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 Implantable microphones as an alternative to external 
microphones for cochlear implants 

 
 

 

Abstract 
Totally implantable cochlear implants may be able to address many of the problems cochlear 

implant users have around cosmetic appearances, discomfort and restriction of activities. The major 

technological challenges that need to be solved to develop a totally implantable device relate to 

implanted microphone performance. Previous attempts at implanting microphones for cochlear 

implants have not performed as well as conventional cochlear implant microphones, and in addition 

have struggled with extraneous body or surface contact noise.  Microphones can be implanted under 

the skin or act as sensors in the middle ear, however, evidence from middle ear implants suggest 

body and contact noise can be overcome by converting ossicular chain movements into digital 

signals. This article reviews implantable microphone systems and discusses the technology behind 

them. 

Search strategy 
The review was performed using databases with independently developed search strategies, 

including Medline, Embase, the Cumulative Index to Nursing and Allied Health Literature, and the 

Cochrane Library, in addition to conference proceedings and a manual search of the literature, with 

the last search conducted on 12th June 2017. Relevant articles were subsequently reviewed from 

reference lists.  We considered all studies, including bench studies, retrospective case series and 

prospective cohorts. Key words utilised in the search included the following: ‘cochlear implant’, 

‘microphone’, ‘implantable’, and ‘middle ear’.  

 

Introduction/Background 
Cochlear implants have increasingly become an effective treatment for patients with severe to 

profound hearing loss and implantation rates are rising with around 13,000 people currently using 

cochlear implants in the UK and around 650 adults and 650 children implanted each year (Cochlear 

implants, The Ear Foundation, 2015). Despite this, more than 900,000 people in the UK are 

estimated to be severely or profoundly deaf (Action on Hearing Loss, 2016) meaning many more 

could potentially benefit from implantation.  A lack of national health funding and awareness 

accounts for the majority of this disparity (Raine, 2013).  Some potential users, however, are 

deterred by the cosmetic appearance of cochlear implants because of the perceived stigma of 

hearing loss (Wallhagen, 2010). Commercially available cochlear implants currently consist of three 

parts: an external sound processor that typically sits behind the ear, an internal receiver/stimulator 

connected to electrodes in the cochlea, and a radio link that enables the transcutaneous 

transmission of signals and power across the skin.  The external sound processor contains the 

microphone for transducing the sound signals into electrical signals, the electronic circuitry for 

digital signal processing (DSP) and the battery, which powers both the external and internal 

components.  Having an external sound processor has many functional and psychological 

disadvantages.  Because of the visibility and prominence of the external sound processor it can act 

as a “stigma symbol” (Goffman, 2009) that draws attention to a negative identity and can also be 

easily damaged by unpredictable impacts – manufacturers therefore advise against wearing them 

during vigorous exercise.  Moreover, the sound processor cannot be worn in bed, which has clear 



safety implications and can further heighten self-awareness of hearing loss.  There is also a 

functional disadvantage of having a microphone that is external to the ear, or just at the entrance of 

the outer ear canal (Frohne-Büchner, Büchner, Gärtner, Battmer, & Lenarz, 2004), because users are 

not able to exploit the passive gain of the external ear canal over the frequencies relevant to speech 

(Shaw, 1974).  Users also cannot fully benefit from the shadow effect of the pinna, which attenuates 

sounds from the rear and may provide directional cues (Byrne & Noble, 1998).  Finally, the external 

sound processor restricts the use of standard headwear, such as earphones and helmets, which can 

be inconvenient and act as yet another reminder of hearing loss.   

Uptake of cochlear implants could be increased by having a totally implantable cochlear implant, 
which would require the microphone, DSP, and battery to all be internal.  Although the technology 
already exists for implantable batteries and speech processors, the best technology for implantable 
microphones is yet to be determined.  This is exemplified by the wide variety of technological 
approaches that have undergone preliminary investigations and the paucity of devices that have 
reached human trials.  Broadly, implantable microphones can be split into subcutaneous and middle 
ear microphones with further subdivisions based on exact location, coupling and method of 
transduction (e.g., piezoelectric vs capacitative), which in turn determines whether it is the 
displacement, velocity or acceleration that is transduced.  Middle ear microphones are either fixed 
within the middle ear or mastoid and have a probe in contact with an ossicle or they involve a free-
floating device attached solely to the ossicles; the former can lead to a force on the ossicles even 
without stimulation and the latter adds to the inertial load of the ossicles.   
 
Essential requirements for implantable microphones 
 
The microphone must be sufficiently sensitive so that the equivalent input noise is similar to external 
microphones.  For middle ear microphones this means that the microphone must be responsive to 
the small displacement, low velocity or low acceleration of the ossicles (according to the mode of 
transduction).  The largest amplitude of vibration occurs at the umbo (Vlaming & Feenstra, 1986; 
Zurcher, Semaan, Megerian, Ko, & Young, 2010).  For an 80 dB SPL sinusoidal stimulus, the maximum 

displacement of the umbo is about 2 – 10 nm, the maximum velocity is about 2 m/s (0.1 mm/s/Pa) 
(Vlaming & Feenstra, 1986; Voss, Rosowski, Merchant, & Peake, 2000) and the maximum 
acceleration is about 0.1 g (Zurcher et al., 2010). 
 

Operation should not greatly change the transfer function of the middle ear and so lead to a 
conductive hearing loss.  The addition of mass to the ossicles will increase the inertia and impede the 
transmission of higher frequencies (Gan, Wood, Dyer, & Dormer, 2001; Needham, Jiang, Bibas, 
Jeronimidis, & O'Connor, 2005; Nishihara, Aritomo, & Goode, 1993).  Any additional mass should 
therefore be substantially less than the total mass of the ossicles, which is about 65 mg(Nummela, 
1995).  Nishihara et al (1993) found that the addition of just 5 mg to the long process of the incus 
could decrease stapes displacement at 4 kHz by about 10 dB.  In contrast, any change that increases 
the stiffness of the ossicular chain will impede the transmission of lower frequencies.  In addition, 
surgical insertion must not substantially damage the middle ear or lead to a loss of residual hearing. 
 
The microphone must be biocompatible and robust.  An intrinsic feature of a microphone is that at 
least one part moves and the microphone must therefore be able to cope with the repeated small 
movements over the lifetime of the implant, which could be decades.  It is a tenet of electronic 
design that the root cause of failure is usually mechanical and the microphone is potentially the 
weak point of the whole implant.  The microphone must be robust to impacts such as a blow to the 
head.  The housing must also be impervious to surrounding body fluids. 
 



Finally, the microphone should be irresponsive to body noise, caused for example by scratching the 
head and the microphone must be low power to minimize the size and maximize the life of the 
internal battery. 
 

Here, we review the technologies that have been tested to date and discuss the surgical implications 

of using them.  We have included microphones developed for implantable hearing aids and middle 

ear implants because microphones developed for these devices could also potentially be used for 

cochlear implants.  To enable a better assessment of implantable microphones we have also 

reviewed the current technology for external microphones.   

External microphones 
Standard cochlear implant microphones are electret microphones (Wolfe & Schafer, 2014).  Electret 

microphones are essentially capacitor (condenser) microphones that transduce sound into an 

electrical signal through changes in the distance between the two parallel plates of the capacitor as 

sound energy moves one of the plates, the diaphragm.  In contrast to other types of capacitor 

microphones, they eliminate the need for a polarizing voltage across the plates by using a material 

on one plate that is permanently charged, although a power supply will still be needed for the 

internal amplifier. 

Speech intelligibility for the best performers in quiet with external microphones is approaching that 

of normal listeners (Ebrahimi-Madiseh, Eikelboom, Jayakody, & Atlas, 2016; Wilson & Dorman, 

2008), but in background noise speech intelligibility drops substantially for all cochlear implant 

users(Wilson & Dorman, 2008).  Although most noise reduction strategies involve DSP, microphones 

may have a role to play.  Externally, microphones can be placed in a directional housing unit to 

attempt to eliminate background noise or more than one microphone can be fitted.  Using a second 

microphone pointing backwards allows speech processors to filter out unimportant background 

noise.  This provides limited benefit monaurally but more speech intelligibility in particular is gained 

with binaural dual microphones (Kokkinakis, Azimi, Hu, & Friedland, 2012).  External microphones, 

like subcutaneous microphones, do not take advantage of the natural amplification and 

directionality cues provided by the external ear (Blauert, 1983), and have increased susceptibility to 

impact over middle ear microphones. 

 

Subcutaneous microphones   
So far, research on implantable microphones has concentrated on placement directly under the skin, 

behind the pinna or in the middle ear.  Attempts have also been made to implant a microphone 

beneath the canal wall skin (Zenner et al., 2000).  Placements close to the pinna might be expected 

to lead to sensations closest to normal hearing, but this has not been tested.  To compete with 

external microphones subcutaneous microphones must compensate for the loss in sensitivity and 

signal filtering that result from sound passing through skin.  Placing the microphone under thin skin 

would improve sensitivity but risks extrusion.   

The first implantable microphone was trialled in Japan as part of the Rion T-MEI (Kodera, Suzuki, & 

Ohno, 1988; Yanagihara, Suzuki, Gyo, Syono, & Ikeda, 1984).  The microphone was an extremely 

fragile electret condenser microphone.  It was initially trialled in cats and implanted for one year.  

Microphone sensitivity was found to vary based on skin thickness and position and ultimately, 

having found no benefit from implanting it in the mastoid, they recommended implanting it in the 

external auditory canal (EAC). These findings are backed up by more recent studies on porcine 



models that found sound attenuation was directly proportional to skin thickness within the range of 

0.5-3mm (Deddens, Wilson, Lesser, & Fredrickson, 1990).  Jenkins and Uhler (2014) found that 

adding 6mm of soft tissue over a microphone reduces its effectiveness by a factor of ten(Herman A. 

Jenkins & Uhler, 2014) and the sensitivity of microphones to physiological noise is also increased by 

a factor of 100, so a degree of cushioning is required to limit this interference.  To increase 

microphone sensitivity at speech frequencies, one bench study used a subcutaneous electret 

microphone attached to an acoustic tube (E. S. Jung, Seong, Lim, Lee, & Cho, 2011).  Different 

lengths of tubing were trialled with correspondingly different resonant frequencies in the high-

frequencies of human hearing (the frequencies filtered most when sound passes through soft-tissue 

thus partially overcoming the soft-tissue filtering effect).  Results were promising with a significant 

improvement in the frequency response.   

Aside from sound filtering, subcutaneous microphones must be unresponsive to sounds generated 

by soft-tissue movement such as head-turning (Bruschini, Forli, Passetti, Bruschini, & Berrettini, 

2010) or scratching the scalp; even moving hair can lead to signal interference.  In addition, sound 

localisation in subcutaneous microphones is likely to be limited.  To avoid these issues, Kodera 

designed a microphone implanted in the EAC, therefore shielding the microphone from contact 

noise whilst benefiting from the naturally thin canal wall skin and the directionality cues of the 

external ear. Results in implanted cats at nine months showed excellent device durability and 

performance characteristics (Kodera et al., 1988).  Leysieffer developed this concept producing a 

miniaturised version that was subsequently trialled on 20 patients (Leysieffer, Muller, & Zenner, 

1997).  Two patients had partial skin necrosis above the microphone requiring fascial grafts, but 

otherwise results showed that auditory canal skin could be drawn over the microphone diaphragm 

without harming the transmission quality of the microphone. 

This idea was integrated into a middle ear implant with a microphone sensor under the EAC wall skin 

(Zenner et al., 2004).  The sensor was then coupled to a hermetically sealed processor connected to 

an actuator attached to the incus.  Interestingly, participants scored 89% on horizontal sound 

localisation tests in their implant ear, which was significantly better than the non-test ear suggesting 

the implanted microphone did encode some directional cues provided by the external ear.  In two 

cases, however, there was partial skin necrosis above the microphone membrane corrected with 

fascia, and two patients had ear canal scar formation.   

Finally, an electret microphone was developed in Korea which was placed in the middle ear cavity, 

and  has been tested in experimental studies on three temporal bones (Woo et al., 2015).  The 

microphone receives sound from the outer ear canal through a ventilation tube in the tympanic 

membrane and an acoustic duct across the middle ear cavity (Figure 1).  Although the microphone 

sensitivity was flat and surgery straightforward, the authors accepted that wax, water contamination 



and device migration are all potential limitations. 

 

Figure 1. Subcutaneous microphone in the middle ear cavity that connects to the outer ear canal via 

an acoustic duct and ventilation tube (Woo et al., 2015)  

 

 

Perhaps because of problems with microphone extrusion, the only commercial active middle ear 

implant with a subcutaneous microphone has reverted to one placed behind the pinna (Pulcherio et 

al., 2014).  The Otologics Carina (now Cochlear Corporation) relies on a standard subcutaneous 

omnidirectional electret microphone.  There is no consensus on where the microphone should be 

placed (Martin et al., 2009) but traditionally it is implanted directly behind the EAC.  Positioning it 

here avoids problems with acoustic feedback as well as noise generated by contraction of the 

temporalis and sternocleidomastoid muscles.  The microphone then sends a signal via the speech 

processor to the electromagnetic transducer, which is usually attached to the body of the incus by 

drilling a recess or by direct application.  The degree of incus loading is adjusted during surgery to 

enable maximal compliance of the system and placement can be at one of multiple locations on the 

ossicular chain or round window (Martin et al., 2009).  Most trials showed that the Carina system 

gave hearing that was equivalent to conventional hearing aids (Bruschini et al., 2010; Martin et al., 

2009) but again due to complicated surgery and limited additional benefit few devices have been 

implanted in the UK. 



 

Figure 2. Cross-section of the ear showing fixation of the microphone behind the pinna for the 

Otologics Carina middle ear implant (Modified from image courtesy of Cochlear). 

 

 Middle ear microphones 
Middle ear microphones convert movement of the tympanic membrane or ossicles into an electrical 
signal.  In addition to advantages conferred by a subcutaneous microphone over external 
microphones, a middle ear microphone is able to use more of the ear’s natural directionality cues 
and amplification provided by the pinna and ear canal.  A further advantage for cochlear implants is 
that the middle ear reflex may be activated by electrical stimulation during vocalization, chewing, 
and swallowing; this feedback mechanism would act to decrease movement of the ossicles and so 
reduce the microphone signal, in turn reducing self-stimulation of the cochlea. 
Yanagihara’s group again trialled the first middle ear sensor with a piezoelectric sensor receiving 

ossicular vibrations from the malleus in three human temporal bones (Gyo, Yanagihara, & Araki, 

1984).  Sensitivities were sufficient at around -60 dB re 1 V/Pa at 1 kHz (see review by Lewis for an 

excellent explanation of microphone sensitivity(Lewis, 2012)). 

Coupling 

Measurements of the displacement transfer function using laser doppler vibrometry suggest that the 

malleus head or incus body are the optimal sites for coupling to middle ear microphones (Chung, 

Song, Sim, Kim, & Oh, 2013).  Despite straightforward access to the umbo, however, standard 

cochlear implant surgery requires a cortical mastoidectomy and therefore the incus is more 

appealing.   One drawback of using the incus, however, is that incus displacement naturally reduces 

with increasing frequency (Goode, Killion, Nakamura, & Nishihara, 1994). This may be crucial given 

the importance of high frequencies in speech discrimination.  Although controversial, there is also 

some evidence that there are frequency-dependent changes in the rotational axis of the malleus-

incus complex, (Schön & Müller, 1999).  If confirmed, this would impair the ability of any middle ear 

microphone to produce a flat frequency response. 



The contact point between a middle ear microphone and the ossicles is crucial as both too much or 

too little force will result in a conductive loss and therefore reduce sensitivity (Bruschini et al., 2010).  

Some middle ear implants therefore use intraoperative loading devices to improve coupling 

efficiency and consistency (e.g. Herman A. Jenkins & Uhler, 2014).  The mass of the coupling 

between a middle ear microphone to the ossicles must also be considered because the displacement 

of the ossicular chain decreases with added mass, thereby decreasing sensitivity (Nishihara et al., 

1993).  A further consideration is ambient pressure changes, which can lead to relatively large 

displacements of the ossicular chain.  If a transducer or microphone is fixed to the temporal bone 

then this ossicular displacement will lead to a sustained increased force on the ossicles at the 

contact point and there is the potential for bone resorption and a subsequent loose fit.  To 

circumvent this problem, a hydroacoustical transmission device with a soft contact to the ossicles 

has been developed, which consists of a flexible, water-filled tube covered on the ossicular side by a 

soft balloon with a thin wall (Huttenbrink, Zahnert, Bornitz, & Hofmann, 2001).  The authors 

recommend placing it on the short process of the incus for surgical simplicity.  Frequency responses 

for the microphone characterised normal middle ear transmission with an improved high frequency 

response due to the high-frequency resonance of the water-filled tube. 

Patient selection 

The success of implanted middle ear microphones relies on patients having a reliable middle ear 

transfer function.  Any loss of energy transmission through the ossicular chain secondary to middle 

ear disease or otherwise will lead to reduced microphone sensitivity.  Patient selection is therefore 

important, but unfortunately very little literature exists on optimal patient selection.  One previous 

study compared thresholds of direct vibration using an ossicular vibration device coupled to the 

umbo in awake patients to approximate function of a middle ear transducer and therefore guide 

patient selection using laser Doppler vibrometry (Maassen et al., 2004).  Results were reliable and 

repeatable between ears, however the authors pointed out that the device did not exactly replicate 

linkage between a middle ear microphone and the ossicles.  Tympanometry provides a crude 

measurement of middle ear function, but no information on ossicular movement.  It is likely that a 

reliable measurement device will be needed to accurately predict which patients will benefit most 

from middle ear microphones should the technology become widely accepted. 

Microphone type 

Conventionally, microphones transduce sound waves in air into an electrical signal.  In contrast, 

middle ear microphones convert the displacement or velocity of the ossicular chain into an electrical 

signal.  The overall function is the same but the transfer of energy is very different.  A middle ear 

transducer transfers energy from a high impedance to a lower impedance system (unlike traditional 

hearing aids).  The two main types of middle ear transducers have centred on piezoelectric and 

electromagnetic devices.  Most middle ear microphones are confined to piezoelectric systems, but 

electromagnetic systems, accelerometers and capacitor microphones can also be used.   

Piezoelectric materials generate a voltage when compressed (and deform when voltage is applied).  

Piezoelectric microphones exploit this with excellent resolution by using ossicular movement to 

compress the piezoelectric material thus generating the electrical signal (for review see (Mukherjee, 

Roseman, & Willging, 2000).  Most piezoelectric microphones are built as a “bimorph” in which two 

crystals are sandwiched together to multiply the deformation.  Ideally, the resonant frequency of the 

microphone should be above the range of human hearing.  There is, however, a trade-off between 

sensitivity and the frequency of the resonance: The shorter the device, the higher the resonant 

frequency is for an equivalent mass, but conversely the longer the device is the more force it 

generates.  Piezoelectric microphones must be built to precise dimensions to optimise its resonance 



frequency and sensitivity.  Nonetheless, it is not currently possible to have both sufficient sensitivity 

and a resonant frequency below the range of normal hearing (Chi et al., 2009).   

In contrast to piezoelectric microphones, which convert displacement of the ossicles into a voltage, 

electromagnetic microphones convert the velocity of the ossicles into a voltage.     A magnet is 

placed in close proximity to an electromagnetic coil thus generating an electrical signal via 

electromagnetic induction.  Electromagnetic microphones tend to have a smoother frequency 

response and particularly respond better at low frequencies compared with piezo electric 

microphones.  Their placement in the middle ear is difficult, however, as the greater the distance 

between the driven magnet and coil, the greater the power requirement and within the confines of 

the middle ear there are limited configurations possible.  Unlike piezoelectric microphones, 

electromagnetic microphones are not compatible with magnetic resonance imaging (MRI) because 

of the intrinsic magnet.  Moreover, electromagnetic microphones have a power requirement in the 

order of 100 to 1000 times more than an piezoelectric transducer (Kroll, Grant, & Javel, 2002), and 

would therefore require a larger internal battery to get equivalent performance. 

Envoy Esteem 

 

The only implantable middle ear microphone in commercial use is for the active Envoy Esteem 

middle ear implant developed by Envoy Medical Corporation.  Its development started in 1985 (see 

Kroll et al 2002 for review) and has been marketed in Europe since 2006 obtaining U.S. Food and 

Drug Administration approval in 2010. It relies on a speech processor and battery situated in a 

subcutaneous pocket over the mastoid (see figure 3).  Normal movement of the ossicular chain is 

picked up by a piezoelectric sensor coupled to the incus body with bioglass cement and fixed to the 

mastoid floor.  This transduces the movement into an electrical signal conveyed to the speech 

processor.  A further signal is then sent to a piezoelectric transducer attached to the stapes head, 

which crucially is disarticulated from the incudostapedial joint to avoid feedback.  The stapes is 

therefore mechanically moved, which in turn stimulates the cochlea.  During surgery, the ossicular 

chain is tested with vibrometry before disarticulation, and once the system is in place tested again to 

ensure the device is working.  The device has been approved by the FDA for adults with a moderate-

severe sensorineural hearing loss with word recognition scores over 40%.  Three trials showed some 

improvement over best-aided condition in word recognition scores and quality of life scales (Kraus, 

Shohet, & Catalano, 2011; Memari, Asghari, Daneshi, & Jalali, 2011; Monini, Biagini, Atturo, & 

Barbara, 2013), but none reached significance on mean gain in dB.    A combination of device 

failures, surgical complications and limited audiological benefit over conventional hearing aids has 

led to few devices being implanted. 



 

Figure 3. Middle ear microphone in the Envoy Esteem middle ear implant (From Envoy Medical 

Corporation) 

 

 

Previous trials of implanted microphones for cochlear implant users 
 

In Australia, a feasibility study with three patients placed the entire cochlear implant package under 

postaural skin (Briggs et al., 2008).  All had a standard (external) cochlear implant sound processor 

(ESPrit 3G – Cochlear Corporation) as well as the research device and were able to switch between 

devices as needed.  Although the research device used the same packaging and electrode 

technology identical to the commercial CI24RE receiver stimulator, the sound processing and 

stimulator electronics were designed specifically for the device and the microphone was a 

subcutaneous microphone based on a conventional electret microphone incorporated into the body 

of the stimulator (Figure 4).  Hearing thresholds were tested with warble tones and after training 

were found to be worse in the research device mode (29, 42 and 37 dBHL for subjects 1, 2 and 3 

respectively) compared with losses between 15 and 25 dBHL across all frequencies for the Esprit 3G.  

Speech intelligibility was tested using open set monosyllabic consonant-vowel nucleus-consonant 

(CNC) words at 60 dBSPL in quiet and CUNY sentences at 65 dBSPL in multi-talker babble.  Again, 

results were unfavourable for the research device with CNC scores in quiet of 77% for the ESPrit 3G 

versus 33% for research device, and CUNY sentences scores in noise of 72% for ESPrit versus 34% for 

the research device.  The authors surmised that one patient’s hearing suffered due to a thicker skin 

flap.  There were no complications and all three subjects continue to use the implant on a limited 

basis finding additional benefits over the standard cochlear implant (as introduced earlier).  The 

main factor limiting their use is the significant increase in body/physiological noise over and above 

their existing external microphone. 

 



 

Figure 4. a) Prototype totally implantable cochlear implant (TIKI) with a subcutaneous microphone.  

b) Comparison between the commercial CI24RE Freedom receiver/stimulator (left) the TIKI (right) 

(Briggs et al, 2008). 

 

In America, four cochlear implant users were implanted with a Carina microphone (see Figure 5), 

linked via a percutaneous plug to the external sound processor of their Freedom (Cochlear 

Corporation) sound processor (H. A. Jenkins & Uhler, 2012).  This enabled switching between both 

microphones.  All patients had used a Freedom Cochlear implant for over twelve months and had 

CNC scores of 40 % or more in quiet.  Hearing tests included sound-field pure-tone thresholds which 

were substantially lower when using the Freedom microphone (around 25 dB average) in 

comparison with around 45 dB average with the implanted Carina microphone.  Speech testing was 

carried out using open set monosyllabic CNC in quiet at 50 and 60 dB SPL (as per FDA guidelines), 

and BKB-SIN at 70 dB SPL.  Results favoured the external Freedom microphone with CNC scores 

averaging 67 % correct for the Freedom microphone and only 35 % for the Carina.  The BKB-SIN 

scores equally were better throughout for the Freedom device.  In the discussion, the authors 

mentioned improved software signalling for the second two patients and this is reflected in 

Abbreviated Profile of Hearing Aid Benefit (APHAB) scores, which are equivalent for the second two 

patients comparing Freedom with Carina microphones.  For the first two patients, the Freedom 

scores are substantially better. 

 

Figure 5. Test configuration for the implanted Carina microphone, which was used as the direct 

audio input to an external Freedom sound processor via a percutaneous plug and an external signal 

processing worn on the collar (Jenkins et al, 2012) 



 

 

The subjects in Briggs’ study obtained mean warble tone thresholds of 36 dB HL with their research 

device, in comparison with subjects in the Jenkins study reaching pure-tone thresholds of 45 dB HL.  

CNC scores in quiet were equivalent (33% and 35%, respectively).  Comparisons are difficult to make 

for speech in noise due to differences in speech material and reporting. 

Finally ten patients in Belgium were implanted in 2016 with the same setup as Jenkins and Uhler  

except the Carina microphone was attached to an existing cochlear implant device placed at least 

two years previously.  Improved sound processing allowed a reduction in the perception of body 

noise and improved pure-tone thresholds and speech recognition scores.  Pure-tone audiometry 

thresholds with the implanted microphone were 44.9dB compared with 36.4dB for the external 

microphone.  Under good listening circumstances speech recognition scores reached approximately 

90% of the performance level reached with the external microphone.  Hair movement and hearing 

one’s one voice remained a concern for some recipients but was reduced by the installed body noise 

cancellation function. 

 

Bench studies 
A number of bench studies have investigated a variety of microphones that warrant discussion.  The 

majority of bench microphones studies have investigated piezoelectric or electret devices, with a 

few attempts trialling electromagnetic, accelerometer and hydrophone microphones.  More recently 

the concept of an intracochlear microphone has also been investigated.   

Various different ways of maximising microphone performance for piezoelectric devices have been 

trialled.  By placing a piezoelectric sheet in the gap between a disarticulated incudostapedial joint on 

a temporal bone model a sensitivity of about -60 dB re 1 V / Pa for sound between 20-120 dB SPL 

was achieved (Koch, Esinger, Bornitz, & Zahnert, 2014).  In a previous temporal bone model, 

however, it was difficult to avoid the sheet touching the middle ear which led to significantly 

reduced sensitivity.  An alternative method was developed  by Chi et al (2009) using a piezoelectric 

bimorph element microphone implanted on the malleus of cats (Chi et al., 2009).  The frequency 

response curve of the piezoelectric microphone mirrored the standard external microphones but 

sensitivities were different (–38.7 dB re 1 V/Pa at 1,000 Hz and -1.5dB re 1V/Pa at 1,000Hz  

respectively).  The same group developed a piezoelectric microphone implanted in cats and tested 

its sensitivity when placed on the malleus, and in comparison to an external microphone but also 

when hung in the tympanic cavity (Kang et al., 2012).  Despite efforts to reduce the weight of the 

sensor, when attached to the malleus, the authors noticed a dramatic decrease in microphone 

sensitivity in the low frequencies, which they postulated was due to a mass-loading effect.  Poor 

sensitivity was achieved with the microphone hanging in the tympanic cavity.  Most recently, a 

piezoelectric microphone was designed housed in a biocompatible unibody with a titanium clip 

allowing attachment to the long process of the incus (Jia et al., 2016).  Using human cadaveric heads, 

the microphone sensitivities were flat with an average sensitivity of -56.58dB RMS ref 1V at 1000 Hz 

using an acoustic stimulation strength of 90dB SPL ref 20 µPa.   

Park et al 2007 and Zurcher et al 2010 have investigated using an accelerometer that can be 

attached to the ossicular chain (Park et al., 2007)(Zurcher et al, 2010). Unlike other piezoelectric or 

electromagnetic middle ear sensors which rely on the body of the sensor to be fixed and then use 

the displacement of the diaphragm to transduce signals, accelerometers are fixed only to the moving 



ossicles and therefore rely on the displacement of a “proof mass” within the accelerometer relative 

to fixed sensors within the body of the accelerometer.  This has the obvious surgical advantage that 

only one fixation point is needed which will most likely make surgery more straightforward. These 

sensors can be piezoelectric (Park et al., 2007) or capacitative (Zurcher et al, 2010)(Young, Zurcher, 

Semaan, Megerian, & Ko, 2012). The sensor in Youngs experiment detected sounds around 60dB at 

500Hz but they suggest that until micro electro-mechanical (MEMS) systems significantly reduce in 

size, the mass-loading effect of an accelerometer attached to the ossicular chain is likely to reduce 

sensitivity beyond useful levels.   

Maniglia et al (1999) used an electromagnetic transducer in reverse in human temporal bones 

(Maniglia et al., 1999).  A small magnet was fixed either to the incus or malleus, whilst the magnetic 

coil was fixed 0.5 mm away using a fixation device attached to the mastoid cortex.  The average 

signal-to-noise ratio was 37 dB with the magnet placed on the incus, and 44 dB when placed on the 

malleus.  Higher power consumption and difficulties in placing the coil near to the magnet makes 

this system less favourable. 

The idea of intra-cochlear microphones or sensors is inherently attractive as it allows full utilisation 

of both the external and middle ear.  If possible, future integration with the electrode array may 

leave much of the external ear and middle ear untouched.  There are multiple technical challenges 

to overcome not solely limited to device size, but there are currently three patented cochlear 

microphones.  Zhang et al designed a piezoelectric sensor which is placed in perilymph to pick up 

pressure waves within(Zhang, Seligman, Klein, & Cowan, 2009).  Jung et al (2015) designed an 

artificial basilar membrane with an integrated piezoelectric sheet allowing detection of fluid 

movement within an artificial cochlear chamber.  The design was capable of frequency separation 

between 450 Hz and 5 kHz (Y. Jung, Kwak, Kang, Kim, & Hur, 2015).  Finally nanorods have been 

trialled to simulate outer hair cells.  Nanorod length was found to be the most critical parameter in 

improving sensitivity with increasing nanorod length leading to greater drag force and therefore 

sensitivity (Manson & Shen, 2013).   

 

Conclusion 

The potential benefits of a fully implantable cochlear implant system are obvious. The single 

remaining challenge in achieving this relates to implantable microphone technology and recent 

technological advances have created a variety of implantable microphones that in the future could 

challenge or replace conventional external microphones.  To be accepted as a mainstream 

alternative, however, implantable microphones must also provide cochlear implant patients with a 

sound quality that matches or exceeds their external counterparts.  The majority of commercial 

products to date are confined to subcutaneous devices and although most have equivalent hearing 

thresholds, sound quality is affected by surface contact or physiological noise. Positioning 

implantable microphones in the middle-ear may avoid this and be able to take advantage of 

directionality cues and amplification provided by the pinna and external ear canal.   
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