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ABSTRACT

Gastroenteritis, causing vomiting and diarrhoea, is very common all over the world.

Viral causes, such as norovirus and rotavirus, are the most frequent, although some

bacteria, parasites and fungi can also lead to gastroenteritis. Many countries operate

surveillance systems of diseases, including gastroenteritis or specific gastroenteritis

causing pathogens. Typically, statistical methods are used to analyse surveillance

data and alert public health authorities of unexpectedly high levels of illness. These

methods use historical data to predict the expected value of current data.

In this thesis, we address some of the challenges that remain when analysing gas-

troenteritis surveillance data, with a particular focus on syndromic surveillance data.

We work with both mechanistic and statistical modelling approaches in an attempt

to bridge the gap between the statistical methods that are used in practice for

syndromic surveillance and mechanistic models that are used to model infectious

diseases.

In particular, we address three challenges. In chapter 2 we present a flexible frame-

work for deriving approximations of stochastic mechanistic models of epidemics for

fast inference. In chapter 3 we investigate day of the week and public holiday

effects in syndromic indicators of gastroenteritis from syndromic surveillance sys-

tems operated by Public Health England in order to improve existing surveillance

methodologies. In chapter 4 we identify and analyse additional online datasets for

gastroenteritis, and in particular norovirus, surveillance.

x



CHAPTER 1

INTRODUCTION

1.1 Gastroenteritis

A case of gastroenteritis can be defined as “an individual with three or more loose

stools, or any vomiting in 24 hours” (Majowicz et al. 2008 [1]) but excluding individ-

uals with existing medical conditions known to cause these same symptoms (such as

Crohn’s disease) or symptoms caused by drugs, alcohol, or pregnancy. Many cases of

gastroenteritis are mild and self-limiting. However, serious complications can arise,

particularly in the elderly and young children, the most frequent and dangerous of

which is dehydration [2].

Most mortalities due to gastroenteritis occur in low-income countries with reports

of more than 25% of deaths due to gastroenteritis occurring in Africa and south-east

Asia [3]. Gastroenteritis is also a leading cause of morbidity in developed countries,

resulting in increased healthcare costs and productivity loss due to time off work

and school [4, 5]. A study by Lopman et al. (2004, [6]) in 2002-2003 estimated

that healthcare-associated outbreaks of gastroenteritis cost the English NHS £115

million in that year. A further study by Danial et al. (2011, [7]) estimated that

gastroenteritis cost just one region of NHS Scotland £1.2 million between 2007 and

2009.

There are many causes of gastroenteritis, including viruses, bacteria, parasites, and

fungi. However, viral causes, particularly rotavirus and norovirus, are the most

1



CHAPTER 1. INTRODUCTION 2

common [2, 8].

Rotavirus mainly causes gastroenteritis in young children; the most common age of

infection is between six months and two years [8, 9]. A systematic review of rotavirus

associated mortality (Tate et al. 2012, [10]) concluded that in 2008 rotavirus was

responsible for around 40% of diarrhoea deaths and 5% of all deaths in children

aged under five globally. Over the last ten years a rotavirus vaccine, recommended

for use in babies from six weeks old, has been introduced in many countries across

the world [11]. There is now strong evidence that the vaccine has reduced hospital

admissions and deaths in many countries including Malawi (Bar-Zeev et al. 2015,

[9]), Mexico (Richardson et al. 2010, [12]), the US (Tate et al. 2011, [13]), Australia

(Buttery et al. 2011, [14]), and England (Bawa et al. 2015, [15]).

Norovirus is reported to be associated with nearly a fifth of all gastroenteritis cases

globally [3]. Across the world it has a high health and economic burden [5]. In

England, Harris et al. (2014 [16]) report that norovirus in a hospital setting is

associated with, on average, 8,900 days of ward closure each year at a loss of over

15,500 bed-days.

Norovirus is endemic in the UK, and cases can occur throughout the year [17].

However, there is a clear seasonality in the number of norovirus cases with regu-

lar, annual winter outbreaks. Frequently, norovirus is associated with outbreaks in

closed populations, such as in hospitals and care facilities [18], on cruise ships [19],

and due to contaminated food and water [20]. However, we are interested here in

the endemic, population-level burden.

1.2 Disease surveillance

The International Health Regulations (2005, third edition [21]) define disease surveil-

lance as “the systematic ongoing collection, collation and analysis of data for public

health purposes and the timely dissemination of public health information for as-

sessment and public health response as necessary”. Effective disease surveillance

is used to determine vaccination formulation, design vaccination strategies, and to

evaluate vaccination effectiveness; identify outbreaks and inform control strategies;

and guide clinical practices and the best allocation of resources [22].

Information about diseases was reportedly collected and analysed as long ago as
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Ancient Egypt [23]. However, Choi (2012, [23]) reports that the first public health

action as a result of collecting data was in Europe in response to plague; travellers

arriving from plague-infected areas were quarantined. Since then, disease surveil-

lance has developed into a complex and global network of surveillance systems using

a wide range of data sources [24]. Data sources for surveillance now include the more

traditional, such as mortality data and laboratory reports, and those that are more

modern, such as statistics on the use of healthcare services and over-the-counter

drug sale data [24].

Surveillance data are often analysed using statistical methods to identify unusual

activity in both space and time. Typically, within public health authorities, this

analysis involves comparing the current data with an expected value obtained from

a model fitted to previous data [24]. Frequently used techniques include regression

approaches and time series methods, incorporating both space and time character-

istics, and multivariate detection methods that make use of more than one dataset

[25].

A commonly used, simple, statistical method for analysing surveillance time series

data and identifying abnormal levels was developed by Stroup et al. (1989, [26]),

and this has been used by the Centers for Disease Control and Prevention for the

surveillance of notifiable diseases [27]. In this simple method, data are aggregated

into four week blocks (which Stroup et al. call a month for simplicity) and each

month is compared to the mean of fifteen baseline values. These are the data from

the same month and each of the surrounding months from the past five years. A

95% prediction interval on the mean of the baseline values is computed, assuming

normality, and the data are considered unusual if it is outside this interval.

Farrington et al. (1996, [28]) developed a statistical, automated, surveillance algo-

rithm that is used to analyse data from public health laboratories in England and

Wales. This method uses a regression to derive both an estimated value for the

current week’s data and a prediction interval. The threshold is defined as the up-

per value of this prediction interval. Data over this threshold are flagged as being

unusual [28]. The regression is based on 35 baseline values from the same week,

and the surrounding three weeks, from the past five years in order to account for

seasonality. This has recently been extended to also account for reporting delays in

the data [29].

More recently, also within Public Health England, the ‘rising activity, multi-level
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mixed effects, indicator emphasis’ (RAMMIE) method (Morbey et al. 2015, [30])

was developed to detect unusual activity in syndromic surveillance systems. This

method was designed to work robustly with multiple syndromic surveillance systems

that have a wide range of data volumes, and it is additionally able to prioritise

alarms so that there are a manageable number each day. The following overview of

the RAMMIE method is based on the methods described by Morbey et al. in [30].

The RAMMIE model is made up of three components: a multi-level mixed effects

model giving a prediction of the days activity for each indicator using historical

data, baseline and spike thresholds which if exceeded generate alarms, and priority

rules so that the user is not overwhelmed with alarms. The model is multi-level as

each indicator is modelled at the national level as well as at a regional and local

level. A mixed effects model contains both fixed and random effects. In this case,

the fixed effects include day of the week and month and random effects include a

contribution from the region to models at the local level.

RAMMIE uses a combination of methods to generate and prioritise alarms - an

indication that the current activity level is higher than expected and should be

investigated further. Historical data and the regression model generate a prediction

of the activity level of the current day. From this an upper threshold is obtained.

Two types of alarms can be generated. Historical alarms are generated if the current

day’s activity level is higher than the threshold. In addition, the current activity

may be above or below the model generated prediction for an extended period of

time (for example, following the introduction of a new vaccine). During this period,

an historical alarm would sound continuously or never sound. Therefore, RAMMIE

also generates spike alarms to identify recent increases in activity compared to the

past week regardless of the comparison with the threshold.

Surveillance algorithms have also been developed to identify anomalous cases in

space, or space-time. For example, Besag and Newell (1991, [31]) used significance

tests to identify small clusters of cases of a rare disease over a large geographical area.

A spatial scan statistic was developed by Kulldorff (1997, [32]) and later extended to

a spatial-temporal scan statistic (Kulldorff 2001, [33]). Finally, Bayesian methods

for spatial, and spatial-temporal, disease surveillance have been developed such as

those used by Spencer et al. (2011, [34]) to identify outbreaks of campylobacteriosis

in New Zealand.

Robust computational methods for data transfers, data processing, and analysis
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are a key-stone for successful, regular, reliable disease surveillance. The R-package

Surveillance provides a ‘test-bench’ for surveillance algorithms and includes the

algorithms by Stroup and Farrington described above, among others [27, 35].

1.3 Gastroenteritis surveillance in the UK

Public Health England operate multiple systems that contribute to gastroenteritis

surveillance in the UK. This includes analysing data from stool samples submitted

for laboratory tests and maintaining four syndromic surveillance systems that in-

clude gastroenteritis, diarrhoea or vomiting syndromes (more details of which will

be given in chapter 3 of this thesis).

However, there are two aspects to norovirus, and more generally gastroenteritis,

surveillance: the surveillance of geographically focussed, relatively small outbreaks

and the surveillance of population level endemic illness. Hall et al. (2013, [17]) iden-

tified many published reports of small laboratory-confirmed norovirus outbreaks,

but fewer publications focussed on assessing the burden of endemic, or community

level, norovirus. They comment that one problem contributing to this may be the

difficulty in obtaining data from community cases due to “low health-care seeking

rates of patients with gastroenteritis” [17]. This is, however, to be expected given

that many cases of gastroenteritis are mild and self-limiting. We comment on this

difficulty in section 4.3 of chapter 4 of this thesis.

One approach to community surveillance is to carry out community based surveys.

There have been two prospective monitoring studies to estimate community gas-

troenteritis burden in England (IID1 study, Wheeler et al. 1999, [36] and IID2

study, O’Brien et al. 2010, [37]). These, whilst providing a valuable snapshot into

the number of gastroenteritis cases, do not however provide continual community

surveillance.

1.4 Infectious disease modelling

Methods for analysing infectious disease data are more extensive and broad than

the statistical surveillance methods used regularly by public health authorities and

described in section 1.2. In this section we will briefly describe some examples of
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infectious disease modelling. Generally, these analysis methods fall into two groups:

statistical (phenomenological) models and mechanistic models. However, the field

of infectious disease modelling is very broad and it is beyond the scope of this thesis

to provide a full review.

The work of Daniel Bernoulli, in the late 18th century, is often described as one

of the earliest examples of a mathematical model of disease [38]. The analysis was

developed in order to quantify the benefits of smallpox inoculation, and the work

estimated that this intervention increased average life expectancy by three years

[39] (although from just 26 years and 7 months to 29 years and 9 months [38]!).

However, this model treats incidence of infection as a constant and so does not deal

with transmission dynamics.

A transmission model developed by Kermack and McKendrick in 1927 is often de-

scribed as the most influential contribution to mathematical modelling of infectious

diseases [38]. Kermack and McKendrick developed the ordinary differential equa-

tions (ODEs) that form the SIR compartmental model of disease transmission. The

SIR model has since been extensively developed and extended (see Mathematical

Epidemiology by Brauer et al. for example [40]) perhaps because these systems of

ODEs are now relatively easy to work with and solve computationally with modern

computers.

These models are deterministic mechanistic models of the process of disease trans-

mission. However, as stated by Bailey in his paper ‘A simple stochastic epidemic’

(1950, [41]): “a considerable degree of chance enters into the conditions under which

fresh infections take place, and it is clear that for a more precise analysis we ought

to take these statistical fluctuations into account. In short, we require ‘stochastic’

models to supplement existing deterministic ones”. Nevertheless, stochastic models

are relatively more difficult to work with than deterministic ones, or at least become

quickly too complex for basic analysis techniques. This paper by Bailey is considered

one of the earliest contributions to stochastic models of disease [38] and introduces

a relatively simple stochastic model which would now be referred to as an SI model

(individuals can become infected but there are no further dynamics). Stochastic

disease models have also been extensively developed and extended, in particular

to include different scales of contact structure and as the corresponding theoretical

analysis approaches for stochastic processes have developed (see, for example, [42]).

In addition, developing simultaneously in time with mechanistic modelling, statis-
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tical models have been used to analyse many aspects of epidemics. For example,

early work considered fitting distributions to small epidemiological datasets, such

as fitting the beta-binomial distribution to cases of “the common cold” by Griffiths

(1973, [43]). More recently, a simple generalised model which had previously been

used in demography was fitted to the early growth of a variety of epidemics by Vi-

boud et al (2016, [44]). This flexible statistical model was able to fit successfully

to epidemic data demonstrating a range of growth scales, from very slow to near-

exponential. Statistical models can be particularly useful when, for example, disease

dynamics are not well understood and so a mechanistic model would contain many

uncertainties.

One key success of infectious disease modelling, in all forms, is its use to inform policy

decisions. This often relates to recommendations of control measures to mitigate

outbreaks. These control measures include a broad range of possible interventions

whose effectiveness may not be immediately evident without modelling (such as

closing a school during a pandemic [45]). Assessing control measures drives the

continual development of models of infectious diseases as we try to mitigate their

impact on populations across the globe.

Early successful examples of this are for livestock diseases, perhaps due to the larger

choice of control measures. For example, one early analysis by Anderson et al.

(1996, [46]) gave recommendations on culling protocols to control the BSE epidemic

in cattle in Great Britain. A further example is the work of Howard and Donnelly

(2000, [47]) who assessed the impact of quick culling of animals on a farm in response

to identifying the presence of foot and mouth disease in a herd. This went on to

inform further policy-motivated modelling in response to the outbreak in the UK in

2001, such as the effects of vaccinating by Keeling et al. (2003, [48]) and culling by

Ferguson et al. (2001, [49]).

1.5 This thesis

This thesis will contain three studies each tackling an outstanding mathematical or

statistical challenge in the field of gastroenteritis surveillance. This is in an attempt

to start bridging the gap between the statistical techniques used practically for

gastroenteritis surveillance and mechanistic modelling approaches.

The analysis methods used daily for syndromic surveillance by public health au-
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thorities do not typically include any disease mechanisms. We attempted to fit an

SEIRS ODE model to syndromic surveillance data of gastroenteritis (analysis not

reported here). However, we found that the parameters of this model were poorly

identifiable from these data and that this was not a simple problem. Therefore,

we start this thesis by describing our development of approximating methods for

stochastic mechanistic models that could be applied to the large datasets used in

syndromic surveillance (chapter 2). Next, we realise that mechanistic models can

‘idealise’ data; when fitting these models it is important to be aware of any regular

signals in data that are not directly due to disease levels. Therefore, we investigate

and highlight reporting artefacts in daily syndromic surveillance data from a variety

of healthcare services (chapter 3). Finally, we suspect that models which combine

data sources may be more successful at modelling these processes than models which

rely on a single data source. Therefore, we investigate additional online data sources

of gastroenteritis (chapter 4).

Most of the work in chapters 3 and 4 was undertaken during a secondment at

the Real-time Syndromic Surveillance Team of Public Health England during this

PhD. This placement gave the author the opportunity to interact with syndromic

surveillance data on a daily basis and experience the challenges of working with

these data first-hand. Additionally, this secondment gave limited access to the data

used in this work, which are covered by governance and contractual agreements

that limit their use for Public Health England surveillance activities only. The data

are, therefore, not available for sharing. Additionally, the opinions expressed in this

thesis are the author’s own do not necessarily reflect the views of the Real-time

Syndromic Surveillance Team or any part of Public Health England.

Further introductory details of each chapter will now follow.

1.5.1 Gaussian process approximations for fast inference from epi-

demic data

The first, and most mathematically technical, work chapter concerns the develop-

ment of approximation methods for stochastic models of infectious diseases for fast

inference with epidemiological data. Many of the methods routinely used for regular

surveillance by public health authorities are statistical methods, such as regression

models and time series analyses. However, mechanistic models of infectious disease

are well established. Surveillance systems obtaining regular, frequent updates need
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these data to be analysed quickly. Yet many of the approaches designed to work with

non-linear stochastic models of infectious diseases can be computationally intensive

and slow. We investigate Gaussian process approximations so that we can exploit

useful simple properties of the multivariate normal distribution for fast inference.

1.5.2 Day of the week and public holiday effects in syndromic

surveillance data

The second work chapter contains a statistical investigation into the artefacts left by

weekends and public holidays in daily surveillance data from a variety of healthcare

services. We demonstrate improvements to current surveillance methods that can

be made based upon this investigation. Surveillance data of gastroenteritis capture

many different trends including, but certainly not limited to, the levels of gastroen-

teritis circulating in the population. For example, behaviours surrounding seeking

healthcare, healthcare availability, and the ability to self-treat all influence the num-

ber of gastroenteritis cases recorded by each healthcare system. In this chapter, we

investigate two social constructs–weekends and public holidays–that may impact on

surveillance systems that analyse daily data. There has not previously been any for-

mal investigation into day of the week and public holiday effects in the syndromic

surveillance data used by Public Health England.

1.5.3 Online surveillance of gastroenteritis

The third, and final, work chapter investigates potential additional data sources

for gastroenteritis surveillance in the UK. Surveillance systems can be validated by

making use of as much data as possible. We investigate data from search engines,

from webpage use, and from an online survey designed for influenza surveillance.

As gastroenteritis is often self-limiting only some small proportion of cases report

to healthcare services. Therefore, not all cases end up in traditional surveillance

datasets. This chapter makes use of existing statistical methodologies that have

previously been used to verify and compare novel surveillance datasets to investigate

additional datasets that have not previously been used for these purposes.



CHAPTER 2

GAUSSIAN PROCESS APPROXIMATIONS FOR FAST

INFERENCE FROM EPIDEMIC DATA

In this chapter we describe and investigate Gaussian process approximations of

stochastic epidemic models. This chapter has been accepted for publication as:

E. Buckingham-Jeffery, V. Isham, T. House. (2018) Gaussian process approx-

imations for fast inference from infectious disease data. Mathematical Biosciences

(in press).

This chapter will be structured as follows. First, an introduction with the necessary

background material, followed by a numerical comparison of different approximation

methods. We then perform inference on synthetic and real data, and finally we

analytically compare the approximation methods.

2.1 Introduction and background

Analysing infectious disease data in real time allows us to learn about diseases,

to estimate key parameters to understand disease dynamics, and to evaluate inter-

ventions. Often we have imperfect, incomplete observations that we would like to

analyse quickly so our results can be useful to public health authorities. We can ei-

ther make use of generic statistical data analysis methods or, as we do here, consider

a problem-specific approach with a transmission-dynamic epidemic model.

10
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The epidemic models that are typically used are non-linear. Many methods exist to

fit these models to data depending on the model and data involved [50]. Here we are

interested in supporting public health surveillance teams. Therefore, we consider

the case of daily or weekly prevalence or cumulative incidence data where there is

no tractable closed-form likelihood.

Recently, many different methods to deal with intractable likelihoods have been de-

veloped [51–56]. However, typically these approaches are computationally intensive

and can be difficult to implement which limits their practical use. On the other hand,

fitting deterministic ordinary differential equation (ODE) models for epidemics to

data, for example by least-squares, is often an ill-posed inverse problem; it is widely

accepted that stochastic effects need to be included in epidemic models for inference

and prediction to be reliable [57–59].

Therefore, in this chapter we investigate Gaussian process approximations of stochas-

tic epidemic models to speed-up real time analysis of disease data when other meth-

ods are too complex. We aim to demonstrate how these approximations can be used

for fast inference with outbreak data.

Note that we are not the first to consider Gaussian process approximations for

epidemic inference. For example, Ross et al. [60] considered parameter estimation

for the SIS model, Fearnhead et al. [61] considered Gaussian approximations based

on the linear-noise approximation, and Ball and House [62] considered inference for

the SIR epidemic on a network using a Gaussian process approximation.

2.1.1 Aims and objectives

The purpose of this chapter is to show how approximations of stochastic epidemic

models can be used with disease data for fast inference to support public health

authorities. Our aims are therefore to:

• describe a general structure for Gaussian process approximations of stochastic

compartmental models, specifically applied to the SIR model as an example,

• numerically compare different Gaussian process approximations,

• apply the approximations to outbreak data in order to make fast inference of

epidemic parameters and unobserved time series,
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• derive bounds on the errors of the approximations.

2.1.2 The SIR model

The stochastic SIR model is a simple individual-based stochastic model of infec-

tious disease [63]. Individuals are assumed to be identical and belong to one of

three classes: susceptible (S), infectious (I), or removed (R). The number of indi-

viduals in each class changes with time as new infections occur (movement of an

individual from the susceptible to the infectious class) and as individuals recover

or are quarantined or die (movement from the infectious to the removed class). In

this case, we will always consider a closed population with no births, deaths, immi-

gration, or other changes to the total population size which remains constant. This

compartmental structure has been widely used for infectious disease modelling and

has also been extensively expanded, for example by Keeling et al. (2003, [64]) to

incorporate vaccination strategies, by Conlan and Grenfell (2007, [65]) to include

latent infection and seasonality, and by Riley et al. (2003, [66]) to include coupled

metapopulations in different locations.

Pure jump Markov chain

Let NS(t), NI(t) and NR(t) denote the random integer number of people who are

susceptible, infectious and removed respectively at time t. The vector N(t) =

(NS(t), NI(t), NR(t)) is a continuous-time Markov chain with the following events

and rates:

(NS , NI , NR)→ (NS − 1, NI + 1, NR) at rate β
NSNI

N
,

(NS , NI , NR)→ (NS , NI − 1, NR + 1) at rate γNI .

(2.1)

These correspond to an infection event and a removal event respectively, where

N = NS + NI + NR is the constant population size and the constants β and γ are

the model parameters.
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Diffusion approximation

Using the convergence results of Kurtz ([67, 68]), the Markov chain defined by (2.1)

is well approximated by the solution X(t) of the stochastic differential equation

(SDE)

dX = F(X) dt+
√
V (X) dW, (2.2)

where

X(t) =

(
S(t)

I(t)

)
, F(X) =

(
−(β/N)SI

(β/N)SI − γI

)
, V (X) =

(
(β/N)SI −(β/N)SI

−(β/N)SI (β/N)SI + γI

)
,

and W =

(
W1

W2

)
where W1 and W2 are two independent Wiener processes. Note

that due to the constant population size we can ignore the removed individuals.

The distribution of X(∆t)|X(0) given by equation (2.2) will not, in general, be

Gaussian.

Deterministic approximation

The deterministic approximation of the SIR SDE (equation (2.2)) is given by

ds

dt
= − β

N
si ,

di

dt
=

β

N
si− γi , (2.3)

where s(t) and i(t) are the numbers of susceptible and infectious individuals respec-

tively at time t that satisfy this deterministic model.

2.1.3 SDE approximations

Most SDEs cannot be solved analytically [69]. Therefore, approximate SDEs which

can be solved more easily must be used to obtain approximate solutions of the mean

and variances-covariances of the stochastic system.
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Linear SDE approximation

According to Archambeau et al. (2007, [70]), the following linear SDE

dx = (A(t)x + b(t)) dt+
√
U(t) dW , (2.4)

will have a Gaussian process solution, GP(m(t),C(t)), with mean and variance-

covariance matrix satisfying

dm

dt
= Am + b ,

dC

dt
= AC +CA> +U . (2.5)

Therefore, to obtain a Gaussian process approximation to the stochastic SIR model

we must choose the time-varying matrices A(t), b(t), and U(t) in the linear SDE

(equation (2.4)) so that it approximates the SIR SDE (equation (2.2)) and hence

the full stochastic system.

For the SIR model, based on equation (2.2), there is one obvious choice for the

matrix U(t):

U(t) =

(
(β/N)s(t)i(t) −(β/N)s(t)i(t)

−(β/N)s(t)i(t) (β/N)s(t)i(t) + γi(t)

)
,

where s(t) and i(t) are as defined in the deterministic approximation (equation (2.3)).

However, there are many choices for the matrix A(t) and the vector b(t) that

will lead to equation (2.4) having a good approximation of the mean behaviour

of equation (2.2) but which differ in their approximation of the variance. We define

some in the sections to follow and compare their behaviour in the rest of this chapter.

To summarise, let X (t) and Y(t) denote the number of susceptible and infectious

people respectively in the Gaussian process approximation at time t. These follow

a Gaussian process GP(m(t),C(t)) with mean and variance-covariance matrix

m =

(
m1

m2

)
=

(
E[X (t)]

E[Y(t)]

)
, C =

(
C11 C21

C21 C22

)
=

(
var(X (t)) cov(X (t),Y(t))

cov(X (t),Y(t)) var(Y(t))

)
,

whose behaviour is given by the ODEs in equation (2.3).

We will now give some choices of A and b that correspond to both approximations

already discussed in the literature and new approximations not previously named.
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Linear-noise / Ornstein-Uhlenbeck approximation

To derive the Ornstein-Uhlenbeck (OU) [71] or linear-noise [72] approximation we

start with the SIR SDE (equation (2.2)). We assume both S and I separate into

the deterministic part and fluctuations around this, and then we linearise around

the deterministic solution. That is, we write

S(t) = s(t) + S̃(t) , I(t) = i(t) + Ĩ(t) ,

where the quantities S̃, Ĩ are assumed to be small. We ignore quadratic terms,

O(S̃2, S̃Ĩ, Ĩ2), and keeping only the linear terms get

d

(
S(t)

I(t)

)
≈

(
−(β/N)(s(t)I(t) + S(t)i(t)− s(t)i(t))

(β/N)(s(t)I(t) + S(t)i(t)− s(t)i(t))− γI(t)

)
dt

+

√√√√( (β/N)s(t)i(t) −(β/N)s(t)i(t)

−(β/N)s(t)i(t) (β/N)s(t)i(t) + γi(t)

)
dW .

This is a special case of the linear SDE Gaussian process approximation described

above with

A(t) =

(
−(β/N)i(t) −(β/N)s(t)

(β/N)i(t) (β/N)s(t)− γ

)
, b(t) =

(
(β/N)s(t)i(t)

−(β/N)s(t)i(t)

)
.

Other special cases

As well as considering the above two existing approximations in the literature we

also introduce other special cases that we do not believe are yet named.

We name the two special cases that we consider in an obvious way:

‘A noise’: A(t) =

(
−(β/N)i(t) 0

0 (β/N)s(t)− γ

)
, b(t) = 0 .

‘b noise’: A(t) = 0 , b(t) =

(
−(β/N)s(t)i(t)

(β/N)s(t)i(t)− γi(t)

)
.

For each of these, and for the approximations from the literature, we obtain a set of

five ODEs (from equation (2.5)), which we can solve numerically to give a Gaussian
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process approximation of the mean, variances, and covariances of the stochastic SIR

model.

For example, for the A noise approximation we get:

dm1

dt
= − β

N
i(t)m1 ,

dm2

dt
=

(
β

N
s(t)− γ

)
m2 ,

dC11

dt
=

β

N
s(t)i(t)− 2

β

N
i(t)C11 ,

dC12

dt
= − β

N
s(t)i(t) +

(
β

N
(s(t)− i(t)− γ

)
C12 ,

dC22

dt
=

β

N
s(t)i(t) + γi(t) + 2

(
β

N
s(t)− γ

)
C22 ,

and for b noise:

dm1

dt
= − β

N
s(t)i(t) ,

dm2

dt
=

β

N
s(t)i(t)− γi(t) ,

dC11

dt
=

β

N
s(t)i(t) ,

dC12

dt
= − β

N
s(t)i(t) ,

dC22

dt
=

β

N
s(t)i(t) + γi(t) .

Linear stochastic process approximation

For comparison with approximations from the linear SDE, we consider two other ap-

proximations from the literature. In the linear stochastic process (LSP) approxima-

tion it is assumed that the susceptible population evolves deterministically but that

the infectious population is normally distributed. This was introduced in the context

of the SIR model by Isham (1991, [73]). This approach removes the non-linearity

from the SIR model (which is only introduced through the product S(t)I(t)). The

susceptible, rather than the infectious, population is assumed to evolve determinis-

tically as the initial size of infectious population is typically small whereas the initial

size of the susceptible population is typically close to the total population size.

The LSP approximation gives the following set of three ODEs for the evolution of

the deterministic susceptible population, s(t), and the mean, µY = E[Y (t)], and



CHAPTER 2. GAUSSIAN PROCESS APPROXIMATIONS 17

variance, σY Y = var(Y (t)), of the infectious population:

ds

dt
= − β

N
sµY ,

dµY
dt

=
β

N
sµY − γµY ,

dσY Y
dt

=
β

N
(2sσY Y + sµY )− γ(2σY Y − µY ) .

(2.6)

Multivariate normal moment closure

For the final comparative approximation we consider the multivariate normal (MVN)

moment closure method, developed by Isham (1991, [73]), which can also be used

to obtain an approximation of the stochastic SIR model. In this method, we as-

sume that the joint distribution of the susceptible and infectious populations can

be approximated by a bivariate normal distribution. We can then derive a set of

five ODEs for the mean, variances, and covariances of the susceptible and infectious

populations.

To derive the MVN moment closure approximation we begin from the Markov chain

of the SIR model (equation (2.1)) and write down the master equation for the

probabilities pt(NS , NI) that there are NS and NI susceptible and infectious people

at time t:

dpt(NS , NI)

dt
=
β

N
(NS + 1)(NI − 1)pt(NS + 1, NI − 1) + γ(NI + 1)pt(NS , NI + 1)

− β

N
NSNIpt(NS , NI)− γNIpt(NS , NI) .

Let X(t) and Y (t) denote for the number of susceptible and infectious people re-

spectively in the MVN moment closure approximation of the SIR model at time t.

We need to compute each of d
dtE[X], d

dtE[Y ], d
dtvar(X), d

dtvar(Y ), and d
dtcov(X,Y ).

We then apply the MVN moment closure assumption in order to close this set of

ODEs.

The MVN moment closure assumption gives us that X(t) and Y (t) follow a Gaussian

process GP(µ(t),σ(t)) with mean and variance-covariance matrix

µ =

(
µX

µY

)
=

(
E[X(t)]

E[Y (t)]

)
, σ =

(
σXX σXY

σXY σY Y

)
=

(
var(X(t)) cov(X(t), Y (t))

cov(X(t), Y (t)) var(Y (t))

)
,
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and that all higher cumulates are zero [74].

We will show in detail the method for deriving d
dtµX and d

dtσXX . The rest are very

similar. First consider d
dtµX :

d

dt
µX =

d

dt
E[X] =

d

dt

N,N∑
X=0,
Y=0

Xpt(X,Y ) =

N,N∑
X=0,
Y=0

X
d

dt
pt(X,Y )

=

N,N∑
X=0,
Y=0

X
β

N
(X + 1)(Y − 1)pt(X,Y )−

N,N∑
X=0,
Y=0

X
β

N
XY pt(X,Y )

+

N,N∑
X=0,
Y=0

Xγ(Y + 1)pt(X,Y + 1)−
N,N∑
X=0,
Y=0

XγY pt(X,Y ) .

Considering just the terms from the infection event:

N,N∑
X=0,
Y=0

X
β

N
(X + 1)(Y − 1)pt(X + 1, Y − 1)−

N,N∑
X=0,
Y=0

X
β

N
XY pt(X,Y )

=

N+1,N−1∑
X=1,
Y=−1

(X − 1)
β

N
XY pt(X,Y )−

N,N∑
X=0,
Y=0

X
β

N
XY pt(X,Y )

=

N,N∑
X=0,
Y=0

(X − 1)
β

N
XY pt(X,Y )−

N,N∑
X=0,
Y=0

X
β

N
XY pt(X,Y )

=− β

N

N,N∑
X=0,
Y=0

XY pt(X,Y )

=− β

N
E[XY ] ,
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and from the removal event:

N,N∑
X=0,
Y=0

Xγ(Y + 1)pt(X,Y + 1)−
N,N∑
X=0,
Y=0

γXY pt(X,Y )

=

N,N+1∑
X=0,
Y=1

γXY pt(X,Y )−
N,N∑
X=0,
Y=0

γXY pt(X,Y )

=

N,N∑
X=0,
Y=0

γXY pt(X,Y )−
N,N∑
X=0,
Y=0

γXY pt(X,Y )

=0 .

Putting this together gives d
dtµX = − β

NE[XY ] = − β
N (E[X]E[Y ] + cov(X,Y )) =

− β
N (µXµY + σXY ).

For d
dtσXX we need to compute d

dtE[X2]:

d

dt
E[X2] =

d

dt

N,N∑
X=0,
Y=0

X2pt(X,Y ) =

N,N∑
X=0,
Y=0

X2 d

dt
pt(X,Y )

=

N,N∑
X=0,
Y=0

X2 β

N
(X + 1)(Y − 1)pt(X + 1, Y − 1)−

N,N∑
X=0,
Y=0

X2 β

N
XY pt(X,Y )

+

N,N∑
X=0,
Y=0

X2γ(Y + 1)pt(X,Y + 1)−
N,N∑
X=0,
Y=0

X2γY pt(X,Y ) .
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Again, we begin by considering just the terms from the infection event separately:

N,N∑
X=0,
Y=0

X2 β

N
(X + 1)(Y − 1)pt(X + 1, Y − 1)−

N,N∑
X=0,
Y=0

X2 β

N
XY pt(X,Y )

=

N+1,N−1∑
X=1,
Y=−1

(X − 1)2 β

N
XY pt(X,Y )−

N,N∑
X=0,
Y=0

X2 β

N
XY pt(X,Y )

=

N+1,N−1∑
X=0,
Y=0

(X2 − 2X + 1)
β

N
XY pt(X,Y )−

N,N∑
X=0,
Y=0

X2 β

N
XY pt(X,Y )

=− 2
β

N

N+1,N−1∑
X=0,
Y=0

XXY pt(X,Y ) +
β

N

N+1,N−1∑
X=0,
Y=0

XY pt(X,Y )

=− 2
β

N
E[X2Y ] +

β

N
E[XY ] ,

and secondly the removal event terms:

N,N∑
X=0,
Y=0

X2γ(Y + 1)pt(X,Y + 1)−
N,N∑
X=0,
Y=0

X2γY pt(X,Y )

=

N,N+1∑
X=0,
Y=1

γX2Y pt(X,Y )−
N,N∑
X=0,
Y=0

γX2Y pt(X,Y )

=

N,N∑
X=0,
Y=0

γX2Y pt(X,Y )−
N,N∑
X=0,
Y=0

γX2Y pt(X,Y )

=0 .

This gives d
dtE[X2] = −2 β

NE[X2Y ] + β
NE[XY ].

As the third order cumulant is equal to the third central moment, the MVN moment

closure assumption gives us that

E[(X − E[X])2(Y − E[Y ])] = 0

⇒E[X2Y ] = E[X2]E[Y ] + 2E[XY ]E[X]− 2E[X]2E[Y ].
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Putting this together with the chain rule gives

d

dt
σXX =

d

dt
(E[X2]− E[X]2)

=
d

dt
E[X2]− 2E[X]

d

dt
E[X]

= −2
β

N
E[X2Y ] +

β

N
E[XY ]− 2E[X](− β

N
(E[X]E[Y ] + cov(X,Y )))

=
β

N
(E[X]E[Y ] + cov(X,Y )− 2E[X]cov(X,Y )− 2E[Y ]var(S))

=
β

N
(µXµY + σXY − 2µXσXY − 2µY σXX).

Overall, we get that X(t) and Y (t) follow a Gaussian process GP(µ(t),σ(t)) with

mean and variance-covariance matrix

µ =

(
µX

µY

)
=

(
E[X(t)]

E[Y (t)]

)
, σ =

(
σXX σXY

σXY σY Y

)
=

(
var(X(t)) cov(X(t), Y (t))

cov(X(t), Y (t)) var(Y (t))

)
,

that obey equations

dµX
dt

= − β
N

(µXµY + σXY ) ,

dµY
dt

=
β

N
(µXµY + σXY )− γµY ,

dσXX
dt

=
β

N
(µXµY + σXY − 2µXσXY − 2µY σXX) ,

dσXY
dt

=
β

N
(µX(σXY − σY Y ) + µY (σXX − σXY )− µXµY − σXY )− γσXY ,

dσY Y
dt

=
β

N
(2µXσY Y + 2µY σXY + µXµY + σXY )− γ(2σY Y − µY ) ,

which we can solve numerically.

Note that there are other moment closures, such as log-normal [75] and beta-

binomial [76], which we do not currently consider.

2.2 Numerical comparisons of approximation methods

In order to assess the performance of each of the Gaussian process approximations

defined above we numerically compare each approximation to simulations of the

stochastic process for a range of epidemiological model parameter values and pop-
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Figure 2.1: A typical example of stochastic trajectories and one Gaussian process
approximation. This example was generated with parameters β = 2, γ = 1, and N =
1 × 104 and the MVN moment closure approximation. The shaded approximation
region corresponds to the mean plus/minus one standard deviation.

ulation sizes N , with 50 initial infectious individuals.

Due to our interest in regularly spaced data, we simulate trajectories of both the

susceptible and infectious populations of the stochastic SIR model at regular time

intervals between known data points using the tau-leap algorithm [77]. We do this

for each set of model parameters of interest. Figure 2.1 shows an example of these

trajectories for a specific set of parameter values. Simulating 104 trajectories gives a

distribution at each time point to which we compare each approximating Gaussian

distribution.

For each approximation we computed the mean and variance of the size of the

susceptible and infectious populations forward from the current data point until

the next. The mean of the approximation was then reset to the data point, and

the variances to zero. Figure 2.1 shows an example of this for one specific set of

parameter values and one specific approximation.

2.2.1 Kullback-Leibler divergence

We compared the approximations numerically to the stochastic simulations using the

Kullback-Leibler (KL) divergence, a measure of difference between two probability

distributions [78]. The KL divergence can only be used to compare two distributions

with the same support. Therefore, we discretised the Gaussian distributions of the
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approximations in order to compare with the discrete numerical distribution given

by the stochastic simulations. It is appropriate to discretise as we wish to work on

a discrete time-scale for this approximate inference.

For discrete probability distributions P and Q the KL divergence is defined as

DKL(P ||Q) =
∑
i

P (i)(lnP (i)− lnQ(i)) .

A better approximation will result in a smaller KL divergence [78]. The KL diver-

gence was computed each time data were obtained and before the simulations and

approximations were reset to the data value.

Note that we could not compute the KL divergence for a comparison of the LSP

with the stochastic simulations for the size of the susceptible population as in the

LSP the susceptible population evolves deterministically. Additionally, on occasion

the KL divergence could not be computed for other approximations because one

distribution took a value very close to zero. However, as displayed in figures 2.2

and 2.3, this does not occur very often.

2.2.2 Results

Figure 2.2 demonstrates these comparisons for three examples of epidemiological

model rate parameters that we have chosen to cover a range of R0 values. The

MVN moment closure and LN approximations consistently have the smallest KL

divergence in both the size of the susceptible population and the size of the infec-

tious population (figure 2.2). Additionally, and in particular for larger population

sizes, the A noise and LSP approximations also approximate well the size of the

infectious population. The b noise approximation does not approximate the size of

the infectious class as well, in particular at the start and end of the epidemic.

For approximating the size of the susceptible population, the A noise and b noise

approximations perform adequately but not as well as the other approximations

particularly at the start and end of the epidemic.

We performed the same analysis over a longer time step where we did not obtain

any new data throughout the epidemic (figure 2.3). We saw similar results; the

MVN moment closure and OU approximations are best, with the A noise and LSP

approximations also good approximations for the infectious population. However,
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(a) β = 0.6, γ = 0.5 (R0 = 1.2)
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(b) β = 2, γ = 1 (R0 = 2)
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(c) β = 3, γ = 0.5 (R0 = 6)

Figure 2.2: Numerical comparisons of the approximation schemes with stochastic
simulations of the SIR model using the KL divergence when new data are obtained
each day. Within each subplot (a-c) different rate constant parameter values were
used to generate stochastic simulations for comparison to each Gaussian approx-
imation. The size of the susceptible population is compared on the top line and
the size of the infectious population on the bottom line, for three population sizes
(increasing from left to right).
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the A noise approximation became a much less good approximation of the susceptible

population over this longer time step.

The ODEs that define the approximations were solved numerically. The b noise

approximation has the simplest set of ODEs and so is fastest to solve (figure 2.4).

The A noise and LSP approximations are slower and, finally, the MVN moment

closure and OU approximations take longest (figure 2.4).

2.2.3 Conclusions

In conclusion, these numerical comparisons show that the A noise Gaussian process

approximation can perform comparably to the MVN moment closure and OU ap-

proaches, in particular for large population sizes and for the infectious population

size, while being computationally faster. We expect this computational advantage

to become much more pronounced for more complex compartmental models.

In addition, we note the ease with which the A noise approximation can be derived

(in essence, just written down) in comparison to the MVN moment closure and OU

approaches and that, again, this will become more pronounced for more complex

compartmental models (this is demonstrated further in section 2.3.2 where we apply

these approximations to the SEIR model).

This near-comparable performance, along with the mathematical and computational

advantages, means that we consider the A noise approximation with the MVN mo-

ment closure and OU approximations for inference with data in the next section.

2.3 Inference

We will now demonstrate how these approximation methods can be used for fast

inference of partially observed epidemics. We will just use the approximation meth-

ods that gave the best results in the previous section; namely, the MVN moment

closure, OU, and A noise approximations.

This section will proceed as follows. We initially apply the Gaussian process ap-

proximations to synthetic data from the SIR model to demonstrate that the size

of the susceptible population can be recovered from weekly prevalence measure-

ments. Secondly, we consider real data from a norovirus outbreak with the SEIR
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(c) β = 3, γ = 0.5 (R0 = 6)

Figure 2.3: Numerical comparisons of the approximation schemes with stochas-
tic simulations of the SIR model using the KL divergence where no new data are
obtained throughout the epidemic. Within each subplot (a-c) the size of the suscep-
tible population is compared on the top line and the size of the infectious population
on the bottom line, for three population sizes (increasing from left to right).
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Figure 2.4: Running times for the sets of differential equations for each of the ap-
proximation methods with R0 = 2 and N = 1× 106. The ODEs were solved many
times for each approximation. The box denotes the median, lower quartile, and up-
per quartile of the running times. Whiskers extend to the maximum and minimum.
(Note that the boxes display as simply thick lines because the interquartile ranges
are all very small in this case.)
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(susceptible-exposed-infectious-removed) model to demonstrate that it is straight-

forward to use these approximations with real data and more complex models.

2.3.1 Simulated prevalence from the SIR model

Consider a disease that is well approximated by the SIR model with constant trans-

mission rate β and constant removal rate γ. Suppose we have data of the form

of a set of times {ti}ni=0 together with associated measurements of the number of

infecteds {yi}ni=0.

We have Gaussian process approximations of the SIR model such that given sus-

ceptible and infectious populations of size x0 and y0 respectively at the start of a

time interval of length ∆t, at the end of that time interval the mean and variance-

covariance matrix are µ(∆t;x0, y0, β, γ) and Σ(∆t;x0, y0, β, γ) respectively.

If we also had measurements of the susceptible population, {xi}ni=0, then we could

write the likelihood function for the parameters of the approximating model given

the data as

L(β, γ; x,y) =

n∏
i=1

N ((xi, yi);µ(ti − ti−1;xi−1, yi−1, β, γ),Σ(ti − ti−1;xi−1, yi−1, β, γ)) .

In practice, however, the data on the susceptible population are not readily available.

Instead, we can impute this information using the marginal, and marginal condi-

tional, distributions of the MVN distribution. These can be explicitly computed as

follows [79].

For random vector (x, y) with MVN distribution N (µ,Σ), y has marginal probabil-

ity density function

f(a) = N (a;µ2,Σ22) , (2.7)

and, conditional on an observation y = a, the random variable x has marginal

conditional probability density function

f(x; y = a) = N (x;µ1 + Σ12Σ−1
22 (yi − µ2),Σ11 − Σ12Σ−1

22 Σ21) . (2.8)

We can use these rules to build up a likelihood from the product of terms such

as equation (2.7). Also, at each observation point we can use equation (2.8) to
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update the mean vector and covariance matrix for the Gaussian process approxima-

tion.

Synthetic data were obtained from one run of the stochastic SIR model using pa-

rameter values β = 2, γ = 1, and N = 1× 104 with one initial infected.

Using each of the MVN moment closure, OU, and A noise approximations, we were

reliably able to recover the epidemiological model parameters (figure 2.5). Using

maximum likelihood optimisation, the three approximation methods all gave the

same parameter estimates (estimates β̂ = 2.04 and γ̂ = 1.01). Additionally, they

gave similar results for the inference of the susceptible population from regular data

on the number of infecteds.

2.3.2 Cumulative incidence of a real norovirus outbreak with the

SEIR model

In section 2.3.1 we considered the case the data available to us are the number of

infecteds at regular time points. An alternative, and common, situation is when

only illness onset times and not removal times are available. For an SIR model this

corresponds to having measurements of the cumulative incidence, which is equal to

N − S(t).

In this section we will be using an SEIR (susceptible-exposed-infectious-removed)

modelling framework. Therefore, data of this type are not necessarily measurements

of N−S(t). However, we assume in this case that they are. We make the somewhat

conservative assumption that newly diagnosed individuals are no longer susceptible

but could potentially be in any of the E, I, or R states so that our data are effectively

values of N−S(t). A different approach could easily be taken within this inferential

framework; the assumption we have made is simply intended to demonstrate that

our inference methods are working effectively.

We consider real data from an outbreak of norovirus on a cruise ship visiting the

British Isles as reported by Vivancos et al. (2010, [80]). This report gives us data

on the number of new reported norovirus cases per day during this outbreak in a

small, closed population of 1714 individuals. A single norovirus outbreak in a closed

population is commonly assumed to follow the SEIR framework [81–84]. After

infection individuals enter a latent state, E, that they leave at rate ω on becoming

infectious. The stochastic differential equation for the SEIR framework, equivalent
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Figure 2.5: Inference of the susceptible population using the MVN moment closure
(top), OU (middle), and A noise (bottom) Gaussian process approximations. Left:
Likelihood (density plot) is concentrated around the true value (cross). Centre:
Data on the number of infecteds allows for good reconstruction of the unobserved
susceptibility over time. Shown are the synthetic data (‘True’, red), the mean of the
approximation scheme using the inferred parameter values (‘Inferred’, black), and
the mean plus/minus one standard deviation (black) in both the main figures and
insets. Dashed rectangles on the main figures show the locations of the insets from
left to right. Right: Data (‘Observed’, diamonds) allow for good reconstruction of
the number of infecteds over time. The red lines, black lines, and dashed rectangles
are as before.
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to equation (2.2) for the SIR framework, is given by dX = F(X) dt+
√
V (X) dW

with

X(t) =

S(t)

E(t)

I(t)

 , F(X) =

 −βSI/N
βSI/N − ωE
ωE − γI

 ,

V (X) =

 βSI/N −βSI/N 0

−βSI/N βSI/N + ωE −ωE
0 −ωE ωE + γI

 .

(2.9)

The deterministic approximation of the stochastic SEIR model is given by the ODEs

ds

dt
= − β

N
si ,

de

dt
=

β

N
si− ωe di

dt
= ωe− γi , (2.10)

where, as before, s(t), e(t), and i(t) are the numbers of susceptible, exposed, and

infected individuals respectively at time t given by the deterministic model.

As before, we can impute the unobserved time series E(t) and I(t) using the condi-

tional rules of the MVN distribution and use the marginal rules to perform maximum

likelihood estimation on the parameter values β, γ, and S(0). Note that we fit S(0)

instead of taking it to be N − 1 because we do not know the infection history and

contact structure of the population. For example, some of the population may have

been previously recently exposed to norovirus and therefore not currently suscepti-

ble. Some groups of passengers may not mix due to cabin location, excursion choice

and control measures in place [80]. Finally, evidence indicates that there may be

some level of genetic immunity to norovirus which may protect some passengers [85].

Additionally, some care must be taken because ω is poorly identifiable from this

cumulative incidence data, and our attempts to fit it alongside the other three pa-

rameters produced unrealistically large estimates motivating us to fix this parameter

from other data. We found that the literature gives the latent, or incubation, period

of norovirus to be between 0.5 and 2 days. For example, an SEIR model fitted to

an outbreak in a long-term care facility estimated the latent period of norovirus as

1.3 days [82]. A systematic review of the incubation period of norovirus genogroups

I and II gives it as 1.2 days (95% confidence interval 1.1–1.2) [86]. The CDC report

that the incubation period of norovirus is between 0.5 and 2 days [87]. Finally, a

large dataset of norovirus outbreaks showed the incubation period to have a mean

and median of 1.4 (95% confidence interval 1.3–1.4) days. Since ω is the reciprocal

of the latent period, we therefore chose ω = 2 days−1 as the largest value consistent

with existing knowledge about norovirus.
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A noise with SEIR

To use the A noise Gaussian process approximation with the SEIR model we simply

need again to choose the time-varying matrices, A, b, and U in equation (2.4) so

that it approximates the SEIR SDE (equation (2.9)).

For the A noise approximation we can see that one choice will simply be:

A(t) =

0 0 −βs(t)/N
0 −ω βs(t)/N

0 ω −γ

 , b(t) =

0

0

0

 ,

U(t) =

 βs(t)i(t)/N −βs(t)i(t)/N 0

−βs(t)i(t)/N βs(t)i(t)/N + ωe(t) −ωe(t)
0 −ωe(t) ωe(t) + γi(t)

 .

This gives the following ODEs for the approximation of the means, variances, and

covariances:

dm1

dt
= − β

N
sm3 ,

dm2

dt
=

β

N
sm3 − ωm2 ,

dm3

dt
= ωm2 − γm3 ,

dC11

dt
= −2

β

N
sC13 +

β

N
si ,

dC12

dt
=

β

N
s(C13 − C23 − i)− ωC12 ,

dC13

dt
= − β

N
sC33 + ωC12 − γC13 ,

dC22

dt
=

β

N
s(2C23 + i) + ω(e− 2C22) ,

dC23

dt
= ω(C22 − C23 − e)− γC23 +

β

N
sC33 ,

dC33

dt
= ω(2C23 + e) + γ(i− 2C33) .

Note that writing down A, b, and U in this case is very straightforward, and we

suspect that this will continue to be the case as we consider the A noise approxi-

mation with more complex compartmental models. As the matrices can simply be

written down, the chances for derivation errors are minimised. Additionally, we do

not need to use any additional computer algebra packages that may be necessary to

support the derivation of some of the other approximations.
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OU with SEIR

The OU approximation for the SEIR model can be derived in the same way as for

the SIR model (see section 2.1.3). This gives the following set of ODEs for the

means, variances, and covariances of the Gaussian process:

dm1

dt
= − β

N
m1m3 ,

dm2

dt
=

β

N
m1m3 − ωm2 ,

dm3

dt
= ωm2 − γm3 ,

dC11

dt
=

β

N
(m1m3 − 2m3C11 − 2m1C13) ,

dC12

dt
=

β

N
(m3(C11 − C12)−m1C23)− ωC12 ,

dC13

dt
= − β

N
(m3C13 +m1C33) + ωC12 − γC13 ,

dC22

dt
=

β

N
(m1m3 + 2m1C23 + 2m3C12) + ω(m2 − 2C22) ,

dC23

dt
=

β

N
(m3C13 +m1C33)− ω(m2 − C22 + C23)− γC23 ,

dC33

dt
= ω(m2 + 2C23) + γ(m3 − 2C33) .

Note that this derivation required more work than for the A noise approximation

where A, b, and U were just able to be written down.

MVN moment closure with SEIR

The MVN moment closure approximation of the SEIR model is derived in exactly

the same way as for the SIR model (see section 2.1.3). Note that this was quite

an involved procedure and certainly not as simple as writing down the A noise

approximation.

We get that X(t), Y (t), and Z(t) follow a Gaussian process GP(µ(t),σ(t)) with
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mean and variance-covariance matrix that obey equations

dµX
dt

= − β
N

(µXµZ + σXZ) ,
dµY
dt

=
β

N
(µXµZ + σXZ)− ωµY ,

dµZ
dt

= ωµY − γµZ ,

dσXX
dt

=
β

N
(µXµZ + σXZ − 2µXσXZ − 2µZσXX) ,

dσXY
dt

=
β

N
(−σXZ − µXµZ + µXσXZ + σXXµZ − µXσY Z − σXY µZ)− 2ωσXY ,

dσXZ
dt

= − β
N

(µXσZZ + µZσXZ)− γσXZ + ωσXY ,

dσY Y
dt

=
β

N
(µXµZ + σXZ + 2µXσY Z + 2σXY µZ) + ω(µY − 2σY Y ) ,

dσY Z
dt

=
β

N
(µXσZZ + µZσXZ)− (ω + γ)σY Z − ω(µY − σY Y ) ,

dσZZ
dt

= ω(µY + 2σY Z) + γ(µZ − 2σZZ) .

Results

Working at two significant figures or zero decimal places as appropriate, parameter

estimates and 95% confidence intervals from fitting the data with each of these

approximations are given in table 2.1.

Table 2.1: Epidemic model parameter estimates and 95% confidence intervals from
maximum likelihood. Note that the confidence intervals are truncated at zero for
rate parameters.

Approximation β γ (days−1) S(0)

MVN moment closure 21 [8.4, 33] 1.7 [0, 3.9] 258 [159, 357]
A noise 23 [0.81, 44] 1.5 [0, 4.7] 241 [125, 357]
OU 18 [8.6, 27] 1.1 [0, 3.1] 237 [137, 336]

The average infectious periods (estimated from 1/γ as 0.59, 0.91, and 0.67 days

for the MVN moment closure, OU, and A noise approximations respectively) are

shorter than the natural history of norovirus would indicate, which is likely to be

due to control measures in place upon the ship [80] limiting the time period during

which cases are able to infect others. Additionally, S(0) is estimated as much smaller

than N , which could be due to pre-existing immunity, control measures in place on

board the ship, and non-homogeneous mixing (through excursion choice and cabin
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location), as discussed previously [80].

The standard error estimates for the confidence intervals were taken from the lead-

ing diagonal of an approximate covariance matrix of the parameter estimates. The

approximate covariance matrices were computed as the negative inverse of an ap-

proximation to the Hessian of the log-likelihood at the maximum likelihood estimates

obtained using finite differences (from the MATLAB function mlecov()). The cor-

relation matrices between the parameters for each approach are, respectively,

RMVN =

1.00 0.77 0.37

0.77 1.00 0.87

0.37 0.87 1.00

 ,

RLN =

1.00 0.79 0.57

0.79 1.00 0.94

0.57 0.94 1.00

 ,

RA =

1.00 0.91 0.71

0.91 1.00 0.93

0.71 0.93 1.00

 .

The overall picture, from these confidence intervals and correlation matrices, is as

would be expected when fitting a complex non-linear stochastic model to limited

data: highly correlated parameters with relatively large marginal confidence inter-

vals.

Results for learning the time series of S(t), E(t) and I(t) are shown in Figure 2.6,

which shows general agreement on mean behaviour, but differences in the uncer-

tainty. Note that, particularly for the LN approximation, near the start of the

outbreak two standard deviations below the mean gives a value of less than zero

for the number of exposed and infectious individuals. This implies that perhaps the

Gaussian approximation is not as suitable when the number of individuals is very

close to zero.

In the results presented so far, the full dataset has been used to estimate the param-

eters of the epidemic model, before the time series were estimated as the epidemic

progressed. We show here, in figure 2.7, the results of also estimating β, γ, and S0

as the epidemic progressed, beginning from day nine. Note that in this instance,

these methods did not work with fewer than nine days of data. These datapoint-

by-datapoint estimates remain consistent over the epidemic.
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Figure 2.6: Inference of the susceptible (left), exposed (centre), and infectious
(right) population using the MVN moment closure approximation (top), the linear
noise approximation (middle), and the A noise approximation (bottom) from data of
the number of new cases of norovirus per day on a cruise ship. The black diamonds
(left) are our known values which we obtain from the data reported by [80], as
described in the text. The dark lines are the mean and light lines are the mean
plus/minus one standard deviation.
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Figure 2.7: Estimates of the model parameters β, γ, and S0 as the epidemic
progresses for the multivariate normal moment closure approximation (blue), the
linear noise approximation (red), and the A noise approximation (yellow). Points are
maximum likelihood estimates and bars indicate 95% confidence intervals (truncated
at zero for rate parameters).
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We conclude that even in this common case where there is a small dataset of symp-

tom onset times, our Gaussian process approach can be applied and gives epidemi-

ologically reasonable answers in little computational time.

2.4 Analytical comparisons

Each of the Gaussian models previously described is chosen on the basis of different a

priori assumptions. However, we would like to find a way to compare analytically the

errors introduced by each approximation model. For this, we will use the framework

depicted in figure 2.8.

Since we are interested in regularly-spaced, frequent observations of data, the rel-

evant control parameter is the timestep ∆t. Our starting point is the stochastic

differential equation of the stochastic SIR model in the regime where the suscep-

tible population is approximately constant (for example, at N when this is close

enough to its starting value). This is chosen to simplify calculations, although note

that Cauchemez et al. [88] suggest that this approximation of constant susceptible

population can be made throughout the epidemic if the time period, ∆t, over which

it is made is relatively small. With this assumption, the SDE of interest is

dI = rI dt+
√
ρI dW , (2.11)

where r = β − γ and ρ = β + γ. We will use a stochastic Taylor method to expand

this equation in ∆t.

We also have Gaussian process approximations, whose mean vectors and variance-

covariance matrices are given by ODEs (equation (2.5)). We will Taylor expand

these and compare to the expansion of the SDE in order to describe the accuracy

of the approximations (figure 2.8).

2.4.1 Stochastic Taylor expansion

Stochastic Taylor expansion is the stochastic analogue of the classical Taylor ex-

pansion which is used to obtain numerical solutions of ODEs. Stochastic Taylor

schemes approximate SDEs locally in time. There are many such schemes, for ex-

ample the Euler-Maruyama (EM) scheme is the most simple of these methods and
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Figure 2.8: The overall scheme we will use to assess the accuracy of a given
stochastic approximation. Errors are controlled by the inverse of N , the population
size, and by the time-step ∆t. We use k and m to stand for the integer order of
errors in the time-step to be determined.

is widely used [89]. For an SDE dXt = a(Xt) dt+ b(Xt) dWt the EM scheme gives

the following approximate solution, Y∆t, after a small time step ∆t starting from

Y0:

Y∆t = Y0 + a(Y0)∆t+ b(Y0)∆W ,

where ∆W ∼ N (0,∆t). This simple scheme is easy to apply however, Kloeden

and Platen [89] state that “in general, however, [the EM scheme] is not particularly

satisfactory and the use of higher order schemes is recommended.”

We use the weak order-3 scheme given by Kloeden and Platen [89]. This scheme

has a rather complex general form, however for the specific SDE we have, (2.11),

subject to initial condition I(0) = I0 � 1 we obtain the following result:

I(∆t) = I0

(
1 + r∆t+

1

2
r2∆t2

)
+

(
ρI0∆t

(
1 +

3

2
r∆t+

7

6
r2∆t2

))1/2

U+O(∆t3, I0
0) ,

(2.12)

where U ∼ N (0, 1) is a standard normal random variable. This has the following

mean and variance:

mean(I(∆t)) = I0

(
1 + r∆t+

1

2
r2∆t2

)
,

var(I(∆t)) = ρI0∆t

(
1 +

3

2
r∆t+

7

6
r2∆t2

)
.
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2.4.2 Taylor expand ODEs giving the approximations

Next, we Taylor expand the ODEs giving the mean and variance-covariances of

the Gaussian process approximations so that we may compare to the result of the

expansion in the previous section.

For the Gaussian process approximations that arise from the linear SDE approach

(section 2.1.3), we consider the ODEs for the mean and variance-covariances (equa-

tion (2.5)) again in the limit where the size of the susceptible population is approx-

imately constant. This gives the following ODEs for the mean, m2, and variance,

C22, of the size of the infectious population

dm2

dt
= A21(t)N +A22(t)m2(t) + b2(t) ,

dC22

dt
= 2A22(t)C22(t) + ρi(t) .

Taylor expanding these, subject to initial conditions m2(0) = i(0) = I0, C22(0) = 0,

we get, for each considered model, that the mean is

m2(∆t) = I0

(
1 + r∆t+

1

2
r2∆t2 + · · ·

)
.

For the variance, for b noise we have

C22(∆t) = ρI0

(
1 +

1

2
r∆t+

1

6
r2∆t2 + · · ·

)
∆t ,

and for the A noise and OU approximations we have

C22(∆t) = ρI0

(
1 +

3

2
r∆t+

7

6
r2∆t2 + · · ·

)
∆t .

For the MVN moment closure approximation, the mean, µY (t), and variance, σY Y ,

of the epidemic at constant susceptible population are given by the following ODEs:

dµY
dt

= rµY ,
dσY Y

dt
= ρµY + 2rσY Y .

We also Taylor expand these subject to µY (0) = I0, σY Y (0) = 0 to obtain

µY (∆t) = I0

(
1 + r∆t+

1

2
r2∆t2 + · · ·

)
,

σY Y (∆t) = ρI0

(
1 +

3

2
∆tr +

7

6
r2∆t2 + · · ·

)
∆t .
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2.4.3 Bounding the errors of the Gaussian process

Putting the results of the previous two sections together, we see that the MVN

moment closure, the linear noise, and the A noise approximations are all consistent

with the SDE equation (2.11) expanded as in equation (2.12). This justifies our

continued work with these approximations through section 2.3. However, the b

noise approximation is less accurate. This, again, justifies our decision to not take

it further into section 2.3.

To see why errors at this order represents a significant improvement on other possible

approaches, consider the EM approximation to the SDE (equation (2.11)),

J∆t = (1 + r∆t)I0 +
√
ρI0U ,

where U ∼ N (0,∆t) is, again, a standard Gaussian random variable. Comparing

this to equation (2.12), we see that errors to this appear at O(∆t). This tells us that

the ODE-based Gaussian process approximations we have described and analysed

are more accurate than, the frequently used, Euler-Maruyama steps by several orders

of magnitude in ∆t.

2.5 Discussion and conclusions

In this chapter we have investigated Gaussian process approximations of stochas-

tic models of epidemics with an aim to provide results that will allow these ap-

proximation techniques to become more routinely used in disease surveillance and

epidemiology.

Throughout this chapter we have applied these approximations to the stochastic SIR

model and additionally to the SEIR model when we look at real data. However, one

strength of this approximation framework, and the A and b noise approximations

discussed, is how straightforward it is to write down the approximation for a more

complex compartmental model. This approach may even be easy to use with models

from outside of epidemiology.

Our analytical approach for quantifying the accuracy of the Gaussian process ap-

proximations (section 2.4) is only in the specific regime where S is approximately

constant. As we have previously stated, Cauchemez et al. [88] suggests this approx-
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imation is appropriate throughout the epidemic if the time period ∆t is relatively

small. However, this may be a weakness of our approach.

2.5.1 Further work

We compare approximations from the linear stochastic differential equation with

the MVN moment closure approximation. We note, in section 2.1.3, that other

moment closure approximations, such as the log-normal, also exist although we do

not implement them in the current study. We could do this in the future to quantify

how these compare to the approximations already discussed.

We update our current estimates of the population in each epidemic class when

new data are obtained. We take the mean to the observed data point and the

variance to zero. In the future, we would like to work from the assumption that

these data may not be perfect observations. We would not update the variance to

zero, but consider the observation to be a sample from a normal distribution with

small variance. This would also change how the unobserved classes were updated

using the MVN marginal conditional rules.

For future, more long term, plans we would like to incorporate these approximations

into online real-time, robust systems to help improve disease surveillance (this is

discussed further in section 5.2).

2.5.2 Conclusions

In this chapter we have presented a flexible framework for deriving Gaussian process

approximations of non-linear stochastic models of epidemics using the SIR model

as our initial example. We have numerically and analytically compared a variety of

approximations reported in the literature and additional examples we do not believe

have previously been named. We have shown how these approximations can be used

to perform quick maximum likelihood inference for the underlying parameters of the

epidemic model given population measures of incidence or prevalence at given time

points. Finally, we also show how the unobserved processes can be inferred at the

same time as the underlying parameters. This work goes some way in demonstrat-

ing how, with appropriate approximations, stochastic epidemic models can be used

for fast inference and so these kinds of models could be used more routinely with
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regularly updated surveillance data.



CHAPTER 3

DAY OF THE WEEK AND PUBLIC HOLIDAY EFFECTS

IN SYNDROMIC SURVEILLANCE DATA

3.1 Introduction

Anecdotal evidence of day of the week and public holiday effects in daily data from a

range of syndromic surveillance systems operated by Public Health England (PHE)

was informally reported by analysts in the Real-time Syndromic Surveillance Team

(ReSST). The purpose of this chapter is to formally describe these effects in order

to understand one of the systematic causes of bias in healthcare data. This will,

therefore, improve procedures for the current analysis and presentation of these data

which give a lot of information on gastroenteritis burden in England.

This work was undertaken during a secondment at the ReSST of PHE during this

PhD. The data used in this work are covered by governance and contractual agree-

ments that limit their use for PHE surveillance activities only. The data are therefore

not available for sharing. It should also be emphasised that the opinions expressed

herein do not necessarily reflect the views of the ReSST or any part of PHE.

The work presented in this chapter has been used to improve surveillance method-

ologies at PHE. In particular, it has been used to improve the visualisation of data

(section 3.4.2). Additionally, section 3.4.2 has been published as:

44
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• E. Buckingham-Jeffery, R. Morbey, T. House, A. J. Elliot, S. Har-

court, G. E. Smith. (May 2017) Correcting for day of the week and public

holiday effects: Improving a national daily syndromic surveillance service for

detecting public health threats. BMC Public Health, 17:477.

The chapter will be structured as follows. First, a review of the background knowl-

edge needed to approach this problem, a precise statement of the aims, and a de-

scription of the data. Second, an investigation into day of the week effects in the

data followed by a similar investigation into public holiday effects. Finally, descrip-

tions of two ways in which the knowledge obtained in the previous two sections can

be used to improve current syndromic surveillance systems at PHE.

3.1.1 Background to syndromic surveillance at Public Health Eng-

land

Traditionally, disease surveillance was based on monitoring a set of pre-determined

diseases with laboratory confirmation. However, these systems can be slow and

unable to detect novel, unexpected diseases [90].

The European wide Triple S project defines syndromic surveillance as the “real-time

(or near real-time) collection, analysis, interpretation, and dissemination of health-

related data to enable the early identification of the impact (or absence of impact) of

potential human or veterinary public health threats that require effective public health

action” [90]. The notable difference between this definition of syndromic surveillance

and the definition of disease surveillance is the requirement of timeliness. In order

to do this, syndromic surveillance systems report data from signs and symptoms to

infer the presence a disease before clinical or laboratory confirmation [90, 91].

PHE has responsibility for disease surveillance within England. In particular, the

ReSST coordinates several national syndromic surveillance systems (SSSs). There

are four key systems and data will be used from each of these in this chapter [92].

Each system monitors the daily number of contacts or attendances with a healthcare

service for a wide range of syndromes and are fully described in the given references.

The remote health advice SSS monitors the number of phone calls to the NHS 111

non-emergency telehealth number (we will refer to this system as the 111 SSS) [93].

The GP in hours (GPIH) SSS monitors the number of visits to GPs during regular
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surgery hours (which are, typically, normal working hours from Monday to Friday,

excluding any public holidays) [94]. It covers approximately 55% of England’s pop-

ulation. The GP out-of-hours (GPOOH) SSS monitors the number of unscheduled

contacts (visits and calls) to GPs during evenings, overnight, on weekends, and on

public holidays [95]. It covers approximately 80% of England’s population. Fi-

nally, the emergency department (ED) SSS monitors visits to a sentinel network of

emergency departments [96].

Contacts or attendances associated with a particular syndrome is called a (syn-

dromic) indicator. Data from an indicator are a daily time series of the number of

contacts with or attendances at the particular healthcare service with the particular

syndrome. There are indicators in each SSS for either gastroenteritis or vomiting

and diarrhoea. As introduced in section 1.2, data are analysed each day using the

rising activity, multi-level mixed effects, indicator emphasis (RAMMIE) method de-

veloped by Morbey et al. (2015, [30]) to detect unusual activity that could require

further investigation.

3.1.2 Background to day of the week and public holiday effects

The seven-day week is often out of agreement with other calendar features. In

particular, the start of a new year always coincides with the start of a new month.

But days of the year and days of the week are independent of one another; the 1st

of January does not always fall on the same day of the week and a month is not

made of a whole number of weeks [97].

However, despite the complications arising from the lack of synchrony between the

week, the month and the year, the seven-day week has become engrained in our

society. Many activities in our lives are given routine and structure by the week. In

particular, the traditional Monday to Friday working week followed by a weekend

has established a “labour and rest rhythm” [98]. It is, therefore, not surprising that

a regular seven day periodicity is seen in time series of the number of occurrences

of many events and activities. We call a statistically significant difference in the

number of occurrences of an event on a particular day of the week, or set of days, a

day of the week effect.

This often, although not always, manifests as a difference between the days of the

working week (Monday to Friday) and the weekend days (Saturday and Sunday).
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However, according to the most recent European Working Conditions Survey (2016,

[99]), 22% of UK workers work at least one night a month and 59% work at least

once at the weekend per month.

We define a public holiday effect as a statistically significant difference in the number

of occurrences of an event on, or near to, a public holiday compared with other

similar days. This often manifests as public holiday days having similar properties

to weekend days, as many workplaces close at these times (however there is no legal

requirement in the UK for workers to be given these days off).

Other time periodicities are also common in time series data, such as monthly or

seasonal effects. However, this investigation specifically studies just day of the week

and public holiday effects in syndromic surveillance data. Timeliness is key in syn-

dromic surveillance, and thus it is important to understand patterns on these short

time-scales. Additionally, the fast availability and analysis of daily data updates is

a relatively new practice, only available due to recent improvements in computing

systems.

Statistical analysis of day of the week effects first became commonplace in the econo-

metrics literature during the 1980s. French (1980, [100]) was one of the first to sta-

tistically compare mean stock market returns on each day of the week and reported

that the average returns on Mondays were negative and lower than the average re-

turns on the other days of the working week in an American stock market index. Day

of the week effects were then found in similar markets worldwide, but not necessary

with lower returns on Mondays [101, 102]. The investigation was extended to emerg-

ing markets, with significant day of the week effects later found in, amongst others,

Turkish, Singaporean, Malaysian, Taiwanese, Thai, Hong Kongese, and Bangladeshi

markets [103–106]. However, more recent studies are reporting that even though a

day of the week effect was clear in markets in the 1980s, these have been reducing

over time and perhaps even reversing [107].

Similar analyses have also discovered public holiday effects in stock market returns.

In particular, significantly higher returns on the day preceding a public holiday have

been found in markets across the world (note that markets are closed on public

holidays) [108–111]. However, similarly to the day of the week effect, these effects

are reported to be diminishing over time [112]. Further studies consider the public

holidays separately and discover, for example, that the Christmas and New Year

holidays have the largest effect [112].
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Similar statistical methods have since been used to identify day of the week and pub-

lic holiday effects in a broad range of applications beyond the financial sector. More

papers are submitted to the Journal of the Serbian Chemical Society on Wednesday

than any other day, but a higher proportion of submissions made on a Tuesday are

accepted [113]. Maximum levels of particulate pollution in California occur at the

end of the working week and minimum levels on Sunday [114]. Significantly more

crimes are reported in underground stations in Stockholm on holidays compared

to days of the working week [115]. The length of time taken to fix bugs in the

Ubuntu Linux distribution differs by the day of the week that the bug was reported

[116]. And in Ontario, Canada, young male drivers had marginally significantly

more accidents on Fridays and Saturdays compared to other days of the week [117].

Day of the week and public holiday effects have also been identified in health related

applications, for example in data relating to food and exercise. Weekend days are

associated with higher levels of physical activity [118], and lower levels of dangerous

physical inactivity [119]. In a study of children in Atlanta, U.S., fruit and vegetables

were most frequently consumed on days of the working week compared to weekend

days [120]. An increased intake of energy, protein, and many micro-nutrients on

weekend days, particularly Sundays, was reported for an elderly population in Nor-

wich, UK [121]. Higher rates of alcohol were drunk on Thursdays compared to

other days of the working week by U.S. college students [122], and presentations to

emergency departments with acute alcohol intoxication increased substantially in

Australia on the day before a public holiday [123].

Day of the week and public holiday effects have also been identified in mental health

data. Day of the week effects were reported in both self-reported measures of mood

and sentiment analysis generated measures of mood from Facebook statuses [124,

125]. There are higher levels of binging and purging behaviours in people with

bulimia on Sundays [126]. There are, reportedly, an increased number of suicides

on Mondays [127–129]. It is also widely acknowledged that there are fewer suicides

or suicide attempts than expected before major public holidays, but more than

expected afterwards [130, 129, 131–133] leading to the theory that some suicides are

‘postponed’ until after these major events.

Additionally, and perhaps now more controversially, day of the week and public

holiday effects have been found in the health outcomes of patients admitted to

hospital, being born in hospital, or receiving an operation [134–137], with weekend

days typically having a higher proportion of worse outcomes. This has led to heated
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political discussions, with some politicians attributing this effect to fewer doctors

being available on weekend days [138, 139]. However, the cause of this weekend

effect is unclear and unknown. Many other possibilities have been proposed such as

inconsistent data and the severity of illness of patients admitted on a weekend day

[140–142].

We are interested, however, in day of the week and public holiday effects in the

number of patients using healthcare services. We have a particular focus on those

presenting with gastrointestinal symptoms, however we will also look at total service

use and other syndromes for comparison. Previous studies have identified some

statistically significant day of the week and public holiday effects in healthcare

service presentation, both in general and for specific conditions. This includes in

emergency services across the U.S. [143–145] and in a sexual health clinic in Australia

[146]. The results of studies of particular conditions show increased attendances

at emergency departments for severe asthma on Sundays and Mondays [147] and,

perhaps the most widely reported, increased cardiac difficulties on Mondays [148–

150]. There has not previously been a comprehensive analysis of day of the week

and public holiday effects in syndromic surveillance data from healthcare services

in England.

There may be multiple, complex, mechanisms driving these day of the week and

public holiday effects. Some of the statistical analyses mentioned in this section

hypothesise the cause of the effects they report. However, this rapidly becomes

difficult to prove and requires specialist knowledge of the application area. We

comment, briefly, throughout this chapter on possible causes but do not wish to

delve too much into this.

Day of the week and public holiday effects in presentation data to healthcare services

have, we hypothesise, two components. Firstly, the effects due to actual changes

in levels of illness. For example, increased stress on Mondays has been linked to

increased cardiac problems on this day of the week [151]. And secondly, the effects

due to the timing of reporting of illness rather than the timing of illness itself.

It is not possible to disentangle these two effects with the data used in this study.

When discussing day of the week effects in healthcare data, Zerubavel (1989, [98])

states that “only a non-medical, sociological explanation can account for these find-

ings”. However, an intrinsic day of the week effect in infectious disease levels should

not be discounted. The difference in contact patterns (for example as reported by
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Edmunds, 1997 [152] and in the POLYMOD study, 2008 [153]) and lifestyle between

days of the working week and weekend days would be expected to impact on the

spread of disease and on an individual’s inherent susceptibility.

Many people with illness do not seek help from healthcare services. There are

reported differences in the uptake of healthcare based on gender [154], ethnicity,

and socio-economic status [155]. However, many factors can influence when, or if

ever, an individual reports their symptoms including the availability of services (for

example opening times, waiting times, systems for obtaining appointments) and the

impact of the illness on an individual’s everyday life [156, 157]. These will contribute

to any observed day of the week and public holiday effects.

3.1.3 Aims and objectives

The aim of this chapter is to improve the current analysis and interpretation of

syndromic surveillance data of gastroenteritis by describing the regular biases in

reporting symptoms to healthcare services in England caused by day of the week

and public holidays. This will be achieved by:

• Formally identifying and describing the day of the week and public holiday ef-

fects in syndromic surveillance data of gastroenteritis from different syndromic

surveillance systems.

• Formally identifying and describing the day of the week and public holiday

effects in syndromic surveillance data of other key conditions and of total

healthcare use for comparison.

• Describing how the RAMMIE method can be improved based on this knowl-

edge of day of the week and public holiday effects.

• Developing improved methods for the visualisation of syndromic data based

on this knowledge of day of the week and public holiday effects. These vi-

sualisations are used for the analysis of trends and for presentation to the

public.
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3.1.4 Data

Data have been made available for this analysis from each syndromic surveillance

system managed by PHE (table 3.1). There is no gastroenteritis indicator in the 111

SSS, but the diarrhoea and vomiting indicators were chosen as a close comparison.

The difficulty breathing/wheeze/asthma, or severe asthma, indicator was chosen as

it can also be compared across multiple syndromic surveillance systems. In com-

parison to gastroenteritis, which is often self-limiting, asthma is a health complaint

for which it is more necessary to regularly visit a healthcare professional [158]. This

makes for an interesting comparison condition.

Two further indicators (cardiac from the ED SSS and herpes zoster from the GPIH

SSS) were chosen based on anecdotal evidence of unusual or interesting day of the

week and public holiday effects.

Finally, the total number of contacts or attendances with the 111, GPOOH, and

ED SSSs was also analysed for day of the week and public holiday effects. This

will help us understand how reporting gastroenteritis symptoms differs from general

reporting of poor health. Note that this data is not available in the GPIH SSS.

3.2 Day of the week effects

In this section we will present the methods used to investigate the magnitude of day

of the week effects in syndromic data and the results obtained from this analysis.

Where statistical tests have been used, they were separately applied in the same

way to each indicator (indicators as described in section 3.1.4).

3.2.1 Exploring the data

As the time series data from the syndromic surveillance systems span multiple years

and seasons there are annual, and other longer term, trends present. We are not

interested in these other effects and they make it inappropriate to identify day of

the week effects by simply comparing the average contacts or attendances on each

day of the week across the full time series. We, therefore, use an adjusted time

series for this analysis which is constructed by subtracting from each day’s contacts
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Table 3.1: A summary of the syndromic indicators used for this analysis from the
syndromic surveillance systems operated by Public Health England.

Syndromic surveillance Dates data Indicator
system available

GP out of hours 09/01/2012 - Total contacts
11/01/2015 Difficulty breathing/wheeze/asthma

Gastroenteritis

111 30/09/2013 – Total contacts
11/01/2015 Difficulty breathing

Diarrhoea
Vomiting

GP in hours 02/04/2012 – Severe asthma
11/01/2015 Gastroenteritis

Herpes zoster

Emergency department 17/09/2012 – Total attendances
11/01/2015 Difficulty breathing/wheeze/asthma

Gastroenteritis
Cardiac

or attendances the mean of the week’s activities. Mathematically, for time series

X = {Xt} the adjusted time series X̃ = {X̃t} is computed as

X̃t = Xt −
1

7

∑
i∈Wt

Xi ,

where Wt is the week (Monday to Sunday) containing day t.

Additionally, we suspect (and will show in section 3.3) that weeks containing public

holidays have different numbers of attendances than typical weeks. Therefore, we

exclude these weeks from all analysis of day of the week effects.

A sample of four weeks of the adjusted time series data from each indicator studied

in the four syndromic surveillance systems is presented as an example of the data

being analysed (figure 3.1). A summary of each adjusted time series is shown in a

box plot (figures 3.2 to 3.5).

The samples of data implies that there is a clear day of the week effect in the data

from the GPOOH, 111, and GPIH syndromic surveillance systems (figure 3.1), and

this is confirmed by the box plots (figures 3.2 to 3.4). In both the GPOOH and
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Figure 3.1: A four week sample of the adjusted data from each indicator.

111 syndromic surveillance systems, there are more contacts on weekend days than

on average for the week. In the GPIH SSS there are more contacts on days of the

working week than on weekend days. The daily distributions look roughly symmetric

(as shown by the roughly symmetric boxes and whiskers) and the interquartile ranges

are small. This indicates that the day of the week effects are quite consistent over

the full time period of the data. However, there are outliers in each dataset. These

patterns are consistent across all the indicators analysed from the GPOOH, 111,

and GPIH systems.

Considering the opening hours of GP practices, and the aim that out of hours

services should supplement them during closures, these day of the week effects are

exactly what we expect. It is not immediately obvious that there are further day

of the week effects in the GPOOH and 111 syndromic surveillance systems beyond

the weekend and working week divide. However, there appears to be further day of

the week effects within the days of the working week in data from the GPIH SSS

(figure 3.4). Further analysis will investigate these, potentially more subtle, day of

the week effects and confirm and quantify the obvious day of the week effects.
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Figure 3.2: Box plots of the adjusted data from the GPOOH SSS. The lower
whisker is at the smallest data point within 1.5 times the interquartile range of the
first quartile, and the upper whisker is at the largest data point within 1.5 times
the interquartile range of the third quartile. Data points outside of this range are
individually plotted. The lower line of the box is at the first quartile, the middle
line is at the median, and the upper line of the box is at the third quartile. The
interquartile range is the difference between the third and first quartiles. The mean
is additionally marked with a red diamond.

It is clear that there are more attendances at emergency departments on Mondays

compared to the rest of the week (figure 3.1 and figure 3.5 top left). However, it

is not clear whether this effect is also seen in the data from the indicators studied

(figure 3.5). Further analysis will fully investigate day of the week effects in the ED

SSS as they are not immediately obvious from these summary plots.

Based on this initial data visualisation, the rest of this section will proceed as follows.

First, a thorough investigation into day of the week effects in the ED SSS, followed

by an investigation of whether further day of the week effects exist in the GPOOH,

111, and GPIH data beyond the weekend effect already identified.

Note that the statistical methodologies that we have decided to use are just one
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Figure 3.3: Box plots of the adjusted data from the 111 SSS. The lower whisker
is at the smallest data point within 1.5 times the interquartile range of the first
quartile, and the upper whisker is at the largest data point within 1.5 times the
interquartile range of the third quartile. Data points outside of this range are
individually plotted. The lower line of the box is at the first quartile, the middle
line is at the median, and the upper line of the box is at the third quartile. The
interquartile range is the difference between the third and first quartiles. The mean
is additionally marked with a red diamond.

possible way to achieve the aims stated in section 3.1.3. This will be discussed

further in section 3.2.4.

3.2.2 The emergency department syndromic surveillance system

Based on the visualisations in section 3.2.1, it is not immediately clear that there

are day of the week effects in presentations to emergency departments. In order to

identify what, if any, day of the week effects are statistically significant in the data

from the ED SSS we will perform a simple regression analysis using dummy vari-

ables, followed by an F-test for regression, and Tukey’s honest significant difference
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Figure 3.4: Box plots of the adjusted data from the GPIH SSS. The lower whisker
is at the smallest data point within 1.5 times the interquartile range of the first
quartile, and the upper whisker is at the largest data point within 1.5 times the
interquartile range of the third quartile. Data points outside of this range are
individually plotted. The lower line of the box is at the first quartile, the middle
line is at the median, and the upper line of the box is at the third quartile. The
interquartile range is the difference between the third and first quartiles. The mean
is additionally marked with a red diamond.

(Tukey’s HSD) test to compare pairs of days. We will also present the effect size

of the difference between days because statistical significance does not always mean

practical significance, in particular as we have large sample sizes.

This type of statistical analysis has been widely used in the econometrics literature

to investigate day of the week effects in stock exchanges [100, 103–105, 107, 159],

and a range of similar regression analyses and hypothesis tests have been used to

comment on day of the week effects in emergency department attendances [143],

other daily health data [118, 124, 126, 147], deaths and car accidents [117, 127–129],

food and drink intake [120–122], code bug reports [116], and pollution levels [114].

We will use the adjusted time series for this analysis, as described in section 3.2.1,
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Figure 3.5: Box plots of the adjusted data from the ED SSS. The lower whisker
is at the smallest data point within 1.5 times the interquartile range of the first
quartile, and the upper whisker is at the largest data point within 1.5 times the
interquartile range of the third quartile. Data points outside of this range are
individually plotted. The lower line of the box is at the first quartile, the middle
line is at the median, and the upper line of the box is at the third quartile. The
interquartile range is the difference between the third and first quartiles. The mean
is additionally marked with a red diamond.

where the mean number of attendances each week has been subtracted so that

seasonal effects are removed.

Methods: Dummy variable regression

Rutherford, 2013 [160] has been used as the main reference for the statistical method-

ology that will be outlined in this section.

We fit the following simple linear dummy variable regression model to each adjusted
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dataset X̃:

X̃t = α+ β2D2 + β3D3 + β4D4 + β5D5 + β6D6 + β7D7 + εt , (3.1)

where α is the intercept which gives the expected proportion of the week’s contacts

or attendances that occur on Monday (the base group), and εt is the error. D2,

..., D7 are dummy variables for the remaining six days of the week; that is if day

t is a Tuesday then D2 = 1 and Dj = 0 for j = 3, ..., 7. Finally, β2, ..., β7 are

the regression coefficients which give the expected difference between α and the

proportion of contacts or attendances on each of the other days of the week. Note,

this type of simple linear regression where all the explanatory variables are dummy

variables is equivalent to a one-way ANOVA test.

Fitting this model requires the calculation of the mean of the set of adjusted data

points for each day of the week. That is

α =
1

nw

∑
i=1,8,15,...

X̃i , α+ β2 =
1

nw

∑
i=2,9,16,...

X̃i ,

and similarly for β3, ..., β7, where nw is the number of weeks in the dataset (and so

the number of data points for each day of the week).

An F-test of the overall significance of the regression model tests the null hypothesis

that the fit of the model stated by equation (3.1) (which we call the full model)

and the intercept-only model (which we call the reduced model) are equal against

the alternative hypothesis that the fit of the reduced model is significantly reduced

compared to the fit of the full model. Framing this as an ANOVA problem, this

is equivalent to the hypothesis test with null hypothesis that there is no day of

the week effect, that is β2 = β3 = β4 = β5 = β6 = β7 = 0, against the alternate

hypothesis that there is a day of the week effect, that is at least one βi 6= 0.

If the full model provides a better description of the data than the reduced model

then it should have a smaller error component. Therefore, the F-test statistic com-

pares the error sum of squares (SSE) of the two models

F =
(SSEreduced − SSEfull)/(dfreduced − dffull)

SSEfull/dffull
, (3.2)

where df is the degrees of freedom. The reduced model has n−1 degrees of freedom,

where n is the total number of data points. The full model has n − 7 degrees of
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freedom. Under the null hypothesis, this test statistic has the F-distribution on

((dfreduced−dffull), dffull) = (6, n−7) degrees of freedom. Based on this, we compute

a p-value so that we may comment on the significance of a day of the week effect.

In order for this analysis to be valid, the following three assumptions should be

upheld:

1. Errors are independent. We will check the independence of residuals in

time graphically.

2. Errors exhibit common variance across all groups of the indepen-

dent variable. We will check this graphically by looking at box plots of the

residuals for each day of the week. The test is robust to violations of this

assumption when the sample sizes are equal, as in our case. A rule of thumb

states that if the ratio of the largest variance to the smallest variance does not

exceed 3 or 4 this assumption is probably satisfied [161].

3. Errors are normally distributed. We will check this graphically using a

Q-Q plot comparing a theoretical normal distribution with the distribution of

the residuals of the regression. However, this analysis is robust with respect to

violations of this assumption. In particular, in our situation when the sample

sizes for each group are equal and large [160].

Results: Dummy variable regression

We start by reporting the results of the assumption checks. Plots of the residuals by

time do not show any obvious correlations (figure 3.6). Q-Q plots show approximate

normality for the four datasets (figure 3.7). Box plots show some small variability

in the spread of the residuals across the days of the week (figure 3.8). However,

the ratio of residual variances between the day of the week with the largest residual

variance and the day of the week with the smallest residual variance are all smaller

than 2.6 (table 3.2). Therefore, we proceed with the analysis.

The F-statistic given by the regression for each dataset gives a very small p-value

(table 3.3). This implies that there is a significant day of the week effect present in

each dataset from the ED SSS. Further investigation in the following sections will

reveal the size of these effects, and therefore how practically significant they are,

and between exactly which days.
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Figure 3.6: Autocorrelation plots of the residuals against time for total attendances
and indicators from the ED SSS.

Methods: Post-hoc tests (Tukey’s HSD) [162, 163]

The previous analysis indicates that, for each indicator studied from the ED SSS,

the number of attendances on at least one day of the week differs from the other

days. However, it cannot tell us which days differ from each other. To do that, we

compare all days in a pairwise manner using Tukey’s HSD test.

A basic hypothesis test to compare two means is a t-test. We wish to compare seven

means pairwise, which could be achieved with 21 individual t-tests. However, this

type of multiple hypothesis testing is not advised [162]. Suppose we are working

with a significance level of 0.05. Therefore, when completing one hypothesis test

the probability of getting a false positive (rejecting the null hypothesis when it is in

fact true) is 5%. However, when completing 21 hypothesis tests the probability of

getting one false positive is 1− (1− 0.05)21, so around 66%. Tukey’s HSD test, on
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Figure 3.7: Normal Q-Q plots comparing the distribution of the residuals with the
normal distribution. Reference line (black line) and 99% confidence region (grey)
for total attendances and indicators from the ED SSS.

the other hand, makes an adjustment to account for these multiple comparisons.

The assumptions of Tukey’s HSD test are the same as those required for the previous

F-test (normally distributed with equal variances) and so there is no need to check

these again.

To test the difference between days of the week d and d′ using Tukey’s HSD test we

will construct a confidence interval on the difference of the means of the adjusted

data on these days, md − md′ , using the overall significance level of 95%. If this

confidence interval does not span 0 this implies that there is a difference between the

number of attendances at emergency departments on days d and d′. The confidence

interval is constructed as

md −md′ ± q0.05;n−7,7

√
MSE

nw
, (3.3)
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Figure 3.8: Box plots of the model residuals on each day of the week demonstrating
similar variability for total attendances and indicators from the ED SSS.

where q0.05;n−7,7 is the critical value of the Studentised range distribution with pa-

rameters n − 7 and 7, and MSE is the mean squared error which is obtained by

dividing the error sum of squares by the degrees of freedom [162, 163]. Notice that

the width of the confidence interval is the same for each pair of days being compared.

Methods: Effect size (Cliff’s delta)

Null hypothesis testing has received some criticism, in particular as a tiny, triv-

ial difference can be found to be statistically significant if the sample size is large

enough [160, 164, 165]. Therefore, we supplement our reporting of the results from

statistical significance tests with further discussions of effect size which is a measure

of practical significance. An effect size comments on the size of the difference be-

tween groups whereas a p value simply comments on the existence of a difference.

With a large enough sample size, only a very small difference is needed for a statis-
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Table 3.2: The ratio of the largest residual variance to the smallest residual vari-
ance across days of the week for total attendances and indicators from the ED SSS.

Indicator Ratio

Total attendances 2.310
Difficulty breathing/wheeze/asthma 2.581
Gastroenteritis 1.459
Cardiac 1.597

Table 3.3: The results of the F-test for total attendances and each indicator from
the ED SSS.

Indicator F-statistic (df 6, 728) p-value

Total attendances 315.60 < 0.0001
Difficulty breathing/wheeze/asthma 59.44 < 0.0001
Gastroenteritis 32.23 < 0.0001
Cardiac 285.70 < 0.0001

tically significant p value. Very small differences, even those that are statistically

significant, are not often useful, meaningful, or important [165, 166].

For comparing days d and d′ with mean number of attendances md and md′ respec-

tively we report the difference md −md′ , which is just a number of attendances so

easy to interpret. We also attempt to compare our results with any day of the week

effects already reported in the literature and to compare effect sizes between indica-

tors and between syndromic surveillance systems by reporting Cliff’s delta. This is

a standardised, non-parametric effect size, introduced by statistician Norman Cliff

(1996, [167]), that computes the degree to which samples overlap. In our context,

Cliff’s delta is computed by counting the number of times attendances on day d are

larger than attendances on day d′, and vice versa [168]. The calculation is as follows

δ =
#(Xid > Xjd′)−#(Xid < Xjd′)

n2
w

.

Recall that nw is the number of weeks in the dataset, and as such the number of

data points for each day of the week.

We also, loosely, bear in mind guidance given to interpret the effect size from Cliff’s

delta as a small, medium, and large effect (table 3.4) [168].

There are parametric effect size statistics, such as Cohen’s d, that would have been
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Table 3.4: Cliff’s delta small, medium, and large effect sizes, as reported by Ro-
mano et al. in [168].

Effect size Cliff’s delta

Small 0.330 > |δ| ≥ 0.147
Medium 0.474 > |δ| ≥ 0.330
Large |δ| ≥ 0.474

suitable to report for this analysis (Cohen, 1992 [169]). However, in later analyses

(section 3.2.3) we see that data from the other surveillance systems do not satisfy the

assumptions of normality and homogeneous variances across the days of the week.

Therefore, in order to be able to compare the sizes of the day of the week effects

between syndromic surveillance systems we consistently report this non-parametric

effect size throughout the chapter.

Results: Post-hoc tests (Tukey’s HSD) & effect size (Cliff’s delta)

Total attendances: The most notable significant day of the week effect identified

in the total number of attendances at emergency departments was more attendances

on Mondays compared to every other day of the week (figure 3.9). This had a very

large effect size. Cliff’s delta was always computed as 1, meaning every data point

from a Monday was larger than every data point from the other days. On average,

312 more people per day attended emergency services on Mondays compared to

Sundays, and on average at least 447 more people attended on Monday compared

to the rest of the week. To put this into context, during a typical day in 2014 there

would be around 7200 attendances recorded per day by the ED SSS. 312 attendances

is 4.3% of a days attendances and 447 is 6.2%.

There were also more attendances than expected on Sundays compared to the re-

maining days of the week (not Monday). This also had a large effect size, with

Cliff’s delta computed as at least 0.644 and a difference of at least 135 attendances.

Tuesdays, Wednesdays, Thursdays, Fridays, and Saturday were virtually indistin-

guishable (figure 3.9).

Difficulty breathing: The largest day of the week effect was similar to the day

of the week effect in total attendances. There were more attendances at emergency

departments for difficulty breathing on both Sundays and Mondays compared to the

remaining days of the week (figure 3.10). This had a large effect size with Cliff’s
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Figure 3.9: Pairwise comparisons of total attendances from the ED SSS. Each row
gives the results from comparing a pair of days, where days are numbered 1 through
7 for Monday through Sunday. The difference between the means of the two days
of the week is given by the black dot, with a 95% overall confidence interval from
Tukey’s HSD, along with Cliff’s delta, a standardised effect size (where * is a small
effect size, ** is a medium effect size, and *** is a large effect size).



CHAPTER 3. DAY OF THE WEEK AND PUBLIC HOLIDAY EFFECTS 66

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2−1
3−1
3−2
4−1
4−2
4−3
5−1
5−2
5−3
5−4
6−1
6−2
6−3
6−4
6−5
7−1
7−2
7−3
7−4
7−5
7−6

−10 0 10
Difference in means

D
ay

s 
un

de
r 

co
m

pa
ris

on
Difficulty breathing Effect size

0.598***
0.809***
0.772***
0.692***
0.611***
-0.235*
0.487***
0.368**
0.198*
0.057
-0.814***
-0.143
-0.303*
-0.412**
-0.934***
-0.179*
-0.288*
-0.916***
-0.121
-0.881***
-0.810***

Figure 3.10: Pairwise comparisons of the difficulty breathing indicator from the
ED SSS. Each row gives the results from comparing a pair of days, where days are
numbered 1 through 7 for Monday through Sunday. The difference between the
means of the two days of the week is given by the black dot, with a 95% overall
confidence interval from Tukey’s HSD, along with Cliff’s delta, a standardised effect
size (where * is a small effect size, ** is a medium effect size, and *** is a large
effect size).

delta computed as at least 0.598 and a difference of at least 6 attendances. During a

typical day in 2014 there would be around 70 attendances recorded to the difficulty

breathing indicator and 6 is 8.5% of this.

There were also significant differences between the remaining days of the week.

These can be split into two groups where the number of attendances within the

group are not significantly different but the number of attendances between the

groups are (almost always) significantly different. The first group is Thursday with

Friday, and the second consists of Saturday, Tuesday and Wednesday. However,

these effect sizes were a lot smaller.

Gastroenteritis: Sunday was identified as having significantly more emergency de-
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Figure 3.11: Pairwise comparisons of the gastroenteritis indicator from the ED
SSS. Each row gives the results from comparing a pair of days, where days are
numbered 1 through 7 for Monday through Sunday. The difference between the
means of the two days of the week is given by the black dot, with a 95% overall
confidence interval from Tukey’s HSD, along with Cliff’s delta, a standardised effect
size (where * is a small effect size, ** is a medium effect size, and *** is a large
effect size).

partment attendances for gastroenteritis than all other days of the week (figure 3.11).

However, the differences between Sunday and Monday, and Sunday and Saturday

were only small. The other effect sizes for Sunday comparisons were large, with a

difference of at least 8 emergency department attendances. There are around 85

attendances per day coded to the gastroenteritis indicator, of which 8 attendances

is 9.4%. Cliff’s delta was at least 0.588.

Monday and Saturday had more attendances than the remaining days (not Sun-

day). These differences had medium to large effect sizes. Tuesdays, Wednesdays,

Thursdays, and Fridays were virtually indistinguishable (figure 3.11).

Cardiac: Monday had significantly more emergency department attendances for
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Figure 3.12: Pairwise comparisons from the cardiac indicator from the ED SSS.
Each row gives the results from comparing a pair of days, where days are numbered
1 through 7 for Monday through Sunday. The difference between the means of the
two days of the week is given by the black dot, with a 95% overall confidence interval
from Tukey’s HSD, along with Cliff’s delta, a standardised effect size (where * is a
small effect size, ** is a medium effect size, and *** is a large effect size).

cardiac than all other days of the week (figure 3.12). This had a very large effect

size, corresponding to an additional 28 attendances at emergency departments and

with Cliff’s delta of at least 0.996. There were around 280 attendances in the cardiac

indicator each day, of which 28 is 10%.

Interestingly, the other notable significant day of the week effect was fewer cardiac

attendances on both Saturday and Sunday than the other days of the week (again

with large effect sizes) and fewer attendances on Friday than the remaining days

(Tuesday, Wednesday, Thursday) although this was a much smaller difference (fig-

ure 3.12). This is different to day of the week effects identified in the other indicators

and in total attendances.

Overall: The largest day of the week effects were in the total number of atten-
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dances. The day of the week effects in the cardiac indicator were also very large,

and interestingly did not follow the same pattern as the total attendances.

The ED SSS day of the week effects: Comparisons with existing studies

There have been some previous reports of day of the week effects in emergency

department attendances in North America. In particular, there are significant day

of the week effects in total attendances and in a selection of conditions including

gastrointestinal and respiratory indicators in the Indiana Public Health Emergency

Surveillance System [143] and in attendances for asthma to emergency departments

in Ontario [147]. In both these studies the authors report, similarly to us, that the

largest proportion of the week’s attendances were on Mondays and Sundays.

There has been quite a wealth of previous research on day of the week effects in

cardiac problems. For example, a meta-analysis of excess cardiac mortality found

that many studies report an increase of cardiac death on Monday, and that some

report lower levels on weekends [150]. We also found higher number of attendances

for the cardiac indicators on Monday and lower numbers of attendances on the

weekends.

We would like to compare the effect sizes from our results with previously reported

results in the literature. That is why we report Cohen’s d, a standardised effect

size. Unfortunately, we were not able to find reports in the literature that also gave

effect sizes or even clearly gave standard deviations so that effect sizes could be

subsequently calculated.

3.2.3 The GP out of hours, 111, and GP in-hours syndromic surveil-

lance systems

Due to observing clear evidence of a weekend effect in the adjusted data from the

GPOOH, 111, and GPIH syndromic surveillance systems (section 3.2.1) it is not

necessary to do an omnibus test (F-test or similar) for overall day of the week

effects in these systems. We do, however, look for further, less obvious day of the

week effects.
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Methods: Less obvious day of the week effects

We wish to identify whether there are any further, less obvious, day of the week

effects beyond the weekend effect. In order to do this we will compare, pairwise, the

days of the week using Cliff’s delta as a standardised effect size. We will also report

the difference between the mean number of attendances on each pair of days, with

an error bar given by the pooled standard deviation of the two days, calculated for

days d and d′ as

spooled =

√
s2
d + s2

d′

2
.

We are unable to use Tukey’s HSD test for pairwise comparisons for these systems

as we observed many violations of the assumptions of normality and equal variances.

For example, it is clear from figures 3.2 and 3.3 that the spread of the data from

midweek days is smaller than the variance from weekend days in the GPOOH and

111 syndromic surveillance systems. In fact, if we consider the ratio of the largest

variance to the smallest variance we get values as large as 13. Cliff’s delta is a

non-parametric measure of effect size that does not make assumptions of normality

or homogeneous variances. In addition, we have decided not to transform the data

to attempt to make it satisfy the assumptions of Tukey’s HSD in order to keep the

analysis relatively simple and easy to generalise across further syndromic indicators

and future additional surveillance systems. This is discussed further in section 3.2.4.

Results: Less obvious day of the week effects

There are many figures of results from this analysis. To save space we have included

one from each syndromic surveillance system here and the rest are contained in

appendix A at the end of this thesis.

GPOOH SSS: The large weekend effect is clearly present in the total contacts and

all indicators from the GPOOH SSS (figures 3.13, A.1 and A.2). Each weekend day

has many more contacts than each day of the working week. These all have effect

size 1 indicating that every Saturday and Sunday in each of these data sets had

more contacts than every week day.

There was potentially an additional, smaller day of the week effect in the GPOOH

SSS. Monday had more contacts than the other days of the working week. This had
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Figure 3.13: Each row gives the results from comparing a pair of days from the
gastroenteritis indicator of the GPOOH SSS, where days are numbered 1 through
7 for Monday through Sunday. The difference between the means of the two days
of the week is given by the black dot, with an error bar given by +/- one pooled
standard deviation, along with Cliff’s delta (where * is a small, ** a medium, and
*** a large effect size).
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Figure 3.14: Each row gives the results from comparing a pair of days from the
diarrhoea indicator of the 111 SSS, where days are numbered 1 through 7 for Monday
through Sunday. The difference between the means of the two days of the week is
given by the black dot, with an error bar given by +/- one pooled standard deviation,
along with Cliff’s delta (where * is a small, ** a medium, and *** a large effect size).

a large effect size, however the error bars sometimes overlapped zero particularly for

the difficulty breathing and gastroenteritis indicators.

Finally, there were more total contacts on Saturday than there were on Sunday, but

this effect was not present in the indicators (figure A.1)

111 SSS: The results from the 111 SSS were very similar to the results from the

GPOOH SSS. The large weekend effect is clearly present in the total contacts and

all indicators (figures 3.14 and A.3 to A.5). Each weekend day has many more

contacts than each day of the working week and these all have large effect sizes.

The effect sizes when comparing Saturday to the days of the working week were

always 1. However, the effect sizes when comparing Sunday were slightly smaller at

consistently less than 1.
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Figure 3.15: Each row gives the results from comparing a pair of days from the
gastroenteritis indicator of the GPIH SSS, where days are numbered 1 through 7 for
Monday through Sunday. The difference between the means of the two days of the
week is given by the black dot, with an error bar given by +/- one pooled standard
deviation, along with Cliff’s delta (where * is a small, ** a medium, and *** a large
effect size).

The same, smaller day of the week effects from the GPOOH SSS were observed

in the 111 SSS. Monday had more contacts than the other days of the working

week. This had a large effect size, however the error bars sometimes overlapped

zero particularly for the difficulty breathing and gastroenteritis indicators. There

were more total contacts on Saturday than there were on Sunday, but this effect

was not present in the indicators (figure A.3)

GPIH SSS: The large weekend effect is clearly present in the GPIH SSS; each

weekend day has far fewer attendances than each day of the working week for all

indicators (figures 3.15, A.6 and A.7). This always had a very large effect size of 1.

There was a further clear day of the week effect in all indicators; there were more

attendances on Monday than on any of the other day of the working week. This
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also, almost always, had an effect size of 1.

Finally, there were more attendances on Tuesday than on Wednesday and Thursday.

However this effect was not as large with effect sizes varying between 0.393 and 0.579.

3.2.4 Day of the week effects: Discussion and conclusions

In summary, we found evidence of day of the week effects in each of the syndromic

surveillance systems operated by PHE. Most of these were obvious effects which

were to be expected due to the availability and purpose of the different healthcare

services. However, this is the first formal description of these.

In the GPOOH, 111, and GPIH syndromic surveillance systems the day of the week

effects were consistent across the selection of indicators studied. However, they

were not consistent across the ED SSS. As expected, the day of the week effects

in the GPOOH and 111 systems complemented the effects in the GPIH system

(figure 3.16). Finally, the effects in the ED SSS are much smaller than in the other

systems (figure 3.16). This is also, perhaps, to be expected as this healthcare service

is designed to be available at all times.

The types of statistical tests applied here are used quite frequently to identify day of

the week effects. However, there are a multitude of other methods that could have

been used. In particular, formal non-parametric hypothesis tests or a transformation

of the data could have been used when non-normality and heterogeneous variances

were observed and time-series models, such as an autoregressive integrated moving

average (ARIMA) model, could have been fitted to identify seven day periodicities.

However, the approach we have taken appears to have been successful, is relatively

simple, and is easy to apply to any syndromic indicator with daily data thus making

it easy for public health professionals to independently carry out the same analysis

on other datasets. Finally, access to these data was only available while the author

was on a secondment at the ReSST, and therefore further statistical testing now is

not easily possible.

During this investigation we assumed that day of the week effects remain constant

throughout time. The only concession to this assumption is that we have removed

weeks containing public holidays from the analysis as we suspect the impact of public

holidays may interfere with day of the week effects. An investigation into whether

the effects described here change with time is left to future work. In particular, it
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Figure 3.16: The adjusted data for total contacts or attendances, the difficulty
breathing indicator, and the gastroenteritis indicator so that the different syndromic
surveillance systems can be easily compared.

may be interesting to see if seasonal disease outbreaks impact on the size of day of

the week effects.
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3.3 Public holiday effects

Common sense suggests that the way people behave and report illness will be atyp-

ical on public holidays; some public services will be closed on this day and many

people have the day off work. In this section we will investigate the magnitude of

this change on public holidays. We will also investigate whether the public holiday

effect changes the number of contacts or attendances on days other than the public

holiday itself. We will do this by looking at the contacts or attendaces on each day

surrounding a public holiday and comparing it with typical examples of those days.

3.3.1 Public holiday effects: Methods

We need to confirm and quantify the difference in the average number of contacts or

attendances with each healthcare service on public holidays compared to the average

number on a typical day. We also want to see whether the effect is the same for

each public holiday. And finally, we want to see if the public holiday effect is solely

restricted to the public holiday itself. However, we need to use methods that also

take into account the day of the week effects that we now know about.

We used the non-public holiday weeks neighbouring a public holiday week to give

an estimate of the expected number of attendances during each day of the public

holiday week if it had not contained any public holidays. Based on this we could

identify any unusual effects during the public holiday weeks.

In detail, we first split the data into typical and public holiday weeks. A public

holiday week was defined as any including a public holiday or immediately preceding

a week beginning with a public holiday. Note that this choice was made so that all

final, and first, working days before, and after, a public holiday were in public

holiday weeks. In England, all public holidays on a Friday are immediately followed

by a week containing more public holidays. All other weeks were defined as typical

weeks. We obtained an expected total number of contacts or attendances for each

public holiday week by taking a linear interpolation between the total contacts or

attendances in the previous and the next typical weeks. This gives an estimate of

the number of contacts or attendances that would have occurred during the public

holiday week had it been a typical one. Mathematically, consider public holiday

week i, surrounded by typical weeks i− and i+. Note that i− and i+ may not be

adjacent to week i as there can be consecutive public holiday weeks. Week i consists
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of data points Xi1 , ..., Xi7 with total Ti =
∑7

j=1Xij . The expected total number of

contacts or attendances had week i not contained a public holiday, T i, was computed

as T i =
Ti+−Ti−
i+−i− (i− i−) + Ti− .

Next, we split the estimate T i of the expected number of contacts or attendances in

public holiday week i had it not contained a public holiday into estimates for each

day within week i. We also compute tolerance intervals on these estimates. If the

data on any day of the public holiday week fall outside the tolerance interval we

consider this day to be unusual. In this way we can measure any unusual effects on

public holidays themselves and the days surrounding them. We can also separately

look at the different types of holidays (the Christmas period, the Easter weekend,

and single public holiday Mondays).

In order to construct the tolerance interval, we transformed the raw data from every

typical week into a daily percentage of the week’s total contacts or attendances.

Mathematically, for time series X = {Xt} this gives the adjusted time series X̃ =

{X̃t} computed as

X̃t = 100
Xt∑
i∈Wt

Xi
,

where Wt is the week (Monday to Sunday) containing day t.

For each day of the week, the collection of these adjusted data points forms a sample

from the true distribution of the percentage of the week’s contacts or attendances

on that day.

Based on these samples we construct (95%, 99%) tolerance intervals for the percent-

age of the week’s contacts or attendances on each day of the week. This interval

tells us, with 99% confidence, that data for at least 95% of weeks will fall within this

range [170]. Based on the estimates T i we transform the tolerance intervals from

percentages to numbers for each day of each public holiday week.

We use a non-parametric tolerance interval in order to make minimal assumptions

about the samples of adjusted data for each day of the week. The literature warns

that slight non-normality, and particularly skewness, can cause tolerance intervals

based on the normal distribution to “give very erroneous results” [171]. Non-

parametric tolerance intervals are usually wider than parametric tolerance intervals

[170]. Therefore, our identification of days with an atypical number of contacts or

attendances will be quite conservative.
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We use the R function nptol.int from the tolerance package with the Wilks

method to compute the tolerance intervals [171, 172].

In order to easily compare across the different systems and indicators, we compute

an exceedance score for each day of the public holiday weeks. This is the difference

between the data and the expected value as a proportion of the size of the prediction

interval. In detail, the exceedance score is the ratio of two differences: the difference

between the data and the expected number of contacts or attendances and the

difference between the maximum of the tolerance interval and the expected number

of contacts or attendances [28]. A value larger than 1 indicates that there were more

contacts or attendances on a public holiday than on a typical day and a value smaller

than -1 indicates there were fewer contacts or attendances on a public holiday than

on a typical day.

3.3.2 Public holiday effects: Results

Public holiday days: For the GPOOH, 111, and GPIH syndromic surveillance

systems the number of contacts or attendances on the public holiday days themselves

was always outside the tolerance interval (figures 3.17 to 3.19). For the GPOOH

and 111 SSS the data always exceeded the tolerance interval and for the GPIH SSS

were always below. This is what we expect based on typical GP opening hours on

public holidays and the expectation that out of hours services receive patients that

would otherwise attend the GP. The amount by which the data was outside the tol-

erance interval differed by system and by indicator, but also by holiday type within

systems. The exceedance in the GPOOH system was larger than the exceedance

in the 111 and GPIH systems. In the GPOOH system the exceedances were larger

for the gastroenteritis indicator than for the total contacts and difficulty breathing

indicator. The total contacts and indicators were similar within the 111 system and

within the GPIH system. For the GPOOH and 111 syndromic surveillance systems

the exceedance was always smallest on Christmas Day compared to all other pub-

lic holidays. The size (absolute value) of the exceedance in the GPIH system was

similar for each type of public holiday, but slightly larger for those in the Christmas

period.

The only public holiday on which there was a public holiday effect in ED attendances

was Christmas Day; the number of total ED attendances on Christmas Day was

consistently below the tolerance interval (figure 3.20). However, this was not the
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Figure 3.17: The exceedance score for each day of each public holiday week for
the GPOOH SSS. A red square shows that the number of contacts was above the
tolerance interval and a blue square shows that the number of contacts was below
the tolerance interval. Public holiday days are marked by black boxes.
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Figure 3.18: The exceedance score for each day of each public holiday week for the
111 SSS. A red square shows that the number of contacts was above the tolerance
interval and a blue square shows that the number of contacts was below the tolerance
interval. Public holiday days are marked by black boxes.
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case for the asthma indicator (where the attendances on Christmas Day was within

the tolerance interval) or the gastroenteritis indicator (where the attendances on

Christmas Day was above the tolerance interval on two of the three years). For the

cardiac indicator, the number of attendances on Christmas Day and most Monday

public holidays was below the tolerance interval.

Extended public holiday effects: Within the GPOOH SSS there were further

exceedances of the tolerance interval on the days surrounding some holidays (fig-

ure 3.17). The total number of contacts on the Saturday between Christmas and

New Year consistently exceeded the tolerance interval, and so did the Saturday in

most 4 day weekends. However for the difficulty breathing indicator, this was only

the case for the weekend between Christmas and New Year. This effect was not

seen consistently for any public holiday weekend in the gastroenteritis indicator.

Additionally, the total number of contacts on the first working day after a Monday

holiday consistently exceeded the tolerance interval. However this was not consis-

tently seen for the difficulty breathing and gastroenteritis indicators.

Within the 111 SSS, the Sunday immediately before a Monday public holiday con-

sistently exceeded the tolerance interval for the total number of contacts and the

number of contacts for diarrhoea, and was very close to the upper end of the toler-

ance interval for the difficulty breathing indicator (figure 3.18). However, there was

no consistent increase at this time in the vomiting indicator.

Within the GPIH SSS there was a clear effect on the first working day after a

Monday holiday (figure 3.19). For all Monday holidays (including Easter) for the

asthma and herpes zoster indicators the number of attendances on Tuesday was

above the tolerance interval. For the gastroenteritis indicator this was the case for

most Monday holidays. The number of attendances on the Tuesday was often in line

with the tolerance interval for the Monday (the first day of a typical working week).

However, after most Easters it exceeded the Monday tolerance interval as well. The

results for the Christmas period were slightly different. There was not always a

large number of attendances on the day after the public holidays, particularly when

the Christmas Day and Boxing Day holidays were towards the end of the week.

Within the emergency department SSS there were some impacts of the holidays on

the days surrounding them (figure 3.20). The total number of attendances on both

Christmas Eve and New Years Eve was below the tolerance interval. In contrast,

the number of attendances on New Years Day was always above, or very close to,
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the maximum of the tolerance interval. However, this effect was not seen for any

of the indicators studied where we did not identify any consistent extended public

holiday effects.

3.3.3 Public holiday effects: Discussion and conclusions

Strengths and weaknesses

The methods used give us the flexibility to compare all public holidays separately

and, as such, identify different effects due to different types of public holidays.

Additionally, and importantly, this method takes into account the day of the week

effects previously described.

However, we assume that the number of contacts or attendances during the neigh-

bouring weeks of a public holiday week is a good indication of the number of con-

tacts or attendances during the public holiday week itself; we assume that there are

smooth changes over the time period of a few weeks.

We use a conservative non-parametric tolerance interval so there may be additional

smaller effects that we have not been able to identify at this stage. However, this

non-parametric tolerance interval makes few assumptions of the data.

Finally, we did not undertake a computation of the sample size requirements in

order to achieve the level of precision we desired for the tolerance interval, which

a rigorous statistical analysis could. However, with sample sizes of at least 67

weeks, and over 150 weeks for some SSSs, we are still reasonably confident in our

conclusions. Although this calculation would have been nice to do, we do not feel it

is crucial for delivering the message about the public holiday effects we described,

in particular as we focussed on those with large exceedance scores.

Comparisons with existing studies

There are some existing studies that comment on public holiday effects in emergency

department visits. These studies report, however, conflicting evidence about the use

of emergency departments on these days. Some report more attendances on public

holidays [173, 174] and some report fewer attendances on public holidays [175]. We

have not been able to find comparable studies on GP, out of hours, and teleheath
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Figure 3.19: The exceedance score for each day of each public holiday week for
the GPIH SSS. A red square shows that the number of attendances was above the
tolerance interval and a blue square shows that the number of attendances was below
the tolerance interval. Public holiday days are marked by black boxes.
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Figure 3.20: The exceedance score for each day of each public holiday week for
the ED SSS. A red square shows that the number of attendances was above the
tolerance interval and a blue square shows that the number of attendances was
below the tolerance interval. Public holiday days are marked by black boxes.
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use during public holiday periods.

A study of emergency department usage in Hong Kong in 2000 [176] reported that

the second most common reason for patients to visit emergency departments with

conditions that could be treated by GPs was feeling sick on a public holiday. We

suspect that the closure of GP services on a public holiday drives some of these

public holiday effects that we have observed.

Conclusions

In addition to the obvious public holiday effects, suspected to be driven by avail-

ability of GP services, we found additional public holiday effects in the syndromic

datasets. However, these were smaller and less consistent. In particular, we identi-

fied a public holiday effect in the GPIH SSS on the first working day after a public

holiday. In the GPOOH and 111 SSS, in addition to increased contacts at the week-

ends due to the day of the week effects previously described, there were even more

contacts than expected on weekends adjacent to public holidays. We observed that

not all public holidays were the same; often the public holiday effects at Christmas

were different. Finally, we did not find large differences between reports of gastroen-

teritis to healthcare services over public holiday periods and general reports of poor

health.

3.4 Putting knowledge into action

In this section we suggest potential changes that can be made to the current work-

ing practices of the ReSST at PHE as a result of this investigation into the day of

the week and public holiday effects. The two areas we suggest changes in are the

statistical method for detecting unusual activity levels (number of contacts or at-

tendances) and the smoothing method used in presentations of the daily syndromic

data from the GPIH SSS. The improved smoothing method we describe is now in

use by the ReSST.
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3.4.1 Improving statistical regression methods to detect unusual

activity

The purpose of syndromic surveillance is to identify abnormally elevated disease

levels as early as possible so that action can be taken to minimise the problem [177].

Statistical methodologies are used in order to identify whether the current activity

levels are unusual. A range of methods have been developed, some of which were

described in section 1.2 and reviewed by Unkel et al. (2012, [178]).

As previously described (section 1.2), the RAMMIE method was developed by the

ReSST to detect unusual activity in all their syndromic surveillance systems [30].

The day of the week and whether the current day is a public holiday are included in

the RAMMIE model as fixed effects. Additionally, whether it is the day after a public

holiday is also included when RAMMIE is used with the GPIH SSS. The RAMMIE

method was developed before the statistical analysis of day of the week and public

holiday effects described in this chapter took place. Therefore, these variables were

included based on anecdotal evidence and retained based on significant p-values

from the regression.

We suggest here some potential improvements that could be made to the RAMMIE

method based on the results obtained from our day of the week and public holiday

effect investigation.

Suggested improvement: Christmas day

All public holidays are treated in the same way by the RAMMIE method; Morbey

et al. (2015, [30]) state that a fixed effect (dummy variable) is included for “whether

or not the day was a bank holiday.” Historical data from all previous public holidays

are used to give the predicted activity level for a future public holiday.

However, in section 3.3.2 we demonstrated that Christmas Day shows a smaller

increase in activity than the other public holidays for the GPOOH and 111 SSS.

As all previous public holidays will contribute to the expected activity on the next

public holiday, the inclusion of Christmas Day in this calculation will give a lower

estimate than if it were not included. This could be leading to false alarms on public

holidays which will waste investigator’s time. Additionally, as all the other public

holidays are used to give the estimated syndromic activity baseline for Christmas



CHAPTER 3. DAY OF THE WEEK AND PUBLIC HOLIDAY EFFECTS 87

Day, this will be higher than it should be. This could be causing unusual increases

on Christmas Day to be missed.

Consistent public holiday effects were only identified in total emergency department

attendances on Christmas Day, but not on any other public holiday (section 3.3.2).

The current RAMMIE model treats all public holidays the same and will therefore

over-estimate the baseline on Christmas Day, potentially leading to missed alarms.

Therefore, we argue that it may be better to not treat all public holidays in the

same way. To avoid these false or missed alarms an additional independent variable

could be included in the RAMMIE model for Christmas Day. However, there would

be minimal data to fit this variable to.

Suggested improvement: After a public holiday in the GPIH SSS

When used with the GPIH SSS, the RAMMIE method includes a fixed effect

(dummy variable) for the day after a public holiday. We demonstrated, in sec-

tion 3.3.2, that there was a higher than usual number of attendances on the first

working day after a public holiday Monday but no consistent effect after public holi-

days on other days of the week (Christmas and New Year). Therefore, the inclusion

of the ‘day after a public holiday’ variable could be leading to missed alarms on

the days after the Christmas and New Year holidays, and false alarms on the day

after a Monday public holiday. To avoid these false or missed alarms, the ‘day after

a public holiday’ variable could be adjusted to only apply to the first working day

after a Monday public holiday. The first working day after Christmas and New Year

public holidays would be treated as a standard day.

RAMMIE improvements: Discussion

The RAMMIE method was developed with day of the week and public holiday

effects already in mind. Our analysis confirms that this was necessary. However, we

suggest some refinements relating to more subtle public holiday effects that could

potentially improve the RAMMIE method.

However, if the days of the year are subset into smaller groups then there will be

fewer historical data points to contribute to predictions. Therefore, these suggested

changes may only be beneficial when there is a large amount of historical data.
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These suggestions could be tested by comparing the original RAMMIE model with

an adapted model using model selection techniques. The RAMMIE method was val-

idated by reporting specificity, sensitivity, positive predictive value, and timeliness

against known historic incidents [30]. These same measures could be computed for

an adapted model using the same historic data and compared. This is beyond the

scope of this thesis but, as far as we are aware, is something that the ReSST plans

to investigate as a result of this work.

3.4.2 Improving trend identification and data visualisations

Line graphs of time series data offer a simple and effective way to review data and

undertake exploratory analysis [179, 180]. They are used, in addition to automated

statistical alarms, by the ReSST to investigate, interpret, and display the current

trends in syndromic data and for comparisons of the current data with previous years

to identify changes from the norm. Regular, large fluctuations at small time-scales

can, however, make it difficult to identify longer time-period trends in time series

graphs. These difficulties can be overcome by adding to the graph a smooth trend

curve which takes into account these known day-to-day fluctuations [181]. Therefore,

in order to mitigate for any difficulties caused by the previously described day of

the week and public holiday effects, the ReSST add smooth trend curves to graphs

of syndromic data.

These graphs of syndromic data are used in two main ways. Firstly, although much

of the syndromic surveillance systems are automated, statistical alarms are created

that require manual, in-depth investigation [30]. Effective data visualisations should

be used in order for the manual investigation stage not to become the bottle-neck

of the real-time data analysis process [182]. Secondly, graphs of the syndromic

indicators are presented to the public and wider audiences in weekly bulletins [183].

Therefore, it is important that the current trend in illness levels can be clearly

interpreted from the graph without additional data or expert knowledge.

Based on the knowledge we have obtained on day of the week and public holiday

effects in syndromic surveillance systems, we have developed the extended working

day moving average smoothing method to display trends in syndromic indicators

from the GPIH SSS. This smoothing method takes the expected day of the week

and public holiday effects into account simultaneously and displays no trend due to

these predictable variations. It has been applied to time series graphs to enhance
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visual analysis of daily GP attendance data for syndromic surveillance.

We developed this method for the GPIH SSS as we observed that the previous

smoothing method in use at PHE was unable to successfully account for the observed

public holiday effects. This is the only healthcare system monitored by PHE that

has a five-day working week. Therefore, the smoothing method used was unique

to this system. The smoothing method we have developed is also unique to this

system. However, its development demonstrates that both day of the week and

public holiday effects must be considered simultaneously when smoothing data with

calendar effects. This motivates careful further work by the ReSST to ensure that

the smooth trend curves used with other surveillance systems are also adequate. If

the systematic changes in the number of contacts with or attendances at healthcare

systems due to day of the week and public holidays are not accounted for, they could

mask real increases in disease levels, create false alarms, and delay decision making

over public holiday periods as more data are required to understand the current

trend. It is important to try and distinguish the expected changes in attendances

due to day of the week or public holiday effects from unexpected changes due to

potential public health threats.

This section will continue as follows. We will first discuss the existing smoothing

methods to account for day of the week and public holiday effects in healthcare

data. We will then describe the extended working day moving average. We will

describe the data that we will use to demonstrate the method. Then we will present

an evaluation of the extended working day moving average, with comparison to

the more simple smoothing methods. Finally, the strengths and limitations of the

extended working day moving average and the impact on public health practice will

be discussed.

Existing smoothing methods for day of the week and public holiday effects

Smoothing to remove day of the week effects and visualise trends has been noted as

being important for analysis of healthcare data [184–188], although few smoothing

methodologies have specifically been developed to enhance visual interpretations

in this context. However, there are examples of both model-based and data-driven

smoothing methods that remove day of the week and/or public holiday effects as part

of more complex detection algorithms [189]. Many published methodologies smooth

day of the week effects but do not also consider public holiday effects [143, 186, 189].
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However, we will demonstrate that both day of the week and public holiday effects

should be considered simultaneously to enable continued, effective surveillance of

GP attendance data during and around public holidays.

A seven-day moving average is the simplest data-driven smoothing approach to

remove a day of the week effect. No adjustment is made for public holiday effects in

this method. A moving average is a series of averages of subsets of the time series

of syndromic data. The first element of a seven-day moving average is the average

of the first seven data points. The second element is the average of the second

to eighth data point. This is continued so that each set of seven consecutive data

points is averaged. Seven days was chosen in this context as day of the week effects

have seven-day periodicity. We will use the seven-day moving average as a simple

comparison to our newly developed smoothing method.

The working day moving average method was previously developed by PHE to take

both day of the week and public holiday effects into account when visualising data

from the GPIH syndromic surveillance system.

The working day moving average is constructed as follows. Very few routine in-hours

GP attendances occur on public holidays. Therefore, public holidays are grouped

with weekend days, and a moving average is computed that takes into account

the number of working days. Let n denote the number of working days within

the current block of seven days being considered to give an element of the moving

average. In the GPIH SSS this is typically five. However, in blocks containing public

holidays it will be fewer. Instead of simply computing the average of the number of

attendances on the seven days, the sum of the number of attendances on working

days was multiplied by 1
5 and the sum of the number of attendances on non-working

days was multiplied by 2
7−n . The sum of these totals was then divided by five, the

typical number of working days in the GPIH SSS.

For a block of seven days with no public holidays, this calculation just gives 1
5

times the sum of the number of attendances on the seven days in question: a basic

moving average. For blocks of seven days containing public holidays this calculation

weights the working days slightly more than the simple sum and the non-working

days slightly less. This is to account for the expected reduction in total attendances

in the week due to the public holiday.
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The extended working day moving average

Data from healthcare services reflect the time at which patients sought healthcare

advice. This does not necessarily correspond with date of symptom onset. In par-

ticular, patients with milder illnesses may not present unless the symptoms become

more severe or complications develop [190, 191]. Therefore, the number of health-

care attendances is not a simple measure of illness in the population but rather a

combination of illness levels, severity of the illness, availability of healthcare services,

and ability or willingness to seek healthcare [189]. Based on this, we developed the

extended working day moving average. This is a data-driven smoothing method

that uses scaling factors to take both day of the week and public holiday effects into

account.

In the extended working day moving average, each different day of the week and

each day affected by a public holiday is assigned a scaling factor. This simultane-

ously takes into account changes in the number of healthcare attendances on days

surrounding public holidays, changes in the number of attendances on the public

holiday itself, and the day of the week effect. Data from one complete year, exclud-

ing any weeks containing public holidays, were used to give the scaling factors of

the extended working day moving average for a syndromic indicator from the GPIH

SSS. Therefore, the scaling factors will be different for each syndromic indicator.

Data from the previous year is used to compute the scaling factors for an indicator.

The proportion of each weeks activity (Monday - Sunday) on each day was calcu-

lated. These were averaged over all weeks not containing public holidays to give an

average proportion of the weekly activity on each day of the week. These average

proportions were multiplied by five, the number of working days in a typical week

in the GPIH SSS, to give the initial scaling factors. Additional scaling factors were

developed based on the public holiday effects. Each public holiday was assigned the

same scaling factor as a typical Sunday, and the first working day after a public

holiday was given the same scaling factor as a typical Monday. This was based

on the observed public holiday effects (described previously in section 3.3). These

scaling factors reflect the typical number of attendances on each day of the week; a

value larger than one reflects a day with typically a higher than average number of

attendances.

To construct the extended working day moving average, the sum of each seven-

day block was divided by the sum of the corresponding scaling factors. Note that
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the extended working day moving average for a seven-day block without a public

holiday is simply the sum of attendances divided by five, giving a basic moving

average during these periods.

Improving trend identification and data visualisations: Data

The extended working day moving average has been developed for smoothing data

from the GPIH SSS. However, the dynamics of the diseases that generate the syn-

dromic data are complex, and the recorded number of attendances are affected by

system coverage fluctuations, data collection changes, and other unknown influences

on top of the day of the week and public holidays effects [30]. This can make it dif-

ficult to clearly compare and evaluate the different smoothing methods. Therefore,

the smoothing method was first applied to synthetic data with the same public hol-

iday and day of the week effects as the GPIH SSS but without longer-term trends

and noise.

We constructed synthetic data for a period of four weeks. Based on historic data, we

considered a total of 2900 attendances per week and split this into 696 attendances

on Monday (24% of the weeks attendances), 522 (18%) on each of Tuesday to Friday,

and 58 (2%) on weekend days. This gave a day of the week effect similar to what

has been previously described (section 3.2). In order to incorporate a public holiday

effect, the third Monday of the synthetic data was denoted as a public holiday. This

day was given the same number of attendances as a Sunday (58 attendances, or

2.4% of the public holiday week’s attendances). The Tuesday immediately after was

given the same number of attendances as the typical Mondays (696 attendances, or

28.6%). The number of attendances on all other days in this week was left unchanged

(522, or 21.4%, on the remaining days of the working week and 52, or 2.4%, on the

weekend days). There were fewer attendances overall in the week containing the

public holiday. This synthetic data can be seen in figure 3.21.

We also considered actual data from the GPIH SSS for 52 weeks, from 13th January

2014 to 11th January 2015. The indicators severe asthma and gastroenteritis, which

we have previously worked with, were chosen as examples.
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Table 3.5: Scaling factors for indicators from the GPIH SSS for the extended
working day moving average. These scaling factors for Monday – Sunday were
based on 52 weeks of data (13th January 2014 – 11th January 2015) using the
method outlined in the main text. The scaling factors for public holidays and their
surrounding days were based on observations made of the GPIH SSS over multiple
years and described in section 3.3

Scaling factors: Scaling factors:
severe asthma gastroenteritis

Monday 1.30 1.25
Tuesday 0.95 0.95
Wednesday 0.91 0.91
Thursday 0.87 0.90
Friday 0.93 0.95
Saturday 0.03 0.02
Sunday 0.01 0.01
Public holiday 0.01 0.01
First working day after public holiday 1.30 1.25

An evaluation of the extended working day moving average

The extended working day moving average was applied to synthetic data and the

severe asthma and gastroenteritis syndromic indicators from the GPIH SSS. The

seven-day and working day moving averages were also applied for comparison.

Using the percentages 2%, 18%, and 24%, described in the Data section just above,

the scaling factors for the extended working day moving average applied to the

synthetic data were calculated as 0.1 for weekend days and public holidays, 1.2 for

typical Mondays and the first working day after a public holiday, and 0.9 for all other

days of the working week. The scaling factors calculated from the severe asthma

and gastroenteritis indicator data are given in table 3.5.

The extended working day moving average showed a no-trend line when applied to

the synthetic data, as the combination of day of the week and public holiday effects

were taken into account (figure 3.21). The extended working day moving average

also continued to display the trends in the syndromic data throughout public holiday

periods (figure 3.22).

In the absence of public holidays, the seven-day moving average applied to the

synthetic data smoothed the regular day of the week effect to highlight the current
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trend. However, there is a dip in the smoothing trend curve for seven days around the

public holiday (figure 3.21). These synthetic data followed the expected behaviour

of no-trend syndromic data around a public holiday. With real data, this dip in

the smoothing curve could mask an actual increase in disease levels over this time

period. However, this change is entirely expected due to the change in healthcare

service provision on public holidays. Additionally, the seven-day moving average

was lower than the average number of attendances on a working day. It is more

useful that the smooth trend curve gives an indication of the number of healthcare

contacts or attendances on a typical working day. These same results were also seen

when the seven-day moving average was applied to surveillance data for the severe

asthma and gastroenteritis indicators (figure 3.22).

The working day moving average applied to synthetic data gave a better smooth

curve than the seven-day moving average (figure 3.21). However, a drop three days

before and a peak four days after public holidays were still present in the smoothing

curve when applied to both synthetic and real data (figures 3.21 and 3.22). These

were due to the combination of the day of the week and public holiday effects. The

drop was caused by that seven-day sum not including a typical Monday, and the

peak was caused by that seven-day sum including both a typical Monday and the

elevated Tuesday directly after the public holiday.

In the absence of big day of the week effects, the working day moving average would

smooth a simple public holiday effect. However, the interaction between day of the

week and public holiday effects, and extended holiday effects such as a change in

the number of attendances on the first working day after a public holiday, are not

accounted for.

Smoothing trend curves are used to help investigators visually identify current un-

usual activity during daily surveillance of syndromic disease data. It is easy to ret-

rospectively look at the smoothing curve given by the working day moving average

and identify the spikes as clearly spurious due to their short duration. However, in

order to emphasise how misleading the seven-day and working day moving averages

can be, we applied all the smoothing methods to the dataset that would be avail-

able a week after a Monday public holiday. This graph would be used to assess the

current trend in the number of severe asthma attendances (figure 3.23). The trend

one week after a public holiday would be noted as increasing if either the seven-day

or working day moving averages were used. This could lead to unnecessary alarm.

The extended working day moving average did not show an increasing trend and,
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Figure 3.21: The extended working day moving average applied to synthetic data,
with the seven-day and working day moving averages for comparison. Synthetic data
were generated for 28 days, containing day of the week and public holiday effects
representative of those observed in the GPIH SSS, but without noise and longer term
trends. The synthetic data included a public holiday Monday. This is indicated by
the grey vertical line and easily identifiable by the negligible number of attendances
on this day. The extended working day moving average was applied to these data
with the seven-day and working day moving average shown for comparison. The
red box highlights the pre- and post- public holiday period of interest.
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Figure 3.22: The extended working day moving average applied to indicators from
the GPIH SSS, with the seven-day and working day moving averages for comparison.
The number of (a) severe asthma and (b) gastroenteritis attendances from the GPIH
SSS with the extended working day moving average. The seven-day and working day
moving averages are also included for comparison. The grey vertical lines indicate
public holidays. The red boxes highlight the pre- and post- Monday public holiday
dips and peaks in the seven-day and working day moving average and their removal
in the extended working day moving average.
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Figure 3.23: A comparison of the current trend given by each of the smoothing
methods for the severe asthma indicator from the GPIH SSS. This graph displays
the data that is available one week after a Monday public holiday (public holidays
indicated by grey vertical lines). A smoothing method would be used to display
the current trend (the area of interest inside the red box). Both the seven-day
and working day moving averages show a currently increasing trend. The extended
working day moving average and, importantly, the data do not.

more importantly, neither did the data. The extended working day moving average

would make it easier for investigators to identify unusual activity during this period.

Improving trend identification and data visualisations: Discussion

It is widely acknowledged, and we demonstrated in sections 3.2 and 3.3, that day

of the week and public holiday effects exist in healthcare data used for syndromic

surveillance and that this can disguise anomalies in the data when visually inspect-

ing it [143, 30, 184–189]. In this section, we have used the knowledge obtained

previously about day of the week and public holiday effects in the GPIH SSS to

develop a smoothing method where both day of the week and public holiday ef-

fects are taken into account simultaneously. We demonstrated how the extended

working day moving average can be used to aid interpretation of the trends in real-

time syndromic surveillance data from GP services, thereby improving the public
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health action resulting from the analysis. The extended working day moving average

method retains the ability to display unusual changes in the trends of syndromic

indicators from the GPIH SSS during public holiday periods, and it removes the

potentially misleading spikes observed in the working day moving average. This

reduces the potential for delays in the detection of public health threats during this

time.

In this section, data-driven smoothing methods were considered. Syndromic surveil-

lance uses large, varied data sets, and it is desirable for syndromic surveillance

reporting systems to be as automated as possible. A straightforward data-driven

smoothing approach ensures sufficient flexibility so that smoothing methods can be

applied to a wide range of indicators in an automated way [187]. This study shows

that both day of the week and public holiday effects should be considered simulta-

neously to create adequately smooth daily healthcare data. We have addressed this

problem in the context of in-hours GP attendance data used for daily syndromic

surveillance in England, and we have focused on methods to improve time series

graphs used for daily risk assessments by investigators.

The extended working day moving average described here was developed for use

with just one particular syndromic surveillance system. Further work in this area

could be to investigate whether the extended working day moving average could be

applied to other surveillance systems. In particular, whether it is valid for those

which monitor attendances at seven-day healthcare services. If the day of the week

and public holiday effects in other surveillance systems are not as large as those

observed in the GPIH SSS a more simple method could be sufficient.

The main limitation of the extended working day moving average is that historical

data are needed to compute the scaling factors. In particular, sufficient data are

needed to learn how the number of attendances changes around each public holiday.

On the other hand, the working day moving average and seven-day moving average

do not require historical data and, therefore, can be used immediately with new

syndromic surveillance systems.

The extended working day moving average is now in use in the GPIH SSS at PHE.

It has led to enhanced visualisations of these data during the analysis phase and in

weekly public health bulletins [183]. Based on this work, it is recommended that

analysis and visualisation methods for syndromic data carefully take both day of

the week and public holiday effects into account.
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3.5 Overall discussion and conclusions

Syndromic surveillance data are a near real-time source of healthcare information.

There are, of course, many potential biases that affect these data. In this chapter

we have described one of the main additional problems of daily data compared to

weekly data.

These results show that corrections should be made for the day of the week, pub-

lic holidays, and days surrounding public holidays when analysing, visualising, and

modelling daily syndromic data of gastroenteritis and other health conditions. The

analysis highlights the importance of being aware of the potential trends and pat-

terns in healthcare data due to changes in behaviour rather than changes in actual

disease levels. These results are of practical value for anyone analysing and inter-

preting healthcare data, on gastroenteritis and other conditions, at a daily time

granularity.



CHAPTER 4

ONLINE SURVEILLANCE OF GASTROENTERITIS

The burden of gastroenteritis on the general population is not well understood. The

purpose of this chapter is to explore modern, additional sources of online data to

complement more traditional surveillance data of gastroenteritis in an attempt to

provide better estimates of the number of cases.

Section 4.3 was undertaken during a secondment at the ReSST of PHE during this

PhD. The data from the ReSST used in this work are covered by governance and

contractual agreements that limit their use for PHE surveillance activities only.

These data are therefore not available for sharing. It should also be emphasised

that the opinions expressed herein do not necessarily reflect the views of the ReSST

or any part of PHE.

4.1 Aims and objectives

The aim of this chapter is to investigate whether novel datasets found online can

complement existing surveillance of gastroenteritis in the UK. This will be tackled

in two ways and, as such, this chapter is split into two main sections. In particular,

we will:

1. Investigate whether laboratory surveillance of norovirus can be supplemented

with online data.

100
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1a. Describe the necessary background material.

1b. Extract data on gastroenteritis from Google search engine queries and

Wikipedia page views.

1c. Compare the novel datasets with existing laboratory surveillance data.

1d. Assess whether the novel datasets can be used for enhanced forecasting

of the laboratory data.

2. Investigate reports of gastroenteritis from Flusurvey: an online cohort survey

designed for influenza-like illness (ILI) surveillance.

2a. Describe the necessary background material.

2b. Describe data on gastroenteritis symptoms from Flusurvey.

2c. Compare Flusurvey data on gastroenteritis to existing syndromic surveil-

lance systems of gastroenteritis, and discuss whether this information

adds value to existing surveillance.

4.2 Surveillance of norovirus using search engine queries

and page view data

In this section we will investigate the potential of search engine query data from

Google and web page view data from Wikipedia to supplement laboratory surveil-

lance of norovirus.

We started by extracting the necessary data from Google and Wikipedia. We com-

pared these data to the weekly number of positive norovirus laboratory reports in

England and Wales. Finally, we compared a selection of models for forecasting or

nowcasting the norovirus laboratory data to see if the addition of these new data

sources leads to better predictive ability.

We start with a review of existing studies and of the statistical methods we will use.

4.2.1 Search engine queries and page view data: Background

Suspected cases of norovirus in England and Wales can be confirmed with labora-

tory testing of stool samples in PHE laboratories [192]. However, laboratory based
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surveillance systems do not report cases immediately. The number of days between

a sample being collected and the laboratory report being generated is not trivial;

this reporting delay was given by Noufaily et al. (2016, [193]) as around 11 days

for norovirus. There will be additional delays between a patient first experiencing

symptoms and their report to a healthcare service. The annual winter norovirus

peak is not entirely regular: it frequently shifts by weeks or months from year to

year [192]. Therefore, it is important to have timely surveillance of norovirus to

identify the onset of this annual, seasonal outbreak.

We hypothesise that indications of an outbreak may be seen in other datasets before

being identified in the laboratory data. We may be able to use these indications to

give an early warning of the onset of the winter norovirus season. This would enable

healthcare services and the public to prepare and take preventative action.

Finally, laboratory surveillance systems are expensive to run, upgrade, and expand.

Cheaper, more readily available data could be used to supplement traditional meth-

ods to enhance disease surveillance.

One recent expanding area of research is using user-generated information from the

internet for disease surveillance, see for example the Perspectives article in the New

England Journal of Medicine from Brownstein et al. (2009, [194]) “Digital Disease

Detection- Harnessing the Web for Public Health Surveillance”. These novel web-

based sources of data are one approach to developing surveillance systems that

give an early warning of outbreaks using cheap, timely, readily available data. The

data used in this type of surveillance fall, roughly, into three categories: search

engine query data, web page view data and social media posts. We will give a brief

outline of the way each has previously been used for gastroenteritis surveillance.

Note, however, that few research articles in this area have explored surveillance of

gastroenteritis and gastroenteritis causing pathogens - studies of influenza are more

common [195]. Afterwards, we will give a brief outline of the statistical methods

that will be used for our analysis.

Literature: Search engine queries

It has been reported that both in the U.S. and in Europe more than 50% of the

population use the internet to find health information [196, 197]. We often start

our search for information online from a search engine. A study from 2003 esti-
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mated that around 5% of search engine queries are health related, corresponding

to about 7 million health related searches on Google per day [198]. Based on this,

researchers have hypothesised that the daily volume of search engine queries for

health-related information can be used as a proxy for the number of people who are

ill and, therefore, for disease surveillance.

An early, and well known, example of using search engine query data for disease

surveillance was Google Flu Trends [199]. Google Flu Trends sought to rapidly

predict ILI prevalence using search terms that gave a close fit to historical ILI data

from the U.S. Centers for Disease Control and Prevention (CDC). However, after a

successful start, Google Flu Trends predicted double the amount of ILI in 2013 than

was observed by the CDC [200] and, in 2015, stopped publishing ILI predictions.

Nevertheless, Google stil provide the service Google Trends which makes search

volume data on any search term available for a subsection of Google searches. This

has subsequently been used in many other areas of healthcare research [201].

Google Trends (https://trends.google.co.uk/trends/) gives search volume data

for search terms entered into Google, relative to the total search volume in that re-

gion, on an almost real-time basis. However, the raw data on the number of Google

searches are not publicly available. Data for the number of searches are extracted

from an unbiased sample of all Google searches. Each data point is divided by

the total number of searches in order to account for changes in search engine use

over time and between locations. The data are then scaled to a range of 0 to 100

for any time period requested and this is the only data given to users. No mis-

spellings, spelling variations, synonyms, plural or singular versions of the requested

search term are included in the results. Repeated searches from the same person

in a short period of time are excluded. The results given for any search term are

searches relating to the specific term and any broadly matched search terms. These

cannot be separated. For example, the Google Trends Help pages state that if

the term ‘banana sandwich’ is entered into Google Trends, the results given “in-

clude searches for banana sandwich as well as ‘banana for lunch’ and ‘peanut but-

ter sandwich’ ” (https://support.google.com/trends/answer/4359550?hl=en&

ref_topic=4365530). These scaled, sampled data given by Google Trends is typi-

cally referred to as search interest data. See Google Trends Help for full details of

the service (available at https://support.google.com/trends#topic=6248052).

We have found three studies using Google queries to investigate gastroenteritis in-

cidence. A previous version of Google Trends, Google Insights for Search, was used

https://trends.google.co.uk/trends/
https://support.google.com/trends/answer/4359550?hl=en&ref_topic=4365530
https://support.google.com/trends/answer/4359550?hl=en&ref_topic=4365530
https://support.google.com/trends#topic=6248052
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to find search terms that correlated highly with acute diarrhoea surveillance data

from the French Sentinel Network [202]. In this study, Pelat et al. (2009, [202])

concluded that just “one well chosen query was sufficient to provide time series of

searches highly correlated with incidence”. Google Insights for Search was also used

to investigate whether selected search terms correlated with norovirus outbreak and

hospitalisation data from the U.S. and could be used as an early indication of ele-

vated disease activity [203]. In this study, Desai et al. found that search terms that

best correlated with nationwide norovirus outbreak data were those such as ‘stom-

ach flu’ and ‘stomach bug’. Finally, and more recently in 2017, Google searches for

dysphagia, vomiting, and diarrhoea in the U.S. were seen to correlate with a large

dataset of inpatient visits for the same symptoms between 2008 and 2010 [204].

However, there were no notable correlations with a dataset of outpatient visits for

the symptoms.

Search queries submitted specifically to health websites rather than to Google may

serve as a better measure of how many people are ill. Search terms submitted

to a health related website in Sweden were seen to correlate well with laboratory

reports for norovirus in the country between 2006 and 2013 [205, 206]. The search

data detected the start of the winter norovirus season two to three weeks earlier

than using the laboratory reports. They found that using the specific search term

‘winter vomiting disease’ gave better results than the general search term ‘vomiting’.

However, web query data from the same Swedish website were not found to identify

local norovirus outbreaks [207].

We have not been able to identify any existing studies of gastroenteritis surveillance

using search engine query data in the UK.

Literature: Web page view data

If searches on the internet for health related information start at a search engine

you would imagine they would lead to a web page giving advice. Therefore, the

number of times specific web pages are viewed has also been considered as a proxy

for the number of people that are ill. There are fewer studies in this area, we suspect

because these data are not often publicly available.

We believe that the first study in this area aimed to determine whether the number

of times pages containing information about influenza on the small health website
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Healthlink were viewed correlated with influenza data from the CDC (Johnson et al.

2004, [208]). Moderately strong correlations between the web page view data and

the ‘gold standard’ influenza surveillance data were found.

All further studies, that we have been able to find, using web page view data for dis-

ease surveillance consider Wikipedia page view statistics, which are freely available

to download. Wikipedia (https://en.wikipedia.org) is an open-access online en-

cyclopaedia written by its users [209]. It contains many articles on health-related

topics (among many other). A Wikipedia page was found to be among the first

ten results in more than 70% of searches for health-related keywords on a selection

of search engines tested in a study by Laurent and Vickers (2009, [209]), and they

conclude that it is a “prominent source of online health information”.

Three studies applied statistical methods, including regression, Pearson’s correla-

tions, and Bayesian change point detection, to Wikipedia page view data to inves-

tigate ILI, cholera, dengue, Ebola, HIV, plague, and tuberculosis surveillance using

these data [210–212]. Additionally, Wikipedia page view data have been incorpo-

rated into a mechanistic model of disease spread (SEIR-type model) to produce

reasonably good forecasts of the influenza season in the U.S. [213].

A simple study of the norovirus Wikipedia page view data compared the number

of views in January 2008 with the number of views in June 2008 using a t-test to

identify a seasonal change in page use that broadly corresponds with the seasonality

of norovirus [209].

A key difficulty of using these Wikipedia page view data is that no location infor-

mation is provided. Generous et al. (2014, [211]) use article language as a proxy for

location, although clearly this is not possible for English language articles. McIver et

al. (2014, [210]) make estimates of ILI in the U.S. only, noting that 41% of Wikipedia

English language article views come from the U.S.

As with search engine queries, it is impossible to discern whether the web page views

are from people suffering from an illness or just information seeking in response to,

for example, increased news coverage of a health event. To this end, in addition to

being used as a proxy for the number of ill people, Wikipedia page view data have

been used as a proxy for concern and ‘public anxiety’ in a population during the

2009 H1N1 influenza outbreak [214].

We have not been able to identify any studies of gastroenteritis surveillance using

https://en.wikipedia.org
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web page view data beyond the simple winter-summer comparison made by Laurent

et al. (2009, [209]), and we have not been able to find any uses of Wikipedia page

view data for disease surveillance in the UK.

Literature: Social media posts

Social media platforms are places for people to post about their experiences, views,

and opinions. The text posted on these sites has been considered as a dataset for

disease surveillance. In particular, Twitter is the social media site used most often

for this analysis [215]. Perhaps this is due to the fact it is simple to collect millions

of tweets from the Twitter Application Programming Interface [216]. Initial studies

in this area, again, focussed on ILI surveillance [215].

We have found some studies using Twitter data for gastroenteritis surveillance. A

basic investigation into norovirus related keyword use on Twitter reported, perhaps

unsurprisingly, that the keyword ‘diarrhoea’ was not reported as frequently as other

gastroenteritis related keywords such as ‘fever,’ ‘norovirus,’ and ‘sick’ [217].

Within the UK, there is an ongoing (and as yet, we believe, unpublished) study by

the Food Standards Agency investigating the ability of Tweets containing norovirus

related keywords to predict norovirus outbreaks (a description of the project is avail-

able at http://blogs.nhs.uk/choices-blog/2016/02/12/guest-blog-using-twitter-

to-predict-norovirus-outbreaks/). Data collected from Twitter are compared

to laboratory reports for norovirus. Preliminary results show that the Twitter data

can give good predictions of the laboratory data.

The analysis of social media data is slightly different from the analysis of search

engine queries and web page view data as it requires text analysis. It is likely

that not all relevant tweets are classified correctly due to common misspellings,

slang, and abbreviations. Additionally, only a very small percentage of tweets are

geotagged. This makes it difficult to restrict the data to a country or area of interest.

Finally, Krieck et al. (2011, [218]) report that the majority (51%) of the tweets

they collected containing symptoms or disease names contained news reports and

information as opposed to descriptions of personal symptoms. Due to these reasons,

and the existence of the Food Standards Agency project described above, we will

not analyse social media posts in this work.

http://blogs.nhs.uk/choices-blog/2016/02/12/guest-blog-using-twitter-to-predict-norovirus-outbreaks/
http://blogs.nhs.uk/choices-blog/2016/02/12/guest-blog-using-twitter-to-predict-norovirus-outbreaks/
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Method: Cross-correlation

The cross-correlation of two time series is a measure of their similarity at different

time lags. It is used to compare two time series when it is suspected that there

is a delay in similar trends between them. To find the cross correlation at lag k,

Pearson’s correlation coefficient of the two time-series is computed with the first

time series shifted forward k time steps. Mathematically, the cross-correlation at

lag k of time series x = {xt} and y = {yt}, both of length n, is

ρx,y(k) =

∑n−k
t=1 (xt+k − x(k))(yt − y(−k))√∑n−k

t=1 (xt+k − x(k))2

√∑n−k
t=1 (yt − y(−k))2

,

where

x(k) =

∑n−k
t=1 xt+k
n− k

and y(−k) =

∑n−k
t=1 yt
n− k

.

If the cross-correlation of x and y has a large value (close to 1) at lag k, where k is

a positive number, we say that x lags y. If the cross-correlation of x and y has a

large value at lag k, where k is a negative number, we say that x leads y. We use

the ccf function in the statistical computing programming language R to compute

cross-correlations [219].

Method: Autocorrelation

The autocorrelation of a time series is simply the cross-correlation with itself. This

can be used to identify periodicities in the data; a large value of the autocorrelation

at lag k indicates a periodicity of length k in the time series.

Method: Serfling method

The Serfling method is a harmonic regression model developed by Robert E. Serfling

in 1963 [220] to estimate the number of excess deaths due to influenza. It is used

with seasonal data to extract the activity due to a seasonal outbreak from usual

baseline activity levels and to identify the onset of an epidemic. Although there are

more technical approaches for this purpose, the Serfling method has been widely

used to establish a baseline measure of influenza activity by Public Health groups

around the world [221].



CHAPTER 4. ONLINE SURVEILLANCE OF GASTROENTERITIS 108

Initially, a harmonic regression model is fitted to the out-of-season data to obtain a

baseline measure of activity. This harmonic model assumes that the seasonal pattern

of disease activity remains stationary over the years. Only the out-of-season data

is used to establish this baseline to prevent epidemic activity from raising it. A

simple alternative is to construct a flat baseline, for example using the mean of all

out-of-season data, however we prefer the harmonic model that takes into account a

gentle seasonality and highlights that the more extreme seasonality is due to winter

outbreaks.

We fitted a regression model of the form

yi = a0 + a1t+ a2 cos

(
2π

52
ti

)
+ a3 sin

(
2π

52
ti

)
+ εi ,

using the HarmonicRegression package in R [222] to only the out-of-season data.

We defined the out-of-season period of norovirus as June to October inclusive.

The standard deviation of the residuals, σres, gives an estimate of the variation in

the regression model fit [223]. Assuming the residuals follow a normal distribution

around zero, an approximate 95% prediction interval on a predicted value x is

[x− 1.96σres, x+ 1.96σres] .

Excess activity due to a seasonal outbreak is defined as activity above the upper

bound of this prediction interval. We will call this upper bound the Serfling thresh-

old.

Method: ARIMA [224]

An ARIMA model is a time series modelling method made up of three components:

an autoregressive component, a differenced component, and a moving average com-

ponent.

The differenced series, y′ = {y′t}, of a time series y = {yt} is formed from the change

in consecutive observations of y:

y′t = yt − yt−1 .

Differencing is used to make a time series stationary. We may need to difference
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more than once to obtain a stationary time series. The number of times differencing

is applied is called the degree of differencing.

An autoregressive model is a linear regression on previous values of the dependent

variable. The number of previous values included is called the order of the model.

A moving average regression model is a linear regression on previous forecast errors.

The number of previous errors included is called the order of the moving average.

Combining these gives an ARIMA model.

Let p be the order of the autoregressive part, d the degree of differencing, and q the

order of the moving average. For the differenced time series y′ an ARIMA(p, d, q)

model is defined as:

y′t = c+ α1y
′
t−1 + ...+ αpy

′
t−p + β1et−1 + ...+ βqet−q + et ,

where c, αi, and βi are the regression coefficients and ei the errors.

The model orders (values of p, d, q) can be chosen by selecting the ARIMA model

that gives the smallest Akaike information criterion (AIC). The AIC is an estimator

of the relative quality of a model for a given set of data. We use the auto.arima

function from the forecast package in R to fit ARIMA models [224]. This automat-

ically selects the ARIMA model with smallest AIC, removing the need for manual

model selection.

An ARIMA model can be extended to also include exogenous dependent variables.

Given independent time series y = {yt} and dependent time series x = {xt}, a

regression model with ARIMA errors is written as

yt = γxt + nt , nt = α1nt−1 + ...+ αpnt−p + β1et−1 + ...+ βqet−q + et .

We can also ensure that this regression model with ARIMA errors includes any

seasonal knowledge that we may have about the dataset by regressing on k Fourier

terms, where k is chosen in advance. A regression model with Fourier terms and

ARIMA noise is written as

yt =
k∑
i=1

γi sin

(
2πit

ω

)
+

k∑
i=1

λi cos

(
2πit

ω

)
+ nt ,

nt = α1nt−1 + ...+ αpnt−p + β1et−1 + ...+ βqet−q + et ,
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where ω is the period length.

An ARIMA model can also be extended to a seasonal ARIMA model. This involves

adding terms to a standard ARIMA model which are shifted by the seasonal period

(the number of data-points until the seasonal pattern repeats again). In detail,

the seasonal part of the model contains, again, an autoregressive component, a

differencing, component, and a moving average component but these all operate

on a lag which is a multiple of the number of periods in a season. Therefore, the

seasonal ARIMA model has orders p, d, and q as before and additionally P , D, and

Q for order of the seasonal autoregressive component, the seasonal differencing, and

the seasonal moving average component respectively, and m which gives the number

of periods per season.

Method: Time series cross-validation

Cross-validation is a technique to assess the performance of predictive models. The

available data are split into subsets. The model is run on a particular subset (train-

ing set) and the results are used to predict the rest of the values (test set). The

predictions can be compared to the actual data. This is repeated for many different

training and test sets.

Time series cross-validation applies this principle to time series data. In particular,

we will be considering forecasts only one week (which is just one data point) ahead.

In this context, our time-series cross validation will involve initially a training set

of the first m points of the time series and test set of point m+ 1. Then a training

set of points 2 to m+ 1 and testing on point m+ 2, and so on.

4.2.2 Ground truth

Novel surveillance data sources are typically validated by comparison to data from

existing surveillance systems, referred to as the ‘ground truth’ or ‘gold standard’.

Success is typically measured by the success of the novel data source to replicate

the patterns and trends of this ground truth.

For this study, we consider the ground truth to be the weekly number of confirmed

laboratory reports of norovirus from PHE. These laboratory reports are available

freely online in pdf format (at https://www.gov.uk/government/publications/

https://www.gov.uk/government/publications/common-gastrointestinal-infections-in-england-and-wales-laboratory-reports-in-2017
https://www.gov.uk/government/publications/common-gastrointestinal-infections-in-england-and-wales-laboratory-reports-in-2017
https://www.gov.uk/government/publications/common-gastrointestinal-infections-in-england-and-wales-laboratory-reports-in-2017
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Figure 4.1: The number of positive norovirus laboratory reports each week (black),
missing data estimated by linear interpolation between the surrounding two non-
missing data points (red), and the weeks of Christmas and New Year (grey lines).

common-gastrointestinal-infections-in-england-and-wales-laboratory-reports-

in-2017). These reports contain data from English and Welsh laboratories on

norovirus identified in stool samples collected from outbreak situations and from

patients reporting to doctors.

There are some missing data points (figure 4.1). We estimate these with a lin-

ear interpolation between the previous and next non-missing data points. This

will be the time series used for all further analysis. Notice that during the week

of Christmas and New Year there appears to be fewer reports than in the neigh-

bouring weeks. This is not surprising as we have already discussed how reporting to

healthcare services changes over periods containing public holidays (chapter 3). The

data are clearly seasonal. The autocorrelation plot shows strong annual periodicity

(figure 4.2).

These laboratory data have previously been used as the ground truth for investi-

gations into alternative data sources for gastroenteritis surveillance, including the

previously described project by the Food Standards Agency with Twitter data and

by Loveridge et al. (2010, [225]), as part of the ReSST at PHE, to evaluate data

from a national healthcare telephone service.

Finally, a study by Lopman et al. (2009, [192]) looked at forecasting these data using

a Poisson regression model taking into account weather conditions and the emer-

gence of new norovirus variants. For their study, the laboratory data were available

https://www.gov.uk/government/publications/common-gastrointestinal-infections-in-england-and-wales-laboratory-reports-in-2017
https://www.gov.uk/government/publications/common-gastrointestinal-infections-in-england-and-wales-laboratory-reports-in-2017
https://www.gov.uk/government/publications/common-gastrointestinal-infections-in-england-and-wales-laboratory-reports-in-2017
https://www.gov.uk/government/publications/common-gastrointestinal-infections-in-england-and-wales-laboratory-reports-in-2017
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Figure 4.2: The autocorrelation plot (lag in weeks) of the norovirus laboratory
reports showing a clear annual periodicity.

on a daily time granularity (as opposed to weekly in our case). In a Poisson regres-

sion model it is assumed that the dependent variable has a Poisson distribution,

and when this approach is used to model count data a log link function is applied.

Lopman et al. additionally adapted the Poisson regression modelling approach to

be appropriate for time series data by adding autoregressive and background sea-

sonality terms.

4.2.3 Search engine queries: Google Trends

The data

Google Trends (introduced in section 4.2.1) gives results at limited time aggregations

and over a limited time period. Data are available for long time periods, from 2004

to the present, but only aggregated by month. For data aggregated into weekly

search interest, we need to restrict our data requests to periods of at most a year.

Therefore, we considered each norovirus season separately. We extracted weekly

data from Google Trends for week 29 of one year to week 28 of the following. Note
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that because Google Trends scales each dataset to be between 0 and 100, this gives

different data compared to if we were able to extract all seasons at once. This

dataset is suitable for most analyses, however not for a comparison through time of

the severity of each season.

Google Trends aggregates data into weekly counts from Sunday to Saturday, in-

clusive. The norovirus laboratory data are aggregated into weeks from Monday to

Sunday, inclusive. However, as the laboratory data typically come from stool sam-

ples submitted via doctors, we assume that the majority of these data is generated

during the working week, Monday to Friday. Therefore, the slightly mismatched

weeks should not have a large impact on this analysis.

Google Trends data are computed from an unbiased sample of Google searches, and

therefore the data that are available changes slightly from week to week as the same

sample is not always used [226]. We overcame this by downloading data for each

search term on four different occasions. For each search term, we averaged the four

datasets to give one Google Trends timeseries.

We considered the following four search terms restricted to searches in the UK:

‘norovirus’, ‘winter vomiting bug’, ‘gastroenteritis’, ‘diarrhoea + vomiting’. Note

that the ‘+’ sign gives results for searches containing either of the words diarrhoea

or vomiting.

Previous studies using Google Trends data for surveillance of norovirus and other

causes of gastroenteritis have used a variety of search terms [202–204]. We inspected

all of the terms used in previous analyses, and included in our analysis those that

appeared, at least vaguely seasonal, and had time series that did not consist of

mostly zero over the time period of interest. This gave us the terms ‘norovirus’,

‘gastroenteritis’, ‘diarrhoea + vomiting’. Additionally, we included ‘winter vomiting

bug’ as it is a common British synonym for norovirus and this is the first study to

use Google Trends data for surveillance of norovirus in the UK.

Similarity of all data

The laboratory and search interest data were standardised to account for longer

term trends. Each year of data (from week 29 one year to week 28 the next year)

was treated separately. In the standardised datasets, the data point for each week

was expressed as a proportion of the total number of laboratory notifications or
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search interest in the entire year. To additionally smooth the data we used a five

week moving average. Note that this smoothing was just used for this one test

of similarity; it was not used throughout the rest of this section. This follows the

methodology used by Edelstein et al. (2014, [206]) to use search engine data to

identify the norovirus season in Sweden.

Graphically, the smoothed, standardised laboratory data and search interest data

appeared to be similar as both have annual winter peaks (figure 4.3). The search

terms ‘gastroenteritis’ and ‘diarrhoea + vomiting’ appeared most dissimilar to the

lab data with less obvious seasonality. The peaks for ‘norovirus’ and ‘winter vomiting

bug’ search interest seemed sharper than the seasonal peaks in the laboratory data.

Finally, a double peak can be seen in the laboratory data during the 2007-2008 and

2012-2013 seasons, but does not appear in the search term data.

We computed the cross-correlations of the standardised, smoothed laboratory data

with each Google search interest dataset (figure 4.4). The ‘norovirus’, ‘winter vomit-

ing bug’, and ‘diarrhoea + vomiting’ search interest data each have high correlations

with the laboratory data at either no lag or a lead of 2 weeks. The ‘gastroenteritis’

data were not well correlated with the lab data.

Timing of the seasonal outbreak

The laboratory data have a strong annual periodicity, with winter outbreaks each

year (section 4.2.2). In order to compare the timings of the winter outbreaks in the

datasets we will compute two measures: the week of season onset and the week of

peak activity.

The week of peak activity was simply the week in the year with most norovirus

cases or search interest. The week of season onset was computed as the first week

exceeding the Serfling threshold (section 4.2.1). This method has been previously

used to detect the onset time of the norovirus season in Swedish datasets [206].

It only makes sense to consider season timing for those datasets which show annual

periodicity. We use autocorrelation plots to determine that there is not strong

annual periodicity in the ‘gastroenteritis’ search volume data (figure 4.5). We will

therefore not include this dataset in the analysis of season timing.

Upon visual inspection, it appears that the harmonic regression of the Serfling
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method has fitted well to the out-of-season data (June to October) from the norovirus

lab reports and the ‘norovirus‘ and ‘winter vomiting bug’ Google search interest data

(figure 4.6). However, it does not appear to be as well fitted to the Google searches

for ‘diarrhoea + vomiting’.

The week of season onset calculated from the ‘diarrhoea + vomiting’ Google search

interest data always came after the week of season onset calculated from the labora-

tory data (range: +1 to +15 weeks) (figure 4.6). The week of season onset calculated

from the ‘norovirus’ and ‘winter vomiting bug’ Google search terms data was more

varied: the season onset from both search terms preceded the season onset from

lab data during the 2010-2011 and 2011-2012 seasons (range: −4 to −1 weeks), but

came after the lab data season onset week otherwise (range: +1 to +5 weeks). The

week of peak activity from the ‘norovirus’ and ‘winter vomiting bug’ search term

data preceded the peak week in the laboratory data in all except the 2012-2013

season (range: −14 to +1 weeks). The peak week in the ‘diarrhoea + vomiting’

Google search term data was more variable.

In conclusion, from this analysis there does not seem to be much consistency in

whether the peak and onset weeks from the Google search interest data precede or

follow the peak and onset weeks seen in the laboratory data, and there is variability

in the amount they each lag or lead from year to year.



CHAPTER 4. ONLINE SURVEILLANCE OF GASTROENTERITIS 116

 Sep 
2007

 Mar
2008

 Sep
2008

 Mar 
2009

 Sep
2009

 Mar
2012

 Sep
2010

 Mar
2011

 Sep
2011

 Mar
2012

 Sep
2012

 Mar
2013

 Sep
2013

%
 o

f y
ea

rly
 G

oo
gl

e 
   

 s
ea

rc
h 

vo
lu

m
e

%
 o

f y
ea

rly
 la

b 
re

po
rt

s
%

 o
f y

ea
rly

 G
oo

gl
e

se
ar

ch
 v

ol
um

e
%

 o
f y

ea
rly

 G
oo

gl
e

se
ar

ch
 v

ol
um

e
%

 o
f y

ea
rly

 G
oo

gl
e

se
ar

ch
 v

ol
um

e

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

Norovirus lab reports

Norovirus search volume

Winter vomiting bug search volume

Gastroenteritis search volume

Diarrhoea+vomiting search volume

Figure 4.3: Smoothed, standardised laboratory and Google search interest data



CHAPTER 4. ONLINE SURVEILLANCE OF GASTROENTERITIS 117

−10 −5 0 5 10

−
1.
0

−
0.
5

0.
0

0.
5

1.
0

Lag

C
ro
ss
−
co
rr
el
at
io
n

Maximum: 0.702, 0 weeks

Lab data and 
norovirus Google searches

−10 −5 0 5 10

−
1.
0

−
0.
5

0.
0

0.
5

1.
0

Lag

C
ro
ss
−
co
rr
el
at
io
n

Maximum: 0.668, 2 weeks

Lab data and 
Winter vomiting bug Google searches

−15 −10 −5 0 5 10 15

−
1.
0

−
0.
5

0.
0

0.
5

1.
0

Lag

C
ro
ss
−
co
rr
el
at
io
n

Maximum: 0.405, 2 weeks

Lab data and 
gastroenteritis Google searches

−10 −5 0 5 10

−
1.
0

−
0.
5

0.
0

0.
5

1.
0

Lag

C
ro
ss
−
co
rr
el
at
io
n

Maximum: 0.790, 0 weeks

Lab data and 
diarrhoea+vomiting Google searches

Figure 4.4: Cross-correlations of the norovirus laboratory data with the Google
search volume datasets annotated with the maximum correlation and lag at which
this is seen. Note that here a lag of −1 weeks corresponds to laboratory data at
week 0 being compared with search engine data at week 1 (for example, trends are
seen first in laboratory data and secondly in search engine data a week later). A lag
of 1 week means laboratory data at week 1 being compared with search engine data
at week 0 (for example, trends are seen first in search engine data and secondly in
laboratory data a week later).



CHAPTER 4. ONLINE SURVEILLANCE OF GASTROENTERITIS 118

0 20 40 60 80 100 120

−
1.
0

−
0.
5

0.
0

0.
5

1.
0

Lag

A
ut
o−
co
rr
el
at
io
n

Norovirus Google searches

50 weeks

0 20 40 60 80 100 120

−
1.
0

−
0.
5

0.
0

0.
5

1.
0

Lag

A
ut
o−
co
rr
el
at
io
n

Winter vomiting bug Google searches

51 weeks

0 20 40 60 80 100 120

−
1.
0

−
0.
5

0.
0

0.
5

1.
0

Lag

A
ut
o−
co
rr
el
at
io
n

Gastroenteritis Google searches

0 20 40 60 80 100 120

−
1.
0

−
0.
5

0.
0

0.
5

1.
0

Lag

A
ut
o−
co
rr
el
at
io
n

Diarrhoea + vomiting Google searches

50 weeks
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4.2.4 Web page view data: Wikipedia

The data

Wikipedia makes freely available data on the number of times each page was loaded.

Until January 2016 this was via the website stats.grok.se but is now via the

toollabs project pageviews (https://tools.wmflabs.org/pageviews). Note that

this analysis was completed before the pageviews tool was available.

We downloaded daily page view data from 15th July 2007 to 7th July 2013. Data

are available from 10th December 2007 [210]. However, norovirus typically has a

peak of activity in the winter therefore we only collected data for which the full

winter season was available. No data are available from 13th July 2007 to 31st July

2007 [210]. However, as this fell outside of the typical norovirus season we recorded

these dates as zeros, and we do not feel this impacted too greatly on the analysis.

The data were aggregated to weekly levels by summing the page views over seven

days (Monday - Sunday).

Note that from these page view statistics we cannot infer anything about why the

page was loaded, how long the user remained on the page, or whether they read any

of the content. However, these counts of page views have been previously used as a

proxy for human views of the page by Generous et al. (2014, [211]).

In order to account for the changing use of Wikipedia over time, we normalised the

time series of views for each Wikipedia page by dividing by the number of times the

main Wikipedia page (https://en.wikipedia.org/wiki/Main_Page) was viewed

in the same time period.

We analysed the page view statistics of the following Wikipedia pages: norovirus,

Norwalk virus, gastroenteritis, diarrhea, and vomiting. We chose these using the

same approach detailed by Generous et al. (2014, [211]): articles linked from the

page for the disease itself were listed and those on relevant symptoms, synonyms,

and epidemiology were chosen along with the page on the disease itself. However, we

additionally added vomiting, the second major symptom of norovirus, even though

this was not identified by the structured method. Note that norovirus was originally

named Norwalk virus, after an outbreak in Norwalk, Ohio in the U.S., and that the

name Norwalk virus is sometimes used synonymously with the name norovirus.

A Wikipedia redirect page has no content itself but instead just points to another

stats.grok.se
https://tools.wmflabs.org/pageviews
https://en.wikipedia.org/wiki/Main_Page
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article (the target page). These account for synonyms and misspellings [211]. How-

ever, when a redirect page is used a page view is not registered for the target page,

but instead for the redirect page. The sum of the redirect page views and the target

page views should give the total number of target page views. However, as stated by

Generous et al. (2014, [211]), “reliably mapping redirects to targets is a non-trivial

problem because this mapping changes over time”. Therefore, we do not consider

redirects in this analysis.

Note that the introduction of the new toollabs Pageviews project includes the

Redirect Views tool which gives page view statistics of a page and all its redirects.

However, this was not available at the time of the analysis and only gives data from

July 2015 so cannot even be retrospectively used to re-do this analysis.

Similarity of all data

The page view data were standardised to account for longer term trends. As before,

each year of data (from week 29 of one year to week 28 of the next) was treated

separately. In the standardised time series, the number of page views for each week

was expressed as a proportion of the total number of page views in the entire year.

This was additionally smoothed using a five week moving average. Note that this

smoothing was only applied for this one test of similarity; it is not used throughout

the rest of this section. This, again, follows the methodology used by Edelstein et

al. [206].

Visually, the laboratory data and page view data from the norovirus and Norwalk

virus pages were most similar due to the shared obvious annual peaks (figure 4.7).

The data for the gastroenteritis page showed some small seasonality. The data from

the vomiting and diarrhoea pages appear very similar to each other, but without

regular annual spikes in activity do not appear similar to the norovirus lab reports.

Indeed, these observations are corroborated by the cross-correlations (figure 4.8).

The highest correlation is between the lab data and the views of the norovirus page,

with the Wikipedia data leading the lab data by one week. There are additionally

reasonably high correlations between the norovirus laboratory data and both the

Norwalk virus page views and the gastroenteritis page views at leads of 2 and 3

weeks respectively.
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Timing of the season

The laboratory data demonstrate considerable seasonality (section 4.2.2). To con-

tinue our analysis, we will restrict ourselves to just those Wikipedia pages that also

demonstrate annual seasonality. The autocorrelation of the Wikipedia page view

data shows that the views of the norovirus and Norwalk virus pages are seasonal

and that the views of the gastroenteritis page are perhaps weakly seasonal (fig-

ure 4.9). However, there is no clear seasonality in the views of the vomiting and

diarrhoea pages. We, therefore, continue this analysis with just the norovirus and

Norwalk virus page view datasets.

Again, we discuss the timing of the season using the onset week, calculated as the

first week to exceed the Serfling threshold, and the peak week, defined as the week

with most activity. As part of the Serfling method, a harmonic regression model

was fitted to the out of season data. There appears, through visual inspection, to

be a good fit to both the out-of-season (June to October) norovirus and Norwalk

virus Wikipedia page view data (figure 4.10).

For all but the 2012-2013 season, the norovirus Wikipedia page view peak week

coincided with or preceded the norovirus lab data peak week. However, the range

of the difference was reasonably large (range: −11 to 0 weeks). The onset week

from the norovirus page views sometimes preceded and sometimes followed the lab

report onset week. This was the same for the Norwalk virus peak week. Finally,

the Norwalk virus page view onset week always followed the norovirus lab reports

onset week by at least 7 weeks (range: +7 to +10 weeks).

In conclusion, there is no evidence of an association between whether outbreaks seen

in the page view data precede or follow the outbreaks seen in the lab report data

based on the current methodology used to analyse these datasets.

Severity of the season

The severity of the season was assessed by calculating the percentage of reports or

page views on the peak week of each season and by also calculating the percentage of

the season’s reports or page views considered as excess (above the Serfling threshold).

The first measure gives an idea of the ‘sharpness’ of the epidemic peak and the

second gives a measure of the total size of the seasonal outbreak. These are similar
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Table 4.1: Two measurements of the severity of each season. The peak column
gives the percentage of the reports or searches on the peak week of the season. The
outbreak column gives the percentage of the reports or searches above the Serfling
threshold.

Lab Reports (%) Norovirus page views (%) Norwalk virus page views (%)

Peak Outbreak Peak Outbreak Peak Outbreak

2008-09 6.272 18.616 5.728 5.578 3.848 0.394

2009-10 5.756 37.485 4.932 10.522 3.917 0.017

2010-11 5.284 11.153 4.057 10.753 4.978 0

2011-12 5.927 13.016 2.748 37.986 4.874 0.278

2012-13 5.798 16.445 2.581 42.613 1.249 64.490

to measures used by Olson et al. (2013, [227]) to assess epidemic intensity for seasonal

influenza.

Generally, the peak week consisted of between 3% and 6% of the season’s reports

or page views (table 4.1). In particular, the peak week percentage of norovirus

laboratory reports was very consistently between 5.3% and 6.3% of the season’s

total. The Wikipedia page view peak week percentages were not as consistent.

The season with maximum severity, as measured by the peak week, coincided for

the norovirus lab reports and norovirus Wikipedia page views. The peak week

percentage of Norwalk virus Wikipedia page views was particularly low during the

2012-13 season. This was due to a large number of weeks each having a large number

of views: a broad rather than ‘peaky’ outbreak.

The total outbreak severity in the Norwalk virus page views was very low except for

in the 2012-13 season. This season also had the most severe outbreak in norovirus

page views. Conversely, this was not a severe season for the outbreak in norovirus

lab reports. The most severe outbreak for the norovirus lab reports was during the

2009-10 season. This was not a remarkable year in either the norovirus or Norwalk

virus Wikipedia page views.

Overall, the most severe norovirus laboratory report seasons did not correspond

with the most severe Wikipedia page view seasons and vice-versa using this analysis

method.
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Figure 4.8: Cross-correlations between the norovirus lab data and the Wikipedia
page views annotated with the maximum correlation. Note that here a lag of −1
weeks corresponds to laboratory data at week 0 being compared with page view
data at week 1 (for example, trends are seen first in laboratory data and secondly
in the page view data a week later). A lag of 1 week means laboratory data at week
1 being compared with page view data at week 0 (for example, trends are seen first
in page view data and secondly in laboratory data a week later).
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Figure 4.9: Autocorrelation plots of the Wikipedia page view data in order to
identify periodicities (lag in weeks).
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4.2.5 Forecasting and nowcasting

In this section we will describe attempts to incorporate these new data sources into

statistical forecasts or nowcasts of norovirus laboratory reports. For comparison,

we also implement forecasting methods that do not make use of the additional data

sources. We would like to see if the additional data improve our forecasting/now-

casting ability.

Predictive models that do not use the online datasets will forecast the next week

of laboratory data. However, predictive models that use the online datasets will

nowcast the next week of laboratory data as the current week of online data will be

used for prediction. This is because there is typically a delay in when the laboratory

data is available, due to the time taken to collate samples and test them, whereas

the online data is available is near-to real time.

Näıve model

Simple forecasting methods are computationally cheap and can be surprisingly effec-

tive [228]. Therefore, we implement the most simple forecasting model for seasonal

data as a comparison for the more complex models. The seasonal näıve model is

a simple forecasting model for seasonal data (described by Hyndman and Athana-

sopoulos 2013, [228]). Each forecast value is equal to the previous observed value for

the same season. The norovirus laboratory data are seasonal with a 52 week period.

Therefore, the näıve forecast for week i is the observed value from week i−52. This

model does not make use of the additional online data.

Reduced ARIMA model

The second method we consider that does not use the additional online data is an

ARIMA model, as introduced in section 4.2.1. ARIMA models are widely used in

time series forecasting [228]. We use the auto.arima function from the forecast

package in R to fit this model [224].
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Seasonal reduced ARIMA model

The next method we consider that does not use the additional online data is a

seasonal ARIMA model (section 4.2.1) with period 52 as we have weekly data and a

clear annual seasonality. We again use the auto.arima function from the forecast

package in R to fit this model, however we force D = 1 and m = 52 to ensure

seasonality [224].

Fourier terms with ARIMA errors

The final method that we consider that does not use the additional online data but

does make use of the fact we know there is annual seasonality is a regression with

Fourier terms and ARIMA errors (section 4.2.1). We do this because the seasonal

period (52 weeks) is quite long. We pick the number of Fourier terms by minimising

the AIC and, again, the orders of the ARIMA model are chosen with the auto.arima

function from the forecast package in R.

Online only model

The most simple way to use the Wikipedia page view and Google search interest

datasets to nowcast the norovirus laboratory data is to use a linear multiple regres-

sion model, as per Generous et al. (2014, [211]). We fit the linear regression model

on historical laboratory data and use the current week’s Wikipedia and Google data

to give an estimate of the current number of lab reports. We additionally use a fixed

effect (dummy variable) to distinguish the two weeks of holiday over Christmas and

New Year from the rest of the year, based on the observation in section 4.2.2 that

these weeks have fewer reports. We use the lm function from R to fit this model

[219].

Full ARIMA model

A more complex way to incorporate the search interest and page view datasets into a

predictive model is to include them as exogenous variables in an ARIMA model (as

defined in section 4.2.1). We also include the same fixed effect for the Christmas and

New Year holiday period as described in the online only model section. We make use
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of the analysis of sections 4.2.3 and 4.2.4 to incorporate the exogenous variables in

an educated way; we only include those variables with a maximum cross-correlation

of at least 0.6, and we include them at the lead which gave this maximum. Again,

we use the auto.arima function from the forecast package in R to fit this model.

Results

The reduced ARIMA, seasonal reduced ARIMA, Fourier model with ARIMA errors,

online only, and full ARIMA models were fitted to rolling subsets of data so that

time series cross-validation could be used to assess their performances. Initially

these subsets were of two years. For each two year window and for each model a

prediction was obtained (figures 4.12 and 4.13). The orders of the fitted ARIMA

models are all quite small (figure 4.11); each model is relatively simple. However,

note that they are not always consistent; a slightly different model is fitted for each

rolling subset of training data. It appears that many of the predictions were within

the 80% prediction interval. To formally compare the predictions to the actual data,

the absolute errors between the predictions and the data points were calculated. The

models were compared by computing the mean of these absolute errors (table 4.2).

A better model has a smaller mean absolute error (MAE).

The näıve and online only models gave the largest MAEs. The reduced and full

ARIMA models had similar, and the smallest, MAEs. The seasonal reduced ARIMA

model and the model with Fourier terms had intermediate MAEs. Therefore, we

conclude that including differencing and previous values gives a better prediction

of the number of norovirus lab reports, but that also explicitly including annual

seasonality and information from the online data sources does not change the pre-

dictive ability of this kind of model. The mean number of norovirus reports per

week during the time period we made forecasts was 148, and the maximum was 494.

Therefore, an average error of around 40 norovirus cases is reasonably small.

We also considered other lengths of training period. These gave similar results.

However for a training period of just one year, the full ARIMA model did not

perform as well as the reduced ARIMA model (MAE full ARIMA = 56.4, MAE

reduced ARIMA = 48.4 for one year training period).
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Figure 4.11: The orders of the ARIMA models compared for forecasting or now-
casting the number of norovirus lab reports. From top to bottom: reduced ARIMA
model, seasonal reduced ARIMA model, Fourier model with ARIMA errors, full
ARIMA model.
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Figure 4.12: The number of norovirus lab reports (black dots) with the predictions
from the forecasting/nowcasting models (black lines) based on fitting to the previous
two years of data with 80% (red) and 95% (blue) prediction intervals. From top
to bottom: näıve model, reduced ARIMA model, seasonal reduced ARIMA model,
Fourier model with ARIMA errors. Figure continued on next page.
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Table 4.2: Mean absolute error of the models for a training period of two years

Model Mean absolute error (MAE)

Näıve 69.5
Reduced ARIMA 42.8
Seasonal reduced ARIMA 54.0
Fourier terms with ARIMA errors (reduced) 47.1
Online only 63.5
Full ARIMA 44.0
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Figure 4.13: Figure continued from previous page. The number of norovirus lab
reports (black dots) with the predictions from the forecasting/nowcasting models
(black lines) based on fitting to the previous two years of data with 80% (red)
and 95% (blue) prediction intervals. From top to bottom: online only model, full
ARIMA model.
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4.2.6 Search engine queries and page view data: Discussion and

conclusions

We have found that data from Google search interest and Wikipedia page views

have some similarity to the time series of norovirus laboratory reports. However, no

one particular time series from these online datasets is well matched to all aspects

of the laboratory data. The addition of these new data to forecasting models do not

improve the predictive ability and simply result in more complex models. In con-

clusion, based on this investigation data from Google search interest and Wikipedia

page views will not add value to norovirus laboratory surveillance.

The idea to do this analysis, and the majority of the work described in this sec-

tion, was completed in spring and summer 2014. This field has progressed rapidly

since then. In 2014 this work was more novel than it may, perhaps, be considered

now. Indeed, the first key papers using Wikipedia page view data for healthcare

surveillance were published in April and November 2014 [210, 211].

Many analyses of internet based data for surveillance of an illness compare a novel

data source to existing traditional data (the ground truth, described in section 4.2.2)

with the aim of identifying data and models that will give earlier and easier detection

of changes in patterns. However, this assumes that the ground truth accurately

reports the levels of illness in the population of interest. In some limited cases, for

example severe notifiable diseases with specific syndromes or for surveillance of a

small, well monitored population, this may be true. However, we do not feel the

norovirus laboratory dataset is a good ground truth dataset for the total burden of

norovirus.

In particular, positive norovirus laboratory reports only reflect a small proportion of

community cases [229, 230]. We expect this to consist of the most severe cases, cases

associated to outbreaks undergoing investigation, and cases in at risk populations

such as the elderly and children. These cases may not have the same incidence

patterns over time as the full burden of norovirus. Additionally, there are anecdotal

reports of sampling and reporting behaviours for norovirus changing over time. For

example, once doctors are aware that the norovirus season has begun they may

be less likely to request laboratory confirmation of symptoms. This will create an

artificially more peaky dataset.
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Further work: search engine queries and page view data

Immediate further work on this study could be to consider a wider range of search

terms and Wikipedia pages; we only considered here a limited selection. However,

this should be done in a principled way so that only terms connected to norovirus

are included. The process of simply considering all search terms and looking for a

good match is flawed and has faced criticism when used in the past for influenza

surveillance by Google Flu, for example from Lazer et al. (2014, [200]). In particular,

this is a challenge when the strongest signal in the data is a winter peak, like we

have in the norovirus laboratory data, as there are many winter seasonal activities.

The Serfling method, with a harmonic regression model, was used to define a baseline

activity level for norovirus and a threshold over which we consider to be outbreak

activity. This was fitted to the out-of-season data only, and upon visual inspection

fitted reasonably well in most instances. This was not the most simple option for

fitting a baseline, for example a constant baseline could have been defined as the

mean of all out-of-season data. However, we could do further work to improve this

model. For example, we could more rigorously assess the fit of the baseline to the

out-of-season data in order to be able to formally describe the performance of the

baseline. We could additionally add in more harmonic terms to the regression model

to take into account more seasonality.

We were not able to compare Google search interest data over multiple years as the

data are only available weekly for one year at a time and each download is scaled

to be between 0 and 100. However, if we did want some measure of which seasons

were measured as severe from this data, we could analyse monthly data which are

available for the full time period of interest.

There are further forecasting methods that we have not considered, such as ex-

ponential smoothing and neural network models. Additionally, for a more formal

comparison of forecasting methods we could have used a statistical test, such as the

Diebold-Mariano test, to compare forecast errors. This would have also allowed us

to formally test many lengths of forecast window. Finally, we only considered now-

casts or forecasts one week ahead. We could investigate the ability of the different

models to forecast further into the future, and in particular we suspect that the

models with explicit annual seasonality may perform well in this context.

Finally, we believe that using these analysis methods with page view data from
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the NHS website will give interesting results as this is a trusted source of healthcare

information in the UK. However, this requires collaborative efforts that were beyond

the scope of this PhD.

Data weaknesses

We believe that the main weaknesses of this study were due to restricted access to

these datasets.

PHE makes the weekly number of positive laboratory test results for norovirus

publicly available online. However, there are some periods of missing data in the

public reports. We used the most simple method to overcome this, by estimating

missing data points with a linear interpolation between the nearest non-missing

data points. However, as the missing data points are clustered in time, this leads

to periods of estimated unrealistic linear activity. Fortunately however, most of the

missing data points are not in the main norovirus outbreak season.

Google does not make raw data available. There were mismatches in both timing

and location between the Google data we could access and the laboratory data.

As previously discussed, the Google week begins on Sunday and the laboratory

week begins on Monday. Additionally, the Google data were restricted to searches

within the UK whereas the laboratory data covers reports from England and Wales.

However, as the other parts of the UK have a similar climate and social mixing to

England and Wales we suspect that the patterns of disease in these areas will be

similar to those of England and Wales.

There was, unfortunately, no location information associated with the Wikipedia

data, as previously described. This is a current major limitation of using these data

for disease surveillance. McIver et al. (2014, [210]) reported that 41% of Wikipedia

English language article views come from the U.S. This certainly will have had some

impact on the results of this analysis.

A full discussion of the values of open data and data sharing within disease surveil-

lance is beyond the scope of this PhD.
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Conclusions: search engine queries and page view data

We have demonstrated that data from Google Trends and Wikipedia page views do

not currently add value to forecasts of the norovirus laboratory time series. However,

without knowing the motivation of the people creating these data, and without an

actual measure of norovirus incidence for comparison, we cannot say whether these

data make any other measurement of norovirus burden.
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4.3 Surveillance of gastroenteritis using an online par-

ticipatory influenza surveillance system

In the remainder of this chapter we will investigate reports of gastroenteritis from

the community that may have not been reported to healthcare services, using the

online participatory influenza surveillance system Flusurvey. This will extend our

picture of gastroenteritis burden beyond that which is measured by existing PHE

surveillance systems.

Many aspects of disease surveillance in the UK are considered world leading [231].

For the surveillance of gastroenteritis, there is syndromic surveillance of consulta-

tions with general practitioners (GPs) and national laboratory surveillance systems

that record the number of stool samples that test positive for norovirus (reportedly

the leading cause of gastrointestinal disease in the UK [232]).

However, the incidence of gastroenteritis is underestimated by these surveillance

systems since not everyone presents to healthcare services when they have gastroin-

testinal symptoms [192, 230]. It is acknowledged that those who do seek healthcare

advice for gastroenteritis, and get reported to national surveillance, is a biased sam-

ple of the population [230]. For example, patients with more severe illness, recent

foreign travel, and lower socio-economic status are over-represented in gastroenteri-

tis cases reported to GPs (IID1 study, 2003, [229]). Additionally, it is generally

acknowledged that healthcare facilities are used more by young children, and that

men can be more reluctant to seek professional healthcare than women [233–235].

Therefore, in use in order to record cases of gastroenteritis in patients who do not

actively seek healthcare services it is necessary to extend the current surveillance

systems. This is particularly important for gastroenteritis which is self-limiting and

as NHS advice is to avoid going to GP services [232].

In this section we will explore reports of gastroenteritis made by the Flusurvey

cohort. These are reports of gastroenteritis from the community and will not neces-

sarily have been reported to any other national surveillance system. We will compare

these reports with positive laboratory specimens for norovirus and with gastroen-

teritis syndrome reports from GP based syndromic surveillance systems. We start

with a review of existing studies and of the statistical methods we will use.
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4.3.1 Flusurvey: Background and methods

Background: Community cohort studies

Community cohort studies can give an estimate of the incidence of disease in the

community. In a community cohort study a sample of the population is recruited

for monitoring over time [236]. A key advantage of community cohort studies is that

cases of illness are recorded even if individuals do not present to healthcare services.

Cohort studies have been used in all areas of healthcare. For example, to measure

the prevalence of urinary incontinence [237], the mortality rate of individuals with

schizophrenia [238], and future healthcare attendances of patients with pneumonia

[239].

However, recruiting, regularly contacting, and maintaining the cohort can be a costly

and time-consuming endeavour [240, 241]. Therefore, large-scale, prospective com-

munity cohort studies of gastroenteritis are uncommon, particularly those measuring

community incidence through laboratory confirmation. The first and second studies

of infectious intestinal disease in the community (IID1 and IID2) were, however,

two such studies in the UK [36, 37]. IID1 was completed during the 1990s and

consisted of, among several other related studies, a population based community

cohort study with weekly postal reports of either no symptoms or stool samples for

laboratory testing for six months. IID2 was completed during the first decade of the

21st century. It again consisted of several related studies including a retrospective

community cohort telephone survey and a prospective weekly community cohort

study with monitoring carried out via email or post for one year and stool samples

taken for laboratory testing upon the onset of symptoms. Using the data collected

from the studies, estimates were made of the burden of infectious intestinal disease

in England and the factor by which the number of cases identified by surveillance

systems should be multiplied to estimate the actual number of infections in the

community. Similar studies have also taken place outside of the UK. For exam-

ple, Sensor was a population based cohort study on gastroenteritis incidence in the

Netherlands [242].

Studies such as those described above provide one-off estimates of disease preva-

lence as opposed to continual, real time (or near-to real time) disease surveillance.

In the last decade, community cohort surveys using a regularly completed online

questionnaire have become more common. Members of the general public volunteer

to join and regularly report symptom information, typically weekly. The symptom
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reports are used to infer the presence of a particular illness [243].

These systems still have the benefit of a traditional community cohort study, in so

much that data will be collected from cases that do not necessarily report to health-

care services, but due to having no laboratory confirmation and being fully online

they are less costly and more timely [243]. Additionally, validation checks can be

incorporated into the questionnaire so that important fields are not left empty, data

are collected electronically so do not need to be entered manually after paper collec-

tion, and participants have been reported to typically reply rapidly to email requests

[244, 245]. There are, of course, downsides to these systems. The people that chose

to take part may not be representative of the general population (in particular,

children and the elderly are less likely to use the internet) and disease presence can

never be confirmed as the only data collected are self-reported symptoms [243].

While there is no long-running web-based cohort study primarily measuring the

community incidence of self-reported gastroenteritis in the UK, Flusurvey (https:

//flusurvey.org.uk/) is an internet-based participatory surveillance system that

has been running since 2009 to monitor ILI in the UK [246, 247]. Participants are

recruited into Flusurvey for each influenza season (November to April). Any member

of the UK public can take part. Participants are initially required to complete

a background questionnaire and then each week an email is sent asking them to

indicate which, if any, of a given list of symptoms they had experienced in the

last week. Participants are asked to submit an empty symptom survey if they had

no symptoms. The symptoms diarrhoea and vomiting are included within these

weekly surveys, but as of now these data have not been collated or analysed. Any

Flusurvey participants reporting symptoms are additionally asked if they sought

healthcare advice [233]. These data can be used to give an estimate of how to scale

traditional healthcare based surveillance systems to give an estimate of community

burden. Further full details of the Flusurvey system are reported elsewhere [246].

Flusurvey is part of a consortium of similar online participatory ILI surveillance

systems, called Influenzanet, covering approximately 10 countries in Europe [248].

Similar systems also exist in Australia [249], Mexico (http://reporta.c3.org.

mx/), and in the U.S. [250]. The first system of this type designed for surveillance of

an illness other than ILI was Dengue Na Web, based in Brazil, to monitor dengue

activity [243]. SaludBoricua, in Puerto Rico, monitors dengue, ILI, leptospirosis,

and chikungunya symptoms simultaneously, demonstrating the flexibility of these

systems to monitor multiple illnesses (https://saludboricua.org).

https://flusurvey.org.uk/
https://flusurvey.org.uk/
http://reporta.c3.org.mx/
http://reporta.c3.org.mx/
https://saludboricua.org
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However, these systems do not seem to be widely used for gastroenteritis surveil-

lance. We have only found one such example (published years after the analysis

reported in this chapter had taken place); the Influenzanet system in Sweden was

used to estimate the community incidence of gastrointestinal illness, as well as ILI

and acute respiratory illness (Pini et al. 2017, [251]). Data from this online system

were compared to data from search terms to a medical website, reasons for calling

a medical advice hotline, and laboratory notifications for norovirus using Spearman

correlation coefficients.

Method: non-parametric bootstrap confidence intervals

Non-parametric bootstraps can be used to compute confidence intervals on param-

eters, such as means, estimated from data [252, 253].

Given a collection of data points, x1, ..., xn, a bootstrap sample, x∗1, ..., x
∗
n, is simply

obtained by randomly sampling n times with replacement from the original data

points. To calculate, for example, a 95% confidence interval on the mean of x1, ..., xn

we need an estimate for how much the distribution of the sample mean x varies

around the population mean µ, that is δ = x−µ. In a bootstrap confidence interval,

δ is approximated by δ∗ = x∗ − x, where x∗ is the sample mean computed from a

bootstrap sample. We compute many bootstrap samples and δ∗ for each. The 2.5th

and 97.5th percentile of the collection of δ∗ give the confidence interval.

4.3.2 Gastroenteritis from Flusurvey

Gastroenteritis reports

An extraction of the cleaned Flusurvey dataset was provided for this analysis. The

data were cleaned in the same way as in previous analyses of Flusurvey reports

(see, for example Tilston et al. 2010, [246]). The first symptom report of each

participant was excluded and only participants who then had submitted at least

two further symptom reports were included in the analysis. This is to reduce the

effect of participants who sign up just in response to their current symptoms.

A participant was considered active on any week between their first and last symp-

tom reports in a season. Therefore, on any given week, the number of active partic-
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Figure 4.14: The number of active Flusurvey participants each week for each
season.

ipants was not necessarily equal to the number of symptom reports submitted. We

used the number of active participants as the denominator for computing incidence

rates. We do this even though participants were asked to submit empty symptom

reports if they had no symptoms as it is probable that participants were more mo-

tivated to complete reports on those weeks when they experienced symptoms. This

assumption has been used in previous analyses of Flusurvey data [246].

Data were provided for the 2011/12 season (week beginning 07/11/2011 to week

beginning 26/03/2012), the 2012/13 season (week beginning 19/11/2012 to week

beginning 01/04/2013), the 2013/14 season (week beginning 11/11/2013 to week

beginning 31/03/2014), and the 2014/2015 season (week beginning 17/11/2014 to

week beginning 30/03/2015).



CHAPTER 4. ONLINE SURVEILLANCE OF GASTROENTERITIS 143

During the 2011/12 season the mean number of active Flusurvey participants per

week was 1423 (95% confidence interval (CI) [1307, 1516]). The was much lower than

the subsequent three seasons, which had on average 2601 (95% CI [2237, 2886]), 3034

(95% CI [2843, 3193]), and 2877 (95% CI [2495, 3158]) active participants per week

respectively (figure 4.14). The number of active participants was reasonably stable

each season, except for a steep increase, and drop off, in the first, and last, few

weeks respectively.

The suggested standard symptom-based case definition of gastroenteritis given by

Majowicz et al. (2008, [1]) is “an individual with three of more loose stools, or any

vomiting, in any 24 hours” and excluding those with pre-existing medical condi-

tions, for example irritable bowel syndrome, and causes due to drugs, alcohol, or

pregnancy. We are unable to assign causes to any symptoms recorded by Flusurvey

participants. Therefore we could only use an adjustment of this definition of gas-

troenteritis. We classified all Flusurvey participants who recorded at least one of the

symptoms diarrhoea and vomiting in a symptom survey as reporting gastroenteritis.

The mean weekly number of symptom surveys classified as gastroenteritis was 16

(95% CI [14, 18]) during 2011/12, 36 (95% CI [30, 43]) during 2012/13, 35 (95% CI

[29, 39]) during 2013/14, and 33 (95% CI [27, 39]) during 2014/15 (figure 4.15). For

comparison, the mean weekly number of Flusurvey symptom surveys classified as

ILI was 35 (95% CI [30, 41]) during 2011/12, 71 (95% CI [58, 83]) during 2012/13,

and 68 (95% CI [58, 77]) during 2013/14, and 76 (95% CI [63, 88]) during 2014/15.

In order to take into account changes in the size of the reporting cohort we com-

puted the gastroenteritis incidence rate from Flusurvey using the number of active

participants each week (figure 4.16). The gastroenteritis rate quickly increased to

a peak rate during December, and then remained at either around this rate, or

slightly lower, for the rest of the season. The average gastroenteritis incidence rate

from Flusurvey was 0.011 (95% CI [0.009, 0.012]) in 2011/12, 0.014 (95% CI [0.012,

0.016]) in 2012/13, 0.011 (95% CI [0.010, 0.013]) in 2013/14, and 0.011 (95% CI

[0.009, 0.013]) in 2014/15. In 2011/12 the maximum rate occurred at week 9 of the

Flusurvey season. In 2012/13 it was week 20 and in both 2013/14 and 2014/15 it

was week 4.

Upon registration, Flusurvey participants completed a background questionnaire

giving their age. Based on this, we calculated the gastroenteritis incidence rate by

age group (under 19 years, 19-45 years, 46-65 years, and over 65 years) (figure 4.17



CHAPTER 4. ONLINE SURVEILLANCE OF GASTROENTERITIS 144

0

20

40

60

31
/1

0/
11

14
/1

1/
11

28
/1

1/
11

12
/1

2/
11

26
/1

2/
11

09
/0

1/
12

23
/0

1/
12

06
/0

2/
12

20
/0

2/
12

05
/0

3/
12

19
/0

3/
12

02
/0

4/
12

Week beginning

F
lu

su
rv

ey
 g

as
tr

oe
nt

er
iti

s 
re

po
rt

s

(a) 2011/12 season

0

20

40

60

26
/1

1/
12

10
/1

2/
12

24
/1

2/
12

07
/0

1/
13

21
/0

1/
13

04
/0

2/
13

18
/0

2/
13

04
/0

3/
13

18
/0

3/
13

01
/0

4/
13

Week beginning

F
lu

su
rv

ey
 g

as
tr

oe
nt

er
iti

s 
re

po
rt

s

(b) 2012/13 season

0

20

40

60

04
/1

1/
13

18
/1

1/
13

02
/1

2/
13

16
/1

2/
13

30
/1

2/
13

13
/0

1/
14

27
/0

1/
14

10
/0

2/
14

24
/0

2/
14

10
/0

3/
14

24
/0

3/
14

07
/0

4/
14

Week beginning

F
lu

su
rv

ey
 g

as
tr

oe
nt

er
iti

s 
re

po
rt

s

(c) 2013/14 season

0

20

40

60

24
/1

1/
14

08
/1

2/
14

22
/1

2/
14

05
/0

1/
15

19
/0

1/
15

02
/0

2/
15

16
/0

2/
15

02
/0

3/
15

16
/0

3/
15

30
/0

3/
15

Week beginning

F
lu

su
rv

ey
 g

as
tr

oe
nt

er
iti

s 
re

po
rt

s

(d) 2014/15 season

Figure 4.15: The number of Flusurvey symptom reports classified as gastroenteri-
tis each week and for each season.

with averages by season given in table 4.3). Those aged under 19 had the highest

gastroenteritis incidence rate recorded by Flusurvey (figure 4.17). In particular

during November and December 2012 the rate in this age group was nearly double

the Flusurvey gastroenteritis rate in any age group at any other time. The over 65

years age group had a lower incidence rate than the other age groups.

Proportion seeking healthcare advice

Flusurvey participants reporting any symptoms were asked subsequent questions on

whether they contacted a medical professional. This included contact with GP ser-

vices, out of hours services, or hospital services either by telephone, on the internet,

or in person. In order to calculate the proportion of gastroenteritis cases that sought
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Table 4.3: The average gastroenteritis incidence rate for Flusurvey participants by
age group and for each season.

Season Age group Mean rate (95% CI) Maximum Week of
(years) rate maximum rate

2011/12 Under 19 0.010 [0.004, 0.018] 0.067 8
19 - 45 0.013 [0.011, 0.015] 0.024 16
46 - 65 0.009 [0.007, 0.011] 0.018 5
Over 65 0.007 [0.005, 0.010] 0.019 20

2012/13 Under 19 0.026 [0.020, 0.033] 0.063 2
19 - 45 0.016 [0.014, 0.019] 0.025 20
46 - 65 0.012 [0.009, 0.014] 0.022 5
Over 65 0.009 [0.006, 0.011] 0.023 6

2013/14 Under 19 0.017 [0.013, 0.021] 0.033 4
19 - 45 0.014 [0.011, 0.016] 0.022 4
46 - 65 0.009 [0.007, 0.011] 0.018 16
Over 65 0.006 [0.004, 0.008] 0.019 13

2014/15 Under 19 0.017 [0.013, 0.022] 0.041 11
19 - 45 0.014 [0.012, 0.016] 0.021 4
46 - 65 0.010 [0.008, 0.011] 0.016 6
Over 65 0.006 [0.004, 0.009] 0.017 5
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(d) 2014/15 season

Figure 4.16: The Flusurvey gastroenteritis rate from dividing the number of gas-
troenteritis symptom reports by the number of active participants each week and
for each season.

healthcare advice we aggregated the responses to these questions from participants

who reported gastroenteritis symptoms. The mean percentage of gastroenteritis

cases seeking healthcare advice, and 95% bootstrapped confidence intervals, were

computed for each of the Flusurvey seasons. We were unable to stratify by age due

to small numbers of reports in some age groups.

13.9% (95% CI [12.2%, 15.7%]) of Flusurvey participants with gastroenteritis sought

medical attention (figure 4.18). A higher percentage of participants sought health-

care advice in the 2013/14 and 2014/15 Flusurvey seasons compared to the 2011/12

and 2012/13 seasons (10.9%, 95% CI [8.0%, 13.9%] in 2011/12, 11.7%, 95% CI [8.9%,

14.4%] in 2012/13, 17.3%, 95% CI [13.5%, 21.9%] in 2013/14, and 15.8%, 95% CI

[13.0%, 18.9%] in 2014/15).
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Figure 4.17: The Flusurvey gastroenteritis rate each week broken down by age
group and for each season.

4.3.3 Comparisons with other surveillance systems

We compared the gastroenteritis incidence rate measured by the Flusurvey sys-

tem with the incidence of gastroenteritis measured by three surveillance systems

maintained by PHE: the GP in-hours (GPIH) syndromic surveillance system (SSS)

(described in section 3.1.1), the GP out-of-hours (GPOOH) SSS (described in sec-

tion 3.1.1), and laboratory confirmed reports of norovirus (described in section 4.2.2).

We could only undertake this analysis for the 2012/13 and 2013/14 Flusurvey sea-

sons due to limitations in the available data from the comparison systems.

We extracted daily data on the number of consultations coded as gastroenteritis

from both the GPIH and GPOOH SSSs, and summed these syndromic indicators
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Figure 4.18: The proportion of Flusurvey participants with syndromic gastroen-
teritis that sought healthcare advice during the 2012/13 and 2013/14 seasons. The
bar gives the mean and the vertical lines indicates 95% confidence intervals on the
mean, obtained by bootstrapping.

into weekly measures for comparison with the Flusurvey gastroenteritis incidence.

From the GPOOH SSS we also extracted the total number of consultations per

day and constructed a weekly rate of gastroenteritis, to account for the changing

use of the system throughout time [95]. The gastroenteritis rate was additionally

calculated for separate age groups (<1 years, 1-4 years, 5-14 years, 15-24 years,

25-44 years, 45-64 years, 65-74 years, and 75+ years).

It is not possible to obtain a total number of consultations per day from the GPIH

system. Instead the total number of patients registered with GP services taking

part in the system was extracted and used to compute a gastroenteritis rate per

100,000 registered patients. This accounts for changes in the number of GP practices

reporting to the system each day, but cannot account for day-to-day changes in the

use of the system due factors other than illness levels. This is standard practice

within the GPIH SSS [94]. The rate per 100,000 registered patients was additionally

calculated by age group (<1 years, 1-4 years, 5-14 years, 15-44 years, 45-64 years,

65-74 years, 75+ years).

Norovirus is recognised as the leading cause of gastrointestinal illness in the UK.

This motivates comparison of the Flusurvey gastroenteritis rate with the norovirus

laboratory data. The number of norovirus laboratory reports was also extracted by

age group (<5 years, 5-64 years, 65+ years).
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We compared the datasets visually and also more formally by computing the cross-

correlation of the different measures of gastroenteritis up to plus and minus 6 weeks

(cross-correlation defined in section 4.2.1). A parametric bootstrap was used to con-

struct 95% confidence intervals on the correlation at each lag. Each value in the two

time series being compared was assumed to be a sample from a Poisson distribu-

tion, with mean at the observed value. 1000 bootstrap samples were generated from

these distributions, and the cross-correlation between each pair of bootstrap sam-

ples was used to give an estimate of the 95% confidence interval on the correlations.

This computationally intensive approach was chosen to make minimal assumptions

about the underlying latent process from which we assume the data were sampled.

A Poisson distribution was chosen as we have count data.

The general trend of the weekly gastroenteritis rate per 100,000 registered patients

from the GPIH SSS showed a peak over winter 2012/13, a drop during summer 2013

and then an increase through the rest of the data (figure 4.19 A). Over the two years,

there was a slight increase in the gastroenteritis rate given by this system, as opposed

to the Flusurvey rate which was higher during 2012/13 than 2013/14. Those aged

up to 5 years had the highest, and most seasonal, GPIH gastroenteritis rate per

registered population (figure 4.19 B). Most of the consultations for gastroenteritis

with the GPIH services were in these age groups, whereas the bulk of the adult

population (those aged 15 to 64) had only a very small rate per registered population.

There were reasonably large positive correlations between the Flusurvey gastroen-

teritis rate and the GPIH rate during the 2012/13 season at a lag of 1 and 2 weeks

(figure 4.22 A). There were no significant correlations to note between these two

rates in the 2013/14 season (figure 4.22 B). This indicates some similarity between

the two rates but no consistent patterns.

The weekly rate given by the gastroenteritis indicator from the GPOOH SSS peaked

twice during the 2012/13 winter season and was more flat throughout 2013/14 (fig-

ure 4.20 A). Overall, it was more obviously seasonal than the Flusurvey rate. The

three youngest age groups (under 1 year old, 1-4 years old, and 5-14 years old)

had the highest rates, similarly to the gastroenteritis rate from Flusurvey, however

there was a bigger difference between age groups in the GPOOH rate (figure 4.20

B). Due to restricted data access we were, unfortunately, not able to compute the

cross-correlation of the Flusurvey gastroenteritis rate with the GPOOH data.

The number of laboratory confirmed cases of norovirus was clearly seasonal with
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a peak of cases each winter (figure 4.21 A). There were significantly more cases

in 2012/13 than 2013/14. The peak laboratory confirmed norovirus incidence in

2012/13 was approximately twice as high as the peak incidence in 2013/14. The

2012/13 season incidence was highest during December, which coincided with the

high Flusurvey gastroenteritis rate in those aged under 19 years old. Most of the

cases of norovirus were in those aged 65 years and over, in contrast to the Flusurvey

gastroenteritis rate which was lowest in this age group (figure 4.21 B). There was

a very weak positive correlation between the Flusurvey gastroenteritis rate and the

laboratory confirmed norovirus incidence in 2012/13 at a positive lag and in 2013/14

at a lag of 2 weeks, indicating a very small amount of similarity between the trends

in gastroenteritis incidence measured by the two systems (figure 4.22 C and D).

4.3.4 Flusurvey data: Discussion and conclusions

The data and analysis presented here show that the online community cohort study

Flusurvey receives sufficient reports of gastroenteritis symptoms to be considered

for use for syndromic gastroenteritis surveillance.

There were some broad similarities between the Flusurvey gastroenteritis rate and

the rates from other surveillance systems. In particular, the GPOOH and norovirus

laboratory surveillance had higher incidence early in the 2012/13 winter season

than in the 2013/14 season, which corresponded with high Flusurvey gastroenteritis

rates for those aged under 19 years old. At this time a new norovirus genotype was

circulating in the UK [254, 255].

However, there are some stark differences in the age distributions and the extent

of the seasonality between the different surveillance systems of gastroenteritis. The

rate given by the Flusurvey symptom reports was less peaked than the rates seen

in other surveillance systems. The Flusurvey gastroenteritis rate in children was

higher than the rate for other age groups, although the differences between age

groups was less pronounced compared to the other surveillance systems. The clear

majority of laboratory confirmed norovirus cases were in people over 65 years, and

this was very seasonal. This may be due to laboratory confirmed cases of norovirus

primarily arising from samples collected in hospitals and nursing homes where the

elderly are over-represented [256]. We know that individuals aged between 35 and

64 years are over-represented in the Flusurvey cohort compared to the UK popu-

lation [247]. However, the Flusurvey cohort gives the opportunity for surveillance
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of this section of the population, which is potentially under-represented in other

surveillance systems.

The correlations between the Flusurvey gastroenteritis incidence rate and the other

measures of gastroenteritis were relatively low, indicating again that there are differ-

ences between the different measures. However, only we used a Poisson parametric

bootstrap for the cross-correlation computations. For future work, we will inves-

tigate whether the data were overdispersed. If so, we could use, for example, a

negative-binomial distribution for the parametric bootstrap intervals.

We estimate from the Flusurvey data that around 14% of those with gastroenteritis

symptoms seek healthcare advice. This additional knowledge of healthcare seeking

behaviour can help determine the number of community cases from existing GP

surveillance systems. For comparison, the IID2 study (Tam et al. 2012, [230]) found

that for every 1 case of infectious intestinal disease presenting to GPs there were

15.5 in the community, corresponding to a reporting percentage of 6.5%. However,

the definition of infectious intestinal disease used in the IID2 study explicitly ex-

cluded non-infectious causes of vomiting and diarrhoea, which we were unable to do.

Additionally, we included face-to-face, internet, and telephone contact with medical

professionals, including GP services, hospital services, and out of hours services, so

would expect to find a higher rate than in the IID2 study.

For an additional comparison, around 35% of Flusurvey participants reporting ILI

symptoms report seeking healthcare advice [257], but this varies over time in partic-

ular rising to 43% at the start of the 2009 H1N1 influenza epidemic [233]. Additional

reports from the 2009 epidemic in the U.S. give the percentage of persons seeking

medical care for influenza as between 42% and 52% [258]. These percentages are

larger than we found for gastroenteritis. We theorise that this may be related to

the nature of the symptoms associated with each condition.

Strengths and limitations

A strength of internet-based surveillance of gastroenteritis over existing surveillance

systems is that we are able to access people who do not actively seek healthcare

advice. This helps build a wider picture of community based infections as these

symptoms are not reported by any other means.

Additionally, it is easy and relatively cheap to expand the Flusurvey system to
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record more symptoms and to include more participants. However, there is an

acknowledged bias in the age and gender distribution of Flusurvey participants.

Women are over-represented in the cohort, and people aged under 25 and over 65

are under-represented [246].

A strength of the Flusurvey system for surveillance compared with surveillance

using GP consultations is that reports to the Flusurvey system are less affected

by changes in healthcare seeking behaviour. For example, there is a drop in the

GPIH gastroenteritis rate during the week containing Christmas, due to a change

in availability of healthcare and healthcare seeking behaviour (see chapter 3 for

details). As the Flusurvey reports are submitted online they are less liable to being

affected by this behavioural and availability change.

A limitation of using Flusurvey for gastroenteritis surveillance is that data collection

only occurs from November to April. Although there is acknowledgement of winter

seasonality in norovirus infections, the IID1 study found no seasonality in cases

of infectious intestinal disease in the community [259, 260]. However extending

the Flusurvey system to the full year could lead to participant fatigue and dropping

participation levels; the number of active participants is already seen to drop towards

the end of each season.

We were unable to assign any cause to the symptoms reported in the Flusurvey

symptom surveys. This limits the definition of syndromic gastroenteritis we are able

to use as we are unable to exclude non-infectious causes of diarrhoea and vomiting.

Due to this, we potentially record a higher incidence level than studies with more

stringent definitions of gastroenteritis. As Flusurvey is designed for surveillance

of ILI, the background survey asks about pre-existing conditions that can cause

respiratory symptoms. If this were extended to ask about conditions relating to

gastroenteritis symptoms this would improve future analysis.

We were not able to stratify the proportion of gastroenteritis cases seeking healthcare

services by age, due to some sample sizes becoming too small. If the Flusurvey cohort

were larger, we would be able to see if this proportion differs by age and over time.

Conclusions: Flusurvey data

The analysis presented here suggests that the pre-existing internet-based surveil-

lance system for ILI, Flusurvey, also captures data on gastroenteritis incidence and
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gives an estimate of the usage of healthcare services by those with gastroenteritis

symptoms. The gastroenteritis incidence rate from Flusurvey was less seasonal, and

the rates more similar between different age groups, than the trends seen in existing

surveillance systems of gastroenteritis and gastroenteritis-causing pathogens. These

differences show that further surveillance is required if the burden of gastroenteritis

in the community is to be fully understood.

Internet-based surveillance is a timely and relatively cheap way to monitor disease

incidence, and collects data from people who do not necessarily actively contact

healthcare services. As with most disease surveillance systems, there are report-

ing biases due to the nature of the reporting cohort. However, Flusurvey offers an

additional tool that could be used to complement existing gastroenteritis surveil-

lance systems, each with its own reporting biases influencing the trends reported.

This analysis shows that there is the potential to extend current internet based

influenza surveillance systems, which exist in many countries, to include gastroen-

teritis surveillance without many additional resources.
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Figure 4.19: (A) The weekly gastroenteritis rate per 100,000 registered patients
given by the gastroenteritis indicator from the GPIH SSS; (B) stratified by age. The
time period for which we also have Flusurvey data for comparison is indicated by
solid lines.



CHAPTER 4. ONLINE SURVEILLANCE OF GASTROENTERITIS 155

Figure 4.20: (A) The weekly gastroenteritis rate given by the gastroenteritis in-
dicator from the GPOOH SSS; (B) stratified by age. The period of time for which
we also have Flusurvey data for comparison is indicated by solid lines.
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Figure 4.21: (A) The weekly number of laboratory reports for specimens positive
with norovirus; (B) and stratified by age. The period of time for which we also have
Flusurvey data for comparison is indicated by solid lines.
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Figure 4.22: Cross correlations (line) of measures of gastroenteritis with 95%
confidence intervals obtained via parametric bootstrapping (bars). In all plots lag
1 means that the Flusurvey gastroenteritis rate is being compared with the other
measure of gastroenteritis from the previous week. (A) Flusurvey gastroenteritis
rate with the GPIH gastroenteritis rate per 100,000 registered patients, 2012/13.
(B) Flusurvey gastroenteritis rate with the GPIH gastroenteritis rate per 100,000
registered patients, 2013/14. (C) Flusurvey gastroenteritis rate with norovirus lab
reports, 2012/13. (D) Flusurvey gastroenteritis rate with norovirus lab reports,
2013/14.



CHAPTER 5

CONCLUSIONS

5.1 Summary

Many aspects of disease surveillance in the UK are world-leading, and across the

world disease surveillance has developed over the last 50 years into a vital public

health resource. However, there are still outstanding mathematical and statistical

questions in this field, in particular as computational resources develop and new

datasets become available. In this thesis, we have investigated three data-heavy

challenges that can each be used to develop the surveillance of gastroenteritis.

In chapter 2 we presented a flexible framework for deriving Gaussian process ap-

proximations of stochastic models of epidemics and compared a variety of approx-

imations. We preformed fast inference on both synthetic and real epidemic data,

with the real data coming from an outbreak of norovirus on a cruise ship in British

waters. We derived good estimates for the parameter values of the epidemic mod-

els and inferred the unobserved processes. We, therefore, demonstrated that these

approximation methods could be used for routine fast inference of epidemiological

surveillance data.

In chapter 3 we found strong evidence of day of the week and public holiday effects

in syndromic indicators of gastroenteritis from syndromic surveillance systems op-

erated by PHE. Most of these effects were to be expected given the availability and

purpose of the different healthcare services. However, this is the first formal descrip-
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tion of these. We did not find large differences in the day of the week and public

holiday effects in reports of gastroenteritis compared to the total number of reports

of poor health. Next, we used the knowledge that we had obtained about day of

the week and public holiday effects to suggest improvements to current syndromic

surveillance methods. We suggested refinements to the regression method used by

PHE to analyse syndromic data in order to take into account some of the more sub-

tle public holiday effects. We also developed a smoothing method where both day

of the week and public holiday effects are taken into account simultaneously. This

can aid the interpretation of trends in daily data from GP services. This smoothing

method is now in use by PHE.

Our analysis demonstrated that corrections must be made for the day of the week,

public holidays, and days surrounding public holidays when analysing, visualising,

and modelling daily syndromic data of gastroenteritis. We have highlighted the

importance of being aware of potential trends in healthcare data due to changes in

behaviour rather than changes in actual disease levels.

In chapter 4 we found that data from Google searches and Wikipedia use relating

to gastroenteritis have some similarities with the number of positive laboratory re-

ports for norovirus, but that these online data cannot be used to add value to simple

forecasting/nowcasting models of laboratory reports. We then went on to show that

the ILI surveillance system Flusurvey receives sufficient reports of gastroenteritis

symptoms to be considered for use for syndromic gastroenteritis surveillance. This

would not require the addition of many extra resources to this system. The gastroen-

teritis incidence rate from Flusurvey was less seasonal, and the rates more similar

between different age groups, than the trends seen in existing surveillance systems

of gastroenteritis and gastroenteritis-causing pathogens. These differences demon-

strated that further surveillance is required if the true burden of gastroenteritis in

the community is to be fully understood.

5.2 Further work

Conclusions have been obtained from each of these three pieces of work but, of

course, with additional time and resources there are many extensions that could be

investigated. Additionally, there are many other features of gastroenteritis surveil-

lance that we could have tackled during the past four years. Some smaller, more
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explicit suggestions for future work have been described in the discussion and con-

clusion section of each chapter. Therefore, here we mainly give broad directions for

bigger future projects.

The motivation for beginning this work arose from the fact that mechanistic models

of infectious diseases are not routinely used for syndromic surveillance of illnesses,

specifically of gastroenteritis. The literature, and application, of these mechanistic

models is extensive and varied. A mechanistic model of disease allows us to infer

unobserved processes, the key one in this case being the size of the susceptible pop-

ulation, and this feeds into predictions of incidence. This can lead to, for example,

a prediction of fewer norovirus cases in the winter after a number of years of many

cases (due to susceptible depletion). A statistical model that assumes future activity

will reflect past activity would not give this type of prediction. However, syndromic

surveillance requires analysis methods that are fast and robust and, therefore, it is

not simple to incorporate mechanistic models.

We began our investigation by attempting to fit an SEIRS ODE model to syndromic

data of gastroenteritis (analysis not shown here). However, we found that the pa-

rameters were poorly identifiable. This motivated our work on stochastic models

and approximations in order to perform the fast inference that would be required

for surveillance. Therefore, the next major step would be to take the approxima-

tions investigated in chapter 2, develop them, and incorporate them into a real-time

surveillance system. This would require these approximations to be more robust

so they can be applied, in a reasonably automated way, to the variety of different

syndromes and situations that surveillance systems work with.

The investigation into day of the week and public holiday effects in chapter 3 was

quite thorough. However, there are other regular effects that may also influence

these data for which similar statistical analyses could be undertaken. For example,

reports to emergency departments for alcohol intoxication were elevated in Australia

after major sporting events [123]. Sporting events, social events, and other mass

gatherings may impact healthcare usage in the UK as well. In particular, these

effects may be noticeable in surveillance data from a smaller geographical region as

opposed to aggregated data from the whole country. acho2013

In chapter 4 we briefly mentioned that analysing page view data of specific healthcare

websites may provide more insight into community burden of illnesses. The NHS

website contains a wealth of information and is a trusted source of advice for people
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in the UK. The use of the pages relating to gastroenteritis on this website will

give interesting information about the current levels of information seeking on this

condition in the UK.

The second part of chapter 4 investigated gastroenteritis reports made to Flusurvey.

The natural extension as a result of this work is to slightly adapt the branding,

the choice of language, and the background survey of this system so that it can

carry on collecting information more generally about symptoms and can be used

for gastroenteritis surveillance each winter. Conclusions have been made from the

Flusurvey system about risk factors, vaccination effectiveness, and quality of life

impact of ILI [247, 261, 262]. There is the potential to do the same for gastroenteritis.

This work will become increasingly important as norovirus vaccines become more

viable.

5.3 Concluding remark

In this thesis, we have worked with both mechanistic and statistical techniques to ad-

dress some of the challenges that remain for both of these approaches when analysing

syndromic gastroenteritis surveillance data. Statistical surveillance models do not

consider known biological mechanisms, such as the depletion of the susceptible pop-

ulation, and instead assume that the relationships demonstrated in past data will

persist. On the other hand, mechanistic models often require idealised datasets,

whereas we have shown artefacts, such as public holidays, leave strong signals that

should be taken into account. Finally, we identified other sources of data on gas-

troenteritis burden. We have also offered some further directions for bridging this

gap between syndromic surveillance and mechanistic disease modelling and hope to

see further progress made on this.
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Figure A.1: GPOOH total contacts. Each row gives the results from comparing
a pair of days (numbered 1 - 7 for Monday - Sunday). The difference between the
means of the two days is given by the black dot, the error bar is +/- one pooled
standard deviation, with Cliff’s delta (where * is a small, ** a medium, and *** a
large effect size).
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Figure A.2: GPOOH difficulty breathing. Each row gives the results from com-
paring a pair of days (numbered 1 - 7 for Monday - Sunday). The difference between
the means of the two days is given by the black dot, the error bar is +/- one pooled
standard deviation, with Cliff’s delta (where * is a small, ** a medium, and *** a
large effect size).
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Figure A.3: 111 total contacts. Each row gives the results from comparing a pair
of days (numbered 1 - 7 for Monday - Sunday). The difference between the means
of the two days is given by the black dot, the error bar is +/- one pooled standard
deviation, with Cliff’s delta (where * is a small, ** a medium, and *** a large effect
size).
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Figure A.4: 111 difficulty breathing. Each row gives the results from comparing
a pair of days (numbered 1 - 7 for Monday - Sunday). The difference between the
means of the two days is given by the black dot, the error bar is +/- one pooled
standard deviation, with Cliff’s delta (where * is a small, ** a medium, and *** a
large effect size).
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Figure A.5: 111 vomiting. Each row gives the results from comparing a pair of
days (numbered 1 - 7 for Monday - Sunday). The difference between the means of
the two days is given by the black dot, the error bar is +/- one pooled standard
deviation, with Cliff’s delta (where * is a small, ** a medium, and *** a large effect
size).
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Figure A.6: GPIH asthma. Each row gives the results from comparing a pair of
days (numbered 1 - 7 for Monday - Sunday). The difference between the means of
the two days is given by the black dot, the error bar is +/- one pooled standard
deviation, with Cliff’s delta (where * is a small, ** a medium, and *** a large effect
size).
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Figure A.7: GPIH herpes zoster. Each row gives the results from comparing a
pair of days (numbered 1 - 7 for Monday - Sunday). The difference between the
means of the two days is given by the black dot, the error bar is +/- one pooled
standard deviation, with Cliff’s delta (where * is a small, ** a medium, and *** a
large effect size).
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Wieland Kiess, and Holm H. Uhlig. Antiemetic medications in children

with presumed infectious gastroenteritis-Pharmacoepidemiology in Europe

and Northern America. Journal of Pediatrics, 153(5), 2008. [Cited on page 1.]

[5] Sarah M. Bartsch, Benjamin A. Lopman, Sachiko Ozawa, Aron J. Hall, and

Bruce Y. Lee. Global economic burden of norovirus gastroenteritis. PLoS

ONE, 11(4):1–16, 2016. [Cited on pages 1 and 2.]

[6] Ben A. Lopman, Mark H. Reacher, Ian B. Vipond, Dawn Hill, Christine Perry,

Tracey Halladay, David W. Brown, W. John Edmunds, and Joyshri Sarangi.

170



BIBLIOGRAPHY 171

Epidemiology and cost of nosocomial gastroenteritis, Avon, England, 2002-

2003. Emerging Infectious Diseases, 10(10):1827–1834, 2004. [Cited on page 1.]

[7] J. Danial, J. A. Cepeda, F. Cameron, K. Cloy, D. Wishart, and K. E. Tem-

pleton. Epidemiology and costs associated with norovirus outbreaks in NHS

Lothian, Scotland 2007-2009. Journal of Hospital Infection, 79(4):354–358,

2011. [Cited on page 1.]

[8] Elizabeth Jane Elliott. Acute gastroenteritis in children. BMJ Clinical Review,

334:35–40, 2007. [Cited on page 2.]

[9] Naor Bar-Zeev, Lester Kapanda, Jacqueline E. Tate, Khuzwayo C. Jere, Miren

Iturriza-Gomara, Osamu Nakagomi, Charles Mwansambo, Anthony Costello,

Umesh D. Parashar, Robert S. Heyderman, Neil French, Nigel A. Cunliffe,

James Beard, Amelia C. Crampin, Carina King, Sonia Lewycka, Hazzie Mvula,

Tambosi Phiri, Jennifer R. Verani, and Cynthia G. Whitney. Effectiveness of

a monovalent rotavirus vaccine in infants in Malawi after programmatic roll-

out: An observational and case-control study. The Lancet Infectious Diseases,

15(4):422–428, 2015. [Cited on page 2.]

[10] Jacqueline E. Tate, Anthony H. Burton, Cynthia Boschi-Pinto, A. Duncan

Steele, Jazmin Duque, and Umesh D. Parashar. 2008 estimate of worldwide

rotavirus-associated mortality in children younger than 5 years before the

introduction of universal rotavirus vaccination programmes: A systematic re-

view and meta-analysis. The Lancet Infectious Diseases, 12(2):136–141, 2012.

[Cited on page 2.]

[11] World Health Organization. Rotavirus vaccines WHO position paper - January

2013. Weekly Epidemiological Record, 88(5):49–64, 2013. [Cited on page 2.]

[12] Vesta Richardson, Joselito Hernandez-Pichardo, Manjari Quintanar-Solares,

Marcelino Esparza-Aguilar, Brian Johnson, Cesar Misael Gomez-Altamirano,

Umesh Parashar, and Manish Patel. Effect of rotavirus vaccination on death

from childhood diarrhea in Mexico. The New England Journal of Medicine,

362(4):299–305, 2010. [Cited on page 2.]

[13] Jacqueline E. Tate, Margaret M. Cortese, Daniel C. Payne, Aaron T. Curns,

Catherine Yen, Douglas H. Esposito, Jennifer E. Cortes, Benjamin A. Lopman,

Manish M. Patel, Jon R. Gentsch, and Umesh D. Parashar. Uptake, impact,

and effectiveness of rotavirus vaccination in the United States: Review of the



BIBLIOGRAPHY 172

first 3 years of postlicensure data. The Pediatric Infectious Disease Journal,

30(1):S56–S60, 2011. [Cited on page 2.]

[14] Jim P. Buttery, Stephen B. Lambert, Keith Grimwood, Michael D. Nissen,

Emma J. Field, Kristine K. Macartney, Jonathan D. Akikusa, Julian J. Kelly,

and Carl D. Kirkwood. Reduction in rotavirus-associated acute gastroenteritis

following introduction of rotavirus vaccine into Australia’s National Childhood

vaccine schedule. The Pediatric Infectious Disease Journal, 30:S25–S29, 2011.

[Cited on page 2.]

[15] Zharain Bawa, Alex J. Elliot, Roger A. Morbey, Shamez Ladhani, Nigel A.

Cunliffe, Sarah J. O’Brien, Martyn Regan, Gillian E. Smith, and Robert A.

Weinstein. Assessing the likely impact of a rotavirus vaccination program

in England: The contribution of syndromic surveillance. Clinical Infectious

Diseases, 61(1):77–85, 2015. [Cited on page 2.]

[16] J. P. Harris, N. L. Adams, B. A. Lopman, D. J. Allen, and G. K. Adak. The

development of web-based surveillance provides new insights into the burden

of norovirus outbreaks in hospitals in England. Epidemiology and Infection,

142(08):1590–1598, 2014. [Cited on page 2.]

[17] Aron J. Hall, Ben A. Lopman, Daniel C. Payne, Manish M. Patel, Paul A.
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[85] Jacques Le Pendu, Nathalie Ruvoën-Clouet, Elin Kindberg, and Lennart

Svensson. Mendelian resistance to human norovirus infections. Seminars in

Immunology, 18(6):375–386, 2006. [Cited on page 31.]

[86] Rachel M. Lee, Justin Lessler, Rose A. Lee, Kara E. Rudolph, Nicholas G.

Reich, Trish M. Perl, and Derek A. T. Cummings. Incubation periods of viral

gastroenteritis: A systematic review. BMC Infectious Diseases, 13(1):446,

2013. [Cited on page 31.]

[87] Centers for Disease Control Division of Viral Diseases, National Center for

Immunization and Respiratory Diseases and Prevention. Updated norovirus

outbreak management and disease prevention guidelines. Centers for Disease

Control and Prevention Morbidity and Mortality Weekly Report, 60(3):1–18,

2011. [Cited on page 31.]



BIBLIOGRAPHY 180

[88] Simon Cauchemez and Neil M. Ferguson. Likelihood-based estimation of

continuous-time epidemic models from time-series data: application to measles

transmission in London. Journal of the Royal Society Interface, 5(25):885–97,

2008. [Cited on pages 38 and 41.]

[89] Peter E. Kloeden and Eckhard Platen. Numerical solution of stochastic dif-

ferential equations. Springer-Verlag New York, New York, NY, 3rd edition,

1992. [Cited on page 39.]

[90] Marta Sala Soler, Anne Fouillet, Anne Catherine Viso, Loic Josseran,

Gillian E. Smith, Alex J. Elliot, Jim McMenamin, Alexandra Ziemann, and

Thomas Krafft. Assessment of syndromic surveillance in Europe. The Lancet,

378(9806):1833–1834, 2011. [Cited on page 45.]

[91] Kelly J. Henning. Overview of Syndromic Surveillance: What is Syndromic

Surveillance? Centers for Disease Control and Prevention: Morbidity and

Mortality Weekly Report, 53:7–11, 2004. [Cited on page 45.]

[92] Public Health England. Syndromic surveillance: systems and anal-

yses. https://www.gov.uk/government/collections/syndromic-

surveillance-systems-and-analyses, 2014. [Cited on page 45.]

[93] S. E. Harcourt, R. A. Morbey, P. Loveridge, L. Carrilho, D. Baynham,

E. Povey, P. Fox, J. Rutter, P. Moores, J. Tiffen, S. Bellerby, P. McIntosh,

S. Large, J. McMenamin, A. Reynolds, S. Ibbotson, G. E. Smith, and A. J. El-

liot. Developing and validating a new national remote health advice syndromic

surveillance system in England. Journal of Public Health, 39(1):184–192, 2017.

[Cited on page 45.]

[94] S. E. Harcourt, G. E. Smith, A. J. Elliot, R. Pebody, A. Charlett, S. Ibbotson,

M. Regan, and J. Hippisley-Cox. Use of a large general practice syndromic

surveillance system to monitor the progress of the influenza A(H1N1) pan-

demic 2009 in the UK. Epidemiology and Infection, 140(1):100–5, 2012. [Cited

on pages 46 and 148.]

[95] S. E. Harcourt, J. Fletcher, P. Loveridge, A. Bains, R. Morbey, A. Yeates,

B. McCloskey, B. Smyth, S. Ibbotson, G. E. Smith, and A. J. Elliot. De-

veloping a new syndromic surveillance system for the London 2012 Olympic

and Paralympic Games. Epidemiology and Infection, 140(12):2152–2156, 2012.

[Cited on pages 46 and 148.]

https://www.gov.uk/government/collections/syndromic-surveillance-systems-and-analyses
https://www.gov.uk/government/collections/syndromic-surveillance-systems-and-analyses


BIBLIOGRAPHY 181

[96] Alex J. Elliot, Helen E. Hughes, Thomas C. Hughes, Thomas E. Locker, Tony

Shannon, John Heyworth, Andy Wapling, Mike Catchpole, Sue Ibbotson,

Brian McCloskey, and Gillian E. Smith. Establishing an emergency depart-

ment syndromic surveillance system to support the London 2012 Olympic and

Paralympic Games. Emergency Medicine Journal, 29(12):954–60, 2012. [Cited

on page 46.]

[97] Leofranc Holford-Strevens. History of Time: A Very Short Introduction. Ox-

ford University Press, USA, 2005. [Cited on page 46.]

[98] Eviatar Zerubavel. The seven day circle: The history and meaning of the week.

The University of Chicago Press, 1989. [Cited on pages 46 and 49.]

[99] Eurofound. Sixth European Working Conditions Survey - Overview report.

Technical Report November, Luxembourg, 2016. [Cited on page 47.]

[100] Kenneth R. French. Stock returns and the weekend effect. Journal of Financial

Economics, 8(1):55–69, 1980. [Cited on pages 47 and 56.]

[101] Jeffrey Jaffe and Randolph Westerfield. The week-end effect in common stock

returns: The international evidence. The Journal of Finance, 40(2):433–454,

1985. [Cited on page 47.]

[102] L. Condoyanni, J. O’Hanlon, and C. W. R. Ward. Day of the week effects

on stock returns: International evidence. Journal of Business Finance &

Accounting, 14(2):159–174, 1987. [Cited on page 47.]

[103] Ercan Balaban. Day of the week effects: new evidence from an emerging stock

market. Applied Economics Letters, 2(5):139–143, 1995. [Cited on pages 47

and 56.]

[104] Chris Brooks and Gita Persand. Seasonality in Southeast Asian stock markets:

Some new evidence on day-of-the-week effects. Applied Economic Letters,

8(3):155–158, 2001. [Not cited.]

[105] K. A. Wong, T. K. Hui, and C. Y. Chan. Day-of-the-week effects: Evidence

from developing stock markets. Applied Financial Economics, 2(1):49–56,

1992. [Cited on page 56.]

[106] Rakibul Islam and Nadira Sultana. Day of the week effect on stock return

and volatility: Evidence from Chittagong stock exchange. European Journal

of Business and Management, 7(3):165–173, 2015. [Cited on page 47.]



BIBLIOGRAPHY 182

[107] G. Kohers, N. Kohers, V. Pandey, and T. Kohers. The disappearing day-

of-the-week effect in the world’s largest equity markets. Applied Economics

Letters, 11(3):167–171, 2004. [Cited on pages 47 and 56.]

[108] Charles Bram Cadsby and Mitchell Ratner. Turn-of-month and pre-holiday

effects on stock returns: Some international evidence. Journal of Banking and

Finance, 16(3):497–509, 1992. [Cited on page 47.]

[109] Robert A. Ariel. High stock returns before holidays: Existence and evidence

on possible causes. The Journal of Finance, 45(5):1611–1626, 1990. [Not

cited.]

[110] Tian Yuan and Rakesh Gupta. Chinese Lunar New Year effect in Asian stock

markets, 1999-2012. Quarterly Review of Economics and Finance, 54(4):529–

537, 2014. [Not cited.]

[111] Vicente Meneu and Angel Pardo. Pre-holiday effect, large trades and small

investor behaviour. Journal of Empirical Finance, 11(2):231–246, 2004. [Cited

on page 47.]

[112] Olga Dodd and Alex Gakhovich. The holiday effect in Central and Eastern

European financial markets. Investment Management and Financial Innova-

tions, 8(4):29–35, 2011. [Cited on page 47.]

[113] Marcel Ausloos, Olgica Nedic, and Aleksandar Dekanski. Day of the week

effect in paper submission/acceptance/rejection to/in/by peer review journals.

Physica A, 456:197–203, 2016. [Cited on page 48.]

[114] Nehzat Motallebi, Hien Tran, Bart E Croes, and Lawrence C Larsen. Day-of-

week patterns of particulate matter and its chemical components at selected

sites in California. Journal of the Air & Waste Management Association,

53(7):876–88, 2003. [Cited on pages 48 and 56.]

[115] Vania Ceccato and Adriaan Cornelis Uittenbogaard. Space-Time Dynamics

of Crime in Transport Nodes. Annals of the Association of American Geogra-

phers, 104(1):131–150, 2014. [Cited on page 48.]

[116] Prasanth Anbalagan and Mladen Vouk. “Days of the week” effect in predicting

the time taken to fix defects. Proceedings of the 2nd International Workshop

on Defects in Large Software Systems: Held in conjunction with the ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA

2009), pages 29–30, 2009. [Cited on pages 48 and 56.]



BIBLIOGRAPHY 183

[117] Sean T. Doherty, Jean C. Andrey, and Carolyn MacGregor. The situational

risks of young drivers: The influence of passengers, time of day and day of

week on accident rates. Accident Analysis and Prevention, 30(1):45–52, 1998.

[Cited on pages 48 and 56.]
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