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Summary of Thesis 

This thesis explores the self-assembly and responsive behavior of block copolymer 

amphiphiles in aqueous solution. In Chapter 1, an overview of the modern synthetic 

methods used for preparing such materials will be given, as well as the parameters 

governing block copolymer self-assembly in solution. An introduction into 

polymerization-induced self-assembly will be given, as well as an overview of stimuli-

responsive polymers and polymer self-assemblies. Finally, an outline of the analytical 

techniques used throughout this thesis for studying polymer self-assemblies will be given. 

Chapter 2 will introduce thermoresponsive polymers, which can respond to changes in 

temperature, before investigating the solution behavior of a series of thermoresponsive 

polymer self-assemblies. These micelles have a tunable average number of chains per 

particle and will used as a platform to investigate the thermoresponsive behavior of the 

system using a range of complementary solution-based characterization techniques. 

Chapter 3 will build on the knowledge gained in the previous chapter and will explore the 

effects of factors such as the glass transition temperature and hydrogen bonding ability 

on the thermoresponsive behavior of such systems. This will give an insight into the 

reversibility of thermoresponsive phase transitions, more generally, and provide a unique 

tool with which to probe structure-property relationships in stimuli-responsive self-

assemblies. 

Chapter 4 will uncover the differences between the two initiation pathways for 

polymerization-induced self-assembly, thermally and photoinitiated, discussed in this 

Chapter. Isothermal non-equilibrium phase diagrams will be constructed using thermally 

initiated and photoinitiated polymerization-induced self-assembly. The effects of light 

intensity on the formed nano-objects will be investigated as well as the effect of post-
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synthetic light irradiation, both are aspects that have not been widely explored in the 

literature.  

Chapter 5 will explore the use of polymerization-induced self-assembly to prepare 

selectively permeable biohybrid vesicular nanoreactors. Functional proteins with 

fluorescent or enzymatic capabilities will be encapsulated inside hollow polymersomes 

and the selective permeability of the membrane will be demonstrated. A clinically 

relevant therapeutic protein will also be investigated as the encapsulated species and the 

formed nanoreactors’ ability to prevent cancer cell proliferation will be validated. The 

non-covalent, yet protective nature of this protein compartmentalization will also provide 

several distinct advantages over covalent attachment of poly(ethylene glycol), the current 

state-of-the-art for this clinical therapeutic. 

Finally, Chapter 6 will summarize the conclusions gained from the research herein, as 

well as offer some insights into possible areas of new research directed by the findings 

detailed in this thesis.   
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[M]   monomer concentration 

[M]0   initial monomer concentration 

Ð   dispersity 

α   degree of ionization 

α-CT   α-chymotrypsin 
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ηs   viscosity of the solvent 
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φ   composition 

χ   interaction parameter 

a0   area of a surfactant’s polar head group 

A2   second virial coefficient 
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AM   acrylamide 
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AP   alkaline phosphatase 

ARGET  activators regenerated by electron transfer 

Aslow relative amplitude of the slow mode in a light scattering 

experiment 

ASNS   L-asparaginase 

ATRP   atom transfer radical polymerization 
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B   1,3-butadiene 

bCA-II   bovine carbonic anhydrase II 

bpy   2,2'-bipyridine 

br   broad 

BSA   bovine serum albumin 

BzMA   benzyl methacrylate 

c   concentration 

c*   critical entanglement concentration 

CAT   catalase 

ccorona   effective mass concentration of coronal chains 

CMC   critical micelle concentration 

ConA   Concanavalin A 

Cp   heat capacity 

cryo-TEM  cryogenic transmission electron microscopy 

CTA   chain transfer agent 

D   deuterium 

D   apparent diffusion coefficient 

d   doublet 

D0   absolute diffusion coefficient 

DAAM  diacetone acrylamide 

DC   direct current 

DCC   N,N’-dicyclohexylcarbodiimide 

dd   doublet of doublets 

DEAEA  N,N-diethylamino acrylate 

DEAm   N,N-diethylacrylamide 

DEAMA  N,N-diethylamino methacrylate 

DEGMA  diethylene glycol monomethyl ether methacrylate 

DEPT   distortionless enhancement by polarization transfer  

DH   hydrodynamic diameter 

DLS   dynamic light scattering 

DMA   N,N-dimethylacrylamide 

DMAEA  N,N-dimethylamino acrylate 

DMAEMA  N,N-dimethylamino methacrylate 

DMAP   4-(dimethylamino)pyridine 

DMB   3,3’-dimethoxybenzidine 
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dn/dc   refractive index increment 

DNA   deoxyribonucleic acid 

DP   degree of polymerization 
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ER   endoplasmic reticulum 

ESI-MS  electrospray ionization mass spectrometry 

ESI-ToF  electrospray ionization time of flight 
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F   frictional force 
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FT-IR   Fourier transform infra-red 

g1(q,t)   electric field autocorrelation function 
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GOx   glucose oxidase 

GSH   glutathione 

HEA   hydroxyethyl acrylate 

HPMA   2-hydroxypropyl methacrylate 

HPMAM  2-hydroxypropyl methacrylamide 

HRMS   high resolution mass spectrometry 

HRP   horseradish peroxidase 
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ICAR   initiators for continuous activator regeneration 

Ig   immunoglobulin 

Imicelle intensity of dye fluorescence emission at a wavelength 

corresponding to the sequestered dye  

IPTG isopropyl β-D-1-thiogalactopyranoside 

Isample   intensity of scattered light from the sample 

Isolvent   intensity of scattered light from the solvent 
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Iwater intensity of dye fluorescence emission at a wavelength 

corresponding to the unsequestered dye in aqueous solution 

It   intensity of scattered light at time = t 

K   contrast factor in SLS analysis 

𝑘⃗ 0   incident wave vector 

kB   Boltzmann constant 

kD   dynamic virial coefficient 

𝑘⃗ s   scattered wave vector 

L   lamellae 

LB   lysogeny broth 

LAM   less activated monomer 

lc   length of a surfactant’s hydrophobic tail 

LCST   lower critical solution temperature 

LED   light emitting diode 

LHS   left hand side 

LPO   lactoperoxidase 

m   multiplet 

m/z   mass to charge ratio 

MADIX  macromolecular design via interchange of xanthate 

MALDI-ToF MS matrix-assisted laser desorption/ionization time of flight mass 

spectrometry 

MAM   more activated monomer 

mCTA   macromolecular chain transfer agent 

MDO   2-methylene-1,3-dioxepane 

Mi   mass of chain of length “i” 

Mn   number average molar mass 

Mn, corona   number average molar mass of the corona-forming block 

Mn, NMR number average molar mass determined by nuclear magnetic 

resonance spectroscopy 

Mn, SEC number average molar mass determined by size exclusion 

chromatography 

mcorona   mass of the corona chains 

MLV   multilamellar vesicles 

MMA    methyl methacrylate 
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MRI   magnetic resonance imaging 

Mw   weight average molar mass 

Mw, core   weight average molar mass of the core-forming block 

Mw, particle  weight average molar mass of the particle 

Mw, polymer  weight average molar mass of the unimer 

n   refractive index 

n0   refractive index of the solvent 

NA   Avogadro’s constant 

Nagg   aggregation number 

NaTFA  trifluoroacetic acid sodium salt 

nBA   n-butyl acrylate 

Ni   number of chains of length “i”  

NIPAM  N-isopropylacrylamide 

NMP   nitroxide-mediated polymerization 

NMR   nuclear magnetic resonance 

NVC   N-vinylcarbazole 

NVP   N-vinylpyrrolidone 

OEGA   oligo(ethylene glycol acrylate) 

OEGMA  oligo(ethylene glycol) monomethyl ether methacrylate 

OmpF   outer membrane protein F 

p   dimensionless packing parameter 

P4VP   poly(4-vinyl pyridine) 

PAA   poly(acrylic acid) 

PAD   poly((N-amidino)dodecylacrylamide) 

PAEMA  poly(2-azepane ethyl methacrylate) 

PAGMA  poly(o-azidomethyl benzoyl glycerol methacrylate) 

PAMAM  poly(amido amine) dendrimer 

PAME   poly(L-arginine methyl ester acrylamide) 

PAPBA  poly(3-acrylamidophenylboronic acid) 
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PBS   phosphate buffered saline 
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PD   polydispersity 
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PDEAEA  poly(N,N-diethylamino acrylate) 

PDEAm  poly(N,N-diethylacrylamide) 

PDEAMA  poly(N,N-diethylamino methacrylate) 

PDEGMA  poly(diethylene glycol monomethyl ether methacrylate) 

pDMA   poly(N,N-dimethylacrylamide) 

PDMAEA  poly(N,N-dimethylamino acrylate) 

PDMAEMA  poly(N,N-dimethylamino methacrylate) 

PDPMA  poly(2-(diisopropylamino)-ethyl methacrylate) 

PEHA   poly(2-ethyl hexyl acrylate) 

PEG   poly(ethylene glycol) 

PEG-ASNS  L-asparaginase poly(ethylene glycol) conjugate 

PEO   poly(ethylene oxide) 

PET   photoinduced electron transfer 

PGA   poly(glyceryl acrylate) 

PGlyMA  poly(glycidyl methacrylate) 

PGMA   poly(glyceryl methacrylate) 

pH   negative base 10 logarithm of the molar proton concentration 

PHPMA  poly(2-hydroxypropyl methacrylate) 

PHPMAM  poly(2-hydroxypropyl methacrylamide) 

PIAT   poly(3-(isocyano-L-alanyl-aminoethyl)thiophene)) 

pKa   negative base 10 logarithm of the acid dissociation constant 

pKaH negative base 10 logarithm of the acid dissociation constant of the 

conjugate acid 

PLMA   poly(lauryl methacrylate) 

Pm
•   growing radical chain 

PMAA   poly(methacrylic acid) 

pMeOxVAc   poly(oligo(ethylene glycol) vinyl acetate) 

PMMA  poly(methyl methacrylate) 

PMOXA  poly(2-methyloxazoline) 

PMPC   poly(2-(methacryloyloxy)ethyl phosphorylcholine) 

Pn
•   growing radical chain 

PNA   N-phenyl-1-naphthylamine 

pnBA   poly(n-butyl acrylate) 

PNBOCA  poly(2-((((2-nitrobenzyl)-oxy)carbonyl)amino)ethyl acrylate) 

pNIPAM  poly(N-isopropylacrylamide) 
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PNBMA  poly(O-nitrobenzyl methacrylate) 

POEGA  poly(oligo(ethylene glycol) acrylate) 

POEGMA  poly(oligo(ethylene glycol) monomethyl ether methacrylate) 

PPMA   poly(pyrenylmethyl methacrylate) 

PP-OH   2-hydroxy-4′-2-(hydroxyethoxy)-2-methylpropiophenone 

PRE   persistent radical effect 

pProlA poly(N-tert-butoxycarbonyl-O-acryloyl-trans-4-hydroxy-L-

proline) 

PS   poly(styrene) 

PSA   poly(solketal acrylate) 

PSPMA poly[1′-(2-methacryloxyethyl)-3′,3′-dimethyl-6-nitrospiro-(2H-1-

benzopyran-2,2′-indoline)] 

PISA   polymerization-induced self-assembly 

pVDMA  poly(4-vinyl-4,4-dimethylazlactone) 

q   quartet 

q   scattering wave vector 

R   rods 

Rθ   Rayleigh ratio of the sample 

Rθ, standard  Rayleigh ratio of the standard 

RAFT   reversible addition-fragmentation chain transfer 

RCA120  Ricinus communis agglutinin 

Rcore   radius of the core 

RDRP   reversible deactivation radical polymerization 

REPES  regularized positive exponential sum 

Rg   radius of gyration 

RH   hydrodynamic radius 

RHS   right hand side 

RI   differential refractive index 

Rmembrane  vesicle membrane thickness 

RNA   ribonucleic acid 

ROMP   ring opening metathesis polymerization 

RONSS  reactive oxygen, nitrogen and sulfur species 

ROP   ring opening polymerization 

ROS   reactive oxygen species 

S   spherical micelles 
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s   singlet 

SANS   small angle neutron scattering 

SAXS   small angle x-ray scattering 

SDS   sodium dodecyl sulfate 

SEC   size exclusion chromatography 

siRNA   small interfering ribonucleic acid 

SLS   static light scattering 

SOD   superoxide dismutase 

SPTP   sodium phenyl-2,4,6-trimethylbenzoylphosphinate 

St   styrene 

T   absolute temperature 

t   triplet 

t   time 

TEA   triethylamine 

Tg   glass transition temperature 

Tp thermal transition temperature determined by differential scanning 

microcalorimetry 

TEM   transmission electron microscopy 

TPP   5,10,15,20-tetraphenyl-21H,23H-porphine 

UCST   upper critical solution temperature 

ULV   unilamellar vesicles 

UV   ultraviolet 

v   volume of a surfactant’s hydrophobic tail 

VAc   vinyl acetate 

VAZO-44  2,2'-azobis[2-(imidazolin-2-yl)propane] dihydrochloride 

Vcore   volume of the core 

Vcorona   volume of the corona 

Vlumen total  total volume of the vesicles’ lumens 

VH   hydrodynamic volume 

Vinternal   volume of an individual vesicle lumen 

Vmembrane  volume of an individual vesicle membrane 

Vpolymer   volume of an individual polymer chain in the core or membrane 

W   worm-like micelles 

ZnTPP   5,10,15,20-tetraphenyl-21H,23H-porphine zinc 
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In this thesis, the self-assembly and solution behavior of amphiphilic block copolymer 

nanoparticles have been studied in aqueous solution. In Chapters 2 and 3, it was found 

that the Nagg of micellar aggregates could be tuned in solution by copolymerization of two 

monomers with very different aqueous solubility to form the core-forming block, thereby 

varying the core hydrophobicity of such aggregates. This subtle difference in the solution 

self-assembly across each series was found to have a marked effect on the reversibility of 

the thermal phase transition for various LCST-type corona blocks. This was shown to be 

a result of differences in the core hydration across the series. This micellar platform was 

then used to investigate the effects of the chemical structure, architecture and physical 

properties, such as the Tg, on the reversibility of LCST-type transitions, which revealed 

unprecedented irreversible transitions for coronas with a brush-like architecture.  

In addition to the contribution towards the understanding of hysteresis in 

thermoresponsive polymer systems in this specific example, looking to the future, 

micelles of such well programmed self-assembly behavior could be used to uncover 

structure-property relationships for a wealth of other properties. Possible avenues could 

be their implementation in the study of other stimuli-responsive self-assembled systems, 

such as those responsive to light, pH, etc. As these assemblies have programmable surface 

densities, they could also be utilized to study biologically relevant interactions such as 

those between glycans and lectins, which are known to show a large dependency on shape 

and multivalency. Other than their potential in uncovering fundamental behavioral 

relationships, the micelles themselves show potential for biomedical applications. If the 

responsive corona was functionalized with dyes with a solvochromatic shift, or a 

hydration-dependent ON/OFF fluorescence output (such as an aminobromomaleimide), 

the micelles could feasibly be used to monitor an increase in physiological temperatures. 

A change in physiological temperature is an indicator of a number of diseases and 

processes, so these micellar assemblies could be used for diagnostic purposes. For 
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instance, the transition temperature could be tuned such that the micelles were stable at 

healthy physiological temperatures, but aggregated inside tumors owing to the elevated 

temperatures typically observed in such an environment. Micelles with brush-like 

architectures, which showed irreversible transitions, could be designed to aggregate 

inside the tumor, whist also switching on the dyes’ fluorescence. This would allow for 

visualization of the tumor as well as potentially limiting the tumor’s blood supply through 

the irreversible aggregation of the particles, which is the basis of embolization therapy. 

The self-assembly behavior of various poly(ethylene glycol)-b-poly(2-hydroxypropyl 

methacrylate) (PEG-b-PHPMA) nano-objects prepared using aqueous reversible addition 

fragmentation chain transfer (RAFT) dispersion polymerization-induced self-assembly 

(PISA) was also studied. Fundamentally, the question was posed of how the self-assembly 

behavior differed between identical formulations formed by two initiation mechanisms. 

It was found that those derived from a photoinitiated PISA methodology formed generally 

higher order self-assembled structures, such as vesicles and lamellae, whereby those 

formed using thermal initiation had the tendency to form lower order structures, such as 

spherical and worm-like micelles. The findings from this fundamental study could be 

used to compare the wealth of literature already published for thermally initiated PISA, 

to photoinitiated PISA. The former is a self-assembly technique that has gathered 

considerable attention over the past decade but the latter offers numerous advantages, of 

which a rapidly growing number of research possibilities are being realized. The effects 

of altering the experimental parameters, such as the light intensity and the degree of post-

synthetic irradiation, were also uncovered, which could be important for certain industrial 

aspects, such as the scale-up and pilot plant design for preparing such materials. Only 

once these factors have been considered in detail will PISA-derived self-assembled 

formulations be able to be translated into numerous potential real life applications (e.g. 

as rheology modifiers, drug delivery vehicles, gels for cell storage and manipulation, etc.). 
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Finally, photoinitiated aqueous RAFT dispersion PISA was shown to be a versatile mild 

synthetic technique for the preparation of PEG-b-PHPMA vesicles loaded with functional 

proteins. These hybrid materials showed fluorescence, catalytic and therapeutic 

capabilities depending on their encapsulated species. It was shown that the hydrated 

PHPMA membrane of such vesicles was highly permeable towards small molecules but 

could act as a robust physical barrier against larger macromolecules such as proteases. 

This intrinsic property afforded the encapsulated proteins excellent proteolytic stability, 

even superior to direct PEGylation of L-asparaginase, the current stabilization strategy 

employed for this clinical biologic. Furthermore, owing to the molecular sieving effect of 

this membrane, the therapeutic efficacy of this encapsulated species was also 

demonstrated in vitro. As no functionalization of the protein was required, this approach 

could be applied to a range of therapeutic enzymes in order to improve their 

pharmacokinetics, which could be explored for the treatment of a wealth of other diseases. 

Although the PEG-b-PHPMA block copolymer components have been shown in the 

literature to have good biocompatibility, in order to capitalize on these promising results, 

the next stage of the research would be to optimize the hydrodynamic volume of these 

therapeutic vesicles. It is unknown whether these vesicles would show good overall 

pharmacokinetics, such as favorable clearance pathways etc., owing to their large average 

diameter of around 350 nm. Smaller vesicles could be achieved by reducing the overall 

molar mass of the block copolymer, whilst keeping the block ratios the same, or by post-

synthetic procedures such as extrusion. Larger vesicles could be investigated for 

therapeutic applications targeting the stomach or gastrointestinal tract, where large 

particle sizes become less of an issue. The next steps in investigating the particles’ 

therapeutic potential would be to assess the RAFT agent biocompatibility and the 

vesicles’ in vivo biodistribution, clearance mechanism and blood half-life. Additionally, 

if other therapeutic proteins were encapsulated, which relied on endocytosis for their 
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therapeutic effect, it would be interesting to explore factors governing endocytosis. These 

could include investigation into the effect of cross-linking of the vesicles on tissue or 

tumor penetration or coronal decoration with ligands for active targeting. Additionally, 

imparting biodegradability into the structure for controlled release or pre-programmable 

blood half-lives would be a further step in uncovering their therapeutic potential. 

It was also shown that the vesicles, separately loaded with distinct enzymes, could interact 

with one another by way of a cascade. In some regards, this behavior could be considered 

rudimentary protocell communication. In order to further increase the complexity in such 

a biomimetic system, it would be of great fundamental interest to enable some sensing 

capability. This could be in the form of introducing membrane proteins such as porins or 

transporters, which could selectively allow small molecules to enter the lumen. If such 

species were gated by the presence of ions, a change in temperature, or pH, certain 

reactions could be triggered in a modular fashion by the use of external triggers. Better 

yet, the product of one cascade could be used to gate a reaction between other loaded 

vesicles present in solution. This behavior would be analogous to the interactions between 

organelles inside a cell, for instance. However, if membrane proteins were to be 

incorporated in such a way, the membrane would need to be functionalized or redesigned 

in order to limit the non-specific permeability of small molecules.  

Multi-compartmentalization is another avenue yet to be fully explored in PISA, which 

could be further utilized to mimic natural cells in terms of their structure. Furthermore, 

enzyme-loaded vesicles could be designed to synthesize their own functionality, for 

example biosynthesis of their own functional proteins inside the lumen using external 

energy and nutrients. The vesicles could also be designed to synthesize amphiphiles 

inside the lumen, thereby resulting in self-replicating vesicles, another prerequisite for 

life. Such artificial systems would much better resemble those found in nature. 
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7. Appendix 

7.1. Technical note 

It should be noted that the measurement of hysteresis in thermoresponsive polymers in 

solution is highly dependent on the experimental parameters. It is therefore of utmost 

importance to use an identical heating and cooling rate when comparing samples. 

Additionally, the method by which the instrument measures the reference temperature is 

crucial to the absolute hysteresis value measured. Instruments that use an internal 

reference cell to measure a volume of water being subjected to identical conditions as the 

sample (such as a Perkin Elmer Lambda 6 UV/Vis instrument) report more accurate 

hysteresis values. This is because of the accuracy of the estimation of the true sample 

temperature upon heating and cooling the sample, which allows the instrument to 

accurately report the transmittance at the correct temperature, and to maintain an accurate 

rate of heating and cooling. Instruments that measure the temperature of the coolant water 

or the heating block during the measurement (such as an Agilent Cary 60 UV/Vis 

instrument) give somewhat comparable cloud point values upon heating the sample but 

greatly overestimate the degree of hysteresis owing to errors in estimating the cooling 

rate of the sample. This can be seen in Figure 7.1, which shows turbidimetry curves for 

polymer 9 from Chapter 3 measured on both instruments. This issue therefore contributes 

to discrepancies found throughout the literature in the reported hysteresis values of 

thermoresponsive polymers, even under seemingly identical conditions, and should be 

kept in mind when discussing absolute literature hysteresis values. All samples discussed 

in Chapters 2 and 3 were analyzed on a Perkin Elmer Lambda 6 UV/Vis instrument at a 

heating and cooling rate of 1 °C·min-1. 
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Figure 7.1. Turbidimetry curves of polymer 9 at 1 mg·mL-1 at a programmed heating and cooling rate of 

1 °C·min-1 measured on a Perkin Elmer Lambda 6 instrument (top) and an Agilent Cary 60 instrument 

(bottom). 
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7.2. Supplementary SEC Data 

  

Figure 7.2. SEC RI traces for the pNIPAM block copolymers in Chapter 2. mCTA1 (dashed lines in each 

case) and polymers 1 (A), 2 (B), 3 (C), 4 (D) and 5 (E) are shown. 5 mM NH4BF4 in DMF was used as the 

eluent in each case and the molar mass distributions were calculated against poly(methyl methacrylate) 

standards.  
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Figure 7.3. SEC RI traces for the pDEAm block copolymers in Chapter 3. mCTA2 (dashed lines in each 

case) and polymers 6 (A), 7 (B), 8 (C), 9 (D) and 10 (E) are shown. 2% TEA in THF was used as the eluent 

in each case and the molar mass distributions were calculated against poly(methyl methacrylate) standards.  



Appendix 
 

254 
 

  

Figure 7.4. SEC RI traces for the pDEGMA block copolymers in Chapter 3. mCTA3 (dashed lines in each 

case) and polymers 11 (A), 12 (B), 13 (C), 14 (D), and 15 (E) are shown. 2% TEA in THF was used as the 

eluent in each case and the molar mass distributions were calculated against poly(methyl methacrylate) 

standards.  
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Figure 7.5. SEC RI traces for the pOEGMA block copolymers in Chapter 3. mCTA4 (dashed lines in each 

case) and polymers 16 (A) and 17 (B) are shown. 2% TEA in THF was used as the eluent in each case and 

the molar mass distributions were calculated against poly(methyl methacrylate) standards.  


