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Abstract

This research develops a theoretical model to explain the behaviour of the ther-

mopower in the quantum Hall regime. It uses the concept that at low temperatures

the transport through the system will be caused by thermal activation as well as

that caused by the conductance.

The model is built up in stages, starting with proving the assumption that

Dykhne’s theorem will work for an asymmetric distribution of particle transport

through the system and deriving the behaviour of the particles in the edge states of

the system. It then combines this information with a previously developed simple

model for the bulk of the modulation-doped GaAs/AlGaAs heterostructure and

compares this with experimental data. This reveals that this simple system is not

a viable model to represent the data, and as such the model is made more complex

with the inclusion of tunnelling.

The different parameters which describe the model are found, the saddle

energy gap ∆, the transition value for the edge states c, the current splitting pa-

rameter α and the tunnelling parameter γ. This is done either by extracting them

from the experimental data, or in the case of α considering it as a free parameter.

How these values vary with the temperature is investigated before a comparison of

the theoretical model including tunnelling is conducted with the experimental data.

The result from the comparison show a promising alignment between the

model and experiment, and further work is proposed where α is no longer considered

a constant.

xiv



Chapter 1

Introduction

In 1980 it was discovered by Klaus von Klitzing that at high magnetic fields the Hall

resistance in semi-conductors, which had previously been believed to be continuous,

was in fact quantised. This quantisation appeared in the form of plateaus at the

point where the Landau levels were full [1]. This is the discovery that led to the

theory of the integer quantum Hall effect. With better quality of semi-conductors, it

was found by D. C. Tsui, H. L. Stormer, and A. C. Gossard that these plateaus did

not only appear when the Landau levels were full but also between them [7]. This

new quantisation gave rise to a whole new area of physics to investigate, including

the concept of particles with fraction statistics and fractionally charged quasipar-

ticles [2]. This phenomena became known as the fractional quantum Hall effect.

Thirty seven years later and these effects are still very much at the forefront of con-

densed matter research. The quantum Hall effect is still providing new and varied

information on the particles and how they interact with each other and the under-

standing of how particles behave in this regime, where they are subjected to low

temperatures and high magnetic fields is being revealed.

This thesis will focus on developing a detailed understanding of the complex

behaviour of the particles in the fractional quantum Hall regime with relation to the

thermopower, as this phenomena can give a greater insight into the particles states.

Specific attention is shown to those states with an even filling factor, as these are

the factors which, as of yet, do not have a completely defined model to explain their

presence. This thesis presents a model which could explain these factors’ appearance

at the low energies in the quantum Hall regime.

The remainder of Chapter 1 will go into the theoretical background, giv-

ing a concise explanation of all the physical theories that have been investigated

within this thesis. Chapters 2 and 3 explore the experimental results of the inves-

1



tigation into the thermopower at low temperatures and high magnetic fields, and

the proposed theoretical model to explain this behaviour. They will give detailed

information on both, as well as discuss the assumptions and limitations with the

theoretical model proposed. This will lead to chapter 4 which will show that the

main assumption is indeed correct, and can be used in the model. Chapter 5 will in-

vestigate the edge states and derive an equation for how the current moves through

them in the quantum Hall regime. It will also investigate how that current behaves

under various limits to confirm it conforms to the current understanding of physics.

The edge current will then be included with the one from the bulk of the material

developed in the model from chapter 3, and the thermopower of that system will

be investigated in chapter 6. Chapter 7 will then take the investigation further and

see how tunnelling will affect the simplified model in Chapter 6. The thesis will be

rounded off in chapter 8 by a discussion of the model developed and how it relates

to the experimental results, as well as how it could be improved upon in the future

and its uses.

1.1 The Hall Effect

The classical Hall effect, discovered in 1879 by Edwin Hall, is the basic foundation

of the quantum model. It explains the relationship between the particles in a semi-

conductor and how they move when subjected to a magnetic field. The theoretical

principle is derived from the Lorentz force acting on conduction particles in the

material. This is given by

F = −ev ×B, (1.1)

where e is the charge of the particle, v is the average velocity of the particles

as they travel through the electric field, and B is the external magnetic field [8].

Therefore from (1.1), it can be shown that when subjected to a magnetic field B

and perpendicular current density j, the particles in the material create an electric

field EH in the third perpendicular direction [9]. This electric field is given by

EH = RHB× j, (1.2)

where RH is the Hall coefficient. This means the particles move across the material

in the direction that is perpendicular to both the current and the magnetic field

due to the Lorentz force, which is countered by the electric field such movement

generates. This is shown in fig. 1.1.
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z

y

x

Figure 1.1: A sketch showing the movement of negatively charged particles being
subjected to the high magnetic fields.

The Hall effect is easily seen in experiment, where the measurements are

taken using the Hall bar geometry, see fig. 1.2. Experimentally it is the Hall voltage

VH that is measured, for given values of current I, and magnetic field B.

VH

I

I

B

Figure 1.2: A sketch showing the layout of the Hall bar geometry.

This geometry is also used in current experiments to measure the quantum

Hall effect as it is the easiest way to conduct research into this phenomena, although

the systems studied are much smaller.

1.2 The Quantum Hall Effect: QHE

The quantum Hall effect appears in the 2 dimensional electron gas (2DEG) which

lies between two semiconductors in a doped heterostructure [10]. The 2DEG is a

scientific model that is used to describe the freedom of movement the electrons have

in two dimensions, while being strictly confined in the third [2]. This is shown in fig.

3



1.3. For the effect investigated here, this means that the electrons can only move in

the directions perpendicular to the magnetic field.

EC

EC

EF
EV

EF

EV

+
+
+

EC

EF

EV

(a) (b)

2DEG

z

y
x

Figure 1.3: Energy levels of a semiconductor heterostructure interface (a) before,
and (b) after the charge transfer.
EC is the energy of the conduction band, EV the energy of the valence band, and
EF the Fermi energy. The 2DEG can only move in the x-y plane, and not in the z
direction.

The quantum Hall effect also only appears at very low temperatures and high

magnetic fields. When these conditions are met then plateaus appear in the Hall

resistance graph at the points of Landau quantisation (see fig. 1.4). These plateaus

are caused by the 2DEG within the system becoming an incompressible quantum

liquid [6]. They appear at certain filling factors ν, which are given by

ν =
ne
φB

, (1.3)

where ne is the electron density and φB is the magnetic flux density. The filling

factor ν can take on certain integer and rational factional values, and these are

defined by the theories of the quantum Hall effect, both integer and fractional.
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Figure 1.4: The graphical results obtained by Klaus von Klitzing in 1980, showing
how the Hall resistance and the dissipative resistance quantises in the quantum Hall
regime of low temperatures and high magnetic fields [1]. The top line of data is the
Hall resistance, and the bottom set is the dissipative resistance.

It can be seen that where there is a plateau in the Hall resistance the dis-

sipative resistance tends to zero. In fig.1.4 this is where the numbers are shown

that correspond to the plateaus in the Hall resistance and the dips in the dissipative

resistance, for example the large plateau around 4T where the number 1 is shown.

This is because the electrons can now only move in the direction of the dissipative

current, which is the direction given by the electric field rather than the magnetic.

The filling factors that the plateaus appear at are defined by the quantisation of the

conductance, σ, such that it is given by

σ = ν
e2

h
. (1.4)
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1.2.1 Landau Quantisation

Landau quantisation is when the electrons in the 2DEG quantize into Landau levels,

which are the degenerate, discrete energy levels for the cyclotron orbits [11]. The

effects of Landau levels are only seen when

kBT << hωc, (1.5)

where kB is the Boltzmann constant, T is the temperature, h is the Plank constant

and ωc = eB/m is the cyclotron frequency. From this it can be seen that the

quantisation only happens when the temperature is low and magnetic field is high

[9]. The difference between two Landau levels is given by ~ωc. Therefore in a pure

system, the Landau quantisation will give an energy-density of states relationship

shown in fig 1.5a. But the system in which the quantum Hall effect appears is not a

pure one. It has disorder from the impurities needed for the 2DEG to form. These

impurities give rise to a broadening of the Landau levels into areas where the states

are localised, shown in fig. 1.5b.
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(a) The energy levels for the density of
states is clearly defined in a system with-
out impurities.
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(b) The Landau levels broaden in a sys-
tem with impurities, causing areas of lo-
calised and extended states.

Figure 1.5: The relationship between the Landau energy levels and the density
of states in a 2DEG with (a) a non-doped system, and (b) a system containing
impurities.

What this means is that the particles in the localised areas are confined to

travel along the contours surrounding the disordered potential, which has peaks and

troughs produced by the impurities. Those in the extended states however move

freely through the material. These extended states only appear in the areas between

the peaks and troughs in the disorder potential, and are the ones which give the
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freedom of movement to the particles that results in the Hall resistance, this is

shown in fig. 1.6 [2]. It can also be seen experimentally in [12].

Extended states

Extended states

Localised states

Localised states

Peak

Trough

Figure 1.6: A sketch of the trajectories of the particles in both localised and extended
states [2].Therefore it can be seen how those in the localised areas move around
the peaks and troughs, while those in the extended areas move freely through the
material.

1.2.2 The Integer Quantum Hall Effect: IQHE

The integer quantum Hall effect happens when the filling factor is an integer value.

It was the first example of the QHE to be seen. Therefore it has been the most

widely studied, and is now well understood. There is a well structured model that

explains this phenomenon. The concept of which is that the integer quantum Hall

effect appears when the Fermi level of the material is situated symmetrically between

the extended states of the Landau levels [13], (discussed in section 1.2.1). The levels

need to be occupied such that the lower state is completely full, and the higher

one still completely empty[14]. This is shown in fig.1.7. From this it can been seen

clearly that when this situation is realised, the particle in the lower extended state

n, would not be able to move. And the higher extended state of n + 1 is at a too

great an energy for any particle to move up into it. Therefore the 2DEG becomes

incompressible and the plateau forms in the resistance graph at this point. Then

as the magnetic field is increased the Fermi level will move up and particles will

again have the energy to move into the empty state, causing them to once again

7
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Figure 1.7: The Landau energy picture including the position of the Fermi level for
the IQHE to cause the plateaus in the resistance.

traverse the material. This movement causes the plateau in the resistance graph to

disappear, until the next integer filling factor where the Fermi level in once again

symmetrically positioned between the filled and empty extend states. This carries

on and is the physical concept behind the integer quantum Hall effect.

1.2.3 The Fractional Quantum Hall Effect: FQHE

The fractional quantum Hall effect (FQHE) is when the filling factor takes on a

rational fractional value. So the conductance equation (1.4) for the system is given

by

σ = ν
e2

h
, where ν =

p

q
. (1.6)

This phenomena comes from the electron-electron interaction within the system,

otherwise known as the Coulomb interaction. This is why it can appear in areas

where there are partially filled extended states [15]. Therefore at certain fractional

values of ν, the Coulomb interaction between the particles in different localised

states, becomes greater than the interaction with the disorder potential. This causes

the electron to de-localise, and move from its orbit around the peak (or tough), onto

a trajectory through the material. These trajectories give extended states in areas

that are not just at the centre of the Landau level, and in these de-localised extended

states the particles can condense into a new many-body incompressible state [16]. It
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is these incompressible states that give the plateaus that appear at fractional values

of ν [2].

In 1983 R. B. Laughlin proposed a theoretical model to explain how and why

these fractional states appeared. The main basis of which is that the particles come

together to form quasiparticles which hold a fractional charge, qe, of

qe =
e

q
, for ν =

1

q
. (1.7)

These quasiparticles then form the new ground state for his model. He proposed

that all other fractional states could be formed from these 1/q ground states [17].

Quasiparticle is a term used to define a collection of particles in a strongly correlated

system. In such a system the individual particles no longer behave as would be

predicted using standard perturbation theory. Instead it is found that the collection

of particles will interact weakly with other collections of particles. Thus, the particles

behave collectively as single particles would, though the fundamental properties of

these quasiparticles are different. They can take on fractional values of those of true

particles [18]. The particular quasiparticles believed to be the cause of the FQHE

are called composite fermions, which can have fractional charge, and obey the laws

of fermionic physics.

Laughlin’s theory was expanded by B. I. Halperin in 1984 to include fractions

other than those of ν = 1/q. This gives a well defined structure for the quantum

Hall effect at odd fractions, which were the only fractions that had been seen at

this time [19]. But in 1987, due to the improvement in the quality of the samples

being studied and the temperatures that the experiments could be taken to, an even

fractional quantum Hall state at value of ν = 5/2 was discovered [20]. The issue

with this discovery is that Laughlin’s original model does not include the concept

of even fractions within it. Therefore a new model needs to be devised that will

encompass all the possible fractional quantum Hall states, both even and odd.

The discovery of this model has presented a challenge. As investigation

into the even fractional states continued, and further information about them was

discovered, the suggestion that the even states are non-Abelian was put forth [21].

This is of interest to many as it would open up the idea of investigating this exotic

area of physics, but it has yet to be proved. Instead many have strived to find a

viable theory that includes both the odd and even fractional filling factors, as well

as agreeing with the experimental results that have been obtained. This is the aim

of this thesis, though the model is using the concept of the thermopower rather

than the resistance and conductivity of the system. This is done in the hopes that
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it simplifies the complex physical system, and that through this, more information

about the even fractional states can be determined [6].

1.3 Thermoelectric Transport

The thermoelectric effect describes how heat gets turned into electricity. It is an

overarching concept which contains within it three different physical effects. The

one investigated in this thesis is the Seebeck effect, which is also known as the

thermopower, and that it how it will be referenced throughout this work [22]. The

thermopower, also known as the thermoelectric transport of a system S, is given by

Sxx = −∆V

∆T
, (1.8)

which in words can be described as the voltage difference, ∆V , needed to make

the current zero over the temperature gradient, ∆T , of the material. Therefore

this defines the amount of voltage needed to quench the dissipative current that

is created by the temperature difference [23]. This can physically be taken as the

entropy per charge carrier [24]. The entropy of the states is of great interest in

the research of the FQHE [25]. This is due to the fact that if the quasiparticles

are obeying non-Abelian statistics, as it has been proposed that the even 5/2 state

does [21], then the entropy carried by then will be much higher than that carried

by the Abelian quasiparticles at low temperatures [[24],[26]]. As such developing

a model that explains the thermopower behaviour for all the filling factors of the

FQHE could further the understanding of physics involved in these states.

The thermopower has certain properties, for example it is negative for elec-

trons and positive for holes, as per their charge. Also the dissipative thermopower

will reduce at low temperatures where a plateau would occur in the resistor graph.

This corresponds to the higher amount of entropy that is present within these states.

Therefore the different states of the FQHE will be found within the data obtained.

This is shown in Chapter 2 where the results collected in [3] are discussed. This is

the data that is used to investigate the thermopower phenomena throughout this

thesis, and that which the model developed will be compared to at the end.
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Chapter 2

Experimental Investigation of

Thermopower

The thermopower is an interesting phenomena as it gives insight into parameters and

phases of a material that are not otherwise seen, for example its direct relationship

to the entropy of a particle at low temperatures. There are more than one proposed

experimental set-up that will allow the investigation of this phenomena, and in

this thesis the main two will be discussed and their advantages and disadvantages

explained. The two set-ups are the Hall bar geometry, which was explained in

chapter 1 and the Corbino geometry. The Corbino geometry is where a ring is

used in a Hall experiment rather than the standard bar. In fig.2.1 it is shown

how the voltage difference, ∆V , and the temperature difference, ∆T , are measured

across the ring of material. Due to this the dissipative current is also measured in

that direction, whereas the Hall current travels around inside and does not involve

itself in the measurements for the thermopower. Also it can be seen that as the

measurements are taken in the radial direction, there will be no edge effects that

need to be taken into account when studying the dissipative transport. Therefore

only the bulk of the material will need to be modelled to determine the behaviour

of the particles within the system. This simplifies the theoretical model needed,

as only one behaviour needs to be taken into account. But, it is very hard for

experimentalists to create such a prefect ring, and any anomaly in the structure

that will cause the slightest variation from a shape in which the radial direction is

the only one of interest, will cause a deviation from the theoretical model, which

could cause a dramatic difference in the results obtained [27]. The reasoning for this

is shown in fig.2.1.

The Hall bar geometry is the opposite. This shape is much easer for the
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experimentalists to create, and the measurement of the voltage and temperature

differences can be recorded using a system similar to the Hall effect experiments.

This is why most experiments are done in this geometry. But it does create troubles

for the theoreticians as they have not only the behaviour of the particles in the bulk

to explain, but also those on the edges. Though there have been recent developments

into experimentally using the Corbino geometry to investigate the behaviour of

particles in some Landau levels [28].

ΔV

Tc=T0

Th=T0+ΔT

Hall current

Figure 2.1: A sketch showing the Corbino geometry and how the different parameters
are measured using it. Tc is the colder temperature whereas Th is the hotter side.

2.1 Thermopower at Low Temperatures

As discussed, the thermopower relates directly to the entropy of the individual

particles. This was investigated in the paper ’Thermoelectric response of fractional

quantized Hall and re-entrant insulating states in the N=1 Landau level’ [3] which

threw up some interesting results. It is these results which spurred the idea for this

thesis, and is the basis of motivation for the development of the model presented
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here.

Figure 2.2: This is a image of the data for the thermopower at different tempera-
tures, red = 41mK and blue = 28mK, that was obtained by Chickering et al. in
2013 and published in the paper [3].

Shown in fig.2.2 is the relationship between the thermopower Sxx, which is

represented in the convention of electron dominated transport and thus is negative,

and the magnetic field B. There are several things of note shown in this diagram.

The first is the fact that at a certain point, the thermopower changes sign at low

temperatures. This means that at that particular point the transport domination

suddenly switches from electrons to hole domination. This switch does not happen

at a magnetic field value that would be associated with a filling factor. In fact there

are two different points where the thermopower Sxx minimises, but these are not at

reconsigned filling factors. It is reasoned in the paper that these minima are due

to the re-entrant integer quantized Hall effect (RIQHE), which are non-quantum

Hall states [2], these have been seen in behaviour of holes in the N=0 level [[3],

[29]] as well as at higher values of N [30], but this has not been proven, and it is

something that the model being described in this thesis hopes to be able to explain.

But what is of most interest though, is the fact that the thermopower switches sign

so abruptly at low temperatures. This confirms the high dependence Sxx has upon

the temperature, as well as creating an interesting phenomena to study, in the hopes
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of deriving a model that would explain this behaviour, and thus gain a step closer

to the understanding of the fundamental physics involved in low temperature, high

magnetic field physics.

2.2 Theoretical Approach to Explain the Behaviour of

the Thermopower at Low Temperatures

The theoretical way to approach modelling the behaviour of the thermopower in

the low temperature limits is to look at the temperature dependences of the various

transport coefficients in the quantum Hall regime, and find the properties which are

directly measurable in experiment. This is interesting as the thermal activation of

the carriers is a significant source of error to the quantized Hall conductance [14].

This means that while the thermoelectric effect for the system will be that given

by the quantized Hall effect, which has a solid theoretical standing, when measured

in low temperature experiments it will also have the input from the thermal effects

on the carriers. Both of these will contribute to the movement of the electrons

through the material, and therefore on the conductance, and yet they behave in

very different manners through the bulk of the sample and around the edges [31].

The next chapter will describe in more detail the model that has been developed to

investigate this behaviour in the bulk.
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Chapter 3

Theoretical Model

In the model for the dissipative transport proposed in [6], only the bulk of the

material is considered as it was derived in the Corbino geometry. Therefore there

are no edge state contributions to take in to account. The working principle of this

model is that there will be a varying background potential due to the disorder of

the sample which comes from the temperature gradient. This disorder will cause

compressible regions to form in the incompressible fluid. The dissipative transport

will therefore be due to the movement between these regions. This is shown in

fig. 3.1 where it can be seen how the thermal activation of the quasiparticles will

move them across the incompressible region from one compressible puddle to the

other puddle which has a lower temperature, T and chemical potential, µ. The

μl Tl

μr Tr

2a

μl Tl

μr Tr

(a) (b)

Figure 3.1: How the quasiparticles move through the bulk of the material. The red
and blue parts are areas of compressible puddles within the incompressible fluid.
The red indicates quasiholes and the blue quasiparticles. The arrows show how
the quasiparticles are localised around the puddles.(a) is the situation at minimum
dissipative resistance, where 2a is the distance between the compressible regions, and
(b) shows the arrangement after the quasiparticles have been thermally activated.

15



incompressible region that the quasiparticles will transverse is known as the energy

gap of the material, and can be modelled as a saddle point. This is due to the

fact that the quasiparticles will need higher than normal energy to transverse the

incompressible region, and they would also need this higher energy to move across

a saddle point. This is shown in fig.3.2 which shows the band alignment for the

system [6].

-a a

μl , Tl

μr , Tr

Δs

Esp

Esh

Figure 3.2: A diagram showing the band alignment for the system.The arrows rep-
resent how the quasiparticles are moving around the localised trajectories in fig.3.1,
and ∆s is the energy gap for the saddle point. Esp and Esh are the energies needed
for the quasiparticles and quasiholes to transverse the saddle point, respectively.

The band alignment of a typical saddle point created by the disorder, has

different values of the chemical potential, µ, and the temperature, T , on either side.

So the quasiparticles will want to move from the left to the right, which has the

lower values. They will either have the energy to go over the barrier or they will

tunnel through. This movement will create a flow of charge through the system.

This transfer of the quasiparticles across the saddle point will be given by the

ilr =
1

h

∫ ∆s

0
dET (E − Esp) exp

(
−E − µl

Tl

)
(3.1)

where Tl and µl are the temperature and chemical potential of the left puddle
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respectively. Also the T (E −Esp) is the transmission probability of a quasiparticle

crossing the saddle point. For a simplified model that does not take account of

tunnelling this value is either 0 or 1. Therefore this gives the net (number) current

of the quasiparticles system to be [6]

is =
1

h

(
−(qe)δV +

(
1 +

Esp
T

)
δT

)
exp

(
−Esp
T

)
. (3.2)

The same equation can be found for the quasiholes transport as well. The difference

for the quasiholes being that the charge, qe, will have an opposite sign, and the

whole equation will be negative as the transport will be in the different direction

to that of the quasiparticles. The net transfer of the quasiparticles therefore reflect

the potential difference ∆V , and temperature difference ∆T that are needed to find

the thermopower for the bulk of the material. This is done by using the relation

between the current, δV and δT that [6]

I = L(11)δV − L(12) δT

T
. (3.3)

Therefore the equation for the thermopower can be written using (3.3) such that

Sxx = −∆V

∆T
= − 1

T

L(12)

L(11)
. (3.4)

Using (3.4) and (3.2) will give a thermopower for both the quasiparticle and quasi-

holes to be

Sxx = −

(
1 +

Esp
T

)
exp

(
−Esp

T

)
−
(

1 + Esh
T

)
exp

(
−Esh

T

)
exp

(
−Esp

T

)
+ exp

(
−Esh

T

) . (3.5)

To determine the equations that will represent the average saddle point heights

for the quasiparticles, Eavsp and the quasiholes, Eavsh the first thing that needs to

be considered is how at the centre of the fractional quantum Hall plateau they are

equal, both of them having the value of Eavsp = Eavsh = ∆s/2. But as the model moves

away from the centre of the plateau, the variation of the quasiparticle and quasihole

transport will come into play. This is due to the fact that there will be certain

values of saddle point, that the quasiparticles can not transverse, and also points

which are the easiest for them to cross. The same must be said for the quasiholes as

well. Therefore taking the filling factor to be given by νm ± δνm - where νm is the

value of the filling factor at the centre of the plateau, then it can be written that

Eavsp will disappear when ν = νm + δνm. And vice versa Eavsh will disappear when
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ν = νm − δνm. If it is assumed that the variation in Eavsp and Eavsh are linear, then

using the variable g = δν/δνm equations that describe the two energy gaps can be

written down [6]. Therefore it is given that

Eavsp = (1− g)
∆s

2
and Eavsh = (1 + g)

∆s

2
. (3.6)

Across the whole of the material there is a network of these saddle points due

to the background potential. They can be modelled as a chessboard style potential

as seen in fig.3.3. This chessboard potential can then be modelled as two networks of

resistors. One for the quasiparticles, and one for the quasiholes. The resistor values

in this network are determined by the saddle point heights [4]. This model assumes

Figure 3.3: a sketch of the chessboard potential layout taken from [4]. O is the
saddle point, A and D are the centres of the two quasiparticle regions and M and
Q are the centres of the quasihole regions. a) shows the saddle point modelled
as a chessboard potential, and b) shows how they are modelled as resistors for the
quasiholes region. relating these diagrams to fig.3.2 A is the region that corresponds
to being on the left of the saddle point, O is the region in the centre that is the
saddle point, and D is the region to the right of the saddle point.

that as the conductance of the saddle points is given by an exponential, and that the

saddle points can be modelled as a network of resistors, then Dykhne’s theorem [32]

can be used to find the average value for the system. This theorem states that the

effective conductance of a network of resistors which have their natural log values

symmetrically distributed will be given by the mean value of the resistors[6].

lnσeff =< lnσ > . (3.7)

The problem with using this assumption is the fact that the values of the resistors
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will not be symmetrically distributed due to tunnelling effects at low temperatures.

Therefore it needs to be investigated if this assumption still holds for a situation

where the distribution is slightly asymmetric. Also to compare this model with the

experimental data found in [3] and discussed in chapter 2, then the edge effects need

to be included as that experiment was conducted in the Hall bar geometry, whereas

this model is currently in the Corbino geometry.
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Chapter 4

Assumption: Dykhne’s Theorem

In 1971 A. M. Dykhne published a paper on the conductivity of a two-phase thin

film with a random distribution of the phases. It discussed how this overall con-

ductivity is equal to the geometric mean of those of the two phases, as long as their

concentration is the same [32]. This means that as long as the range of varying

phases throughout the system is symmetrical, the equation for the geometric mean

can be used to find the total conductivity of said system. This is due to the fact

that the conductivity can be represented in a logarithmic way, which is found to

be additive upon mixing [32]. In this paper he also applied his theory to different

dependences for the conductivity, including the smooth dependence of the conduc-

tivity on coordinates, saying that as long as the system being looked at is symmetric

then

σeff = exp 〈lnσ〉 (4.1)

will be true. For a Gaussian distribution he showed that the effective conductance

would have the form

σeff = 〈σ〉 exp(−∆2/2) (4.2)

where ∆ is the root mean square of the fluctuation of the logarithmic conductivity

[32]. This means that if the system being looked at has fluctuations that are minimal,

then it can be taken that exp(−∆2/2) ≈ 1. This gives

σeff ≈ 〈σ〉 (4.3)

which is the mean of the conductance of the system. For a symmetric system this

mean is simplistically given by

〈σ〉 =
σmax

2
. (4.4)
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Therfore (4.1) can be rewritten such that

σmax
2

= exp 〈lnσ〉 . (4.5)

This will also work for a network of resistors as

σ =
1

R
, (4.6)

and therefore replacing (4.6) in (4.1) the result becomes

Reff = exp 〈lnR〉 (4.7)

which due to (4.4) will become

Rmax

2
= exp 〈lnR〉 . (4.8)

As stated in chapter 3, it is possible to model the saddle point potentials in the

compressible puddles of the model as a network of resistors [33]. For example as

in a chessboard potential [4]. Therefore as long as the system of saddle points is

symmetric then Dykhne’s theorem will hold. But the system discussed in chapter

3 is one of a slightly asymmetric distribution which has a flat plateau in the centre

and then diverged up and down at the edges due to tunnelling, shown in fig.4.1.

Figure 4.1: A diagram showing the real potential for the model in this thesis.

The question addressed in this chapter is whether the assumption that Dykhne’s

theorem can be used for this asymmetric potential, is correct. To do this, the trans-

fer matrix approach is discussed as a way to study the conductance of a random

disordered system in simulation.
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Figure 4.2: The layout of the lattice with no resistance added [5].

4.1 Transfer-Matrix Approach

The transfer-matrix formulation was introduced by B. Derrida and J. Vannimenus

in 1982 as a way of finding the exact solution for the conductance of a disordered

system [5]. It was developed for a network consisting of long strips with resistors

placed at random on a square lattice. The initial situation for this system is the one

where there is no resistance upon the lattice, [Fig. 4.2], which is governed by the

matrix equivalent of Ohm’s law,
I1

I2

...

IN

 = AL


U1

U2

...

UN

 (4.9)

where AL is the matrix that characterises the effect of the transfer-formulation.

Therefore this is the matrix which will change for every column of resistors added

to the network. The response to handling this situation is to use the concept of the

transfer-matrix approach, which is to transfer from the Lth column to the (L+ 1)th

column by adding the horizontal, hi, and vertical, vi, resistors. These resistors are

added in the configuration shown in Fig. 4.3.
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Figure 4.3: The network of resistors showing the addition of the vertical, vi, and
horizontal, hi, resistors to the (L + 1)th column. It includes how the current and
voltage are shown in the network [5].

From Fig.4.3 it can be seen that (4.9) can then be written in the form of the

new current, I ′i, and voltage, U ′i , such that it becomes
I ′1
I ′2
...

I ′N

 = AL+1


U ′1
U ′2
...

U ′N

 . (4.10)

Therefore AL transforms into the new matrix AL+1 by adding the resistance given

from the vertical and horizontal components of the new strip [5]. For ease of calcu-

lation only the horizontal resistors will be added first. So by taking the voltages U ′i
to be fixed and external we get the relation that

Ui = U ′i − hiIi (4.11)

as Vi = hiIi is given by Ohm’s law. This equation can be written in matrix form as

U = U′ −HI (4.12)

where

Hij = hiδij (4.13)

and h1 = 0 as the top line of resistors are all connected, [Fig. 4.3]. There is also the

relation that the currents Ii and the voltages U ′i are related by a matrix BL+1 such
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that

I = BL+1U
′. (4.14)

Therefore putting (4.12) into (4.9) then the matrix equation becomes

U = (1 + HAL)−1 U′ (4.15)

and using this result along with (4.14) in (4.9), will lead to the relation that

BL+1 = AL (1 + HAL)−1 (4.16)

which is the horizontal component of AL+1 [5]. If the vertical resistors vi are now

added, using the condition that the voltage is U ′i at site i in the L+ 1 column, then

the current through the vertical resistors is given by

ji =
U ′i+1 − U ′i

vi
. (4.17)

From this it is seen that the current I ′i through the wire connected to vi at site L+1

is given by

I ′i = Ii + ji−1 − ji

= Ii +

(
1

vi
+

1

vi−1

)
U ′i −

(
1

vi

)
U ′i+1 −

(
1

vi−1

)
U ′i−1. (4.18)

Taking 1/v0 = 0 this equation is valid for v1. This gives that the matrix for the

vertical resistors. (4.18) can be rewritten as

I′ = I + VU′. (4.19)

From (4.19) the matrix components for the vertical resistors matrix V are found to

be

Vij =

(
1

vi
+

1

vi−1

)
δij −

(
1

vi

)
δj,i+1 −

(
1

vi−1

)
δj,i−1. (4.20)

Now using (4.10), (4.14), (4.16) and putting this into (4.19) then this gives the

relationship that

AL+1 = V + BL+1

= V + AL (1 + HAL)−1 , (4.21)

which shows the relationship between AL and AL+1. This relation is a recurrence
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relation. This means that for every column of resistors that is added to the system,

the characteristic equation for AL (4.21) has to be calculated to be used as the next

column is added. For a square N × N lattice we have that the final AL will be

given when L = N and therefore will be denoted by AN [5]. From this AN the total

resistance of the network can be calculated using (4.9), such that

I = ANU, (4.22)

which is equivalent to Ohm’s Law which states

I = R−1U, (4.23)

and therefore

R = A−1N . (4.24)

Looking back at Fig.4.3, it can be seen that the current that is effected by the total

resistance of the network will be that which travels down the i = 1 wire. Therefore

the total resistance of the network is given by

R = A−1
N (1, 1) . (4.25)

Using this process it is possible to confirm Dykhne’s Theorem (4.8) for a system

with a square lattice network.

4.2 Dykhne’s Theorem using the Transfer-Matrix Ap-

proach

The approach shown in section 4.1 can be used to find the effective value for the

resistance using Dykhne’s theorem. To do this the system of resistors must be

a symmetric lattice. Therefore the characteristic matrix AL must be n × n and

therefore the number of recursions for the system will also be n. As such the result

of R will then obey (4.8). This then leads to the fact that the higher the value

of n the more precise the result for R should be. If these parameters are adhered

to then a program can be written which will repeat this process for random values

of hi and vi giving the total value of R for a given n × n system. These results

can then be plotted, and the effective resistance can be found and checked against

Dykhne’s theorem. The higher the number of iterations of the program, the greater

the accuracy of the results.
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This process is shown in sections 4.2.1 and 4.2.2 for systems with a particular

configuration of resistors that is dictated by their symmetric probability distribu-

tions. In sections 4.2.3 and 4.2.4 linear asymmetric systems are looked at, to see

how the values given by the left and right hand sides of (4.8) differ for this change.

This is done to see if it is correct to use the assumption stated in the theoretical

model in chapter 3. In all these sections the probability distributions are analysed

for the natural logarithmic resistance, lnR, rather than R alone. Therefore (4.8) for

a symmetric distribution will become

lnRmax

2
= 〈lnR〉 . (4.26)

4.2.1 System with a Symmetric Top Hat Probability Distribution

The first system looked at is a normal, top hat probability which is symmetric,

and will be given the values which range between [0, lnRmax]. This is shown in

fig.4.4a. This distribution means that the current can run through each value of

resistance with equal probability, and as such can hold any value between lnRmin

and lnRmax. As such this is being looked at so that it can show a robust confirmation

that Dykhne’s theorem does indeed hold. Using the transfer-matrix approach shown

in section 4.1 for two different n×n matrices it is possible to produce a distribution

graph for the network of resistors, as shown in fig.4.4b.
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Figure 4.4: a) The top hat probability being looked at. b) The distribution of the
values of lnR for a range of [0, 10]. The blue shows the distribution for a 10 × 10
matrix and red for a 30× 30 matrix, running over 3000 iterations.
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For the range of lnR being [0, 10] and the distribution being symmetric, then

the theoretical natural log of the effective resistance, lnRtheo, will be given by

lnRtheo =
lnRmax

2
= 5. (4.27)

For 3000 iterations, the program gives that the two matrices have values for the

natural log of the effective resistance, < lnRi > - where the i subscript will be the

notation used to differentiate between the different sized matrices being looked at,

i.e R10 is the resistance for the 10 × 10 matrix, and R30 is the resistance for the

30× 30 matrix, to be

〈lnR10〉 = 4.96752, 〈lnR30〉 = 5.00005 (4.28)

which are very close to the value predicted by (4.27). The differences in the values

are

∆10 = lnRtheo − 〈lnR10〉 = 0.02479 (4.29)

∆30 = lnRtheo − 〈lnR30〉 = 0.00005, (4.30)

which are within a standard deviation, σ, from the mean value as

σ10 = 0.44846, σ30 = 0.13994. (4.31)

Therefore from these values it is seen that Dykhne’s theorem does indeed give

a good approximation for the value of the effective resistance for this system. Also

from the above numbers it is seen that as the value of n increases, then the standard

deviation reduces. This shows that the larger the resistor network the more precise

the value of the effective resistance is going to be, which is to be expected. This is

shown more significantly in fig.4.5 where it can be seen that at around the value of

n = 25 the standard deviation stops changing, having reached the limit of precision

that can be achieved using the parameters stated. This shows that it is not needed

to go higher in matrix size, to gain a more precise result, as above this point the

precision will be the same. From this it is seen that it is true that Dykhne’s theorem

will get more precise the larger the network of resistors being looked at. Therefore

this theorem holds very well for a large system of resistors.
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Figure 4.5: How the standard deviation, σ, changes with the changing size of the
n× n matrices for the range of the values of lnR being lnRmax = 10, running over
1000 iterations.

The last relationship that needs to be considered is how the standard de-

viation changes with different maximum values of lnR, to see how this affects the

accuracy of Dykhne’s theorem. It can be seen from fig.4.6 that the standard de-

viation increases as you increase the value of Rmax. This increase is not a linear

relationship but slightly curved. Therefore at lower values of lnRmax the standard

deviation changes less than at higher values. Thus the more accurate the theorem

is at these lower levels.
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Figure 4.6: How the standard deviation σ changes with an increasing value for
lnRmax for a 10× 10 matrix system, running over 1000 iterations.

From the above analysis it can be seen that Dykhne’s theorem does indeed

apply for both small and large systems, and it can be used for all ranges of lnR as

well. This proves its ability to perform the calculations required for a symmetric

system, and determines that it is indeed a viable theorem for this type of model.

The theorem will next be tested against another symmetric distribution, but this is

not a normal one.

4.2.2 System with a Symmetric, Double-Delta Function Probabil-

ity Distribution

In this system lnR can take one of two values with equal probability. The two

choices are zero or lnRmax. As this is a symmetric distribution then it should still

obey Dykhne’s theorem where the theoretical effective lnR is given again by

lnRtheo =
lnRmax

2
. (4.32)

Using (4.32) where lnRmax = 10, the effective resistance is once again

lnRtheo = 5. (4.33)

Using the transfer-matrix approach to produce random numbers which are then

assigned to one of the two delta functions gives fig.4.7b. From this it can be seen

that the higher the value of n, the closer to the effective value (4.33) the peaks of
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the distribution will become.
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Figure 4.7: The distribution of lnR for a range of [0, 10] for the system with two
delta functions. The blue shows the distribution for a 10 × 10 matrix and the red
the distribution for a 30× 30 matrix, running over 3000 iterations.

The program gives, over 3000 iterations, the values of lnReff to be

〈lnR10〉 = 4.16947 〈lnR30〉 = 4.65657. (4.34)

So while there is no actual resistance at the value of the effective resistance in the

system, it is still the result obtained by the model. This is due to the fact that

the distribution is symmetric and therefore its mean value will be at the middle

of the range. This translates to the fact that the current is equally likely to flow

through the resistors with high and low resistance, with the total resistance been

given by which resistance the current mainly flowed through in the network. This

also explains why the peaks are moving closer together at higher values of n, as with

a larger n value the greater the chance that the current will flow through an equal

number of both high and low resistance areas, meaning that it will have an effective

resistance closer to the value given by Dykhne’s theorem.

The values for the natural log of the effective resistance of the systems and
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that predicted by Dykhne are similar, the difference being given by

∆10 = lnRtheo − 〈lnR10〉 = 0.83053 (4.35)

∆30 = lnRtheo − 〈lnR30〉 = 0.34343, (4.36)

which is in line with with what is expected.

The standard deviation, σ, for this system is the distance the peaks are

from the mean resistance. This is due to the distribution been made of two delta

functions. But it can be seen that the standard deviation is smaller for a larger

value of n, as

σ10 = 2.80673 σ30 = 1.76985. (4.37)

Therefore the higher the value for n the closer the distribution peaks will get to the

mean value and turning into a Gaussian distribution. This behaviour of σ is shown

in fig.4.8. It can be seen that the relationship between the standard deviation and

n goes as a slight curve before becoming almost linear around the value of σ = 2.

From this it is seen that the peaks in the distribution will indeed get closer to the

mean value. But as n increases the standard deviation will decrease more slowly

and therefore the system will never actually reach a value of n where the two peaks

will meet.
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Figure 4.8: How the standard deviation changes with the changing size of the n×n
matrices with a value of lnRmax = 10, running over 1000 iterations.

The standard deviations relationship to lnRmax is given in fig.4.9. It can

be seen that for small values of lnRmax, the standard deviation has a curving be-
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haviour but above the value of lnRmax ≈ 5 this becomes a linear relationship. So

when lnRmax < 5 the distribution will be seen to be similar to that of the normal

distribution, looked at in section 4.2.1. This is due to the fact that the range of

values for lnR is so small it is not possible to distinguish between the two peaks.

Above lnRmax = 5 it is seen that the distribution is shown by the linear relationship.
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Figure 4.9: How the standard deviation changes with the changing value of lnRmax

for a 10× 10 matrix, running over 1000 iterations.

From the analysis of this system it can be extrapolated that Dykhne’s theo-

rem can be used for all symmetric systems, even when there is no resistance at the

value of the effective resistance predicted. As such it can be concluded that this

theorem holds for all symmetric systems, and that using the transfer-matrix ap-

proach is a feasible way of producing the network of resistors that it can be applied

too. Therefore this approach can now be applied to asymmetric systems to see if

Dykhne’s theorem will hold true for them also.

4.2.3 System with an Increasing Asymmetric Probability Distribu-

tion

This system is different from those previously looked at as the probability function

used to define it is not a symmetric one. Instead it is a linearly increasing rela-

tionship, as shown in fig. 4.10a. Therefore the different values of resistance have

different probabilities. This means that the network is made up of both open and

closed resistors, and due to its asymmetric nature there are more open resistors

than closed. Because of this, this system should have a similar distribution to the

32



one with the equal probability but it will have its mean value shifted and have a

negative skew. This distribution is shown in fig. 4.10b. The skew is due to the fact

that resistors with the higher values of resistance have a higher probability of being

those which the current is travelling through. The value for the skewness, γ, of the

system is

γ10 = −0.20546 γ30 = −0.01349. (4.38)

The value of the effective theoretical mean can be calculated using Dykhne’s theo-

rem. But rather than using (4.4), the weighted mean for the model is used. This

gives the equation for the effective resistance to be

lnRtheo =

∫ lnRmax

0

2 lnR

(lnRmax)2
lnRd lnR =

2

3
lnRmax (4.39)

for this probability distribution. Therefore (4.26) now becomes

2

3
lnRmax = 〈lnR〉 . (4.40)

This distribution has effective values of

〈lnR10〉 = 6.87968 〈lnR30〉 = 6.89247 (4.41)

and from (4.39) the value from Dykhne’s theorem is

3 lnRmax

2
= 6.66666. (4.42)

This gives a difference of

∆10 = lnRtheo − 〈lnR10〉 = 0.21302 (4.43)

∆30 = lnRtheo − 〈lnR30〉 = 0.22587. (4.44)

and the standard deviation for these two systems are

σ10 = 0.28399 σ30 = 0.09297. (4.45)

From these values it can be seen that the difference for the 10× 10 matrix is within

a standard deviation of the expected value. But the difference for the 30×30 matrix

is not. The value is rather 2.43σ30 away from the theoretical one. The values of the

effective means themselves though, change very little with the size of the matrix.

This is corroborated with data obtained by running the simulation for other values
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Figure 4.10: a) The increasing asymmetric probability. b) The distribution of the
values of lnR for a range of [0, 10]. The blue shows the distribution for a 10 × 10
matrix and red for a 30× 30 matrix, running over 3000 iterations.

of n, which gives the effective mean 〈lnR〉, difference ∆, and the standard deviation

σ to be

〈lnR50〉 = 6.88876 ∆50 = 0.22231 σ50 = 0.05436

〈lnR40〉 = 6.89135 ∆40 = 0.22468 σ40 = 0.06669

〈lnR20〉 = 6.88107 ∆20 = 0.21739 σ20 = 0.13917

〈lnR5〉 = 6.87264 ∆5 = 0.20497 σ5 = 0.59355. (4.46)

Therefore from this, it can be extrapolated that for smaller values of n the

effective mean given is less precise due to its higher value of σ, while conversely

the larger matrices have a greater precision. But the actual values of the effective

mean given for all the matrices looked at above, have a high accuracy. This is due

to the fact that they are very similar, all being around 6.8− 6.9 when taken to two

significant figures. As such the difference from the theoretical value is minimal, and

varys little no matter what the size of the system. Therefore it can be assumed that

these values are within a good alignment with that theorised by Dkyhne’s theorem

[34].
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If the standard deviations, σ from (4.45) and (4.46) are plotted, with addi-

tional points, the decrease is clearer to see. This agrees with the above statement

that the larger the network of resistors, the more precise the results become. This

is shown in fig.4.11 where is can seen that when n is small the standard deviation

decreases rapidly. It then slows until the point where at n ≈ 25 the change in the

value becomes negligible. Which is the same behaviour as that by the symmetric

top hat probability distribution shown in section 4.2.1. This is expected considering

both are linear distributions.
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Figure 4.11: How the standard deviation, σ, changes with the changing size of the
n× n matrices over a range of values for lnR = [0, 10], over 1000 iterations.

The last relationship to look at is the one between the standard deviation

and the value of lnRmax. From Fig. 4.12 it can be seen that it is not quite linear,

therefore for the lower values of lnRmax the standard deviation varies less than for

the higher values. Again similar in behaviour as that for the top hat distribution.
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Figure 4.12: How the standard deviation, σ, changes with values of lnRmax for a
10× 10 matrix, running over 1000 iterations.

From this analysis it can be assumed that Dkyhne’s theorem does indeed

hold for this type of increasing asymmetric probability distribution. Further to that

the behaviour of the system will be similar in nature to that of the symmetric top

hat distribution.

4.2.4 System with a Decreasing Asymmetric Probability Distribu-

tion

The next asymmetric system looked into is that of a linearly decreasing probability,

[fig. 4.13a]. Therefore this is a system with more closed resistors than open, as the

probability of having a resistor with a low resistance is higher.

This system should again have a similar distribution to that of the symmetric

case but it will have a positive skew. This is due to the current having a higher

probability of travelling through the resistors with the lower resistance. The value

of the skewness, γ is

γ10 = 0.25945 γ30 = 0.05903. (4.47)

The theoretical effective mean for this distribution will again be given by the

weighted mean. Therefore the equation for the effective resistance now becomes

lnRtheo =

∫ lnRmax

0

2

(lnRmax)

(
1− lnR

lnRmax

)
lnRd lnR =

lnRmax

3
(4.48)
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for this probability distribution. As such (4.26) now becomes

lnRmax

3
= 〈lnR〉 . (4.49)

The distribution, which is shown in fig.4.13b, has effective values for 〈lnR〉 of

〈lnR10〉 = 3.09528 〈lnR30〉 = 3.1097 (4.50)

and from Dykhne’s theorem (4.49) for this system, becomes

lnRmax

3
= 3.33333. (4.51)

Therefore (4.50) varies from (4.51) by

∆10 = lnRtheo − 〈lnR10〉 = 0.23805 (4.52)

∆30 = lnRtheo − 〈lnR30〉 = 0.22363. (4.53)
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Figure 4.13: a) The decreasing asymmetric probability. b) The distribution of the
values of lnR for a range of [0, 10]. The blue shows the distribution for a 10 × 10
matrix and red for a 30× 30 matrix, running over 3000 iterations.

The standard deviation, σ, for this system is

σ10 = 0.28256 σ30 = 0.09159 (4.54)
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which shows that the effective mean for the 10 × 10 matrix is within a standard

deviation of the mean given by Dykhne’s theorem. Whereas the larger 30 × 30

matrix effective mean is 2.44σ30 away from from the theorised value. This is the

same behaviour as seen in the asymmetric distribution shown in the previous section.

Therefore it is expected that the extra data obtained from running the simulation

for other values of n will have the same trends as that for the asymmetric linearly

increasing probability. The values given in (4.55) shows that this is indeed true.

〈lnR50〉 = 3.10799 ∆50 = 0.22534 σ50 = 0.05384

〈lnR40〉 = 3.10810 ∆40 = 0.22523 σ40 = 0.06742

〈lnR20〉 = 3.10901 ∆20 = 0.22433 σ20 = 0.13481

〈lnR5〉 = 3.04901 ∆5 = 0.28433 σ5 = 0.60262. (4.55)

From this, it can be seen that while the standard deviation decreases for the larger

matrices, the values of the effective mean does not vary a great deal, concentrating

around 3.1. And consequently the difference do not change excessive either. There-

fore from this it can be extrapolated that while the values may be less precise, the

accuracy of the result is the same for all the matrices [34]. As such it can be assumed

that Dykhne’s theorem does indeed give a good approximation for this network of

resistors.

Plotting the values of the standard deviation σ given in (4.54) and (4.55) as

well as further points, the decreasing behaviour can be seen clearly. This is shown

in fig. 4.14, where the relationship between n the standard deviation σ can be seen

to decrease rapidly with a curving behaviour. Again this behaviour is similar to

that shown for the symmetric top hat distribution in section 4.2.1 and that shown

the the increasing asymmetric distribution in section 4.2.3. Which is expected.

Now to look at how the standard deviation changes with different values of lnRmax.

From fig. 4.15 it can be seen that it is not quite linear and the standard deviation

varies less at the lower values of lnRmax. Again similar to the previous two linear

distributions.

This analysis shows that Dykhne’s theorem holds as a good approximation

for this linear asymmetric distribution at small values of n as well, whereas at larger

matrices the value will still have the same accuracy, but that the precision of the

measurements will not be so great.
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Figure 4.14: How the standard deviation, σ, changes with the changing size of the
n× n matrices with a range of values being lnR = [0, 10], over 1000 iterations.
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Figure 4.15: How the standard deviation, σ, changes with increasing values of
lnRmax for a 10× 10 matrix, running over 1000 iterations.

4.3 Conclusion

From the analysis given in the previous sections in this chapter, it can be extrapo-

lated that the assumption stated in Chapter 3 is an appropriate one to use. This is

due to the fact that the distribution stated in that model which includes tunnelling,

shown in fig.4.1, is one which is made up of a combination of the top hat potential
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and linear asymmetric ones. It has been shown that for both the symmetric and

asymmetric parts of this distribution, the theoretical value will hold. That even

when the precision of the assumption is less, the accuracy will remain the same.

As such using Dykhne’s theorem as a way to calculate the mean of the varying

potentials including tunnelling is an good approximation to make.
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Chapter 5

Edge States

The edge states of the system are an important contribution to the current and

thermopower in the Hall bar geometry, one which is not taken account of in the

model in chapter 3. As such a way to include them into this model is needed,

thus making a more complete picture. This picture can then be compared to the

experimental data for the thermopower presented in [3], and explained in chapter 2.

The first thing that needs to be done, is to look at how the current moves

around the system in the bar geometry. Fig.5.1 shows how the current travels

through the bulk of the system from the hot region to the colder one, which is

expected. At the edges though the current runs in opposite directions. This is due

to the potential difference at the end nodes which connect the two sides and drives

the current to travel in a clockwise direction around the system. This difference in

directions produces different chemical potentials in each edge [2]. So from fig.5.1

it can be seen that the chemical potential on the left-hand edge will be given by

the hot node, µ1. Therefore the particles which are carrying the left-hand channel’s

current, will fill up to that state. The right-hand side conversely will be given by

chemical potential from the cold node, µ2, due to the current being driven from that

node to the hot one.

Now the movement of the current through the material in the bar geometry

has been described, The next thing to consider is how the Landau levels behave at

the edges. As stated in 1.2, the quantum Hall effect appears in an incompressible

fluid, and when the edges are included it becomes defined in a finite potential well.

As such when the Landau levels reach those edges, which act as the walls of the

well, they bend up. This means that the edge states can be filled above the Fermi

level of the bulk [2]. This is shown in fig. 5.2.
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Figure 5.1: A sketch to show how the current will travel through the system which
consists of both the bulk and the edges. This shows where the chemical potential
difference is coming from int he system.
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Figure 5.2: A cross-section of the bar showing how the Landau level states are filled
up to the chemical potentials in both edges. The current through the bulk is going
into the page.

From this it can be seen that rather the distinct regions of localization that

appear in the bulk of the material [14], the particles moving along the edges do so

in quasi-one-dimensional states. These states appear all the way up to the chemical

potential [31]. As such the equation which describes this behaviour for the system
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being investigated in this thesis can be derived from the current equation

I = Anve, (5.1)

where A is the cross-sectional area, n is the number density, v is the drift velocity,

and e is the charge of the particles [35]. How this is used is shown in depth the next

section.

5.1 Current Derivation

Using the general current equation (5.1) to derive the current for the edges states

in the quantum Hall bar geometry, it must first be defined that the cross-sectional

area, A = 1. This is due to the fact that the edges states are being treated as

quasi-one-dimensional. Therefore the only parts of (5.1) that will contribute are the

drift velocity of the eigenstates on the edge, v, the number density of the current,

n and e, which is the charge of an electron. The equations for v and n are given by

[36]in k-space condensed matter physics which take the form

v =
1

~
∂ε

∂k
, (5.2)

n = g(ε)f(ε), (5.3)

where g(ε) is the density of states and f(ε) is the probably of the particle being in

each state. For the system being investigated, f(ε) = f(ε − µ, T ) is given by the

Fermi-Dirac distribution. When this information is put into (5.1), then it becomes

I =
1

~
∂ε

∂k
e g(ε)f(ε− µ, T ), (5.4)

which is the generalised starting point to derive the edge current for this system.

The next step is to convert the density of states from its energy dependence, to a

spacial one, g(~k). This is done using the relation that

g(ε) = 2g(~k)
dk

dε
(5.5)

in (5.4). This now gives the current to be given by

I =
e

~
2g(~k)f(ε− µ, T ). (5.6)
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The equation that defines g(~k) in the 2-dimensions for a single point [11] is

g(k) =
1

(2π)2
d2~k. (5.7)

The reason to look at the density of sates in 2-dimensions is because when the

plateaus form the particles moving in the material become a 2-dimensional electron

gas, as I stated in chapter 1.

Therefore to find the density of states for the whole system, which is that

which is required for the number density, then the whole system will need to be

summed over. This gives

n =
∑ 1

(2π)2
d2~k f(ε− µ, T ), (5.8)

which when taken to the infinite limit, the sum becomes an integral. As such (5.8)

becomes

n =

∫
1

(2π)2
f(ε− µ, T ) d2~k. (5.9)

Now the Fermi-Dirac function for f(ε − µ, T ) needs to included into the equation

for the number density n. This is given by

f(ε− µ, T ) =
1

exp((ε− µ)/kBT ) + 1
(5.10)

which, when mapped to the regime where the temperature is measured in energy

units, becomes

f(ε− µ, T ) =
1

exp((ε− µ)/T ) + 1
. (5.11)

Adding (5.11) into (5.9) the equation for the number density is now given by

n =
1

(2π)2

∫
1

exp((ε− µ)/T ) + 1
d2~k′. (5.12)

The next stage of the current deviation involves converting the integral from the

spacial regime, to the energy one. To achieve this, the integral must first be trans-

ferred from Cartesian co-ordinates, which are given by d2~k = dkxdky, to Polar ones,

such that

d2~k = 2πk dk. (5.13)

Then taking the relationship that

ε = k2, (5.14)
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and differentiating with respect to k, it will become

dε = 2k dk. (5.15)

As such putting this into (5.13), the replacement variable that the integral will be

calculated over becomes

d2~k = π dε. (5.16)

So now putting this into (5.17) we get

n =
1

(2π)2

∫
1

exp((ε− µ)/T ) + 1
π dε

=
1

4π

∫
1

exp((ε− µ)/T ) + 1
dε. (5.17)

Therefore the equation for deriving the current (5.6) is given by

I =
2e

~
1

4π

∫ ∞
0

1

exp((ε− µ)/T ) + 1
dε

=
e

2~π

∫ ∞
0

1

exp((ε− µ)/T ) + 1
dε. (5.18)

Doing this integral gives the edge current to be

Iedge =
e

2π~
T ln

(
1 + exp

(µ
T

))
. (5.19)

Now using this solution it is possible to derive the conductivity of the the edges

states, both thermal and electrical. From these conductivity’s the equation for the

thermopower through the edges states can be found.

5.2 Thermal Conductance

The thermal conductance, σth, of the edge states is given by the equation

σth =
∂Iedge

∂∆T
. (5.20)

where Iedge is the heat current for the particles in the edges and gives their movement

due to the temperature gradient, which is given by ∆T , and from here onwards

will be notated as T [37]. Therefore by differentiating (5.19) by T the thermal
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conductance becomes

σth =
∂

∂T

( e

2π~
T ln

(
1 + exp

(µ
T

)))
= −

e exp
( µ
T

)
µ

2T
(
1 + exp

( µ
T

))
~π

+
e ln

(
1 + exp

( µ
T

))
2π~

. (5.21)

This equation can be further simplified by using the relationship that h = 2π~ and

the law of exponentials that exp(A) exp(−A) = 1. Therefore (5.21) will now become

σth =
e

h

(
ln
(

1 + exp
(µ
T

))
− µ

T
(
1 + exp

(
− µ
T

))) . (5.22)

5.3 Electrical Conductance

The electrical conductance, σel, is found in a similar way to the thermal. It is also

a differential equation which is given by

σel =
∂Iedge

∂∆V
. (5.23)

But it can bee seen that (5.19) does not contain a direct relationship between the

current, Iedge, and the voltage difference, ∆V , which for future ease will be referred

to as V . But it does contain the chemical potential µ, which is related to the voltage

by

µ = −eV
2
. (5.24)

Therefore if (5.23) is rewritten using the differential chain rule it will become

σel =
∂Iedge

∂µ

∂µ

∂V
, (5.25)

where ∂µ
∂V = −e/2 from (5.24). As such (5.25) is now

σel = −e
2

∂Iedge

∂µ
. (5.26)

Applying this equation to (5.19) then the electrical conductance becomes

σel = −e
2

∂

∂µ

( e

2π~
T ln

(
1 + exp

(µ
T

)))
= −

e2 exp
( µ
T

)
4
(
1 + exp

( µ
T

))
~π
. (5.27)
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This can be simplified once more by using the relations of h = 2π~ and exp(A) exp(−A) =

1. As such (5.27) becomes

σel = − e2

2h
(
1 + exp

(
− µ
T

)) . (5.28)

5.4 Thermopower

The equation that defines the thermopower in general is

Sxx = −∆V

∆T
, (5.29)

which can be taken to the limit where the ∆’s become differential’s such that Sxx

is now defined as

Sxx = −∂V
∂T

. (5.30)

Using the chain rule this can be rewritten for the edges as

Sedge = − ∂V

∂Iedge

∂Iedge

∂T
(5.31)

which in turn can be expressed using (5.20) and (5.23) such that

Sedge = −σth

σel
. (5.32)

This holds true for the thermopower in a general situation and not just at the one

looked at in this thesis [[38], [39]]. So using(5.22) and (5.28) and the equation for

the thermopower for the edge states of this model is

Sedge =

e
h

(
ln
(
1 + exp

( µ
T

))
− µ

T(1+exp(− µT ))

)
− e2

2h(1+exp(− µT ))

=
ln
(
1 + exp

( µ
T

))
− µ

T(1+exp(− µT ))
−e

2(1+exp(−µT ))

= −
2
(
exp

(
− µ
T

)
+ 1
)

ln
(
1 + exp

( µ
T

))
− 2 µT

e
. (5.33)
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5.5 Defining the Chemical Potential

The main variable in equation (5.33) is the chemical potential, µ. Therefore a

way to define this is required before this equation can be used in the model which

represents the thermopower of the system. This definition must also be in line with

the equations for the energy gaps given in the original model for the bulk material,

explained in chapter 3. The first thing that must be investigated therefore, is how

the chemical potential interacts with the disorder created by the screening in the

bulk region of the material. Once that has been established, the behaviour and

interaction of the µ and the Landau levels can be derived. This will thus lead

to a definition of how the chemical potential contributes to the current and the

thermopower of the system.

5.5.1 Derivation of the Chemical Potential

Looking back at fig. 5.1 and fig. 5.2 (which are both reproduced in 5.3) then it can be

seen that the chemical potential of the two edges of the Hall bar are different. This

is due to the way the particles are moving around the system. It is this difference

which gives rise to the contribution from the edges states to the total current and

thermopower.

(a) (b)

Th, μl

Tc, μr

μl

μr

Il,edge Ir,edge

x

y

x

y

Bulk

Figure 5.3: (a) A sketch showing how the particles move around the edges in the
Hall system. (b) A cross-section of system showing how the chemical potentials are
different on the edges.
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From fig.5.3(b) the two chemical potentials, shown as µl, and µr, are different.

But as the magnetic field varies, then so will the position of the chemical potential

in the Landau level. Therefore the value, and the relationship between the two edge

chemical potentials, will be dependent on where along the plateau the measurement

is taking place. To find out how this variation should be expressed it is useful to first

look at the situation where the Fermi level is sitting at the centre of the plateau.

At this position the chemical potential on the edges hold the same value due to

the fact that at this position the only contribution is from the bulk of the material.

Therefore it can be written that

|µl| = |µr| =
∆

2
. (5.34)

Then using the assumption given in [6] that

µl = −µr (5.35)

an equation that relates µi to the plateau width and the position on the plateau that

the particles are, can be derived. If this was a perfect system without any disorder,

then the chemical potential would stay at a constant value of ∆/2. But this isn’t

a perfect system, and it does contain disorder, the saddle points from the screening

potential in the bulk being the main contributions to this. Therefore the value of

the chemical potential will change as we move across the plateau. How this change

is affected by the disorder is shown in fig. 5.4.

μ0

Eps

Width of 
plateau

cEps

Screening potential disorder

Figure 5.4: A sketch showing how the chemical potential fluctuates with the screen-
ing potential. µ0 = ∆/2, and c is the variable that relates the saddle point heights
Esp with is the amount the chemical potential fluctuates from its ∆/2 position.

Using fig. 5.4 it can see that the variation in µ is dependant on the height

of the saddle point, Esp. This in turn is dependant upon where on the plateau the
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particle is sitting, g, which is the ratio of the position of the particle on the plateau

with its width, g = δν/δνm. As such it ranges between [-1,1] no matter the size of

the plateau, and holds the value of zero in the centre. This was described in more

detail in chapter 3. A such the equation for µ can be written as

µ = µ0 + Epsc, (5.36)

where c is a transitional constant that will be discussed in section 5.5.2. This

becomes, when µ0 = ∆/2 and Eps = (1− g)∆/2 are substituted in, becomes

µ =
∆

2
+ (1− g)

∆

2
c. (5.37)

If this is looked at in the position where g = 0, which is the centre of the plateau,

then µ should equal ∆/2 as defined above. But currently it does not. Therefore the

equation is not yet complete. To correct (5.37), then a extra term must be added

in such a form that it removes the remainder ∆
2 c from µ0. Therefore the equation

for µ must become

µ =
∆

2
+ (1− g)c

∆

2
− c∆

2

=
∆

2
− cg∆

2

= (1− cg)
∆

2
. (5.38)

This is the equation which will be used to define the chemical potential in the model

being created.

5.5.2 The Transition Value

In equation (5.38) the notation c is used for the variable that relates the saddle

point heights to the chemical potential. This variable determines how the chemical

potential is going to be affected by the disorder of the system, and is known as the

transition value. It can therefore also be described as the point where the chemical

potential from the Landau level above will start to interact with the one in the

equation due to its fluctuations. This is shown in fig. 5.5.
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μ1

μ2

(a) Shows the basic lay out of the chemical
potentials in a non-disordered system.

μ1

μ2

μ1’

-cEps

cEps Disorder fluctuations

(b) Shows how the disorder can move µ1 so
that µ2 interacts with it.

Figure 5.5: Sketches showing the different Landau levels and the chemical potentials
and how the disorder creates the transition value c.

Fig. 5.5b show that if the variation in µ1 due to the background potential

is large enough, it will move within close proximity to µ2, which will then affect

its behaviour. This is the transition point of the edge states. This can been seen

more clearly in fig. 5.6 where it is shown how the chemical potential moves off of

the plateau before its end. This is the point where the higher chemical potential is

starting to interact with the edge state being looked at.

Ideal plateau

The point where μ2 begins to interact with μ1, and starts the 

particles transition from one Landau level to the next.

How the transition effects 

the edges of the plateau

Figure 5.6: A stekch to show how the chemical potential from the higher Landau
level affects the transition from the plateau of one quantum hall state to the next.
It also shows how this interaction changes the size of the plateau itself, making
it smaller than than the ideal plateau which will have no background potential
interfering with the chemical potential.

From all of this it can be seen that the transition variable, c, is dependent
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upon the width of the plateau. Now considering (5.38) gives that

µ = (1− cg)
∆

2
, (5.39)

then to work out the range of values c could hold, what happens to the chemical

potential in the limits of the saddle point energy values needs to be investigated.

So if the screening potential is very weak, the value of Eps is very small, then the

chemical potential will vary very little from its central position. As such it will have

little to no interaction with the chemical potential from the Landau level above.

Whereas if Eps is large then the variation in the chemical potential will also be

large, and the interference from higher Landau levels will need to be taken into

consideration. What this means is that when Eps is weak, µ ≈ ∆
2 , and therefore

c = 0. When Eps is strong µ ≈ (1 − g)∆
2 . This is due to the fluctuations being so

strong that the chemical potential takes the same form as the disorder potential.

Therefore the interaction with the other Landau levels will be great. As such in this

case, c = 1. This argument gives the range of values for c to be [0,1].

To consider how to use the above information in the model, it must be

assumed that the lower the temperature the higher the disorder is going to be

within the system. This is because at lower temperatures tunnelling needs to be

taken into account as well as the concept that the lower the temperature of the

system, the greater effect the disorder screening potential will have upon the other

energies involved, i.e the chemical potential. Therefore it is possible to derive an

equation for c from all this data. It must be a ratio that does not exceed 1, that

shows the relationship between the actual plateau and the width of one that contains

no edge effects. This is due to the fact that the transition value contributes largely

to the width of the plateau, making it smaller when the disorder is higher. But it

also needs to be a larger number when the plateau width is at its smallest. The

plateau widths in the equation will also not be the whole plateau. This is due to

the fact that it is only half the plateau that is affected by the chemical potential in

the Landau level above, as seen in fig. 5.6 and fig. 5.3. From all of this is can been

seen that the equation needed to define this transition value is

c =
1/Br,0 − 1/Br,max
1/Bo,0 − 1/Bo,max

, (5.40)

where Br,i are the values of the magnetic field of the plateau we are looking at

and, Bo,i are the magnetic field values of an plateau without edge effects. For both

plateaus the values at the centre, 0, and the edge, max, are needed. A simpler way
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of looking at this is considering the filling factor, ν in (5.40) due to the relation

ν =
nh

eB
. (5.41)

Using this (5.40) can be written such that

c =
νr,0 − νr,max
νo,0 − νo,max

, (5.42)

which can be related to the electrical conductance σel via [4],

σ = ν
e2

h
, (5.43)

therefore c can be written in terms of this parameter. And because the changes

being looked at are given by the background potential, then the only conductance

with relevance to c will be that given by the bulk. So (5.42) will now become

c =
σr,0 − σr,max
σo,0 − σo,max

. (5.44)

This conductance can be easily obtained from the equation for the bulk thermopower

which takes into account the tunnelling, given in chapter 3. Therefore the transition

value for the edge states can be equated and incorporated into the model.

5.6 Edge Current

Now that the chemical potential µ has been defined, as well as the transition value

c, the final component of the edge current, which will be part that comes from the

contribution from the Landau level above must be incorporated into the equation.

This is done by including a term that is dependant on the negative transition value,

−c. Therefore the edge current will become

Iedge = I ′edge(µ[c]) + I ′edge(µ[−c]), (5.45)

where

µ[c] = (1− gc)∆/2, and µ[−c] = −(1− gc)∆/2 (5.46)
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Therefore the equation which defines the current travelling through the edge of the

system must be given by

Iedge =
e

2π~
T

(
ln

(
1 + exp

(
µ[c]

T

))
+ ln

(
1 + exp

(
µ[−c]
T

)))
. (5.47)

This is the equation that will be used in the model being constructed in this thesis.
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Chapter 6

Simplistic Model

In chapter 5 and [6], the current that is travelling through the edges and bulk

has been derived. Using these, it is possible to construct an equation that will

express the total current running through the Hall bar system. Then using this, the

thermopower for a simplistic - non-tunnelling, model can be derived. This is done

in the next two sections, the first devoted to the assembling the total current of the

system, and the second given other to the study of the thermopower.

6.1 Total Current Derivation

The total current of the system will be given by a combination of the edge current,

and the bulk current. For the Hall effect, how these combine does not matter. The

particular configuration of current does not change the results. But when investi-

gating the thermopower, how they split plays a big part in the results. Therefore

how they come together to make up the total net current, needs to be defined before

the thermopower of the system can be derived. In fig.6.1 the two extremes, all the

current contribution coming from the bulk [fig.6.1a] or all the current coming for

the edges [fig.6.1b]are shown. But the true system is a combination of these two

scenarios. Therefore when an equation is written down for the total, net current, I,

of the system, it looks like

I = Iedge contribution + Ibulk contribution

= αIedge + (1− α)Ibulk, (6.1)

where α is a parameter which defines the way the current splits. It ranges from

[0,1]. This variable is called a free parameter, as there is no way to determine how

much of the current is travelling through the bulk, and how much is going through
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μ1

μ2

Bulk

edges

edges

Δμ

(a) Current travelling through the bulk only.

μ1

μ2

Edges

Edges

Bulk

Δμ

(b) Current travelling through the edge only.

Figure 6.1: Sketches to show how the current will flow through the system in the
extreme cases, looking at one Landau level. a) give the current contribution from
the bulk only, this is due to the fact that while it is the different chemical potentials
on the edges which gives the net difference ∆µ, the number of energy levels on both
sides are the same. Therefore the difference is given up the variation in the bulk. b)
gives current contribution from the edges only. It can clearly be seen here that there
is a difference in the number of energy levels that are filled, and this is therefore
where the chemical potential difference ∆µ comes from.

the edges at any given time. Therefore when the model is being tested later, it will

be run for a range of values for this parameter, to see which gives simulated results

similar to that of the experimental data from [3].

Putting the current equation for the bulk (3.2), and the edges (5.47) into

(6.1) will give the total net current for the system. This equation is

I =
e

h

(
αT

(
ln

(
1 + exp

(
µ[c]

T

))
− ln

(
1 + exp

(
µ[−c]
T

)))
+ (1− α)

(
−(qe)δV +

(
1 +

Esp
T

)
δT

)
exp

(
−Esp
T

)
− (1− α)

(
(qe)δV +

(
1 +

Esh
T

)
δT

)
exp

(
−Esh

T

))
(6.2)

and this will be used throughout the rest of this chapter to derive the thermopower

of this non-tunnelling system.

6.2 Deriving The Thermopower

The thermopower of the system is given by

Sxx = −∆V

∆T
(6.3)
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which, as has already been shown in fthe chapter 5, can also be derived using the

ratio of the thermal and electrical conductances. Therefore the following sections

will be devoted to formulating these equations for the model being created.

6.2.1 Thermal Conductance

The thermal conductance is given by the same equation given in chapter 5 (5.20).

This equation is given by

σth =
∂I

∂∆T
, (6.4)

but before this can be applied to the total current equation found in section 6.1, how

the temperature gradient propagates across the material needs to be investigated.

This is shown in fig.6.2

Bulk

∆𝑇𝑏𝑢𝑙𝑘

∆𝑇𝑒𝑑𝑔𝑒

Hot

Cold

Tc

Th

Tc

Th Th

Tc

∆𝑇

𝑇1Position 1

Figure 6.2: a sketch showing how the temperature gradient propagates through the
material. Position 1 is a random place along the material. The red line shows how
the temperature along that position is the same no matter if you are on the edge or
the bulk.

From 6.2 it can be seen that at any point along the temperature gradient,

the temperature in bulk is the same as that on the edges. This is an assumption

that is made to simplify the model. It assumes that the temperature at the Th node

and the Tc node are constant. This is an acceptable assumption to make, because

even if it is not true, the variation will be minimal in concern to other variables in

the equation. Therefore it will not make any serious difference to the model being

derived. From this assumption it can be written that ∆T = α∆Tedge +(1−α)∆Tbulk
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where, ∆Tedge = ∆Tbulk. Which will give the deviation variable in (6.4) to be just

∆T , and as such having no need to define if it applies to the bulk or the edge. in

the derivation below, and further development of this model, the abbreviation that

∆T → T will be used. Therefore equation (6.4) will now become

σth =
1

h

∂

∂T

(
αeT

(
ln

(
1 + exp

(
µ[c]

T

))
− ln

(
1 + exp

(
µ[−c]
T

)))
+ (1− α)

(
−(qe)δV +

(
1 +

Esp
T

)
δT

)
exp

(
−Esp
T

)
− (1− α)

(
(qe)δV +

(
1 +

Esh
T

)
δT

)
exp

(
−Esh

T

))
, (6.5)

which gives

σth =
e

h

(
α

(
− µ[c] exp (µ[c]/T )

T (1 + exp (µ[c]/T ))
+ ln

(
1 + exp

(
µ[c]

T

)))

− α
(
µ[−c] exp (µ[[−c]/T )

T (1 + exp (µ[−c]/T ))
+ ln

(
1 + exp

(
µ[−c]
T

))))

+
qe

h

(
(1− α)

((
1 +

Esp
T

)
exp

(
−Esp
T

)
−
(

1 +
Esh
T

)
exp

(
−Esh

T

)))
.

(6.6)

This can be simplified down to

σth =
e

h

(
α

(
− µ[c]

T (1 + exp (−µ[c]/T ))
+ ln

(
1 + exp

(
µ[c]

T

)))

− α
(

µ[−c]
T (1 + exp (−µ[−c]/T ))

+ ln

(
1 + exp

(
µ[−c]
T

))))

+
qe

h

(
(1− α)

((
1 +

Esp
T

)
exp

(
−Esp
T

)
−
(

1 +
Esh
T

)
exp

(
−Esh

T

)))
.

(6.7)

It will be this equation that will be used in the later section where the thermopower

will be derived from the conductances.
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6.2.2 Electrical Conductance

As with the thermal conductance, the electrical conductance is given by the same

equation given in chapter 5. This equation is

σel =
∂I

∂∆V
. (6.8)

but that is where the similarity ends. Because while the temperature at each point

across the cross-section of the bar was assumed to be the same in the previous

section, the same assumption can not be taken as a given for the voltage drop.

This is due to the relationship between the chemical potential, µ and the potential

difference across the material. How it changes dependant upon whether the current

is travelling through the bulk or the edge states. Therefore how the current is

differentiated with respect to the voltage will also have this dependence. This is

shown in fig. 6.3.

Bulk

∆𝑉𝑏𝑢𝑙𝑘

∆𝑉𝑒𝑑𝑔𝑒

Hot

Cold

Tc

Th

∆𝑉𝑒𝑑𝑔𝑒 ≠ ∆𝑉𝑏𝑢𝑙𝑘

Figure 6.3: A sketch of the system showing how the voltage drop will be different
on the edges to the bulk of the material. In this sketch ∆Vedge 6= ∆Vbulk due to the
variances in the chemical potential.

The voltage drop, ∆V across the system, will be linearly proportional to the

current due to Ohms law. From this is it possible to build an equation to define the

total ∆V in terms of that across the edges and the bulk, using the current splitting
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variable α once more. Therefore this gives

∆V = α∆Vedge + (1− α)∆Vbulk (6.9)

which in relation to the conductance will transfer to

σel =
∂I

∂(αVedge + (1− α)Vbulk)
, (6.10)

when ∆Vedge → Vedge and ∆Vbulk → Vbulk algebraic substitutions are used. This

can be simplified as long as the equation is homogeneous, and that the model re-

mains simple in concept. For example, the idea that neither the edge nor the bulk

currents contain any inaction term between them is vital. Meaning they only have

a dependence upon the voltage drop across there own part of the material. As long

as this holds then it is possible to write (6.10) as

σel =
α∂Iedge

α∂Vedge
+

(1− α)∂Ibulk

(1− α)∂Vbulk
, (6.11)

which becomes

σel =
∂Iedge

∂Vedge
+
∂Ibulk

∂Vbulk
. (6.12)

From this deviation it can be seen that the electrical conductance does not have

a dependence on how the current splits. This proves the assumption that was

stated at the beginning of this chapter when α was first introduced. The electrical

conductance is independent of how the current travels through the system.

To find the electrical conductance of the model being created here, it is

first advisable to consider the bulk differentiation. This is due to the simplicity of

applying the bulk part of (6.12) to Ibulk. This gives

∂Ibulk

∂Vbulk
=
qe

h

(
−(qe) exp

(
−Esp
T

)
− (qe) exp

(
−Esh

T

))
= −qe

2

h

(
exp

(
−Esp
T

)
+ exp

(
−Esh

T

))
. (6.13)

Now to look at the edge part of (6.12), the voltage differential once more needs to

be converted into the differentiation with respect to µ. So using the same equation

given in chapter 5, section 5.3, it can be taken that

∂

∂Vedge
= −e

2

∂

∂µ
. (6.14)
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This will give the differential of the edge current to be

∂Iedge

∂Vedge
= −

e2 exp
(
µ[c]
T

)
2h
(

1 + exp
(
µ[c]
T

)) − e2 exp
(
µ[−c]
T

)
2h
(

1 + exp
(
µ[−c]
T

))
= − e

2

2h

 1

1 + exp
(
−µ[c]
T

) +
1

1 + exp
(
−µ[−c]
T

)
 . (6.15)

Therefore the electrical conductance is given by

σel =− qe2

h

(
exp

(
−Esp
T

)
+ exp

(
−Esh

T

))

− e2

2h

 1

1 + exp
(
−µ[c]
T

) +
1

1 + exp
(
−µ[−c]
T

)
 (6.16)

6.2.3 Thermopower Equation

Now using the two conductances found in the previous sections, it is possible to

construct an equation for the thermopower, using the relationship that

Sxx = −σth

σel
. (6.17)

Therefore Sxx becomes

Sxx =

eα

− µ[c]

T

(
1+e−

µ[c]
T

) + ln
(

1 + e
µ[c]
T

)
− µ[−c]

T

(
1+e−

µ[−c]
T

) + ln
(

1 + e
µ[−c]
T

)
qe2
(
e−

Esp
T + e−

Esh
T

)
+ e2

2

(
1

1+e
−µ[c]
T

+ 1

1+e
−µ[−c]
T

)

+
qe (1− α)

((
1 +

Esp
T

)
e−

Esp
T −

(
1 + Esh

T

)
e−

Esh
T

)
qe2
(
e−

Esp
T + e−

Esh
T

)
+ e2

2

(
1

1+e
−µ[c]
T

+ 1

1+e
−µ[−c]
T

) . (6.18)

This equation can be simplified using a few different methods. The first is to insert

the fact that qe = e/4, and cancel out the terms which can be removed. The second

thing that can be done is to replace the 1/(1 + exp(−x)) with(
1 + exp

(
−µ
T

))−1
≈ 1− exp

(
−µ
T

)
(6.19)
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which is the expansion to the first order. The next simplification that can be made

is to rewrite the ln(x) term using logarithm rules, such that it becomes

ln
(

1 + exp
(µ
T

))
=
µ

T
+ ln

(
1 + exp

(
−µ
T

))
. (6.20)

This can be simplified even more by using the series expansion on the natural loga-

rithm because exp (−x) < 1. The series expansion of the natural logarithm in this

situation is ln(1 +x) = x+O(1)... when |x| < 1. Therefore (6.20) can be written as

ln
(

1 + exp
(µ
T

))
=
(µ
T

+ exp
(
−µ
T

))
. (6.21)

Using these simplifications it is possible to rewrite the components in the denomi-

nator of (6.18) that come from the edge current, as

− µ

T
(

1 + e−
µ
T

) + ln
(

1 + e
µ
T

)
= −µ

T

(
1− exp

(
−µ
T

))
+
µ

T
+ exp

(
−µ
T

)
=
(

1 +
µ

T

)
exp

(
−µ
T

)
. (6.22)

This holds for both µ[c] and µ[−c]. Therefore (6.18) now becomes

Sxx =
4α
((

1 + µ[c]
T

)
e−

µ[c]
T +

(
1 + µ[−c]

T

)
e−

µ[−c]
T

)
qe
(
e−

Esp
T + e−

Esh
T

)
+ 8qe

1+e
−µ[c]
T

+ 8qe

1+e
−µ[−c]
T

+
(1− α)

((
1 +

Esp
T

)
e−

Esp
T −

(
1 + Esh

T

)
e−

Esh
T

)
qe
(
e−

Esp
T + e−

Esh
T

)
+ 8qe

1+e
−µ[c]
T

+ 8qe

1+e
−µ[−c]
T

. (6.23)

The only thing to do now, is to change the units such that the temperature is no

longer in energy units. To do this (6.23) needs to be multiplied by kB. This means

the final equation for the thermopower is

Sxx =
kB
qe

4α
((

1 + µ[c]
T

)
e−

µ[c]
T +

(
1 + µ[−c]

T

)
e−

µ[−c]
T

)
e−

Esp
T + e−

Esh
T + 8

1+e
−µ[c]
T

+ 8

1+e
−µ[−c]
T

+
kB
qe

(1− α)
((

1 +
Esp
T

)
e−

Esp
T −

(
1 + Esh

T

)
e−

Esh
T

)
e−

Esp
T + e−

Esh
T + 8

1+e
−µ[c]
T

+ 8

1+e
−µ[−c]
T

. (6.24)
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6.3 Thermopower

The thermopower equation found in the previous section is one that describes the

simple model of the system being looked at. This means that it does not involve

tunnelling. Which in turn leads to the fact that the equation given in chapter 5,

for the transition value, can not be used. This is because without tunnelling the

variation in the conductance is not noticeable along the plateau. But the transi-

tion value is still an important variable in the equation which defines the chemical

potential. Therefore the transition value, c, will be treated as a free parameter in

this section as the results from the simple model are investigated, and compared to

those experimentally found in [3]. This idea will be looked at in great depth in the

next section.

The equations that will be used within the themopower to express the chem-

ical potential, µ, the particle energy, Esp, and the hole energy, Esh are

Esp = (1− g)
∆

2
, Esh = (1 + g)

∆

2
, µ = (1− cg)

∆

2
, (6.25)

where

g =
δν

δνm
. (6.26)

δνm is the maximum value of the filling factor along the plateau, and δν is how it

varies as the particle move across it this is shown in fig.6.4. It is g that the the-

mopower will be plotted against, as the model being developed only holds across the

plateau. Therefore how this variable relates to the magnetic field values needs to be

determined so that the result can be compared to those found through experiments.

𝛿𝜈𝑚

changing 𝛿𝜈 as particle moves from one side 
of plateau to other.

0

+𝛿𝜈 →← -𝛿𝜈

Figure 6.4: A sketch of a plateau showing δνm and how the δν will change as it
moves across it.
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From [6] it is known that as δν increases from the centre of the plateau,

when g = 0, then the transport will be dominated by electrons. This shows that the

saddle point heights the particles need to cross, Esp, will become lower the further

along the plateau it travels. So this agrees with (6.25) as obviously Esp will vanish

when ν → ν = νm + δνm. The reverse is also true in the fact that the holes behave

in the opposite way. As δν decreases from the centre of the plateau Esh decreases

and therefore holes become the dominate from of transport. As such Esh vanishes

as ν → ν = νm − δνm which is therefore when g is negative.

It has been stated previously that [4]

ν =
nh

eB
. (6.27)

Therefore to see how gν relates to the magnetic field, this relation can be used. So

take

gν =
δν

δνm
and gB =

δB

δBm
(6.28)

(6.27) can be used to turn δν → δB and δνm → δBm. This is done by considering

δνm = νm − νmin (6.29)

δBm = Bm −Bmin. (6.30)

Using (6.27) then it is possible to rewrite (6.29) to be

δνm =
nh

eBm
− nh

eBmin

=
nh

e

(
1

Bm
− 1

Bmin

)
=
nh

e

Bmin −Bm
BmBmin

= −nh
e

δBm
BmBmin

. (6.31)

Putting this into (6.28) for gν gives

gν = − e

nh

δν

δBm
BmBmin. (6.32)
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This same process can be applied to the change δν → δB. Therefore this becomes

δν = νm − ν ′

=
nh

eBm
− nh

eB′

= −nh
e

δB

BmB′
. (6.33)

So putting this in (6.32) gives

gν =
δB

δBm

Bmin
B′

= gB
Bmin
B′

. (6.34)

Now because the width of the plateau, the distance between Bmin and Bmax, is

small then it is possible to approximate Bmin
B′ ≈ 1. So therefore the relationship

between the g’s is gν = gB. So when looking at the graphs this model will produce,

then δν
δνm

can be interchanged with δB
δBm

. As such the direction of g along the x-axis,

follows the direction of B. The model will also produce the graphs so that they

follow the experimental convention of having −Sxx on the top of the y-axis. This is

shown in fig.6.5.

65



-g 
smaller values of B
Hole dominated 
transport

+g
Larger values of B

Electron dominated 
transport

-Sxx

Electron dominated 
transport

+Sxx

Hole dominated 
transport

Figure 6.5: How g relates to the magnetic field, B, and how this relates to electron or
hole domination in the transport through the material. It also includes the general
conventions for the expression of the thermopower, Sxx.

6.3.1 Changing The Transition Value

As stated previously the transition value c cannot be calculated using the equation

derived in chapter 5 in this simple model. Instead it is a free parameter. This means

that its value will need to be determined by running the model for a set temperature

and energy gap, and the range of current splitting, α, values. This is done in fig.6.6,

where the different graphs are shown for values of c = [0, 1] in increments of 0.1.

The different coloured trajectories show how the thermpower changes with α for

each value of c. The value of α that corresponds to each coloured line is given in

table 6.1.

α Colour α Colour α Colour α Colour

0.0 Red 0.1 Blue 0.2 Green 0.3 Black

0.4 Gray 0.5 Cyan 0.6 Magenta 0.7 Orange

0.8 Brown 0.9 Purple 1.0 Pink

Table 6.1: The table showing how the different α values correspond to the different
coloured lines in fig.6.6.
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(a) Thermopower Sxx, with
c = 0, ∆/T = 14.
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(b) Thermopower Sxx, with
c = 0.1, ∆/T = 14.
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(c) Thermopower Sxx, with
c = 0.2, ∆/T = 14.
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(d) Thermopower Sxx, with
c = 0.3, ∆/T = 14.
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(e) Thermopower Sxx, with
c = 0.4, ∆/T = 14.
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(f) Thermopower Sxx, with
c = 0.5, ∆/T = 14.
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(g) Thermopower Sxx, with
c = 0.6, ∆/T = 14.
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(h) Thermopower Sxx, with
c = 0.7, ∆/T = 14.
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(i) Thermopower Sxx, with
c = 0.8, ∆/T = 14.
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(j) Thermopower, Sxx with
c = 0.9, ∆/T = 14.
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(k) Thermopower Sxx, with
c = 1, ∆/T = 14.

Figure 6.6: Plots showing how the thermopower changes with the different values of
the transition value c, for ∆/T = 14, and the current splitting parameter α. Which
lies in the range of α = [0, 1] in 0.1 increments.

It can be seen from fig.6.6 that for smaller values of the transition value c,

the results given by the model do not tally with those gained in experimentation.

Therefore from this is it possible to deduce, for this simple model, that the value of

c that needs to be taken is of a larger value than 0.5. As such for the rest of this

chapter, the value of c that will be used is c− = 0.8 due to the fact that this is the

graph that resembles the experimental results given in chapter 2 the closest for the

∆/T = 14 value.
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6.3.2 Changing The Temperature

The previous section suggested an approximate value for the transition value c,

which means the model can now be tested against the changing value of the tem-

perature. It is known how the model should behave, the higher the temperature the

less pronounced the plateau, and as such the less the dip in the thermopower will

be. Therefore the model shall be run over a range of temperatures, which will be

represented by the changing value of ∆/T . This is due to the fact that the energy

gap ∆ will not change as the temperature does. These results are given in fig.6.7 and

fig.6.8. The different colours in the graphs represent the different values of current

splitting parameter α and correspond to the those given in table 7.1.

α Colour α Colour α Colour α Colour

0.0 Red 0.1 Blue 0.2 Green 0.3 Black

0.4 Gray 0.5 Cyan 0.6 Magenta 0.7 Orange

0.8 Brown 0.9 Purple 1.0 Pink

Table 6.2: The table showing how the different α values correspond to the different
coloured lines in fig.6.7 and fig.6.8.
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(a) Thermopower Sxx, with c = 0.8,
∆/T = 2.
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(b) Thermopower Sxx, with c = 0.8,
∆/T = 4.

Figure 6.7: Plots showing how the thermopower changes with the different values of
the temperature T , for c = 0.8, and the current splitting parameter α. Which lies
in the range of α = [0, 1] in 0.1 increments.
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(a) Thermopower Sxx, with c = 0.8,
∆/T = 6.
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(b) Thermopower Sxx, with c = 0.8,
∆/T = 8.
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(c) Thermopower Sxx, with c = 0.8,
∆/T = 10.
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(d) Thermopower Sxx, with c = 0.8,
∆/T = 12.
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(e) Thermopower Sxx, with c = 0.8,
∆/T = 14.
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(f) Thermopower Sxx, with c = 0.8,
∆/T = 16.
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(g) Thermopower Sxx, with c = 0.8,
∆/T = 18.
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(h) Thermopower, Sxx with c = 0.8,
∆/T = 20.

Figure 6.8: Plots showing how the thermopower changes with the different values of
temperature with the transition value c = 0.8, and the current splitting parameter
α. Which lies in the range of α = [0, 1] in 0.1 increments.
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It can be seen from fig.6.8g and fig.6.8h that as the value of ∆/T increases

the model will return the same values for the thermopower. This is because these

values are representative of extremely low temperatures, and in the real system, the

thermoelectric transport will be dominated by tunnelling. And as this simple model

does not include this phenomenon then it stagnates at the point where tunnelling

will take over from the more classical forms of transport. But despite this upper

threshold, the graphs for the lower values of ∆/T , and thus higher temperatures, for

example fig.6.7a and fig.6.7b show that at these points the plateau which causes the

thermopower to drop off, has not yet formed. As the temperature lowers through

figs.6.8a, 6.8b and 6.8c that drop off, and therefore the plateau formation, can be

seen. This shows that the model does work, within the limit that it was created to

preform at, and as such it can be used as a tentative example to check against the

experimental data found in [3].

6.4 Comparison With Experimental Data

To compare the result from the model with those found experimentally by Chickering

et al.[3] a particular filling factor needs to be chosen. One which has plenty of

experimental data to give a robust comparison for the simplified model. The one

that is most investigated in [3] is the 5/2 state as this is the one which has no

confirmed theory to describe the behaviour of the particles. As such the 5/2 is the

one that will be used to compare the results from the model developed, to make

sure that it is within an acceptable tolerance for the parameters being investigated.

Especially as this state is the one that the model hopes to explain the behaviour of

in greater detail.

To do this comparison then the value of α for the system needs to be chosen,

as this is the only true free parameter. Therefore firstly the value of ∆/T for

the simplified model, which corresponds to the different temperatures measured

experimentally, has to be found. This is done by using the measured value of ∆

from [3], which is given to be ∆ ≈ 430mK. This gives the values for ∆/T to be

∆/T ≈ 10.5, 15, 21.5 for the temperatures T = 41mK, 28mK, 20mK respectively.

The experimental data and the theoretical model graphs are both shown in

fig.8.2. It can be seen from this graphic that while the model gives the correct shape

for the different temperatures, the value of the thermopower −Sxx is out by a factor

of 10. This noticeable difference between fig.8.3a and fig.8.2b is due to the fact that

the theoretical model is a simplified one. It therefore does not include tunnelling

which, at the low temperatures being looked at, is the dominate form of transport
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within the material. As such while it can not be said with complete certainty that

this model will give an appropriate theoretical deviation of the thermopower at low

temperatures, it does show that it gives the correct behaviour, even if the range is

off by a factor of 10 due to the lack of tunnelling.

(a) Thermopower data for the 5/2 state
from [3]. The black line shows a differ-
ent gtheoretical prediction by Yang and
Halperin [40].

(b) Thermopower from the simplified
model with c = 0.8 and α = 0.7.

Figure 6.9: Plots showing how the thermopower changes with the different values of
temperature for both the experimental data and the simplified model. The different
coloured lines are for the different temperatures, blue=20mK, green=28mK, and
red=41mK.

In the next chapter, this simplified model will be developed to include tun-

nelling.
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Chapter 7

Inclusion of Tunnelling

The tunnelling effects the derived conductances depending on the ratio ∆/T . In

the very low temperatures of the quantum Hall regime, ∆/T is high and as such

tunnelling will play a large part in the derivation of the thermopower. This is

because at these low temperatures the particles and holes do not have the energy

required to move over the barriers the saddle points represent, Thus majority of the

particle and hole movement is via tunnelling. This will make the effective average

value of the saddle point height be lower than it is when dealt with classically, as

in the classical regime the particles can either go over the saddle point or they get

scattered back. But in the regime we are looking at, they can also tunnel through,

effectively cutting off the top of the saddle point and making its value lower. This

is shown in fig.7.1.

ClassicalTunnelling

Es actualEs effective

(a) (b)

Figure 7.1: A sketch showing how the tunnelling reduces the actual energy gap value
Es, shown in (b), to an effective one, shown in (a).

To include tunnelling, and thus this effective value for the energy gap into

the equation for the thermopower model found in chapter 6, so that the behaviour

of the particle and holes at low temperatures is taken into account. It has been
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found previously in [41] and [6] that the equation for the transmission probability

through the bulk, T (E−Es), with respect to tunnelling for the specific saddle point

potential W (x) = Es − Uxx2 + Uyy
2 is given by

T (E − Es) =
1

1 + exp

(
−π(E−Es)
l2q
√
UxUy

) . (7.1)

This is relevant as this specific potential is the one used when modelling the system

as a network of resistors, as is being done here. Now
√
UxUy can be replaced by

∆s/2a
2, where ∆s is the energy gap of the saddle point, whereas Es is the energy

connected to the particles transport across the saddle, as explained previously in

this thesis. Therefore (7.1) will become

T (E − Es) =
1

1 + exp
(
−π2a2(E−Es)

l2q∆s

) . (7.2)

where the variable a2/l2q is the tunnelling coefficient, and is comprised of a, which is

the half the width between the different puddles, and as such is half the width of the

saddle point, and lq is the magnetic length of the quasi-particles or quasi-holes. This

is the part which dictates how much tunnelling is happening in the system. For lower

values of the tunnelling coefficient, which will be referred to as γ throughout the

rest of this thesis, tunnelling becomes the main form of transport across the saddle

points, and as such this transmission probability takes control. Whereas for higher

values of γ this will approximate to the simplified system already proposed where

tunnelling is not taken into account, as such the probability equation will revert

back to where T will equal either 0 or 1, depending on whether the particle has the

energy to transverse the gap. This is because the particles will have the energy to

cross the saddle in the normal ways, and that will become the most dominate form

of transportation. With the new notation given, (7.2) will become

T (E − Es) =
1

1 + exp
(
−2πγ2 (E−Es)

∆

) . (7.3)

In the following sections, how this equation changes the conductance will be inves-

tigated and a new, more complex model, will be derived to model the thermopower.
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7.1 The Behaviour of The Conductance

The equation to find the number current of the system using (7.3) for the transmis-

sion probability in (3.1) is given by

ilr =
1

h

∫ ∆

0
dE

exp (−E/T )

1 + exp(−2πγ2 (E−Es)
∆ )

. (7.4)

which gives the equation for the conductance σ to be [33]

σ =
(qe)2

hkBT

∫ ∆

0
dE

exp (−E/T )

1 + exp
(
−2πγ2 (E−Es)

∆

) . (7.5)

To evaluate this, the variable being integrated over needs to change into those of

known parameters. As such the change in variable will be

E = x∆, (7.6)

this change makes the exponential in the denominator become

exp(−2πγ2 (E − Es)
∆

) = exp(−2πγ2(x− xs)), (7.7)

and the one in the numerator to transform to

exp

(
E

T

)
= exp

(
E

∆

∆

T

)
= exp

(
x

∆

T

)
. (7.8)

The final conversation that needs to take place is that of the integral variable and

the limits of integration.

dE

dx
= ∆ therefore dE = ∆dx, (7.9)

and the limits change such that

0→ 0

∆
→ 0

∆→ ∆

∆
→ 1. (7.10)

Putting (7.7), (7.8),(7.9) and (7.10) into (7.5) then the conductance becomes

σ =
(qe)2

hkB

∆

T

∫ 1

0
dx

exp (−x∆/T )

1 + exp(−2πγ2(x− xs))
(7.11)
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which can be evaluated numerically for various different values of γ and ∆/T . The

variable xs is the one which will relate to the variables Esp for particles and Esh for

holes. Using (7.6) this relationship can be seen to be xs = Es/∆. This will give the

values for Esp → xsp, and Esh → xsh to be xsp = (1 − g)/2 and xsh = (1 + g)/2

respectively. The centre of the plateau will be taken when xs = 1/2. Figure 7.2

shows the numerically evaluated conductance for different values of γ, at the centre

of the plateau.

Figure 7.2: a plot of the log of the thermal conductance for changing values of ∆/T .
done at different values of γ. the line colours equate to, red: γ = 0.9, green: γ = 1.3,
blue: γ = 2 and Magenta: γ = 5. The Dashed black line is the result given by the
equation found in [4] without tunnelling.

From this plot it can be seen that as γ increases in value it approaches the

result found previously without tunnelling. Whereas for smaller values of γ and

larger values of ∆/T then the result varies greatly from that found using a more

classical approach. This shows that this model performs the required transition from

the semi-classical, thermal excitation dominated approximation at higher γ values,

to one which is dominated by tunnelling in the lower end of the regime.

7.2 Deriving The Thermopower

The total current for the system being investigated will change with the inclusion

of tunnelling. This change will affect the bulk current as the equation taken from

[6] assumed that the transmission probability T (E − Es) was either 0 or 1. In this

75



section that assumption no longer holds. Therefore the bulk current will become

Ibulk =
∆qe

h

∫ 1

0
dx

exp
(
−x∆

T

)
1 + exp(−2πγ2(x− xs))

. (7.12)

The edge current will remain the same as that found in chapter 5 due to the fact

that the tunnelling mainly happens in the bulk of the material. The easiest way to

evaluate (7.12) for inclusion into the thermopower is to first derive the conductances

equations before integration. The electrical conductance is the one already looked

into previously (7.13) and as is therefore given by

σel =
(qe)2

hkB

∆

T

∫ 1

0
dx

exp (−x∆/T )

1 + exp(−2πγ2(x− xs))
. (7.13)

The thermal conductance will need to be derived from (7.12). This is relatively easy

as the only component in the equation that has any dependence on the temperature

is the exponential in the numerator. Therefore the thermal conductance, σth will

be given by

σth =
∂

∂T

(
∆qe

h

∫ 1

0
dx

exp
(
−x∆

T

)
1 + exp(−2πγ2(x− xs))

)

=

(
∆

T

)2 qe

h

∫ 1

0
dx

x exp
(
−x∆

T

)
1 + exp(−2πγ2(x− xs))

. (7.14)

Both these equations when integrated will produce hypergeometric functions 2F1,

which require numerical evaluation. As such no complete equation for the ther-

mopower can be written down. But it can be expressed as shown in (7.15) where

the electrical and thermal conductances for the edge states are those determined.

Therefore the thermopower power becomes

Sxx = −
(1− α)σth,sp − (1− α)σth,sh + ασth,edge,+c + ασth,edge,−c

σel,sp − σel,sh + σel,edge,+c + σel,edge,−c
. (7.15)

To show that this does indeed work, fig. 7.3 shows how the inclusion of tunnelling

will change the behaviour of the thermopower through the bulk of the material only.

It can be seen that there is a difference in not just the values, but also the behaviour

as the particles move across the plateau.
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Figure 7.3: The thermopower for the bulk of the system where the dashed lines are
those given from the simplified model discussed in chapter 6, whereas the solid lines
are including tunnelling. this is modelled in the corbino geometry and developed in
[6].

The γ value used here is one that is in the middle of the possible values. It

is not an extreme amount of tunnelling, but there is enough to show the different

behaviour of the particles in such a regime.

7.3 Thermopower

In the following sections the model for the thermopower will be run for different

values of temperature, given by varying the value of ∆/T . The smaller the value

of ∆/T then the higher the temperature. Those will be the systems that have

less tunnelling and as such behave in the way shown in the simplified model in

chapter 6. The difference will be that this time the transition parameter c will be

calculated using the equation derived in chapter 5. α is still a free parameter that

needs to be determined by comparing the results given by the model with those

found experimentally. Thus all the plots in the sections to follow will include the

different possible values of α. The γ values that will be used to investigate the

behaviour of this system, and to confirm the robustness of the model, will range

between γ = [1, 2]. These are the values that will show the effect of tunnelling well,

and will also be able to be compared the results with experimental data. In all the

graphs shown below the colours of the different lines correspond to the values of α

as given in 7.1.

77



α Colour α Colour α Colour

0.1 Blue 0.2 Green 0.3 Black

0.4 Gray 0.5 Cyan 0.6 Magenta

0.7 Orange 0.8 Brown 0.9 Purple

Table 7.1: The table showing how the different α values correspond to the different
coloured lines in the following sections.

7.3.1 ∆/T = 10

The first value is ∆/T = 10, and corresponds to approximately 40mK. At this

temperature it is expected that tunnelling will be present, but it may not be the

dominate form of transport. This is shown in fig.7.4 as it can be seen that while

the fractional quantum Hall states are appearing, the unusual phenomena of the

thermopower changing sign does not appear.

Figure 7.4: The data published in [3] showing the difference in behaviour of the
thermopower at both 41mK (the red line), and 28mK (the blue line).

The model developed in this thesis, should be able to predict this behaviour

within reasonable accuracy, depending upon the free parameters α and γ. The range

of α = [0.1, 0.9] will be run for each value of γ and the different γ’s are γ = 1.1, 1.3,

1.5, 1.7, 1.9. The value for the transition value, c, will also change for each different

γ value, as it is dependant upon the conductance. Each of these values are declared

under each graph in fig.7.5.
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(a) γ = 1.1 and c = 0.69. (b) γ = 1.3 and c = 0.60.

(c) γ = 1.5 and c = 0.53. (d) γ = 1.7 and c = 0.46.

(e) γ = 1.9 and c = 0.40.

Figure 7.5: The results from the model for different γ values, where ∆/T = 10.

Fig.7.5 shows that the higher the γ value the lower the value for the transition

value c, as well as the model giving a flat behaviour across the plateau. Whereas

for the lower values, a definite curve can be seen. This is due to the model showing

how the dip in the thermopower at the filling factor increases as the tunnelling does.

The difference in behaviour from a bulk dominated to edge dominated thermopower

is also observed, with the blue line showing how the bulk domination is the reason

for the thermopowers sign change. Meaning that for −g, the bulk behaviour is dom-

inated by the hole transport. Whereas the purple shows that the edge dominated

regime remains completely positive, and thus is dictated by particles.
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7.3.2 ∆/T = 15

The value of ∆/T = 15 corresponds to a temperature of approximately 30mK. This

is a temperature at which tunnelling is involved in the transport of the particle

throughout the system, and as such should have a γ value that is within this acti-

vated range. Once again the α values will be varying across the range of α = [0.1, 0.9]

and the γ values the model will be run for are γ = 1.1, 1.3, 1.5, 1.7, 1.9. The transi-

tion value will be the one that corresponds to these different γ’s. The results from

the model are shown in fig.7.6.

(a) γ = 1.1 and c = 0.77.
(b) γ = 1.3 and c = 0.70.

(c) γ = 1.5 and c = 0.63. (d) γ = 1.7 and c = 0.57.

(e) γ = 1.9 and c = 0.51.

Figure 7.6: The results from the model for different γ values, where ∆/T = 15.
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In fig.7.6 the fan effect caused by the differing dominations can be seen

once more on the extreme left of the graph, confirming that it is the bulk that is

dictating the sign change. It can also be observed that the minimum value when

the thermopower is curved has also lowered from that for ∆/T = 10. This is to

be expected as ∆/T = 15 acts at a lower temperature and as such the plateau at

the filling factor would be more defined. At the right of the graph, where the two

regimes seem to be following the same path, it can be seen that the purple lines,

which is dominated by the edge movement, changes more steeply with the varying

values of γ than the bulk dominated regime does. This is due to the variation in

the transition value c, which plays such a large part in the equation for the chemical

potential.

7.3.3 ∆/T = 20

The value of ∆/T = 20 corresponds to the low temperature of approximately 20mK.

This means that for this regime tunnelling will be the dominate form of particle

transport. As such it is expected that the γ value required to allow the model to

correctly correspond to the experimental data, will be relatively low. The model

will be run once more over all the α values, as well as for γ = 1.1, 1.3, 1.5, 1.7, 1.9.

The transition value will be the one that corresponds to the γ and the ∆/T values.

This is shown in fig.7.7 and fig.7.8.

(a) γ = 1.1 and c = 0.83. (b) γ = 1.3 and c = 0.77.

Figure 7.7: The results from the model for different γ values, where ∆/T = 20.
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(a) γ = 1.5 and c = 0.70. (b) γ = 1.7 and c = 0.64.

(c) γ = 1.9 and c = 0.59.

Figure 7.8: The results from the model for different γ values, where ∆/T = 20.

In fig.7.8 it can be seen that there is very little difference between the graphs

given by the model. This is due to the high value of γ causing the results to mimic

as those from the simplified model shown earlier. Therefore due to the high value of

∆/T , and thus the low temperature, there is a limit to how much change can be seen

when tunnelling is not taken as the most dominate form of transport in the system.

The graphs in fig.7.7 show how the thermopower behaves when the tunnelling is

taken into account. Both these graphs have the majority of the lines showing the

dip to the minimum value of thermopower, which is expected at the centre of the

plateau. They also show how close the lines are getting to the zero, with some of

the middle values of α showing a slight change in sign, similar to that was seen in

the experimental data in [3].

7.4 Comparison With Experimental Data

To compare the results obtained from the model with the experiential data, the

values of the free parameters, α and γ must be decided. The values used for fig.7.9

are γ = 1.5 and α = 0.7.
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(a) Thermopower data for the 5/2 state
from [3]. The black line shows a differ-
ent gtheoretical prediction by Yang and
halperin [40].
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(b) Thermopower from the model that
includes tunnelling with γ = 1.5 and
α = 0.7.

Figure 7.9: Plots showing how the thermopower changes with the different values
of temperature for both the experimental data and the model that includes tun-
nelling. The different coloured lines are for the different temperatures, blue=20mK,
green=28mK, and red=41mK.

From fig.7.9 it can be seen that this model is a good fit for the experimental

data. The data obtained from the model is the correct order of magnitude and

in good agreement of that found experimentally. It shows the reversal of sign for

the thermopower as well as how it behaves for the different temperatures, including

how the minima in the thermopower moves across the plateau as the temperature

decreases. It shows that the inclusion of tunnelling does indeed help drive the model

closer to the experimental results obtained.
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Chapter 8

Conclusion and Further Work

Throughout this thesis a model to describe the behaviour of thermopower has been

developed, using for its basis one designed in the Corbino geometry. The assumption

that Dykhne’s theorem can be used for a potential that is not asymmetric, see fig.8.1,

has been tested and found correct.

Figure 8.1: A diagram showing the asymmetric potential caused by tunnelling.

The current through the edges states has been derived to include the be-

haviour of the chemical potential µ. This then was combined with the model found

in [6] to create a simplified model of the thermopower in a Hall bar geometry. The

free parameter of the current splitting, α was investigated and a suitable value found.

This result was then compared with the experimental data published in [3] to see if

this model could describe the situation.
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(a) Thermopower data for the 5/2 state
from [3]. The black line shows a differ-
ent gtheoretical prediction by Yang and
halperin [40].

(b) Thermopower from the simplified
model with c = 0.8 and α = 0.7.

Figure 8.2: Plots showing how the thermopower changes with the different values of
temperature for both the experimental data and the simplified model. The different
coloured lines are for the different temperatures, blue=20mK, green=28mK, and
red=41mK.

It was seen that this model was not complex enough to be used to explain

the thermopower and as such tunnelling was included. With this addition came

the tunnelling parameter γ which varies depending on the value of the temperature.

This was also investigated and suitable values were found so that the result from

the model could once more be compared with those from experiment. This model

was found to give a good approximation to the experimental results, see fig.8.3.

(a) Thermopower data for the 5/2 state
from [3]. The black line shows a differ-
ent gtheoretical prediction by Yang and
halperin [40].
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(b) Thermopower from the model that in-
cludes tunnelling with γ = and α =.

Figure 8.3: Plots showing how the thermopower changes with the different values
of temperature for both the experimental data and the model that includes tun-
nelling. The different coloured lines are for the different temperatures, blue=20mK,
green=28mK, and red=41mK.
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The model that has been developed throughout this thesis has a dependence

upon four main parameters, they are the current splitting α, the tunnelling param-

eter γ, the size of the energy gap ∆ and the transition value c. Both ∆ and c can

be determined from experimental data, and from those an estimate of γ can be

obtained. Therefore the only truly free parameter in this model is that of α, as it is

the only one that can not be calculated from experimental data and as such must

be presumed. Throughout this work that presumption was that it was a constant,

but this could well not be the case.

To further develop the model discussed in this thesis, analysing how a chang-

ing α value effects the results would be an effective choice. It is suggested in [31]

that the current splitting parameter α could be modelled as a capacitor, this concept

could produce a more accurate description of the thermopower at low temperatures

if it were to be included into the model.
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