , z t  and et are treated as being jo in t ly  

normally d istribu ted . Their covariance matrix is

Cov Ut.et) = E(zt ej)

"  z\ + J tqt - l )e t " et et } - 

=-E(et ej),

because et and are mutually independent.

i .e .  Cov ( z t .e t ) —D1sp (y t ) .

2 2
For convenience le t  * (Disp (z t ) ) ^ ,  = (Disp (y t ) ) ^  and

° i t  sj  t  pi j t  * “ ( D1sP (y t ) ) i j *  so P i j t  is  the corre lation co e ffic ie n t 

between z^t  and e ^ .

Now, the ( i , j ) t h  c o e ff ic ie n t of Cov (wt ,e t ) is

E(m ax(z.t ,0 ) e jt ) = E ( ° i  t sj t  max^ ’ - 5i t / a . t )n)

where £ ,n are b iva ria te  normal random variab les with d istrib u tio n  

B N (0 ,0 , l , l ,p .- +) .  For convenience drop the subscripts on p. Then1 J t

E(max(£,-zit /oi t )n)

C  f 1 r ' Z1t/oi t f
= . En<t-(?.n;p)dnd£ - ( z ^ /a .J  n$U»n;p)dnd£
J-  R 11 11 JR

where <)>(£,n;p) is  the standardised b ivaria te  normal p robab ility 

density function
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f_ «(0 f n d * ( ^ ^  )d£ - ^  f
J -z i t / a n  k  / ( l- p Z) a i t i -

2i t /o i t
♦ (5 )f nd*^

jf  ✓
$-)dC

/(1-PZ)

where <j> and 4» are the Gaussian p robab ility density function and d is t r i 

bution function respective ly

3 p{(-Ii t /oi t M 5 1t/a1t) + *(Z1t^Oit) + ( V 0! t ^ ('zi t /o i t )}

= p * (I it /a 1t).

Therefore

E(«x(l,t,0).jt) ■ o(t sJtPljt *(i1t/o1t)

=-(Disp (y t ) ) i j4>(zi t // (D isp (y t ) ) i i ) .

Thus setting  Ut to be a diagonal matrix whose i th diagonal entry 

is  «’(¿ ^ / / (D is p iy ^ ))^ ) , i t  is  seen that

Cov (wt ,e t ) =-Ut  Disp (y t ) .

(b) Calculation of Cov

The calcu lations are s im ila r  to those fo r Cov (wt ,e t ) except 

that qt _  ̂ is  not assumed to be normally d istribu ted . Now

cov (wt .qt_1) » E(wt(qt_ r qt- i)T)

= E(max(zt ,0 ) . (q t _ 1-qt _ 1) T) .

Also Cov (z t ,q t j )  = E ( ( z t - z t )(q t _ 1-qt  j )̂7)

■ E(CJt(qt-i*qt-i) “ et](qt - r qt-i)T)

* J t  Disp(qt  j )

because qt and et are mutually independent.
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Set » (D1sp(zt ) ) 11, - (D1sp ( q ^ ) ) ^

and ou  *Jt.lPljt- (Jt 01*P<Vl,,1J*

Then p ^ t 1s the corre lation co e ffic ien t between z t̂  and q ^ _ j .  So

(Cov(ŵ ,q̂ _̂ ))̂ j “ o1t  ̂̂ _̂ Etmax(E ,-z.j )̂n}

where 5 is  a Gaussian random variab le and n is  a zero mean, un it variance 

random variab le  defined by

n " (qj t - l  -qj t - l )/S j t - l

and therefore the corre lation between Ç and n is  p ^ .  Again, fo r 

convenience drop the subscripts on p. I f  f (4 ,n )  is  the jo in t  p robability 

density function of Ç and n. the ( i , j ) t h  co e ffic ie n t of Cov(wt ,q t _ 1) Is

r  r r"Z1t/o1 tf
o ^s,*  , {  4 n f(4,n)dnd4 -  (zi t /oi t ) nf(4.n)dnd4}

i t  i t - l  ) ^  J p J — 'F

= ° 1 t si t - l  { I 1 I2), say.

Now I ,
L

i t / u1t
4 E (n |4 )*(4 )d 4 ,

where $ 1s the probab ility  density function of which 1s by assumption 

the Gaussian one. Furthermore E(n |4 ) can de taken to be a lin e a r  function 

of 5 because zt Is  lin e a r in qt _^. So le t  E (n |4 ) = X4* However,

p a E(4n)

» [ 4 E (n |4 )*(4 )d4
Jr

«= [ X42$(4)d4 = X.
Jr
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So A can be taken to be p and E(n |5 ) = p£. Therefore

'i * PE;
Zi t /0 i t

r<t>(5)d5

= p { - ( i i t /a i t )4»(ii t /o1t) + * ( z 1t/a i t ) }

Likewise

*2 = "p(* it^ ait^ ^ 1 t^ 01t  ̂*

Therefore, substitu ting  fo r I j  and 1̂  i t  i s  seen that

(Cov(Kt .qt_l ))|J ■  ®1 j t * tS1 «>

i . e .  Cov(wt ,q t _ 1) = Ut J t Disp (qt _ 1) .

(c ) Calculation of Disp (wt )

Disp (wt) = E(wtwJ) - wtwj.

The ca lcu lation  proceeds by evaluating the terms as the right-hand 

side separately. The former is  tackled f i r s t .  Again, i t  is  assumed 

that zt is  normally d istrib u ted .

Introduce some convenient notation.

Let = (Disp (z t ) ) . i and c^o-p^ = (Disp ( z A l s o  le t  <J>(‘ ) and

$>(•) be the Gaussian p ro bab ility  density function and d istribu tio n  

function resp ective ly . Let d>( * ,* ;p) denote the probability density 

function of the standardised b ivaria te  normal d istrib u tio n . Define 

Pf by
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Pi - - i i t / ° i

Now E(wu wJ t ) = OiOj |   ̂ (x-pi )(y-Pj)<(>(x,y;p1j)dxdy
xsp. Jysp

fo rlp ^ |<  1. Expanding the integrand i t  is  seen that

E (w .tw ) = ( i j j^  - p. l ( 2 )- p. I (2) + p .p .i t  j t '  i y  i j  Ki i j  j i  Ki pj  i j  '

where

ii i1 - f x y i,(x ,y ;p . .)dx dy
,J  Jy^p. Jx^Pi J

- P i J(PiJ(Pi.PJ;PiJ) + PJJ(pJ.Pi ;p,J))

+ (1-pi j)^P i*P j;Pij> + pi / (Pi’ pj lpi j )

J ( x , y ;p ) = <f)(x)4>((px-y)//(l-p2))

i>C(x ,y ;p )  = U (S .n ;p )dnds, • 
; n*y

I y<i>(x,y;pH,)dx dy
Jy*Pj ix^p.

a 0 (P j . pi ;p i j ) + pi j J (p i * pj ;p i

and l | j3) ■
• ja p j

<p(x,y;p. . )dx dy
/X2p. J

= ^ ( P i 'P j i P i j ) -

I t  is  convenient to define a new function ip by 

< K x , y , p )  = y j ( x , y ; p )  + X j ( y , x ; p )
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then E(w t̂ Wjt ) can be expressed by

V j t d - f i j W P r P j i V  ♦ (pu *pipj)®c(Pi’ pj ioij) - f<pi-pj*pij>

for -1 < p., < 1.
• J

I f  p .̂ = 1, then to obtain an expression for E(w-jtwj t ) .  the lim it  

of the above expression can be taken as p. . ->■ 1. Notice, however,
I J

that

1 im iHx,y;p) = (x+y-u)<{>(u), u = max(x,y)
p+1 1

1 im $ (x,y;p) = i>(-u), and
p+1

11? (l-p2)<Kx,y;p) = 0.

So, fo r p .j = 1, E(wi t wj t ) is

a1°j{(l+P1Pj)*("P0) ' (pi+pj"po)l,,(po)}

where pQ = max (pi ,P j ) .

I f  = -1 then the limit can be taken as p..  
HJ

-1 . This time

1 im i^(x,y;p) = 
p+-l

lim 4>C(x,y;p) =
p-+— 1

0

y<t»(x)+x4>(y)

0

4>(-y)+$(-x)-l

i f  x+y > 0 

i f  x+y < 0

i f  x+y > 0 

i f  x+y < 0

and lim
p-t-1

( l-p2)<J>(x,y ;p) = 0.



-136-

Now wi t  = CT1(♦(p1) - P1#(-P1))

So 5« Bjt = 0l0j^(Pi^'Pi<I’('Pî ('i>(Pj)-Pj<)>(Pj)).

Summarising, the dispersion matrix o f wt has been calculated in 

terms o f the mean and dispersion matrix o f zt under the assumption 

that is  normally d istrib u ted .

W riting 4>k = <i»(pk ) and 4Ck = i( - p k ) for k = 0, i . j ,

*ij ■ ♦C‘P1*PJJP1J1*

and = ^ (p^ .P jip^ j),

the ( i , j ) t h  component of Disp (wt ) 1s:

* (pu  *  pi pj K j  • V ( i f pi ‘ f>( V pj * j >)
.K p u < l

' ( ' i V A  • < v « U ' 1

° i ? j iC (P ipj " 1î ( * î+* j - 1 )- P i V pj * Î ]6 p1J ‘  - 1

where 6 = f 0 1f Pi + Pj > 0

h i f  pi + Pj < 0.



6 . COMPUTATIONAL ASPECTS

6 .1 . The Ite ra t iv e  Approach

I t  is  necessary to emphasise the ite ra t iv e  approach to the 

approximate solution to the reduced problem, which provides an 

approximate solution to the fu l l  problem. At each ite ratio n  the 

so lution to the re str ic te d  reduced problem provides information 

enabling a better estimate of the ot 's or xt 's to be made. This 

improved estimate is  used in the formulation of the next restric ted  

reduced problem for the next ite ra t io n . In general, the process may 

not always converge, because the matrix of co e ffic ie n ts , Nt> in  

Ppproximation 2 (th a t x t depends lin e a rly  on qt associated with 

optimal tableau T̂  of the re str ic te d  reduced problem may produce an 

optimal tableau T2 in the next re str ic ted  reduced problem, and the 

Nt associated with tableau T2 may produce an optimal tableau T̂  in 

the following re str ic te d  reduced problem. However, in numerical tests 

on a four time period, two commodity, model, the process converged 

ra p id ly , there being l i t t l e  change in the returned objective value or 

f i r s t  time period controls a fte r three ite ra t io n s .

Computational advantage can be taken of the s im ila r ity  of the 

re s tr ic te d  reduced problems, these being identical except for the 

values of the a^'s or T t 's .  Any standard revise procedure can be used 

to update the right hand sides and technology matrix of the restric ted  

reduced problem and use the previous solution as a starting basis for 

the next. Hence successive ite ratio ns may be very fa s t .



6 .2 . Estimation of the Nr

Recall that Nt is  used to describe the dependence of the control 

variab les x t on the state space a t the end of the previous time period 

qt j  according to the equation

xt s x° t + Nt qt - r

I t  has already been remarked that can be obtained from an 

an a lysis  of the f in a l tableau of the solution to the la s t  restric ted  

reduced problem, but the d e ta ils  deserve fu rther discussion.

The most straightforward way to obtain Nt is  to introduce 

' f ic t i t io u s '  va riab les q*. replacing every occurrence of qt in the 

constra ints by (qt - q * ). Introduce q* into the objective function 

with a s u f f ic ie n t ly  large penalty cost, say d*, to ensure that q* is  

always non basic in the fin a l so lution .

Now (Nt ) ( j  - » u / 3qj t _ ,

However 3x^ /3qJt  ̂ is  simply the co e ffic ie n t of qTt-1 in the x i t  row 

of the fin a l tableau i f  x i t  is  basic .

I f  x is  non-basic i t  w i l l  remain so for s u f f ic ie n t ly  small 

changes in q t̂ l and so 3xi t / 3 ^ jt _ i may then be taken to be zero.
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6 .3 . Speed of operation

The time taken to solve a lin ea r program is  roughly proportional 

to the cube of the number of constra in ts. So the time taken by the 

approximate solution method o f the reduced problem w i l l  expand as the 

cube of the dimension of q^. This is  a considerable improvement on 

dynamic programming methods wherein the solution time expands 

exponentially with the dimension of q*..

6 .4 . A P ractica l Check that the Convexity Condition Holds

I f  i t  is  desired that the problem be convex, then the convexity 

condition can eas ily  be checked by replacing the non-linear constraint

» t  ■ £t M £'t' : t>

of the reduced problem by the constraint

wt = Et  V ^ t 1 Zt) + V  st 2

where is  a slack va r ia b le . The non-linear constra ints of the 

re stric ted  reduced problems can be s im ila r ly  modified by the e x p lic it  

introduction of slack v a r ia b le s . I f  these are non-basic in th e ir 

solutions then the convexity condition is  sa t is f ie d .

6 .5 . Numerical Results

The approximate solution algorithm described in th is  chapter was 

applied to a special case of the m u ltip lica tive  version of the general 

model, namely the simple production/inventory model o f Beale et a l . [ 4  ] .
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The ir model 1s described fu l ly  in  Chapter 3 and is  summarised in 

Chapter 9, Section 2. The algorithm was tested on two simple 

examples which they provided. These are the "no dependence" and 

"dependence" cases of the example detailed in Chapter 9, Section 3. 

B r ie f ly ,  i t  is  of a two product production/inventory system wherein 

the total production of both products is  bounded in  each time period. 

There are four time periods. Expected demand in the la s t  two outstrips 

the production capacity, so there is  some need to produce to stock 

in the f i r s t  two. In the "no dependence" case the mean demand, and 

therefore the demand's dispersion m atrix , is  fixed whereas in the 

dependence case h a lf of the mean demand fo r the f i r s t  product is  

d ire c t ly  proportional to the sa les of that product in the previous 

time period. Thus the "no dependence" case is  a special case of 

the add itive version of the general model.

In Table A below the re su lts  for the "no dependence" case are 

summarised. Values of the o b jective  function, f i r s t  time period 

production decisions and the estimates of (the standard deviation 

of the z ^ ) are given for each o f f iv e  ite ratio ns ( i . e .  so lutions to 

the f i r s t  fiv e  re stric ted  reduced problems). The resu lts  o f the 

so lution algorithm of Beale et a l .  and the objective function and 

f i r s t  time period decisions of a dynamic programming solution are 

included for comparison. For the dynamic programming the demand 

d istrib u tio n  was re stric ted  to integer values, the corresponding 

p ro bab ility  weights being proportional to the ordinates of the 

p ro bab ility  density function.

Lm
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Table B below summarises the re su lts  for the "dependence" case. 

Again the re su lts  of the solution algorithm of Beale et a l .  are 

included fo r  comparison.

Estim ates of the a ^ 's  were also obtained s t a t is t ic a l ly  by 

re p lic a t iv e  sim ulation. The resu lts  are summarised in Table C below.

The technique is  discussed in d e ta il in Chapter 7 and it s  

app lication to the p a rticu la r examples is  described in Chapter 9, 

where fu rth e r re su lts  of the simulation experiments can be found.



TABLE A : RESULTS OF THE ALGORITHM ON THE "NO DEPENDENCE" CASE
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° . l a .2 ° .3 a -4

1 12.41 4.472 5.590 7.826 10.062
1 863.65

2 6.39 3.354 3.354 3.354 3.354

1 12.87 4.472 6.418 9.871 13.260
2 857.53

2 6.67 3.354 4.021 4.983 5.211

1 12.97 4.472 6.495 9.927 13.297
3 857.25

2 6.67 3.354 4.076 5.040 5.350

1 12.97 4.472 6.511 9.943 13.313
4 857.23

2 6.67 3.354 4.076 5.035 5.352

1 12.97 4.472 6.511 9.935 13.312
5 857.22

2 6.67 3.354 4.076 5.046 5.353

1 12.13 4.472 5.590 9.842 10.062
B* 859.54

2 6.05 3.354 3.354 4.980 36.464

1 13
D.P.* 859.1

2 7

* B denotes the algorithm of Beale e t a l . ,

D.P. denotes dynamic programming.
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TABLE B ; RESULTS OF THE ALGORITHM ON THE "DEPENDENCE" CASE
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1 14.45 4.472 5.590 7.826 10.062
1 860.50

2 6.39 3.354 3.354 3.354 3.354

1 14.45 4.472 8.033 12.594 16.471
2 850.58

2 6.67 3.354 4.020 4.915 5.115

1 14.45 4.472 8.033 12.905 17.185
3 849.90

2 6.72 3.354 4.077 5.024 5.198

1 14.45 4.472 8.033 12.898 17.219
4 849.89

2 6.74 3.354 4.086 5.038 5.182

1 14.45 4.472 8.033 12.898 17.220
5 849.88

2 6.74 3.354 4.090 5.042 5.186

1 14.74 4.472 5.670 15.786 21.012
B* 845.58

2 6.74 3.354 9.758 3.354 3.354

* B denotes the algorithm of Beale et a l .
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TABLE C : ESTIMATES OF o-t OBTAINED BY SIMULATION

(a) The “ No Dependence" Case

Time period
—

1 2 3 ~ n
1 Upper 2h% i le 4.221 7.056 11.514

:
17.309

Q
 

> 

r+

Mean 3.640 6.085 ! 9.930 15.790

Lower 2^%ile 3.196 5.342 j  8.718
1

13.862

Upper 2̂ s%i 1 e 3.606 4.061 5.150 6.308

°2 t Mean 3.110 3.502 ' 4.398 5.440

Lower 2*$ ile  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

2.730 3.074 | 3.861 4.776

(b) The "Dependence" Case

Time period 1 2 3 4

Upper 2J$ i le 4.221 7.132 12.907 22.670
A

° l t Mean 3.640 6.151 11.131 19.551

Lower 2»$ile 3.196 5.400 9.772 17.164

Upper 2»s%ile 3.606 4.405 6.862 8.488
/\

°2 t Mean 3.110 3.799 5.918 7.320

Lower 2*$ ile 2.730 3.335 5.195 6.426
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As can be seen from the above re s u lts , the solutions to the 

re s tr ic te d  reduced problems converge rap id ly there being no change in 

the f i r s t  time period production decisions and l i t t l e  change in  the 

ob jective  function value or estimates of the o ^ 's  a fte r  three 

ite ra t io n s . The estimates of the future uncertainty of supply over 

demand, represented by the o..t 's converges to a pattern that is  

in tu it iv e ly  to be expected. The expected production level from 

ite ra t io n  2 onwards i s ,  in fa c t , a t  capacity in  the la s t  three periods, 

so the system o ffers l i t t l e  scope fo r m itigating the future uncertainty 

in demand through f le x ib i l i t y  in  production le v e ls . The uncerta in tity  

in the excess of supply over demand might be expected to increase the 

further one looks into the future , and th is  is  indeed what happens. 

Estimates of are plotted against t fo r each product in both the 

"no dependence" and "dependence" cases in graphs A and B resp ective ly .

The pattern of the estimates of the made by the algorithm

for the 5th ite ratio n  is  s im ila r to that obtained by sim ulation. How

ever, the confidence in te rva ls  put upon the simulation estimates 

must be treated with caution, e sp ec ia lly  in the la te r time periods.

They were computed under the assumption that the z i t 's are normally 

d istrib u ted , whence (m -l)o ^ /a^  has a d is tr ib u tio n , where a^t 

is  the sample estimate of o t̂ made a f te r  m independent t r i a l s .  This 

assumption may be u n rea lis t ic  i f  the d istrib u tio n  of z i t  is  ac tu a lly  

skew, which i t  is  l ik e ly  to be in the fin a l two time periods.

The fin a l returned objective function value is  a f a i r ly  accurate 

estimate of the expected return that would be consequent on ac tu a lly  

using the algorithm. The resu lts o f simulation experiments, detailed
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in  Section 4 o f Chapter 9 indicate that i f  the algorithm were ac tu a lly  

used the expected revenue would be 859.36 ± 0.28 and 850.32 ± 0.66 

in  the "no dependence" and "dependence" cases re sp ec tive ly ; the possible 

erro rs in e ith e r d irection  being one estimated standard deviation 

from the estimate of the expected revenue.
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7. CONCLUSIONS

7 .1 . The Approximate Scheme

Ju st as the generalised model of Chapter 5 was a generalisation 

of the production planning model of Beale et a l .  [ 4 ] ,  so the 

approximate solution proposed here is  based upon the one which they 

use. There are, however, some important d iffe rences, and these are 

discussed below.

B r ie f ly ,  the approximate solution techniques to the fu l l  problem 

is  as fo llo w s. F ir s t ly  the random variab les in  the fu ll problem are 

replaced by the ir expected values in such a way that the constraints 

of the f u l l  problem d ire c tly  imply those on the expected values of 

the random va riab les . This does not elim inate the v a r ia b il it y  of 

the random variab les or d is to rt the structure  of the problem. The 

model thus obtained is  termed the reduced problem, which is  a deter

m in istic  non-linear program. Attention is  then paid to the solution 

of the reduced problem since a l l  that is  re a l ly  desired from a solution 

to the fu l l  problem is  the best f i r s t  time period contro ls, which i f  

regarded as random va ria b le s ,are equal to th e ir expected values with 

p robab ility  one. This is  because randomised decision ru les are 

s p e c if ic a lly  excluded, i t  having been shown that such decision ru les 

are no better than non-randomised ones.

However, i t  is  s t i l l  not possible to solve the reduced model, as

i t s  solution requires more information about the random variab les than 

is  in i t i a l l y  ava ilab le . The d if f ic u lty  is  overcome by approximating the

r



d istrib u tio n  of z b y  a m u ltiva ria te  normal d istrib u tio n  and thus 

formulating a special case o f the reduced model, which is  termed 

the re str ic te d  reduced problem. E x p lic it  separable non-linear pro

gramming versions of th is  problem are then given. But even these 

require a knowledge of the standard deviation of each component 

of Zj., and th is  is  not known. So in i t ia l  or minimum estimates of 

i t  are made and the corresponding re s tr ic te d  reduced problem solved.

This solution provides information which enables better estimates 

of the standard deviations to be made. These are used to formulate 

the second re str ic te d  reduced problem, the solution to which is  used 

to re-estimate the standard deviations and formulate the next re str ic te d  

reduced problem, and so on. In th is  way the re str ic te d  reduced problem 

is  solved ite ra t iv e ly  and th is  provides an approximate solution to the 

fu l l  problem.

7 .2 . D ifferences between the Proposed Solution Technique and that 

of Beale e t a l .

The problem which th is  chapter aims to solve is  a generalisation 

of that of Beale e t a l . However, although the solution technique is  

based upon a generalisation of th e irs , there are some important improvements.

F i r s t ly ,  the additive v a r ia n t , in  which the dispersion matrix of 

the random input is  fix e d , is  treated. This has the m erit of being 

simpler than the version in  which the random input's dispersion matrix 

depends upon it s  mean, and more robust in the sense that fewer approxi

mations are necessary.
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The model o f Beale et a l .  can be regarded as a special case of 

the m u ltip lica tive  variant of the general model. However, they assume 

that the standard deviation of can be regarded as being d ire c tly  

proportional to the sales in period t ,  rather than the mean demands, 

in the formulation of the reduced problem. They then assume i t  to 

be d ire c t ly  proportional to the mean demand in the ir recursive variance 

estimation procedure. This has the advantage of mitigating paradoxical 

re su lts  that might a rise  from a positive  p ro bab ility  of negative 

demand consequent on assuming i t  to be normally d istribu ted . I f  i t  

is  not desired to meet demand in fu l l  then th e ir assumption greatly 

reduces it s  v a r ia b i l i t y .  But the v a r ia b il it y  of demand in a particu la r 

time period should be independent of whether i t  is  desired to meet 

i t  in  that period. Consequently th e ir approach d isto rts the structure 

o f the problem and was therefore not adopted.

Secondly, the ite ra t iv e  scheme in which the restric ted  reduced 

problems are solved is  d iffe re n t. In th e ir scheme, a fte r the solution 

of the in i t ia l  re s tr ic te d  reduced problem, a problem is  solved involving 

the la s t  period only assuming that the state space at the s ta r t  of that 

period is  equal to i t s  mean value given by the solution of the in i t ia l  

problem. The next re stric ted  reduced problem which they solve involves 

only the la s t  two time periods and so on. Their process terminates 

at the solution o f the second re stric ted  reduced problem to involve 

a l l  time periods.

The scheme proposed here is  an improvement fo r two reasons. F ir s t ly  

the number of re s tr ic te d  reduced problems does not expand fa ste r than 

the number of time periods in the problem, and secondly because the
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s im ila r ity  between the re s tr ic te d  reduced problems can be more 

e a s ily  exploited to improve computational e ffic ie n cy .

T h ird ly , the method by which the dispersion matrix o f the state 

space, qt> is  recu rsive ly  estimated is  d iffe re n t. In the method 

proposed here there is  no need to approximate w .t = m a x (z . . ,0) by1 V i t
a lin ea r function of z i t . The ir method, which does th is ,le a d s  to 

errors even in  the covariance terms.

7 .3 . Convexity

A condition is  derived which,when sa t is f ie d , ensures that the 

objective function in the reduced problem is  a concave function of 

the decision variab les and also  that the constraints in the reduced 

problem can be replaced by an equivalent set which define a convex 

feasib le  region. The same re su lts  apply to the re str ic te d  reduced 

problems since they are special cases of the reduced problem. More

over, the condition is  also su ff ic ie n t  to ensure that the f u l l  problem 

is  a stochastic lin ea r program.

However i t  is  not always easy to check that the convexity condition 

is  sa tis fie d  th e o re t ic a lly . In practice i f  i t  is  desired that the 

condition holds, i t  can e a s ily  be checked by putting an e x p l ic i t  slack 

variab le  on the non-linear co nstra in t. The condition holds i f  the 

slack is  non-basic in the so lu tio n .

7 .4 . Computation

The approximatesolution technique here can be e f fe c t iv e ly  used 

numerically fo r any reasonable dimension of the state space, qt> for
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the time required to solve each re s tr ic te d  reduced problem only expands 

as the cube of the total number of co n stra in ts , and hence as the cube 

of the dimension of qt< In p ractica l applications where the state 

space vector may represent stock le v e ls  i t  can be used to handle any 

reasonable number of products. This compares very favourably with 

dynamic programming techniques, wherein the solution time expands as 

the power of the number o f state space dimensions and in practice 

could only be used on production planning problems e ffe c t iv e ly  i f  

less than four (say) products were being considered.

In a l l ,  i t  is  hoped that the model proposed in Chapter 5 and the 

solution technique proposed here w i l l  be of practica l use in many 

planning problems where uncerta in ties in , say, the demands for 

ind ividual products needs to be considered.

/i



CHAPTER 7

THEORETICAL APPROACHES TO THE EVALUATION OF SMOOTHING 

ALGORITHMS



1. INTRODUCTION

1 .1 . The Problem

This section is  concerned with the evaluation of approximate 

production smoothing algorithm s. The algorithms considered assume 

some multi-time period, f in it e  time horizon, stochastic Markovian 

model of the environment. T y p ic a lly , they could be scheduling the 

production of a number of d iffe re n t items over usual time periods.

Stock leve ls at the end of each time period may then constitute  the 

state space of the underlying Markov process. In modelling the 

environment, the state space is  assumed to be continuous, but possibly 

hounded, by, fo r example, maximum and minimum permissible stock le v e ls . 

Moreover the tran s itio n  p ro b ab ilit ie s  are assumed to have a continuous 

d istrib u tio n .

I t  is  necessary to evaluate the merit of approximate smoothing 

algorithms in order to assess the impact of the approximations made.

I t  is  important to determine whether the approximations are based on 

re lia b le  assumptions, in  which case the consequent suboptimality may 

be s lig h t , or whether the approximations are less r e a l is t ic  in which 

case the consequent suboptimality may be more serious.

I t  is  supposed that the algorithms are intended to optimise some 

attrib u te  of in te re st , which i s ,  by assumption, uniquely determined by 

the sequence of variable space rea lisa tio ns.They  might, fo r example, be 

designed to maximise p ro f it  or revenue. However, since the process is  

stochastic , th is  a ttrib u te  I t s e l f  w ill be stochastic . The concern of 

th is chapter w ill be the estimation of the expected or mean value of
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the a ttrib u te  in  question. An algorithm I t s e l f  may give an estimate 

of the expected value of th is  a ttr ib u te ; however, th is  cannot be 

assumed to be an adequate estimate of the mean value of the 

a ttrib u te  that would be consequent on actua lly  using the 

algorithm in p ractice . In short, i t  is  necessary to study 

the actual behaviour of the process under the control of the 

algorithm being evaluated and hence determine a re lia b le  estimate 

of the a ttr ib u te  of in te re s t .

1 .2 . Comparison with exact algorithms

Some evaluation of the performance of an algorithm may be made 

by comparison of i t s  output, fo r example in i t ia l  production level 

dec isions, w ith those from an algorithm known to be exact.

The scope of exact algorithms must, however, be lim ited i f  

approximate algorithms are being considered. The obvious c lass  of 

exact algorithms to use is  that o f those based upon dynamic programming. 

Except in the case where the state space is  one dimensional or when the 

structure of the process can be exploited to reduce the state space to 

an equivalent one of one dimension (see , for example Dallenbach [14] 

and Thomas [¿>3]), these approaches require the d isc re tisa tio n  of the 

state space and p robab ility  d is tr ib u tio n s . This i s ,  of course, an 

approximation, but a re lia b le  one whose r e l ia b i l i t y  can be checked, i f  

necessary, by considering a sequence of successively fin e r d is c re t is a 

tio n s . Furthermore, because of the fam ilia r "curse of dim ensionality", 

computational requirements r e s t r ic t  i t s  application to simple models.
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Having obtained re lia b le  or exactly  optimal decision values 

from the algorithm, comparison with those obtained from an approximate 

algorithm may not be helpfu l in gauging the impact of the approximations 

made. This is  because small errors in the decision values, say In i t ia l  

production decisions, w il l  ty p ic a lly  only make second order changes in 

the expected value of the attrib u te  being optimised, say p ro fit .

There i s ,  however, another approach to the evaluation of algorithms 

a v a ila b le , namely that of re p lica t iv e  sim ulation . This is  outlined next.

1 .3 . R ep lica tive  sim ulation

In th is  technique the environment w ithin which the algorithm 

operates is  simulated on a computer. The procedure is  divided into a 

number of independent t r i a l s ,  each of which proceeds in the following 

manner.

F i r s t ly  the algorithm is  run on a given se t of data for the 

required number of time periods. The f i r s t  time period contro ls, for 

example in i t ia l  production level decisions, a re  then determined.

Random numbers are then generated to simulate the stochastic element 

of the process, for example, demand for ind ividual products. The system 

then evolves according to the way in which the environment is  modelled 

u n til the s ta r t  of the next time period. The sta tevecto r, fo r example 

stock le v e ls , is  then rea lised  for the s ta rt  o f the next time period 

and the algorithm run again , with the new data thus generated, from 

the second time period u n t il the time horizon. This procedure is  

repeated u n til the time horizon is  reached, when the actual outcome of 

using the algorithm fo r the p articu la r set of rea lised  values of the 

stochastic elements is  then determined.
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The t r ia l  is  then repated a number of times with d iffe ren t random 

numbers. From the knowledge of the outcome of each t r ia l  the mean of 

the a ttrib u te  of In te re st can then be estimated.

The term re p lic a t iv e  simulation is  used to denote the rep lication  

of a number of independent t r ia ls  and to distinguish i t  from regenerative 

sim ulation wherein some a ttrib u te  of a steady state or time invariant 

process is  to be estimated and the process is  divided into a number of 

independent t r ia ls  a fte r  the simulation run has been made. For a more 

detailed  description of regenerative simulation see Heidelberger [31 ] 

or Lavenberg et a l . [3d ] .

The advantage of simulation is  that i t  enables the actual e ffe c t 

of using a particu la r algorithm to be studied. The estimate of that 

a ttr ib u te  of the process on which attention is  focussed can then be 

compared with that given by the algorithm i t s e l f .  Disagreement between 

the two is  a measure o f the suboptimality of the algorithm; moreover 

the estimate obtained from the simulation can be compared with that 

obtained from an exact algorithm to provide a further assessment of 

the merit of the approximate algorithm being tested. The simulation 

technique also enables r e a l is t ic  comparisons to be made between d i f f 

erent algorithms.

The principal d if f ic u lt y  of simulation, however, is  that of 

accuracy. The standard e rro r of the estimate of the mean of the 

a ttr ib u te  of in terest decreases only as the reciprocal of the square 

root of the number of sim ulation t r ia l s .  So straightforward simulation 

(na ive  "add up and average") may give such an inaccurate estimate from 

a s in g le  run that convergence is  unacceptably slow. Various variance
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reduction techniques are introduced to remedy th is  i .e .  to reduce 

the variance with a fixed number of t r ia ls  or to reduce the number 

o f t r ia l s  necessary to obtain some desired degree of accuracy. The 

techniques discussed here are those of control va ria te s . The most 

e ffe c t iv e  one was found to be that o f a martingale control va ria te , 

constructed for each simulation run.
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2. VARIANCE REDUCTION TECHNIQUES

2 .1 . Control Variates

There has been a va rie ty  of variance reduction techniques pub

lished since Hammersley and Morton [2a ]  and Hammersley and Maul don [27] 

published in  1956. Much of i t  is  concerned with robust estimators of 

location o f the unknown d istrib u tio n  of data from a given sample. See, 

fo r example Gross [2b] or Re lies [46 ]. These are of no concern here; 

neither are  the complex systems of a n tith e tic  varia tes developed in 

Hammersley and Morton [28] fo r the evaluation of multidimensional 

in teg ra ls occurring in atomic reactor design. The techniques of 

importance here are those o f control and an tith e tic  v a r ia te s . The 

ideas behind these are described in Simon [S0]and Lavenberg and Welch 

[ J 7 ] ,  and are outlined below.

Suppose that the a ttrib u te  of in te re st of the stochastic process, 

fo r example, p ro f it , is  denoted by V. The concern of th is  chapter Is 

the estimation of i t s  expected value,EV . Suppose also that another 

random v a ria b le , UL having zero mean but highly correlated with V can 

be found.

Then instead of estimating E(V) i t  may be better to estimate 

E(V*) where

V* = V - aU, a being some rea l constant

since

E(V*) = EV

and var(V*) s var(V) -2a cov(V,U) + a2 var (U)

< var(V)

i f  2a cov(V,U) > a2 var(U ).
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The value of a which minimises var(V*) 1s 

Cov (V ,U )/var (U ).

This is  a special case of a more general re su lt  which Is  proved 1n the 

next subsection. The resu lting  minimum variance of V* is

( 1- p2) Var (V)

where p 1s the corre lation  co e ffic ie n t between V and U. Such a random 

variab le U is  said to be a control varia te  fo r V, i f  i t s  corre lation 

with V is  positive  and an a n tith e t ic  varia te  for V i f  i t s  corre lation 

with V i s  negative.

For convenience c a ll the random variab le  V* defined above the 

controlled random va riab le . I f  1t can be constructed i t  is  c le a r ly  

expedient to estimate EV by an average of the realised values of V* 

rather than V.

In p ractice a number of d iffe re n t control variab les say 

Ul ,U2’ . , ; ,U n may be a va ila b le * The above theory eas ily  extends to 

the use o f m ultiple control varia tes in the following manner.

Let U be the n-vector whose ith  component is  the ith  control 

varia te  U .̂ Then define the controlled random variable V* by

V* = cJu

where a is  a fixed vector of c o e ff ic ie n ts ,  ̂ denotes transpose and 

a l l  vectors are by default column vectors.

The optimal control variab le  co e ffic ie n t a is  shown below to be
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[Disp (U)]*1 Cov (V,U)

where Disp (U) is  the dispersion m atrix of U and Cov (V,U) is  the 

n-vector whose components are the covariance between V and the U^'s. 

The resu lting  minimum variance is

(1 - rJ u) var (V)

where

rJ u - Cov (V ,U )T [Disp (U) ] ' 1 Cov (V .U ).

2 .2 . Optimal fixed control va ria te  co e ffic ien ts

A proof of the above re su lt  can be found in  Anderson [2  ] ,  but 

i t  is  given b r ie f ly  here.

Let V*(a) be the random va riab le  defined by

V*(a) = V - aTU

where a and U are as defined above. Then

var V*(a) = E [ ( V-EV) - cJu][(V-EV)-oJu]

= var V - 2oJ Cov (U,V) + oJ Disp (U)a 

= var V - cJ(2Cov (U,V) + Disp (U) a)

I f  v is  a vector and M a matrix le t  (v)^ and (M).^ denote the ith  and 

( i , j ) t h  component of v and M re sp e c tive ly . Then the above equation 

may be represented by



var V*(a) = var V - J  a .[2(Cov(U ,V)) - J  o .(D 1sp (U )). .]
1 1 j  J ’ J

whence

3(var V *(°i))/3ak - -2(Cov(U ,V))k + 2 J  ai (O isp(U ))1k

which is  zero i f  and only i f

l (D isp (U ))ki a . = (Cov (U ,V ))k 

i

i . e .  3 (var V*(a°)V3ak = 0 i f  and only i f  

Disp (U) a0 = Cov (U ,V ).

Furthermore

32(var V *(o ))/3a13ctj  - 2(Disp (U ))^

which is  positive  sem i-defin ite , therefore var V*(a) is  minimised by 

a = a ° , where

a0 = [Disp (U) ] ' 1 Cov (U ,V ).

I f  Disp (U) is  singu lar i t s  inverse may be taken to be the (non-unique) 

psuedo-inverse and a0 any so lution of

Disp (U) a° ■ Cov (U ,V ).

2 .3 . Estimation of the optimal control varia te  co e ffic ie n ts

In practice  both Disp (U) and Cov (U,V) are usually  unknown and 

have to be estimated in some way. The obvious estimators to use are



the sample dispersion of U and the sample covariance of U and V. I f  

the sim ulation consists of m independent t r ia ls  and u..,v.. are the 

realised  values of 1) and V on the ith  t r i a l ,  then the sample dispersion 

matrix o f U is

m

¡PT ( “i-“)!“,-“)1

m

where ü = -   ̂ u . ,  and the sample covariance vector of U and V is
m 1-1 1

m

¡ ¿ I  ,[ ,< « ,

m

where v = -   ̂ v . .
mi= l 1

For convenience denote the sample dispersion matrix of U by A 

and sample covariance vector of V and U by b. Then the optimal control 

varia te  c o e ffic ie n t , a0 , is  estimated by â where a is  a solution of

A

A a - b.

The controlled random va ria b le , V* is  now 

V* = V - STU.

There are two disadvantages to th is  approach. F ir s t ly  V* w ill 

not, in  general, be unbiased i . e .  EV* t EV and secondly the re a lisa tio n s 

of the controlled random variab le  V* for each simulation t r ia l  w ill not 

be independent. The consequence of the f i r s t  remark is  obvious w h ilst



the consequence of the second is  that i t  nay he d i f f ic u l t  to estimate 

the variance o f the fin a l estimator of EV, 

m
i tw* = — L w ★  
m  1 - 1  1 ’

where vT is  the value of V* realised  on the ith  simulation t r i a l .  

These problems are now addressed.

Theorem 2 .1 .
m

I f  V* * —  ̂ V i, where Vi is  the controlled random variab le  of
m 1=1 1 1

in te re st in the ith  t r i a l ,  defined by 

Vi = V. - STU .,

a being defined as above, V ,̂ IL being the random variab les V and U 

associated with the ith  t r i a l ,  then

E(V *) - EV is  order (£•),'

where m is  the number of t r ia ls  in the sim ulation.

In other words V* is  an asym ptotically unbiased estimator of EV 

and the resu ltan t bias is  order ( 1/m).

Proof.

Consider the e ffe c t of adding another simulation t r ia l  to the 

estimate V*. Call i t  the (m+l)th t r i a l .  I t  w ill be shown that the 

expected value of a U ^ j is  0( l/m ), where the re su lt of the (m+l)th 

t r ia l  is  used in  the evaluation of a . I t  follows that E(a Û ) is
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m
is  0(l/m) whence E(^  ̂ oJll^) is  0(l/m ).

m

Let A = - r̂- E m-1 .

III

 ̂ (ur û ) (u ,-ü )T , ü = ^  ̂ u. and
=1 1 1 m i x i  1

m m

in r  v - ± ^  vr

A and b are the sample dispersion matrix of U and covariance vector 

of V and U.

Suppose that the addition of the (m+l)th t r ia l  changes the 

sample dispersion and covariance to A' and b' resp ective ly .

Then A' = ( ^ ) A  + (

ocH
i and

b1 = (— )b + (■ v m 'i
1 ïh °

S T )b

m
where A0 = < V i - = » V i - u )T , m U1 i = l  1

V - Im

m
h°b = ûm+l • 5> < V i - v ) , N

i = i 1

and

Suppose, a lso , that the addition of the (m+l)th t r ia l  changes 

the estimate of the optimal control varia te  co e ffic ie n t from a to a'

Then a* = (A1) - 1b ' .

Now (A 1) ' 1 - ( ~ )  A*1 ( I  + - f - A V 1)"1
m -1

( ¿ H A '1 - (-f-O A 'V A -1] + 0(l/m2).
m -1



Therefore

■)b°] + 0( 1/m2)
m -1 m -1

m

Now Um+j is  independent of A and a so

But EUm+j  = 0 , therefore

E ( S ' V l )  - £  E [tra ce {(b °  - A °S)uJ1 A '1} ]  + 0(l/m2)

which is  of order ( 1/m) as required.

The consequence o f the above theorem is  that in practice i t  would

bias of the f in a l estimator of EV is  of the same order as i t s  variance. 

However, i t  is  shown in Lavenberg and Welch [37 ] that i f  (V,U) are 

jo in t ly  normally d istributed  there is  no resu ltant b ia s .

The problem can e a s ily  be circumvented, however. For instead of 

defining the controlled random variab le  for the ith  t r ia l  to be

Vf » Vi - aTUi 

define i t  to be

VT " V1 • “ i U1
A A

where is  a solution to Â  = b^, A ,̂ b̂  being the sample dispersion

be unwise to use S as the control varia te  c o e ff ic ie n t , as the resultant
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m atrix of U and covariance m atrix of U and V calculated by excluding 

the re su lt  of the ith  ̂ t r i a l .  Then and 1)̂  are independent whence 

E(a1TU1) = 0.

The above approach e n ta ils  the solution of m sets of simultaneous 

lin e a r equations in n unknowns (where n is  the dimension of U ). This 

may be computationally expensive, but a more e f f ic ie n t  method of evaluating 

can be developed.

The basic idea is  the exp lo itation of the s im ila r ity  between the
A

A^'s and b '̂ s fo r d iffe ren t i and hence between the a^ 's. As in the 

proof of the proceeding theoremct  ̂ is  expressed as the sum o f a and 

some small quantity of order ( 1/m).

No'* \  * ¡ ¿ r  j t ‘ “¿ - “ .¡’ ‘ v / ’ “ i 

a"d bi ■  À  <y 5j ,(Y V  > 5i

uhere Ai ■ < ; $  [A - ï  s?i

• -  bi  ■  Ö  »  - i  b?]

where (ui-51)(u1-51)T

1
m-1

l
j /1

u .
j

and b? = (u .-ü-M v^ -V j) .

Since A° is  the product of two vectors the Sherman-Morrlson formula 

(See Sherman and Morrison [4 9 ]) can be used to express A^ as

AT1 - A '1 + (m-k1) " 1A’ 1A®A'1 

where k̂  B (u  ̂ - ü^)T A 1 (u.. - ü ) .
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Therefore

*  -1 
a 4 » A /  b

= a + (m-k^) *A ^A^a - b°] .

I f  the number of t r i a l s ,  m, is  large th is  w ill ce rta in ly  be a
A A

more expedient way of calcu lating  the a^ 's than solving Â  = b̂  

fo r each i .  I t  only requires the inversion of one m atrix , A, the time

Subsequent ca lcu la tio n  of then requires matrix m u ltip lica tion  taking

However, to make use o f the formula provided above i t  is  necessary 

to ensure that m-k^ 0. The following theorem provides su ff ic ie n t  

conditions:

Theorem 2.2

I f  A, u .j, , k .j, m and n are as defined above then 

(m-kj) > 0 i f  n s m-2.

Proof: Notice that

ou
im -ij

A is  p o sitive  (sem i)-defin ite  by d e fin it io n , so k< * 0 . I t  1s therefore 

su f f ic ie n t  to show that i f  n s m-2, then k < m where

3
to do which i s  proportional to n (where A is  of dimension n x n ).

p
a time proportional to n . Whereas, so lving Â â  * b̂  takes a time

3
proportional to n and would have to be repeated fo r each 1 .

where

m



Now n = trace {AA’ 1} 
m

“ trace {  \ (u . -û )(u .- u )TA_1> 
1-1 1 1

by the d e fin it io n  of A. 
m

So n = l trace {(u< -ü)(u4-ü )TA-1} 
i -1 1 1

= l  (ur 5 ) V 1(ur 3) 1=1 1 1

i .e .

-IstiT

m2

(m - l)‘

Therefore k < m i f  and only 1f

n < iülilL .
m

Since the le f t  hand side is  m-2 + ¡̂ , i t  can be seen that i f  n s m-2 

then k < m. So (m-k^) is  po sitive  fo r each 1 i f  n s m-2 as required.

I f  the control varia te  co e ffic ie n t vector is  estimated from the 

sample dispersion matrix of the control variates and sample covariance 

vector o f the outcome and control varia tes in the manner o r ig in a lly  

suggested 1 .e . the controlled outcome o f the 1 th t r ia l  being

v* » vi - aTu1,

then the sequence of outcomes of the simulation procedure,

( v j ,  v£...........v*) has only m-n degrees of freedom, where n is  the

dimension of the control vector, U. Thus, the variance of the fin a l 

estimator of EV,
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w ill be

var (v*) = var v * .

and var (v*) is  estimated by

m

o2(v*) = ( f ~ y ) }  (v t  - v * )2.

Therefore, the appropriate estimator of the variance of v* is

m
I (v* .  v * )2. 

i =1 1

Lavenberg and Welch [37 ] assume that the vector

0

has a m ultivariate  normal d is tr ib u tio n , and derive confidence in te rva ls  

for v* based upon Student's t d is tr ib u t io n . They also show that the 

variance reduction achieved by using the estimate a. of the optimal 

co e ffic ien t vector, a0 , is  the potential variance reduction, which 

would be achieved i f  a0 were known, m ultip lied  by the factor

m-2
m-n-2 *

I f  the bias control methods outlined above are being used, then 

the variance estimator has one fewer degrees of freedom. The appropriate

estimator of the variance of v* becomes

m

(v*) = ( ) ( l ( v*
i= l 1

V * )
2 2
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and estimation of the optimal co e ffic ie n t vector degrades the potential 

variance reduction by a factor of

m-3
m-n-3 ’

As can be seen, the rea lised  variance reduction deteriorates as 

the dimension o f the control va ria tes vector, U, increases. Sometimes 

i t  is  important to choose a small set of control varia tes from among 

the set of possible control v a r ia te s , and th is  can be a problem.

In the app lication of the above variance reduction techniques 

to the study o f algorithms operating within a f in ite  time period Markov 

model of the environment, e ffe c tive  control variab les were found to 

be the d ifference between the space rea lisa tio n s at the end o f each 

time period and th e ir expected values one time period before. The 

resu lts  are given in Chapter 9.
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3 . GENERAL FUNCTIONS OF CONTROL VARIATES

3 .1 . The Concept of General Functions of Control Variates

The form o f the controlled random varia te  of in terest that has 

been explored is

V* = V - ciTU

where U are the control varia tes and a is  a fixed vector. Estimation 

of the optimal value fo r a requires the resu lts  of a l l  the simulation 

t r ia l s .

In general, th is approach w il l  be in fe r io r to one involving the 

use of more general functions of the control v a r ia te s , U, where the 

controlled random varia te  of in te re st would have the form

V* = V - vc(u),

Vc being a function frornFn (n being the dimension of U) to F .

Suppose that the algorithm being tested provides information 

about the process from which a su itab le  function Vc can be constructed. 

This has the m erit of being p o ten tia lly  much more powerful than the 

previous approach, p a rticu la r ly  i f  the algorithm being tested is  

not severely suboptimal. Furthermore, i f  a su itab le function can 

be derived from a single simulation t r i a l ,  then the controlled output 

of each t r ia l  is  independent, and so the problems in  estimating the 

variance of the estimate of the mean o f the attrib u te  of in te re st do

not a r ise .
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Derivation o f a suitable functional form fo r V̂ , depends on the 

model of the stochastic  process w ithin which the algorithms being 

tested operate, and on the choice of control v a r ia te s , U. This is  

explored for the p a rticu la r application being considered, namely the 

simulation of a f in i t e  time period Markov process, a fte r a more 

detailed description of it s  structure in Section 3 .2 . Natural re 

s tr ic t io n s  to the c lass  of admissible functional forms of Vc are 

introduced and discussed in Section 3 .3 . I t  is  shown in Section 3.4 

that with th is  re s t r ic t io n , the problem of constructing reduces 

to one of modelling the expected future contribution to the attrib u te  

of in te rest as a function of the next time-period state space re a lisa tio n

3 .2 . A Symbolic Representation of the Underlying Process.

Hereafter the concern of th is  chapter is  with the evaluation of 

approximate smoothing algorithms which operate w ithin a d iscrete time, 

f in ite  time-period Markov model of the environment, as discussed in 

Section 1. The notation introduced here should be s u f f ic ie n t ly  general 

to cover a l l  such app lications.

The process natu ra lly  divides into T d is t in c t  time periods:

1, 2 , . . . ,  T . The subscript t w ill be used to denote that some quantity 

pertains to time period t .  Then pertaining to each time period is  the 

principal a ttr ib u te  of in te re st , Vt> hereafter ca lled  revenue or p ro fit  

(considered to be a s c a la r ) , the state variab le  at the end of the time 

period, Qt (th is  i s  considered to be a vector and might represent,for 

example, stock le v e ls  and a weighted average of previous s a le s ) , the
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controls applied, Xt (a lso  considered to be a vector and 1t  1s an output 

from the algorithm being studied, perhaps production le v e ls ) , and the 

stochastic input, Y^. Again th is  is  considered to be a vector and 

might represent demand fo r products or a v a i la b il it y  of raw m ateria ls .

Now suppose that a p a rticu la r algorithm , assuming a p articu la r 

model of the underlying process, is  being studied. Then the sequence of 

state va riab le s , {Qq , Q ^ forms a Markov process. The revenue Vt 

is  a random variab le and the total revenue from a simulation t r ia l  is

V = E v . 
t=l z

Furthermore, i t  can be assumed that Vt  is  a function of Qt 1 and 

For in the la s t  re so rt the state space could be expanded and 

Vt set to zero for a l l  t  < T and Vy set to V.

As fa r as possible random variab les w il l  be denoted by upper 

case le tte rs  and th e ir  outcomes by lower case le t te rs .

Consider the progress of a simulation t r i a l .  At the s ta rt  of 

time period t  ( Y ^ , . . . ,Y t _^) have been rea lised  by ( y ^ , . . . , y t _ j )  and 

(Q ^ ,... ,Q t  j )  by ( q ^ , . . . ,q t ^). The algorithm is  run for time periods 

t ,  t + l , . . . , T .  The t  th time-period controls are then determined and 

the d istrib u tio n  of Qt  given that Qt l  = qt _1 is  completely known.

Define the "one-step-ahead" expected revenue:

VHt '  VHt(Qt-l> - " here 

W qt - p  = EQt V̂t^qt - l ,t5t^

Vt (qt - l ' 5)d rQt |qt . 1(5 >



-175-

where Fn i n ( ' )  is  the d istribution  function of Q. given that 
gt ‘ qt - l  1

So is  the expected revenue in time period t

given that Qt  ̂ = qt _^- Because of the remark in the above paragraph 

VHt can be calculated exactly from the output of the scheduling 

algorithm .
T

Set VH =  ̂ VHt- Then EV̂  = EV.

EV might be estimated by averaging the realised  values of V or VH>

When the martingle control s t a t is t ic  derived in Sections 3.3 and 3.4 

is  used, however, i t  w ill make no d iffe rence , as w il l  be shown.

3 .3 . The Martingale Control Variates

A p articu la r form of control varia te  function is  now proposed.

I t  w ill be shown that for each t r i a l ,  the sequence of functions of 

control varia tes proposed forms a martingale. Although th is  puts a 

re s t r ic t io n  on the class of functions of the control varia tes which 

w il l  be considered, there is  no consequent suboptim ality. Subsequent 

sections deal with optim ality c r ite r ia  for the martingale and suggest 

ways in which i t  might be constructed from information provided by 

the scheduling algorithm.

Advantage is  taken of the time-periodic structure of the process 

being simulated. Decompose the total control fo r each t r ia l  VC(U) into 

parts associated with each time period, i . e .

le t  Vr (U) = E Vr t (U)
L t = l
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where V ^ U ) is  the control pertaining to the t  th time period.

I t  is  now proposed that be a function of the state va riab le  

at the s ta r t  of the t  th time period, Qt and the difference 

between the state variab le  at the end o f the t  th time period and it s  

expected value one time period before, Qt  - E(Qt |Qt ^).

1 ,e - VCt = VCt(Qt - l ,Qt  " ^ t ^ t - l ^ *

Since the total revenue can be decomposed into the sum of revenues 

accrued in each time period, which are , moreover, functions of the 

state variab le  a t the s ta r t  and end of that time period, th is is  a 

natural re s t r ic t io n . That, p o te n t ia lly , a l l  the v a ra b ility  in the 

estimate of EV can be elim inated is  shown at the end of Section 3 .4 . 

Also the functions V t̂  are re s tr ic te d  to be those for which

E(Vc t lQ t.i>  ■ o.

Again, nothing is  lo s t  by th is  re s t r ic t io n  since EVct must be known

and may, without loss of g en e ra lity , be se t to the zero. Therefore

E(Vc t lQt- i )  must be taken to be zero, since i t  cannot be assumed that

the d istrib u tio n  of Qt  ̂ is  known.

The t th time period control is  regarded as a control o f the

t th time period revenue. The total contro lled a ttrib u te  of in te re s t ,

V*, can be expressed as:
T

{ JM



The ra tio na le  behind the use of the sta te  random state variab les 

rather than, say, the random input, is  that in  each t r ia l  the realised 

value of the a ttrib u te  of in te re st (revenue) i s ,  by assumption, a 

computable function of the sequence of state space rea lisa tio ns and 

is  only a function of the random input through it s  e ffe c t on the 

state space re a lisa t io n s . Moreover, the t tĥ  time period revenue, Vt , 

is  a d ire c t ly  computable function of Qt 1 and Q .

In tu it iv e ly  the construction of may be regarded as fo llows.

For a p a rticu la r t r i a l ,  suppose that the s t a r t  of time period t has

been reached, (Q j...........are rea1ised by qt _ j contains

a l l  the information necessary to describe the state of the process at 

the s ta rt  o f time period t .  Given th is  inform ation, 

VCt(qt - r Qt"E(Qt K - l ^  is a measure the "1Uck" associated with the 

next position on the state space,

Now, a martingale is  defined to be a sequence of random va riab le s , 

M say with the property that

E(Mt |M0,M1 ...........Mt-1 ) = Mt_ 1( for a l l  t  * 1.

The term M̂ -M̂   ̂ is  ca lled  the t  th martingale d ifference. The 

martingale property is  therefore equivalent to the property that the 

expected value of each martingale d ifference given a l l  the previous 

martingale d ifferences is  zero.

i . e .  I Mqi »Md2 * * * * *MDt-1̂  = 0 fr° r  a11 t  2 1

where MQt ■ Mt  -
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Theorem 3 .1 .

(a ) EVct = 0 for a l l  t  and

(b) The Vc t *s are martingale differences

i . e . (Vc l , Va  + VC2, VC1 + Vc2 + Vc3, . . . )  is  a m artingale.

Proof

(a) Let Fn (•)»  Fn i ( • )  be the d istrib u tio n  functions of Q. .
4t - l  ‘t '  qt - l  t_1

and Qt  given that Qt_1 = dt _ 1. resp ective ly . Now V~t is  a function of 

Qt _ i  and Qt .

Therefore EVct = J  E(Vc t |QM  * O d F ^ U )

■ 0,

because E( vc tlQ t- l = ? ) = 0 fo r a l l

(b) To prove the second part of the theorem i t  i s  su ff ic ie n t  to show 

that

E(VC t lVC l,VC2...........VCt-l^ " °*

i - e - E( VCt^VCu = VCu’ U = ■ 0

Now le t  Fyt _1 ( s Vq j . vc2” , , , v ct-l^ be the d is t r ’ bution function 

of Qt  ̂ given that = v^  for u = l , 2 , . . . , t - l .  Also le t  S be the 

set of possible re a lisa t io n s  of Qt l  given VCu = vCu, u = l , 2, . . . , t - l .

N0W E [*c t IQt . ,  ■ ? ; »Cu - vCu;u = 1 ...........t - 1]

= E[Vc t |Qt - i  = 5 ] . fo r a l l  C e S »

because {Q0,Q^, . . .>  is  a Markov process. I t  follows that
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E[VCt>VCu = vCu’ U = 1 ...........^

" 1 ECVctlQt-r^Fq^U)

?£S

» 0,

because the integrand is  zero fo r a l l  £ e S .

Therefore the t ' s are martingale d ifferences and w il l  hereafter 

be referred to as such.

3 .4 . The Optimality C rite rio n  for the Martingale Difference Functions

I t  is  desired to choose the martingale differences to minimise

the variance of the controlled revenue 
T

V* = l (vt - V ) 
t-1 *
T T

Now var V* = l l Cov (V . - Vr t ,V - V- ) 
t=l u=l x L u

.  J  [  E « V t - V c t ) ( v0 - V [u ) } - ( E V )2

since EVct = EVCu = 0.

Because the summand is  symmetric in t and u , var V* can be expressed 

as

E <£t<VCt-2V t >  * 2 \  J t lVCtVCu - V „  • VtVCu» + " r V-

where V = l V . . 
t
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Now var V 1s independent of the Vc t 's ,  so i t  is  desired to minimise 

the sum of

V E { S‘ vc t - 2vc t V >  and 

V E ( i  i t  (vc t#cu - W  - V c u » -

Conditioning with respect to Qt can be expressed as

S i - M i  E(Vct2-2VctVt |QM »

■ E iIv .r ( * ct|0t. 1)-8 e o v (*ct.*t |Qt. I )). 

Conditioning with respect to S2 can be expressed as

Sz = 2 E ( t J t  E (vc t V vc t V V c A - i > >  

■ E<2 \ E j t  E<vCu - » A - l >

'  vt J t E<vC u lV l) lQt-l1>-

conditioning with respect to Qt _ j a lso . Now the expectation of 

given Qu  ̂ is  zero, therefore

S2 .  E (-2 I E[Vct J t E lV JV x ilQ w «

- E {-2 I E[V l  V |Q ]}.
t U>t

Combining the above expressions for Sj and S2 i t  is  seen that

var V* - var V is
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E ( I  VC(2 - 2»'ct lust ' J ' W -

and as var V 1s fix e d , th is  is  the expression to be minimised by 

appropriate choice of functions V ^ .

Now the t th term in the summand is  not dependent on for 

u f t .  Minimisation is  therefore achieved by m inimising, fo r each t ,

Elvct2 • 2VCt V V l >

where V* is  a function of Qt and defined to be

l
u>t

El \ A > -

Suppose that a simulation t r ia l  is  in progress and the s ta rt  of 

time period t  has been reached; Qt   ̂ has been rea lised  by qt y  Given 

th is p a rticu la r re a lisa t io n  of Q̂ . j ,  the problem is  then one of choosing 

the function vc t (Qt ) to minimise

• E(Vc t2 - 2 V c t v t ) ,

such that EV^ = 0.

The minimisation can be regarded as being over Â  e R,

where Vct has been parameterised:

'Ct VCt (X1»X2’ ,XN;(V ’

Vct being twice d iffe ren tiab le  with respect to the A1s and 

32»c t/9X, = 0 .
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This is  because such a parameterised function (e .g . a polynomial) 

can approximate any measurable function a r b it r a r i ly  c lose ly (fo r 

s u f f ic ie n t ly  large N) over any bounded subset o f the range of Qt 

(except fo r sub-subsets o f null p ro b ab ility ) and such a subset can 

be chosen such that the expectation over i t  is  a r b it r a r i ly  close to 

the expectation over the fu l l  range of Qt<

Define the Lagrangian to be

L<xi ........V >  ■ E<vctZ-2#ctvt * Vct>-

Then 3L/3p = E(Vc t )

and 3L/3X. = E(3Vct/3Xr  (2V(;t-2Vt  + p)) 

2 2
Now 3 L/3y = 0 and moreover

3 L / 3 X i  3 X j  = E ( 3 V c t / 3 X r 3 V c t / 3 X j )

2
so the m atrix whose components are 3 L / 3 X .  3 X . is  positive semi-

i J
d e f in ite , whence

E ( V c t 2 -  2 V r ,  V 1 )'Ct

w il l  be minimised subject to EV

and

3L/3p = 0, 

3L/3X. = 0  V i

Now 3L/3Xi = 0  V i is  ir

* c t  ■ V'  - 7 “
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w h ils t 3L/3y = 0 i f  and only i f

1 P1(t2 y = EV .

Therefore the required minimising is

vc t (Qt _ E(Qt l qt - i )} = vt(Qt  '  E(Qt l qt - i )) '  Evt-

The problem o fco n stru c tin g !/^ ^  - E (Q1 1qt j ) )  therefore reduces 

to one of modelling v \  the expected future revenue as a function of 

Qt - E(Qt |qt _ 1) .  This problem is  tackled in the next section where 

two models, a lin e a r and a quadratic one, are proposed.
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4 . MODELLING THE EXPECTED FUTURE REVENUE

4 .1 . General Considerations

Consider one p articu la r sim ulation run. At the s ta r t  of time- 

period t suppose that the state vector Q has been rea lised  by q .

Then the process for time periods t ,  t + l , . . . , T  has to be considered, 

and in p a rticu la r the t  tĥ  time period controls and the t  th time 

period martingale d ifference functio n , V ^ , have to be derived. The 

former is  a problem fo r the p a rt ic u la r algorithm being studied; i t  is  

the construction of the la t te r  that is  of concern here. From an 

an a ly tica l viewpoint th is  is  equivalent to the f i r s t  such function 

of a (T-t+1) time period process. So without loss of genera lity  the 

construction of the f i r s t  such m artingale d ifference function only,

Vc l»can be treated. This considerably s im p lifie s  the notation required.

Consider, then, the process a t  the s ta r t  of time period 1. The 

f i r s t  time period controls have been determined and the d istrib u tio n  

of Q ,̂ given the present position on the in i t ia l  state space, qQ, is  

completely known. I t  is  desired to model the expected future revenue 

as a function of the re a lis a t io n , q^, of the state vector at the end 

of the f i r s t  time period without re-running the algorithm. This estimate 

is  the martingale d ifference functio n , VC1 (qQ.Qj - E(Q1 |qQ) ) ,  which when 

applied to the actual re a lisa t io n  of Q ,̂ q^, y ie ld s the f i r s t  martingale 

d ifference Vci^qo ’ ql  " E(Q1 |qQ)) o f the martingale which w ill become 

the control s t a t is t ic  for the sim ulation run.
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The martingale d ifference function is  constructed about 

qj = E(Q1 |qQ) .  This is  fo r two reasons. F i r s t ly ,  the control 

s t a t is t ic  only approximates the behaviour of E ( V | ) ,  so i t  is  

natural to construct i t  about the mean of Q ., and secondly, because 

it s  construction requires certa in  information about the stochastic 

process which may only be availab le  in the neighbourhood of q^

Now, the expected future revenue can be s p l it  into that accrued 

in the f i r s t  time period and that accrued in subsequent time periods:

E(V|Qj ) = E iV jlQ j)  + E(V ( 2) |Q1) ,

where

V<2> .  1 vt .
t=2 1

Since Vj i s ,  by assumptions known function of qQ and the f i r s t  

term on the RHS,

can be calcu lated a n a ly t ic a l ly . So the problem reduces to one of

modell ing E ( | Q , ) .  VCi(q 0,Qr q i) is  s p l i t  into the sum of

W W ’ i ) and Vb c i^ V V ^ ’ where

, A c i(% >(1r 5 i ) » V1 (q0,Q1) - E[V1 (q0,Q1) ]  and

W W ’ i
) is  an estimate of E (V ^ |Q j ) .

Recall that the "one-step-ahead" expected revenue VH is



-186-

VH • ' « ' t l ' W

T

EVi  *  J 2 E<vt i° t - i> -

Therefore the appropriate function to be modelled in order to derive 

a su itab le control s t a t is t ic  fo r Vu isn

e ( vh Iqi ) = EVi  + E(v2 lQ i)*

?
so again the problem reduces to one of modelling E(V iQ j) , the appropriate 

control s t a t is t ic  simply being

vB c i( v Qr V *

However, i f  the appropriate control s t a t is t ic s  are used there is  

no advantage in forming two estimates of the expected revenue, EV, from 

the actual revenues accrued in each simulation t r ia l  and the "one-step- 

ahead" revenues, for they w ill both be the same.

The controlled value of the actual revenue accrued in each 

t r ia l  is

.  IV* = ^  (v t  - vc t )

T
.  I

t=l
T

- I i

(Vt ‘  VACt “ VBCt)

t;i ivt«t-1* V - vt(V r (‘t, + E<vtl‘* M ,}

T
l V t vBCt •

t = l
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Since VCt " VACt + VBCt and

VACt = Vt  « w V  - E V̂tlQ t-l> ‘

T T

So V* = E E(Vt |Qt_ 1) -  ̂ V,
t=l t=l BCt

T

= t=l ^ Ht * VBCt  ̂ ’

and th is  is  the controlled value of the one-step-ahead revenue Vu.
(2) H A graph of E(V ' |Q j)  against some component o f Qj w ill have

the following form:

e ( v { 2) |q1)

and w ill u su a lly  be concave.
( 2 )Two models of E(V '|Q j)  w ill be treated , namely a lin ea r and 

quadratic function of Q1 - E(Q^|qQ) .  These have the m erit of being 

f a i r ly  straightforward to derive and computationally e ffe c tive  in 

p ractice .
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4 .2 . Some Essentia l Notation

Let f  be a function : R m --> R . Then i f  f  is  d iffe re n tia b le , 

define the vector d f(x )/d x  by:

(d f (x )/d x ) . = 3 f (x )/ 3 x ..

2 2I f  f  is  twice d iffe ren tiab le  define the matrix d f(x )/d x  by: 

(d2f ( x )/ d x 2) i j  = 3Zf (x ) / 3 x 13xj .

Let g be a function : R m — >Rm. Then i f  g is  d iffe re n tia b le , define 

the matrix dg(x)/dx by:

(d g (x )/d x ) .j = 3 (g (x ) ) j/ 3 x . .

2 2I f  g is  twice d iffe re n tia b le , define the 3rd rank tensor d g (x)/dx by:

(d2g (x)/d x2) . jk  = 32(g ( x ) )k/3x .3x j .

Let h be a function : R m --> R m x p 01. Define the 3rd rank tensor 

dh(x)/dx by:

(d h (x )/d x ).jk  = 3 (h (x ) ) jk /3 x ..

Let T be any (m x m x m) 3rd rank tensor, M an (m x m) m atrix 

and v an m-vector. Then define the following products by:
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TM by .  1
t

MT by (HT>tJk
= l

t <M>n <T>tJk

Tv by 1
k (T > ijk <v )k

and vT by = l
k (v )k(T *kt j

Recall that the sequence of state space random variab les Qo>Q^,. 

is  a Markov process. Let the d istrib u tio n  function of Qt given that 

Qu = C where u < t  be denoted by:

FUt ( * U )

4 .3 . The L inear Model

For the lin ea r case a martingale d ifference function of the 

following form is  proposed:

VBC1 ^ 1  '  = ^1 '  ql^

where cjj = E iQ j) and the tedious e x p lic it  representation of the

dependence on the in i t ia l  state space p o sitio n , qQ, has now been 

dropped.
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This guarantees that EVBC1 = 0 and hence that EVct » 0. I t  

is  in tu it iv e ly  desirab le that a should be set equal to the best 

possible estimate of the gradient of E iV ^ lQ j )  at Q1 = This 

value for a has proved computationally e ffe c t iv e . So the problem 

reduces to the estim ation of

a (q j)  - dE(V( 2) |q i )/dqi a t ^  ^

(21Decomposing E(Vv ' |q^) into the sum of contributions made in 

each time period:

T

E(V ( 2) |q .)  = l E(V |q .)
1 t =2 1 1

i t  is  seen that

dE(V( 2) |q i )/dqi = Z dE(Vt |q1 )/dq1,■ l

and the problem reduces to the estimation of each term in the sum. 

Now E(Vt |q1) = E(VH t|q1) fo r t  * 2,

where vnt = E v̂t ^ t - 1^

T

So d E (V ^  |q1 )/dq1 =  ̂ dE(VHt|q1 )/dq1 and the concern is  now with

the estimation o f dE(VH tIq^/dq^ Under certa in  conditions to be 

discussed below, the follow ing re la t io n s , which are c ru c ia l to th is 

estim ation, apply.
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Relation R l: dE(VH t|q1 )/dq1 = dE(Qt _ 1 |q1 )dq1 d ^ )

Relation R2: dE(Qt |q1 )dq1 = ... P^ q^

The d e fin itio ns of and Pu(q j)  d if fe r  according to the conditions

which apply, the following two cases only being treated:

case ( i )  d t(qx) = dVHtU )/d£ evaluated at £ = E(Qt_11 )

and pu(ql )  = dE(Qu lQu-l = evaluated at C = E(Qu_ 1 |q1) .

case ( i i )  d t(qx) = E(dVHt(Qt _ 1)/dQt _ 1 |q1)

,„d pu(qi) ■ \ . 1(dV ,A-i>/iV i iV  •

So under the appropriate conditions dE(VHt|q1 )/dq1 may be 

computed by combining re la tio ns Rl and R2 into the following formula:

Formula F I : dE(VH t|q1)/dq1 = P ^ q ^ ^ )  . . .  Pt _ 1(q1)dt (q1)

The f i r s t  two or the la s t  o f the follow ing conditions are 

s u f f ic ie n t  to ensure that formula F I is  app licab le .

Condition C l: VHt^qt - P  ’ s înear in  1*

Condition C2: E(Qu ldu_ i )  1S lin e a r in q l t  fo r u = 2 , 3 , . . . , t - l .

Condition C3: There e x is ts  a d istrib u tio n  function such that

Fy(£ |n ) - Gy(C - E(Qu |Qv = n)) 

fo r a l l  v s u, and for u = 2 ,3 , . . . . t - l .
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Conditions Cl and C2 are s e lf  explanatory, but condition C3 

deserves fu rther explanation. I t  is  the condition that the 

d istrib u tio n  of Qu given knowledge of the outcome qy of Qv for v < u 

depends on qv through i t s  location parameter o n ly , i . e .  The mean but 

not the shape o f the d is trib u tio n  function of Qu depends on qv .

I t  w il l  be shown that the case ( i )  in terp retation  o f formula FI 

holds i f  conditions Cl and C2 apply, and the case ( i i )  in terpretation 

of F I holds i f  condition C3 app lies. Thus the 'case ( i )  in terpretation ' 

of the system w ill be used to mean that conditions Cl and C2 hold 

for a l l  t   ̂ 2, and the 'case ( i i )  in te rp re ta tio n 'w ill be used to mean 

that condition C3 applies fo r a l l  t  2 2 . The following re su lts  are 

necessary.

Theorem 4 .1 .

I f  condition Cl holds then so does re la tio n  R1 in e ith e r case (1) 

or case ( i i ) .

Proof

Under condition Cl we have:

E ( VH t^ t - l^ ql^ = ' W ^ t - l ^ l ^ ’

whence

dE ( vH 11q 1 )/dq 1 = dE(Qt . 1 iq1 )/dq1 dvHtU )/ d ? i<-= e « ^ . ^ ) *

which is  R l ( i ) .  R l ( i i )  fo llows immediately since the second term on

the le f t  hand side is  constant in q j .



Theorem 4 .2 .

I f  condition C2 holds then so does re la tio n  R2 in e ither case ( i )  

or case ( i i ) .

Proof

We f i r s t  show that R 2 (i) holds. The proof proceeds by induction 

on t .  I t  is  su ff ic ie n t  to show th a t:

d E d J th j l/ d , ,  = d£(Qt_ l |q1 )/dq1 d E iQ jq ^ l/ d q ^ l^ ^

since R 2 ( i i )  t r i v ia l l y  holds fo r t  = 2.

Now E(Qt |q i ) « |  E(Qt |Qt  l  = Ç) d F ^ U Iq ^

= E(Qt |Qt _ i = E(Qt.1|q1)), applying condition C2 .

Therefore dE(Qt |q j)  = dE(Qt l |q1 )/dq1 dE(Qt |qt _ 1 )/dqt _ 1|q^^ = E (Qt _ 1 |q1) 

as required.

Noting that under C2 the second term in the right hand side above 

is  constant in q , i t  is  seen that re la tio n  R 2 (i) is  equivalent to 

R 2 ( i i ) ,  which completes the proof.

Theorem 4 .3 .

I f  condition C3 holds, then so do re la tions R1 and R2 in case ( i i ) .

Proof

We show that R l ( i i )  holds f i r s t .

j
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Now E(VHt(Qt _ 1 ) |q x) = |  VHt(Ç) dFj_ 1(Ç |q 1)

= |  Ç) d G ^ U  - E(Qt _ 1 |q1) ) ,  by condition C3

1
= VH t^  + E (Qt_11qi ) )  dGt - l^ ^ ’ by chan9e of variab les 

Whence dE(VH t|q ,)  = d E M ^ Iq jl/d q j |  d*Ht<n)/dnl

= dE(Qt _ 1 |q1 )/dq1 j  dVHt(Ç)/dÇ dF^_1 (Ç |q1) , by

condition C3 and change of va ria b le s . And the above re la tio n  is  R l ( i i ) .

The second part of the proof proceeds by induction on t .  I t  is  

s u f f ic ie n t  to show that:

dE(Qt |q1 )/dq1 = dE(Qt _ 1 |q1 )/dq1 (dEp (Qt |Qt - 1 )/dQt _ 1 |q j)

since R 2 (i) is  t r i v ia l l y  true for t  = 2.

Now E<Qt|q1) • J  EtQjlQ^j ■ 5) dF^UIq^

■ }E (Q t iQt . i - 5 » E ( Q { . i | q 1 ) ) dG j . i U ) .  

by condition C3 and change of va riab le s .

Whence d E (Q jq , )/dq. = dE(Q. J q J / d q ,  f d E (Q jq . ,)/dq . ,1 dG^-l(E)
1 1 1  t-1 1 1 j l t 1 t-1Iqt_1=c+E(Qt_1|q1)

= dE(Qt - 1 |q i )/dqi f dE(Qt |Qt _1 = 0 /d 5  dF j_1 (C |q1)

= dE(Qt _ 1 |q1 )/dq1 Eg  ̂ (̂ dEp (̂Qt |Qt _i)/dQ t _ i l^ i ) »

as required .
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I f  the formula F I applies in whichever vers ion , then i t  provides 

a ready way of decomposing d E (V ^  |q^)/dq^ into more e a s ily  estimated 

components:

T

dE(V( 2) |q i )dqi = l P2(Ql) . . .  ©t _ 1 (ql )

where the f i r s t  term o f the sum is  ^ ( q ^ .

From a computational viewpoint the sum is  e f f ic ie n t ly  calcu lated 

by the backwards recursion :

eT = 0

6t - l  = dt + Pt 6t

the 6' s being calcu lated backwards from B j to B j .  which is  the required 

sum.

The means of constructing the f i r s t  martingale difference has 

now been suggested, namely

VC1(V>1> ■ VACl(Qr 5l ) * VBCl(M l>
where

w v v - w - w -
and

vbci(qi"^i) " (Qr5i)T°*

a being an estimate of d E (V ^ ¡q ^ /d q ^  calculated at q1 = c^.

I t  must be stressed that even i f  none of the conditions are 

sa tis fie d  exactly then formula FI may s t i l l  be applied i f  Cl and C2 

or C3 hold approximately. A ll that is  required is  an estimate of 

dE(V^2^¡q^)/dqj; even a bad estimate can be better than none a t a l l .
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In general the case ( i )  versions of P^ q^  and c i^ q .) are eas ie r to 

ca lcu la te  than th e ir  case ( i i )  counterparts, so given the choice, 

i t  is  better to use the case ( i )  versions.

4 .4 . The Quadratic Model

Herein, a quadratic form fo r the martingale d ifference function 

VBci(Qr q i ) .  is  proposed, namely

I t  w il l  be constructed to have the following two properties, the f i r s t  

of which is  e s se n t ia l, and the second in tu it iv e ly  desirab le :

(1) E<VBC1(Q1-q1)) - 0

( i i )  The f i r s t  and second d iffe re n tia l of VgC1 a t q1 = q̂  w ill be 

equal to the best estimate of those of E ( V ^ |q j )  at q1 a q̂

Now EiVgj-jCQj-qj)) = «(c^) + E((Q1~q1 )TB(q1 ) (Q j-q j)) .

Let Disp (Qj) be the dispersion matrix of Q j, then:

E(VBciQl '^ l )) = + traCe {DiSP ’

So, in order to s a t is fy  the f i r s t  property <(q1) is  chosen to be

- trace (Disp (Qj).B(cjj)} .

Notice that without loss of g enera lity , B iq^  can be taken to 

be symmetric, i . e .  B (q j) = Biq^^.

S u ffic ie n t conditions are now derived to s a t is fy  the second

property.
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Now dVBCl(V ql )/dql  = a q̂l  ̂ + + B(Q i)T )(q 1-^1)

* a ic jj)  + 2B(q1 ) (q 1-q1)T .

So dVBC1 (q1-q1 )/dq1 a(q.
ql =ql

Hence, as in the lin e a r case, BBQ j(qj-< ij) anc* E (V ^ |q ^ ) w ill 

have the same d iffe re n tia l a t q1 = q̂  i f :

a (q i ) = dE(V( 2) | q i )/dqr

The estimation of d E (V ^  |dq1)^q1 has already been discussed in the 

previous section on the lin e a r m artingale; the same methods of estimation 

can be used here.

Now d2VB c l(q1-q1 )/dq^ = 2 B

therefore , in  order to s a t is fy  equality o f the second d if fe re n t ia ls , 

we must have

B = v2d2E (V( 2) |q1 )/dq2 |q^  ,

Thus, i t  is  su ff ic ie n t  to set B iq j) equal to the best estimate 

ava ilab le  of

>i d ^ V ^ lq ^ / d q *

and evaluate I t  a t  * q^. The remainder of th is  section w il l  be 

devoted to i t s  estim ation.

By d e fin itio n  d2E (V ^  |q j)/d q 2 = d /d q ^ d E ^ 2) Iq ^ /d q ^ . 

dE(V^2  ̂|q j)/d q j has already been estimated by a iq ^ , so d2E ( V ^  Iq^/dq2

can be estimated by da(q1 )/dq1.
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I f  an an a ly tica l expression for a ^ ) ,  as opposed to a numerical 

estimate of a ^ ) ,  has been found, then 2B (q j) can be obtained by 

simply d iffe re n tia t in g  a (q j) .  In what fo llo w s , hoever, we assume 

that th is  is  not the case and look for an e x p lic it  representation 

of da(q. )/dqp

I t  is  assumed that we can use formula FI to estimate d E (V ^ Iq ^ /d q j

I f  the ca se (i) in terpretation of o(q^) app lies, i . e .  F(Qu|qu j )  

and E(VH t|qt _ j )  are lin e a r  in qy l  and qt  l  respective ly , then a ^ )  

is  constant in  q̂  and dcx(q^)/dqj is  a m atrix of zeros,

Now consider the case ( i i )  in terpretation of “ (q^), when condition 

C3 applies and

by a ^ ) .

n

i .e . da(q1 )/dq1 = 0.

Pu(q j) = E <*  ^  in )/dQ(j_ 1 |q1) ,

and
W  ■ E(dVH t(Qt . 1 )/dQt . 1 |q1) .

Introduce some convenient notation.

Let Mt ( q i ) = p 2(q1) p3( q1) • • • p t (q1) f o r t * 2

= I , the indentity m a trix ,fo r t = 1

and T t (q1) = V l ^ W ql^t - r Hr  t VHi 
T

fo r t 2 2.

Then a (q j)



and dTt (q1 )/dq1
t
l

u=2

" here '  [  I(V i > j i (dV dc'i> f ik (I,u * r - pt-i''t> k for “ '  1

i . e .  r

1 (“u - l )j l (d<V d<ll h l

( (dDy/dqj)(Pu+1-. .Pt .ldt>>Uu-l

■ « ■ y V ' i i

fo r u = t

fo r u < t 

fo r u = t

We need to investigate  dt^/dq  ̂ and dd /̂dq  ̂ fu rth e r . The following 

theorem enables them to be decomposed.

Theorem 4 .4 .

Under condition C3 the following re la tions hold 

Relation R3: dd^dqj = where d̂  =

Relation R4: dPy/dqj = , where V‘ = EQ̂  (d2EQ (Qu |Qu_ 1 )/dQ^_1|q

Proof

Let V ^ (ç ) = dVH t( î ) / d î ,  and Vjjt ( { )  = d2*H t(£)/d£2 .

»ow dt • E (v ;t (Qt . 1 ) h i )

' | VHtlE * E(Qt - l  dl »  dSL l ( i >-

by condition C3 and a change of va riab les .



Therefore ddt /dq1 = dE(Qt-1  |q1 )/dq1 »¡¡t(5 * EIQ^Jq,)) dGl.i<«>

l E f Q t . l l c i i l / c l q !  J  V S ( K )  d F j . j t i l , , )

= \.i“v

by Theorem 4.3 and the d e fin it io n  of This is  re la tio n  R5.

Let pu( 0  = E(QJQ u_1 = 0 .  P „(5 ) = dyu(C)/dC, and 

pj)(? ) ■ d2pu(c)/d£2.

Then Pu .  |  u'U) d F ^ U Iq , )

■ | W  * ' « W l »  < i ( 5 > .

by condition C3 and a change of va riab les .

(Pu>1J ■ j W + EWu-ll’lhj

Therefore:

3(Ou)3k/3qn  ■ l>(S(Q|1.1l<lI» 1/*ln  { K<i*(Qu.I|q1))>1J|t dG^IS)

Now the integral on the right hand side i s :

i  K < £» i jk  dFJ-i<£i v

■ (E (P ;(O u. , ) | q I ) ) )lj l,

■

So dPu/dq  ̂ = dE(Qu_Jq^ )/dq 1 P^, whence re la tio n  R4 follows by applying 

Theorem 3.
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I f  condition C3 and therefore Theorem 4 app lies, T* may be 

expressed by:

Tu - V l M -1 ’

where Â  = tV (l?u+1 . . .  fo r u < t

= d' fo r u = t .
t

Now

2 6 ^ )  = da(q,)/dq

and j  t

da/dq, -  ̂ l T*
1 t =2 u=2 u

T T

= 1 l  TK
u=2 t=u u
T

Writing. A , =  ̂ A*, we have
u t =2 u

T

Formula F2: 2B(q1) = ^  U.u_ j  Au U-^j

Notice that B(q^) given by the above formula is  indeed symmetric, since 

A* is  and therefore so is  Ay .

From a computational viewpoint there is  an e f f ic ie n t  double 

recursion fo r the above sum. Define Bu and r u by



Then Au = + V  ̂ 0u> and the required sum is  simply r^.

Tu can be calcu lated by the backwards recursion from u = T 

to 1 , requiring only the temporary store of Bu» Au> and Tu a t each 

stage.

Again, as in  the case of the lin e a r martingale d ifference function ,

i t  must be emphasised that formula F2 may s t i l l  be applied even i f

none o f the req u is ite  conditions apply e xac tly , fo r even a bad estimate 
2 ( 2 1  2of d E(Vv ' |q j)/d q j may be of considerably more value than none at a l l .
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5 . CONCLUSIONS

The need to evaluate approximate production planning algorithms 

has been discussed and ways of doing so explored. The most promising 

approach is  that of re p lic a t iv e  sim ulation, which is  the only way 

to gauge the actual e ffe c t of using an approximate algorithm in 

p ractice . Since the accuracy o f the estimates o f the parameters of 

in te re st thus obtained is  only proportional to the reciprocal of the 

square root of the number of t r i a l s ,  i t  is  important to ensure that 

the v a r ia b il it y  in the estimates returned by each t r ia l  is  as small 

as possib le . To th is  end variance reduction techniques were discussed 

and in  p a rticu la r the use of control varia tes investigated in d e ta il.

For each simulation t r ia l  a number of control variates w i l l ,  in 

general be ava ila b le . So ways of combining them are of paramount 

importance. Fixed lin ea r combinations are e a s ie s t , both from a 

conceptual and an a ly tica l viewpoint . For a given attribute  of 

in te re st and a given set of control va r ia te s , the optimal fixed 

lin ea r combination is  derived. However, th is  depends on the dispersion 

matrix of the control varia tes and the covariance vector of the control 

varia tes and the attribu tes o f in te re s t . In general these w ill not 

be known and must be estimated. Use of the consequent estimate of the 

optimal lin ea r combination leads to problems of b ias and d if f ic u lty  

in  estimating the variance of the fin a l estimate o f the parameter of 

in te re st . I t  is  shown that the bias is  of order 1/m, where m is  the 

number of simulation t r ia l s .  A method of elim inating the bias at the 

expense of much computation is  given and a procedure for avoiding 

most of the computational e f fo r t  then derived. The problem of variance
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estimation is  approached though the work of Lavenberg and Welch [37 ] $ 

and i t  is  shown that the potential variance reduction is  degraded as 

the number of control va ria te s  increases.

The use of more general functions of control varia tes was then 

explored. These have the m erit of being p o tentia lly  fa r more powerful 

than fixed  lin ea r functions. I f  independent functions can be derived 

for each t r ia l  then the problems of bias control and variance estimations 

do not a r is e . The c la ss  of such functions that were considered is  

u se fu lly  re s tr ic te d  by reference to the application of algorithm 

evaluation , and p a r t ic u la r ly  to the time periodic structure of the 

process. I t  is  shown that such functions of control va ria tes form 

martingale d iffe rences. Optim ality c r ite r ia  fo r these martingale 

d ifference functions are derived and the problem then reduces to one 

of modelling theexpected future contribution to the a ttrib u te  of 

in te rest as a function of the re a lisa tio n  of next time-period state 

space.

Two such models, namely a lin ea r and a quadratic model are proposed. 

Their construction depends on a detailed decomposition of the process 

into aspects pertaining to each time period. This is  only achieved 

under one of two assumptions. Whilst the assumptions w il l  not, in 

general, hold exactly they may often hold approximately and the 

martingale d ifference function thus constructed may s t i l l  be e ffe c t iv e . 

Depending on the assumptions made, appropriate formulae fo r the models 

are derived.
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These formulae are applied to the 'general model' of Chapter 5 

in  Chapter 8 and the re su lts  of using them in practice on the 

comparison and evaluation of the " fu l l "  algorithm of Beale et a l .  [ 4  ] ,  

th e ir " f i r s t  pass" method and ordinary lin ea r programming are given 

in  Chapter 9.
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1. INTRODUCTION

1 .1 . The Purpose of the Chapter

In the previous chapter i t  was suggested that approximate 

scheduling algorithms be evaluated by re p lica t ive  sim ulation. Since 

the accuracy o f the method is  only proportional to the reciprocal of 

the square root of the number o f simulation t r a i l s ,  i t  is  desirab le to 

remove unnecessary v a r ia b il it y  in  the re su lt of each t r i a l .

In pursu it of th is object a martingale control s t a t is t ic  

was proposed. D irect estimation of the terms of the control s t a t is t ic  

being d i f f i c u l t ,  they were decomposed (under certa in  assumptions) into 

more e a s ily  estimated components. Estimation of these components is  

pecu liar to the algorithm being tested and the model of the stochastic  

process w ith in  which i t  works. I t  is  the purpose of th is  chapter to 

provide e x p lic it  formulae for the estimation of these components in 

the case of the "general" model developed in Chapters 5 and 6 . However 

the formulae derived herein can, with mild procedural m odifications, 

be applied to two other algorithm s, namely the " f i r s t  pass" or f i r s t  

step of the general model (wherein only one non-linear program is  

solved) and ordinary lin ea r programming, ignoring a l l  stochastic 

elements.

1 .2 . An Outline of the chapter

The "general" model is  introduced and pertinent aspects are 

discussed in section 2 . There are two possible in terpretations of 

the formulae derived in  the previous chapter, depending on the
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assumptions under which they were derived. As in the previous 

chapter, these w ill be referenced by case (1) and case ( i 1 ) .  The 

case ( i )  versions are much the simpler and are treated f i r s t .  Only 

the lin ea r martingale difference function is  appropriate in  th is 

case. The lin e a r  and quadratic martingale d ifference functions 

are then tackled under the assumptions of case ( i i ) .

A ll of the approaches involve some approximations. These are 

confined to a l l  or some of those needed in the solution algorithm for 

the general model, and so th e ir use is  natural here.

The notation used is  that of Chapters 5 and 6. In p a rtic u la r , 

the convention of the previous chapter that upper case le t te rs  denote 

random variab les and lower case le tte rs  th e ir  rea lisa tio n s is  dropped 

in order to more e a s ily  d istinguish between matrices and vecto rs.
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2. THE GENERAL MODEL

2 .1 . A B r ie f Description of the 'G eneral1 Model.

The model is  developed in Chapters 5 and 6. I t  is  a generalisation 

of that of Beale e t a l .  [ 4  ] .  I t  assumes that the stochastic process 

can be represented as a d iscrete  time period Markov process with a 

fixe d , f in ite  horizon. At the s ta r t  of each time period, the algorithm 

provides a control vector x t ; during that time period the stochastic 

environment supplies a random input vector y t and the state variab le  

evolves from vector qt_1 a t  the s t a r t  of the period to qt at the end 

of the period according to certa in  evolution equations. The revenue 

accrued during the tth time period i s  a lin ea r function of the state 

vector at the end of the time period and the control vector applied 

at the s ta r t  of the time period. The algorithm is  designed to maximise 

the total revenue accrued from the f i r s t  time period u n til the time 

horizon. Given the in i t ia l  data,the controls applied a t the s t a r t  of 

each time period are a function of the state space at the end of the 

preceding time period, thus preserving the Markovian structure of 

the process. Therefore the revenue accrued during each time period 

can be considered to be a function o f the state vector at the s ta r t  

and f in ish  of the time period only.

2 .2 . A Symbolic Description of the Process.

The state vector evolves from i t s  value at the s ta r t  of the t th 

time period, qt j ,  to i t s  value at the end of that time period q̂  

according to the equations:

ILm̂
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" t  " " t  + #tqt - l  *  8tx t *  Ctwt * Dt zt

zt " zt * V t - t  * Lt * t '  h

wt ■ max (z t *0)

- y t  + * ct

being a m ultivariate  normal random vector with zero 

mean and dispersion matrix Disp (y^)

where

q° and y t  are fixed  vectors and Bt* cf  Dt ’ Kt ’ Lt and Mt 

are fixed system m atrices.

The revenue accrued during the t th time period is

Vt  ’  dl t  xt  + d2t qt 

where dl t  and d t̂ are fixed system vectors.

2 .3 . The Random Input

The random input y t  is  driven by the m u ltivariate  normal random 

vector et>and fo r fixed qt l  has dispersion matrix Disp (y t ) .  Now 

there are two possible interpretations of the dispersion m atrix . In 

the "add itive" case i t  is  fix e d , w h ilst in  the "m u ltip lica tive " case 

(Disp (y )̂)*2 is  proportional to the mean of y t .

i . e .  Disp ( y t ) = Yt P° Yt

o *
where Pt is  a fixed matrix and Ŷ . is  a diagonal m atrix , whose i _th 

diagonal en try is  (y t ) i and y t ■ y t +
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For the case ( i i ) interpretation of the formulae derived in 

the previous chapter, the two models have to be treated separate ly , 

w h ilst fo r the case ( i )  in terpretation there is  no need to d istinguish  

between the models of the stochastic input.

2 .4 . The Approximation of the Control VectorProvided by the Algorithm

As in the solution procedure of the general model, i t  is  necessary 

to approximate the control provided by the algorithm x  ̂ by a lin ea r 

function of the previous time period state  vecto r,

i . e .  xt  = x° + Nt qt-1 ,

x°t being a fixed vector and the co e ffic ie n t m atrix Nt being derived 

from an analysis of the fin a l non-linear program solved by the 

algorithm. This approximation is  an essentia l part of the variance 

estimation procedure o f the general model algorithm and is  discussed 

in more detail in Chapter 6, Section 5 .1 . Using i t  the evolution 

equations can be s im p lified  and become

H  =

et

wt = max ( z t , 0)

where
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This is  the form of the evolution equations which is  amenable 

to analysis and w il l  therefore be the one hereafter used.

2 .5 . Further Approximations

Other approximations are used to s p l i t  the martingale difference 

function into more read ily  estimated components. There are two 

possible approaches. I f  i t  can be supposed that the mean of the 

d is trib u tio n  of q̂  depends lin e a r ly  on the outcome of qt ^  then the 

case ( 1 ) in terp retation  of the terms of the formulae derived in 

Chapter 7 is  appropriate. A lte rn a tive ly , i f  i t  may be supposed that 

only the mean and not the shape of the d is trib u tio n  of qt depends 

on the outcome of qt then the case ( i i )  in terpretation of the 

terms of those formulae is  appropriate. Neither supposition w ill in 

general be exactly  true but e ither or both may hold approximately.

The la t te r  approximation can in tu it iv e ly  be expected to be good in 

the case where the additive model of the stochastic  input is  being 

used; then the shape of the d istrib u tio n  of qt  only varies with the 

outcome of q̂  1 through the point of truncation o f wt< It s  usefulness 

in  the case where the m u ltip lica tive  model of the stochastic input is  

being used i s ,  however, more doubtful.

The case ( i )  in terp retation  is  treated in the next section . The 

case ( i i )  in terp retation  is  more complex and the succeeding three 

sections are devoted to i t .
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In th is section the mean of qt w ill be supposed to be a lin ea r 

function of the outcome o f dt _ 1* The merits and demerits of th is  

assumption have already been discussed; th is  section is  devoted to 

obtaining sp e c ific  formulae.

As has already been mentioned in Chapter 7, Section 4 .4 , under 

the above assumption a l l  the quadratic terms in the quadratic martin

gale d ifference function are id e n t ica lly  zero, so here i t  is  only 

necessary to deal with the lin e a r case.

I t  is  therefore s u f f ic ie n t  to provide formulae fo r the ca lcu la tion  

of and Vt  where these are defined by:

dt = dE(Vt |qt _ 1 )/dqt _1 

and 0t  = dE(qt |qt _ 1 )/dqt _1

both being evaluated at qt _  ̂ = E(qt _ ^ |q j) .

Approximating the control decisions by a lin ea r function of the 

state space at the end of the preceding time period and using the 

notation of Section 2.4 i t  is  seen that

3 . THE CASE ( i )  INTERPRETATION OF THE MARTINGALE DIFFERENCE FUNCTION

where the d iffe re n tia l is  evaluated at qt _1 

Also

E(qt-llql)-

V v i

= d2J  x t + d2t Ntqt _1 + d j  qt>

where the control decision x t is  being approximated by x t * x° +
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D iffe ren tia tin g  with respect to qt _̂  i t  is  seen that

dE(Vt l qt - l )/dqt - l  = Ntd2t + dE(qt l qt - l )/dqt - l * dl t

so d t  = Nt d2t + p tdl f

Therefore, the approximation necessary for the case ( i )  in te r 

pretation of the martingale d ifference function , namely the approxi

mation of E(qt |qt _1) as a lin ea r function of qt 1 is  one of approxi 

mating E(Vt |qt_^) as a lin ea r function of qt .̂

The approximation suggested here i s  one of approximating each 

component of wt by a lin ea r function o f the corresponding component 

of z t  in  such a way that the variance o f each component of wfc is  

unchanged

i .e .  w.j t = ^ z .^  + (constant)

where = f (z T t/a i t ) ,  o t̂  and z * t being the standard deviation 

and mean of ( z-j1.1q 1 ) and ^eing defined to be the positive 

square root of

x<j>(x)[1 + 2$ (x )]  + {1 + x2[ l  - i> (x )]}$ (x ) - [<i>(x)]2 .

<}> and <l> are the Gaussian probab ility density function and d is tr ib u tio n  

function resp ective ly . In th is  way i^ z .^  and max(zi t ,0 ) have the 

same variance . Defining to be the diagonal matrix whose i th 

diagonal component is  wt is  approximated by

wt = f t zt + (constant).
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A1though the covariance terms of wt are  not, in general, 

preserved by th is  approximation, i t  appears to work well in practice 

as the resu lts  of Chapter 9 show.

Using th is  approximation i t  is  seen that

E(wt lqt - i )  = * t  ° t  qt - l  + ( constant) *

Hence

dE(wt K - i )/dqt - i = ( \  J t )T

which, when substituted into the expression fo r t>t y ie ld s

HI + Jï  *tcl
and we s t i l l  have 

dt  ”  Ntd2t  + Vt dl t #

Notice that th is  derivation applies to both the additive and 

m u ltip lica tive  models, fo r the only re levant difference between the 

two is  in the estim ation of a ,^ . A procedure fo r the estimation 

of the en tire  d ispersion matrix of zt is  given in Chapter 6 fo r both 

the additive and m u ltip lica tive  models, although i t  should be run 

forward recu rs ive ly  from time period 2 instead of time period 1 , 

starting  at the expected value of the f i r s t  time period state va riab le , 

Here z* is  approximated by E (z t ) given by the model's solution from
t «

which Nt and hence J t (= Kt  + LtNt ~ Mt ) is  also derived. Attention 

is  now directed to the case ( i i )  in te rp re tation  of the martingale 

difference function where i t  is  necessary to ca re fu lly  d istinguish 

between the ad d itive  and m u ltip lica tive  models.

V
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4 .1 . The Terms Requiring Calculation

In th is section i t  is  supposed that only the mean and not the 

shape of the d istrib u tio n  of the state space at the end of each time 

period depends on the previous statevector re a lisa t io n . With th is  

assumption the components of the lin ea r model of the expected future 

revenue which require ca lcu la tio ns are dt and i>t> which are defined 

by

4 . THE CASE ( i i )  INTERPRETATION OF THE MARTINGALE DIFFERENCE

FUNCTION: THE LINEAR MODEL

As in Section 3 , the key calcu lation in the estimation of the 

above terms is

fo r i t  was shown there that

dEqt (qt l qt - l )/dqt - l  = (Ht )T + dE(wt l qt - l )/dqt - l (Ct )T 

and dEq (̂Vt |qt_ 1)/dqt_ 1 » (Nt )T + [ d E i q J q ^ / d q ^ ^  .

Taking expectations over qt _ j fo r given q̂  and setting
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4 .1 . The Terms Requiring Calculation

In th is  section i t  is  supposed that only the mean and not the 

shape of the d istrib u tio n  of the state space at the end of each time 

period depends on the previous sta tevecto r re a lisa t io n . With th is  

assumption the components of the lin ea r model of the expected future 

revenue which require ca lcu lations are dt and Vt> which are defined 

by

and Dt = t (dEqt<<tt l< lt-l)/d<’ t - l f ql ) •

As in Section 3 , the key ca lcu la tio n  in the estimation of the 

above terms is

4 - THE CASE ( i i )  INTERPRETATION OF THE MARTINGALE DIFFERENCE

FUNCTION: THE LINEAR MODEL

fo r i t  was shown there that

dE, t < i t l V i )/d,> t - i = <Ht )T * <‘E<»t l'<t-i>'dV i (ct )T

and dEq ( vt l V l ) /dqt - l  " *Nt * T *  [ ® qt l ‘lt - l * /dqt- l>dl t  • 

Taking expectations over qt _  ̂ fo r given q̂  and setting



-216-

1 t follows that

\  '  w t >T » » „ t i c t>T

and dt  = (Nt } d2t  + Vt dl f

4 .2 . The D istribu tions of z t and zt

Before fu rther progress can be made, i t  is  necessary to study the

d istrib u tio n  of zt and zt, where

z t  + et

and
n.
z* +

Here et  is  a zero mean normal random vector w ith dispersion matrix Disp (y t ) . 
n*

For fixed  q ^ ,  i s ,  of course, fix e d , but consider the d istrib u tio n  of 

zt when qt _̂  is  considered to be a random variab le  conditional on q .̂
'V

For th is  purpose i t  is  expedient to approximate the d istrib u tio n  of z 

given q1 by a m u ltiva riate  normal d is trib u tio n  with mean

zt " E( * t l ql ) = E (z t l ql }
*\l

and dispersion matrix Disp ( z j q , ) .

Introduce some convenient notation. Let

2 A>
r i t (Disp (Z t- lq i)) i 1

Mt s ( ° 1sP < t̂) ) 11

and ’ i t r i t  + si t

then o ^  is  the i th diagonal entry o f the d ispersion matrix of zt given 

q^. For convenience also define the diagonal matrices St , I t  to be those 

whose 1 th diagonal entry i s  s^  and resp ective ly .
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Si nee wt is  defined by 

wt ■ max ( z t>0) 

i t  is  easy to show that

where s t is  a vector whose i th entry is  s i t  and G and F are 

functions from ]Rn -*■ ]Rn x ]Rn (n being the dimension of z^), defined 

by

C F (x ))fJ  ■ f  » (x ,) 1 = j

1  0 i f j

and ■ I i ■ j

l o 1 t j

<j> being the Gaussian p robab ility  density function and <t>(x) = ( <j>.
J -00

D iffe ren tia ting  with respect to qt  ̂ one obtains: 

dE(wt |qt - i ) /dqt . i  = ^ ( S ; 1 z t ) s t )/dqt l

+ cKGis; 1 z t )z t ) / dqt _ r

Calculation o f the terms on the rig h t hand s ide  depends on the model 

of the random input used. In the "m u ltip lica tive " case s^t depends 

on qt whereas in the additive case i t  is  f ix e d . The la tte r  version 

is  simpler and is  treated f i r s t .
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4 .3 . The Additive Model o f the Random Input

In th is  model, the dispersion matrix of y t , the random input 

is  f ix e d , i . e .  independent of the previous time period state vector 

qt _ j .  Thus s i t  is  independent of qt  ̂ and

(d (F ( s ; ‘  i t ) s t )/dqt . l ) 1J

• -(Z j t /Sj t )» (z j t /Sj t ) 32. t / 3, n , r

Here Z jt and qi t _1 are the j  th and i th components of zt  and qt j 

re sp ec tive ly .

Also (diG iS; 1 z t ))/dqt _ 1) i J

= a(G (st  z t^zt ^ 3qi t - i

" ^ v ^ i t - i ^ ^ y ^ t * + (^ t / s j t )<f (^ jt / s j t ) >

whence, adding the two expressions above, the rate o f change of 

E(wt |q t with respect to qt 1 is  seen to be:

(dE(wt |qt_ l )/dqt_ l )1j - <3ij t /3qn . 1)*(zJt/SJ t ).

^ l
But zt = zt + qt-1 , therefore

3? j t /M u - i  ■ and

dE ŵt i c,t . i ^ dc|t - i  * j t  G ŝ t  zt^*

Regarding ẑ  as a random variab le in the manner discussed in 

Section 4 .2 , i t  is  seen that
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E iG is; 1 z t ) )  = GU" 1 z * ) .

D eta ils of the calcu lation are given in Section 6 .1 . 

Therefore

where the expectation over q  ̂ 1 is  taken conditional on q^. This 

expression for ®wt may be substituted into those already derived for 

t>t and to y ie ld :

A su itab le  procedure for the estimation of 2̂  and z* is  discussed in 

Section 4 .5 . Having thus estimated Pt and for t  = 2 ,3 , . . . , T  formula 

F I derived in the previous chapter may then be used to calcu late the 

f i r s t  lin ea r martingale d ifference function of the martingale control 

s t a t i s t i c .  Notice the marked s im ila r ity  between the formulae for 

Pt and derived in Section 3 for the case ( i )  interpretation and 

those derived in  th is  sectio n . Those of Section 3 are those of th is  

section with

replaced by
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1 - J 

1 t j

i> being the Gaussian d istrib u tio n  function and f  being defined in

to zero as z*t tends to minus in f in i t y .

I t  is  now necessary to compute t?t  and d fo r the "m u ltip lica tive " 

model o f the stochastic input.

4 .4 . The M u ltip lica tive  Model of the Stochastic Input

Here, the dispersion matrix of y t and hence s^t is  not fixed 

but i s  l in e a r ly  dependent on

and is  a diagonal m atrix whose i tĥ  diagonal entry is  the i tji

Section 3. They both have s im ila r  properties in that fo r fixed 

both and (G i^ 1 z t^ ii tend to 1 as z?t tends t0 in f in it y  and

S °  is  a fixed diagonal m atrix whose i th diagonal entry is  s ° t

component of y t> 

Therefore

D iffe ren tia tin g  E(wt |qt j )  with respect to qt 1 the following

is  obtained:
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HE(wt |qt.i)/< lqt.1 ■ (S° Mt )T FfS^1 zt > * o j S(S j' z{ ).

Regarding qt and hence z a s  random va ria b le s , i t  is  seen that

E fF ls ; 1 l t »  - s t r ; 1 H q 1 z*)

where the expectation is  conditional on D etails o f the calcu lation

are given in Section 6 .2 . I t  has already been shown that the expect- 
1 % 1 

ation of G(St zt ) conditional on q1 is  G(S  ̂ z*) so

■ <s? v V t 1 F<£i lz t> *

When substituted into the expressions fo ri> t , d̂  in terms of V , 

th is  y ie ld s

\  * Ht  ♦ f u ; 1 z*> * j J  g u ; 1 z * » c j

and dt = nJ  d2t *  Ctdl t .

Again, once and z* have been estimated the above expressions 

provide a ready way to estimate V  ̂ and dt and hence the f i r s t  

martingale difference function via  formula F I and it s  associated 

recursion given in the previous chapter.

4 .5 . Estimation of the Terms in the Formulae fo r £>t and dt .

Once Nt has been estimated, J t and Ht can be calculated from
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J t = Kt + Lt Nt  '  Mf  

Ht = At + Bt  Nt + Dt J t*

since At> Bt , Dt> Kt , Lt  and Mt are system m atrices. St and Zt are 

diagonal matrices whose i tĥ  diagonal term is  s-t and a^t> where 

s i t  is  the standard deviation of the i jth component of the t time 

period random input w h ilst is  the standard deviation of the i th 

component of ( 2^ IP i)•

z* is  approximated by E ( ) given in the model's solution from 

which is  also derived, o ^  is  found by the recursive procedure 

in the model's solution algorithm fo r the estimation of the dispersion 

matrix of z t and ju s t  taking the square root of i t s  i th diagonal 

term. However, the recursive  procedure must be run forwards from time 

period 2 instead of time period 1 , s ta rtin g  at the expected position 

on the state space at the end of the f i r s t  time period.



5- The Case ( i i )  In terpretation of the Martingale Control S t a t is t ic : 

The Quadratic Model.

5 .1 . The Terms Requiring Calculation

In th is  section concern is  with the construction of a quadratic 

martingale d ifference function of the form

VC1 = VAC1 + vBcr

VBC1 = VBC1 (ql ' V »

= « ( ( ¡ j)  + (d j - q p T a ^ )  + (q ^ q ^ B iq ^ iq ^ q ^

where q̂  = E(q^).

Construction o f the lin e a r c o e ffic ie n t , a{q̂ ) is  id entica l to 

that of the lin e a r martingale difference function , treated in Section

4. Construction o f the quadratic matrix c o e ffic ie n t , B(q^), is  

achieved via  recursions given in  the previous chapter involving 

dt . Pt » d[ and P j., there being defined by

V>t = Eqt _ 1 (d2Eqt (qt |qt - l )/dqt - l l ql ) *

Formulae enabling dt and Pt to be calculated have already been 

derived in Section 4 , so i t  remains to calcu late  <(q )̂ ,  dj. and Pj..
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The constant term «(cjj) must be calculated exactly as any 

errors would lead to a bias in the control s t a t is t ic  i . e .  E(VBC1) t 0, 

which would destroy i t s  usefu lness. I t  was shown in the previous 

chapter that the necessary value of <(q^) that ensures unbiasedness 

of the control s t a t is t ic  is

-trace  {D isp (q1 ) .B (q 1) } ,

where Disp (q^) is  the dispersion matrix of the f i r s t  time period state 

variab le , q^. Fortunately the formulae given in Sections 5.1 and

5.2 of Chapter 6 fo r the estimation of Di sp (qt ) in terms of Di sp ( qt ^), 

Di sp (y t ) and Disp (z t ) gives an exact value fo r Disp ( q j ) ,  for Di sp (qQ) 

can be taken to be id e n tica lly  zero , so z1 is  normally d istributed with 

dispersion matrix Disp (y ^ , which is  known exactly and Disp (q^ is

(Dj + CjUjjDIsp (y 1 )(D1 + C1U1)T + C1[D1sp(wt - Disp ( y ^ c j

where is  a diagonal matrix whose i th diagonal entry is  

$ (z - j/ / (D 1 s p (y j) ) . | j) t4 being the Gaussian d istribution  function and 

Disp (w j) is  calculated exactly from the formulae derived in Section

5.3 of Chapter 6.

5 .2 . The Additive Model of the Random Infrut

The form of the evolution equations derived in Section 2.4 is

" t  ■ " t  ♦ Ht V i  *  c t \ '  Dte t

! t M t *  J t V i  ■ et 

and wt = max (z t>0) ,
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where q*, z* are fixed vectors and Ht> J t are considered to be fixed 

m atrices, e t is  a zero mean m u ltivariate  normal random vector with 

dispersion m atrix Disp (y t ) .

Define

"it ■ E(-2«wt|qt.1)/<lqtf1|q1)

then

n  ■ E(d2E(qt |<,t . i ) / d q t f i | q i )

'  Kt  CI

i . e .  e ( a E(qk t h t .i ) / 5 q 1 t . i S f l j t . i h l ) * J 

Also in Section 3 i t  was shown that

Vt = d2t xt + d2t Ntqt-1 + qlt qt*

x°t being a fixe d  vector, and so

dt * E(d2E<Vt[qt.1)/dqtf1) - P;t d1{

i . e .  E (a 2E(Vt |qt . 1 ) / 8qn . 13qJ t . 1 |q1) - J  t >t j k Cdl t >k'
k

Therefore the key term in the estimation of Pj. and dj. is  V^. I t  

is  to the estim ation of that attention is  now directed .

In Section 4.3 i t  was shown that

>\j

3E(wktlqt-P/3qit-l = Ĵt̂ ki *^kt^kt^

$ being the Gaussian d istrib u tio n  function, z ^ , s^t being the mean 

and standard deviation of zkt for fixed  qt _ 1>
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D iffe ren tia ting  the above expression with respect to q .. 

i t  is  seen that

3W K - 1 )/3W j t -1 ■ * < V skt>(» V 3V i )1 /skt

'  Ĵ t 'k )  ^ t ' k / ^ k t ^ W ’ ^ k t  *

since ‘  ( J t>kj-

Regarding q ^  and hence as random variab les i t  can be 

shown that

E< * < V s kt>l', i ) ■ (Skt/Ok t )»( ! k i/Okt>-

'V*
where zkt ls  assumed to be normally d istributed  and z*t , ckt are the 

mean and standard deviation of zkt for fixed q .̂ D etails of the 

ca lcu lation  can be found in Section 6 .2 .

Therefore

•^ w t^ ijk  * ^ k i ^ A j  ^ zkt/ak t) 1/ok f  

Substituting th is  re su lt  into the equations for dj. i t  is  seen that

( ° A j k  = |  Ĵ A i  Ĵ t^£j<i>̂zi t / CT£t̂  , 1/a J it^ Ct^kt

an<l U ; ) t j  ■ I( I> i)t j k (<l,t ) k- 
k

Once o t̂ and z*t have been estimated the above equations provide 

a convenient method of estimating V't and d Calculation of the quadratic 

co e ffic ie n t Biq^) is  then achieved via the recursion formulae F2 derived 

in the previous chapter. I t  is  now necessary to study the m u ltip lica tive  

model of the random input.
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^•4. The M u ltip lica tive  Model of the Random Input

In the m u ltip lica tive  case , s i t , the standard deviation of z i t  

for fixed  q ^  1s not fixed  but a lin ea r function of

l . e .  St - S °(y ° *  H , q ^ j ) .

st , s °  being diagonal matrices whose i th entry i s  s . t , s . ° .  s ° is 

fixed  as is  the vector y ° .  As in the additive case discussed in Section

5.3 the key term in the estimation of and is  P^:

^wt^ijk " E(3 E(wktlqt-l^3q1t-l3qjt-llql̂ '

Now, i t  has already been shown in  Section 4 .4  that for the 

m u ltip lica tive  model

SE("ktlqt - l )/3qn - l  " *Rt'kt ♦ f, kt^‘ kt*

* l°t>k1«(qkt/skt)

where Rt = S° Mt>

D iffe ren tia ting  the above expression with respect to q^  ̂

i t  is  seen that

■E<«ktlqt-i)/iW qjt - i

tl'V k l '  *2kt/skt^ Rt^ki]^ J t*kj " ^kt/skt**lV kj-,s ^ i *2kt/ W

Regarding qt _̂  and hence z t as random variab les for given q̂

i t  is  seen that
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eOkt = E^ zkt/ s k t , l <« l) = ( s kt/ak t ^ (z kt/ak t }

e lk t  = E ((z k t/sk t ) i ( z k t/ s k t ) lql ) = ŝkt/a k t^ zkt/ak t^ ^ zkt/akt^

e2kt " E( ( \ t / s k t ) 2̂ zk t/ s ktH<1i )  " ( r kt/akt^eOkt + < W 0k t,e l k f

Again, z£  ̂ and are the mean and standard deviation of z ^  given
2 2 2 <v

^1» r jc  ̂ = akj. - Sk t , and d e ta ils  of the calcu lation which assume z^

to be normally d istributed  are given in Section 6 .2 .

Therefore, taking expectations i t  is  seen that is

^(J t ) k i ( J t ) k jeOkt '  ^ t W ' V k j  + ( Rt W J t )k 1 ]e lk t  

+ R̂t^ki^Rt^kje2k t^ 1/ s kt^"

Therefore (D j.)^ k may be expressed'by

l {(Jt)*l('VjLjeOU " C(Ri),i(Jt)ilj + R̂t^j^Jt^£l"el£t
i

+ R̂t^£i^Rt ^ j e2£ t^ 1/S£t^Ck£

and K ) , j  * l (®t>1Jk(d „)|t-
k

As in the case of the formulae for the terms in the lin e a r  mart

ingale d ifference function , is  a fixed system m atrix; having found 

Nt from the model's so lution , J t  1s determined from a combination of 

Nt and given system matrices, z* is  approximated by the value of E (z t ) 

given by the model's solution and a^t is  found by running the recursive 

Disp ( z t ) evaluation procedure o f the model's solution technique forwards 

s ta rtin g  a t time period 2 instead of period 1 and then setting

«It " (°isP C2t>>ii*
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6 . SOME NECESSARY CALCULATIONS

6 .1 . The Calcu lation of E ($ (z / s ) ) .

Let <t be the Gaussian d istrib u tio n  function and z a (un ivaria te ) 

random v a r ia b le , normally distributed with mean z* and variance r 2. Let 

s be a real positive  constant. Then i t  i s  required to calcu late

E($(z/s)) = j  *(e/s)d*(U-z*)/r). (1)
£eF

Let <|>(x,y;p) be the standardized b ivaria te  normal d istribu tio n

1 • e.<p (x ,y ;p )  = — -----y  e x p ------ (x 2 - 2pxy + y2} .
2ir/ (l-p 2) 2( l- p 2)

Consider the double integral I ,  defined by

I =| [ 4>(5»n;p)dndE.
' 5eF In^-x

Changing the order of integration and integrating  over £ e R i t  is  

seen that

I 3 * ( x ) .  ( 2)

However in tegrating  over n*-x f i r s t  one obtains:

I 3 [ 4>(S)[ d$ ((n -pC )//(l-p2))d£;
'SeF 'n*-x

3 [ ♦(«)*((p5+x)//(l-p2))d5

= f »(C)d»(^'x̂ ^ ^ p h
k *  p//( i -p )

( 3 ) .
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Return to the o rig ina l integral ( 1 ) .  Changing the variab le  of 

Integration I t  is  seen that

E(4>(z/s) )  -  f • ( 4)
J EeF r/S

Compare (3) with (4 ) .  The in teg ra ls are the same i f  

x / / ( l- p 2) =* z*/s and p //(l-p 2) = r/s .

Solving the la t te r  fo r p i t  is  seen that 

p2 = (r/s)2/(l + ( r / s ) 2) .

Whence x = z*/s / ( l+ ( r / s )2) = z * / / ( r 2 + %2).

Therefore, comparing (4) with (2) i t  is  seen that

E(4>(z/s)) = i ( z V / r 2 + s 2) ) .

6 .2 . The Calcu lation of E ( ( z / s )n4>(z/s)) fo r n = 0 ,1 ,2 .

2
Again, z i s  a random variab le  d istributed  as N (z V  ) and s is 

a real positive constant. <f> is  the Gaussian p robab ility  density function. 

Set I n =* E ( ( z / s )% (z / s ) )

A  U / s A (E / s )d $ ( (C - z * ) / r )

° j  ( ( r / s )n  + z * / s )n<f>(r/s)n + (z*/s))<Mn)dn,

by change of va ria b le s . Rearranging the exponents o f the two <f>' s in 

the integrand i t  i s  seen that
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i „  ■ ♦<— f r )  [ (“ r 1)" ♦(-
ArW)' n jIi s / / ( r 2« 2)

)dn

* ♦(— r r - }  (— I - y )  (— r - 7 - ) n
/ ( r + s Z) / ( r Z+sZ) / ( r + s 2) n

where J = U + a)% (ç)dç 
J ÇeR

2 2
and a ■ sz*/rj(r +s )

Integrating J n by parts 1t is  seen that

J n = [ -U + a) " ' 1 dt(C) + a J  .  fo r n a 2.
n_1

(n - i ) J n_2 + a J n l ,  fo r n * 2 .

Now JQ = 1 and J j  » a , therefore 

J 2 = 1 + a2.

Substituting fo r J n the following re su lts  fo r I Q, ^  and ¡2 

are inmediate:

I0 = — t ~2—  ♦ (— \— J- )
0 / ( r  +sZ) / ( r Z+sZ)

Z* ♦(— 1 * 7  )I ,  = -y— 7 ----5— 7—  j — 7
1 r +sZ /(r+s; /(r +sZ)

2 3
h  “ ~2— ? ^ \—T~ + ~2— S — 7~ ~ S — ?  ̂ ♦(— 5— 2—)
2 r2+sZ /(r +sZ) rV(rZ+sZ) /(rZ+sZ) /(rZ+sZ)

and
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7 . CONCLUSIONS

In the previous chapter a martingale control s t a t i s t ic  was 

proposed to improve the evaluation of approximate stochastic  

scheduling algorithms by sim ulation. Although the control s t a t is t ic  

was decomposed under certa in  assumptions into simpler components, 

the calcu lation  of these components is  sp e c if ic  to the process being 

modelled and the algorithm studied. Formulae enabling these components 

to be estimated for the model of Chapter 5 and solution algorithm of 

Chapter 6 have been derived in th is chapter fo r both sets o f assumptions 

necessary fo r the control s t a t is t ic 's  decomposition. Num erically, 

the formulae enable the martingale control s t a t is t ic  to be very rap id ly 

estimated by comparison to the time required to run the so lu tion  

algorithm.

Although i t  has been im p lic it ly  assumed that the so lu tion  

algorithm described in Chapter 6 is  being used, the formulae derived 

herein can be applied to any solution technique of the general model 

of Chapter 5, provided that the rate of change of the control decisions 

with respect to changes in the previous time period state  va ria b le  can 

be estimated. Estimates of the dispersion matrices necessary here 

can then be made by running the recursive dispersion m atrix estimation 

procedure described in Section 5 of Chapter 6 forward from the second 

time period.



In the next chapter a special case of the general model is  

considered, namely the production/inventory model of Beale et a l .  [ 4 ] .  

The formulae derived here are then applied to the construction o f the 

martingale control s t a t is t ic s  for four d iffe ren t solution algorithm s. 

Their performance on a simple four period problem is  then evaluated 

by sim ulation and the effectiveness o f the control s ta t is t ic s  can 

be seen.
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1. INTRODUCTION

In th is  chapter the theory developed in chapters 7 and 8 is  put 

into p ractice . Four production planning algorithms were tested by 

re p lica t ive  sim ulation on a simple two product, four period example. 

The example is  that provided by Beale et a l . [ 4  ] .  The four 

algorithms comprise the algorithm developed for the general model 

in chapter 6 , the " f u l l "  method, of Beale et a l . ,  th e ir  " f i r s t  pass" 

method and ordinary lin e a r  programming ignoring a l l  stochastic 

elements.

The production/inventory model which the algorithms of Beale 

et a l . are designed to solve is  a special case of the general model 

described in  chapter 5 . Although th e ir solution procedures d if fe r  

from that developed fo r  the general model in  chapter 6 , the formulae 

derived in chapter 8 fo r the construction of martingale control 

s t a t is t ic s  can s t i l l  be applied. With care they can even be used 

with the ordinary lin e a r  programming method.

Thus i t  is  possible not only to compare and evaluate the 

algorithms, but also to investigate the p ractica l e f f ic ia c y  of the 

control s ta t is t ic s  developed in chapter 7 . Four separate control 

s t a t is t ic s  were t r ie d , these being that using the unbiased estimation 

of the optimal fixed control va ria te  co e ffic ien ts  (developed in 

chapter 7 , section 2 .3 ) ,  the case ( i )  martingale control s t a t is t ic  

(developed in chapter 7 , section 4 .3 ) , and the case ( i i )  martingale 

control s t a t is t ic  in the lin ea r and quadratic versions (developed in 

chapter 7 sections 4 .3  and 4 .4 ) .  The f i r s t  mentioned control s t a t is t ic  

w ill be referred to as the "fixed  co e ffic ie n t"  control s t a t is t ic .



The production/inventory model of Beale et a l .  is  described, 

b r ie f ly ,  in section 2 where i t  is  shown to be a special case of the 

general model. The simple example of i t  on which the four algorithms 

are tested is  given in section 3. The resu lts  o f the simulation 

involving 100 independent t r ia ls  are given in section 4 and con

clusions drawn from them in section 5 .
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2. THE MODEL ON WHICH THE ALGORITHMS MERE TESTED AND THE CONTROL 

STATISTICS USED

2 .1 . The Production/Inventory Model of Beale et a l .

The algorithms were tested on the model of Beale e t a l . [ 4 ] .  

I t  is  necessary to e x p lic it ly  show that th is  model i s ,  indeed a 

special case of the general model and th is  is  now done. Using th e ir  

notation, le t  a^, p ,̂ s  ̂ and d̂  be the sales in , production in , 

stock level at the end o f, and demand in period t ,  re sp ective ly . 

Id en tify  the ith  ̂ product with the ith  component of these vectors.

Let ê . be the excess of supply over demand in  period t .  Let P ,

Cpt and C$t be vectors of un it se llin g  p rice s , production costs and 

inventory holding costs in time period t .  Then th e ir model may be 

stated :

T T T TMaximise E Ptat  - Cpt pfc - C$t s t } over pt ,a t , s t 

t=l

subject to the production constraint 

lTp t 5 TCAP(t)’

where l  is  a vector of l ' s  and TCAP(t) is  the maximum permissible total

production in time period t ,  and subject to the evolution equations

at = s t - l  + pt '  f t

et = s t - l + P*

f t = max (et , 0)

and dMt = B$t - Bt a ^ ,  dMt being the mean demand in time period t ,
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given sa les in the previous period. The state  space is  thus 

represented by (a^, s t ) .

In representing the model of Beale e t  a l . in th is  way advantage 

has been taken of the fa c t  that in most p ractica l app lications, 

p a rt ic u la r ly  the simple example given in section 3 , i t  is  always 

more p ro fitab le  to meet as much demand as possible than to withhold 

stock that could be so ld .

The model used fo r the demand is  a version of the m u ltip lica tive  

model fo r the stochastic input of the general model. They propose 

that

where d^  and dMit are the ith  components of dt and dMt resp ective ly . 

ei t  and nt  are indePendent real Gaussian random va riab le s , and Ci t , 

Ri t  are known constants. Thus i f  the dispersion matrix of dt>

Disp (d^) has ith  diagonal entry s i t  then

sn  ■ s i? d« u

a"d sit ■ ' ( ‘ it2 * Ru 2)'

Indeed Disp (dt ) may be expressed by

(Disp (dt ) ) i j  55 dM it(Pt ) . j  dMjt

<Cn + R i t 2

Ci t  Cj t

) i 3 j  

1 t j

where



They approximate the production decision as a lin e a r function 

of the la s t  time period sales and the stock leve l a t the end of the 

la s t  time period.

pt  = pt + AP t l at - l  + Apt2 st - r

fo r some fixed  vector p °. Using th is  notation, the matrices J t and 

needed in the estim ation of the martingale control s t a t is t ic  of 

chapter 8 are

and

(Ap tl '  Bt APt2

 ̂Ap tl
A
HPt2

l 0 0

+ I )

+ I re sp ec tive ly .

The system m atrix Ct o f the general model is

\

-I

I

and the cost c o e ff ic ie n t  vectors dl t , d2t of the general model are

and -Cpt re sp ective ly .

The vector represented by z t in the general model is  simply et , 

the excess of supply over demand.
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The " fu l l"  method or solution techniques o f Beale et a l . 1s 

s im ila r to the appropriate special case of that developed fo r the 

general model in chapter 6 . The differences are discussed in 

section 7.2 of that chapter.

The " f i r s t  pass" method of Beale et a l .  i s  simply the f i r s t  

stage of the " fu l l"  method. I t  corresponds to solving the f i r s t  

non-linear program of the fu l l  method, which has in i t ia l  minimal 

estimates of the state va riab le  variances.

The ordinary lin ea r programming approach is  one of considering 

a l l  the random variab les in  the model to be equal to th e ir mean 

values and ignoring th e ir stochastic  va r ia tio n .

2 .2 . Construction of the Control S ta t is t ic s

The "fixed  co e ffic ie n t"  method is  the simplest for i t  only 

requires the id e n t if ica tio n  of su itab le  control va ria te s . S ince , for 

a given algorithm , the process is  Markov and the revenue a function of 

tne state variab le  re a lisa t io n s  i t  is  natural to use these as control 

v a r ia te s . But the raw sta te  variab le  rea lisa tio n s cannot be used 

d ire c t ly  as th e ir mean is  not, in  general, known. This d if f ic u lt y  

i s  circumvented by noticing that a t the s ta r t  o f any time period, t 

say , given the present s ta te  vector q̂  and controls x t> the 

d istrib u tio n  of q̂  and in p a rticu la r i t s  mean is  known. So instead 

o f using the raw state  vector values (q , t - l , . . . , T }  as control va ria te s , 

the set

{ (qt  -  E (qt iqt-1))*1 = 1............T >



is  used. This is  straightforward and, as can be seen from the 

re su lts  of section 4 , e ffe c tive  in p ra c tice . Bias control was 

achieved in  the manner of chapter 7, section 2.3 by not using the 

data from a t r ia l  in the estimation of the dispersion matrix (o f 

the control va ria te s ) and covariance vector (between the control 

va ria tes and the revenue) used to determine the control v a r ia te 's  

co e ffic ie n ts  for that t r i a l .  Advantage was also taken of the 

e f f ic ie n t  computational procedure derived in that section.

The case ( i )  martingale control s t a t i s t ic ,  which assumes a 

lin ea r re la tio n  between the state space re a lisa tio n  at the end of 

one time period and the mean of that a t  the end of the next, is  the 

sim plest of the martingale control s t a t is t ic s .  Substitution of 

the system vectors and matrices given in  the preceeding subsection 

into the equations derived in  section 3 of chapter 8 y ie ld s the 

necessary components of the recursions given in  chapter 7 section 

4 .3  which compute the control s t a t is t ic .  However, attention must be 

paid to the ca lcu la tion  of

E (e .t |a 1 = E (a x) , s = E(s j ) ) ,

the mean of the excess of supply over demand for the ith  product in 

the t  th time period, given that the state  space a t  the end of the 

f i r s t  time period is  equal to it s  mean va lue , it s  variance

Var(ei 1 1al = E(a i ) * s i = E( s i ) )

and the c o e ff ic ie n t matrices of the production control approximation

(AP tl APt2  ̂*

This i s  discussed below.
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The case ( i i )  martingale control s t a t is t ic ,  which assumes 

that only the mean and not the shape of the d is trib u tio n  of the 

state vectorat the end of one time period depends on the value 

of i t s  re a lisa t io n  a t  the end of the preceeding time period, is  

computed by the recursions given in sections 4 .3  and 4.4 of chapter 

7, the components of which are calculated by substitution of the 

system vectors and matrices into the equations given in chapter 8, 

sections 4 .4  and 5 .4 . Again attention must be paid to the estimation 

of those quantities necessary fo r the construction of the case ( i )  

martingale control s t a t i s t i c ,  and in addition, to 

v a r (d .t |a 1 = E U j ) ,  s 1 =

E (e i t |a = E ( a j ) ,  = E fs ^ )  is  approximated by the mean value 

of e^t returned by the algorithm , except in the ordinary lin ea r pro

gramming method, where the returned expected value was too crude for 

the control s t a t is t ic s  to re a lise  the ir fu l l  p o tentia l. There i t  was 

approximated by

sn - i  + i n  - an

where d .. is  the mean demand and p .f  the mean production of item iIt 1 t ★
in  time period t  returned by the algorithm and s^t _̂  is  defined by

s i t - l  “ ° i t - l  f ( e 1t - l /a 1 t-l> 

and f ( x) = 4>(x) + xi>(x),

$ , 4> being the Gaussian probab ility  density function and d istribu tio n  

function re sp ective ly , and a^ jbeingan estimate of va r(e ..£ _^ a j = E ( a j ) ,  

S j  = E ( s x ) ) .
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Since an estimate of var (di t ) is  returned by the algorithm 

( i t  being a known proportion of E(d-t ) ) ,  attention is  directed to 

the estimation of v a r (e .t |a 1 = E (a1) ,  S j = E (s ) ) .

The procedure for doing th is  is  the same fo r a l l  three algorithms 

being tested . The la s t  non-linear program (or lin e a r  program) of 

the algorithm is  run with the addition of the " f ic t it io u s "  variab les 

described in  chapter 6 section 6 .2 . This enables the matrices 

Apt j and Ap^ to be extracted from the program's so lution . The state va r

iab le at the end of the f i r s t  time period is  then set equal to it s  

mean value (so i t s  dispersion matrix can be taken to be id e n tica lly  

zero) and the recursive variance estimation procedure run forward 

from the second to the fin a l time period. This y ie ld s  the dispersion 

matrices of the et 's ,  but they are conditional on the state space at 

the end of the f i r s t  time period being equal to i t s  mean value

i . e .  Disp (e t |a 1 = E ^ ) ,  s 1 = E ^ ) ) .

The martingale control s t a t is t ic s  can thus be applied to a l l  

four algorithms under consideration. The re su lts  of th e ir use on 

the simple example below are given in section 4 .



3. A SIMPLE NUMERICAL EXAMPLE

The example on which the three algorithms were tried  1s that 

of Beale e t a l .  which is  o f a simple two product/inventory system.

The two products are produced over four time periods. There is  an 

upper bound on the total production in each period. Demand for 

the two products is  uncerta in ; only i t s  p robability d is trib u tio n  

is  known. The stock ava ilab le  for sale in each time period comprises 

the stock a t the s ta r t  of that time period and the production during 

that period. Stockholding costs are proportional to the stock remain

ing a t the end of each time period a fte r that period's sa les have 

been made. The data is  as fo llo w s:

Product I Product I I

Unit production cost ( a l l  periods) 5.0 2.0

Unit storage cost (a l l  periods) 2.0 2.0

Unit sa les price (a l l  periods) 10.0 6.0

Mean demand in  period 1 20.0 15.0

2 25.0 15.0

3 35.0 15.0

4 45.0 15.0

Unit value of the closing  inven
tory 10.0 6.0

In i t ia l  stocks 10.0 10.0

Total productive capacity is  50.0 units per period

The demand is  assumed to be normally d istributed with dispersion 

matrix proportional to the square of the mean. The co e ffic ie n t of 

varia tio n  was assumed to be 0.224 for each product in each period
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and the corre lation between products was assumed to be 0.8 in each 

time period. More precise ly  th is  corresponds to setting Ĉ t = 0.2 

and Ri t  = 0.1 fo r a l l  i , t  in the demand model given in  section 2. 1 .

The above example may be considered to be a "no dependence" 

case. In  addition, a variant ca lled  the "dependence" case in which 

h a lf the demand for product I is  d ire c t ly  proportional to the sales 

in the preceeding period was considered. For the demand model given 

in section 3 .1 , th is  means that Bl l t  has values 0.2222, 0.6250, 

0.7000 and 0.6429 for t = 1 ,2 ,3  and 4 re sp ective ly . A ll other B . . .
i j  t

are zero fo r j  f 0. I t  has been assumed that the in i t ia l  sales of 

product I ( i . e .  sales in the period immediately preceeding the 

f i r s t )  were 45.0 u n its .
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4 . THE RESULTS

The re su lts  of testing the four algorithms each on 100 

re p lica t iv e  sim ulation t r ia ls  are summarised below. Those for the 

"no dependence" case are given in Table A and those fo r the "dependence" 

case are given in  Table B. The same random number seed was used for 

each set o f 100 t r i a l s ,  so the re su lts  fo r each algorithm are highly 

correlated . This is  an advantage in making comparisons between them.

The notation used in the tables is  as fo llow s.

Algorithms A ,B,C and 0 are the solution method developed for 

the general model in chapter 6, the " fu l l"  method of Beale et a l . ,  

th e ir " f i r s t  pass" method and ordinary lin e a r programming ignoring 

a l l  stochastic elements, re sp ective ly . A-B denotes the extra revenue 

that would be accrued from using algorithm A rather than algorithm B; 

s im ila r ly  fo r A-C, B-C, and so fo rth .

Control s t a t is t ic s  1 ,2 ,3  and 4 are those of the fixed  c o e ff ic ie n ts , 

the lin ea r martingale assuming the case ( i )  conditions and the lin ea r 

martingale and quadratic martingale assuming the case ( i i )  conditions 

re sp ective ly .

y is  the estimate of the expected revenue made a fte r  100 t r ia l s  

and a is  i t s  estimated standard deviation . The "returned objective 

function value" column shows the estimate of the expected revenue 

given by the algorithm i t s e l f .
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The resu lts  enable some conclusions to be drawn about the 

e ff ic ia c y  of the control s t a t is t ic s  and of the algorithms themselves.

There 1s l i t t l e  d ifference 1n the performance of the three 

algorithms that take some account of the stochastic v a r ia b il it y  of 

the problem, and they a l l  appreciably out-perform the ordinary 

lin ea r programming method which does not. However, the algorithm ,A, 

that was developed fo r the general model does s ig n ifica n tly  out

perform the " fu l l"  method of Beale et a l . ,  B, in the "no dependence" 

case. The d ifference in the expected revenues made by the two was 

estimated a t 0.23 by the use o f the "fixed co e ffic ien ts"  control 

s t a t is t ic  with a sample standard deviation of 0 .054. But th is  is  

only a very small d ifference in  the expected return of approximately 

859 consequent from using e ith e r algorithm.

The penalties incurred by ignoring the stochastic varia tio n  in  

the problem, as comparison with the resu lts  for the ordinary lin ea r 

programming method shows, can be considerable. Moreover, the d is 

crepancy between the expected revenue returned by the algorithm and 

that which was consequent from a c tu a lly  using i t  is  very la rge . This 

shows that the optimal ob jective  function value given by a determ in istic 

model of a stochastic problem may be seriously misleading.

The control s t a t is t ic s  were su rp ris in g ly  e ffe c tive , y ie ld ing  

reductions in  the sample standard deviations of up to a facto r of 25 

in the "no-dependence" case and 15 in the "dependence" case. Their 

re la t iv e  e ff ic ia c y  va rie s  in a way that might be In tu it iv e ly  expected. 

With the exception of the quadratic one, those which involve the con

struction of a martingale from information about the process provided 

by the algorithm i t s e l f  perform b e tte r, the better the algorithm. In



p articu la r they out-perform the control s t a t is t ic s  based upon the 

"fixed co e ffic ie n ts"  of the control variab les fo r the three algorithms 

which take account of the stochastic nature of the system. I f  the 

revenue accrued from each t r ia l  is  assumed to be normally d istrib u ted , 

then the F - te s t  can be used to provide bounds in  the comparison of 

the sample variances, i f  they are assumed to be independent or p o s itive ly  

corre lated . Such comparison reveals that the case (1 i ) martingale 

control s t a t is t ic  (that based on the assumption that only the mean and 

not the shape of the d istrib u tio n  of the state  space in  each time 

period depends on i t s  rea lisa tio n  one time period before) is  s ig n if ic a n t ly  

better than the case ( i )  martingale control s t a t is t ic  (th a t based on the 

assumption that the mean of the state space a t  the end of one time 

period is  a lin ea r function of i t s  re a lisa t io n  one time period before) 

when i t  is  applied to the solution algorithm of the general model (A) 

and s ig n if ic a n t ly  worse when applied to the ordinary lin ea r programming 

method (D ). Significance in both instances is  a t the 95% le v e l. This 

indicates that under a good planning algorithm the case ( i i )  assumptions 

about the process may be more r e a l is t ic  than the case ( 1 ) assumptions.

The performance of the martingale control s t a t is t ic s  based upon 

a quadratic model of the process is  d isappointing. There may 

be two reasons fo r th is . In the approximate model of the 

process made in the construction of the martingale control 

s t a t is t ic s ,  the f i r s t  derivatives of the expected future revenue with 

respect to changes in the next time period state space rea lisa tio n s may 

change discontinuously when the basis of the approximate model changes. 

Also the quadratic co e ffic ien t matrix is  derived from the backwards 

recursion , i t  being T where
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rt - i '  4t * W t T-

See section 4.4 of chapter 7 for a detailed explanation of the terms 

and it s  derivatio n . E s s e n t ia lly , the matrices At and Vt have to be 

estimated and in p ractice  a l l  the A 's and therefore the r 's  are negative 

sem i-defin ite . Thus erro rs in the estimation of the P 's  build up to 

y ie ld  a f in a l more strongly negative sem i-definite than i t  should 

be. In other words any errors in the estimation of the quadratic
l

co e ffic ie n t matrix lead to a strong negative sem i-defin ite b ias.

I

r

r



5. CONCLUSIONS

Four production planning algorithms have been tested by re p lica t ive  

sim ulation on two variants of a simple two product, four time period 

example of a production/inventory model. I t  has been shown that th is 

model is  a special case of the general model of chapter 5 , and that 

the two examples can be regarded as special cases of the "additive" 

and "m u ltip lica tive " variants of the general model. The theory developed 

in chapters 7 and 8 on the use of control variates has been put into 

p ra ctice . The simulation experiments therefore also  provided a test 

of the control va ria te s .

The re su lts  show that the control variates are indeed e ffe c tive .

No p a rticu la r set of control s t a t is t ic s  consisten tly  out performs the 

o thers , although the quadratic martingale control s t a t is t ic  is  

uniformly worse. As might be expected, the control varia tes perform 

better on the simpler "no dependence" or "additive" example in which 

the dispersion matrix of the demand is  fixed than on the more complicated 

"dependence" or "m u ltip lica tive " example in which i t  is  d ire c t ly  

proportional to the square of the mean. The standard deviation of 

the estimate of the expected revenue was reduced by up to a factor of 

25 in the former case and 15 in  the la t t e r .

Although there was l i t t l e  d ifference in the performance of the 

algorithms that took some account of the stochastic v a r ia b ilit y  in the 

problem, they appreciably out-performed the determ inistic lin ea r pro

graming method. This indicates that there may be severe penalties in
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ignorlng the stochastic v a r ia b i l i t y  of demand, but that f i r s t  order 

departures from the optimal f i r s t  time period decision values may 

only make second order changes in the actual expected revenue con

sequent on using them in p ractice . This is  a desirable feature of 

the system and indicates that approximate planning algorithms may 

be re lia b le .

However, on an example with more time periods, say a monthly one, 

the more sophisticated algorithms which re-estimate the dispersion 

matrices o f the random variab les would out-perform the simple 

stochastic algorithm which does not. Unfortunately, simulation 

experiments on a monthly model would be expensive.







1. PRODUCTION/INVENTORY MODELLING

This thesis is  concerned with the potential use of stochastic 

programming models for medium term production planning. This involves 

tac tica l decisions, ty p ic a lly  the determination of monthly production 

targets over a planning horizon of a yea r. Strateg ic planning problems 

such as those associated with the construction of new production f a c i l i t ie s  

have been s p e c if ic a lly  excluded as have short term planning problems 

associated with day to day facto ry  management.

There are two p rinc ipa l problems associated with medium term 

production planning. The f i r s t  is  the balancing of frequent changes 

in production rate against high inventory leve ls in order to cope with 

a flu ctuating , but known, demand. The second is  the determination of 

the optimal buffer or sa fe ty  stocks in order to cope with uncertainties 

in  future demand requirements. Both of these problems can be approached 

by the study of the appropriate mathematical model of the production/ 

inventory system. Those associated with the la t te r  problems must be 

p ro b ab ilis tic  in the sense that they incorporate random variab les into 

th e ir formulation, and more general in the sense that they can be eas ily  

extended to handle the former problem, whereas the reverse is  not the case.

P ro b ab ilis t ic  planning models f a l l  natu ra lly  into the ambit of 

stochastic programming. Although th is  f ie ld  has received much attention 

in recent years , p ractica l app lications of stochastic programming models 

to production planning problems are few. This is  because exact solutions 

to stochastic models of general multi-commodity, multi-time period planning 

problems are computationally in tra c tab le . Accordingly th is  thesis develops 

a good approximate solution method to a general production/inventory model.
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2. THE GENERAL MODEL AND ITS APPROXIMATE SOLUTION TECHNIQUE

The model proposed in th is thesis fo r medium term production 

planning is  a m ulti-period, multi-commodity model and is  an extension 

of that of Beale , Fo rrest and Taylor [ 4 ] ,  Under certa in  conditions, 

which would normally be met in p ra c tice , i t  is  convex and is  a stochastic 

lin ea r program. The approximate method of solution developed fo r i t  

is  a lso  based upon the work of Beale e t a l . ,  but i t  is  more f le x ib le , 

contains fewer approximations, and is  procedurally improved. A problem, 

termed the reduced problem, is  derived from the fu l l  stochastic problem.

The reduced problem involves the expected values of the random variab les 

in  the fu l l  problem. I f  the control decisions (fo r example production 

targets) are unrestricted then i t  is  equivalent to the fu l l  stochastic 

problem. I f  the control decisions are re s tr ic te d , then the constraints 

on the reduced problem are implied by but do not imply the constraints 

in the fu l l  problem, and the reduced problem is  an approximation of the 

fu l l  problem. The reduced problem is tackled by making normality assumptions 

about the d istrib u tio ns o f some o f the random variab les in the problem. I t  

is  then necessary to estimate the v a r ia b i l i t y  of these random variab les 

and th is  is  done ite ra t iv e ly  by solving a sequence of such problems. The 

so lution to each providing better information about the stochastic process 

being modelled enabling a better estimate of the v a r ia b il it y  to be made 

for the formulation of the next. Computational advantage can be taken 

of the s im ila r ity  between each problem in the sequence and numerical 

experience suggests that convergence is  rap id , only three ite ra tio ns 

being s u f f ic ie n t  for a four period example.
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3 . THE EVALUATION OF APPROXIMATE SOLUTION TECHNIQUES

I t  is  important to assess the re la t iv e  impact of the approximations 

made in approximate solution algorithms of stochastic  models. In th is  

thesis  three approximate algorithms were compared with each other and 

determ in istic lin e a r programming. The method developed fo r the evaluation 

of approximate techniques is  that o f re p lic a t iv e  sim ulation . I t  d ivides 

into a number of independent t r ia l s .  In each t r ia l  the environment within 

which the stochastic models operate is  simulated on a computer. Pseudo

random numbers are used to provide re a lisa t io n s of the random va ria b le s .

The production/inventory system then evolves subject to these rea lisa tio n s 

and under the control of the approximate algorithms from the f i r s t  time- 

period in  the model un til the time horizon, when the u t i l i t y  or revenue 

gained from using the algorithm is  apparent. The t r ia l  is  repeated a 

large number of times so that a ttribu tes of in te re st w ithin the process 

can be estimated s t a t is t ic a l ly .  However, the accuracy of th is  method 

only improves as the reciprocal of the square root of the number of 

t r ia l s  so that each t r ia l  may provide such an inaccurate estimate of 

the a ttrib u te  o f in te re st that convergence may be unacceptably slow.

To improve the accuracy of each t r ia l  control s ta t is t ic s  have 

been developed. These f a l l  into two d is t in c t  categories. The f i r s t  

in  which data from a l l  the t r ia l s  is  used in the estimation of the best 

co e ffic ie n ts  of the control variab les is  f a i r ly  standard, although a 

novel way has been suggested fo r elim inating the resu ltan t b ia s . To 

be e ffe c t ive  th is  method requires many more t r ia l s  than there are control 

s t a t is t ic s .  Since the control s t a t is t ic s  suggested here are the deviations 

of the state variab les from th e ir expected values one time period p reviously , 

the use of th is  method may involve a p ro h ib it ive ly  large number of t r ia l s  

i f  the number of time periods and/or commodities in the problem is  la rg e .
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The second type of control s t a t is t ic  developed involves the 

construction of a martingale control s t a t is t ic  fo r each t r ia l  from 

information about the stochastic process provided by the algorithm 

being tested. The construction of these control s t a t is t ic s  does not 

require data from the other t r ia ls  and so re a lis e s  it s  potential for 

the improvement of the accuracy of the s t a t is t ic a l  estimates of the 

attrib u tes of in te re st whatever the number of t r ia l s  made. I t  is  

therefore possible to use them i f  i t  is  desired only to make a small 

number of t r ia l s  compared with the number of commodities and/or time 

periods in the problem. So i t  is  possible to use them to make s ta t is t ic a l 

estimates of a ttrib u tes of in te re st in very complex examples from a 

small number of t r i a l s .

As might be in tu it iv e ly  expected, the e ff ic a c y  of the la t te r  set 

of control s t a t is t ic s  depends on the merit of the algorithm being tested.

For the solution technique to the general model described in Section 2, 

in p ractice they perform better than the former c lass of control s t a t is t ic s ,  

even when the number of sim ulation t r ia ls  is  la rg e .

The resu lts  of the simulation t r ia ls  ind icate  that there was l i t t l e  

d ifference between the three approximate algorithms that took some account 

of the stochastic nature of the process being modelled, but they a l l  out 

performed the determ in istic lin ea r programming method which did not.

However, they were tested on four period examples. I f  there were more 

time periods in the examples then the approximate algoritnm which took 

no account of the v a r ia b i l i t y  of the state va riab les would be in fe r io r to 

those which d id . A lso , the difference between the u t i l i t y  returned by



the algorithm 's objective function was often d iffe ren t from that accrued 

from ac tu a lly  using i t .  Th is discrepancy may be regarded as a measure 

of the sub-optimality of the algorithm and was greater the more approximate 

the algorithm . I t  was p a r t ic u la r ly  large in the case of the determ inistic 

lin ea r programming method. This indicates that the u t i l i t y  returned by 

a determ insitic model of a stochastic problem may be serio usly  mis

leading.
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4 . SUGGESTIONS FOR FURTHER RESEARCH

In th is  thesis a general model for medium term production planning 

has been proposed and a computationally tractab le  approximate solution 

technique has been developed. I t  is  hoped that th is method w ill become 

p art of a commerically ava ilab le  su ite  of computer programs, perhaps 

as an extension of the mathematical programming system SCICONIC [47 ] .

The approximate solution technique to the general model has been tested 

s t a t is t ic a l ly  along with three other methods, one of which was simple 

lin e a r  programming ignoring a l l  stochastic elements in the problem, on 

two four-period examples by re p lic a t iv e  sim ulation. The re su lts  suggest 

th at there may be s ig n ific a n t p en a litie s  in  ignoring the stochastic 

va ria tio n  in demand, but that f i r s t  order deviations from the optimal 

production decisions may only lead to second order p en a litie s  in p ractice .

This la t te r  conjecture deserves further consideration. For i f  

under certa in  conditions i t  is  tru e , then approximate solution methods 

to stochastic models may be more re lia b le  than previously supposed.

To study the conjecture fu rth e r, two separate issues require fu rther 

in vestig a tio n . F i r s t ly ,  i t  may be possible to quantify the e ffe c t of 

small deviations from the optimal production decisions more precise ly  

than has been possible here. Second ly .it may be possible to more 

accurate ly  quantify the deviations in  the decisions provided by approximate 

algorithms from th e ir tru ly  optimal values.

These problems are formidable. They might be approached by a 

very comprehensive series of tests on a great varie ty of examples by 

s t a t is t ic a l  sim ulation. I f  the martingale control s t a t is t ic s  are used 

then i t  may be possible to achieve s u f f ic ie n t  accuracy by a small number 

of t r ia l s  (say four or f iv e ) on each example. A lte rn a tive ly  i t  may be 

p o s s ib le ,if  not to solve them a n a ly t ic a l ly ,a t  least reduce them to a
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series of simpler sub-proboems by su itab le  theoretical a n a ly s is . Each 

sub-problem could then b' investigated s t a t is t ic a l ly .

The areas of research suggested above are very d i f f ic u l t  and 

beyond the scope of th is  th e s is . I t  may be that the questions raised 

can never be fu l ly  answered th e o re t ic a lly , but any answers to them 

would advance the a r t  o f stochastic modelling.
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