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Abstract: 20 

A widely recognized challenge in starch chemistry is to manipulate the graft copolymerization onto 21 

starch melt by reactive extrusion (REX). To understand the complex in-situ graft copolymerization in 22 

highly concentrated systems, we firstly used a mixer to achieve a homogeneous viscous starch melt, and 23 

then undertook dynamic rheological measurements to study the rheokinetics of the reaction. The in-situ 24 

synthesis also facilitated the characterization of the microstructures of reaction products. The melt 25 

mixture could be regarded to be completely micromixed since the rheokinetics was predominated by the 26 

reaction kinetics. The rheological characterization revealed that 𝐺′of hydrogels followed a linear 27 

progression with the crosslinker concentration. Nevertheless, the reaction temperature and initiator 28 

content had little influence on the final microstructure of hydrogels, most likely due to the strong chain 29 

transfer reaction in the melt. Additionally, high-amylose starches tended to form grafted hydrogels with 30 

a high physical crosslinking density. 31 

 32 

Keywords: starch; acrylamide; hydrogel; graft copolymerization; kinetics; rheology 33 
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1. Introduction 41 

Hydrogels are 3D matrices constituted by linear or branched hydrophilic polymers that are 42 

chemically or physically crosslinked (Ahmed, 2015; Ullah, Othman, Javed, Ahmad, & Akil, 2015). 43 

Hydrogels have been widely applied in various fields such as medicines (Khalid, Ahmad, Minhas, & 44 

Barkat, 2017; Lam et al., 2016), engineering (Dai et al., 2017; Mohammadi, Sun, Berkland, & Liang, 45 

2017), and agriculture (Bao et al., 2015; Elbarbary, El-Rehim, El-Sawy, Hegazy, & Soliman, 2017), due 46 

to their 3D network and unique properties. In agriculture, the hydrogels have been adopted to modify the 47 

soil environment and enhance the utilization efficiency of water and fertilizers, which contributes to the 48 

growth of crops and alleviates the damage to the environment from the leaching loss of fertilizers 49 

(Guilherme et al., 2015; Zhang et al., 2017b). Moreover, encapsulation with hydrogels has been proved 50 

useful for the controlled release of pesticides for sustainable agriculture (Sarkar & Singh, 2017; Sun, Ma, 51 

Fang, Ren, & Fu, 2016). However, traditionally synthesized polymers are not biodegradable, which 52 

restricts their industrial application in agriculture. Therefore, natural polysaccharides such as cellulose 53 

(Ibrahim, Abd‐Eladl, & Abou‐Baker, 2015; Zhang et al., 2017a), lignocellulose (El-Saied, Waly, & 54 

Basta, 2000; El-Saied, Waley, Basta, & El-Hadi, 2004; El-Saied, Basta, El-Hadi, & Waley, 2007), starch 55 

(Qiao et al., 2016; Singh, Sharma, Negi, & Dhiman, 2015), and chitosan (Kashyap, Xiang, & Heiden, 56 

2015; Perez & Francois, 2016) have been studied for the synthesis of hydrogels, due to their abundance, 57 

biodegradability, renewability, and low cost. Starch is one of the first and most promising materials used 58 

to produce hydrogels due to its chemical versatility and relatively easier processability among 59 

polysaccharides (Ismail, Irani, & Ahmad, 2013; Zhang & Xu, 2017). Polysaccharide-based hydrogels 60 

are traditionally fabricated using batch processing methods such as solution, emulsion, and inverse 61 

suspension polymerization. However, these batch-processing methods are usually solvent-intensive, 62 

have low efficiency, and tend to generate significant amounts of byproducts, which have greatly 63 
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restricted their industrial applications (Moad, 2011; Xie, Yu, Liu, & Chen, 2006).  64 

During the past decades, continuous reactive extrusion (REX) has emerged as a solvent-free, 65 

cost-effective, and environmentally friendly technology to produce new materials with desired 66 

properties and added functions. Based on these advantages, REX has been introduced to the chemical 67 

processing of bio-based polymeric materials to tailor their properties, which has been known as in-situ 68 

REX (Formela, Hejna, Haponiuk, & Tercjak, 2017). Recently, in-situ REX has been successfully 69 

applied into the chemical modification, compatibilization, and functionalization of the bio-based 70 

polymers, such as polylactide (PLA) (Ojijo & Ray, 2015; Yang, Clénet, Xu, Odelius, & Hakkarainen, 71 

2015), cellulose (Wei, McDonald, & Stark, 2015; Zhang, Li, Li, Gibril, & Yu, 2014), starch (Willett & 72 

Finkenstadt, 2015; Xu et al., 2017), lignin (Luo, Cao, & McDonald, 2016), and polycaprolactone (PCL) 73 

(Cayuela, Da Cruz-Boisson, Michel, Cassagnau, & Bounor-Legaré, 2016; Garcia-Garcia, Rayón, 74 

Carbonell-Verdu, Lopez-Martinez, & Balart, 2017). The main advantages of in-situ REX are the 75 

reduced costs due to a combination of polymer melting, physical blending of mixtures, and chemical 76 

reaction without purification of the final products.  77 

It is well known that the high viscosity of polymer melt, the high shear stress involved in extrusion, 78 

and the complicated reactions between the used components, make it difficult to control the REX 79 

process precisely. All of these effects make a difference through the viscoelastic behaviors of reactive 80 

melt, which are always involved in the structural evolution during the reaction. In particular, polymer 81 

melts are usually viscoelastic and exhibit temperature-dependence and shear-dependence 82 

(non-Newtonian behavior). Therefore, the rheological behaviors of polymer melts during the REX 83 

process, known as rheokinetics, become essential in modeling REX and optimizing variable processing 84 

conditions. 85 

Traditionally, a static mixer (torque rheometer) with a torque that is monitored has usually been 86 
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used to study the rheokinetics of reaction systems with high viscosities. In particular, for polymer melts, 87 

the reaction between the polymer chains is usually controlled by the diffusion rate of mass transfer 88 

rather than the kinetics of chemical bonding mechanisms (Witono, Noordergraaf, Heeres, & Janssen, 89 

2017; Zhou, Yu, & Zhou, 2009). However, a static mixer may not be suitable for studying all the 90 

reactions. For example, when crosslinking is involved to form a heterogeneous network, the shear stress 91 

during mixing breaks the newly formed network into large amounts of microgels due to the stress 92 

concentration effect (Cicuta & Donald, 2007; Waigh, 2016). These microgels, which are more likely to 93 

form in-situ, could slip between each other and thus their true viscoelasticity could not be reflected in 94 

the torque rheometer. 95 

To address the above-mentioned issue, we utilized the graft copolymerization of acrylamide (AM) 96 

onto starch melt as the model reaction to develop a new method to study the reaction rheokinetics to 97 

guide the REX of concentrated polysaccharide systems. In this method, a modified Haake mixer was 98 

used to gelatinize and homogenize concentrated starch with the addition of required reactants, which 99 

could be regarded as completely micromixed to ensure a sufficient and free selectivity between the 100 

reactive groups. Then, an in-situ synthesis was performed in a stress-controlled rheometer through 101 

dynamic shear oscillation to study the reaction rheokinetics of starch graft copolymerization. 102 

Furthermore, the in-situ synthesis in a rheometer provides an incomparable benefit to allow investigating 103 

the microstructures of intact hydrogel after the chemical reaction is complete. In this way, the 104 

relationship between the reaction conditions, the graft polymerization rheokinetics, and the 105 

microstructure of the 3D network of starch-g-PAM hydrogels could be established for the first time. 106 

In previous studies of the graft copolymerization of concentrated starch by REX (Carr, Kim, Yoon, 107 

& Stanley, 1992; Finkenstadt & Willett, 2005; Willett & Finkenstadt, 2003, 2006a, b, 2009; Willett & 108 

Finkenstadt, 2015; Yoon, Carr, & Bagley, 1992), different reaction parameters such as the types of 109 
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starch and monomer, moisture content, starch-to-monomer ratio, reaction temperature, content and type 110 

of the initiator, degree of filling, and extruder screw speed on the graft parameters of grafted starch have 111 

been fully investigated. Therefore, the effects of this wide range of reaction parameters were not the 112 

focus in this current work but we only investigated the parameters that would directly influence the 113 

reaction kinetics, microstructures, and rheological properties of the hydrogels, including the contents of 114 

the crosslinker and the initiator and the reaction temperature. Nonetheless, we used corn starches with 115 

different amylose/amylopectin ratios as model materials to further explore the effect of molecular 116 

structure on the rheokinetics of starch graft copolymerization and the microstructures of final products. 117 

As much work has been undertaken to understand the in-situ REX for starch-graft-polyacrylamide 118 

(starch-g-PAM), the results from this work could be compared with the previously published results to 119 

validate the feasibility of our methodology. 120 

 121 

2. Materials and Methods 122 

2.1. Materials 123 

Corn starches with different amylose/amylopectin ratios were used. Waxy corn starch (WCS) 124 

(amylose/amylopectin ratios: 0/100) and normal corn starch (NCS) (amylose/amylopectin ratios: 27/73) 125 

were purchased from Zhongliang Co., Ltd. Gelose 50 (G50) (amylose/amylopectin ratios: 50/50) and 126 

Gelose 80 (G80) (amylose/amylopectin ratios: 80/20) were acquired from Penford (Australia). 127 

Acrylamide (AM) and N,N'-methylene-bisacrylamide (MBA) were purchased from Tianjin Kermel 128 

Chemical Reagent Co., Ltd. (China); and ammonium persulfate (APS) from Sinopharm Chemical 129 

Reagent Co., Ltd. (China). All chemicals were of analytical grade and used without further purification. 130 

 131 

2.2. Preparation of reactive mixtures 132 

A mixing system was established based on a modified Haake Rheomix 600p twin-rotor mixer 133 
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(Thermo Haake, Germany), which can provide high torque for the processing of highly viscous 134 

materials. One of the key requirements was to seal the mixer since the blending of the reactive mixtures 135 

needed to be carried out with water. The details of the modification of the mixer have been described 136 

previously (Xiao et al., 2017). 137 

To ensure a high graft efficiency and monomer conversion in the experiment, we used optimized 138 

experimental conditions and procedures for the starch graft copolymerization, that is, the use of the 139 

initiator APS, the simultaneous initiation, and a high ratio of starch to monomer. The choice of such 140 

conditions and procedures is based on the literature. Specifically, compared with other initiators, the 141 

initiator APS could give a higher monomer conversion (Willett & Finkenstadt, 2006a). Besides, the graft 142 

efficiency decreased with the increasing ratio of acrylamide to starch (Finkenstadt & Willett, 2005). 143 

Moreover, in a concentrated system, there would be a greater possibility of chains transfer reaction, 144 

which competes with the homopolymerization (Willett & Finkenstadt, 2009). The simultaneous 145 

initiation rather than a pre-initiation process could ensure a high grafting efficiency because the 146 

completed micromixing of reactant mixtures is a prerequisite for a high reaction efficiency in the melted 147 

system (Janssen, 2004). 148 

The reactive mixture was firstly prepared by mixing 20.0 g of starch, 10.0 g of AM, certain 149 

amounts of MBA, and 45.0 g of distilled water in the mixing chamber at 80 °C and 80 rpm, maintained 150 

for 5 min to gelatinize the starch under shear stress. Following this, the temperature of the mixer was 151 

reduced to 30 °C using compressed air, and 5 mL of a freshly prepared APS solution was added with a 152 

mixing speed of 100 rpm for 2 min to obtain a homogeneous reactive mixture. The ratio of starch to AM 153 

(w/w) we used was 2:1, which could give a high monomer conversion (90.4%) and grafting efficiency 154 

(79.0%) for the starch graft copolymerization (Finkenstadt & Willett, 2005). The FTIR spectra in Fig. 155 

S1 indicated that the AM was grafted onto the starch successfully. 156 
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 157 

2.3. Rheological measurements 158 

The graft copolymerization process of the starch was monitored using a stress-controlled Discovery 159 

Hybrid Rheometer (TA Instruments, New Castle, DE 19720, USA) equipped with a Peltier device for 160 

the temperature control. A stainless-steel parallel-plate geometry with a diameter of 20 mm was used to 161 

perform the oscillatory measurements. During such measurements, a solvent trap and coating with 162 

silicone oil around the edge of the samples was used to minimize water evaporation. The premixed 163 

mixture was loaded onto the lower plate of the rheometer with a pre-setting temperature of 20 °C since 164 

this temperature was low enough to prevent a further chemical reaction. The upper plate was set at a 165 

desired gap from the bottom plate (500 μm), and this gap was thin enough to quickly reach temperature 166 

equilibrium (no more than 1 min). An angular frequency of ω = 1 rad/s and a strain of γ = 0.5% were 167 

selected to ensure deformation in the linear elastic regime at the required conditions. During reaction 168 

monitoring process, the elastic modulus G' and the viscous modulus G'' were recorded every 30 s. 169 

Once the graft polymerization was complete (within 50 minutes), a dynamic frequency sweep test 170 

ranging from 0.1 to 100 rad/s was performed with a strain of γ = 0.5% at 25 °C. The 171 

temperature-dependence behaviors of elastic modulus G' of the hydrogels were determined using 172 

constant oscillatory strain and frequency (γ = 0.5% and ω = 1 rad/s) for a temperature sweep from 10 to 173 

60 °C at 5 °C/step, allowing 2 min of temperature equilibrium before each measurement for every point. 174 

To identify the linear viscoelastic region and characterize the microstructure of samples, the strain 175 

sweep was also carried out under the conditions of ω = 10 rad/s and T = 60 °C. 176 

For all the reported results, average and standard deviations were calculated from triplicate 177 

measurements. 178 

 179 
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3. Results and discussion 180 

3.1. Effect of crosslinker concentration (%C) 181 

The amount of crosslinker for the graft copolymerization reaction could strongly influence the 3D 182 

network architecture of the resultant hydrogels. Fig. 1 shows variations in the elastic modulus G'(t) (a) 183 

and the viscous modulus G''(t) (b) during the starch graft copolymerization with different MBA contents 184 

(%C). %C represents the molar fraction of the MBA crosslinker relative to the AM monomer. After a 185 

short induction period, when the elastic moduli remained stable, both G' and G'' then increased 186 

monotonically for all the samples and subsequently reached a plateau. Some scattering could be 187 

observed for G''(t), due to the sensitivity of rheometer and the properties of crosslinking network (𝐺′ ≫188 

𝐺′′) (Calvet, Wong, & Giasson, 2004). When G'(t) and G''(t) reached plateaus, it could be indicated that 189 

the graft polymerization was complete. 190 

 191 

 192 
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Fig. 1. Variations in (a) elastic moduli G' and (b) viscous moduli G'' during graft copolymerization of 194 

NCS with 0.36% initiator (%I) and different crosslinker concentrations (%C). All measurements were 195 

performed at 60 °C under dynamic oscillations at γ = 0.5% and ω = 1 rad/s. The solid lines in (a) 196 

represent fitting curves using modified Hill equation (Equation 1).  197 

 198 

 199 

To quantitatively analyze the rheokinetics of the starch graft copolymerization under different 200 

reaction conditions, the curves of elastic moduli G'(t) were fitted with a modified Hill equation (Calvet 201 

et al., 2004; Giraldo, Vivas, Vila, & Badia, 2002): 202 

 203 
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𝐺′(𝑡) = 𝐺0
′ + (𝐺∞

′ − 𝐺0
′ )

𝑡𝑛

𝑡𝑛+𝜃𝑛    (1) 204 

 205 

where 𝐺0
′  is the initial elastic modulus of reactive mixture, and 𝐺∞

′  corresponds to the final steady 206 

state elastic modulus. The half gelation time 𝜃 is the time for which 𝐺′(𝜃) = (𝐺∞
′ − 𝐺0

′ ) 2⁄ , and n is a 207 

coefficient related to the asymptotic slop P at the half gelation time 𝜃 with 208 

 209 

𝑃 =
𝑛(𝐺∞

′ −𝐺0
′)

4𝜃
    (2) 210 

 211 

Equation 2 can be used to characterize the gelation rate of starch copolymerization. The values of 212 

steady-state elastic modulus 𝐺∞
′ , half gelation time θ, coefficient n and gelation rate P obtained from the 213 

fitting are shown in Table S1. Both 𝐺∞
′  and P increased linearly with %C with fitting curves listed in 214 

Table S1. However, %C did not influence the value of θ, which was 791 ±44 s, with n kept at 2.17 ± 215 

0.30. 216 

Once the graft polymerization was complete, dynamic oscillatory measurements at different 217 

frequencies, temperatures, and strains were performed to characterize the microstructures of grafted 218 

starch hydrogels. Fig. 2a shows the variations in 𝐺′(𝜔) and 𝐺′′(𝜔) as a function of frequency using 219 

𝛾 = 0.5% and 𝑇 = 25 ℃. The frequency-dependence of 𝐺′(𝜔) and 𝐺′′(𝜔) for the gels is usually 220 

expressed as a power-law behavior: (Madbouly & Otaigbe, 2005; Winter & Chambon, 1986) 221 

 222 

𝐺′~𝜔𝑛′
 & 𝐺′′~𝜔𝑛′′

    (3) 223 

 224 

The exponent 𝑛′ and 𝑛′′ which are fitting slops from the log-log plots of 𝐺′ and 𝐺′′ versus 𝜔 225 

respectively, are called the relaxation exponent and can be linked to the material microstructure. Both 226 
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𝐺′ and 𝐺′′ for all the samples increased slightly with the rise in frequency from 0.1 to 100 rad/s in Fig. 227 

2a. The grafted starch hydrogels with a higher concentration of the crosslinker showed a weaker 228 

frequency-dependence for 𝐺′ (smaller 𝑛′) and stronger for 𝐺′′ (larger 𝑛′′). With an increase in the 229 

crosslinker content, 𝐺′ of the hydrogels became increasingly independent of frequency over at least 230 

three decades, which was a characteristic of a well-developed 3D structure of the chemically crosslinked 231 

hydrogels (Madbouly & Otaigbe, 2005; Takenaka, Kobayashi, Hashimoto, & Takahashi, 2002). Fig. 2b 232 

shows the temperature-dependence of 𝐺′ for the hydrogels with different crosslinker contents, with the 233 

temperature swept from 10 to 60 °C. For the more rigid hydrogels (𝐶% > 0.05%), 𝐺′ initially 234 

increased, showing its maxima at a certain temperature 𝑇𝑚𝑎𝑥, and then decreased. However, for the 235 

softer hydrogels (𝐶% < 0.14%), 𝐺′ decreased all along as the temperature increased. Furthermore, a 236 

higher crosslinker concentration in the hydrogels corresponded to a greater 𝑇𝑚𝑎𝑥 for the rigid gels and 237 

a slower decay rate for the soft gels. The linear viscoelastic region of hydrogels is also shown in Fig. 2c, 238 

from which it is clear that 𝛾 = 0.5% used in the experiments here was within the linear viscoelastic 239 

domain. Moreover, with the increased crosslinker content, the critical strain after the linear domain of 240 

samples was reduced, which could be attributed to the increase of formation of chemically crosslinked 241 

points and the decrease in the mesh size of the network. 242 

 243 

 244 
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Fig. 2. (a) 𝐺′(𝜔) and 𝐺′′(𝜔) as a function of frequency at 𝛾 = 0.5% and 𝑇 = 25 ℃; (b) 𝐺′(𝑇) as 247 

a function of temperature at 𝜔 = 1 rad/s and 𝛾 = 0.5%; and (c) 𝐺′(𝛾) as a function of strain 248 

amplitude 𝛾 at 𝜔 = 10 rad/s and 𝑇 = 60 ℃, measured for samples with different crosslinker 249 

concentrations (%C). 250 

 251 

 252 

To account for the phenomena observed above that grafted starch hydrogels with different 253 

concentrations of the crosslinker had different rheological behaviors, more discussion is presented 254 

below.  255 

The crosslinked hydrogels showed a specific behavior when deformed at small strains, which 256 
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corresponds to a dominant and non-frequency-dependent elastic modulus (Anseth, Bowman, & 257 

Brannon-Peppas, 1996). According to the theory of rubber elasticity developed by Flory, the equilibrium 258 

shear modulus of a freshly prepared hydrogel in a non-swollen state can be expressed by the following 259 

equation: (Ferry, 1980; Kulicke & Nottelmann, 1989) 260 

 261 

𝐺𝑒
′ = (1 −

2

𝑓
) 𝑣𝑒𝑅𝑇 = (

𝑓−2

2
) 𝑛𝑒𝑅𝑇 =

(𝑓−2)𝐶

2𝑀𝑒
𝑅𝑇    (4) 262 

 263 

where the functionality f is the number of strands linked to a crosslinker, R is the universal gas constant 264 

(8.314 J/mol/K), T is the temperature, and C is the total monomer concentration in kg/m3. 𝑣𝑒, 𝑛𝑒 and 265 

𝑀𝑒 respectively represent the number of elastically effective chains per unit volume, the number of 266 

elastically effective entanglement points, and the mesh width (molecular weight between two 267 

entanglement points) in the network. Equation 4 establishes a relationship between the elastic behavior 268 

of the crosslinked gel and the molecular architecture parameters of the network. A hydrogel consisting 269 

of a 3D polymer network and solvent immobilized within the network behaves as an elastic solid. As the 270 

network cannot dissipate energy through flow, the resultant 𝐺′′ of the hydrogels comes from a viscous 271 

flow (𝜂𝑠) of the solvent molecules within the gel, and the following equation is relevant: (Kulicke & 272 

Nottelmann, 1989) 273 

 274 

𝐺′′ − 𝜂𝑠 ∙ 𝜔 ≈ 0    (5) 275 

 276 

The measured values of 𝐺′′ are on the order of 0.1% to 5% of the value of 𝐺′, therefore 𝐺′′ can be 277 

neglected in calculations.  278 

It was shown by Ball et al. (Ball, Crutchfield, & Edwards, 1960) that the decomposition of the 279 
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initiator APS neither initiated the crosslinking reaction nor the propagation of grafted side chains 280 

instantly, but induced the formation of starch ketones due to the presence of residual oxygen. This 281 

reaction had little influence on the modulus of the system, leading to a nearly constant value of 𝐺′ in 282 

the induction period. After the oxygen in the system was consumed, the starch macromolecular radicals 283 

subsequently initiated the graft copolymerization of AM and the crosslinking reaction on starch 284 

macromolecules. This process led to an increase in the densities of covalent crosslinking points and 285 

non-covalent entanglement points from grafted side chains, resulting in an increase in 𝐺′ as represented 286 

by Equation 4. Furthermore, a higher crosslinking density in grafted starch hydrogels corresponded to 287 

less dangling side chains including the newly formed graft side chains of PAM as well as the existing 288 

lateral starch molecular chains. These dangling chains could freely mobilize and be involved in the flow 289 

of the solvent entrapped in the network when small deformation was applied to the hydrogel. Thus, a 290 

highly crosslinked network with less dangling chains showed a smaller viscous flow (𝜂𝑠) as 291 

represented in Equation 5, leading to a smaller value of 𝐺′′. 292 

The reasons why the grafted starch hydrogels prepared with different crosslinker contents showed 293 

different rheological frequency-dependencies are as follows. At low frequencies, the soft hydrogels with 294 

less crosslinking allowed the entangled dangling chains to disentangle, especially with enough time 295 

(Moura, Figueiredo, & Gil, 2007; Weng, Chen, & Chen, 2007). Therefore, the soft hydrogels showed 296 

smaller values of 𝐺′ and larger values of 𝐺′′. However, for the more rigid hydrogels, the covalent 297 

crosslinking bonds within the network restricted the motion of reversible physical entangled chains, thus 298 

these hydrogels presented a higher frequency-independence of 𝐺′. 299 

The temperature-dependence of 𝐺′ can be explained from the entropic and enthalpic nature of the 300 

gel elasticity. The elastic modulus 𝐺′ of a gel can be written as the sum of the entropic term 𝐺𝑠
′ and 301 

the enthalpic term 𝐺𝑢
′  (Nishinari, Watase, & Ogino, 1984):  302 
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 303 

𝐺′ = 𝐺𝑠
′ + 𝐺𝑢

′     (6) 304 

 305 

𝐺𝑠
′ is predominant over 𝐺𝑢

′  at lower temperatures, and vice versa at higher temperatures. It may be 306 

concluded that the maximum temperature 𝑇𝑚𝑎𝑥, at which 𝐺𝑠
′ = 𝐺𝑢

′  holds, was largely determined by 307 

the crosslinking density of the gel. This temperature shifted to greater values as the crosslinker 308 

concentration was increased. The grafted starch hydrogel, acting as a partial thermo-reversible gel 309 

beyond 𝑇𝑚𝑎𝑥, had 𝐺′(𝑇) decreasing with the increased temperature. This behavior could be ascribed to 310 

the fact that a significant amount of crosslinking junctions in the network were not simply covalent 311 

bonds, but secondary bonds such as hydrogen bonds or physical entanglements from the starch 312 

macromolecular chains and the grafted side chains of PAM. Thus, the entropic elasticity supported by 313 

the secondary bonds was reduced due to the disruption of these non-covalent bonds at higher 314 

temperatures, resulting in a decrease in the crosslinking density and lower values of 𝐺′ of the gels, as 315 

shown in Equation 4.  316 

 317 

3.2. Effect of initiator concentration (%I) 318 

The microstructure of such starch graft copolymer is usually characterized by the graft frequency 319 

and the length of graft side chains, which depends largely on the number of initial radicals created on the 320 

starch backbone. This number, in turn, is usually regulated by the initiator concentration (%I) during the 321 

polymerization. It is thus of importance to study the relationships between the kinetics of graft 322 

copolymerization of starch, the microstructure of the gel and the initiator concentration in the reactive 323 

system. %I refers to the percentage quantity of initiator relative to the amount of anhydroglucose of 324 

starch.  325 
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Figure 3 shows the variations in elastic modulus G'(t) (a) and viscous modulus G''(t) (b) for the 326 

samples with different initiator concentrations at a constant temperature of 60 °C. For all the samples, 327 

G'(t) and G''(t) increased and leveled off within a certain reaction time after an induction period, except 328 

for the sample without the initiator. Therefore, significant increases in moduli were proposed to be due 329 

to the starch graft copolymerization induced by the initiator. The slightly increased G'(t) of the sample 330 

with no initiator could be attributed to the slow moisture evaporation (Della Valle, Buleon, Carreau, 331 

Lavoie, & Vergnes, 1998). The induction time for the samples with different %I reduced with the 332 

increased content of initiator.  333 

 334 
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Fig. 3. Variations in (a) elastic moduli G' and (b) viscous moduli G'' during graft copolymerization of 337 

NCS with 0.05% crosslinker (%C) and different initiator concentrations (%I). All measurements were 338 

performed at 60 °C under dynamic oscillations at 𝜔 = 1 rad/s and 𝛾 = 0.5%. The solid lines in (a) 339 

represent fitting curves using Equation 1. 340 

 341 

 342 

It could be easier to draw conclusions about the influence of the initiator concentration by studying 343 

the characteristic parameters as shown in Table S2. The rheokinetic parameters for these systems 344 

including the half gelation time θ, the coefficient n, and the gelation rate P had correlations with the 345 

initiator concentration with three mathematical models listed in Table S2. Higher %I led to a reduction 346 

exponentially in θ and linearly in n but an exponentially increase in P, which was consistent with the 347 

kinetics of free radical polymerization (Flory, 1953). This result indicated that the reactive mixture 348 

before loaded in the rheometer could be regarded as completely micromixed, under which the chemical 349 

kinetics determined the graft copolymerization process despite in a concentrated starch system. In this 350 

system given enough time for mixing, the characteristic reaction time is much larger than the 351 

characteristic time for mixing, and the improved mixing will not influence the course of the reaction 352 

significantly (Oechsler, Melo, & Pinto, 2016). Even though the initiator effect produced a great 353 

influence on the reaction kinetics, 𝐺∞
′  of all samples with an average value of 27511±2175 Pa had 354 

almost no dependence on %I. This suggested that %I had no effect on the microstructure of grafted 355 

starch hydrogels in the concentrated starch system. Moreover, the rheological behaviors from oscillatory 356 

tests in the sweeps of frequency, temperature and strain for all the samples showed the same behavior 357 

(Fig. S2), which further indicated that the hydrogels with different %I might have similar graft 358 

frequencies and lengths of graft chains. 359 
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The result that all the hydrogels with different initiator concentrations showed similar 360 

microstructures seemed to contradict the effect of the kinetics of free radical polymerization, where the 361 

lower initiator content should yield fewer PAM grafts with a higher molecular weight for the grafted 362 

starch. Willett and Finkenstadt (2003) reported that grafted starch hydrogels had similar graft frequency 363 

and length of graft side chains in REX, regardless of the initiator content. It was also found that the 364 

initial efficiency of APS was as low as a few percent, likely due to its strong effect of the induced 365 

decomposition and the cage effect in REX with a high viscosity. The similar structures of the grafted 366 

starch hydrogels with different initiator concentrations might be ascribed to the strong possibility of the 367 

chain transfer reactions between starch macromolecules and propagating chain radicals in the 368 

concentrated starch system (Willett & Finkenstadt, 2009). The graft copolymerization could also be 369 

initiated by the chain transfer reaction, which would facilitate the generation of the starch 370 

macromolecular initial radicals, rather than is a simple initiator-based grafting process.  371 

 372 

3.3. Effect of reaction temperature (𝑇𝑟) 373 

The temperature of graft copolymerization can influence the reactivity of monomer molecules (the 374 

Arrhenius law) as well as the rheological behaviors of the concentrated starch system (the Trommsdorff 375 

effect), therefore causing various effects on the reaction kinetics, such as the rate of dissociation of the 376 

initiator (APS), the propagation and termination of graft side chains, and the tendency for the chain 377 

transfer reaction to occur. (Flory, 1953) 378 

Figure 4 illustrates the moduli G'(t) and G''(t) recorded during the NCS starch graft 379 

copolymerization with %C of 0.05% and %I of 0.36% for different 𝑇𝑟, ranging from 50 to 80 ℃. G'(t) 380 

and G''(t) behaved similarly among different samples, except for the sample synthesized in 𝑇𝑟 = 50 ℃, 381 

of which a steady state modulus had not been reached before the cessation of monitoring time, due to its 382 
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slow polymerization rate at this low temperature. Furthermore, the induction time decreased with an 383 

increase in 𝑇𝑟, and the effect of 𝑇𝑟 on the induction time was similar to that of the initiator 384 

concentration as discussed above. 385 
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Fig. 4. Variations in (a) elastic moduli G' and (b) viscous moduli G'' during graft copolymerization of 389 

NCS with 0.05% crosslinker (%C) and 0.36% initiator (%I) at different reaction temperatures (𝑇r). All 390 

measurements were performed under dynamic oscillations at 𝜔 = 1 rad/s and 𝛾 = 0.5%. The solid 391 

lines in (a) represent fitting curves using Equation 1. 392 

 393 
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 394 

The effect of 𝑇𝑟 can be well compared using the extracted data of 𝐺∞
′ , θ, n and P in Table S3 as 395 

before. The half gelation time θ decreased exponentially with an increase in 𝑇𝑟, accompanying by a 396 

randomly decreasing behavior of the coefficient n. This rheokinetic behavior was consistent with the 397 

free radical polymerization kinetics (Flory, 1953). Similar to the effect of the initiator content, the results 398 

from reaction temperature effect also indicated that the reactive mixture of the starch melt acquired from 399 

the mixing processing was completely micromixed. The gelation rate P attained a maximum value of 400 

22.59 Pa/s at 𝑇𝑟 = 70 ℃. There was some difference between the steady state values of 𝐺∞
′  measured 401 

at 𝑇𝑟 and those measured after the polymerization at 𝑇 = 25 ℃, regarding the 402 

temperature-dependence of moduli represented in Equation 4. When 𝑇𝑟 was varied from 55 to 80 °C, it 403 

had little effect on 𝐺∞
′  (𝑇 = 25 ℃) , which had a mean value of 29482±346 Pa. This was in an 404 

agreement with the results regarding the graft parameters for the grafted starch prepared by REX as 405 

reported by Willett and Finkenstadt (2003). The dynamic oscillatory tests in frequency, temperature and 406 

strain displayed a similar behavior for the samples synthesized with different 𝑇𝑟 (see Fig. S3), except 407 

for the sample prepared at 𝑇𝑟 = 50 ℃, of which the reaction had not been complete. It can be 408 

concluded that 𝑇𝑟 had little influence on the microstructure of the final grafted starch hydrogels in the 409 

concentrated starch system. 410 

Interestingly, 𝑇𝑟 had little effect on the rheological properties of the final grafted starch gel in the 411 

concentrated starch system, despite its great influence on the hydrogel microstructure in a dilute system. 412 

This fact has been confirmed by the findings from Willett and Finkenstadt (2003), where the grafted 413 

starches prepared from the same formulation with different 𝑇𝑟 showed almost similar graft parameters 414 

including the monomer conversion, grafting efficiency, and graft frequency. A higher value of 𝑇𝑟 415 

corresponded to higher polymerization rate constants relating to the initiation, propagation, termination, 416 
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and chain transfer according to the Arrhenius law, which gave the starch grafts a wider polydispersity 417 

with shorter graft chain lengths. Conversely, a lower viscosity of the system at higher 𝑇𝑟 corresponded 418 

to a greater mobility of the monomer and a reduced Trommsdorff effect, which was beneficial to the 419 

graft polymerization in the concentrated starch system. These two counteracting effects controlled by the 420 

temperature led to the result that the grafted starch hydrogels prepared from different 𝑇𝑟 possessed 421 

similar microstructures. 422 

 423 

3.4. Effect of amylose/amylopectin ratio 424 

During the starch graft copolymerization, the rheological behaviors in a REX system could 425 

remarkably influence the mobility of the monomer due to the Trommsdorff effect (Flory, 1953). Xie et 426 

al. (2009) reported that various corn starches with different amylose/amylopectin ratios also showed 427 

different rheological properties. In this work, four types of corn starch with different 428 

amylose/amylopectin ratios were chosen to study their reaction rheokinetics and microstructure of final 429 

grafted starch hydrogels.  430 

Figure 5 showed that for the four types of grafted starch hydrogel with different 431 

amylose/amylopectin ratios, G'(t) and G''(t) exhibited the same trend with time as described above. The 432 

rheokinetic parameters obtained from fitting curves were illustrated in Table S4. The higher the ratios of 433 

amylose to amylopectin in starch, the higher the values of steady-state modulus 𝐺∞
′  and the gelation 434 

rate P. However, the half gelation time θ and the coefficient n were nearly independent of the starch type 435 

with apparent values of 850±143 s and 2.12±0.06 respectively. This finding indicated that the 436 

rheological behaviors of starch melt had little influence on the extent of micromixing for four types of 437 

starch given enough mixing time. 438 

 439 
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Fig. 5. Variations in (a) elastic moduli G' and (b) viscous moduli G'' during graft copolymerization for 442 

WCS, NCS, G50 and G80 with 0.05% crosslinker (%C) and 0.36% initiator (%I) at 𝑇𝑟 = 60℃. All 443 

measurements were performed under dynamic oscillations at 𝜔 = 1 rad/s and 𝛾 = 0.5%. The solid 444 

lines in (a) represent fitting curves using Equation 1. 445 

 446 

 447 

The results of oscillatory frequency tests (see Fig. 6a) revealed that the grafted starch hydrogels 448 

with higher amylose contents (G50 and G80) had less dependence on frequency for G' (smaller n'), and 449 

greater for G'' (larger n''), as represented in Equation 3. Fig. 6b showed the temperature-dependence 450 
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behaviors of G' for the four types of grafted starch hydrogel. It was found that for the hydrogels 451 

prepared from WCS and NCS, G' showed a slight decrease with the increased temperature. In contrast, 452 

for the samples originated from G50 and G80, G' increased slightly from 10 to 15 °C, and then 453 

decreased significantly to about three quarters of the maximum value of G' at 80 °C. This behavior was 454 

presumably attributed to the presence of large amounts of hydrogen bonds in the high-amylose starch 455 

gels which were sensitive to the temperature variation (Xie, Halley, & Avérous, 2012). The oscillatory 456 

strain test results in Fig. 6c showed that the hydrogel prepared from WCS had the widest linear 457 

viscoelastic region (𝛾 = 40.1%), followed by NCS (𝛾 = 10.0%), G50 (𝛾 = 1.0%), and G80 (𝛾 =458 

0.6%). This also indicated that 𝛾 = 0.5% was suitable for all the four types of hydrogel. 459 

 460 
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Fig. 6. (a) 𝐺′(𝜔) and 𝐺′′(𝜔) as a function of frequency at 𝛾 = 0.5% and 𝑇 = 25 ℃; (b) 𝐺′(𝑇) as 464 

a function of temperature at 𝜔 = 1 rad/s and 𝛾 = 0.5%; and (c) 𝐺′(𝛾) as a function of strain 465 

amplitude 𝛾 at 𝜔 = 10 rad/s and 𝑇 = 60 ℃, measured for samples obtained from starches with 466 

different amylose/amylopectin ratios. 467 

 468 

 469 

The grafted starch hydrogels prepared from the four starches with different amylose/amylopectin 470 

ratios showed diverse reaction rheokinetics and rheological behaviors. These behaviors could be 471 

ascribed to the properties of amylose and amylopectin in the starch. When the starch suspension was 472 

heated under shear stress, a separation of amylose and amylopectin presented in the starch granule 473 

would occur, due to these two types of macromolecules being thermodynamically incompatible. The 474 

starch melt gradually formed a physical entanglement network in the concentrated starch system. In this 475 

network, the largely unbranched amylose component tended to form intermolecular hydrogen bonds and 476 

acted as a matrix, with the highly branched amylopectin performing as a filler between the amylose 477 

matrix (Ai & Jane, 2015; Keetels, Van Vliet, & Walstra, 1996). More amylose in high-amylose starches 478 

(G50 and G80) would be involved in the construction of a 3D matrix, resulting in a higher crosslinking 479 

density of the hydrogels originated from G50 and G80 with higher values of 𝐺∞
′  according to Equation 480 
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4. Thus, the G50- and G80-based hydrogels had a narrower linear viscoelastic region and their G' values 481 

showed lower frequency-dependence but higher temperature-dependence. All of these rheological 482 

behaviors indicated a large amount of physical crosslinking junctions contained in the hydrogels 483 

prepared from high-amylose starches (G50 and G80), compared with low-amylose starches (WCS and 484 

NCS). It would be worth to undertake further research to understand the relationship between 485 

rheological behaviors of starch melt and the graft copolymerization efficiency and thus the effects of 486 

amylose/amylopectin ratio on the microstructure of starch-based hydrogels. It is noteworthy that 487 

although the inevitable formation of homopolymer in the experiments could contribute to the rheological 488 

results, this effect could be minimal and thus was not separately considered for the rheokinetic modeling 489 

here. Nevertheless, it is worth for future research to study any possible effect of the homopolymer on the 490 

rheological properties of the starch graft copolymer. 491 

 492 

4. Conclusions 493 

By the in-situ synthesis of starch-g-PAM in a rheometer, we established a new method to probe the 494 

rheokinetics of graft copolymerization in concentrated starch through dynamic shear oscillation 495 

measurements. We found that the reaction rheokinetic behaviors of starch melt could be well 496 

represented by a modified Hill equation. The rheokinetics of starch graft copolymerization was 497 

consistent with the chemical reaction kinetics, indicating that the starch melt mixtures were completely 498 

micromixed and that the graft copolymerization of concentrated starch was predominated by the reaction 499 

kinetics rather than by the diffusion rate of mass transfer.  500 

With an increased amount of the crosslinker, there was a linear increase in 𝐺′, accompanied by a 501 

decreased mesh size and enhanced thermal stability of the starch hydrogel. Interestingly, the initiator 502 

content and the reaction temperature had little influence on the final microstructure of the hydrogel, 503 
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despite their significant impact on the reaction kinetics. This unusual phenomenon could be most likely 504 

due to the strong effect from the induced decomposition of the initiator and the chain transfer reaction in 505 

the concentrated starch system. Moreover, the hydrogels originating from amylose-rich starches (G50 506 

and G80) had a higher crosslinking density, but a lower thermal stability of the 3D network, due to the 507 

formation of large amounts of hydrogen bonds by amylose. 508 

The knowledge obtained from this work could guide the rational design of REX processes to 509 

produce grafted polysaccharide hydrogels with desired structure and properties, as shown in the 510 

following points: 511 

1) To improve the starch grafting efficiency during REX, enhancing the distributive and 512 

dispersive mixing of reactants before chemical reaction in an extruder, instead of during the 513 

reaction, can be an effective strategy. 514 

2) The microstructure of starch-based hydrogels produced by REX can be effectively regulated 515 

with the crosslinker. 516 

3) The mathematic models of rheokinetics deduced depending on the temperature and initiator 517 

effects can be used to control the reaction time on behalf of the limited residence time 518 

during REX.  519 

 520 
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1 FTIR analysis 

FTIR spectra were acquired using a Nicolet 6700 FTIR spectrometer (Waltham, MA, USA) 

equipped with a Smart ITR. Spectra were collected at a resolution of 4 cm−1 in the range of 4000–

600 cm−1 for a total of 64 scans. All the spectra were baseline corrected and normalized using 

OMNIC software before further analysis. Before FTIR characterization, starch-based hydrogels 

synthesized in situ was immersed in 30/70 ethanol/water (v/v) for 24 h at room temperature to extract 

the soluble fraction including unreacted monomer and homo-polyacrylamide. The purified 

starch-based hydrogels were collected by filtration and dried. 

The FTIR spectra of native starch and starch-based hydrogels are shown in the Fig. S1. Native 

starch exhibited a characteristic IR absorption peak, including O-H stretching (ν1 = 3287 cm−1), C-H 

stretching (ν2 = 2930 cm−1), and C-O-C stretching (a triplet peak ν3 = 1149, 1077, and 996 cm−1) 

(Qiao et al., 2016; Zhang et al., 2014). Starch-based hydrogels not only showed a typical absorption 

pattern of native starch but also that of polyacrylamide (PAM). The bands at ν4 = 1659, ν5 = 1609, 

and ν6 = 1411 were attributed to the C=O stretching, N-H bending, and C-N stretching of the amide 

bands in the grafted chains (PAM), respectively (Qiao, Yu, Bao, Zhang, & Jiang, 2017; Zou et al., 

2012). All of these results indicated the occurrence of graft copolymerization of acrylamide onto 

starch in the concentrated starch system. 
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2 Figures 
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Fig. S1. FTIR spectra of starch and starch-based hydrogel. NCS was used with 𝑇𝑟 = 60 ℃, %𝐶 =

0.05%, and %𝐼 = 0.36%. 
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Fig. S2. (a) 𝐺′(𝜔) and 𝐺′′(𝜔) as a function of frequency at 𝛾 = 0.5% and 𝑇 = 25 ℃; (b) 

𝐺′(𝑇) as a function of temperature at 𝜔 = 1 rad/s and 𝛾 = 0.5%; and (c) 𝐺′(𝛾) as a function of 

strain amplitude 𝛾 at 𝜔 = 10 rad/s and 𝑇 = 60 ℃, measured for samples with different initiator 

concentrations (%I). 
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Fig. S3. (a) 𝐺′(𝜔) and 𝐺′′(𝜔) as a function of frequency at 𝛾 = 0.5% and 𝑇 = 25 ℃; (b) 

𝐺′(𝑇) as a function of temperature at 𝜔 = 1 rad/s and 𝛾 = 0.5%; and (c) 𝐺′(𝛾) as a function of 

strain amplitude 𝛾 at 𝜔 = 10 rad/s and 𝑇 = 60 ℃, measured for samples with different reaction 

temperatures (𝑇𝑟). 
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3 Tables 

 

Table S1. Effect of crosslinker concentration (%C) on the rheokinetic parameters obtained by curve 

fitting using Equation 1(a) 

%C (%) 𝐺∞ 
′  (Pa) θ (s) n P (Pa/s) 

0.00 21692 (1294)(b) 769 (51) 1.96 (0.05) 11.61 (0.31) 

0.05 26558 (877) 890 (27) 1.70 (0.05) 11.04 (0.56) 

0.14 28642 (946) 838 (72) 2.21 (0.13) 16.77 (2.49) 

0.28 38635 (1205) 753 (15) 2.31 (0.05) 27.06 (0.88) 

0.41 41877 (970) 791 (42) 2.48 (0.12) 30.16 (1.27) 

0.55 49813 (611) 706 (21) 2.38 (0.08) 39.15 (0.71) 

Regression 

models: 

𝐺∞
′ = 23002 + 48547 × %𝐶, 𝑅2 = 0.987 

𝑃 = 10.97 + 50.91 × %𝐶, 𝑅2 = 0.976 

(a) NCS was used with 𝑇𝑟 = 60 ℃, %𝐼 = 0.36%. 

(b) Standard deviations for triplicate measurements are given in parentheses. 
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Table S2. Effect of initiator concentration (%I) on the rheokinetic parameters obtained by curve 

fitting using Equation 1(a) 

%I (%) 𝐺∞ 
′  (Pa) θ (s) n P (Pa/s) 

0.11 25435 (1224)(b) 1482 (83) 2.52 (0.19) 9.32 (0.19) 

0.21 27628 (881) 1021 (22) 2.31 (0.05) 13.67 (0.55) 

0.36 28642 (946) 838 (72) 2.21 (0.13) 16.77 (2.49) 

0.71 27339 (1037) 548 (22) 1.88 (0.05) 20.51 (0.49) 

1.42 28511 (370) 363 (13) 1.34 (0.03) 23.23 (1.42) 

Regression 

models: 

𝜃 = 444 × (%𝐼)−0.54, 𝑅2 = 0.997 

𝑛 = 2.47 − 0.80 × %𝐼, 𝑅2 = 0.997 

𝑃 = 21.97 − 19.40 × 0.02(%𝐼), 𝑅2 = 0.995 

(a) NCS was used with 𝑇𝑟 = 60 ℃, %𝐶 = 0.05%. 

(b) Standard deviations for triplicate measurements are given in parentheses. 

 

  



8 

Table S3. Effect of reaction temperature (Tr) on the rheokinetic parameters obtained from the curve 

fitting of Equation 1(a) 

Tr (°C) 𝐺∞ 
′  (Pa) 𝐺∞ 

′  (T = 25 °C) θ (s) n P (Pa/s) 

50 25814 (2144)(b) 21798 (793) 2657 (262) 2.47 (0.14) 5.18 (0.15) 

55 26371 (224) 29025 (826) 1415(75) 2.61 (0.06) 10.54 (0.24) 

60 26558 (877) 28359 (788) 890 (27) 1.70 (0.05) 11.04 (0.56) 

70 24611 (109) 31030 (1121) 429 (12) 1.72 (0.05) 22.59 (0.42) 

80 23096 (1049) 29515 (1346) 297 (5) 1.18 (0.01) 20.23 (0.71) 

Regression models: 𝜃 = 245 + 1.23𝑒𝑥𝑝−1.23𝑇𝑟, 𝑅2 = 0.999 

(a) NCS was used with %𝐶 = 0.05%, %𝐼 = 0.36%. 

(b) Standard deviations for triplicate measurements are given in parentheses. 
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Table S4. Effect of amylose/amylopectin ratio on the rheokinetic parameters obtained from the curve 

fitting of Equation 1(a) 

Type of starch Amylose/amylopectin ratio  𝐺∞ 
′  (Pa) θ (s) n P (Pa/s) 

WCS 0/100 9101 (429)(b) 747 (16) 2.07 (0.08) 6.28 (0.10) 

NCS 27/73 26558 (877) 890 (27) 1.70 (0.05) 11.04 (0.56) 

G50 50/50 90180 (1433) 814 (80) 2.55 (0.27) 54.93 (3.64) 

G80 80/20 121518 (4211) 950 (75) 2.16 (0.19) 59.12 (5.35) 

(a) 𝑇𝑟 = 60 ℃, %𝐶 = 0.05%, %𝐼 = 0.36%. 

(b) Standard deviations for triplicate measurements are given in parentheses. 
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