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Abstract 

Lipid droplets (LDs) are the main fat storing sites in almost all species from 

bacteria to humans. The perilipin family has been found as LD proteins in mammals, 

Drosophila, and a couple of slime molds, but no bacterial LD proteins containing 

sequence conservation were identified. In this study, we reported that the 

hydroxysteroid dehydrogenase (HSD) family was found on LDs across all organisms 

by LD proteomic analysis. Imaging experiments confirmed LD targeting of three 

representative HSD proteins including ro01416 in RHA1, DHS-3 in C. elegans, and 

17β-HSD11 in human cells. In C. elegans, 17β-HSD11 family proteins (DHS-3, 

DHS-4 and DHS-19) were localized on LDs in distinct tissues. In intestinal cells of C. 

elegans, DHS-3 targeted to cytoplasmic LDs, while DHS-9 labeled nuclear LDs. 

Furthermore, the N-terminal hydrophobic domains of 17β-HSD11 family were 

necessary for their targeting to LDs. Last, 17β-HSD11 family proteins induced LD 

aggregation, and deletion of DHS-3 in C. elegans caused lipid decrease. Independent 

of their presumptive catalytic sites, 17β-HSD11 family proteins regulated LD 

dynamics and lipid metabolism through affecting the LD-associated ATGL, which 

was conserved between C. elegans and humans. Together, these findings for HSDs 

provide a new insight not only into the mechanistic studies of the dynamics and 

functions of LDs in multiple organisms, but also into understanding the evolutionary 

history of the organelle. 
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dehydrogenases/reductases (SDRs), DHS-3, 17β-HSD11 

 

1. Introduction 

The excessive lipid storage in lipid droplets (LDs) is highly connected to 

metabolic diseases including obesity, atherosclerosis, hepatic steatosis, insulin 

resistance, and hyperlipidemia [1-3]. LDs are the intracellular storage site for neutral 

lipids and have been found in almost all eukaryotic cells, and some prokaryotic cells, 

such as Rhodococcus [4-6]. All LDs share the same basic structure consisting of a 

hydophobic core of neutral lipids (triacylglycerol (TAG) and sterol ester (CE)), which 

is wrapped by a monolayer of phospholipids decorated by proteins. The composition 

of neutral lipids, phospholipids and proteins varies among organisms and tissues [7]. 

The lipids in LDs function as metabolic substrates for energy production and as 

components for membrane synthesis in cells [8].  

Numerous studies have identified several resident proteins on the LD surface 

[9-12]. These proteins are involved in lipid metabolism and transport, membrane 

trafficking, and chaperone function [13-16]. The protein composition varies among 

subpopulations of LDs within a cell, or between LDs isolated from different cell types. 

The best known examples of LD resident proteins are the perilipins. They have been 

proposed to serve structural roles on the LD surface and have been found to regulate 

cellular lipid metabolism and play significant roles in human health [17, 18]. 

Perilipins were first identified in mammals. Their homologs were subsequently found 

in Drosophila and a few slime molds such as Dictyostelium based on sequence 

homology [17, 19, 20]. However, similar bioinformatic approaches failed to identify 

perilipin homologs in other organisms including C. elegans, plants, yeast and bacteria. 

This raises the question on the existence of evolutionarily conserved LD proteins that 

are present from bacteria to humans.  

Using newly developed techniques, LDs have been isolated from many cell types 

and tissues of almost all model biological organisms and analyzed by proteomic 

techniques [5, 11, 21, 22]. These studies reveal that a large set of hydroxysteroid 

dehydrogenases (HSDs) is targeted to LDs. HSDs, which belong to the superfamily of 

short-chain dehydrogenases/reductases (SDRs) or aldo-ketoreductases (AKRs), are 

important enzymes involved in lipid metabolism and especially in steroid hormone 

metabolism. Evolutionarily, the SDR protein family is ancient, and is found in all 

forms of life, including bacteria and archaea, providing clues to their fundamental 

significance in metabolic processes [23-26]. This broadly conserved family may 

provide insight into the evolution of LD as an organelle.  

The mechanisms governing the targeting of LD proteins are still not well 

understood. The subcellular localization of perilipins and other LD-associated 

proteins varies between cell types and tissues and the LD targeting pattern can differ 

even within a cell [27, 28]. In this study, we enumerate LD targeting patterns, the 

cellular distribution and the correlation of cellular distribution with functional 

significances of HSDs. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

3 

 

In mammals, SDRs function as enzymatic switches controlling the balance 

between active and inactive steroid hormones. By binding to specific receptors, 

steroids exert transcriptional control over numerous genes that regulate physiological 

processes including cell signaling, growth, reproduction, and energy homeostasis. For 

example, the SDR enzymes RDH10 and DHRS3 contribute to the oxidation of retinol 

in the retinoic acid biosynthetic pathway, thus playing an important role in embryonic 

development [29, 30]. Although these two proteins have been found on LDs, the 

significance of this localization to their functions is not clear [31, 32].  

One typical class of SDRs, the 17β-hydroxysteroid dehydrogenases (17β-HSDs), 

catalyzes the oxidation or reduction at position 17 in the D ring of steroids, and is 

primarily involved in estrogen and androgen synthesis [33]. These hormones stimulate 

and control the development and maintenance of female and male characteristics and 

other processes. Besides their role in sex hormone formation, a few 17β-HSD 

enzymes, such as 17β-HSD3 and 17β-HSD12, are involved in fatty acid production 

and are essential for growth, reproduction and development in C. elegans [34, 35]. 

The role of LD resident 17β-HSDs in the integration of sex hormone synthesis and 

lipid metabolism requires further investigation.  

In the 1990s, it was reported that oral estrogen treatment was associated with 

increased body fat [36]. Subsequent evidence indicated that estrogen depressed whole 

body lipid oxidation and increased adiposity, possibly through regulation of carnitine 

palmitoyltransferase-1 (Cpt 1) expression [37, 38]. The underlying mechanism linking 

estrogenic regulation of lipid metabolism was thought to depend on interactions of 

estrogen receptor signaling events involving lipolytic and/or lipogenic enzyme activity, 

free fatty acid metabolism, and adipokine production. For example, estrogen receptor 

alpha (ERα) could regulate lipid metabolism in bone through ATGL and perilipin, and 

ACSL4 was a target of 17β-estradiol-stimulated ERα and was required for the cellular 

uptake of exogenous PUFA in ERα positive breast carcinoma cells [39-41]. These 

findings raise the question: whether LD associated HSDs are involved in the 

formation of estrogen, androgen or other steroid hormones which subsequently 

regulate lipid metabolism and other cellular processes. For example, 17β-HSD13 was 

identified as a liver-specific LD-associated protein which contributed to the 

pathogenesis of nonalcoholic fatty liver disease (NAFLD) by an unknown mechanism 

[12, 42].  

In this study, we report deep conservation of LD targeting by HSD proteins in 

different organisms, and different tissues and distributions in the intestinal cells of C. 

elegans. In addition, C. elegans DHS-3 and its mammalian ortholog 17β-HSD11 

regulate LD size, LD distribution and TAG content similar to that seen with ATGL, 

but in a manner independent of their putative catalytic sites. These data indicate that 

the significance of HSDs, a conserved LD protein family.  

 

2. Materials and methods 

2.1. Plasmids, strains and culture conditions 
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The bacterial Rhodococcus sp. RHA1 (RHA1) strain was used as wild type and 

for genetic mutants. The transgenic RHA1 bacteria used in this study are listed (Table 

S1). The ro01416 gene deletion mutant was constructed as described in a previous 

study [5]. Cells of RHA1 were cultivated aerobically in LB at 30°C. Then 1 ml of 

cells (OD600 = 2.0) was collected by centrifugation and then cultured in 10 ml mineral 

salt medium (MSM) with 0.5 g/l NH4Cl and 10 g/l sodium gluconate until reaching 

OD600 = 2.0~2.5. The culture conditions were as described previously [5, 43].  

The N2 Bristol strain of C. elegans was used as wild type in this study. The 

genetic mutants, transgenic worms and RNAi bacteria strains used are listed (Table 

S1). Nematode growth media was used to maintain C. elegans with the E. coli strain 

(OP50) as food at 20℃. 

HeLa cells were cultured in DMEM (Macgene Biotech., Beijing, CN) 

supplemented with 10% FBS (Hyclone), 100 U/ml penicillin and 100 mg/ml 

streptomycin (Macgene Biotech., Beijing, CN) at 37 °C with 5% CO2. Sodium oleate 

(OA) (Sigma-Aldrich) was prepared as described previously [44]. Cells were treated 

with OA (+OA) in culture medium and absolute ethanol was used as vehicle control. 

Transgenic cells are listed (Table S1). 

All the plasmids used in this study are also listed in Table S1. Plasmid pGEX-6 

P-2 and pET-28a-SMT3 were used for protein expression in E. coli, pJAM2 for 

protein expression in RHA1, pK18mobsacB for gene knockout in RHA1, pPD95.79 

and pPD49.26 for protein expression in C. elegans, and pEGFP-N1 and pQCXIP for 

protein expression in HeLa cells.  

 

2.2. Staining and image analysis 

   Cultured RHA1 cells were collected and washed twice with PBS. Then cells were 

applied to glass coverslips pretreated with poly-L-lysine (PB0589) and dried for 30 

min. The coverslips were washed three times with 1 ml PBS and were incubated with 

LipidTOX red (diluted 1:500 in PBS), protected from light, for 30 min. The stained 

samples were mounted on glass slides using mounting media (P0126) and were 

visualized with an Olympus FV1000 confocal microscope. 

   L4 worms were washed off growth plates and were washed three times with PBS. 

Then worms were fixed in 4% paraformaldehyde for 30 min. Fixed worms were 

washed three times, and stained with LipidTOX red (1:1000). Worms were laid on a 6% 

agar plate, washed three times and were visualized by confocal microscopy. 

HeLa cells on glass coverslips were fixed in 4% paraformaldehyde for 30 min and 

were washed three times with PBS. LDs and nuclei were stained separately by 

LipidTOX red and Hoechst for 30 min protected from light. The stained cells were 

washed three times, mounted with Mowiol mounting media and were then examined 

by confocal microscopy. 

 

2.3. Isolation of lipid droplets and protein preparation for Western blotting 

Cultured RHA1 and HeLa cells were collected and fractionated as described 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

5 

 

previously [5, 45]. Worms were washed and fractionated as described previously [11]. 

The proteins in different fractions were separated on 10% SDS-PAGE gels 

followed by silver staining or Western blotting. Polyclonal antibodies for DHS-3 and 

MDT-28/PLIN-1 were prepared by AbMax Biotechnology Co., Ltd. The anti-GFP 

(IMA1006L, IMAGEN), anti-GST (IMA1002L, IMAGEN), anti-Actin (HX1827, 

Hua Xin Bo Chuang), anti-GAPDH (MAB374, Millipore), anti-ATGL (2138s, Cell 

Signaling), anti-PLIN2 (610102, Progen) and anti-17β-HSD11 (ab136109, abcam) 

were purchased.  

 

2.4. Expression and purification of proteins 

Standard molecular cloning techniques were used. Ro01416 and DHS-3 were 

cloned into the pGEX-6p-1 expression vector and were expressed with an N-terminal 

GST tag. GFP and 17β-HSD11 was cloned into the pET28a-SMT3 expression vector 

and was expressed with an N-terminal 6×-His tag and SMT3 domain.  

All of the proteins were expressed in Rosetta E. coli in LB media. The cells were 

grown to an OD600 of 0.6 and were induced with 0.4 mM isopropyl 

β-D-1-thiogalactopyranoside (IPTG) at 16°C for 24 h. The cells were collected by 

centrifugation at 4,000 g for 20 min. Then the cells expressing GST-ro01416 and 

GST-DHS-3 were resuspended in 50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 

mM DTT and 4% Glycerol (pH 7.4) while the cells expressing 

HIS-SMT3-17β-HSD11 and HIS-GFP were resuspended in 50 mM Tris-HCl, 150 mM 

NaCl (pH 7.4). Cells were then lysed in a high-pressure cell press (JNBIO JN-3000 

PLUS) and the cell lysates were centrifuged at 16, 000 g for 1 hour to obtain clarified 

supernatants. The supernatants containing soluble GST-ro01416, GST-DHS-3 proteins 

were applied to GST affinity chromatography resin (Glutathione sepharose 4B, GE), 

and the supernatants of soluble HIS-SMT3-GFP and HIS-SMT3-17β-HSD11protein 

were applied to nickel affinity chromatography resin (Chelating Sepharose Fast Flow, 

Amersham Biosciences). The chromatographic purifications were completed 

according to manufacturer’s guidelines. The GSH and imidazole used to elute the 

proteins were removed by buffer exchange using Amicon centrifugal concentrators 

(Millipore). The GFP and 17β-HSD11 proteins were obtained from the cleavage of 

HIS-SMT3-GFP and HIS-SMT3-17β-HSD11 by SUMO protease ULP1. The purity of 

the proteins was detected by SDS−PAGE.  

 

2.5. Construction of adiposomes and recruitment of proteins to adiposomes 

The construction of adiposomes and the experiments involving the recruitment of 

proteins to adiposomes were conducted as described previously [46]. 

1,2-Di(9Z-octadecenoyl)-sn-glycero-3-phosphocholine (DOPC) was purchased from 

Avanti and the TAG used was extracted from rat fat pads in the laboratory. Defined 

quantities of purified proteins were added to adiposomes to a final volume of 60 μl. 

The mixture was gently vortexed and then incubated at room temperature for 1 hour. 

The adiposomes were centrifuged at 15, 000 rpm for 5 min and the solution was 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

6 

 

removed for analysis. Equal amount of proteins, adiposomes and solutions were 

analyzed by SDS-PAGE.  

 

2.6. Measurement of TAG and cholesterol ester (CE) levels 

RHA1 cells, worms and HeLa cells were washed three times with PBS, and were 

then dissolved in 200 μl 1% Triton X-100 with sonication. Whole cell lysates were 

centrifuged at 15, 000 rpm for 5 min at 4°C. The TAG and CE content of the 

supernatants were separately measured using the Triglyceride Assay Kit and CHO 

Assay Kit (BioSino Bio-Technology and Science Inc, China). The corresponding 

protein concentration was quantified using a Pierce BCA Protein Assay Kit (Thermo, 

USA). 

 

2.7. Growth rate and fertility analysis 

Eggs isolated from gravid adults using hypochlorite treatment were hatched in M9 

buffer overnight, and were then plated onto NGM plates. The number of worms that 

reached adult stage was scored 2 days later. Then, 5 L4 worms were transferred 

individually to fresh plates. Worms were transferred daily until they did not produce 

any more progeny. Two or three days after removal of the adult, the number of live 

progeny was counted. Line charts and histograms were made with Graphpad prism 5. 

 

2.8. Quantitative RT-PCR analysis 

Total RNA was isolated using Trizol reagent according to the manufacturer’s 

protocol. cDNA was synthesized using Moloney murine leukemia virus (M-MuLV) 

reverse transcriptase with random hexamer primers. RT-PCR was performed on a 

CFX96 real-time system with SYBR green. Relative expression levels of all mRNAs 

were normalized to ama-1 mRNA. 

 

2.9. Statistical analyses 

Data are presented as mean ± SEM unless otherwise indicated. The statistical 

analyses were performed using GraphPad Prism 6 and Image J (NIH, USA). 

Determination of significance between groups was performed using Student t-tests, or 

Two-way ANOVA as indicated. 

 

3. Results 

3.1. HSD proteins are present in the LD proteomes of almost all cell types and 

organisms 

There have been numerous studies examining the proteomes of LDs from diverse 

cell types and tissues of organisms including bacteria, green algae, yeast, plants, 

worms, insects, and mammals. HSD family members have been identified on LDs in 

many of these studies as summarized in Table 1 and Table S2. The variations in the 

nomenclature for HSD proteins are presented for reference in Table S3. The SDR 

proteins that have been found in various LD proteomes are summarized in Table S4. 
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3.2. 17β-HSD11 family proteins are localized on LDs from bacteria, C. elegans 

and mammals 

As shown in Table 1, 17β-HSD11 subfamily members are frequently found on 

LDs. These proteins are highly conserved among bacteria, yeast, worms, insects, mice, 

and humans as demonstrated by sequence alignment (Fig. 1A). Here, we use 

Rhodococcus RHA1, C. elegans and HeLa cells to determine the localization of HSD 

proteins.  

In bacteria, three HSD proteins, ro03952 (ortholog of 17β-HSD10), ro06007 

(ortholog of 17β-HSD11) and ro01416 (ortholog of 17β-HSD12) were identified in 

LD proteomes (Table S2). To confirm the localization of these three proteins by an 

independent method, GFP fusion proteins were expressed in RHA1. The transfected 

cells were stained with LipidTOX red and were visualized by confocal microscopy. 

The images showed no colocalization of LipidTOX with ro03952-GFP and 

ro06007-GFP (data not shown), suggesting that these proteins are not located on LDs, 

or that GFP disrupts their targeting. However, ro01416-GFP was clearly colocalized 

with LDs (Fig. 1Ba). For further confirmation, the ro01416-GFP strain was 

fractionated by differential centrifugation and the fractions were separated by SDS- 

PAGE. The ro01416-GFP protein was found in the LD fraction as shown by Western 

blotting (Fig. 1Bb). Therefore, ro01416 is localized to LDs in RHA1 while the other 

two family members are not. 

In C. elegans, the protein DHS-3, the ortholog of 17β-HSD11, was specifically 

localized on LDs as demonstrated by both morphological and biochemical methods 

(Fig. 1Ba and Fig. 1Bb). This is in agreement with our previous work [11, 75]. When 

human 17β-HSD11-GFP was expressed in HeLa cells, it also colocalized with 

LipidTOX signals (Fig. 1Ba). In addition, in untransfected HeLa cells, endogenous 

17β-HSD11 was detected in LDs by Western blotting (Fig. 1Bb), which was 

consistent with previous findings [49, 71].  

To verify these results, additional in vitro experiments were conducted. We have 

reported that recombinant LD-associated proteins could be recruited to adiposomes 

constructed in vitro [46]. Recombinant GST-ro01416, GST-DHS-3 and 17β-HSD11 

were expressed in and purified from E. coli. These recombinant proteins were 

incubated with adiposomes, the mixture was centrifuged, and the solution containing 

unbound proteins was removed (Fig. S1a). Fractions from the separation were 

examined by silver staining and Western blotting. These analyses demonstrated that 

ro01416 was partially targeted to the adiposomes, and that DHS-3 and 17β-HSD11 

localized to adiposomes (Fig. S1b). This finding indicated that these three proteins 

could target to LDs without interactions with any other proteins. Together, these 

results reveal that 17β-HSDs in bacteria, C. elegans and mammals all target to LDs 

(Fig. 1C). 

 

3.3. DHS-3 and its paralogs, DHS-4 and DHS-19, are localized on LDs in 
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different tissues in C. elegans 

In C. elegans, the DHS family members DHS-3, DHS-4, DHS-9 and DHS-19 

were found in the LD proteome (Table. S2). Based on the small phylogenetic tree, 

DHS-3, DHS-4 and DHS-19 are closely related, and all of them are predicted to be 

orthologs of 17β-HSD11 (Fig. 2A and Table. S5). To examine the cellular distribution 

and localization of DHS-4 and DHS-19, transgenic dhs-4p::dhs-4::gfp and 

dhs-19p::dhs-19::gfp animals were generated. The dhs-3p::dhs-3::gfp animals were 

generated in our laboratory previously. The localizations of the GFP fusion proteins 

were observed within the living animals using confocal microscopy. DHS-3 (Fig. 2Ba, 

arrow) has been determined to be mainly localized on intestinal LDs [75]. Based on 

the morphology, DHS-4 was detected in the hypodermis (Fig. 2Bb, arrows). DHS-19 

was also in the hypodermis, as well as possibly localized on LDs in the muscle (Fig. 

2Bc, arrows). In addition, DHS-4 and DHS-19 were present on ring-like structures, 

typical for LD localized proteins. To further verify the LD localization of these GFP 

fusion proteins, the previously identified LD protein MDT-28/PLIN-1::mCherry was 

introduced to these three reporters and was visualized by confocal microscopy. All 

GFP signals were observed to be colocalized with the mCherry signals (Fig. S2), 

directly demonstrating their subcellular localization to LDs. 

 

3.4. DHS-9::GFP labels nuclear LDs in C. elegans and Huh7 cells 

DHS-9 is predicted to be an ortholog of DHRS1 (which has been identified in a 

LD proteomics study), and is part of a subfamily of the SDR superfamily (Table. S4). 

To examine the expression pattern and cellular functions of DHS-9, DHS-9::GFP 

driven by its endogenous promoter was constructed. We observed that the GFP tagged 

protein was expressed in the intestine, and was found at high levels in the nucleus and 

at lower levels in the cytosol (Fig. 2C). Besides the diffuse GFP signals in the nucleus, 

additional GFP puncta were found in the nucleoplasm of some, if not all, nuclei of 

intestinal cells (Fig. 2C). We further examined the punctate structures by confocal 

microscopy. Interestingly, micrographs of confocal microscopy with airyscan clearly 

showed clustered rings (Fig. 2D). Thus DHS-9 appears to form clustered rings in 

nuclei.  

To determine if the structures labeled by DHS-9 were nuclear LDs, we examined 

whether the previously identified LD protein DHS-3 and MDT-28/PLIN-1 could 

colocalize with DHS-9 in the nucleus. Thus, dhs-9p::dhs-9::gfp; 

dhs-3p::dhs-3::mCherry , and dhs-9p::dhs-9::gfp; 

mdt-28/plin-1p::mdt-28/plin-1::mCherry  worms were constructed and examined by 

confocal microscopy. The fluorescence images showed no colocalization of 

DHS-3::mCherry or MDT-28/PLIN-1::mCherry with DHS-9::GFP in the nucleus (Fig. 

S3a, Fig. S3b). Instead, DHS-3 and MDT-28/PLIN-1 were exclusively present on the 

cytoplasmic LDs. In another experiment, MDT-28/PLIN-1 was expressed with a 

nuclear localization signal to examine whether MDT-28/PLIN-1 colocalize with 

DHS-9 in the nucleus. Transgenic animals expressing 
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mdt-28/plin-1p::mdt-28/plin-1::mCherry::NLS; dhs-9p::dhs-9::gfp worms were 

generated and we observed MDT-28/PLIN-1::mCherry::NLS colocalized well with 

DHS-9::GFP in the nucleus (Fig. 2E).  

The DHS-9::GFP signal was also found in the cytosol (Fig. 2C). However, the 

signal was very weak, which made observation of specific LD targeting difficult. 

Therefore, to verify whether DHS-9::GFP could target to cytoplasmic LDs, LDs from 

dhs-9p::dhs-9::gfp worms were purified and examined microscopically. GFP signal 

was found on the purified LDs. In parallel, LDs from dhs-9p::dhs-9::gfp; 

mdt-28/plin-1p::mdt-28/plin-1::mCherry worms were purified and the images also 

showed GFP signal colocalized with mCherry signal (Fig. 2F, Fig. S3c), suggesting 

DHS-9 could target to cytoplasmic LDs.  

Nuclear LDs were observed previously in Huh7 cells [76]. Therefore, 

DHS-9::GFP was transfected into Huh7 cells to investigate whether the protein would 

target to nuclear LDs in mammalian cells. Under standard culture conditions, the GFP 

signal was diffusely distributed. However, when the cells were treated with 200 M 

OA, the DHS-9::GFP partially colocalized with LipidTOX staining in the cytosol and 

nucleus (Fig. 2G), demonstrating that DHS-9 can be targeted to mammalian LDs in 

both the cytosol and the nucleus. Similar results were seen with DHRS1, the ortholog 

of DHS-9 in humans (Fig. 2G). 

Together, these results show that DHS-3, DHS-4 and DHS-19 are localized on 

LDs in different tissues. Furthermore, for DHS-9, the targeting probably extends to 

nuclear LDs in the intestine of C. elegans (Fig. 2H) but a definite answer will require 

more sensitive tests in the future. 

 

3.5. LD targeting of DHS-3 and 17β-HSD11 is retained in divergent eukaryotic 

organisms 
We next examined whether LD targeting of 17β-HSD proteins was broadly 

conserved. First, the subcellular localization of DHS-3 in HeLa cells and that of 

17β-HSD11 in C. elegans was determined. DHS-3-GFP was transfected in HeLa cells 

and the protein showed perfect colocalization with LDs (Fig. 3Aa). Next, transgenic C. 

elegans that expressed 17b-HSD11 under the control of an intestinal-specific 

promoter was generated. The vha-6p::17β-HSD11::GFP was observed surrounding the 

LipidTOX signal in fixed worms (Fig. 3Ab). Together, these results clearly 

demonstrate that DHS-3 and 17β-HSD11 can target to LDs in diverse eukaryotic 

models. 

However, when ro01416-GFP was transfected in C. elegans and HeLa cells, we 

only observed diffuse GFP in the cytosol. Similarly, when DHS-3-GFP and 

17β-HSD11-GFP were transfected into RHA1 cells, diffused fluorescence patterns 

were observed (data not shown). 

 

3.6. The N-terminal hydrophobic domains of DHS-3 and 17β-HSD11 are 

necessary for their association with LDs 
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To examine the mechanisms driving LD localization of the 17β-HSDs in different 

organisms, truncation mutants were prepared based on their secondary structures. 

GFP-fusion truncations of DHS-3 (amino acids 1-51 and 52-307) and that of 

17β-HSD11 (amino acids 1-38 and 39-300), as well as their full-length proteins were 

constructed and then expressed in HeLa cells. The results showed that the full-length 

and 1-51 fragment of DHS-3 as well as the full-length and 1-38 fragment of 

17β-HSD11 were colocalized with LDs (Fig. 3B). However, the 52-307 fragment of 

DHS-3 and 39-300 fragment of 17β-HSD11 were restricted to the cytosol, indicating 

that the N-termini of these two proteins were necessary for LD targeting. 

A similar experiment was conducted with the bacterial ro01416. GFP-fusion 

fragments (amino acids 1-60, 1-223, 61-267, 100-267, 144-267, 197-267 and 224-267) 

and the full-length protein were generated and were expressed in RHA1 cells. 

Analysis by confocal microscopy showed that the full-length and fragments of 61-267, 

100-267, and 144-267 were colocalized with LipidTOX signal, and the 197-267 

fragment was partially colocalized with LDs. In contrast, the 1-60, 1-223 and 224-267 

fragments were distributed in the cytosol, indicating that the C-terminus of ro01416 

was necessary for its targeting to LDs (Fig. S4a). 

The alignment of LD targeting sequences, including C-terminus of ro01416 

(144-267), and N-termini of DHS-3 (1-51) and 17β-HSD11 (1-38), showed that the 

LD targeting sequences of DHS-3 and 17β-HSD11 were more similar to each other 

than either was to the ro01416 C-terminus (Fig. S4b).  

 

3.7. Exogenous expression of DHS-3 and 17β-HSD11 induces LD aggregation and 

elevated TAG levels 

We next examined the functions of DHS-3 and 17β-HSD11. Overexpression of 

DHS-3 in C. elegans induced LD clustering (Fig. 2B). Examination of a 

vha-6p::dhs-3::gfp single copy worm showed GFP signal on relatively dispersed LDs. 

We speculate that the expression level of DHS-3 in various strains could affect LD 

distribution. To further explore this possibility, dhs-3p::DHS-3::Flag was exogenously 

expressed in the dhs-3 single copy transgenic worm (Fig. S5a), resulting in strongly 

clustered LDs (Fig. 4A).  

Based on this finding, we investigated whether 17β-HSD11 would induce a 

similar phenotype in mammalian cells. Expression of 17β-HSD11::FLAG was 

expressed in HeLa cells (Fig.  S5b) induced LD clustering, in contrast to control 

cells that expressed GFP (Fig. 4Ba). In addition, TAG assay showed there was a 

notable increase in TAG content in 17β-HSD11::FLAG-overexpressing cells (Fig. 4 

Bb).  

We next tested whether these proteins had evolutionarily conserved ability to 

induce LD clustering. DHS-3::FLAG was overexpressed in in HeLa cells, which 

resulted in clear LD clustering and elevated TAG content (Fig. 4C, Fig.  S5c). 

Similarly, 17β-HSD11::GFP induced LD aggregation in C. elegans (Fig. 4D). 

Collectively, these results reveal that DHS-3 and 17β-HSD11 regulate LD dynamics 
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with similar mechanisms in diverse eukaryotic models. 

 

3.8. The catalytic sites of the 17β-HSDs are not involved in their localization or 

influence on LD clustering  

The 17β-HSDs belong to the SDR family of enzymes that contain a variable 

N-terminal Gly-X3-Gly-X-Gly motif as part of the NAD(P) binding region and a 

substrate binding region formed by a catalytic triad of Ser (S), Tyr (Y), and Lys (K) 

residues [77]. The sequence alignment of DHS-3 and 17β-HSD11 showed that these 

two proteins possessed the common Gly-rich motif and active site (Fig. 1A). 

Therefore, catalytic site mutants of these 17β-HSDs were created and expressed to 

determine whether enzymatic activity was involved in their localization and function. 

Both DHS-3(S175A)::GFP and DHS-3(Y---K188-192 deletion)::GFP were found 

to clearly surround LDs when expressed in C. elegans (Fig. 4Ea). Interestingly, both 

DHS-3(S175A)::GFP and DHS-3(Y---K188-192 deletion)::GFP also induced LD 

clustering in C. elegans similar to that seen with wild type DHS-3::GFP 

overexpressed worms (Fig. 4Eb). Similarly, overexpression of 

17β-HSD11(G-G-G45-49AAAAA)-FLAG, 17β-HSD11(S172A)-FLAG, 

17β-HSD11(Y---K185-189AAAAA)-FLAG, and 17β-HSD11(triple mutants)-FLAG 

in HeLa cells resulted in increased TAG and CE content (Fig. 4Fb, Fig. 4Fc, Fig.  

S5d). Furthermore, overexpression of 17β-HSD11(triple mutants)- FLAG was 

observed to induce clustered LDs (Fig. 4Fa). Other enzymatic site mutants produced a 

similar LD aggregation phenotype (data not shown). Collectively, these results clearly 

demonstrate that the catalytic sites of the 17β-HSDs do not participate in their 

localization or their regulation of LDs clustering. 

 

3.9. There is no evidence of ro01416 involvement in the regulation of LD 

distribution and size in RHA1 

We next investigated the ability of ro01416 to influence LD clustering and size in 

RHA1. Ro01416-GFP was expressed in RHA1 and the cells were stained with 

LipidTOX red. The cells were examined by confocal microscopy and the fluorescence 

images showed no apparent differences between wild type and the transfected cells 

(Fig. S6a). Similar to DHS-3 and 17β-HSD11, ro01416 possesses the common 

Gly-rich motif and active site. We expressed ro01416 (S144 deletion)-GFP and 

ro01416 (Y---K157-161 deletion)-GFP in RHA1 and processed the cells for imaging. 

Both deletion mutants were targeted to LDs and the LD distribution and size were 

unchanged from that of the wild type cells (Fig.  S6b). Biochemical analysis 

confirmed that these two GFP tagged catalytic site mutants were targeted to LDs (Fig. 

S6c).  

Next, we constructed a ro01416-KO (knock out) strain which was confirmed by 

PCR (Fig. S6d, Fig. S6e). There was no change in the size or distribution of LDs in 

the knockout cells (Fig. S6f). Furthermore, there were no differences in the amount of 

TAG in ro01416-KO, ro01416-KO-ro01416-GFP, ro01416-GFP, 
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ro01416-KO-ro01416(S144 deletion)-GFP or ro01416-KO-ro01416(Y---K157-161 

deletion)-GFP strains (Fig. S6g). Therefore, the ro01416 protein does not appear to 

have any influence on the regulation of LD distribution and size. 

 

3.10. Loss of function of DHS-3 down regulates fat storage 

As DHS-3 and 17β-HSD11 have been determined to induce LD aggregation, we 

undertook a functional study using deletions mutants. We leveraged the genetic 

tractability of C. elegans to examine the phenotype of dhs-3 mutants. Previous studies 

showed a clear decrease in LD size in dhs-3(gk873395) mutants [75]. For our study 

we examined dhs-3(tm6151) which deleted 547bp stretching from the promoter region 

to the second exon (Fig. S7a). The patterns of LD-associated proteins from the 

mutants and wild type animals were compared by silver staining and Western blotting. 

A 36kDa band present in the wild type LD protein extract was absent in the dhs-3 

deletion mutants. Western blotting confirmed knockout of DHS-3 in the mutants (Fig. 

S7b, Fig. S7c).  

To examine the effects of DHS-3 knockout on LD distribution and size, dhs-3 

mutants and wild type animals were fixed with paraformaldehyde and stained by 

LipidTOX red. The fluorescence images were used to quantify LD size. The LDs in 

dhs-3 mutants were significantly smaller than those in wild type animals (Fig. 5A, Fig. 

5B). In addition, there was an obvious reduction of TAG content in dhs-3 mutants (Fig. 

5C). LDs were purified from dhs-3 mutants and wild type animals which were then 

stained by LipidTOX red. The size of LDs from dhs-3 mutants was decreased 

compared with wild type (Fig. S8a). The size of the isolated LDs was measured by a 

Delsa Nano C particle analyzer. By this analysis the mean LD diameter of dhs-3 

mutants was smaller than that of wild type (Fig. S8b). The results were consistent 

with our previous work in dhs-3(gk873395) mutants [75]. 

 

3.11. DHS-3 regulation of fat storage is not dependent on SBP-1 or SCDs 

Next we investigated whether DHS-3 influenced lipid storage through lipogenesis 

or lipolysis pathways. First, the lipogenesis pathway was investigated. SBP-1, the C. 

elegans SREBP1c ortholog, is required for efficient transcription of genes involved in 

fatty acid synthesis. Depletion of sbp-1 resulted in significantly decreased fat stores 

[78]. Therefore, the double knockout strain dhs-3; sbp-1 was created and the size of 

LDs was quantified. The double mutants had smaller LDs than either single mutant 

(Fig. S9a, Fig. S9b). There was no difference in SBP-1 mRNA level in the dhs-3 

mutants (Fig.  S9e). There was no apparent change in nuclear localization of 

GFP::SBP-1 in animals treated with dhs-3 RNAi (Fig.  S9f). Together, these results 

suggest that DHS-3 influences lipid storage by a pathway independent of SBP-1.  

Three genes, fat-5, fat-6 and fat-7, encode stearoyl-CoA desaturases (SCDs) in C. 

elegans and these proteins operate downstream of sbp-1. It is known that fat-6; fat-7 

double mutants accumulate less fat than wild type [79]. Therefore, we generated a 

dhs-3; fat-6; fat-7 triple mutants. The triple mutants had smaller LDs than the fat-6; 
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fat-7 double mutants (Fig. S9c, Fig. S9d), suggesting that DHS-3 also does not 

function in the same pathway as FAT-6 and FAT-7. 

 

3.12. Inactivation of dhs-3 results in small LDs dependent on atgl-1 

Since dhs-3 deletion reduced fat storage in the lipid synthesis defective mutants, 

we suspected that dhs-3 deletion resulted in accelerated lipolysis. Adipose triglyceride 

lipase (ATGL) is the rate-limiting enzyme for triglyceride catabolism in mammals and 

C. elegans [80, 81]. The ATGL ortholog in C. elegans is encoded by atgl-1. Therefore, 

we knocked down atgl-1 by RNAi in wild type and dhs-3 mutants and quantified LD 

size by LipidTOX red staining. The RNAi resulted in increased LD size in wild type 

and significantly restored LD size in the dhs-3 mutants (Fig. S10a, Fig.  S10b). Next, 

sbp-1 mutants and dhs-3; sbp-1 double mutants were treated with atgl-1 RNAi. 

Knockdown of atgl-1 had no effect on LD size in sbp-1 mutants. However, atgl-1 

RNAi significantly increased LD size in dhs-3; sbp-1 double mutants (Fig. S10c, Fig. 

S10d). Together, the data suggest that atgl-1 is involved in the accelerating lipid 

metabolism in dhs-3 inactive worms. 

 

3.13. DHS-3 and 17β-HSD11 affect the localization of ATGL on LDs 

The mechanism by which ATGL-1 affected lipid storage in dhs-3 mutants was 

investigated. First, ATGL-1 mRNA level was measured by RT-PCR to determine if 

dhs-3 knockout influenced it. However, the knockout had no effect on ATGL-1 

mRNA level (Fig. S11a). Next, transgenic ATGL-1::GFP animals were generated in 

dhs-3 mutants to determine if the ATLG-1 protein level was altered by dhs-3 knockout. 

Fluorescence micrographs showed no clear change in ATGL::GFP protein levels 

between wild type and dhs-3 mutants (Fig. S11b). Furthermore, quantification of GFP 

showed no obvious change in dhs-3 mutants (Fig. S11c). However, Western blotting 

of ATGL-1::GFP exhibited a slightly increase signal in dhs-3 mutants (Fig. S11d).  

The localization of ATGL-1::GFP was investigated. Fluorescence micrographs 

showed that the GFP fluoscence on separate LD labeled by 

MDT-28/PLIN-1::mCherry increased in dhs-3 mutants (Fig. 6Aa, Fig. 6Ab), but the 

percentage of ATGL-1::GFP and MDT-28/PLIN-1::mCherry colocalization in dhs-3 

mutants has no significant change (Fig. 6Ac). Moreover, it was found that loss 

function of DHS-3 led to a significant increase of ATGL-1 on LDs by Western 

blotting (Fig. 6B). Thus, a loss of DHS-3 promotes ATGL-1 translocation to LDs. 

Overexpression of 17βHSD11, the ortholog of DHS-3 in mammals, caused LD 

aggregation similar to that of DHS-3. Thus, we investigated whether 17β-HSD11 

could affect the localization of ATGL on LDs. Control and 

17β-HSD11-overexpressing HeLa cells were fractionated by differential 

centrifugation and the fractions were analyzed by Western blotting. Exogenous 

expression of 17β-HSD11 resulted in a reduction of ATGL on LDs without changing 

the localization or abundance of PLIN2 (Fig. 6C). Together, these results reveal that 

DHS-3 and 17β-HSD11 regulate LD size and distribution in a similar manner, 
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possibly through the modulation of ATGL recruitment to LDs (Fig. 6D). 

 

3.14. Loss of function of DHS-3 affects the progeny and growth rates of worms 

with a defect in fat synthesis  

DHS-3 and 17β-HSD11 clearly have significant influence on LD size, LD 

distribution and lipid metabolism. We were interested in determining what larger 

physiological roles these proteins play at the organismal level. C. elegans is a good 

model for physiological function studies. Therefore, lifespan, L1 survival, hatch rate, 

progeny and growth rate of dhs-3 mutants were assessed. However, there were no 

significant changes compared with wild type (data not shown). It has been reported 

that sbp-1 mutants generated fewer progeny and displayed growth defects [78]. We 

found that dhs-3; sbp-1 double mutants produced fewer progeny and had slower 

growth than the single mutants (Fig. S12a, Fig. S12b). In addition, loss function of 

DHS-3 further reduced progeny production and slowed the growth of fat-6; fat-7 

double mutants (Fig. S12c, Fig. S12d). Therefore, DHS-3 impacts progeny and 

growth rate in worms containing a defect in fat synthesis. 

 

4. Discussion 

4.1. HSDs localize on LDs in different organisms, different tissues and cell types, 

as well as LDs in cytosol and nucleus, and different cytoplasmic LD subsets 

In our study, we have summarized the majority of available LD proteomic data. 

Several SDRs and a subset of HSDs, the 3β-HSDs, 11β-HSDs and 17β-HSDs, have 

been broadly identified on LDs across tissues and organisms, suggesting an ancient 

role for this family in lipid metabolism. To analyze the relationships among the HSD 

proteins, datasets from 12 organisms covering 37 proteins were summarized (Table 

S5). Using this dataset, the Maximum Likelihood tree for orthologous and paralogous 

proteins of the HSD family was generated (Fig. S13). It can be inferred from the tree 

that HSD proteins have been subjected to substantial selective pressure resulting in 

repeated loss and gain of function mutations. Multiple duplication events and higher 

level mutations have resulted in a large protein family with members performing 

diverse functional roles across organisms, tissues, and organelles.  

The involvement of HSD family in LD function can be traced back to bacteria, 

demonstrating the ancient origins of this role. In this study, the HSD protein, ro01416, 

was identified on LDs in RHA1. The protein ENV9, an ortholog of RDH12 in humans, 

targeted to LDs in S. cerevisiae [82]. DHS-3 and its paralogs were targeted to LDs in 

C. elegans, CG2254 was found on LDs in Drosophila [21, 83], and 17β-HSD11 and 

17β-HSD13 were localized on mammalian LDs [12, 71]. However, as the available 

phylogenetic tree is incomplete, it is not possible to draw firm conclusions on the 

evolutionary relationships among the LD-targeted HSDs. 

An evolutionary expansion of the HSD family accompanied increased cellular 

complexity. The development of organelles and multicellularity saw increased 

complexity in expression patterns of the growing protein family (Fig. 2H). A given 
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LD may have multiple HSDs and some HSDs can be found in several different tissues. 

In C. elegans, we found DHS-3, DHS-4 and DHS-19 on LDs in different tissues. 

DHS-3 was expressed in the intestine, the main lipid storage site. DHS-4 was 

expressed in hypodermis, and DHS-19 was in the hypodermis and those close to 

muscle. In humans, 17β-HSD11 was targeted to LDs in epithelium, skeletal muscle, 

liver, intestine and other tissues. However, 17β-HSD13, which was very similar to 

17β-HSD11, exhibited liver-specific expression [42]. The other 17β-HSDs (labeled by 

purple in Fig. 2H) were reported to be expressed in several tissues [84-90]. In the 

summary of LD proteomes, 17β-HSD2, 17β-HSD4, 17β-HSD7 and 17β-HSD12 were 

present on LDs in several tissues. In contrast, 17β-HSD6 was present only on liver 

LDs, and 17β-HSD8 and 17β-HSD10 were found only in BAT LDs of mice.  

In addition to the differential expression of these proteins across tissue types, these 

proteins also vary in their intracellular localization (Fig. 2H). In eukaryotic cells, 

neutral lipids are mainly stored in cytoplasmic LDs. Recently nuclear LDs were also 

found in hepatic tissues and liver cells [76, 91, 92]. Here, DHS-9::GFP was shown to 

partially localize on both cytoplasmic and nuclear LDs in C. elegans. And it was 

predominantly on nuclear LDs in the intestinal cells with only a weak cytoplasmic 

signal. However, besides the colocalization of MDT-28/PLIN-1::mCherry::NLS and 

DHS-9::GFP in the nuclear, it will require more sensitive tests to demonstrate that 

DHS-9::GFP label nuclear LDs in C. elegans in the future. Following OA treatment, 

DHS-9 was partially targeted to both cytoplasmic LDs and nuclear LDs in Huh7 cells, 

so the nuclear localization of the GFP-tagged protein may be physiologic. In humans, 

DHRS1, the DHS-9 ortholog, could also localize on cytoplasmic and nuclear LDs. In 

our phylogenetic analysis, the DHRS1 family had a distant relationship with the other 

HSD proteins. Other HSDs are mainly localized on cytoplasmic LDs. For example, 

DHS-3 is absent from the nucleus. It is clear that DHRS1 family members can be 

targeted to both cytoplasmic and nuclear LDs, and it may be that the nuclear-targeted 

proteins have distinct nuclear localization signals (Fig. 2H).  

In the cytosol, proteins are targeted to different subsets of LDs by an unknown 

mechanism. For example, in Drosophila, CG2254 was recently found on different LD 

subsets as mediated by two distinct targeting motifs [83]. Together, HSDs could 

localize on LDs in different organisms, tissues and cell types, cytoplasmic and nuclear 

LDs, as well as different cytoplasmic LDs (Fig. 2H). However, their mechanisms and 

functional significance of these differing localizations are not clear.  

 

4.2. LD targeting of 17β-HSD proteins 

   In our study, we found that the related proteins DHS-3 and 17β-HSD11 were 

major LD proteins in C. elegans and humans, respectively. It seems that 17β-HSDs do 

not form continuous rings in C. elegans, but are present only on part of the LD 

periphery in Fig. 3A. This is a common phenomenon. When fixation and staining are 

used to visualize LDs for certain dyes, LD-associated proteins are disturbed 

dramatically. In Fig. 4D, it can be seen that 17β-HSDs form continuous ring on 
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individual LD in C. elegans without fixation.  

DHS-3 and 17β-HSD11 targeted to LDs by an N-terminal hydrophobic domain 

and could be appropriately targeted to LDs in diverse eukaryotic organisms. However, 

neither was targeted to LDs when expressed in RHA1, with the proteins showing only 

a diffuse cytoplasmic distribution. Similarly, ro01416-GFP was found on LDs in 

RHA1 but gave only a diffuse cytoplasmic distribution when expressed in C. elegans 

or HeLa cells (data not shown). It is suspected that the eukaryotic proteins are not 

folded properly when expressed in bacteria and vice versa. It is also possible that 

differences in LD membrane composition prevent appropriate targeting. Eukaryotic 

membranes are rich in phosphatidylcholine (PC) while prokaryotic membranes are 

rich in phosphatidylethanolamine (PE) [93, 94]. Our finding suggests that ro01416 

targets to adiposomes inefficiently compared with the other proteins may be due to the 

adiposomes construction with PC. 

It is known that the hydrophobic N-termini of DHS-3 and 17β-HSD11 and the 

hydrophobic C-terminus of ro01416 are required for LD targeting. However, no more 

details are known and there is no known common targeting motif across HSD family 

proteins. It has been reported that the sequence adjacent to the N-terminal 

hydrophobic domain in 17β-HSD11 had a weak homology with the PAT motif. And 

both of them are sufficient for ER localization with LDs and LD localization of 

17β-HSD11 [95]. Thus, it remains unknown if LD targeted proteins like the HSDs, the 

PAT family, and APO-like proteins share a common targeting mechanism [96].  

 

4.3. 17β-HSD11 family proteins regulate LD distribution and size in C. elegans 

and human cells  

Overexpression of DHS-3 and 17β-HSD11 was found to cause LD aggregation in 

C. elegans and HeLa cells. It is similar to that overexpression of AUP1 induces LD 

clustering in COS7 cells. The CUE domain of AUP1, the ubiquitin-binding domain, is 

not involved in LD localization of AUP1, but is important for LD clustering [97]. 

Whereas the protein enzymatic sites of DHS-3 and 17β-HSD11 were not involved in 

the LD targeting or in the LD aggregation, which suggests that these two proteins 

promote LD distribution with a different underlying mechanism. This was consistent 

with the previous finding that the enzymatic activity of CG2254 is not a strict 

requirement for its LD subset location [83]. In contrast, it has been reported that 

overexpression of Env9 led to the formation of fewer, larger LDs and that Env9 

oxidoreductase activity was essential for this effect [82], which highlights the 

diversity and complexity of SDRs on LDs. Overexpression of DHS-3 and 17β-HSD11 

also induced TAG accumulation in HeLa cells but not in C. elegans, suggesting other 

HSDs may serve to regulate TAG accumulation in C. elegans. 

In other experiments, a reduction in LD-associated ATGL was seen in 

17β-HSD11-overexpressing cells. Knock out of DHS-3 resulted in small LDs, 

decreased TAG, and increased ATGL on LDs. These results indicate that DHS-3 and 

17β-HSD11 may affect lipid through the regulation of lipolysis. The increased 
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lipolysis in dhs-3 mutants affected the lipid content, brood size, and growth rate in 

worms that are defective in lipogenesis. The SDRs were known to function as 

dimmers and tetramers [77]. Therefore, DHS-3 and 17β-HSD11 may form oligomers 

which form a protective layer on LDs, and the possible interaction between the 

proteins on different LDs may promote LD aggregation. However, further work is 

needed to elucidate the detailed mechanisms by which LD-localized HSDs influence 

LD size, distribution and function. And whether DHS-3 and 17β-HSD11 function as 

enzymes in other cellular processes and the functional significance of LD localization 

for the other HSD proteins remain unknown. 

Both of dhs-3(tm6151) and dhs-3(gk873395) were separately back-crossed for 6 

times, and small LDs were observed in these two alleles. Besides, the dhs-3 RNAi 

showed decreased LD size. Further, like the phenotypes in dhs-3; sbp-1 mutants, 

dhs-3 RNAi also enhanced the defect of lipid, brood size and growth rate in sbp-1 

mutants (data not shown). These results verified that loss of dhs-3 caused small LDs. 

In the rescue of small LDs in dhs-3(tm6151) mutants, the expression of 

DHS-3(isoform a)::GFP, fosmid containing dhs-3 gene, and dhs-3 genomic DNA 

(extrachromasomal arrays) showed no rescue. The single copy hjSi224 also cannot 

rescue (data not shown). We suspect that the expression level of DHS-3 is not well 

control although the single copy is already low expressed. It needs further 

investigation.  

 

4.4. Ro01416 has no significant role in LD regulation 

Ro01416, an ortholog of human 17β-HSD12, was identified on LDs in RHA1. 

Overexpression of ro01416-GFP had no significant effects on LD size or distribution. 

Also, LD size and TAG content were unchanged in ro01416 knock out cells. The 

possible reasons may include the following: 1) LD dynamics is difficult to observe in 

RHA1 due to their small size; 2) ro01416, although targeted to LDs, has a distinct 

function from its presumed orthologs, not impacting LD dynamics. It may be that 

ro01416 is one of a set of LD-associated HSDs which are not major LD proteins, 

unlike DHS-3 and 17β-HSD11. It may be that LD targeting of HSDs in ancient cell 

types serves other functions like signaling while having no roles in regulation of LD 

size or lipid storage. Perhaps the other roles of this class of protein evolved over time 

with the increased complexity of the cells and the functions of LDs.  

 

4.5. These findings contribute to LD studies 

   From prokaryotes to mammals, a large number of HSDs have been identified to 

localize on LDs. These proteins serve not only as excellent LD markers but also 

provide a new perspective on the study of LD evolution and diversity. These enzymes 

will likely be found to have important roles in lipid metabolism and LD regulation.  
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Figure 1 17β-HSD11 family proteins were localized on LDs of bacteria, C. elegans and 

mammalian cells. (A) 17β-HSD11 family members have similar predicted structural features and 

sequences. This cartoon compares the structures of six members of the 17β-HSD11 family. From 

top to bottom, the sequences are ABG97784.1 from Rhodococcus jostii, Q05016.1 from 

Saccharomyces cerevisiae, NP_001122508.1 from Caenorhabditis elegans, NP_001260655.1 

from Drosophila melanogaster, Q9EQ06.1 from Mus musculus and Q8NBQ5.3 from Homo 

sapiens. The secondary structural elements are predicted using Psipred. α-helices are indicated 

with cylinders, and β-strands with arrows. The Gly-X3-Gly-X-Gly motif, Ser (S), Tyr (Y), and Lys 

(K) residues are labeled. Substrate binding site regions, active site regions and NAD(P) binding 

site regions as predicted in NCBI are indicated. The percent identities represent the alignment of 

each sequence with Q8NBQ5.3 from Homo sapiens using blast in NCBI. (B) (a) Confocal 

microscopy images of LD localization of ro01416-GFP in RHA1, DHS-3::GFP in C. elegans and 

17β-HSD11-GFP in HeLa cells. The green ring-like structures are due to LD targeting of these 

three GFP fusion proteins. LDs were stained by LipidTOX (red). Scale bar, 5 µm. Enlarged 

images: scale bar, 1 µm. (b) ro01416-GFP-expressing bacteria, wild type C. elegans and HeLa 

cells were fractionated and proteins from isolated lipid droplets (LD), cytosol (Cyto), total 

membrane (TM), post-nuclear supernatant (PNS) and whole cell lysates (WCL) were separated by 

10% SDS-PAGE followed by silver staining or were analyzed by Western blotting with anti-GFP, 

anti-DHS-3 and anti-17β-HSD11, separately. (C) This cartoon depicts LD targeting of HSDs from 

prokaryotes (bacteria) to eukaryotes (yeast, worms, insects, mice and humans).  
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Figure 2 HSDs were localized on LDs in specific tissues and different cellular structures of 

individual cells in C. elegans. (A) Phylogeny of HSDs in LD proteome of C. elegans, including 

DHS-3, DHS-4, DHS-9 and DHS-19. (B) Tissue distribution of DHS-3, DHS-4 and DHS-19. 

Confocal micrographs of expression patterns of these three proteins in larval L4 stage animals: 

dhs-3p::DHS-3::GFP in the intestine, dhs-4p::DHS-4::GFP in the hypodermis, and 

dhs-19p::DHS-19::GFP in the hypodermis and muscle as indicated by the arrows. Scale bar, 5 µm. 

(C) Cellular distribution of DHS-9. Fluorescence micrographs of dhs-9p::DHS-9::GFP in larval L4 

stage animals. The upper images: scale bar, 100 µm. The lower images: GFP fluorescence in the 

nucleus is indicated by the arrow. Scale bar, 5 µm. (D) Micrographs of confocal LSM880 with 

airyscan showed dhs-9p::DHS-9::GFP in different optical slices from top to bottom (from left to 

right, from upper to lower). It allowed images to be taken with a higher resolution than the 

diffraction limit. (E) Confocal micrographs of MDT-28/PLIN-1::mCherry::NLS and DHS-9::GFP 

in a young adult animal. Colocalization of RFP and GFP signals in the nucleus is indicated by 

arrows. Scale bar, 5 µm. (F) (a) Fluorescence micrographs of isolated LDs in wild type (1), 

vha-6p::gfp (2), dhs-9p::dhs-9::gfp (3), mdt-28/plin-1p::mdt-28/plin-1::mCherry (4) and 

dhs-9p::dhs-9::gfp; mdt-28/plin-1p::mdt-28/plin-1::mCherry (5) animals. Scale bar, 5 µm. 

Enlarged images: scale bar, 5 µm. (b) Quantification of images in (a). (G) Confocal micrographs 

of LD localization of DHS-9 and DHRS1 in Huh7 cells. GFP control, DHS-9-GFP (NP_498146.1) 

and DHRS1-GFP (Q96LJ7.1) were transfected into Huh7 cells with OA (+OA) or without OA 

(-OA ) treatment. LDs were stained with LipidTOX (red) and the nucleus by Hoechst (blue). Scale 

bar, 5 µm. Enlarged images: scale bar, 1 µm. (H) The Cartoon shows HSDs are localized on LDs 

in different tissues and on different types of LDs. DHS-3, DHS-4 and DHS-19 (green) are 

separately localized on cytoplasmic LDs in intestine, hypodermis, hypodermis and muscle. The 

human ortholog 17β-HSD11 (green) was in several tissues, while 17β-HSD13 was restricted to the 

liver. Other 17β-HSDs (purple) were found in the LD proteomes of different tissues (not yet 

validated by additional experimental data). DHS-9 and its human homolog DHRS1 (orange) are 

localized on cytoplasmic LDs and nuclear LDs in the intestine of C. elegans and liver cells of 

mammals. 
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Figure 3 DHS-3 and 17β-HSD11 targeted to LDs in diverse eukaryotic organisms, and 

N-terminal hydrophobic domains were necessary for their association with LDs. (A) 

Confocal micrographs showing LD localization of DHS-3-GFP in HeLa cells (a) and 

17β-HSD11::GFP in C. elegans (b). DHS-3-GFP was transfected into HeLa cells and 

vha-6p::17β-HSD11::GFP transgenic animals were generated. LDs were stained by LipidTOX 

(red). Scale bar, 5 µm. Enlarged images: scale bar, 1 µm. (B) LD targeting sequences of DHS-3 

and 17β-HSD11. Truncations of DHS-3 (a) and 17β-HSD11 (b) were made based on secondary 

structure predictions (α helices indicated with blue vertical lines; β strands with red vertical lines 

and β turns with light green vertical lines). Constructs coding for the full length proteins and 

truncations of DHS-3 and 17β-HSD11 were fused with GFP, expressed in HeLa cells and 

co-imaged with LipidTOX staining using confocal microscopy. Scale bar, 5 µm. Enlarged images: 

scale bar, 1 µm. 
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Figure 4 Overexpression of DHS-3 and 17β-HSD11 induced LD aggregation and TAG 

accumulation. Catalytic site mutants also induced these phenotypes. (A) vha-6p::dhs-3::gfp  

and vha-6p::dhs-3::gfp; dhs-3p::dhs-3::flag (a) animals were generated and visualized by 

confocal microscopy. Scale bar, 5 µm. Enlarged images: scale bar, 1 µm. (B) (a) GFP control and 

17β-HSD11-FLAG were transfected into HeLa cells which were stained with LipidTOX red and 

were visualized by confocal microscopy. Scale bar, 5 µm. Enlarged images: scale bar, 1 µm. (b) 

TAG content normalized to total protein was quantified. Data are presented as mean ± SEM., n=3.  

**P<0.01, Two-way ANOVA. (C) (a) GFP control and DHS-3-FLAG were transfected into HeLa 

cells which were stained with Hoechst and LipidTOX red and were visualized by confocal 

microscopy. Scale bar, 5 µm. Enlarged images: scale bar, 1 µm. (b) TAG content normalized to 

total protein was quantified. Data presented as mean ± SEM., n=3. **P<0.05, two-tailed t-test. (D) 

vha-6p::17β-HSD11::gfp transgenic animals were constructed and examined by confocal 

microscopy. Scale bar, 10 µm. Enlarged images: scale bar, 1 µm. (E) Transgenic animals with 

dhs-3p::DHS-3(S175A)::GFP and dhs-3p::DHS-3(Y---K188-192 deletion)::GFP were constructed 

and visualized by confocal microscopy (b). LDs were stained with LipidTOX red (a).   Scale bar, 

5 µm.  Enlarged images: scale bar, 1 µm. (F) GFP control (1), 17β-HSD11-FLAG (2), 

17β-HSD11(GHGIG45-49AAAAA)-FLAG (3), 17β-HSD11(S172A)-FLAG (4), 

17β-HSD11(YCSSK185-189AAAAA)-FLAG (5), and 17β-HSD11-FLAG(triple mutants) (6) 

were transfected in HeLa cells. TAG (b) and CE (c) content normalized to total protein was 

quantified. Data presented as mean ± SEM., n=3. **P<0.05, two-tailed t-test. GFP control and 

17β-HSD11-FLAG(triple mutants)-overexpressing cells were examined by confocal microscopy 

with LipidTOX staining (a). Scale bar, 5 µm. Enlarged images: scale bar, 1 µm. 
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Figure 5 DHS-3 knock out caused a decrease in LD size and TAG content. (A) L4 worms of 

wild type and dhs-3 mutants were fixed and stained with LipidTOX. Scale bar, 5 µm. (b) The 

diameters of stained LDs were quantified. Data represent mean ±SEM. n=20. ***P<0.0001, 

two-tailed t-test. (c) TAG content normalized to total protein was quantified. Data presented as 

mean ± SEM., n=3. **P<0.05, two-tailed t-test. 
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Figure 6 DHS-3 and 17β-HSD11 affected the localization of ATGL on LDs. (A) (a) 

mdt-28/plin-1p::mdt-28/plin-1::mCherry; vha-6p::atgl-1::gfp and dhs-3; 

mdt-28/plin-1p::mdt-28/plin-1::mCherry; vha-6p::atgl-1::gfp animals were visualized by confocal 

microscopy. Scale bar, 10 µm. Enlarged images: scale bar, 5 µm. (b) Quantification of 

ATGL-1::GFP fluorescence intensity in (a). Data represent mean ± s.d., n=5. ***P<0.0001, 

two-tailed t-test. (c) The percentage of ATGL-1::GFP and MDT-28/PLIN-1::mCherry 

colocalization was quantified. Data represent mean ± s.d., n=5. ns, no significance. (B) Western 

blotting analysis showing increased ATGL-1 targeting to LDs in dhs-3 mutants. 

vha-6p::atgl-1::gfp and dhs-3; vha-6p::atgl-1::gfp animals were collected and fractionated. The 

fractions were analyzed by Western blotting, probing with anti-GFP. MDT-28/PLIN-1, Actin and 

DHS-3 were probed as controls. (C) Western blotting analysis showing decreased ATGL targeting 

to LDs in 17β-HSD11-overexpressing HeLa cells. GFP control and 17β-HSD11-overexpressing 

cells were collected and fractionated. The distribution of endogenous ATGL in different fractions 

was analyzed by Western blotting with anti-ATGL. PLIN2 and 17β-HSD11 were detected as 

controls. (D) The model of DHS-3 and 17β-HSD11 regulating LD size and distribution and 

affecting the localization of ATGL on LDs. In C. elegans, dhs-3 knockout (KO) caused small LDs 

and increased ATGL-1 protein on LDs. In HeLa cells, overexpression (OE) of 17β-HSD11 

induced LD clustering and decreased ATGL protein on LDs. 
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Table 1 Summary of HSDs in LD proteomes 

 

Proteins LD types References 

 Organisms Tissues and cells  

3β-HSD1 Mouse; Human Intestine cells;  Steroidogenic cells [47-50] 

3β-HSD2 / /  

3β-HSD3 / /  

3β-HSD4 Rat Liver [51] 

3β-HSD5 Rat Liver [51] 

3β-HSD6 / / / 

3β-HSD7 Mouse; 

Rat 

Skeletal  muscle(cells);  Pancreatic 

β-cells 

[10, 52] 

11β-HSD1 Plants; Mouse; 

Human 

BAT; Liver; [12, 53-58] 

11β-HSD2 / / / 

11β-HSD3 / / / 

17β-HSD1 Yeast  [59, 60] 

17β-HSD2 Yeast; Human Liver; Intestine cells [12, 48, 61] 

17β-HSD3 / / / 

17β-HSD4 Mouse; Rat;  

Human 

BAT; Liver; WAT; Skeletal muscle 

(cells); Hepatocytes;  Pancreatic β-cells 

[10, 12, 52, 53, 62, 63] 

17β-HSD5 / / / 

17β-HSD6 Human Liver [12] 

17β-HSD7 Yeast;  

Mouse; Rat; Human 

Liver; Skeletal muscle(cells); Adipocytes; 

Epithelia; Fibroblasts;  

Intestine cells; 

Macrophage; Pancreatic β-cells;  

Steroidogenic cells 

[9, 10, 12, 47, 49, 51, 52, 

61, 64-68] 

17β-HSD8 Mouse BAT [53] 

17β-HSD9 / / / 

17β-HSD10 Bacteria; Insects;  

Mouse 

BAT; Steroidogenic cells [5, 49, 53, 69] 

17β-HSD11 Bacteria; Worms; 

Insects; Mouse; Rat; 

Human 

Liver; 

Skeletal muscle (cells); 

Epithelia; Fibroblasts; Hepatocytes; 

Intestine cells;  Steroidogenic cells 

[4, 9-12, 21, 47-49, 65, 

70-74] 

17β-HSD12 Worms; Bacteria; 

Mouse; 

Human 

Liver; Skeletal muscle cells [4, 10-12] 

17β-HSD13 Rat; Human Liver [12, 51] 

17β-HSD14 Yeast  [61] 
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Highlights 

 The hydroxysteroid dehydrogenase family is found on LDs from bacteria, C. 

elegans and mammals.  

 DHS-3 and 17β-HSD11 induce LD aggregation in C. elegans and mammalian 

cells. 

 Loss of DHS-3 reduces LD size and TAG content. 

 DHS-3 deletion increases ATGL-1 translocation on LDs and 17β-HSD11 reduces 

LD-associated ATGL. 
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