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ABSTRACT  21 

 The impact of global warming on seed dormancy loss and germination was 22 

investigated in Alliaria petiolata (Garlic Mustard), a common woodland/hedge row 23 

plant in Eurasia considered invasive in N. America. Increased temperature may have 24 

serious implications since seeds of this species germinate and emerge at low 25 

temperatures early in spring to establish and grow before canopy development of 26 

competing species. 27 

 Dormancy was evaluated in seeds buried in field soils. Seedling emergence was also 28 

investigated in the field, and in a thermogradient tunnel under global warming 29 

scenarios representing predicted UK air temperatures through to 2080.  30 

 Dormancy was simple, and its relief required the accumulation of low temperature 31 

chilling time. Under a global warming scenario, dormancy relief and seedling 32 

emergence declined and seed mortality increased as soil temperature increased along 33 

a thermal gradient. Seedling emergence advanced with soil temperature peaking eight 34 

days earlier under 2080 conditions.  35 

 The results indicate that as mean temperature increases due to global warming the 36 

chilling requirement for dormancy relief may not be fully satisfied, but seedling 37 

emergence will continue from low dormancy seeds in the population. Adaptation 38 

resulting from selection of this low dormancy proportion is likely to reduce the 39 

overall population chilling requirement. Seedling emergence is also likely to keep 40 

pace with the advancement of biological spring enabling A. petiolata to maintain its 41 

strategy of establishment before the woodland canopy closes. However, this potential 42 

for adaptation may be countered by increased seed mortality in the seed bank as soils 43 

warm.  44 

  45 
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INTRODUCTION 46 

Evidence for warming of the climate system resulting from anthropomorphic greenhouse gas 47 

emissions is now unequivocal (IPCC 2014). Such global warming has not only increased 48 

mean temperatures, but reduced the diurnal temperature range as minimum temperature has 49 

increased at twice the rate of maximum temperature (Walther et al. 2002). It has also 50 

impacted on a seasonal scale as biological spring is now earlier and biological winter is later 51 

(Penuelas et al. 2009; Parmesan & Hanley 2015). Such a change in climate will alter the 52 

environmental cues that drive changes in depth of seed dormancy and therefore germination 53 

timing. These shifts in germination phenology and subsequent plant regeneration from seed 54 

will influence population dynamics and likley result in changes to the species composition 55 

and diversity of communities (Walck et al. 2011). In addition to this impact on germination 56 

phenology, global warming will also impact upon seed bank dynamics in two ways; firstly 57 

increased soil temperature may reduce seed longevity (Ooi et al. 2009; Hoyle et al. 2013) and 58 

secondly increased air temperature may reduce fertility in populations adapted to lower 59 

temperatures in the reproductive phase (Huang et al. 2014) to reduce the number of seeds 60 

entering the seed bank. The combined negative effects outlined will reduce the reservoir of 61 

seeds in the seed bank, which may compromise the capacity for future bet hedging (Ooi et al. 62 

2009). 63 

Parmesan and Hanley (2015) report that the impact of global warming on seed and seedling 64 

responses have been relatively little studied, yet this critical phase often suffers the highest 65 

mortality. Research to date indicates a generally negative impact of global warming. For 66 

example, in species adapted to alpine, and mediterrean/arid environments the general 67 

response to increased soil temperature in multiple species was negative regardless of the type 68 

of seed dormancy (physiological, physical or no dormancy on dispersal) (Ooi et al. 2009; Ooi 69 

et al. 2012; Ooi 2012; Hoyle et al. 2013; Cochrane et al. 2015). In arid and fire prone areas 70 
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the impact of increasing soil temperatures on seed bank dynamics indicates variable 71 

responses between species (Ooi et al. 2009; 2012; Cochrane et al. 2015). Results suggest that 72 

in species/ecotypes adapted to specific climates, the contribution of a given species to the 73 

seed bank is likely to decline in the face of global warming (Cochrane et al. 2015). Further 74 

work is required to determine if these generally negative impacts of global warming extend to 75 

species in contrasting habitats, which adopt different life cycle strategies. We therefore 76 

investigted the impact of global warming on germination phenology in the temperate 77 

woodland margin species Alliaria petiolata.  78 

In Europe, A. petiolata (Hedge Garlic, Garlic Mustard) is common in hedgerows and wood 79 

margins. It germinates and emerges early in spring to establish and grow before canopy 80 

development of competing species. Seeds are dormant at maturity and require cold 81 

stratification for seeds to complete germination (Lhotská 1975; Baskin et al. 2000). The 82 

success of this species is therefore reliant on responding to low temperature exposure during 83 

winter to release dormancy for germination in early spring. It can quickly become dominant 84 

in understory vegetation and can out compete other species (Weber 2003). This behaviour has 85 

allowed A. petiolata to spread widely in North America since its introduction by early 86 

colonists from Europe (Cavers et al. 1979). Indeed, it is now widely considered an important 87 

invasive species in woodland and displaces native herbaceous species (Cavers et al. 1979; 88 

Rodgers et al. 2008). However, more recent work suggests this invasive nature is more 89 

complex and may be influenced by a number of factors leading to declines in native species 90 

diversity (Knight et al.2009; Phillips-Mao et al. 2014; Davis et al. 2014; Poon & Maherali 91 

2015).  92 

Baskin and Baskin (1992) show that peak germination time for A. petiolata differs between 93 

years and occurs from early February in Kentucky, USA. In England, germination and 94 

seedling emergence in the field also varied and occurred between January and March 95 
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(Roberts & Boddrell 1983). Seeds therefore germinate following a period of exposure to low 96 

temperature (cold stratification) to break dormancy and 16 weeks between 1 and 5 oC was 97 

sufficient (Baskin & Baskin 1992; Raghu & Post 2008). Their data also showed that light and 98 

substrate had an influence on germination. The seeds can remain dormant for 18 months and 99 

were considered to be moderately persistent in soil (Roberts & Boddrell 1983; Grime et al. 100 

1988). 101 

Climate change predictions in the UK suggest a range of future increases in mean air 102 

temperature depending on the scenario adopted for future greenhouse gas emissions. A 103 

projected median emissions scenario for the local experimental area used in this work (West 104 

Midlands, UK) indicates an increase in the summer mean temperature of 3.7 °C by 2080 (UK 105 

Climate Projections 2014). To address the impact of this future scenario on A. petiolata we 106 

adopted several strategies. Initially we measured germination both beneath the soil surface 107 

and following recovery of seeds from field soils. This was followed by an investigation of 108 

seedling emergence in natural and elevated winter temperatures in the field and then along 109 

the temperature gradient established in a unique thermogradient tunnel apparatus at 110 

Wellesbourne, UK (Wurr et al. 1996). Using these approaches, we show that germination 111 

phenology is likely to be significantly altered by the predicted increases in mean temperature. 112 

Thus the clear strategy of this annual species with its early emergence and rapid development 113 

relative to canopy development of perennial species could be significantly affected. This is 114 

likley to compromise its current competitive advantage within the hedgerow and woodland 115 

margin plant communities and therefore its continuing potential as an invasive species.  116 

MATERIAL AND METHODS 117 

Seed production  118 
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Seeds of Alliaria petiolata were obtained from Herbiseed Ltd (UK). Seeds were harvested in 119 

2007 from four separate locations within the same field to provide four independent 120 

populations (biological replicates). Seeds were dried at ambient temperature before threshing. 121 

Seeds were further dried on receipt at 15% RH /15°C for 9 days to a final moisture content of 122 

7% on a dry weight basis before sealing in laminated foil bags and storing at -80°C.  123 

Seed burial 124 

2007 field experiment  125 

To reduce seed mortality, seeds were dressed with Metalaxyl (Hockley International, UK) at 126 

1 g active fungicide/ kg seeds (Van Mourik et al. 2005). Bags were made up containing 4000 127 

seeds (based on a 1000 seed weight of 2.85g) dispersed at a density of 4 seeds/g of sieved 128 

sandy loam of the same type found in the experimental area The soil had previously been 129 

sterilised at 80°C for three days to kill weed seeds. The bags containing the soil and seed mix 130 

were 30 x 30 cm nylon mesh (200 μm mesh) (Clarcor-UK, UK), sealed with a WeLoc® bag 131 

clip (size PA110) (WeLoc - Weland M. AB, Sweden). Each bag was buried separately at a 132 

depth of 5 cm on 12 October 2007. The bags were laid out in a randomised block design with 133 

four replicates each containing 24 bags. This allowed for harvests of seeds from the four 134 

populations on up to 24 occasions.   135 

Thermistore temperature probes (Betatherm, Ireland) linked to a data logger (Delta-T Devices 136 

Ltd, UK) recorded soil temperature at seed depth in dummy bags (for further details on seed 137 

burial experiments see Footitt & Finch-Savage (2011)).Following exhumation of seed bags, 138 

seeds were recovered from soil in the light by washing with cold water through a 2 mm sieve 139 

into a 1 mm analytical sieve (Endecotts Ltd, UK). Seeds were then placed in a sieve base unit 140 

and washed thoroughly to remove remaining soil and plant material, then transferred to 50 ml 141 

centrifuge tubes.  142 
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2008 field experiment 143 

The 2007 experiment was repeated with the following changes. Soil was replaced with soda 144 

lime ballotini balls (0.15 – 0.25 mm diameter) (Potters Ballotini, UK). Bags were buried as 145 

before on 15 October 2008. To expose seeds to light at the soil surface duplicate bags were 146 

placed on the soil surface; these contained 4000 seeds at a density of 8 seed/g Ballotini balls 147 

to disperse seeds in a thin layer on the soil surface. 148 

Buried seeds were recovered from the field in the dark. A light proof box with sealed arm 149 

holes in the top was placed over the burial site of each bag and the base sealed with soil to 150 

exclude light. Each seed bag was exhumed and placed in a laminated foil bag (Moore and 151 

Buckle, UK) sealed with a WeLoc® PA150 clip. In the laboratory under a green safe light 152 

seeds were immediately separated from the Ballotini balls in cold water using a 1mm gauge 153 

sieve. Seeds were transferred to 50 ml centrifuge tubes and maintained in the dark. Seeds 154 

from surface bags were treated in the same way, but in the light as above. Both sets of seeds 155 

were immediately used for dormancy testing.  156 

Calculation of chilling time. 157 

Chilling degree days was calculated following sowing from the soil temperature at seed depth 158 

using equation 1. The temperature of 5°C was taken as the upper value for the cold chilling 159 

effect as this provided the best fit to the data; t is the temperature when the soil temperature 160 

was between 0 and 5°C, and N is the number days. 161 

∑ 5 − 𝑡1
𝑁  (Equation 1)  162 

If t = ≥0°C and ≤5°C 163 

      = 5 otherwise 164 
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N = days 165 

t = mean daily temperature (°C) 166 

Analysis of seed dormancy 167 

In the 2007 field experiment the number of germinated seeds was counted in each bag on 168 

recovery to determine germination in the soil seed bank. In 2008 after exhumation, seeds 169 

were surface-sterilized under a green safe light in a 0.125 % sodium hypochlorite solution 170 

(Household bleach (5% sodium hypochlorite) diluted to 2.5%) for 5 min then washed three 171 

times in water. Germination experiments consisted of 40 seeds of each biological replicate 172 

plated into individual boxes (75 x 75 x 22 mm) (Stewart Plastics Ltd, UK). Each box 173 

contained two sheets of Whatman 3MM chromatography paper and 4 mL of the appropriate 174 

solution. Boxes were placed in sealable freezer bags, wrapped in two layers of aluminium foil 175 

and incubated at the appropriate temperature in the dark. Germination was scored under a 176 

green safe light at 2-3 day intervals for up to 28 days. Germination was recorded as 177 

emergence of the radical through the seed coat. Thermodormancy (dormant within a specific 178 

temperature range) was tested on water at 5, 10, 15, 20, and 25°C. Sensitivity to Gibberellins 179 

(GAs) was tested by exposing seeds to 0.1-1.0 mM GA4+7 in 1.7 mM citric acid/ 3.3 mM 180 

K2HPO4 buffer at pH 5.0 at 20°C. Seed viability was also tested at 20°C using 100 μM GA/ 181 

50 μM Fluridone (inhibitor of ABA biosynthesis) (Apollo Scientific, UK) in citrate 182 

/phosphate buffer (pH 5.0). Preliminary experiments showed this to be an effective method to 183 

estimate viability. Seeds from the soil surface were incubated in the light. 184 

Seedling emergence under simulated global warming conditions in the field 2009-2010 185 

The effect of soil temperature on the emergence of A. petiolata seedlings in the field under 186 

current winter temperatures was compared to warmer winter temperatures resulting from 187 

future climate change. To achieve this, four of eight field plots were randomly chosen to be 188 

individually covered in small 1.5 m wide semicircular cross-section mini polyethylene 189 
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tunnels to raise the winter temperature above ambient. Therefore, each of the four 190 

populations was represented in an uncovered and a covered plot. Within each plot, seedling 191 

emergence was recorded on three replicate pots (described below). Seeds were sown in the 192 

pots on 14th September 2009 and polytunnels were put in place on 6th November 2009 and 193 

removed on 12th March 2010.  194 

Pots were 17.5 cm square rigid black plastic (Fargro, BHGS horticultural, UK) used to 195 

provide a standard replicate area for seedling emergence. The pots, with base removed below 196 

7 cm, were placed in a shallow trench in each field plot. The trench was then backfilled with 197 

field soil leaving the pots 1 cm above ground. Once in position, pots were filled with 198 

sterilised soil (see above) to 2 cm from the top. Four hundred A. petiolata seeds were then 199 

sown on to the surface of the soil in each pot and covered by a further 1 cm of soil, to equal 200 

the surrounding soil level. The 1 cm rim at the top of the pot remained above the surface.  201 

All uncovered plots were covered in netting for the duration of the experiment to prevent 202 

foraging by birds. Surrounding areas were kept weed clear to discourage foraging by birds, 203 

insects and gastropods. Thermistore temperature probes (Betatherm, Ireland) linked to a data 204 

logger (Delta-T Devices Ltd, UK) recorded soil temperature at seed depth, and air 205 

temperature. In the warm-winter plots polyethylene tunnels raised the daily mean soil 206 

temperature by 2.69 ± 0.15°C. Plots were periodically checked and emerged seedling 207 

removed and recorded.  208 

Seedling emergence under simulated global warming conditions in a thermogradient 209 

tunnel  210 

The polyethylene tunnel (32 m long x 9 m wide) structure enables plants to be grown from 211 

seed to seed at natural day lengths with a high percentage (76%) of natural levels of 212 

irradiance. The ambient air temperature was constantly monitored outside of the tunnel. 213 

Reacting to this an electronic climate control system operated fans that generated opposing 214 
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warmed and ambient air flows to establish and maintain an air temperature gradient from 215 

ambient at one end of the tunnel to c. ambient + 4°C at the other end (Wurr et al. 1996). Air 216 

and soil temperatures were monitored continuously along the tunnel. Realistic seasonal and 217 

diurnal air and soil temperature fluctuations were therefore maintained within the tunnel, but 218 

with varying degrees of simulated climate warming depending on the position along the 219 

tunnel. Four positions along the tunnel were selected to provide c. T1, ambient; T4, ambient 220 

+ 4oC and at two equally spaced temperatures (T2 &T3) in between. 221 

Seedling emergence in the thermogradient tunnel 2010-2013  222 

To further evaluate the impact of climate change on A. petiolata emergence experiments were 223 

established on 17 September 2010 within the thermogradient tunnel. A thermal gradient 224 

(ambient + 4°C) was maintained throughout the year that simulated predicted UK air 225 

temperatures from the present time to approximately 2080 at this location (Wellesbourne, 226 

UK: UK Climate Projections (2014)). The soil temperature gradient established along the 227 

tunnel over the course of the experiment (2010 – 2013) was 2.51 ± 0.08°C (T4), and at 228 

intermediate positions was +1.3 ± 0.02°C at T2 and +2.39 ± 0.03°C at T3. This enabled the 229 

evaluation of increasing soil temperature on the termination of dormancy and seedling 230 

emergence from the soil seed bank. Emergence experiments were set up in free standing 17.5 231 

cm square rigid black pots (Fargro, BHGS horticultural, UK). Pots were filled with sterilised 232 

soil (see above) to within 2 cm of the top of the pot. Four hundred seeds of a single biological 233 

replicate were sown on the soil surface, then covered with 1 cm of soil. Three pots were 234 

placed at four positions along the tunnel (see above). Pots were watered weekly to ensure the 235 

only variable was soil temperature. Pots were periodically checked and emerged seedlings 236 

removed and recorded. At the end of the experiment seeds were recovered from the soil as 237 

above and viability tested by assessing the presence of hard seeds. Thermistor temperature 238 
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probes (Betatherm, Ireland) linked to a data logger (Delta-T Devices Ltd, UK) recorded soil 239 

temperature at seed depth along the tunnel. 240 

RESULTS 241 

Dormancy loss in the soil requires chilling  242 

Following burial in field soils in 2007 and again in 2008 germination within seed bags was 243 

observed on exhumation. During this period the pattern of soil temperature at seed depth 244 

differed greatly between the years (Fig S1). Comparison of the number of seeds germinated 245 

within seed bags buried in 2007 and of germination at 5°C in the dark on recovery of seeds 246 

buried in 2008 indicated that dormancy was lost and germination commenced during late 247 

winter/early spring of the following year (Fig. 1A). In 2007-08 the germination record ended 248 

when seedling growth in the bags prevented accurate recording. In 2008-09, little germination 249 

was seen in recovered bags until it began in March when the temperatures rose above 5 oC; at 250 

this point the experiment was stopped. Germination time differed between years (Fig. 1A), 251 

but this difference could be accounted for by fitting a soil chilling model (Fig. 1B). In this 252 

model chilling degree days was calculated following sowing from the soil temperature at seed 253 

depth using Equation 1.  254 

There was a distribution of chilling degree days ranging from 60+ to greater than 150 when 255 

dormancy was lost (Fig 1B). This is indicative of a range of dormancy levels in the seed 256 

population as seen in other species. After this point (March) in 2008-9 temperatures rose 257 

above 5 oC (Fig. S1) preventing further accumulation of chilling time. Germination following 258 

exhumation is shown at 5 oC (Fig. 1A) and it is possible that chilling continued during this 259 

period of germination. However, germination was also recorded in the dark at other constant 260 

temperatures (10-25°C; Fig. 1B) showing that on a chilling scale germination began at the 261 

same time. Nevertheless, percentage germination was reduced at higher temperatures 262 

indicating this species has high temperature thermdormancy. Germination was also recorded 263 
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under alternating temperature with amplitudes of 5, 10, and 15°C (Fig. S2). The results show 264 

maximum germination was observed in the lowest constant temperatures and in alternating 265 

temperatures with the lowest mean temperature. Sensitivity to GA4+7 was also low with a 266 

maximum germination response of 46% at 0.1 mM GA4+7 and this only occurred following 267 

extensive chilling in the field. In the case of seeds held on the soil surface no germinated 268 

seeds were found on recovery. When they were subsequently tested in the light, germination 269 

did not exceed 5% under any conditions with the exception of the GA/fluoridone viability 270 

tests where 93% viability was observed in seed at the final harvest (Fig. 1C). This result 271 

shows that seed viability was high and germination was prevented by dormancy in the 272 

absence of sufficient chilling; even the GA/ fluoridone combination had difficulty 273 

overcoming A. petiolata dormancy in the absence of extensive chilling. Interestingly at the 274 

first harvest following burial germination declined in the GA/ fluridone treatment and then 275 

increased at later harvests indicating the depth of seed dormancy initially increased 276 

The impact of global warming on seedling emergence 277 

Different patterns of temperature in 2007-8 and 2008-9 had an impact on loss of dormancy in 278 

buried seeds. To investigate the effect of temperature change due to global warming in 2009-279 

2010 we simulated the impact of higher winter temperatures in the field using mini 280 

polyethylene tunnels (warm-winter plots). This raised the mean soil temperature 281 

approximately 2.7°C+ above ambient (cold-winter plots) (Fig. 2). Overall there was no 282 

difference in seedling emergence between the four replicate populations of seeds on either 283 

cold- or warm-winter plots, but comparison of the warm- and cold-winter plots showed there 284 

was a large effect of temperature. 285 

The first seedling emergence was seen in the warm-winter plots on 16th February 2010 (Fig. 286 

2). By this time these seeds had accumulated 91 chilling degree days (°C days). Six days later 287 

seedling emergence was seen in the cold-winter plots by which time these seeds had 288 
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accumulated 157 °C days. Seedling emergence under cold-winter conditions lagged behind 289 

the simulated warm-winter conditions until the mean ambient soil temperature increased 290 

above 6°C. At this time the covers were removed from the warm-winter plots (12th March 291 

2010) and mean soil temperature fell to that of the cold-winter plots (ambient levels). In both 292 

cases, emergence finally reached a plateau (89%) at the same time when the chilling 293 

requirement to remove dormancy in the majority of the population was satisfied.  294 

To further investigate the impact of global warming seedling emergence was then examined 295 

in a thermogradient tunnel having temperature-controlled conditions where other variables 296 

are minimised. In this scenario, an air temperature gradient of ambient to ambient +4 °C was 297 

established to represent the predicted increase in ambient temperature between now and 2080 298 

at this location. This established a mean soil temperature gradient of 2.5 ± 0.1 °C along the 299 

tunnel (Fig. 3) that followed seasonal changes in temperature during the experiment (Fig. 300 

4A). Under these scenarios seedling emergence started on the 9th February 2011 at the 301 

ambient end (T1) and five days later at the warm end of the gradient (T4 ambient + 2.5 oC ) 302 

(Fig. 4B). When thermal chilling time was calculated (Equation 1), seeds along the thermal 303 

gradient accumulated 79 (T1), 82 (T2), 62 (T3) and 67 (T4) chilling oC days before 1st 304 

February 2011 (Table 1), which was the last day to have chilling temperatures prior to 305 

seedling emergence (Fig 4A).  306 

In the open field, the onset of dormancy loss occurred after seeds accumulated 60 oC days of 307 

chilling time (Fig. 1). In the thermogradient tunnel, chilling time accumulated similarly at all 308 

positions up to 60 oC days (c. mid January), after which accumulation diverged with more 309 

chilling time at the ambient end (Fig.4B). Seedling emergence reached a maximum of 43% 310 

under ambient conditions (T1) and declined to 10% (T4) in line with the reduced 311 

accumulation of chilling time as the soil temperature gradient increased (Fig. 4B). Plotting 312 

the distribution of seedlings that emerged over time revealed the time to peak seedling 313 
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emergence was positively related to increasing soil temperature above 5°C in 2011 (Fig. 5). 314 

Thus, peak emergence was 8 days earlier at temperatures predicted for 2080 (T4) compared 315 

to the present day (T1 - ambient). 316 

The gradient in the tunnel experiment was maintained until 2013. A small second flush of 317 

seedling emergence was seen in spring 2012 followed by a slighter greater flush in 2013 318 

(Table 1). Less thermal chilling time was accumulated in 2012 and 2013 at above ambient 319 

temperatures (T2-4) than in 2011. The peak in seedling emergence was still earlier at 320 

intermediate tempertures (T2 and T3) than under ambient (T1 conditions). When seeds were 321 

recovered from the soil in 2013 a small proportion were still viable, but overall seed mortality 322 

increased with temperature along the thermal gradient (Table 1).  323 

DISCUSSION 324 

We highlight above that A. petiolata is not only a well known European woodland and 325 

hedgerow plant, but has also become a serious invasive problem in North America where it 326 

displaces the native woodland flora. We examined the behavior of A. petiolata seeds during 327 

dormancy loss and seedling establishment under ambient field conditions and conditions 328 

modified to simulate predicted local global warming scenarios.  329 

Seeds are dormant, but only require adequate exposure to low temperature (chilling) to 330 

germinate 331 

Buried seeds were deeply dormant unless they had experienced extended periods of chilling 332 

in the soil. As seeds accumulated thermal chilling time (°C days) germination increased both 333 

within the soil (2008) and on subsequent incubation in the dark at a range of temperatures 334 

(2009). Recovered seeds were insensitive to GA 4+7 in the light and only responded in the 335 

dark following extensive chilling in field soils. These observations with regard to temperature 336 
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are consistent with those of Baskin and Baskin (1992); and similar to the low sensitivity to 337 

GA3 seen previously (Sosnoskie & Cardina 2009; Yasin & Andreasen 2015). 338 

A. petiolata is a summer annual that germinates and emerges exclusively in early spring, but 339 

germination timing differed in the two years studied (2008 and 2009). The difference was 340 

removed when data were plotted on a “chilling degree days” scale showing dormancy was 341 

lost by a simple accumulation of time at low temperature. Therefore, once the seeds have 342 

accumulated sufficient chilling time they progress to germination if there is adequate 343 

moisture available. Results indicate they have high temperature thermdormancy and so 344 

following chilling they germinate best at low temperatures. The seeds do not appear to have a 345 

strong requirement for alternating temperature, neither do they have a requirement for light to 346 

relieve dormancy. In fact seeds did not germinate on the soil surface (i.e. in the light) despite 347 

exposure to a suitable low temperature environment. Thus in A. petiolata, light maintains 348 

dormancy with seeds being negatively photoblastic. These germination characteristics show 349 

they are adapted to germinate and emerge from undisturbed soils or under the leaf litter 350 

typical of hedgerows and woodland. Dormancy can also be influenced by low soil moisture 351 

and oxgen availability, but over winter this is unlikely to be significant in this environment. 352 

In the experiments, very light sandy soils were used in which oxygen availability is not 353 

limiting and soil did not dry out significantly at sowing depth (5cm). However, to be 354 

competitive in their natural environment the seeds must accumulate sufficient chilling for 355 

early germination so that growth of the plant can occur before leaves in the existing perennial 356 

plant canopy open. This situation has potential for disruption by global warming. 357 

Seedling emergence is affected by predicted global warming scenarios 358 

We show that dormancy loss, which underlies seedling emergence patterns responds to 359 

projected changes in our climate. As soil temperature increased, the percentage of seeds 360 

producing seedlings decreased, indicating the proportion of the population that accumulated 361 
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sufficient chilling time declined. However, it is likely that other factors may contribute 362 

positively and negatively to the accumulation of chilling time to break dormancy. For 363 

example, the time spent above the chilling temperature (> 5 °C) may enhance dormancy in 364 

those seeds in which the final layer of dormancy has not been removed. This is a normal 365 

response to the late spring/summer increase in temperature that reinduces deeper dormancy in 366 

seeds that have not previously accumulated sufficient chilling time to allow germination. 367 

Germination/seedling emergence is therefore blocked as the woodland/hedgerow canopy is 368 

forming. Such behaviour is consistant with the hypothesis that temperature impacts the rate of 369 

dormancy induction and relief independently (Totterdell & Roberts 1979; Batlla et al. 2009); 370 

and the situation seen in Rumex species and summer annual Arabidopsis ecotypes in which 371 

increasing temperature increases the induction of secondary dormancy (Totterdell & Roberts 372 

1979; Huang et al. 2015; Springthorpe & Penfield 2015; Footitt et al. 2017).  373 

The results show that A. petiolata may be highly sensitive to short-term temperature changes 374 

that span the threshold temperature for dormancy relief and induction; and this may 375 

contribute to the decreased seedling emergence seen during simulated global warming. The 376 

reinduction of deeper dormancy is also consistent with our results that show A. petiolata 377 

forms a moderately persistent seed bank with emergence predominantly in the first spring 378 

after shedding as previously reported (Roberts & Boddrell 1983; Grime et al. 1988). Seed 379 

mortality increased along the thermal gradient to 68 % at a soil temperature of ambient 380 

ambient + 2.5°C. Therefore in A. petiolata loss of seed viability may be an additional factor 381 

related to global warming that contributes to reduced seedling emergence and seed bank 382 

stability. This is in agreement with Ooi and coworkers who showed that increasing soil 383 

temperature reduced seed longevity in other species and environments (Ooi et al. 2009). 384 

How might global warming impact on the A. petiolata life cycle? 385 
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The use of a thermogradient tunnel, rather than a geographical climate or altitudinal gradient, 386 

in which the only significant variable is temperature helps to reveal how climate change 387 

driven by global warming will impact on the A. petiolata life cyle. Under warmer conditions, 388 

only that portion of the A. petiolata population with low dormancy and therefore a low 389 

chilling requirement will emerge and persist in the population. It is therefore likely that 390 

progressive adaptation to a lower chilling requirement for dormancy relief will take place in 391 

the population allowing it to remain competitive in the woodland/hedgerow environment. In 392 

the global warming scenario reported here the peak in seedling emergence was also advanced 393 

by eight days in the first year under the predicted 2080 temperature compared to the present 394 

day. Seedling emergence therefore advanced at approximately 1 day/decade, the same as the 395 

advancement of flowering time reported by Cook and coworkers in an analysis of 20-50 year 396 

data sets of multi-species flowering times (Cook et al. 2012). This adds to increasing 397 

evidence that seedling emergence timing and flowering time are linked (Springthorpe & 398 

Penfield 2015). In subsequent years, emergence remained earlier at intermediate tempertures 399 

potentially from seeds with low dormancy. While at ambient and ambient + 2.5 °C 400 

emergence lagged behind and was potentialy influenced by a declining population resulting 401 

from (a) previously seedling emergence and (b) increased seed mortality (i.e. compare 402 

ambient (T1) and ambient + 2.5 °C (T4) Table 1).  403 

The impact of higher temperatures during subsequent vegetative and reproductive growth 404 

may also result in reduced dormancy at seed maturity as seen in Arabidopsis and wild oats 405 

(Sawhney et al. 1985; Chen et al. 2014; Huang et al. 2014; Springthorpe & Penfield 2015). 406 

So global warming will influence timing of germination directly (as we show here) and 407 

indirectly by its influence during seed production (Walck et al. 2011; Chen et al. 2014; 408 

Springthorpe & Penfield 2015). We demonstrate that as biological spring advances this 409 

species has the potential to advance seedling emergence in time to occupy its natural habitat 410 
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before the woodland canopy closes. However, we do not know the relative effect of global 411 

warming on the rates of A. petiolata seedling emergenceg and woodland canopy 412 

development. Furthermore, A. petiolata has only a moderately persistent seed bank and so the 413 

observed increase in seed mortality with soil temperature may restrict the species. A full 414 

understanding of the adaptation to global warming will require long-term monitoring along 415 

climate gradients to determine the phenological and ecological consequences of adaptation 416 

(Walck et al. 2011; Parmesan & Hanley 2015).  417 
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Fig. 1. Germination of A. petiolata in the soil seedbank and following recovery. (A) 1 

Germination of seeds within the soil seed bank (2008) following burial on 12 October 2007, 2 

and in seeds buried on 15 October 2008, subsequently exhumed at intervals and tested for 3 

germination potential at 5°C in the dark under controlled conditions in 2009. (B) The 4 

cumulative effect of chilling degree days (≥0°C  ≤ 5°C) in the soil before exhumation on 5 

germination potential of seeds collected in 2007/8 and 2008/9 . Following recovery of seeds 6 

in 2008/9 they were incubated in water at 5 - 25°C in the dark. (C) Percentage germination of 7 

seeds on GA/ Fluridone following different harvest dates in 2008/9 of seeds that were either 8 

buried or left on the surface. Data are the mean ± SE (n = 4). No error bar indicates the 9 

symbol is bigger than the error. 10 

Fig. 2. A. petiolata seedling emergence and soil temperature in the field following the winter 11 

of 2009/2010 under ambient conditions and simulated warm-winter conditions. Seedling 12 

emergence from field soils under cold and warm-winter conditions. Soil temperature at seed 13 

depth under ambient conditions (cold winter) and simulated warm-winter conditions is 14 

shown. Arrow indicates when covers were removed after which soil temperatures were 15 

ambient in all plots. Seedling emergence data are the mean ± SE (n = 3). No error bar 16 

indicates the symbol is bigger than the error. 17 

Fig. 3. Soil temperatue gradients along the thermogradient tunnel. Representative soil 18 

temperature gradients along the tunnel at seed depth (1 cm) in February and March 2011. 19 

Fig. 4. A. petiolata seedling emergence and soil temperature under simulated global warming 20 

conditions along a thermogradient tunnel. (A) Mean daily soil temperature profiles at seed 21 

depth from October 2010 to April 2011. For clarity only temperatures at positions T1 22 

(ambient) and T4 (ambient + 2.5°C) are shown. (B) The accumulation of thermal chilling 23 

time (°C  days) (≥0°C  ≤ 5°C) at each position along the thermal gradient, and seedling 24 
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emergence along the thermal gradient. Seedling emergence data are the mean ± SE (n = 3). 1 

No error bar indicates the symbol is bigger than the error. 2 

Fig 5. A. petiolata seedling emergence advances in time with increasing soil temperature 3 

in the thermogradient tunnel: (A) Temperature profiles at seed depth along the thermal 4 

gradient. (B) Normal distribution of seedling emergence shows advancing peak in 5 

emergence. Seedling emergence data reanalysed from Fig 4 6 
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 8 


