A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:
http://wrap.warwick.ac.uk/102002/

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications



S SN

INYNYNY
ANANANS

Development of a new genetically-encoded tag
for correlative light electron microscopy

by
Nicholas I. Clarke

Supervisors: Stephen J. Royle and Robert A. Cross

Thesis
Submitted to the University of Warwick
for the degree of

Doctor of Philosophy

March 2018

\ A /
WARWICK

THE UNIVERSITY OF WARWICK




Contents

1 Introduction 15
1.1 Correlative Microscopy . . . . . . . . . . . 15
1.1.1 Probes . . . . . . . 16

1.1.2 Processing . . . . . . . .. 26

1.1.3 Retracing and Registration . . . . . . . ... ... .. ... ... 30

1.2 Cell Biology . . . . . . . . . 32
1.2.1 Clathrin-mediated endocytosis . . . . . . . .. .. ... .. ... 32

1.2.2  Chemically-induced dimerization . . . .. .. .. .. ... ... 40

1.3 Motivation for this project . . . . . . .. ... oL 43
1.4 Published work . . . . . .. .o 44

2 Materials and Methods 46
2.1 Molecular biology . . . . . . . ... 46
2.2 Cell biology . . . . . . . . 47
2.3 Light microscopy . . . . . . . . . 48
2.4  Correlative light electron microscopy . . . . . . . . . . .. .. ... .. 49
2.5 Imageanalysis. . . . . . . . .. L 52

3 Development of FerriTag and implementation for light microscopy 57

3.1
3.2
3.3
3.4
3.5
3.6

Introduction . . . . . .. ..o o7
Direct fusion of ferritin results in aggregation . . . . . . . ... .. .. 60
Engineering an inducible electron dense particle . . . . . .. . ... .. 62
Optimization of recombinant ferritin for inducible tagging . . . . . . . . 66
Temporal resolution of FerriTagging . . . . . . . .. ... ... ... .. 68
FerriTagging does not perturb the function of clathrin . . . . . . . . .. 74

2



CONTENTS 3

3.7
3.8

Rapamycin analogs are compatible with FerriTagging . . . . . . .. .. 76

Discussion . . . . . . . 78

4 Characterization and application of FerriTag using correlative light

electron microscopy 82
4.1 Imntroduction . . . . . . . .. 82
4.2  Loading FerriTag with iron is non-toxic to HeLa cells . . . . . . . . .. 83
4.3 Optimization of sample processing using FerriTag for CLEM . . . . . . 85
4.4  FerriTag can be used to localize intracellular proteins using CLEM . . . 87
4.5 FerriTagging is specific to the target protein . . . . . . . ... ... .. 89
4.6 The labelling resolution of FerriTag is on the order of 10 nm . . . . . . 92
4.7 FerriTag has a high signal-to-noise ratio . . . . . . . ... ... . ... 95
4.8 FerriTagging is highly efficient . . . . . . . ... ... ... .. ... .. 98
4.9 Contextual nanoscale mapping of HIP1R . . . . . . . ... .. ... .. 103
4.10 Discussion . . . . . . ... 106
5 Discussion 113
Appendices 138
5.1 Published Work . . . . . . ..o 138



List of Figures and Tables

Table 1.1 CLEM probes . . . . . . . . . . . 18
Figure 1.1 General processing workflows for CLEM . . . . . .. ... ... ... 27
Figure 1.2 Clathrin-mediated endocytosis . . . . . . ... ... ... ... ... 34
Figure 1.3 Models of HIP1R localization . . . . . . . .. .. ... .. .. .... 38
Figure 1.4 Protein dimerization systems . . . . . . . .. ... .. ... ... .. 42
Figure 2.1 CLEM Workflow using FerriTag . . . . . .. ... ... ... ... .. 51
Table 2.1 Contructs used in this thesis . . . . .. ... ... .. .. ... ... 54
Table 2.2 Oligos used in this thesis . . . . .. ... . ... ... ........ 55
Figure 3.1 Molecular structure of electron dense proteins . . . . . . . .. .. .. 59
Figure 3.2 Direct fusion of ferritin results in aggregation of mitochondria . . . . 61

Figure 3.3 Inducible labeling of proteins of interest by ribosomes is not feasible 63

Figure 3.4 Rapamycin-induced labeling of proteins of interest by FRB-mCherry-

FTH1 only, is not feasible . . . . . . .. ... ... ... .. ... .. 65
Figure 3.5 FerriTagging results in successful labeling of mitochondria . . . . . . 67
Figure 3.6 Schematic diagram of FerriTagging . . . . . . . ... ... ... ... 70
Figure 3.7 FerriTagging has fast temporal resolution . . . . . . . ... ... .. 72
Figure 3.8 FerriTagging does not perturb normal clathrin function . . . .. .. 75
Figure 3.9 Rapamycin analogs can be used for FerriTagging . . . .. .. .. .. 7
Figure 4.1 Quantification of cell viability in iron-supplemented media . . . . . . 84
Figure 4.2 Sample processing using FerriTag for CLEM . . . . . .. .. .. .. 86
Figure 4.3 Visualizing Ferritagged proteins by light and electron microscopy . . 88
Figure 4.4 Identity of FerriTag particles and specificity of FerriTagging . . . . . 91
Figure 4.5 The labelling resolution of FerriTagging is approximately 10 nm . . . 94
Figure 4.6 Automated fitting in FerriTag images and determination of SNR . . 97



LIST OF FIGURES AND TABLES 5

Figure 4.7 Workflow for automatic detection of FerriTag particles in electron

micrographs . . . . ... Lo 100
Figure 4.8 Automated detection of FerriTag particles in electron micrographs . 102
Figure 4.9 Nanoscale mapping of HIP1R . . . . . . . ... ... ... ... ... 104

Figure 4.10Proposed model for HIP1R localization during clathrin-mediated en-

docytosis . . . . . .. 111



Acknowledgments

First, I would like to acknowledge my supervisor, Steve Royle. For the entirety of
this PhD. he has been an excellent advisor and mentor. Thank you for giving me the
opportunity to work with you and learn from you. I hope, at least in some part, I can

follow in your footsteps.

I would next like to thank everyone who I have had the pleasure of working with over
the years. You have all helped me along the way and made this experience one I shall

never forget.

A special mention to my parents. I will be forever grateful to you for always being there
and giving me the opportunities to be able to pursue my passions in life, including this

one.

Finally, and most of all, I thank Erikka Samuel. For everything.

This work was generously funded by Cancer Research UK.






Declarations

This thesis is submitted to the University of Warwick in support of my application for
the degree of Doctor of Philosophy. It has been composed by myself and has not been

submitted in any previous application for any degree.

The work presented was carried out by the author with exception to the computer
code needed for image analysis, which was written by Stephen Royle and described in

sections 2.5, 4.6, 4,7 and 4.8.



Abbreviations

3D

APX

APEX

CID

CLEM

DAB

DAPI

DMEM

DMT1

DNA

EELS

EM

Fab

FBS

FKBP

FlAsH

FLM

Three-dimensional

Ascorbate peroxidase

Enhanced ascorbate peroxidase
Chemically-Induced dimerization
Correlative or correlated light and electron microscopy
Diaminobenzidine

4’ 6-diamidino-2-phenylindole
Dulbecco’s modified eagle’s medium
Divalent metal ion transferase 1
Deoxyribonucleic acid

Electron energy loss spectroscopy
Electron microscopy

Fragment antigen-binding

Foetal bovine serum

FK506-binding protein

Fluorescein bi-arsenical hairpin-binding

Florescent light microscopy



FRB
FTH1
FTL
GFP
HIP1R
HPF

LCa

LM

HRP
MAO
MiniSOG
mTOR
NA

PBS
PCR
PI(4,5P),
ReAsH
ROI
RPL5
RPL22

SD

FKBP and rapamycin binding
Ferritin heavy polypeptide 1

Ferritin light chain

Green fluorescent protein
Huntingtin-interacting protein 1-related protein
High-pressure freezing

Clathrin light chain a

Light microscopy

Horseradish peroxidase

Monoamine oxidase

Mini Singlet Oxygen Generator
Mammalian target of rapamycin
Numerical aperture

Phosphate buffered saline
Polymerase chain reaction
Phosphatidylinositol 4,5-biphosphate
bi-arsenical hairpin-binding

Region of interest

Ribosomal protein L5

Ribosomal protein L22

Standard deviation



SDM Site-directed mutagenesis

SNR signal-to-noise ratio

TEM Transmission electron microscopy

TULIP Tunable, light-controlled interacting protein






Abstract

To understand cell biology in detail, we must explore subcellular organization in 3D
and locate proteins at high resolution. To achieve this, the most popular approach is to
use two complimentary imaging techniques; light and electron microscopy. Combining
these techniques by correlative or correlated light and electron microscopy (CLEM)
allows cellular events to be observed first by fluorescence microscopy and then the
same event can be tracked and visualised at high-resolution using electron microscopy.
However, a current challenge is to develop probes to precisely visualize proteins in cells

using this method.

This thesis introduces FerriTag, a new genetically-encoded chemically-inducible tag
for correlative light-electron microscopy. FerriTag is a fluorescent recombinant electron-
dense ferritin particle that can specifically label target proteins rapidly and efficiently
using rapamycin-induced heterodimerization. The processing protocol described for
CLEM is simple yet robust and can potentially be used for tagging any protein-of-
interest. FerriTag is easily distinguished from background in electron micrographs due
to its high signal to noise ratio and also provides a labelling resolution of 10 + 5 nm.

These qualities make FerriTag an ideal probe for CLEM.

FerriTag can be used to perform contextual nanoscale mapping of protein loca-
tion relative to a subcellular structure. This was utilised to study the distribution
and conformation of huntingtin-interacting protein 1 related (HIP1R) in and around
clathrin-coated pits, providing insight to the roles played by HIP1R, clathrin and actin

during clathrin-mediated endocytosis.

FerriTag offers great potential for future CLEM applications and will be a useful

discovery tool for cell biology.
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CHAPTER 1

Introduction

1.1 Correlative Microscopy

Correlative microscopy refers to the combination of more than one imaging modal-
ity, enabling the user to acquire complementary data on the same biological sample.
Among the many correlative workflows available, the combination of light with electron
microscopy is by far the most widely used (Miiller-Reichert and Verkade, 2012).

This combination of imaging techniques is referred to as CLEM, for Correlated Light
FElectron Microscopy or Correlative Light Electron Microscopy. Ellisman et al. (2012)
has tried to define each of these terms based on the precision of correlation. That is, in
Correlated Light Electron Microscopy the same area within a sample is tracked, whereas
in Correlative Light Electron Microscopy, the same sample, not exact area, is tracked.
Typically the latter, is more user friendly, as it does not require absolute precision
in the tracking of an individual subcellular event throughout the entire workflow and
instead represents a more global approach to correlation. Whilst this thesis does make
a distinction between the two definitions, it is important to realise these terms to define
each correlation method is not generally accepted throughout the field and are instead
used interchangeably in the literature.

Light microscopy enables the rapid screening and localization of proteins to reveal
their dynamics. Though much information regarding intracellular features are hidden
if they are unlabeled or fall below the diffraction limit of light. If combined with
electron microscopy however, the region of interest can be imaged again, this time

at increased resolution where further cellular context is also made available. CLEM
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therefore facilitates the ability to determine the underlying structure of rare, transient
or previously undescribed subcellular events.

In order to precisely track and correlate these events between each technique, it is
essential to use a probe that can be observed for both light and electron microscopy.
The sample must then be processed in a way that allows for optimal preservation,
structure determination and probe visualization. Finally, correlation between light
and electron microscopy is achieved through registration of the same areas or whole
samples in complementary images. Typically, these three steps, probes, processing and

registration, are necessary for all CLEM experiments.

1.1.1 Probes

The intracellular environment is crowded. Thousands of proteins are constantly in-
volved in a plethora of cellular processes (Fulton, 1982; Hurtley, 2009). This intricate,
dynamic yet structured behavior has been termed the ‘molecular sociology of the cell’
(Robinson et al., 2007; Mahamid et al., 2016). To enable the precise localization of pro-
teins within such a complex and busy environment, highly sensitive probes for CLEM
are therefore essential.

Over the past few decades, many advances have been made in the development
of probes for CLEM. These can be categorized based on whether they are affinity-
based or genetically encoded. Affinity-based label techniques are typically invasive, as
they compromise cellular ultrastructure. In contrast genetically encoded tags are non-
invasive and are therefore more desirable as samples can be processed in their native

state under optimal ultrastructural preservation conditions. A brief overview of probes

for CLEM can be found in Table 1.1.
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1.1.1.1 Affinity-based labels

Antibody based recognition probes are still widely used for CLEM (Griffiths and Lu-
cocq, 2014). They take advantage of the high specificity of primary antibodies that are
able to bind unique epitopes on a target protein. A secondary antibody, conjugated
to a fluorescent moiety with an electron dense tag, can subsequently bind, allowing
the visualization of the probe by both light and electron microscopy. The major dis-
advantage is that weak fixation is usually necessary to ensure suitable preservation
and accessibility to epitopes, often resulting in compromised ultrastructure. Addition-
ally pre-embedding protocols require permeabilisation of the cell membrane further
compromising cellular ultrastructure and often, intracellular material and membrane
constituents can be lost during sample processing. It is therefore imperative to create a
careful balance between sample preservation, accessibility and retention of antigenicity.
There are however, certain situations in which antibody based probes do not require

permeabilisation. These protocols are classed as post-embedding.

Fluoronanogold

Fluoronanogold is a bifunctional immunoprobe consisting of an antibody (Fab’ frag-
ment) conjugated to a fluorophore and small gold cluster, aiding in the accessibility
to antigenic sites (Takizawa and Robinson, 2000). However, its size hinders its ability
to be visualized by electron microscopy and it therefore requires autometallographic
enhancement methods to further develop its size and contrast (Baschong and Stierhof,
1998). In these processes, metal ions in solution are reduced to a zero oxidation state
which are then deposited onto Fluoronanogold, which acts as a nucleation site. How-
ever this process often results in artefacts due to difficulties in controlling the particle
enhancement reaction and forming irregular sized and shaped particles. In addition,
enhancement procedures can be liable to autonucleation creating non-specfic back-
ground metal deposition. Typically, deposition of gold ions is preferred to silver ions,
as it provides better contrast under the electron microscope and it does not get dis-

solved by strong reducing agents such as osmium tetroxide, which is routinely used for
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electron microscopy sample preparation as a fixative and heavy-metal staining agent.
Nevertheless, a number of studies have highlighted the advantages of Fluoronanogold
in CLEM applications, where these difficulties have been overcome (Takizawa et al.,

2015; Olmos et al., 2015; Magidson et al., 2016).

Quantum dots

Quantum dots are small inorganic nanocrystals. They can be finely tuned enabling
the ability to emit light over a broad spectrum of wavelengths facilitating imaging
of multiple labels simultaneously by light microscopy. Precise correlation can then be
achieved with electron microscopy due to their electron dense core (Nisman et al., 2004;
Deerinck et al., 2007). However, they are not as electron dense as gold particles and
thus can be difficult to see in heavily stained samples. Although mainly used in pre-
embedding protocols, quantum dots interestingly have been used to tag intracellular

proteins in a non-invasive manner (Giepmans et al., 2005).

1.1.1.2 Genetically encoded tags

Over recent years, there has been much interest in the development of new geneti-
cally encoded tags for CLEM. As they can be expressed within the sample itself, they
can be processed in a non-invasive manner, enabling optimal preservation of cellular
ultrastructure. Additionally, genetically encoded tags are highly specific and support
analysis of live cellular dynamics and molecular processes by light microscopy prior to

imaging at high resolution using electron microscopy.

1.1.1.2.1 Fluorescent proteins

Fluorescent proteins have revolutionized cell biology. Since the cloning of green flu-
orescent protein (GFP) there has been an expanding list of new fluorescent proteins
that exhibit a broad range of emission wavelengths (Ormé et al., 1996; Shaner et al.,
2005). This extensive palette of colors enables imaging of several proteins at once by

fluorescent light microscopy.
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Fluorescent proteins themselves are not electron dense. They therefore usually re-
quire the addition of a specific immunogold particle against the fluorescent protein to
be readily observed by electron microscopy (Hodgson et al., 2014). Recent develop-
ments in CLEM protocol design however, have enabled the use of a fluorescent protein
only, to correlate data. Usually these involve the preservation of fluorescence dur-
ing processing and then fluorescent imaging can be completed on-section resulting in
ultra-precise correlated imaging (Kukulski et al., 2011; Johnson et al., 2015; Avinoam
et al., 2015). A recent advance in this area is the osmium-resistant fluorescent protein,
Eos4. It has been specifically engineered to withstand heavy fixation and thus aids
in ultrastructural preservation and electron microscopy contrast (Paez-Segala et al.,
2015).

Advances in super-resolution microscopy have further supported the improvement
of correlating light with electron microscopy data (Betzig et al., 2006). However, these
techniques still do not provide resolution high enough to distinguish single proteins.
Recently, super resolution microscopy has been combined with metal replica sample
preparation to correlate proteins at the cell membrane with extremely high resolution
(Sochacki et al., 2014, 2017). Though, this approach is particularly invasive, due to
sample processing involving the need to produce membrane sheets. Consequently,
intracellular constituents are removed, resulting in potential loss of ultrastructural
information.

Fluorescent proteins are also extremely useful for correlative experiments to differ-
entiate a specific cell-of-interest within a heterogeneous population. This is particularly
useful for the quantitative study of whole cells to examine ultrastructural phenotypes

at high resolution (Cheeseman et al., 2013; Hirst et al., 2015)

1.1.1.2.2 DAB-based tags

DAB-based methods are based on the principle of diaminobenzidine (DAB) oxidation
by free oxygen radicals. The formation of free radical species can be generated photoox-

idation or during the enzymatic conversion of peroxidase. This reaction polymerizes
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DAB, forming an osmiophilic precipitate that when treated with osmium tetroxide,
becomes electron dense and thus easily visible by electron microscopy (Hanker, 1979;
Maranto, 1982).

However, the electron density created by all DAB based tags, generates a diffuse
signal that also has the possibility to drift into neighboring regions surrounding the
tagged protein-of-interest (van Weering et al., 2010; Morphew et al., 2015). This lim-
its to what can be resolved using these techniques and typically single or low-density
proteins cannot be readily visualized. Furthermore, these techniques require the user
to define the optimum staining conditions to generate sufficient contrast for each ex-

periment to visualize the particular tagged protein-of-interest.

Tetracysteine tags

One of the first genetically encoded tag methodologies for CLEM was based on the
ability that a small tetracysteine motif, -Cys-Cys-Xaa-Xaa-Cys-Cys-, could bind bi-
arsenical derivatives. Fluorescein bi-arsenical hairpin-binding (F1AsH) and the re-
sorufin derivative (ReAsH) are membrane permeable non-fluorescent molecules that
upon binding tetracysteine motifs fused to a protein-of-interest, emit green and red
fluorescence respectively (Griffin et al., 1998; Gaietta et al., 2002; Martin et al., 2005).
The binding of trivalent arsenic atoms to endogenous thiols however is toxic in live cell
applications. To overcome this, dithiols are added to minimize these effects.

Although both of these methods are ideally suited for light microscopy, it is only
ReAsh that can be readily observed by electron microscopy. ReAsH benefits from also
being a singlet oxygen generator and is therefore able to photoconvert DAB to form an
electron dense precipitate. During this reaction, careful controls must be put in place
to minimize non-specific background staining. This approach was first implemented
by Gaietta et al. (2002) and was used to study the dynamics and ultrastructural
properties of different ReAsH-labeled connexin43 pools within gap junctions.

A major advantage of this tagging approach is owed to its small size. Typically,

most genetically encoded tags are fused to the protein-of-interest at its N or C terminus.
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Tetracysteine tags have also shown to possess the ability to be incorporated within
the sequence of the protein itself without disrupting normal function. This has been
particularly useful for the study of viral function and infectivity(Das et al., 2009).
With recent developments into CLEM probe design, there are however more efficient
probes available and today, tetracysteine tags are usually not the probe of choice in

DAB precipitation based CLEM experiments.

MiniSOG

MiniSOG (for mini Singlet Oxygen Generator) is a flavoprotein engineered from pho-
totropin 2, a photoreceptor from Arabidopsis thaliana (Shu et al., 2011). It is a small
non-invasive genetically encoded tag that exhibits internal fluorescence as well as en-
hanced singlet oxygen generation compared to ReAsH. The combined ability to flu-
oresce and photooxidise DAB upon blue light irradiation in the presence of oxygen,
makes the tag highly desirable. A number of studies have highlighted miniSOGs suc-
cess for CLEM applications (Cleyrat et al., 2014; Ludwig et al., 2013). Though, due to
practical difficulties and diffuse nature of the tag, its popularity as a probe for CLEM

is not widespread throughout the field.

Peroxidase based labels

Enzymatic conversion of DAB by horseradish peroxidase (HRP) conjugated to anti-
bodies has been widely used for protein localization in electron microscopy (Porstmann
and Kiessig, 1992; Sosinsky et al., 2007). In the presence of hydrogen peroxide, HRP
can polymerize DAB into an electron dense precipitate. However, the active site of
HRP does not form in reducing environments such as the mammalian cytosol, there-
fore restricting the ability to label many proteins within the cell.

To overcome the limitations of HRP, Martell et al. (2012) engineered a geneti-
cally encoded peroxidase from ascorbate peroxidase (APX) a class I cytosolic plant
peroxidase, that remains active in all cellular compartments. Enhanced APX (APEX)

catalyzes the hydrogen peroxide dependent polymerization of DAB to form an elec-
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tron dense precipitate (Martell et al., 2012). It is noteworthy, enzymatic based DAB
precipitation using APEX is much easier than that of photooxidation by miniSOG.
More recently, the same group designed APEX2, which works in exactly the same way
as APEX, but has significantly improved sensitivity, thereby limiting cellular toxicity
(Lam et al., 2014).

APEX has proved its use in an array of protein localization studies for electron
microscopy (Wong and Munro, 2014; Shvets et al., 2015; Ariotti et al., 2015). Fur-
thermore, it can also be used as a proximity-based label for proteomic mapping and
characterization of close protein-protein interactions in cells (Rhee et al., 2013). Alone
however, APEX is not fluorescent and therefore needs to be fused to a fluorescent

protein to be visualized by light microscopy for correlative experiments.

1.1.1.2.3 Metal-ligand based tags

The generation of metal clusters within cells to localize proteins using CLEM is highly
desirable. Exogenous metal ions bind to the genetically encoded metal ligand based tag
enabling the scattering of electrons, thereby generating contrast that is tightly focused
for electron microscopy detection. Deposition of metal ions in this way provides a high
signal to noise ratio, permitting the tag to be distinguished easily from background
noise. In addition, direct detection of metal ions can be determined using electron

energy loss spectroscopy (EELS).

Metallothionein

Metallothionein is a small cysteine rich metal-ion chelator that regulates metal home-
ostasis within the cell. It can bind a variety of metal ions including cadmium, zinc,
copper and gold with high affinity and is therefore the ideal candidate protein to be
used as a genetically encoded tag for electron microscopy. Diestra et al. 2009 showed
by directly fusing metallothionein to a protein-of-interest, the cysteine rich metalloth-
ionein in the presence of gold salts can build metal nanoclusters of up to 1nm in

diameter, in bacteria. The cluster provided sufficient density to localize the protein-
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of-interest in unstained resin sections (Diestra et al., 2009; Fernndez de Castro et al.,
2014). Further work optimized this labeling approach to specifically localize proteins
in mammalian cells with high sensitivity and resolution (Risco et al., 2012). Note, for
use as a genetically encoded tag for CLEM, metallothionein must also be fused to a
fluorescent protein.

However, toxicity of gold salt incubation in cells was a major concern, both for cell
viability and ultrastructure preservation. To overcome this, Morphew et al. (2015)
further optimized the process in which binding of gold to metallothionein could be
achieved. Interestingly, metallothionein retains its ability to bind gold after cryo-
immobilization. Therefore gold addition was achieved post processing on-section or
during freeze substitution, resulting in electron dense clusters that could be distin-
guished by electron microscopy (Morphew et al., 2015). It should be noted however,
this study highlighted the inability to distinguish low abundant proteins from back-
ground noise in electron micrographs. Low staining conditions during processing are
also necessary in order to not mask the electron density of the small tag. This limits

the user from distinguishing other cellular ultrastructure information.

Bacterial ferritin

Wang et al. developed a genetically encoded tag for cryo-electron tomography based
on a iron storage protein called ferritin. Bacterial ferritin (FtnA) was directly fused to
a protein-of-interest where it could form a covalently attached electron dense ferritin
particles under iron rich conditions in bacterial cells (Wang et al., 2011). The use of
iron is preferable to gold as for metallothionein, due to lower toxicity to cells. The
authors do highlight however, that certain proteins will mislocalize due to the multi-
valent nature of the recombinant ferritin particle. To assess potential mis-localization
issues, a fluorescent protein should be tagged to the protein-of-interest also, so it can
be visualized first by light microscopy. While used in bacteria, this direct ferritin
tagging methodology is technically demanding and has not yet been reported to work

in mammalian cells.
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1.1.2 Processing

There is no universal protocol to process samples for CLEM. Due to the diverse array
of goals made available for CLEM, many different protocols have been developed and
the path taken depends on the scientific question being addressed. Furthermore, not
all probes are compatible with all processing workflows and therefore the probe used
also influences the pathway taken. Collectively, processing of samples for CLEM can

be divided into two main categories:

e Pre-embedding CLEM

e Post-embedding CLEM

General workflows for pre-embedding and post-embedding CLEM are shown in
Figure 1.1. Correlating data from both modalities in either approach permits the pre-
identification of cellular events first by light microscopy, providing an exact focus point
for high-resolution electron microscopy acquisition. This ability to pre-identify regions
of interest is highly valuable as it minimizes the challenge of locating specific events

within such a complex and crowded intracellular environment.
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Pre-embedding CLEM

Samples being processed for pre-embedding CLEM are imaged by light microscopy prior
to fixation and embedding for correlation with electron microscopy. This approach is
particularly useful if live cell imaging is required to study dynamic events. Fluorescent
proteins guide their identification and enable precise tracking of the event through time.
In addition, pre-embedding CLEM is especially useful to discern transiently expressing
cells within a heterogeneous population for correlative experiments. Once the position
and recording of the event or object has been acquired by light microscopy, samples
are immediately fixed and processed for electron microscopy.

Optimal fixation of the sample is key for accurate correlation of the event between
imaging modalities. Cryo-immobilization provides superior ultrastructure preservation
compared to chemical fixation (Moor and Miihlethaler, 1963). For biological materials,
this is routinely achieved by either plunge freezing or high pressure freezing (Medalia
et al., 2002; Moor, 1987). Though, the time delay between imaging and fixation may
potentially lead to loss of event correlation. However, recent technical advances have
been developed to aid in this transition, minimising these concerns. The rapid transfer
system (RTS) permits the easy transport and loading of carriers between imaging and
loading of samples for high pressure freezing (McDonald et al., 2007). The cryocapsule
is a small cell culture tool which was manufactured to fit directly into the high pressure
freezer, simplifying sample preparation (Heiligenstein et al., 2014). MAVIS (Microscopy
and Vitrification Integrated System) is an integrated system that combines a light
microscope with a plunger freezer. Imaging can be performed immediately before
freezing, vastly improving time resolution of event correlation down to a time frame of
seconds (Koning et al., 2014).

The major drawback to pre-embedding procedures is that resolution along the z-
axis is much worse for light microscopy compared to the required thickness of resin
sections for electron microscopy. This consequently only produces an approximation-
based correlation for correlated techniques.

A distinct advantage of using duel fluorescent and electron dense tags for pre-
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embedding CLEM is that precise correlated data is not critical for localizing proteins
at the nanoscale. More simple correlative light electron microscopy procedures can
be used instead, as tagged proteins can be readily distinguished in both modalities.

Though, if a single specific event needs to be tracked, correlated methods are essential.

Post-embedding CLEM

Samples being processed for post-embedding CLEM are imaged by light microscopy
following fixation and embedding for correlation with electron microscopy. The flu-
orescent signal is preserved during sample processing, which enables fluorescent light
microscopy to be performed on-section. Electron microscopy is then performed on the
same section delivering the most exact correlation possible, due to high z-axis reso-
lution. This approach has been implemented in a number of studies facilitating the
localization of proteins with high precision (Kukulski et al., 2011; Johnson et al., 2015;
Avinoam et al., 2015).

In order to be compatible for the preservation of fluorescence, certain processing
steps must be optimized, including choice of resin, fixation, dehydration and heavy
metal staining. Acrylic resins must be used for sample embedding due to their hy-
drophilic nature and their ability to interact with fluorophores favorably to preserve
fluorescence. Chemical fixation for post-embedding CLEM is only possible if weak
crosslinking reagents are used, otherwise fluorescent proteins become denatured. Cryo-
immobilization by plunge freezing or high-pressure freezing is often used instead. Flu-
orescent proteins may quench over prolonged exposure to solvent during dehydration
in some samples (Peddie et al., 2014). Faster procedures for substitution have been de-
veloped to negate these effects (McDonald and Webb, 2011). Additionally, fluorescent
proteins can also be quenched due to over-exposure to certain heavy metals. The loss
of heavy metals during sample processing results in low contrast and ability to visualize
ultrastructure in electron microscopy. Low amounts of uranyl acetate or tannic acid
are often used during substitution, resulting in fluorescence preservation and electron

contrast (Kukulski et al., 2011; Johnson et al., 2015). Furthermore, osmium-resistant
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fluorescent proteins have recently been engineered to aid in this problem (Paez-Segala
et al., 2015).

An alternative approach for post-embedding CLEM using chemical fixation uses
cryo-sectioning of frozen embedded gelatin samples (Tokuyasu, 1973). Here, thawed
cryo-sections are imaged first by fluorescent light microscopy before being imaged at
high resolution by electron microscopy. Due to mild fixation, antigenicity is preserved
remarkably well and therefore immunogold procedures are often performed inline with
fluorescent light microscopy correlation for ultra-precise protein localization (Hodgson

et al., 2014).

1.1.3 Retracing and Registration

The final step in the CLEM workflow involves reliable and precise retracing and reg-
istration between light and electron microscopy data. Both correlative and correlated
procedures absolutely require accurate retracing of the sample being imaged. It is only
correlated workflows however that involve registration, to be able to track exact re-
gions within a sample. Whist the process of registering light with electron micrographs
for correlated experiments is challenging, software tools such as TrakEM2 (Cardona
et al., 2012) and ec-CLEM (Paul-Gilloteaux et al., 2017) can assist greatly. The way in
which retracing and registration is achieved depends on whether pre or post-embedding
CLEM is performed.

Pre-embedding procedures use specific sample holders, finder cell-culture grids, laser
marks or pattern recognition to accurately track each sample throughout the entire
CLEM workflow (de Boer et al., 2015). To perform correlated registration, serial stacks
are first acquired using fluorescence light microscopy. The slice that best matches the
electron micrograph is used to correlate and overlay both images. This typically results
in inaccurate correlation due to limitations in z-axis resolution. Moreover, shrinkage
during sample processing, sample distortion from resin sectioning and small time delays
during fixation further restrict the ability to accurately correlate data.

Re-tracing for post-embedding CLEM involves picking up sections onto finder grids.
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The finder grid is visible by both light and electron microscopy and therefore, fluores-
cent regions of interest can be retraced during the transfer of grids between both imag-
ing modalities. Post-embedding registration is far more precise than pre-embedding
techniques as light microscopy and electron microscopy is performed on the same sec-
tion, thereby overcoming z-axis resolution limitations. Fiducial markers aid in precise
registration and correlation, as they are visible by both light and electron microscopy
(Kukulski et al., 2011). They therefore act as position co-ordinates to guide the user
towards the exact region of interest when at high resolution.

Recent advances in technology have further improved the ability to precisely corre-
late data for post-embedding CLEM. Integrated light and electron microscopes perform
imaging sequentially without the need to move the sample (Peddie et al., 2014). This
enables precise correlation through the automated overlay of both images without the
need for finder grids or fiducial markers. Additionally, cryo-fluorescence stages allow
fluorescent light microscopy to be performed on whole frozen samples (Schorb et al.,
2017). As the sample is then immediately imaged by cryo-electron microscopy it makes

retracing and registration particularly user-friendly.
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1.2 Cell Biology

1.2.1 Clathrin-mediated endocytosis

Endocytosis describes the process by which vesicles are produced from the plasma
membrane, facilitating the internalisation of extracellular molecules, plasma membrane
proteins and lipids into the cell. Multiple endocytic trafficking pathways exist and can
be broadly categorized by whether they are mediated by clathrin or not (Doherty and
McMahon, 2009).

Clathrin is a triskelion-shaped scaffold protein, composed of three heavy and three
light chains. As well as playing a fundamental role in membrane trafficking it also
moonlights in mitosis, aiding in the stabilization of microtubules in kinetochore fibres
(Royle, 2013). Clathrin-coated structures where first observed in mosquito embryos
by electron microscopy and have been of great interest for decades (Roth and Porter,
1964). Yet, the mechanisms by which clathrin-mediated endocytosis operates and
how the process is regulated are still being unraveled. In brief, a complex network of
proteins coordinates the timely progression through four defined stages, illustrated in
Figure 1.2. This begins with event initiation and is followed by vesicle maturation,
scission and finally uncoating. A high-resolution study has imaged these key steps
using high-precision correlated light electron microscopy and shown how the plasma
membrane is remodelled during the entire process (Kukulski et al., 2012). Briefly, Sac-
charomyces cerevisiae strains expressing various fluorescently tagged clathrin-mediated
endocytic proteins were high-pressure frozen and prepared for post-embedding CLEM
by preserving fluorescence in-resin. Each strain was then imaged by light microscopy
and the fluorescent signal was tracked to the electron microscope where the ultrastruc-
ture was observed at high resolution. This work highlights the power of CLEM for the
study of cell biology and specifically clathrin-mediated endocytosis.

A well studied example of a cargo molecule that is constitutively internalised in
this way, is an iron-binding protein called transferrin. Iron-bound transferrin binds

to its receptor on the cell surface, where it is rapidly internalized by invagination
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of clathrin-coated pits. Inside the cell, it is trafficked to early endosomes, releases
bound iron and is then recycled back to the cell surface. Uptake of transferrin takes
around 10 minutes and is recycled out by 15 minutes (Motley et al., 2003). The uptake
of fluorescently labelled transferrin is widely used to study normal clathrin-mediated

endocytic function.
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A. Initiation B. Maturation —_— C. Scission

Plasma membrane

|
Early endosome
| B D. Uncoating
]
Sorting/ degradation
Cargo | PIP2 . Dynamin ~—

AP2 T Clathin “{ GAK/Hsc70

Figure 1.2 Schematic diagram of clathrin mediated endocytosis.
(A) AP-2 binds Pl(4,5)P- at the plasma membrane followed by recruitmentof clathrin.
(B) The clathrin coat assembles during invagination of the vesicle.
(C) Dynamin is recruted to the neck permitting scission of the clathrin-coated vesicle.
(D) Once, the vesicle has pinched off from the plasma membrane,the clathrin coat is dissasembled, aided by
GAK/Hsc70.
(E) Uncoated vesicles fuse with early endosomes where cargo is sorted ether for degradation or recycled to the
plasma membrane.
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Initiation

Due to the complexity of the molecular machinery involved, a unified model for ini-
tiation has not emerged (Godlee and Kaksonen, 2013). Though, essential adaptor
and accessory proteins clearly have fundamental roles in the timely order of protein
assembly during initiation.

While clathrin is the main component of the endocytic machinery, it is unable to
directly bind to the plasma membrane or to cargo. To initiate clathrin-mediated endo-
cytosis therefore, adaptor proteins that bind plasma membrane and cargo are needed
to provide the necessary link to which clathrin can subsequently bind. Among the first
to arrive is AP-2 (Loerke et al., 2011). AP-2 can bind specifically to various partners
including clathrin, endocytic motifs present on cargo receptors and the membrane-
specific lipid phosphatidylinositol 4,5-biphosphate (P1(4,5P)s). Localization of AP-2
to the membrane is thought to be PIP2 dependent. It is this recruitment of AP-2
guided by PI(4,5)P; localization at the plasma membrane that is generally viewed as
the essential initiator sequence for clathrin-mediated endocytosis (Kelly et al., 2011).

Furthermore, there is an emerging role of the location site playing a role in clathrin-
coated pit initiation. While the degree and significance of spatially regulating endo-
cytosis at specific sites remains unclear, several studies have observed that multiple
nucleations can occur at the same location (Nunez et al., 2011; Li et al., 2015). These
highly productive areas of initiation have been termed hotspots (Keen et al., 1999).
Recent work using super-resolution microscopy has shown that at a single hotspot,
in 3.6% of cases, more than 5 nucleation events can occur (Li et al., 2015). Whilst
initiation is not solely restricted to hotspot locations, they do provide a mechanism to

spatially organize clathrin-mediated endocytosis at certain locations within the cell.

Maturation

Following initiation, the plasma membrane must invaginate and continue to assem-
ble the clathrin coat, to eventually form a vesicle. Whether this transition occurs

by clathrin polymerization during membrane invagination or by membrane reshaping
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where clathrin has already recruited remains controversial (Dannhauser et al., 2015;
Heuser, 1980). Though clathrin has been shown to possess an increased affinity for
curved membranes (Pucadyil and Holkar, 2016), substantial evidence has been gener-
ated that supports the latter model. Avinoam et al. used correlated light electron mi-
croscopy to image endocytic sites and determine clathrin coats and membrane profiles
during invagination. Interestingly, the clathrin coat surface remained almost constant
throughout, which would not occur if clathrin polymerization were to occur. The cur-
vature of the clathrin coat also increased as invagination proceeded, further supporting
the latter model.

Several endocytic accessory proteins have demonstrated membrane-bending prop-
erties. The PIP2 binding proteins epsin, CALM and amphiphysin all contain am-
phiphatic helices that insert into the plasma membrane inducing positive curvature
towards the insertion. This facilitates maturation of early clathrin-coated initiation
sites into a deeply invaginated pit (McMahon and Boucrot, 2011).

Actin recruitment at endocytic sites occurs early during invagination, generating
a propulsive force that promotes vesicle maturation (Kaksonen et al., 2006). Actin
and actin-associated factors are recruited and enriched in more than 50% of clathrin-
mediated endocytosis events and disruption to the actin cytoskeleton leads to impaired
maturation efficiency as well as distinct morphological changes to the neck of deeply
invaginated pits in mammalian cells (Taylor et al., 2011, 2012). Furthermore, a positive
correlation between clathrin coated pit lifetime and amount of actin recruited exists
(Grassart et al., 2014). Although, actin is not essential for clathrin-mediated endocy-
tosis in cultured mammalian cells, there is evidence that actin recruitment is necessary
when membrane tension is high (Boulant et al., 2011). Consistent with this, actin
is essential for endocytosis in yeast (Engqvist-Goldstein and Drubin, 2003). As their
membrane tension is high, a greater force needs to be generated by actin polymerization
to internalize membranes during endocytosis.

Actin coupling to clathrin-coated pits is regulated by HIP1R. HIP1R has the abil-

ity to bind membranes, clathrin light chain and actin and is found in more than 90%
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of clathrin-mediated endocytic events (Taylor et al., 2011). It can also exist in two
confirmations: extended and kinked (Engqvist-Goldstein et al., 2001; Wilbur et al.,
2008). Though, how HIP1R links the clathrin machinery to actin during maturation
of the vesicle is not particularly well understood. Three models have been proposed,
outlined in Figure 1.3. First, immunogold electron microscopy on unroofed cells sug-
gested HIP1R is restricted to the rim of clathrin-coated pits (Engqvist-Goldstein et al.,
2001). Second, HIP1R was proposed to bind the clathrin coat exclusively towards the
vesicle neck providing an anchor site to which actin can bind (Le Clainche et al., 2007).
Third HIP1R was predicted to be distributed throughout the pit and distal regions of
the membrane where it could adopt different confirmations (Wilbur et al., 2008). The
conformational change enabled different actin binding properties. In its extended state,
HIP1R can bind actin with much higher affinity than when found in its closed confir-
mation. Extended HIP1R was predicted to bind the plasma membrane and specifically
localize at the neck of a budding vesicle while its closed weaker state bound clathrin
and decorates the pit itself. Although all three models highlight key findings regarding
HIP1R structure and localization, only the second model remains feasible for efficient
vesicle production as it is the only model to show actin being linked to clathrin. With-
out this, sufficient force to internalize clathrin-coated vesicles by actin polymerization
is not achieved. However, their work did not include ultrastructural localization of
HIP1R. So we do not know how HIP1R structure relates to its function and in turn,

how this is related to ultrastructure.
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Clathrin HEEEEE  Dynamin I
Actin s HIP1R

Where stated: E - HIP1R in extended confirmation
K - HIP1R in kinked confirmation

Figure 1.3 Current models for HIP1R localization during clathrin mediated endocytosis.
(A) Model outlined by Engqvist-Goldstein et al., (2001). HIP1R is restricted to the rim of
clathrin-coated pits.
(B) Model outlined by Le Clainche et al., (2007). HIP1R binds the clathrin coat exclusively
towards the vesicle neck providing an anchor site to which actin can bind.
(C) Model outlined by Wilbur et al., (2008). HIP1R exists in two states, extended (E) or
kinked (K). In its extended state, HIP1R binds actin at the neck with much higher affinity
than when found in its shorter, kinked confirmation around the rim of clathrin-coated pits.
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Scission

Scission of the mature clathrin-coated vesicle is dependent on the mechanochemical
enzyme dynamin. Dynamin is a large GTPase that assembles into helical polymers
around the neck of deeply invaginated pits. Dynamin is recruited to the neck by
BAR domain-containing proteins, such as amohiphysin and endophilin. These proteins
have a strong binding preference for curved membranes and also contain amphipathic
helices that may also help to bend the membrane, facilitating scission (Daumke et al.,
2014). Constriction of the dynamin ring is induced by GTP-hydrolysis promoting a
conformational change that results in vesicle fission (Srinivasan et al., 2016). Without

dynamin, vesicle formation is arrested (Ferguson and De Camilli, 2012).

Vesicle uncoating

The final step involves the uncoating of clathrin from vesicles. This disassembly from
lattice to triskelia is achieved by the recruitment of auxillin (or GAK in non-neuronal
cells). Following scission, auxillin binds the clathrin coat, specifically localizing beneath
the hub of neighbouring triskelia. This enables the heat shock protein 70 (Hsc70) to
subsequently bind whereby uncoating is then initiated (Greener et al., 2000).
Furthemore, auxillin can bind specific membrane lipids that have been synthesized
from PIP2 by the phosphatase synaptojanin. Changing the phosphoinositide compo-
sition of clathrin-coated vesicles in this way controls the timing of auxillin binding
restricting its arrival to peak dynamin activity and thus assists uncoating (Guan et al.,
2010). Following uncoating, the clathrin machinery is released into the cytoplasm

where it can be reused in other rounds of clathrin-coated vesicle formation.
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1.2.2 Chemically-induced dimerization

Chemically-Induced dimerization (CID) is a powerful tool for controlling protein func-
tion in cell biology. It has been widely used in the study of clathrin-mediated endo-
cytosis, to force protein-protein interaction (Zoncu et al., 2007; Nakatsu et al., 2010;
Brach et al., 2014; Manna et al., 2015) or relocate target proteins to specific cellular
compartments (Robinson et al., 2010; Willox and Royle, 2012; Hirst et al., 2015).

Conditional regulation of two proteins is induced by small molecules that promote
their association into a high-affinity interaction. The first naturally occurring CID
system was described by Liu et al. 1991, in which the immunospressant drug FK506
was shown to simultaneously bind FKBP12 and calcineurin, resulting in the inhibition
of T-cell receptor-mediated signalling. Building on this work, a semi-synthetic ligand
named FK1012, formed by linking two FK506 molecules, was prepared that could
dimerize FKBP12, without binding calcineurin (Spencer et al., 1993). Whilst FK1012
was the first CID system to induce the close association of two proteins, the system is
limited to proteins dependent on homodimerization. Several years later, the synthesis
of heterodimerizing molecules capable of specifically dimerizing two different proteins
were reported (Belshaw et al., 1996; Licitra and Liu, 1996; Rivera et al., 1996). Among
these, was the small molecule, rapamycin.

Rapamycin is the most widely used chemical heterodimerizer in cell biology (Fig-
ure 1.4A) (Putyrski and Schultz, 2012). Rapamycin first binds the FKBP domain
of FKBP12. This complex then binds and inhibits the FRB (FKBP and rapamycin-
binding) domain of the kinase Target of Rapamycin (mTOR) with extremely high
affinity (2nM) (Figure 1.4A). In cells, two proteins genetically fused to FKBP and
FRB can be inducibly dimerized upon the addition of rapamycin, resulting in them
being brought within close proximity with one another. Due to the small molecular size
of rapamycin, it readily enters cells inducing the heterodimerization within a timescale
of seconds.

A potential limitation of using rapamycin to induce heterodimerization, is its nat-

ural inhibitory effect on mTOR. Over substantial time periods, rapamycin has been
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shown to inhibit downstream mTOR signaling pathways that regulate cell metabolism,
growth, proliferation and survival (Laplante and Sabatini, 2009). Because of theses ef-
fects, non-immunosuppressive rapamycin analogs (Rapalogs) have been developed. The
most widely used, AP21967 is able to specifically bind a mutant FRB domain (FRB
T2098L) but is too bulky to bind the FRB domain of endogenous mTOR (Figure 1.4
B) (Putyrski and Schultz, 2012).

Recent work has introduced a new promising CID system using the plant hormone
Gibberellin (Miyamoto et al., 2012). Here, Miyamoto et al. synthesised a modified form
of Gibberellin, GA3-AM, which first binds it receptor gibberellin insensitive dwarfl
(GID1). The GA3-AM-GID1 complex can then dimerize with gibberellin insensitive
(GAI) (Figure 1.4 B). Whilst the kinetics of this system to reach maximum dimerization
does not quite act as fast as rapamycin-induced dimerization (approximately 60 seconds
for GA3-AM, compared to less than 10 seconds for rapamycin), it is still useful for the

effective perturbation of many cellular processes.
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Figure 1.4. Protein dimerization systems.
A) Chemical structures of rapamycin and its most commonly used analog
AP21967. Binding surfaces to FKBP, FRB and mutant FRB are highlighted.
B) Rapamycin or AP21967 first binds FKBP and the complex then binds
FRB (or mTOR). The bulky adduct of AP21967 ensures it cannot bind
endogenous FRB, making it specific to mutant FRB (T2098L). Madified
gibberellin (GA3-AM) first binds gibberellin insensitive dwarf1 (GID1) inducing
a confirmational change, allowing the GA3-AM-GID1 complex to dimerize
with gibberellin insensitive (GAI).
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1.3 Motivation for this project

Combined together, light and electron microscopy can provide unprecedented infor-
mation about the complex network of proteins involved in the many processes within
the cell. However, there are drawbacks in current probes available to perform highly
accurate correlation down to single protein localization. The ideal probe for CLEM

must therefore meet these essential criteria:

o It should be genetically encoded and thus non-invasive.
o It should be non-toxic and non-disruptive to any cellular processes.

o The tag must be fluorescent so it is visible by light microscopy and also electron-

dense so it can be distinguished again by electron microscopy.

e The electron density must be tightly focused and have good signal:noise ratio so

it can be readily distinguished from background in electron micrographs.

o The methodology should be robust, reliable and not dependent on user optimizing

the staining conditions for each protein-of-interest.

o It should be compatible with high pressure freezing and thus allow samples to be

optimally preserved for imaging.

In order to study intracellular proteins involved in crowded and complex processes
such as clathrin-mediated endocytosis, it is fundamental that a new probe should be

developed that satisfies all these criteria.
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1.4 Published work

The work presented in this thesis regarding the development of a new genetically en-
coded tag has been preprinted (Clarke and Royle, 2016) and is currently under review

at a journal.

In addition to this, I have also collaborated on several other papers which have
now been published (Auckland et al., 2017; Nixon et al., 2017; Wood et al., 2017). My

contribution to these are summarized in the appendices.
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CHAPTER 2

Materials and Methods

2.1 Molecular biology

RPL5-mCherry-FRB was made by amplifying human ribosomal protein L5 (RPL5, IM-
AGE clone 5736022) by PCR and inserting into pMito-mCherry-FRB (made available
from previous work; see Cheeseman et al. 2013) via EcoRI-Agel. RPL22-mCherry-FRB
was made by amplifying human ribosomal protein 122 (RPL22, IMAGE clone 5109124)
by PCR and inserting into pMito-mCherry-FRB via EcoRI-BamHI. FRB-mCherry-
FTH1 was made by amplifying human ferritin heavy polypeptide 1 (FTH1, IMAGE
clone: 3459353) by PCR and inserting into pFRB-mCherry via Xhol-EcoRI. The mi-
tochondrial target sequence TOM70p from pMito-mCherry-FRB was subcloned into
FRB-mCherry-FTH1 via BsrGI-Xbal, to make pMito-mCherry-FTH1. To make FTL
only, human ferritin light chain (FTL, IMAGE clone 2905327) was amplified by PCR
and inserted into pEGFP-C1, removing EGFP, via Agel-Xhol. GFP-FKBP-LCa was
available from previous work (Cheeseman et al., 2013). FKBP-GFP-Myc-MAO was a
kind gift from Sean Munro (MRC-LMB, Cambridge; see Wong and Munro 2014). FRB-
mCherry-FTH1 (T2098L) was made using a site-directed mutagenesis (SDM) method
based on the QuikChange protocol (Wang and Malcolm, 1999) to introduce a T2098L
mutation. CD8-GFP-FKBP was made by amplifying CD8« from CD8-mCherry-FRB
(made available from previous work; see Wood et al. 2016) by PCR and inserting
into pEGFP-FKBP-N1 via Nhel-Agel. HIP1R-GFP-FKBP was made by amplifying
HIP1R from Addgene plasmid 27700 by PCR and inserting into pEGFP-FKBP-N1 via
Xhol-Agel.
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2.2 Cell biology

HeLa cells (HPA/ECACC #93021013) were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM, Gibco) supplemented with 10% fetal bovine serum (FBS) and 100
U/ml penicillin/streptomycin at 37 °Cand 5% CO,. Cells would reach 80-100% con-
fluency before they where passaged. Cells where kept no longer than a total of 25
passages following initial thawing. Cells grown in iron-rich conditions were supple-
mented with FeSO,-7H,0 to a final concentration of 1 mMm in full DMEM, 16 hours
prior to imaging.

Transfection was performed using Genejuice (Novagen). Cells seeded in 3.5 cm
wells where grown to around 70% confluency, 24 hours prior to transfection. To per-
form transfection, 31l of Genejuice was added to 100l of DMEM without additives
and incubated at room temperature for 5 minutes. A total of 1.5 ng of DNA was added
to the Genejuice/ DMEM mixture and incubated for a further 15 minutes at room tem-
perature. The DNA/ Genejuice/ DMEM mixture is then added to each well containing
full DMEM and left for 12-16 hours overnight. Transfection media was washed off the
following morning and replaced with full DMEM and cells were imaged or fixed 2 days
following transfection. The total amount of DNA for each plasmid transfected in Fer-
riTag experiments, was 750 ng of the GFP-FKBP tagged protein-of-interest and 750 ng
FerriTag (mixture of FTL only vector and FRB-mCherry-FTH1). The ratio of tran-
sected FerriTag plasmids is stated for each experiment. Optimal FerriTag expression is
performed by transfecting 600 ng FTL only vector and 150 ng of FRB-mCherry-FTH1
(ie. 4:1).

Cell viability was performed using the trypan blue exclusion assay. HeLa cells were
grown in 12-well plates and incubated in full DMEM containing different concentrations
of FeSOy4-7H50. At certain time points, cells where detached from each well using
trypsin and resuspended in full DMEM. A 1:1 dilution of cell suspension with 0.4%
Trypan Blue solution (ThermoFisher) was prepared for each suspension. Following

brief incubation at room temperature, a total of 500 cells for each condition where
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counted under a microscope. Non-viable cells appear blue and viable cells are unstained

(clear).

2.3 Light microscopy

Fixed cell experiments were performed in transiently transfect HeLa cells attached
to glass coverslips. Cells were fixed with 3% paraformaldehyde, 4% sucrose in PBS at
37°C, washed in PBS and mounted in Mowiol containing DAPI. Imaging was performed
on a Nikon Ti epifluorescence microscope with standard filtersets, equipped with a
heated environmental chamber (OKOlab) and CoolSnap MYO camera (Photometrics)
using NIS elements AR software.

Live-cell microscopy of FerriTag kinetics was performed in HeLa cells plated on fluo-
rodishes (WPI) expressing GFP-FKBP-LCa and either FerriTag (FTL:FRB-mCherry-
FTHI1, 4:1) or rapalog compatible FerriTag (FTL:FRB-mCherry-FTH1 T2098L, 4:1).
Cells were kept in Leibovitz L-15 COs-independent medium (Sigma) supplemented
with 10% FBS and kept at 37°C during acquisition. Imaging was captured on a
spinning disc confocal microscope (Ultraview Vox, Perkin Elmer) with a 100x 1.4 NA
oil-immersion objective taking frames every 2 seconds using a dual camera system
(Hamamatsu ORCA-R2) after excitation with 488 nm and 561 nm lasers.

Transferrin uptake analysis was performed in HeLa cells cultured on glass coverslips,
expressing GFP-FKBP-LCa and FerriTag (FTL only: FRB-mcherry-FTH1, 1:4). 48
hours post-transfection, cells were serum-starved for 30 minutes in serum-free DMEM
and then rapamycin was added in test conditions to induce FerriTagging. Control
conditions had no rapamycin added. Hypertonic sucrose solution (0.45M in serum-free
DMEM) was added 15 minutes into serum starvation. Following 2 minutes rapamycin
addition, Alexa647-conjugated transferrin (Invitrogen) was added directly to all cells
for 10 minutes. Cells were washed in warm PBS and fixed in 3% paraformaldehyde +
4% sucrose for 15 minutes. Coverslips were washed in PBS and dH,0O before mounting
onto glass slides with Mowiol containing DAPIL.

In all experiments rapamycin (Alfa Aesar) was added by pipetting in a concentrated
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solution in appropriate media at 37°C to a final concentration of 200nM. The same

approach was used to add AP21967 at a final concentration of 1 M.

2.4 Correlative light electron microscopy

HeLa cells transfected with a GFP-FKBP tagged protein-of-interest and FerriTag
(FTL: FRB-mCherry-FTHI. 4:1), were plated onto gridded glass culture dishes (P35G-
1.5-14-CGRD, MatTek Corporation, Ashland, MA, USA). Iron-rich media was added
16 hours prior to imaging (with the exception of the experiment shown in figure 4.4 C).
Light microscopy was performed on a Nikon Ti epifluorescence microscope (described
above; see 2.3. Cells were kept at 37°C in Leibovitz L-15 COs-independent medium
supplemented with 10% FBS during imaging. Using the photo-etched coordinates on
each grid, the location of each cell-of-interest was recorded using brightfield illumi-
nation at 20x for future reference. The same cell was then relocated and fluorescent
live cell imaging was then acquired at 100x. During imaging, unless otherwise stated,
rapamycin was added and once sufficient FerriTagging had been achieved, cells were
immediately fixed in 3% glutaraldehyde, 0.5% paraformaldehyde in 0.05M phosphate
buffer pH 7.4 for 1 h. Following fixation, free aldehydes were quenched in 50 mM glycine
solution and cells washed several times in 0.05 M phosphate buffer. Cells were post-fixed
in 1% osmium tetroxide (Agar) for 1h, washed in distilled water and then dehydrated
through an ascending series of ethanol (30, 50, 70, 80, 90, 100, 100%. 5 minutes each).
Cells were then infiltrated in epoxy resin (TAAB) using a 2:1 ratio of ethanol:resin for
30 minutes, 1:2 ratio of ethanol:resin for 30 minutes and then resin only for a further
60 minutes. Fresh full resin was then added and a gelatin capsule containing resin
was placed over the grid containing the cell-of-interest. Resin was then left to poly-
merize at 60°C for 48 hours. Coverslips attached to the polymerized resin block were
removed by briefly plunging into liquid nitrogen. The cell-of-interest was then located
by correlating grid coordinates imprinted on the resin block with previously acquired
20x brightfield images. The resin around the cell-of-interest was trimmed away using

a glass knife and serial, ultrathin sections of 70 nm were then taken using a diamond
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knife on an EM UCT (Leica Microsystems) and collected on uncoated hexagonal 100
mesh grids (EM resolutions). Electron micrographs were recorded using a JEOL 1400
TEM operating at 100 kV using iTEM software. See figure 2.1.

All CLEM experiments were processed in this way, with the exception of section
4.3 in which en bloc uranyl acetate staining was performed before ethanol dehydration

at a concentration of 0.5% in 30% ethanol for 1 hour.
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Cell Culture and LM

Sample Processing

Figure 2.1 CLEM workflow using FerriTag. (A) Gridded glass MatTek dishes are used to track cells throughout the

entire workflow. (B) Cells-of-interest are located using the photo-etched coordinates on each grid and a
brightfield image is taken at 20x magnification for future reference. (C) The same cell is then imaged using
fluorescent live cell imaging at 100x magnification. (D) Rapamycin is added and the protein-of-interest is
FerriTagged. (E) Once FerriTaggining has occurred the sample is immediately fixed and processed for
electron microscopy. Briefly, each sample is post-fixed and stained with osmium tetroxide and embedded in
resin, in which a gelatin capsule filled with resin is placed over the cell-of-interest. (F) Once the resin has
polymerized, the surface containing the glass coverslip is placed into liquid nitrogen and the coverslip is
removed using a razor blade. (G) The resin-filled gelatin block is then excised by removing the plastic dish
and excess resin using pliers. (H) The imprinted grid containing the cell-of-interest on the block is then
located and marked using a pen. (1) Excess resin around the marked grid is then trimmed away using a
razor blade. (J) A 350 pm square around the cell-of-interest is then trimmed away using a glass knife. (K)
Serial 70 nm sections are then taken using a diamond knife and picked up onto uncoated 100 mesh
hexagonal copper grids (L). Sections can then be imaged by TEM.
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2.5 Image analysis

Kinetics were measured using particle detection on binarized image stacks. Particles
were used as a mask to collect mean pixel densities from green (LCa) and red (FerriTag)
channels. The ratio of background-subtracted intensities was taken for each particle
and the median value (set to 0) used for averaging across multiple cells. As a control,
the red channel was spatially randomized and analyzed in the same way, giving no
response. Pearson’s correlation coeffcient was calculated from red and green fluorescent
channels in IgorPro 7.01.

For analysis of transferrin uptake, images were thresholded in the far red channel
to isolate vesicular structures. Using the ImageJ plugin, analyse particles, a mask
showing particles of 0.03 - 0.8 ym and circularity of 0.3 - 1.0 for each image was
created. Pixels over threshold within each cell were measured and values used as the
basis for quantification.

Measurement of fluorescence intensity was calculated from background subtracted
integrated densities for the whole cell in ImageJ.

Sections 4.6, 4.7 and 4.8 contain full details of the determination of the labeling
resolution of FerriTag, the signal-to-noise ratio calculation and the automated particle
detection, respectively. The synthetic images generated for section 4.7 were made using
two images. The first, an 8-bit random noise which is then blurred, and the second
is black background. A 3x3 pixel white square is then put at random positions (same
location in the two images). The first image is then blurred with Gaussian blur.

For contextual mapping of HIP1R using FerriTag, electron micrographs in TIFF
format were imported into IMOD and the plasma membrane and location of electron
dense FerriTag particles were manually segmented. The coordinates corresponding to
contours and objects were fed into IgorPro 7.01 using the output from model2point.
Custom-written procedures (available at https://github.com/quantixed/FerriTag)
processed these data. First, the coordinates were scaled from pixels to real-world values,

and the closest distance (proximity) to the plasma membrane was recorded. Then, the
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predicted beginning and end of the clathrin-coated pit were defined manually in a
graphical user interface. The contour length of the pit was determined and the contour
length between the start of the pit and the point of closest approach for each particle
was calculated. Using the ratio of these two lengths, a spatially normalized view of
particle location in relation to an idealized clathrin-coated pit was plotted. Particles
located at distal, uncoated regions and particles inside the pit were plotted separately.

All figures were made in ImageJ or IgorPro 7.01 and assembled in Adobe Illus-
trator.

All code for image analysis in this thesis was written by Stephen Royle and is

available at https://github.com/quantixed/FerriTag.
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Primer

Sequence

NICO11 TCAGCGGAATTCCCACCatggctcctgtgaaaaagctigtggtgaaggag
NICO12 TCAGCGGGATCCGGatcctegtettectecteticttegtectggtt

NICO17 TCAGCGGAATTCCCACCatggggtttgttaaagtigttaagaataag
NICO18 TCAGCGGGACCGGTGCgctctcageagecegetectgagetctgag
NICO19 TCAGCCACCGGTGGCCACCatgagcteccagaticgtcagaattaticca
NIC020 TCAGCCCTCGAGCTAT TAgtcgtgetigagagtgagcectticgaagag
NIC055 gegcCTCGAGcecatgacgaccegegtecacctegeaggigege

NIC056 caggGAATTCqggttagctticattatcactgtcteccagggt

SJR358 ggaatgtcaaggacctcCTecaagectgggacctc

SJR359 gaggtcccaggetiggAGgaggtcctigacatice

Table 2.2 Table of oligos used in this thesis. 5’ to 3’ sequence of all primers used for sub-cloning
or site-directed mutagenesis. Usage cross referenced with Table 2.1.
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CHAPTER 3

Development of FerriTag and

implementation for light microscopy

3.1 Introduction

Genetically encoded probes are essential tools for CLEM that enable specific proteins-
of-interest to be visualized at high resolution. As defined in section 1.4, available probes
do not meet all of the criteria for an ideal CLEM probe. Therefore, the development
of a new genetically-encoded probe for CLEM, is highly desirable. The probe must
generate sufficient contrast that is tightly focused in order to be readily visualized
by electron microscopy. Therefore, the genetically encoded tag must itself be electron
dense or it should have the capability to bind exogenous metal ions to scatter electrons.
Furthermore it should be small enough so it can access the target protein and should
also be free to diffuse throughout the cytoplasm, otherwise it may interfere with normal
cellular processes. Two candidates that are known to be electron dense and are easily
distinguishable from background by electron microscopy are ribosomes and ferritin.

We wondered if either could be engineered to function as a probe for CLEM.

Ribosome

The ribosome catalyzes protein synthesis within the cell. A network of ribosomal pro-
teins form two subunits that link together, which both have distinct functions (Figure
3.1 A). Together they translate the sequence of codons on messenger ribonucleic acid

directing the synthesis of a polypeptide chain where it can then form a functional pro-
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tein. Ribosomes are found in the cytoplasm or bound to the endoplasmic reticulum.
The Eukaryotic ribosome is relatively large in size (approximately 20nm) and gener-
ates sufficient contrast to be clearly visualized within the cell by electron microscopy

(Leeson and Leeson, 1965).

Ferritin

Ferritin is a small naturally occurring biological complex that acts to regulate iron levels
in cells and is found in almost all living organisms. It is made up of 24 polypeptide
subunits that form a spherical protein cage approximately 12 nm in diameter (Figure
3.1 B). Subunits consist of heavy-chains (FTH1) that contain the ferroxidase center and
light-chains (FTL) that facilitate the mineralization of Fe3*. The Light and Heavy-
chain stoichiometry making each cage varies between different tissues (Wilkinson et al.,
2006). Within the central ferritin core interior, it has the ability to store up to 4500
iron atoms (Jutz et al., 2015). This high iron content confined within its 7.5 nm
core makes ferritin very electron dense and thus can be readily visualized by electron
microscopy (Masuda et al., 2010). In fact, ferritin-conjugated antibodies where the first
probes to localize proteins by electron microscopy (Singer, 1959). Previous work has
highlighted the use of (bacterial) ferritin as a genetic tag for cryo-electron tomography
(Wang et al., 2011). However, no work has been undertaken in mammalian cells using

a ferritin-based genetic tag for CLEM.

38



A Ribosome
RPL5

RPL22

B Ferritin
FTH1

Figure 3.1. Molecular structure of electron dense proteins.
A) Human ribosome (PDB: 5LKS). Ribosomal proteins L5 and L22 that are within
the 60S subunit complex of the ribosome are highlighted in pink. Ribosome including
RNA also shown to the right.
B) Human ferritin (PDB: 3AJ0). Ferritin heavy chain FTH1, is highlighted pink.

Scale bar 5 nm.

39



Results

3.2 Direct fusion of ferritin results in aggregation

The first attempt to use ferritin as a genetic tag for CLEM in mammalian cells aimed
to build upon previous work, by directly fusing ferritin to a protein-of-interest (Wang
et al., 2011). A mitochondrial target sequence (Tom70p) fused to mCherry and human
ferritin heavy chain (FTH1) was expressed in HeLa cells and imaged by fluorescent
light microscopy. However, it was clear this direct fusion resulted in severe aggregation
and mislocalization of the mitochondria (Figure 3.2A). This was most likely due to the
multivalent nature of the ferritin cage as illustrated in figure 3.2B. It was clear this
approach would not work. On this basis we did not try the direct fusion of a ribosomal
subunit to a protein-of-interest as we did not want to interfere with normal protein

synthesis.

60



‘abea une) ajBuis B ul $z 0} dn ag pjnood a1ay) Aj|eala10ay | "UMOYS ale spungns

LH14-Ausynw maj e Ajuo ‘sesodind eanensn||i 1o} 10} ‘8j0N "eLpuoysouw jo uonebaibbe o) spes| abeo unue) a|buls B 0} punoq seouanbas
19b61e] |BUpUOYI0)W BjdiyNwW “3°1 ULLIA) [0 3INjBU uajeAlnnw ayl Aq pasned ag o} 1ybnou) si uonebaibbe moy Bunensn) weibeip anewayoas (g
‘wrl g1 1eq 9[€9S "(1ybL) aniq

pue pal jo abiaw pue (U8|) an|q ul umoys |4y Buisn Buluieis yNGg s|182 Buissaidxa gy 4-Ausyow-ouwd ul uaas s1 ABojoydiow [BLpuoy201IW
[ewIoU 21aym |0J3u02 0} patedwod sk ‘(a|ppiw ‘pay) uciez|eoo] eLpUOyoouW sydnisip LH14 uo uoisny 1oa1g ‘doswol Jo aouanbas

Bunebie) reupuoysopw auy 0} pasny | H14-Ausygw pue gy4-Ausyow Buissaidxa s)j82 ey moys 0} sydeiboiaiw piayspim anijiuasaiday (v

"eUpUOYooNW Jo uonefaibbe ul S)Nsel uiiia) o uoisn) 1081 ‘2 ¢ ainbi4

»

q abis|y \:H_m; I Idva

i

4 uoupuouooin g

FE._EUE
LH1d

FH14-Aueyow-opwd

gdd-Ausypuw-onnd

61



3.3 Engineering an inducible electron dense parti-
cle

As the direct fusion to either ferritin or to the ribosome was not feasible, the idea of
inducibly adding them to a protein-of-interest was explored. This would mean each
protein can perform its normal cellular function prior to induction. To do this, a

rapamycin-induced protein dimerization system was used (Figure 1.4).

Ribosome

Ribosomal proteins that were exposed to the outer surface of the Eukaryotic 60S ribo-
somal subunit complex were selected (Myasnikov et al., 2016). Ribosomal protein L5
(RPL5) and L22 (RPL22) were suitably positioned, each extending their C-terminus
away from the complex exterior (Figure 3.1A). It was thought by expressing a sin-
gle ribosomal protein with mCherry-FRB fused at their C-terminus, a recombinant
60S subunit complex would form that could be inducibly targeted to an FKBP-tagged
protein-of-interest. To test this idea, HeLa cells expressing a recombinant ribosomal
complex as well as GFP-FKBP tagged monoamine oxidase (MAQO) that localizes to
mitochondria, where fixed and processed for fluorescence light microscopy. Before the
addition of rapamycin, ribosomal complexes appeared homogeneously distributed in
the cytoplasm. However, following rapamycin addition neither RPL5 (Figure 3.3 A)
or RPL22 (Figure 3.3 B) relocalized to the mitochondria. It was concluded that with-
out further optimization, ribosomes cannot work as inducible electron dense tags for

CLEM.
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Ferritin

The same rationale used for ribosomal labelling was applied to engineering an inducible
recombinant ferritin cage. FRB-mCherry was fused to the N-terminus of FTH1, allow-
ing the tag to be exposed to the exterior of the recombinant ferritin cage (Figure 3.1B).
It is essential FRB-mCherry is exposed to the exterior of the cage, as to not bury the
tag inside the core of of the ferritin particle, which may interfere with its dimeriza-
tion properties or its ability to bind iron. HeLa cells expressing FRB-mCherry-FTH1
as well as GFP-FKBP tagged MAO, where fixed and processed for fluorescence light
microscopy. Whilst ferritin appeared to label the target protein following rapamycin
addition, it did result in the mislocalization and aggregation of mitochondria. Further-
more, ferritin aggregated with itself prior to rapamycin addition (Figure 3.4). This was
likely due to the multivalent nature of ferritin. Therefore, for it to be effectively used

as an inducible electron dense tag for CLEM, further optimization was needed.
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3.4 Optimization of recombinant ferritin for inducible

tagging

It was thought that reducing the number of FRB-mCherry subunits per ferritin cage
would minimize aggregation issues during recombinant ferritin cage assembly. To test
this idea, the number of FRB-mCherry tagged FTH1 subunits were co-expressed with
a higher ratio of untagged FTL subunits. HeLa cells expressing FRB-mCherry-FTH1
and FTL at different ratios of (1:2. 1:4 or 1:8) were expressed together with GFP-
FKBP-MAO and imaged by fluorescence light microscopy (Figure 3.5). In general a
1:2 ratio still resulted in aggregation of the recombinant ferritin particle whilst 1:8
did not provide sufficient expression of tagged FTH1. Diluting the amount of tagged
FTH1 subunits to 1:4 however resulted in the homogeneous distribution of recombinant
ferritin prior to rapamycin addition and effectively labelled the protein-of-interest after
application without any mislocalization or aggregation issues. We therefore determined
this as the optimal condition for expression in HeLa cells and we named this optimized
genetically encoded recombinant ferritin particle FerriTag. Using this subunit dilution
approach with the direct ferritin tag was not seen feasible as we still have limited
control over how many tagged and untagged subunits are expressed. It is therefore
likely that if the 24 subunit ferritin cage had two or more tagged subunits within its

structure, the protein-of-interest would still aggregate and/ or mislocalise.
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DAPI GFP mCherry Merge

FRB-mCherry-FTH1 and FTL
1:4 1:2

1:8

Figure 3.5. FerriTagging results in successful labelling of mitochondria.
Representive widefield micrographs showing Hela cells expressing FerriTag (FRB-mCherry-FTH1
and FTL) (red) at differant ratios and GFP-FKBP-Myc-MAQ (green). No aggregation of either
FerriTag (red)or mitochondria (green) is seen before or after the addition of rapamycin with a ratio
of 1:4. We therefore determine this is the optimal ratio of FRB-mCherry-FTH1 and FTL when
expressed in HelLa cells. DNA staining using DAPI shown in blue. Rapamycin addition is indicated
by filled orange bar. Scale bar 10 pm.
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3.5 Temporal resolution of FerriTagging

Our current model for FerriTag is shown in Figure 3.6. FerriTag assembles in cells by
expressing FRB-mCherry-FTH1 and FTL at a ratio of 1:4. At the same time a GFP-
FKBP-tagged protein-of-interest is expressed. Prior to the addition of rapamycin, Fer-
riTag is free to diffuse throughout the cytoplasm and the GFP-FKBP-tagged protein-
of-interest performs its normal cellular function. Upon the addition of rapamycin, the
heterodimerization of FKBP and FRB domains is induced resulting in FerriTag la-
belling the protein-of-interest. This labelling event is referred to as FerriTagging. As
both FerriTag and the protein-of-interest are fluorescently labelled, FerriTagging can
be observed by light microscopy. This means we can study the dynamics of an event
and then correlate this with electron microscopy. It is therefore essential that an in-
ducible system provides rapid labelling of the protein to be able to capture such an
event.

To assess the temporal resolution of FerriTagging, HeLa cells expressing FerriTag
and GFP-FKBP-LCa where imaged using fast dual camera imaging by spinning disk
confocal light microscopy, capturing frames every 2 seconds (Figure 3.7 A). The kinetics
of FerriTag appeared to show a very fast labelling phase followed by a much slower
accumulation of fluorescence. To look at the on-time of FerriTagging, the time to
reach half maximum (7%/,) was used as a metric. In the case of labelling clathrin,
FerriTagging reaches half maximum within a few seconds following the addition of
rapamycin (Figure 3.7 B, C and D). However, due to artefactual "spikes' in fluorescence
(discussed below), these values may not be completely accurate and the half maximum
on-time of FerriTagging is probably slower. To look into this, FerriTag fluorescence
in the cytoplasm was assessed and shown that the time taken to reach half maximum
reduction is longer (71, = 17.93 seconds) which represents a more realistic value.
The time taken to reach complete labelling is much slower. This is quantified by the
time taken to reach maximum labelling, taking almost 5 minutes (Figure 3.7 B, C

and D). These data suggest FerriTagging occurs over two pools, an initial fast pool
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and a much slower secondary pool. For all of these experiments, manual addition
of rapamycin resulted in artefactual "spikes" in fluorescence during image acquisition.
This prevented the fit of curves to data to assess the speed of the fast and slow phases of
FerriTagging. Future experiments will use a flow chamber and rapid solution switching

to apply rapamycin without disrupting fluorescence measurements.
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3.6 FerriTagging does not perturb the function of
clathrin

For many experiments FerriTagging will occur, dynamics will be observed and the
sample will be immediately fixed and processed for electron microscopy. However there
are cellular processes that occur on a longer timescale and it is therefore important
to assess whether FerriTagging perturbs normal protein function in such cases. An
example is clathrin-mediated encocytosis (section 1.2.1).

Therefore, to assess whether FerriTagging inhibits clathrin-mediated endocytosis,
transferrin uptake was compared in cells expressing FerriTag and GFP-FKBP-LCa in
the presence or absence of rapamycin (Figure 3.8 B). Rapamycin was added for 2 min-
utes prior to the addition of transferrin, ensuring all LCa was Ferritagged (Figure 3.8
A). Transferrin uptake was left to proceed in both conditions for 10 minutes, permitting
sufficient time for its internalization (Figure 3.8 A). Quantification of transferrin uptake
showed no difference between LCa Ferritagged cells and cells where no rapamycin was
added, suggesting FerriTagging does not inhibit clathrin-mediated endocytosis (Fig-
ure 3.8 C). Inhibition of clathrin-mediated endocytosis could readily be detected by

pre-treatment of the cells with hypertonic sucrose (0.45M) (Figure 3.8).
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3.7 Rapamycin analogs are compatible with Fer-
riTagging

A potential limitation of using rapamycin to induce heterodimerization for FerriTag-
ging, is its natural inhibitory effect on mTOR. FerriTagging occurs with in seconds
(section 3.5), so over short imaging periods (< 10 minutes), rapamycin will have no ef-
fect on mTOR function. However, as suggested in section 3.6, there may be applications
where imaging will need to be acquired over longer periods following FerriTagging. To
alleviate this issue we assessed whether FerriTag could be engineered to be compatible
with rapamycin analogs to induce labelling following the addition of AP21967 (section
1.2.2). Threonine 2098 was mutated to a leucine in the FRB domain of FRB-mCherry-
FTHI to create a rapalog compatible FerriTag. Hela cells expressing FerriTag (FRB-
mCherry-FTH1 T2098L: FTL, 1:4) and GFP-FKBP-LCa where imaged by spinning
disk confocal light microscopy, and assessed for FerriTagging following the addition of
AP21967 (1 uMm) (Figure 3.9 A). FerriTagging occurred immediately following AP21967
treatment (Figure 3.9 B) and specifically labelled clathrin-coated structures, similar to

inducing heterodimerization by rapamycin (Figure 3.7).
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3.8 Discussion

This chapter introduces FerriTag, a new genetically encoded tag for CLEM. The de-
velopment and implementation of the method had been achieved for light microscopy.

Initial optimization focused on circumventing issues associated with the use of
genetically-encoded ferritin. By expressing a mixture of untagged human ferritin light
chain (FTL) with a lower concentration of FRB-mCherry tagged human ferritin heavy
chain (FTH1), we can build an inducible recombinant ferritin cage (FerriTag) that does
not aggregate with itself, or the target protein, before the addition of rapamycin. Fol-
lowing the addition of rapamycin, FerriTag rapidly labels the protein-of-interest with
high specificity. No aggregation of Ferritagged proteins-of-interest was seen for those
we tested. Furthermore, we show that FerriTagging does not interfere with normal
clathrin function. This is important for experiments where Ferritagged proteins will
be imaged for longer periods. However, the impact of FerriTagging on normal protein
function for other experiments would need to be assessed, case-by-case.

The temporal resolution data suggests FerriTagging occurs within two pools (Sec-
tion 3.5). An initial fast pool labels the target structure quickly following rapamycin
addition. The resulting slow pool then continues to FerriTag the target protein but
over a much slower time-scale. These two pools likely reflect how FerriTag can label
structures within close proximity quickly following rapamycin addition but once FKBP
binding sites on the protein-of-interest get taken up, the amount of FerriTag binding
events become less frequent. Taken together, these data suggests the kinetics will per-
mit the use of FerriTag to localize proteins involved in dynamic cellular processes but
restricted to events that occur on a time-scale that last at least 20 seconds or more.
This is further discussed in section 5.

Currently there is limited control over how many FRB-mCherry tagged FTH1 sub-
units are expressed with untagged F'TL subunits when FerriTag is made in cells. Whilst
expressing tagged and untagged subunits at a ratio of 1:4 gives good expression of Fer-

riTag with no adverse aggregation issues, using transient transfection of two separate
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plasmids to do this may sometimes result in some cells not expressing, or expressing
to much or too little of one plasmid. To circumvent this, it is possible to make a
bicistronic vector containing an internal ribosome entry site (IRES) to ensure both
transgenes are expressed. As the expression efficiency of the IRES is not as strong as a
cytomegalovirus (CMV) promoter, the correct expression ratio of tagged and untagged
ferritin subunits can be achieved (Kuzmich et al., 2013). In addition, a chimeric fusion
incorporating multiple ferritin subunits can be engineered. It has previously been re-
ported that the fusion of FTL and FTH1 using a flexible linker is possible to express
ferritin in mammalian cells that advantageously also has enhances the iron-loading
properties of ferritin (Iordanova et al., 2010). It is therefore plausible a similar con-
struct can be engineered for FerriTag i.e. FRB-mCherry-FTH1-FTL, that may help
control subunit stoichiometry when expressed.

A potential limitation of FerriTagging is the use or rapamycin. We show FerriTag-
ging is compatible with rapalogs that can dimerize with exogenous FRB domains but
do not interfere with mTOR signalling pathways.

As endogenous FKBP is a highly abundant cytosolic protein, it can potentially
out-compete exogenous FKBP for FRB binding, thereby decreasing heterodimerza-
tion efficiency. This may be problematic when studying low abundant proteins using
FerriTag, as lower levels of exogenous FKBP are expressed. In such cases, we would
deplete endogenous FKBP, which has been shown to improve efficiency of rapamycin-
induced dimerization (Ballister et al., 2014). Similarly, exogenous FKBP-rapamycin
complexes can bind endogenous mTOR. Consequently, endogenous mTOR would bind
the target protein instead of FerriTag. If this proves problematic, we would combine
endogenous FKBP knockdown with rapalog compatible FerriTag.

Future improvement to the FerriTag methodology may look to other CID systems to
improve labelling efficiency and dynamics. Although rapamycin-induced dimerization
using FerriTag has fast temporal resolution it may be that other techniques are quicker.
The plant hormone, gibberellin, has recently been shown to trigger the interaction

between a gibberellin insensitive dwarfl (GID1) and a gibberellin insensitive (GAI)
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domain for CID experiments (Figure 1.4 C). As this system is completely orthogonal
it may result in faster labelling dynamics compared to rapamycin. Furthermore it will
not interfere with endogenous cellular processes (Miyamoto et al., 2012).

In conclusion, we begin to meet the essential criteria for the ideal CLEM probe that
are discussed in section 1.3 and with this method now working well by light microscopy,
we now wanted to visualize FerriTagging by electron microscopy to localize proteins at

the nanoscale.
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CHAPTER 4

Characterization and application of
FerriTag using correlative light

electron microscopy

4.1 Introduction

In the previous chapter we showed that FerriTagging works effectively as assessed by
light microscopy. We saw how FerriTag could be attached to a protein-of-interest
upon addition of rapamycin. We next wanted to characterise FerriTagging by electron
microscopy. Key questions are whether the genetically-encoded proteins assemble to
form a particle which can bind iron and whether these particles are specifically attached
to proteins-of-interest. We also wanted to determine the resolution of FerriTagging. If
FerriTag works well as a CLEM probe, we should be able to use it to address a real

problem in cell biology.
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Results

4.2 Loading FerriTag with iron is non-toxic to HeLa
cells

In order to visualize FerriTag by electron microscopy, it must bind enough iron to
provide sufficient contrast to be distinguished from background noise. An iron-loading
step during cell culture is therefore required. We reasoned the greater amount of
iron the cell can take up, the greater the amount of iron FerriTag can bind and thus
appear more electron dense. The concentration of iron used must be non-toxic to cells.
Previous work, has shown that incubating HelLa cells for 72 hours in iron-rich culture
medium containing 500 ug/ml of iron (3.3 mM FeSO,) has adverse effects on cell
viability and ultrastructure (Jauregui et al., 1975). Determining the optimal culture
time and concentration needed for loading cells with iron was therefore essential for
FerriTagging.

HeLa cells where incubated in varying concentrations of iron-rich media over periods
of up to 48 hours. Cell viability was determined using the trypan blue exclusion assay
at various time points up to 48 hours for each concentration (Figure 4.1). Whilst cell
viability decreases over time at increasing iron concentrations, minimal toxicity was ob-
served in cells cultured for 16 hours in media supplemented with 1 mm FeSO,4 (98.5%).
This was seen acceptable compared to control (99.87%), whereas increased concentra-
tions at the same time point significantly reduced cell viability i.e. 3mM FeSOy,, 93%.
Thus, 1 mM FeSOy4 for 16 hours was used during CLEM sample preparation to load

FerriTag with iron.
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Figure 4.1.
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Quantification of cell viability in iron-supplemented media.

Hela cells were supplemented with the indicated concentrations of FeSO,
and cell viabilty was assessed by trypan blue exclusion at various time
points. Markers indicate mean + SD from three experiments. Dashed red
line indicates the 16 hour time point. 1 mM FeSQ, for 16 hours was the
chosen condition for FerriTagging. Inserted graph shows zoomed in region
at this concentration to better visualise cell viability between each condition.
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4.3 Optimization of sample processing using Fer-

riTag for CLEM

For FerriTag to be effectively used for CLEM, the electron density generated from its
iron-loaded core must not be masked by over-staining samples during processing for
electron microscopy. However, samples must be stained by heavy metals so cellular
ultrastructure can be visualized. Finding the correct balance is therefore essential.

Initial optimization of sample processing was performed in a correlative manner
(section 1.1). HeLa cells were transfected with FerriTag (FRB-mCherry-FTH1: FTL,
1:4) and a GFP-FKBP-tagged protein-of-interest and plated on to gridded-glass culture
dishes in order to track cells throughout the entire workflow. Prior to imaging, cells
are incubated in media supplemented with 1 mM FeSO,4 for 16 hours (section 4.2).
Fluorescent light microscopy is then performed and cells expressing both FerriTag and
the GFP-FKBP-tagged protein-of-interest are selected. Rapamycin (200nMm) is added
and FerriTagging is observed. Once sufficient tagging has been achieved, cells are fixed
chemicaly. Samples are then post-fixed and stained in 1% osmium tetroxide for 1 hour
and prepared for embedding in plastic resin prior to imaging by transmission electron
microscopy (TEM) (figure 4.2 A).

Routine heavy metal staining for electron microscopy generally uses en-bloc uranyl
acetate and on-section uranyl acetate and lead citrate staining (Graham and Orenstein,
2007). However, we found these masked the electron density of FerriTag and were
therefore omitted from the protocol (figure 4.2 B). The final optimized workflow for
processing Ferritagged samples for correlative light electron microscopy using chemical
fixation is shown in figure 4.2 and is used for all following CLEM experiments herein.

It should be noted that there may be other processing protocols or techniques that
are more suited for the better visualization of FerriTag, including those that better
preserve cellular ultrastructure such as high pressure freezing and freeze substitution.

These workflows are discussed in chapter 5.
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S  Transfect Ferrifag & Seed cells onto Iron-rich
a protein-of-interest gridded dishes media
l16 h
v
s Live-cell Add rapamycin Fix cells
= microscopy (200 nM) i
I
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s Post-fix, stain 1h Processing, TEM imaging of
w 1% 0s04 Ultrathin sectioning unstained sections
B
en bloc UA No en bloc UA

Figure 4.2. Sample processing using FerriTag for CLEM.
A) Optimized workflow outlining steps for sample processing to correlate light with
electron microcopy using FerriTag.
Preparation (Prep): Cells are first transfected with FerriTag and a GFP-FKBP
tagged protein of interest. They are then seeded onto gridded glass culture
dishes for tracking. Iron-rich media is added to increase the electron density of
FerriTag.
Light microscopy (LM): Cells expressing transfected proteins are imaged by live-
cell fluorescent microscopy. Rapamycin induces the heterodimerization of FKBP
and FRB, resulting in FerriTagging of the protein-of-interest. Once sufficient labelling
has been observed, cells are immediately chemically fixed.
Electron microscopy (EM): Fixed cells are post-fixed and stained in 1% osmium
tetroxide (Os0O,), dehydrated in grade series ethanol and embedded in epoxy resin.
Ultrathin serial sections containing the same cell imaged by light microscopy are
taken and then imaged by transmission electron microscopy (TEM).
B) Representitive electron micrographs to show comparison of sample staining
conditions, with and without uranyl acetate (UA). Addition of UA masks electron
density of FerriTag. Removal of UA enables clear visualization of FerriTag particles
(yellow arrows) and ultrastructure can still be seen. Scale bar 200 nm for non-zoom
image and zoom (x5) 10 nm.
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4.4 FerriTag can be used to localize intracellular
proteins using CLEM

We next wanted to assess whether FerriTag could be used to localize intracellular pro-
teins at the nanoscale following the optimized correlative workflow outlined in section
4.3. To do this, two different proteins in disparate locations were selected that could

be easily distinguished in the cell by electron microscopy.

« Monoamine oxidase (MAO) an outer mitochondrial membrane protein

« Clathrin light chain a (LCa), part of the clathrin triskelion (Section 1.2.1)

Each protein was tagged with GFP-FKBP, expressed in HelLa cells with FerriTag
(FRB-mCherry-FTH1: FTL, 1:4) and imaged by live-cell fluorescent light microscopy
(figure 4.3). The grid coordinate containing each cell-of-interest were noted for track-
ing of the same cell throughout the CLEM workflow. Prior to rapamycin addition,
FerriTag is homogeneously distributed throughout the cell and both the mitochondria
and clathrin do not aggregate or mislocalise. Rapamycin addition induced the het-
erodimerization of both FKBP and FRB resulting in FerriTag specifically labelling
each protein-of-interest rapidly. Following fixation and processing, ultrathin sections
of the same cell imaged by light microscopy were imaged by electron microscopy. Elec-
tron dense FerriTag particles, the correct size of the interior core of human ferritin
(7 nm), could be easily distinguished from background noise in electron micrographs.
Furthermore, the ultrastructure of the cell is also visible. Specifically, electron dense
FerriTag particles can be seen decorating the mitochondrial membrane in GFP-FKBP-
Myc-MAO cells and clathrin-coated pits and vesicles in GFP-FKBP-LCa cells, where

each protein-of-interest is normally located.
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4.5 FerriTagging is specific to the target protein

Whilst we could observe electron dense particles in the vicinity of the target protein
that consistent with size and shape as ferritin (Figure 4.4 A), we needed direct evidence
that they were FerriTag. Three control experiments using different sample preparation
conditions were set up that would determine their identity and test the specificity of
FerriTagging.

First, samples prepared in section 4.4 could be used as internal controls (Figure 4.4
B). That is we checked to see the density of labelling at non-target sites. No particles
were seen decorating clathrin-coated structures in cells where MAO was Ferritagged.
Similarly, no particles were seen on the mitochondrial membrane in cells where LCa
was Ferritagged.

Second, HeLa cells where prepared for CLEM as before (Section 4.3) but without
the addition of rapamycin (Figure 4.4 C). FerriTag particles still form in absence of
rapamycin, but without heterodimerization between FKBP and FRB, no FerriTagging
of the protein-of-interest occurs. This results in no obvious particles in the vicinity
of the target organelle in samples expressing FerriTag with either GFP-FKBP tagged
MAO or LCa. Note, FerriTag can be seen within the cytoplasm.

Finally, HeLa cells where prepared for CLEM as before (Section 4.3) but were
cultured in normal media and not under iron-rich conditions (Figure 4.4 D). Whilst
FerriTag could label the protein-of-interest by light microscopy, no obvious particles
(compared to iron-loaded cells 4.4 A) were observed in rapamycin treated cells that had
no iron preincubation. In some cases, particles that may be FerriTag could be partially
visualised. However, they were much less dense (shown by comparing representative
line scans from Figure 4.4 A and D) suggesting cells needed to be iron-loaded to enhance
particle contrast.

The number of FerriTag particles found in the cytoplasm and labelling the target
membrane are counted in 4.4. Particles within a 15 nm membrane-proximal region for

MAO were counted i.e. the maximum length state of FerriTag calculated in section
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4.6 and a 50 nm region for LCa i.e. maximum length state plus clathrin coat (approx-
imately 35 nm (Wood et al., 2016)). It is clear the number of FerriTag particles at
target membrane increases following the addition of rapamycin to induce FerriTagging.
However a much more quantitative approach is needed to fully assess the efficiency of
labelling.

Together, these experimental conditions provide strong evidence the electron dense
particles observed decorating the protein-of-interest are FerriTag and that FerriTagging
is specific to the target protein. Furthermore, it also shows an excess of iron is needed to

provide sufficient electron density for it to be readily visualised by electron microscopy.
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4.6 The labelling resolution of FerriTag is on the
order of 10 nm

We define labelling resolution as the measurement of accuracy that defines how precise
the detected position of a particle corresponds to the location of a labelled protein. This
is calculated by how far the particle is relative to its target. Theoretically, this distance
could be up to 22 nm for FerriTag (Figure 4.5 A). This prediction is based on the sum
of lengths estimated from co-linearly aligning the structures of all the components in
a Ferritagged complex i.e. -GFP-FKBP-Rapamycin-FRB-mCherry-Ferritin. However,
flexibility in the linkers between each domain in the complex means it may adopt a
different conformation that would reduce the distance between the target protein and
FerriTag. Moreover, the tag itself is mobile and could be in a number of poses relative
to its target.

To experimentally determine the labelling resolution, CD8a, a transmembrane pro-
tein was Ferritagged. This gave a clear surface from which to measure particle dis-
tances. HeLa cells expressing FerriTag (FRB-mCherry-FTH1: FTL, 1:4) and GFP-
FKBP-CD8«a were imaged by live-cell fluorescent light microscopy and following Fer-
riTagging of CD8q, cells where processed for electron microscopy as described in section
4.3 (figure 4.5 B). Electron micrographs show FerriTag decorating CD8« at the plasma
membrane. The perpendicular distance from the centre of the FerriTag particle to the
inner side of the plasma membrane was measured for 458 particles which gave a median
distance of 9.5 nm (figure 4.5 C).

To interpret the shape of the experimental distribution, computer simulations were
carried out that modelled the detection of FerriTag particles in electron micrographs.
To do this, the origin of each particle was set on an xy plane at z = 0, and FerriTag
was modelled as a ball-and-chain. The length state, pose, sampling and error was then
built into each simulation. The first simulation modelled FerriTag at a fixed length of
22 nm, due to this being its maximum theoretical length state (Figure 4.5 A). However

it was clear this distribution did not fit the experimental data (Figure 4.5 C i). Due to

92



flexibility in the linkers of the domains between the ferritin particle and target protein,
it is likely that FerriTag exists at distances shorter than 22 nm. The second simulation
therefore modelled FerriTag where it could exist over a number of length states between
6.5 and 22 nm i.e. the minimum and maximum theoretical length state, respectively.
The simulation that best fit experimental data was where FerriTag could exist in a
number of length states from 7 to 18 nm (Figure 4.5 C ii). The median value was
calculated to be 10.5 nm, which was in line with experimental data. Furthermore, the
simulation indicates the observed distance in electron micrographs underestimates the

length state by around 11% to 13% (Figure 4.5 D).
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Figure 4.5. The labelling resolution of FerriTagging is approximately 10 nm.

A) Schematic to show the maximum distance FerriTag can be away from the target protein. FerriTag (FRB-
mCherry-FTH1:FTL, 1:4) is shown bound to CD8a-GFP-FKBP by rapamycin. Protein domains are
organized co-linearly with their long-axis, giving a maxmium length of 22 nm to the centre of the Ferritin
particle.

B) Micrographs from FerriTagged CD8a cells which were processed for GLEM. Hela cells expressing
FerriTag (FRB-mCherry-FTH1:FTL, 1:4) (red) and CD8a-GFP-FKBP (green) were first imaged by light
microscopy. Rapamycin addition indicated by filled orange bar. The same cell is imaged by electron
microscopy and FerriTag particles can be seen decorating the plasma membrane.Two particles per
micrograph are shown expanded to the right. Light microscopy scale bar 10 um and zoom x12. Electron
micrograph scale bar 50 nm and zoom x7.25.

C) Histogram of experimental observations (red) with a density function of simulated values overlaid (gray).
Distance from the centre of the ferritin particle to the inner membrane was measured. Dotted line indicates
the median of the experimental dataset (9.8 nm, N,z = 458). i) 22 nm stiff neck simulation. ii) Flexible
length state simulation. Median value indicated by dashed line (experimental red, Flexible simulation grey).
D) Heat map of the measured distance of FerriTag particle from the plasma membrane as a function of
FerriTag length state in the simulation shown in Cii. The median simulated observation underestimates the
true length by 11% (mean, 13%).
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4.7 FerriTag has a high signal-to-noise ratio

The signal-to-noise ratio (SNR) is a measure of sensitivity that compares the level of
a desired signal to the level of background noise. For electron microscopy, good SNR
is difficult to achieve since heavy-metal staining during sample processing masks the
electron density provided by the probe. Samples can be processed without staining,
however this compromises the ability to visualize cellular ultrastructure. A CLEM
probe that provides high SNR is therefore highly desirable.

To determine the SNR of FerriTag, images taken to measure the labelling resolution
from section 4.6 were used, since it was the largest dataset available. The XY coor-
dinates for each FerriTag particle in all electron micrographs were determined. Using
these, a 21x21 pixel box centred on each particle was excised (figure 4.6 A) and the

image was fitted with a 2D Gaussian function,

f(z,y) = z0 + Aexp

2<1_—1 . ((x—x0>2+ (y—y0>2_ 2cor(x—x0)(y—y0)>]

where the cross-correlation term, cor € [—1,1] (figure 4.6 B). A total of 441 par-
ticles were analysed and values for the width in X and Y of each are shown in figure
4.6 C. On average a FerriTag particle was approximately 10 nm in size (figure 4.6 C,
red) and had a peak density of around 85 arbitrary units (figure 4.6 C, grey). This

information was used to calculate the SNR. SNR is defined as,

SNR = Hsignal

Obackground
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To calculate figignar, @ 5x5 pixel ROI centred on the xy and yy values from each fit
was used. From the same electron micrograph, opqckgrouna Was calculated from a region
that was around 400x400 pixels on average. The background region-of-interest (ROI)
was selected mostly inside the cell but also included membrane and some extracellular
areas. Grid bars were avoided completely (Figure 4.6 C).

The calculation revealed that FerriTag, using the current processing protocol for
CLEM (section 4.3) and manual selection of particles, gives a SNR of approximately
8.7:1 (figure 4.6 F).

96



"sajoled upue)

68E Wouy painseaww YNS au jo weiboisiH (4 spun Aleniqie Gg- abeiaAe uo sem yoiym ‘1) auj jo yead ayj jo Ajsuap auy jo
joid uloIA (3 “wu 9| Alejewxo.dde sem A pue X Ul Uipim 8y | ‘sajoiled 68¢ 4o Bumiy eyl Buimoys joid uljoia (@ wu 00| Jeq
8|80g “(xoq mojaA) sueiquew eweld ayl 1@ PeQD Pulege| umoys sajoied Be| 1194 "pale|noes Sem YNS 2yl Uolum o)
(auipno ayym) |0y punoibyoeq aidwexa ue Buimoys ydeiboioiw uoioale aaneuasaiday (9 “si@xid mel woly pajeinojes

SI NG pue (morte mojeh) Ajuo sjoiped yoes jo a1juad ay) puy o} pasn si uoljejodiajul ‘ajoN ‘sueld AX Sy} JO 18jua9d ay}

0} aAlle|al yead oy} Jo 19SK0 3y} 910U ‘Y Ul umoys 3j21ed sy} 0] pajly Sem By} UolouN) UBISSNEL) (Jg € Jo uoieuasaldal
ag (g "(xog mojjah) sjoiped ay) jo [eubis sy} Bunseaw 10} pasn |OH Ue Jo a1juad au) aulep (ss01o moj|aA) jiL yoea

woly sanjea 04 pue Ox 8yl "(ssouo anjq) Ajjenuew pajosiap sem ajaied ay} Jo 81juad au} Jo UOIBIO| Y] "G ' UORIaS Wol)
pebbe] a4 sem DgQD alaym |93 & ul sjoned uyiiie) e Bulureyuod ydeiboioiw uonosie ue woiy ydieoxs jexid |zx1g v (¥
"HNS Jo uoneuiwsap pue sabeuwn Be| a4 ul Bupy pejewoiny

oljeJ 9siou-0i-jeubls

o 02 Ok 0 A X
S T T
-0 — 052- -0
Loz — 002- . e
" ) —05l- -2 Z
— oy 2 = 5
= = —aal- £ -8 =
= 3
— 09 | | o =
m.muu i 0S %
/8= [ - -
o8 0 5 $ o

9

t 2.nBi4

97



4.8 FerriTagging is highly efficient

We now wanted to determine the efficiency of FerriTagging. Prior to the addition of
rapamycin, FerriTag is homogeneously distributed throughout the cytoplasm. Induc-
tion of heterodimerization by the addition of rapamycin results in FerriTag labelling
the protein-of-interest. Whilst we visualize this by light microscopy, we cannot assume
that all FerriTag is labelling all of the protein-of-interest. An unbiased quantitative
study is therefore required that can assess what concentrations of FerriTag are localised
to the target region compared to the non-target region, before and after the addition
of rapamycin, in electron micrographs. Since FerriTag provides high SNR (section 4.7,

it can be automatically detected by a computer.

Method for automatic detection of FerriTag

First, each electron micrograph is inverted and a 20 pixel mean filtered version is sub-
tracted (Figure4.7 A and B). This removes any background inhomogeneity and equal-
izes particle detection across the whole image. Particles with a SNR of 3 and a size of
5 are then automatically detected using the ImageJ plugin, ComDet v0.3.5.However,
these basic parameters detected parts of the image that did not look to be true parti-
cles. More stringent detection parameters resulted in particles being missed. Further
classification was therefore needed to discriminate real particles from spurious detec-
tion.

The Z-score of mean intensity of each detection was calculated and its mean inten-

sity was used as the basis for discrimination (Figure 4.7 C). Z score is defined as,

where x is the mean intensity of an individual detection, u and o are the average
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and standard deviation of the intensity of all detections in the image, respectively. In

parallel, each micrograph is segmented into three regions (Figure 4.7 D),

1. A membrane zone (white), defined below the plasma membrane, where we would

expect bound FerriTag to localise to the target protein,
2. A cytoplasmic zone (grey), where unbound FerriTag would localise,

3. Outside of the cell (black), where no FerriTag should be present.

Therefore, based on the expected localisation of particles, the maximum Z-score of
detections outside the cell was used as a lower limit for acceptance and the maximum Z-
score of detections in the membrane was taken as the upper limit for acceptance (Figure
4.7 E). This means that all detections outside the cell was excluded and everything
intracellular through to the darkest particle at the membrane was kept. The relative
densities of accepted particles were then used to calculate the efficiency of FerriTagging
by comparing cytoplasmic and membrane regions.

To test the performance of this workflow, a synthetic dataset of randomly dis-
tributed particles in an image was generated (Figure 4.7 F). Automatic detection was
carried out and the data was plotted (Figure 4.7 G-I). It shows that the workflow can
reliably detect particles in images far beyond the number of particles we encounter in
real electron micrographs. We can therefore assume each particle is being correctly

detected.

99



‘S F ueaw ‘sieq pue sajoiued [enpiApul MOYs S10Q ‘Uonoalap [ewndo Jo uoibal ayl uyum (|am si (aul

panop) gwu Jad sajoined 00g yum abewi [eaidA) e 1eyl moys 0] Joid syl Jo maia papuedxa ue (11 Julod uone|nwis yoes
1o} suoniadal g} woly QS F uesw ay) smoys (sixe jybu ‘abue.o) alel uonosyeq ‘1018 | adA) B sajealpul (an|q) uonoslep
as[e4 ‘uonoalap 10apuad sa1edIpul aull uaMolq Aair) “abewl ay) ul sapoled [enjoe JO uonoun; B SB UMOYS SI (pau) paiosiep
sajaiued Jo Ausuaq (1 “sejoiued pajesauab AjjeanayjuAs yum sabew ul uonoalap pajewoine Jo Bunsal asuewlouad (|
‘uibnid pabew| 1aquio) Buisn sapoiued jo uonoalaq (H

"sjods Jo uoneoo| [eas Bunybiybiy ‘sebewr yinly punoin) (5

‘sgjoiued paynguisip Ajwopuel Jo abew anayiuAs aidwex3 (4

‘WU 00| ‘req aeog

‘(@0ouapluod YBiy-piu-mo| ‘mo|ieA-pal-yae|q) Juswubisse Jo aouapluod ay) 0} Buipiodoe papoa-10(00 alke pue abew|

ayl ul ulewsal weiboud ay) Aq [eas se pajdadde sajailed ‘uondsep snounds woll sejoiued [eal Jo uoleuIwuosIq (3
“(yor|q) JouL)xa ||29 pue ‘(AeIB) |0S0JAD ‘(B1IYM) BUOZ auriqUIBW VY ‘suciBal aaly) olul pajuswbas si abewl awes sy (Q
"G 10 9ZIS pue ¢ J0 UNS B yum uibnid pabew) 1aguo) Buisn saoiped jo uonoaaq (9

‘paJayy pue pauaaul si abew) (g

“ud pareoo-uuyied e e Be) e Jo ydeibololw uolos|e aanuasalday (v

‘sydeiboioiw uosoaje ul sepied Be| a4 JO UOID8)8P JIJBWOINE 10} MO|MIOM *Z°b @inbi4

sfew 1ed seppued pejenusg abew) sad sapaiued pajeinuig
05 Or 08 02 OF Q0 0oz 051 ook 05 O

o e an

(-7

(=3

2
(i) Asuag
1 wrf) Ayisusny

UOIPAIEP %001 -
Sag e ——
uotrep asies = [ oo

6 i O D goC ST ME 06 6L 08

MOIMIOM 2BUIUAS

MOIPUOM UOID8120 2NBWOINY

100



Determining the efficiency of FerriTag

To measure the efficiency of FerriTagging, we compared two datasets to assess the
relative density of particles at the membrane and the cytoplasm. For this, we used
electron micrographs from cells expressing GFP-FKBP-LCa and FerriTag, with and
without (control) the addition of rapamycin, respectively (Figure 4.8 A).

Automatic detection was performed as described above for each dataset. A 50 nm
membrane region was used for segmentation to account for the clathrin-coat (approx-
imately 30 nm) and the maximum possible length of a Ferritagged complex (approxi-
mately 22 nm). In control samples, a total of 318 particles per pm?® were detected in
the cytoplasm and 592 per pm? in the membrane, giving a 1.9 fold enrichment (Figure
4.8 C). In Ferritagged samples, a total of 348 particles per pm?® were detected in the
cytoplasm and 1493 per pm? in the membrane, giving a 4.3 fold enrichment. This data
gives some indication that FerriTagging of a protein-of-interest represents real labelling,
and that unbound FerriTag does not interfere with detection of genuine FerriTag par-
ticles. However, It should be realised this software in its current state does pick out
many false detections meaning it is still needs work to be used routinely. Furthermore,
it is puzzling why more FerriTag particles are being detected in the cytoplasm in plus
rapamycin samples compared to control where no rapamycin has been added, despite
FerriTag florescence being very similar on average before the addition of rapamycin in

both conditions (Figure 4.8 B). This is discussed in section 4.10.
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FerriTag fluorescence

Figure 4.8.
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Automated detection of FerriTag particles in electron micrographs

A) Representitive electron micrographs to show automatic detection of FerriTag particles in
cells expressing GFP-FKBP-LCa and FerriTag. Addition (filled orange bar) or absence (clear
orange bar) of rapamycin represents test and control samples respectively. Accepted particles
are circled in each image, coloured according to z-score. Likely false detections are
highlighted (yellow arrows).

B) FerriTag expression in cells used to perform automated detection of FerriTag particles from
A). Intensity calculated from background subtracted integrated density for the whole cell. Mean
intensities for no rapamycin (clear orange bar) and plus rapamycin (filled orange bar) are

3.4 x 105 and 3.5 x 105, respectively.

C) Automated quantification of particles at the membrane versus cytosol. No rapamycin
addition is shown in clear orange, while rapamycin-treated is shown in dark orange. The
densities are taken from the sum of 52 micrographs.
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4.9 Contextual nanoscale mapping of HIP1R

We had now developed and characterized FerriTag for CLEM and wanted to apply Fer-
riTagging to a cell biological question. The localization of HIP1R during maturation
of a vesicle in clathrin-mediated endocytosis is not well understood, with three com-
peting models presenting different ideas (figure 1.3). To determine its true localization
we used FerriTag to perform contextual nanoscale mapping of HIP1R using CLEM.

HeLa cells expressing FerriTag (FRB-mCherry-FTH1: FTL, 1:4) and HIP1R-GFP-
FKBP were imaged by live-cell fluorescent light microscopy. Rapamycin induced the
heterodimerization of FKBP and FRB domains resulting in FerriTagging of HIP1R.
Cells were then processed for electron microscopy as described in section 4.4 and elec-
tron micrographs of Ferritagged HIP1R on clathrin-coated pits were acquired (figure
4.9 A). Each micrograph was segmented to highlight the location of each FerriTag par-
ticle as well as the plasma membrane profile of the pit. The edges of the pit were also
defined, enabling mapping of FerriTgged HIP1R distal to the pit, i.e. in adjacent areas
of uncoated plasma membrane (figure 4.9 B). Spatial averaging was then used to plot
the distribution of all particles symmetrically about an idealized clathrin-coated pit for
visualization (figure 4.9 C).

This revealed three key findings regarding the distribution of HIP1R. 1) HIP1R
is homogeneously distributed over the entire crown of the clathrin-coated pit (figure
4.9 C), 2) HIPIR also localizes to distal uncoated regions of the plasma membrane,
albeit at a lower density (figure 4.9 C and D), 3) Finally, the distance from Ferritagged
HIP1R particles to the plasma membrane was greater at the pit compared to distal
uncoated regions, a difference of 10 nm on average (figure 4.9 E). As the C-terminus
of HIP1R is Ferritagged and the N-terminus binds the plasma membrane, differences
in distance to the membrane most likely correspond to conformational changes of the
molecule. This therefore suggests HIP1R, when bound at the pit is in its extended

form and in its kinked form at distal uncoated regions of the membrane.
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4.10 Discussion

In this chapter, FerriTag was optimised for correlative light electron microscopy. We
developed a CLEM protocol using FerriTag that is simple and robust. This protocol
was applied to a novel cell biological question.

Our approach to load FerriTag with iron under iron-rich conditions had minimal
effects on cell viability in HeLa cells. In addition, we believe expression of FerriTag
itself will likely buffer the iron supplementation and offset any adverse effects. In other
cell types or tissue that are more sensitive to iron levels cell viability will need to be
assessed. If iron-loading cells decreases their viability FerriTagging may not be possible.

Using the optimised protocol for CLEM outlined in section 4.3, FerriTag can be
used to acutely label proteins with high efficiency and specificity. FerriTag provides
electron density that is tightly focussed enabling it to generate a high SNR (8.7:1
(Section 4.7) so it can be easily detected from background in electron micrographs.
The SNR was calculated using a large background ROI that contained around 160,000
pixels on average and included cellular structures such as membrane as well as some
extracellular area. When a smaller background ROI was used that contained 10,000
pixels and restricted to cytoplasmic areas only, the SNR was 10.8:1, which seemed
artificially high. Using a larger ROI therefore gives a more realistic value. A reason
why the SNR of FerriTag is high, is due to the minimal staining conditions used in the
CLEM protocol (Section 4.3). The heavy metal staining during sample processing was
optimised to enable clear visualization of both FerriTag and cellular ultrastructure.
This is important to bring context to the localisation of a tagged protein-of-interest
and is something other metal-ligand based tags have failed to achieve (Wang et al.,
2011; Risco et al., 2012; Morphew et al., 2015). However, more routine processing pro-
tocols implement other heavy-metal staining such as uranyl acetate to further increase
the contrast of ultrastructure. However this was shown to mask the visualization of
FerriTag (Section 4.3). Other processing protocols that have not yet been explored

may enhance the better visualisation of FerriTag and are discussed in chapter 5.
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The labelling resolution of FerriTag is on the order of 10 nm. This exceeds the capa-
bilities of standard immunogold techniques (approximately 16 nm) (Amiry-Moghaddam
and Ottersen, 2013) and methods that use DAB precipitation which have inherent
low labelling resolutions due to the diffuse nature of the precipitate they form (Shu
et al., 2011; Martell et al., 2012; Lam et al., 2014; Ariotti et al., 2015). Whilst, super-
resolution microscopy typically has a spatial resolution of around 10-20 nm it has
further error in labelling resolution (depending on the labelling methodology) (Huang
et al., 2009; Ma et al., 2017). Though in some specialized cases super-resolution mi-
croscopy has reached sub 5 nm and will likely get even better in the future (Schnitzbauer
et al., 2017). Although difficult to compare methods directly, FerriTag does have the
added benefit of being able to see all structures in the cell whereas super-resolution
microscopy is limited to visualizing fluorophores only. This said, super-resolution mi-
croscopy does allow thousands of events in many sample to be captured per experiment,
where in comparison electron microscopy has very low throughput.

FerriTag can be automatically detecting by a computer using the workflow outlined
in section 4.8. However, whilst we can confidently show enrichment of FerriTag parti-
cles in plus rapamycin samples compared to control, the computer detection workflow
is still very much a work in progress and needs major improvement. The software is
prone to error, finding many false detections in electron micrographs that do not repre-
sent true FerriTag particles. This limitation is highlighted by the fact we demonstrate
detection of more particles in the cytoplasm in plus rapamycin samples compared to
control, where instead we would expect to see a decease (Figure 4.7 C). The only
other explanation is 1) cytoplasmic clathrin is being Ferritagged which would repre-
sent true labelling or 2) more FerriTag has been expressed in plus rapamycin samples
and more background is observed. It is hard to prove point 1), as clathrin by itself
cannot be visualised directly in-resin by itself, so discerning whether Ferritagged cyto-
plasmic clathrin represents true labelling is not possible. Fluorescence was calculated
in Images used for particle detection to measure FerriTag expression (Figure 4.7 B).

Interestingly, the mean values for minus and plus rapamycin samples where very sim-
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ilar, suggesting the amount of FerriTag being expressed in cells was also similar. It
may therefore be the automated analysis pipeline just detecting more false results in
plus rapamycin cells compared to controls. It is clear more development is needed to
provide truly accurate, reliable and unbiased detection in this way. Future work will
also determine actual false background detections by performing automated analysis
on untransfected cells, where no FerriTag is expressed and no detections are expected.
This was something that had not been implemented in this work as correlative samples
were processed in a way where only the cell-of-interest is tracked throughout the entire
workflow and no untransfected cells are seen in-resin to image. False detection may
also be corrected using in vitro approaches. FerriTag could be purified from cells and
then blotted on electron microscopy sections that have been processed for CLEM with
FerriTagging. An initial image would be taken prior to blotting purified FerriTag and
a second image following blotting. Automated analysis would then proceed and the
detections from each image compared. FerriTag particles in-resin that do not match
the parameters met by blotted FerriTag would be determined false and omitted. In
hindsight, a more classical stereological approach should have been implemented to as-
sess the efficiency of FerriTagging, prior to the development of an automated detection
pipeline. Briefly, stereology refers to the spatial interpretation of sections to deter-
mine the relative labelling intensities confined within set compartments. By counting
the amount of FerriTag particles within cytoplasmic and target labelling site areas in
electron micrographs, high accuracy comparisons can be made with good statistical
accuracy. From this, the amount of FerriTag particles per pm?® can be estimated and
would show how many more particles are found in each compartment between plus and
minus rapamycin samples. Following this, segmentation of whole cell volumes could be
performed to determine detailed analysis of individual 3D compartments. Whilst this
would provide a full representation of the relative labelling intestines throughout the
whole sample, this would require much more work than stereological analysis as serial
sectioning of whole cells would have to be performed.

It is important to highlight why the SNR parameter (3) for automatic detection is
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lower than the calculated SNR value (11) from section 4.7. When a SNR of 11 was used
in the automatic detection work flow, the program failed to detect any particles. This
was likely due to particles in the the mean filtered version of the image not having a
SNR this high. Instead, we found using a size of 5 and SNR of 3 gave reliable detection
of true particles and some false positives. Future directions in FerriTag optimisation to
create more dense particles, as well as improvements to image analysis will hopefully
result in the ability to detect all true particles only. Work is ongoing in the lab to
improve computer detection towards this goal.

The high efficiency, specificity, SNR and resolution of FerriTag make it ideal for
mapping protein distribution at the nanoscale. We used FerriTag to perform contex-
tual nanoscale mapping of HIP1R in HeLa cells. Three models for its localization and
conformation during clathrin-mediated endocytosis have been described (figure 1.3).
We propose a model that combines aspects from these previous findings (Figure 4.10
B). We show that HIP1R localizes across the entire clathrin-coated pit and also distal,
uncoated regions of the plasma membrane. This finding is contrary to the first model
(figure 1.3 A). However this study used an 'unroofing’ strategy that likely removes
much of the cellular interior including HIP1R, potentially restricting immunogold la-
belling artificially to the rim of the clathrin-coated pit (Engqvist-Goldstein et al., 2001).
Though, this paper does support our observation that HIP1R is found in distal regions,
bound to actin cytoskeleton. Whilst our localization data more closely matches model
3 (figure 1.3 C), we also observe conformational differences in HIP1R that are reported
in model 2 (figure 1.3 B). We show HIP1R localises more closely to plasma membrane
at distal, uncoated regions of the membrane compared to when bound at the pit.
From this data we propose the N-terminal ANTH domain of HIP1R associates with
the plasma membrane and the C-terminal region THATCH domain binds actin. At
distal, uncoated regions of the plasma membrane HIP1R exists in its closed confirma-
tion. Whilst interaction with clathrin encourages it to adopt its extended confirmation
providing a link between the clathrin coat and the actin cytoskeleton (Figure 4.10 A

and B). This arrangement allows the coat to be anchored against the cytoskeleton while
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polymerizing actin provides the force needed to push the clathrin-coated vesicle away
from the membrane during maturation. To further confirm this hypothesis, it would
be beneficial to also be able to visualise actin to discern its localisation in relation to
HIP1R also. This could be achieved using cryo-tomography and a duel labelling exper-
iment where HIP1R is labelled by FerriTag and actin is labelled with metallothionein
(Methodology discussed in section 5). Furthermore, to prove this model absolutely and
provide a definitive answer to the conformational state of HIP1R, FerriTagging should
be performed at another place on the molecule. Ideally the N-terminal ANTH domain
of HIP1R would be FerriTagged which would demonstrate that this domain is closer
to the membrane around the clathrin-coated pit. However, labelling HIP1R at its N-
terminal has the potential to disrupt it normal localisation as it may interfere with its
membrane binding properties. If this is the case, it may be possible to incorporate an
FKBP domain internally in HIP1R, after the ANTH domain but before the C-terminal

and still be able to detect conformational changes using FerriTag.
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Figure 4.10 Proposed model for HIP1R localization during clathrin mediated endocytosis.
A) Schematic diagram of HIP1R, a rod-shaped molecule with interaction
domains for membrane (grey), clathrin (blue) and actin (green).

B) Proposed model of HIP1R arrangement during clathrin-meditated
endocytosis to explain our data: HIP1R is in an extended conformation when
interacting with membrane, clathrin and actin, and is in a shorter/ kinked
conformation when not bound to clathrin at distal regions.
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CHAPTER 5

Discussion

This thesis has outlined the initial development of FerriTag as a genetically-encoded tag
for correlative light electron microscopy, as well as its utility to answer a long-standing
question in clathrin-mediated endocytosis.

FerriTag is ready for use in various areas of cell biology. An example would be dis-
covering new proteins that function as inter-microtubule bridge proteins in the mitotic
spindle. Currently only the TACC3/ ch-TOG/ clathrin complex has been confirmed,
leaving at least 3 more populations with mean lengths ranging from 21.8, to 53.3 nm
to be identified (Booth et al., 2011). Previously this task has been challenging, as
the only way to directly visualise these structures is by electron microscopy. Immuno-
gold labelling can then be performed to localise proteins-of-interest at high-resolution.
However, weak fixation is usually necessary to preserve antigenicity, often resulting in
compromised ultrastructure and poor microtubule preservation (Section 1.1.1.1). As
FerriTag is genetically encoded, no permabilisation of the cell membrane is necessary.
Furthermore, it is compatible with high-pressure freezing which would ensure opti-
mal ultrastructual preservation. This would require an optimised methodology which
is discussed later. FerriTag therefore provides the ideal method to label candidate
proteins and localise them at high resolution to determine whether they are apart
of inter-microtubule bridge structures. Another project FerriTag will be useful for is
the nanoscale mapping of other clathrin-mediated endocytic proteins, as HIP1R has
been shown in this thesis (Section 4.9). This would provide high-resolution contex-
tual insight to where each protein resides, potentially giving novel insight to how they

function. Eventually this would create a complete model of all proteins involved in
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clathrin-mediated endocytosis.

Whilst the use of FerriTag has the potential to be useful for questions such as
these in its current form, there are a number of improvements that could be made.
Furthermore, like other genetically-encoded tags for CLEM, FerriTag is not without

its limitations.

Improvements

To date, we have only explored the use of FerriTag in cells that transiently express the
GFP-FKBP tagged protein-of-interest. Whilst this has not been a problem in our ex-
periments, transient overexpression, in some cases, can create complications with gene
dosage, protein folding, complex assembly and downstream regulation (Gibson et al.,
2013). To circumvent these issues and enable FerriTagging of proteins at endogenous
levels, we plan to use gene-editing technologies to generate cell lines that encode GFP-
FKBP tagged proteins (Cox et al., 2015). As proteins are expressed at lower levels in
gene-edited cells compared to overexpressed, a foreseeable obstacle will be to optimize
heterodimerization using rapamycin, as discussed in section 3.8.

It may be possible to further improve various aspects of FerriTag itself. It is clear
we are not labelling all target protein within the cell i.e. there is much more clathrin
present on respective structures than what is actually being labelled with FerriTag.
This may be due to several factors including, amount of FerriTag made and how much
GFP-FKBP target protein is being expressed. Whilst it may be difficult to control the
amount of FerriTag made within the cell, more efficient labelling may be achieved by
concentrating FerriTagging to a specific area of the cell. In its current form, we are
unable to spatially control FerriTagging due to the diffusive nature of the dimerizer
(rapamcyin or AP21967). To provide more localised activation we could design an
optogentic compatible FerriTag. A candidate system to do this with is UVR8-COP1
as dimerization is irreversible (Huang et al., 2014). However, activation is initiated
by UV-B (280 nm) which induces photodamage. Tunable light-inducible dimerisation

tags (TULIPs) has been extensively used as an optogenetic dimerizing tool (Strickland
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et al., 2012). Briefly, LOVpep, a modified phototrophin 1 light oxygen voltage (LOV)
domain can dimerize with an engineered PDZ domain following exposure to blue light
(<500 nm). However, LOVpep rapidly dissociates from the PDZ domain which isn’t
ideal for FerriTag experiments, as a more stable interaction is needed to hold it at
the target protein. The CRY2-CIB system would be better suited, due to its slower
dissociation rate (around 5 minutes). Here, cryptochrome 2 (CRY?2), a light-sensitive
photosensory protein can bind cytochromes-interacting basic helix-loop-helix protein 1
(CIB1) following exposure to blue light (470 nm) (Taslimi et al., 2016). As FerriTagging
occurs within seconds (Section 3.5), fixation would occur well before the CRY2/CIB
domains dissociate from one another, ensuring FerriTag remains bound to the target
protein. In addition to improving labelling efficiency it may be possible to further
improve the labelling resolution of FerriTag. This could be achieved by redesigning
FerriTag and making it smaller. By removing the fluorescent protein i.e. GFP, from
the candidate protein, it potentially reduces the labelling resolution by 4.9 nm (Figure
4.5). As we can directly visualise FerriTagging itself, the protein-of-interest does not
have to be directly visualised also. In its current form, FerriTag has only been shown
to bind iron to generate its electron density. This electron density could be improved
by enhancing the iron-loading properties of FerriTag by expressing a mutant form that
has been recently shown to bind up to threefold more iron than wildtype mammalian
heavy chain ferritin (Matsumoto et al., 2015). In addition, the expression of divalent
metal ion transferase 1 (DMT1) could also increase the efficiency of iron import into
cells for FerriTag to bind and potentially increase its contrast. (Tabuchi et al., 2002).
FerriTag could also be engineered to bind other, more electron dense metal ions in-
cluding cadmium (Iwahori et al., 2006), silver (Kasyutich et al., 2010) and gold (Fan
et al., 2010) which would provide better contrast by electron microscopy.

Further improvement to sample processing and protocol design will enable better
visualization of both FerriTag and cellular ultrastructure. Our current processing pro-
tocol for CLEM with FerriTag uses an osmium only heavy-metal staining approach

following chemical fixation. We are yet to try alternative en bloc reagents, concentra-
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tions and times of staining or other methods of fixation that could maximize the SNR of
FerriTag and improve contrast of ultrastructure in electron micrographs. In addition,
we could perform post-staining with heavy metals following initial imaging by electron
microscopy to increase the contrast of samples. The same sample would be re-imaged
and the tag position correlated across both images. The use of electron tomography
may also increase the SNR of FerriTag as well as further improve resolution. This
may be performed on section using the current protocol outlined here or under cryo
conditions whereby thin whole-cells are directly imaged following cryo-immobilisation
(Medalia et al., 2002). To improve preservation of ultrastructure, high-pressure freez-
ing can be performed immediately after FerriTagging. This is something that cannot
be achieved by DAB-based probes such as APEX and miniSOG as reaction conditions
to generate their precipitate cannot occur under cryo temperatures. This is predicted
to not be a problem with FerriTag as iron-loading to generate its electron density is
performed before fixation. Following cryo-immobilisation frozen cells can then freeze-
substituted and embedded in acrylic resin at low temperature. Samples prepared in this
way produce high contrast images of completely unstained resin sections, potentially
increasing the SNR of FerriTag. In order to image an individual event by light mi-
croscopy and localise the same exact spot by electron microscopy, correlated protocols
must be performed (section 1.1.2). We could apply the protocol outlined by Kukulski
et al. 2011 to do this with FerriTag. The labelling resolution of this protocol using
fluorescent proteins alone is on the order of 100nm. Using this protocol combined
with FerriTag would dramatically improve this, resulting in ultra-precise correlated
electron microscopy. The further addition of super-resolution microscopy to this ap-
proach would further increase the precision of correlation (Johnson et al., 2015; Peddie
et al., 2017). In addition, other imaging modalities such as Scanning Transmission
Electron Microscopy (STEM) or High Angle Annular Dark Field (HAADF) imaging,
have not yet been tested which may improve the detection of FerriTag particles in
electron micrographs.

As discussed in section 4.10, much more improvement has to made to the automatic
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detection workflow (Section 4.8 and this cannot currently be reliably used to determine
real from false FerriTag particles. Whilst it may be clear to experienced users that real
FerriTag particles can be easily ascertained from electron micrographs, it would be
advantageous this was made clear to all. In the fist instance, control experiments
could be set up as in section 4.5, which would hopefully make it obvious. If this
does not help, the ideal approach would be to create an elemental map using electron
energy loss spectroscopy (EELS) or Energy-dispersive X-ray spectroscopy (EDX) which
would result in iron-loaded particles being detected. The elemental map can then
be overlaid onto the electron micrograph so real iron-loaded FerriTag particles can
be easily observed. Combining this data to detect true particles with the automatic
detection software would also allow false positive to be excluded from the software
pipeline (Figure 4.8), giving a much more accurate dataset to calculate FerriTagging

efficiency from (Section 4.8.

Limitations

Despite the many benefits over other genetically-encoded tags for CLEM, FerriTag
is not without its limitations. The main one being that it is not possible to tag
proteins located inside organelles, as the FRB domain of FerriTag must be able to bind
the FKBP domain of the target protein following rapamycin addition. Nevertheless,
the user can determine whether successful FerriTagging can be achieved first by light
microscopy, before deciding whether to process samples for electron microscopy. This
limitation is not a problem for other genetically-encoded tags such as APEX as it is
directly fused to the protein-of-interest (Martell et al., 2012).

Another limitation is that FerriTagging may not be compatible for systems that are
sensitive to enhanced levels of iron. As FerriTag needs an excess of iron to be visualized
readily by electron microscopy, iron-loading needs to be performed. Currently, this is
achieved by incubating samples in media supplemented with 1mM FeSO4 for 16 hours.
In the future, it may be possible to overcome this live-cell incubation step and instead

bind iron to FerriTag following fixation. It has recently been shown Metallothionein can
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bind gold following cryo-imobilisation by adding gold salts to the freeze substitution
medium (Morphew et al., 2015). Likewise, iron-loading of FerriTag during freeze sub-
stitution will be tested. Furthermore, iron-loading may also be achieved on-section by
incubating them in solution containing iron, similarly to how post-staining is routinely
performed.

Iron-loading and rapamycin treatment may have the potential to induce ultrastruc-
tural changes in cells. To date, all work with FerriTag has been performed on ultra-thin
sections and whilst no obvious ultrastructural defects are apparent, large volume imag-
ing of whole of cells processed for FerriTagging has not been completed. It would be
important to address this potential issue in the future by using large volume tech-
niques such as serial block-face scanning electron microscopy (SBF-SEM) or focussed
ion-beam scanning electron microscopy and comparing the effects of iron-loading and
rapamycin treated cells with controls.

FerriTag may not be suitable for labelling all proteins, especially those involved in
highly dynamic events. Whilst initial FerriTagging occurs quickly following rapamycin
addition (712, < 20 seconds), full labelling is not achieved until around 5 minutes
following rapamycin application (Section 3.5). It is therefore likely that FerriTag may
not be able to performed on proteins involved in events that occur within a few seconds.
To circumvent this issue, it may be possible to perform FerriTagging and fix the sample
once the event is captured by live-cell imaging, as colocalisation between FerriTag and
the protein-of-interest will be seen. This does rely on the protein-of-interest retaining

its normal function, which would have to be assessed case-by-case.

Other applications

FerriTag can also be combined with other genetically-encoded probes including DAB-
based and metal-ligand based tags. This will enable multiple protein localization within
the same cell, allowing "multicolour’ electron microscopy. DAB-based tags create a
cloud of electron dense precipitate and will therefore be easily distinguished from Fer-

riTag particles. Discerning FerriTag when in combination with metal-ligand based tags
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such as metallothionein, will be more difficult, as both create tightly-focussed parti-
cles. However, as FerriTag binds iron and metallothionein binds gold, electron energy
loss spectroscopy (EELS) or Energy-dispersive X-ray spectroscopy (EDX) can be per-
formed on-section to create a map of elements within the sample and thus distinguish
each tag from one another. Careful controls will need to be put in place to ensure each
FerriTag and metallothionein selectively bind a specific electron dense ion, only. As
metallothionein can bind an array of different metals, it should be loaded with gold
first and then iron-loading of FerriTag, can then proceed. An important consideration
to make is how feasible the loading of two heavy metals would be in these experiments
as gold salts such as AuCl are particularly unstable in aqueous solutions. Instead more
soluble compounds such as AuCl3, KAuCl4 or AuTM (Aurothiomalate) can be tested.

In addition to its role as a genetic tag for CLEM, FerriTag has the potential to
be used as a purification tag. Ferritin is superparamagnetic (Jutz et al., 2015). As
proteins do not exhibit superparamagnetic behaviour, protein—-metal complexes such
as ferritin could be used to separate Ferritagged proteins or complexes from other
cellular constituents. By harnessing these magnetic properties, it may also be possible
to perform direct magnetic manipulation of proteins in living cells. However, the
physical limits of the magnetic properties of ferritin have recently been discussed,
prompting concern that magnetic manipulation using FerriTag may not be possible

(Meister, 2016).

Final conclusions

The motivation behind this thesis aimed to engineer a new CLEM probe that could
meet all the criteria set out in section 1.3. Whilst improvements still can be made,

FerriTag has already come close to meeting these.
Genetically encoded and non-invasive

FerriTag is genetically-encoded and thus non-invasive (Section 3.4). This allows
high-strength fixative to be used and no permabilisation of the cell membrane is re-

quired resulting in well preserved samples.
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Non-toxic and non-disruptive to cellular processes

FeriTag has the potential to be toxic to cells in two areas of its protocol 1) iron-
loading and 2) rapamycin treatment. Iron-loading during sample processing for Fer-
riTag has been shown to be non-toxic to cell viability (Section 4.2). Although the use
of rapamycin can induce autophagy related defects over prolonged incubation, rapalog-
compatible FerriTag can be used instead if longer experiments are required (Section
3.7). FerriTagging also does not interfere with clathrin and is therefore non-disruptive
to its normal function (Section 3.6). Though, this may not be true for all proteins and

thus will have to be assessed case-by-case.

Fluorescent and electron-dense

FerriTag is visible by light microscopy as it fused to a fluorescent protein (Section
3.4). It is also electron-dense due to its iron-loaded core, so it can be distinguished

again by electron microscopy (Section 4.4).

Tightly focused electron density and good signal:noise ratio

The electron density of FerriTag is tightly focussed which generates a circular par-
ticle that can be easily distinguished from background due to its high SNR (Section
4.7).

Robust and reliable methodology

DAB-based CLEM probes such as APEX and miniSOG rely on the user to optimise
precipitation and staining conditions to generate their electron density. FerriTag is
made in cells and does not rely on the user to optimise processing conditions to generate
its electron density. The current CLEM protocol provides consistent results with good
visualisation of both FerriTag and cellular ultrastructure (Section4.3). Although, there
may be other untested processing workflows that provide much better results, which

will be addressed in the future.
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Compatible with high-pressure freezing

Currently, DAB-based CLEM probes are not compatible with high-pressure freez-
ing. Although FerriTag has not yet utilized high-pressure freezing to cryo-immobilise
the sample, it is predicted to be compatible, given the protocol outlined earlier in this

discussion.

It is an exciting time in cell biology with many exciting technologies converging to
understand protein function down to the nanoscale. My work has added FerriTag as
a useful tool for characterising protein localisation and we hope that its use becomes

widespread.

121






Bibliography

Amiry-Moghaddam, M. and Ottersen, O. P. Immunogold cytochemistry in neuroscience. Nature

Neuroscience, 16(7):798-804, jun 2013. doi: 10.1038/nn.3418.

Ariotti, N., Hall, T., Rae, J., Ferguson, C., McMahon, K.-A., Martel, N., Webb, R., Webb, R.,
Teasdale, R., and Parton, R. Modular Detection of GFP-Labeled Proteins for Rapid Screening by
Electron Microscopy in Cells and Organisms. Developmental Cell, 35(4):513-525, nov 2015. doi:
10.1016/j.devcel.2015.10.016.

Auckland, P., Clarke, N. 1., Royle, S. J., and McAinsh, A. D. Congressing kinetochores progressively
load Ska complexes to prevent force-dependent detachment. The Journal of Cell Biology, 216(6),
2017.

Avinoam, O., Schorb, M., Beese, C. J., Briggs, J. A. G., and Kaksonen, M. Endocytic sites mature by
continuous bending and remodeling of the clathrin coat. Science, 348(6241):1369-1372, jun 2015.
doi: 10.1126/science.aaa9555.

Ballister, E. R., Riegman, M., and Lampson, M. A. Recruitment of Madl to metaphase kinetochores

is sufficient to reactivate the mitotic checkpoint. The Journal of Cell Biology, 204(6), 2014.

Baschong, W. and Stierhof, Y.-D. Preparation, use, and enlargement of ultrasmall gold particles
in immunoelectron microscopy. Microscopy Research and Technique, 42(1):66-79, jul 1998. doi:

10.1002/(SICI)1097-0029(19980701)42:1< 66:: AID-JEMT8>3.0.CO;2-P.

Belshaw, P. J., Ho, S. N., Crabtree, G. R., and Schreiber, S. L. Controlling protein association
and subcellular localization with a synthetic ligand that induces heterodimerization of proteins.
Proceedings of the National Academy of Sciences of the United States of America, 93(10):4604-7,
may 1996.

Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson,
M. W., Lippincott-Schwartz, J., and Hess, H. F. Imaging Intracellular Fluorescent Proteins at

Nanometer Resolution. Science, 313(5793):1642-1645, sep 2006. doi: 10.1126/science.1127344.

123



Booth, D. G., Hood, F. E., Prior, I. A., and Royle, S. J. A TACC3/ch-TOG/clathrin complex stabilises
kinetochore fibres by inter-microtubule bridging. The EMBO Journal, 30(5):906-919, mar 2011.
doi: 10.1038 /emboj.2011.15.

Boulant, S., Kural, C., Zeeh, J.-C., Ubelmann, F., and Kirchhausen, T. Actin dynamics counteract
membrane tension during clathrin-mediated endocytosis. Nature Cell Biology, 13(9):1124-1131,
aug 2011. doi: 10.1038/ncb2307.

Brach, T., Godlee, C., Moeller-Hansen, I., Boeke, D., and Kaksonen, M. The Initiation of Clathrin-
Mediated Endocytosis Is Mechanistically Highly Flexible. 2014. URL http://www.sciencedirect.

com/science/article/pii/S0960982214000815.

Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I., Preibisch, S., Longair, M., Tomancak,
P., Hartenstein, V., and Douglas, R. J. TrakEM2 Software for Neural Circuit Reconstruction. PLoS
ONE, 7(6):38011, jun 2012. doi: 10.1371/journal.pone.0038011.

Cheeseman, L. P., Harry, E. F., McAinsh, A. D., Prior, I. A., and Royle, S. J. Specific removal
of TACC3-ch-TOG-clathrin at metaphase deregulates kinetochore fiber tension. Journal of Cell
Science, 126(9):2102-2113, may 2013. doi: 10.1242/jcs.124834.

Clarke, N. I. and Royle, S. J. FerriTag: A Genetically-Encoded Inducible Tag for Correlative Light-

Electron Microscopy. bioRziv, 2016.

Cleyrat, C., Darehshouri, A., Steinkamp, M. P.,; Vilaine, M., Boassa, D., Ellisman, M. H., Hermouet,
S., and Wilson, B. S. Mpl traffics to the cell surface through conventional and unconventional

routes. Traffic (Copenhagen, Denmark), 15(9):961-82, sep 2014. doi: 10.1111/tra.12185.

Cox, D. B. T., Platt, R. J., and Zhang, F. Therapeutic genome editing: prospects and challenges.
Nature medicine, 21(2):121-31, feb 2015. doi: 10.1038/nm.3793.

Dannhauser, P. N., Platen, M., B?ning, H., Ungewickell, H., Schaap, I. A., and Ungewickell, E. J.
Effect of Clathrin Light Chains on the Stiffness of Clathrin Lattices and Membrane Budding. Traffic,
16(5):519-533, may 2015. doi: 10.1111/tra.12263.

Das, S. C., Panda, D., Nayak, D., and Pattnaik, A. K. Biarsenical Labeling of Vesicular Stomatitis
Virus Encoding Tetracysteine-Tagged M Protein Allows Dynamic Imaging of M Protein and Virus
Uncoating in Infected Cells. Journal of Virology, 83(6):2611-2622, mar 2009. doi: 10.1128/JVI.
01668-08.

Daumke, O., Roux, A., and Haucke, V. BAR Domain Scaffolds in Dynamin-Mediated Membrane
Fission. Cell, 156(5):882-892, feb 2014. doi: 10.1016/j.cell.2014.02.017.

124



de Boer, P., Hoogenboom, J. P., and Giepmans, B. N. G. Correlated light and electron microscopy:
ultrastructure lights up! Nature Methods, 12(6):503-513, may 2015. doi: 10.1038 /nmeth.3400.

Deerinck, T. J., Giepmans, B. N. G., Smarr, B. L., Martone, M. E., and Ellisman, M. H. Light
and Electron Microscopic Localization of Multiple Proteins Using Quantum Dots. In Quantum
Dots, volume 374, pages 43-54. Humana Press, New Jersey, 2007. doi: 10.1385/1-59745-369-2:
43.  URL http://www.ncbi.nlm.nih.gov/pubmed/17237528http://link.springer.com/10.

1385/1-59745-369-2:43.

Diestra, E., Fontana, J., Guichard, P., Marco, S., and Risco, C. Visualization of proteins in intact
cells with a clonable tag for electron microscopy. Journal of Structural Biology, 165(3):157—168,
mar 2009. doi: 10.1016/j.jsb.2008.11.009.

Doherty, G. J. and McMahon, H. T. Mechanisms of Endocytosis. Annual Review of Biochemistry, 78
(1):857-902, jun 2009. doi: 10.1146/annurev.biochem.78.081307.110540.

Ellisman, M. H., Deerinck, T. J., Shu, X., and Sosinsky, G. E. Picking faces out of a crowd: genetic
labels for identification of proteins in correlated light and electron microscopy imaging. Methods in

cell biology, 111:139-55, 2012. doi: 10.1016/B978-0-12-416026-2.00008-X.

Engqvist-Goldstein, A. E. Y. and Drubin, D. G. Actin assembly and endocytosis: from yeast to
mammals. Annual review of cell and developmental biology, 19(1):287-332, nov 2003. doi: 10.1146/

annurev.cellbio.19.111401.093127.

Engqvist-Goldstein, s. E., Warren, R. A., Kessels, M. M., Keen, J. H., Heuser, J., and Drubin, D. G.
The actin-binding protein HiplR associates with clathrin during early stages of endocytosis and
promotes clathrin assembly in vitro. The Journal of Cell Biology, 154(6):1209-1224, sep 2001. doi:

10.1083/jcb.200106089.

Fan, R., Chew, S. W., Cheong, V. V., and Orner, B. P. Fabrication of Gold Nanoparticles Inside Un-
modified Horse Spleen Apoferritin. Small, 6(14):1483-1487, jul 2010. doi: 10.1002/smll.201000457.

Ferguson, S. M. and De Camilli, P. Dynamin, a membrane-remodelling GTPase. Nature Reviews

Molecular Cell Biology, 13(2):75, jan 2012. doi: 10.1038/nrm3266.

Fernndez de Castro, 1., Sanz-S7nchez, L., and Risco, C. Metallothioneins for Correlative Light and
Electron Microscopy. In Methods in cell biology, volume 124, pages 55-70. 2014. doi: 10.1016/
B978-0-12-801075-4.00003-3. URL http://www.ncbi.nlm.nih.gov/pubmed/25287836http://

linkinghub.elsevier.com/retrieve/pii/B9780128010754000033.
Fulton, A. B. How crowded is the cytoplasm? Cell, 30(2):345-7, sep 1982.

125



Gaietta, G., Deerinck, T. J., Adams, S. R., Bouwer, J., Tour, O., Laird, D. W., Sosinsky, G. E., Tsien,
R. Y., and Ellisman, M. H. Multicolor and Electron Microscopic Imaging of Connexin Trafficking.
Science, 296(5567):503-507, apr 2002. doi: 10.1126/science.1068793.

Gibson, T. J., Seiler, M., and Veitia, R. A. The transience of transient overexpression. Nature Methods,

10(8):715-721, jul 2013. doi: 10.1038/nmeth.2534.

Giepmans, B. N. G., Deerinck, T. J., Smarr, B. L., Jones, Y. Z., and Ellisman, M. H. Correlated light
and electron microscopic imaging of multiple endogenous proteins using Quantum dots. Nature

Methods, 2(10):743-749, sep 2005. doi: 10.1038/nmeth791.

Godlee, C. and Kaksonen, M. From uncertain beginnings: Initiation mechanisms of clathrin-mediated

endocytosis. The Journal of Cell Biology, 203(5), 2013.

Graham, L. and Orenstein, J. M. Processing tissue and cells for transmission electron microscopy
in diagnostic pathology and research. Nature Protocols, 2(10):2439-2450, oct 2007. doi: 10.1038/
nprot.2007.304.

Grassart, A., Cheng, A. T., Hong, S. H., Zhang, F., Zenzer, N., Feng, Y., Briner, D. M., Davis, G. D.,
Malkov, D., and Drubin, D. G. Actin and dynamin2 dynamics and interplay during clathrin-
mediated endocytosis. The Journal of Cell Biology, 205(5), 2014.

Greener, T., Zhao, X., Nojima, H., Eisenberg, E., and Greene, L. E. Role of cyclin G-associated kinase
in uncoating clathrin-coated vesicles from non-neuronal cells. The Journal of biological chemistry,

275(2):1365-70, jan 2000.

Griffin, B. A., Adams, S. R., and Tsien, R. Y. Specific covalent labeling of recombinant protein
molecules inside live cells. Science (New York, N.Y.), 281(5374):269-72, jul 1998.

Griffiths, G. and Lucocq, J. M. Antibodies for immunolabeling by light and electron microscopy:
not for the faint hearted. Histochemistry and cell biology, 142(4):347-60, oct 2014. doi: 10.1007/
s00418-014-1263-5.

Guan, R., Han, D., Harrison, S. C., Kirchhausen, T., and Kirchhausen, T. Structure of the PTEN-like
Region of Auxilin, a Detector of Clathrin-Coated Vesicle Budding. Structure, 18(9):1191-1198, sep
2010. doi: 10.1016/j.str.2010.06.016.

Hanker, J. S. Osmiophilic reagents in electronmicroscopic histocytochemistry. Progress in histochem-

istry and cytochemistry, 12(1):1-85, 1979.

126



Heiligenstein, X., Heiligenstein, J., Delevoye, C., Hurbain, 1., Bardin, S., Paul-Gilloteaux, P., Seng-
manivong, L., R?gnier, G., Salamero, J., Antony, C., and Raposo, G. The CryoCapsule: Simplifying
Correlative Light to Electron Microscopy. Traffic, 15(6):700-716, jun 2014. doi: 10.1111/tra.12164.

Heuser, J. Three-dimensional visualization of coated vesicle formation in fibroblasts. The Journal of

cell biology, 84(3):560-83, mar 1980.

Hirst, J., Edgar, J. R., Borner, G. H. H., Li, S., Sahlender, D. A.; Antrobus, R., and Robinson, M. S.
Contributions of epsinR and gadkin to clathrin-mediated intracellular trafficking. Molecular biology

of the cell, 26(17):3085-103, sep 2015. doi: 10.1091/mbec.E15-04-0245.

Hodgson, L., Tavaré, J., and Verkade, P. Development of a quantitative Correlative Light Electron
Microscopy technique to study GLUT4 trafficking. Protoplasma, 251(2):403—-416, mar 2014. doi:
10.1007/s00709-013-0597-5.

Huang, B., Bates, M., and Zhuang, X. Super-resolution fluorescence microscopy. Annual review of

biochemistry, 78:993-1016, 2009. doi: 10.1146/annurev.biochem.77.061906.092014.

Huang, X., Yang, P., Ouyang, X., Chen, L., and Deng, X. W. Photoactivated UVR8-COP1 Module
Determines Photomorphogenic UV-B Signaling Output in Arabidopsis. PLoS Genetics, 10(3):
€1004218, mar 2014. doi: 10.1371/journal.pgen.1004218.

Hurtley, S. Location, Location, Location. Science, 326(5957):1205-1205, nov 2009. doi: 10.1126/
science.326.5957.1205.

Tordanova, B., Robison, C. S., and Ahrens, E. T. Design and characterization of a chimeric ferritin
with enhanced iron loading and transverse NMR relaxation rate. Journal of biological inorganic
chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry, 15(6):957-65,
aug 2010. doi: 10.1007/s00775-010-0657-7.

Iwahori, K., Morioka, T., and Yamashita, I. The optimization of CdSe nanoparticles synthesis in
the apoferritin cavity. physica status solidi (a), 203(11):2658-2661, sep 2006. doi: 10.1002/pssa.

200669531.

Jauregui, H. O., Bradford, W. D., Arstila, A. U., Kinney, T. D., and Trump, B. F. Iron metabolism
and cell membranes. III. Iron-induced alterations in HeLa cells. The American journal of pathology,

80(1):33-52, jul 1975.

Johnson, E.; Seiradake, E., Jones, E. Y., Davis, 1., Gr’newald, K., and Kaufmann, R. Correlative
in-resin super-resolution and electron microscopy using standard fluorescent proteins. Scientific

Reports, 5(1):9583, aug 2015. doi: 10.1038/srep09583.

127



Jutz, G., van Rijn, P., Santos Miranda, B., and Boker, A. Ferritin: a versatile building block for
bionanotechnology. Chemical reviews, 115(4):1653-701, feb 2015. doi: 10.1021/cr400011b.

Kaksonen, M., Toret, C. P., and Drubin, D. G. Harnessing actin dynamics for clathrin-mediated

endocytosis. Nature Reviews Molecular Cell Biology, 7(6):404-414, jun 2006. doi: 10.1038/nrm1940.

Kasyutich, O., Ilari, A., Fiorillo, A., Tatchev, D., Hoell, A., and Ceci, P. Silver Ion Incorporation and
Nanoparticle Formation inside the Cavity of <i>Pyrococcus furiosus</i> Ferritin: Structural and
Size-Distribution Analyses. Journal of the American Chemical Society, 132(10):3621-3627, mar
2010. doi: 10.1021/ja910918b.

Keen, J. H., Gaidarov, 1., Santini, F., and Warren, R. A. Spatial control of coated-pit dynamics in

living cells. Nature Cell Biology, 1(1):1-7, may 1999. doi: 10.1038/8971.

Kelly, B. T., Owen, D. J., Jodi Nunnari, b. M., and Nichols, B. Endocytic sorting of transmembrane
protein cargo This review comes from a themed issue on Membranes and organelles Edited. Current

Opinion in Cell Biology, 23:404-412, 2011. doi: 10.1016/j.ceb.2011.03.004.

Koning, R. 1., Faas, F. G., Boonekamp, M., de Visser, B., Janse, J., Wiegant, J. C., de Breij, A.,
Willemse, J., Nibbering, P. H., Tanke, H. J., and Koster, A. J. MAVIS: An integrated system for
live microscopy and vitrification. Ultramicroscopy, 143:67-76, aug 2014. doi: 10.1016/j.ultramic.
2013.10.007.

Kukulski, W., Schorb, M., Welsch, S., Picco, A., Kaksonen, M., and Briggs, J. A. Correlated fluores-
cence and 3D electron microscopy with high sensitivity and spatial precision. The Journal of Cell

Biology, 192(1):111-119, jan 2011. doi: 10.1083/jcb.201009037.

Kukulski, W., Schorb, M., Welsch, S., Picco, A., Kaksonen, M., and Briggs, J. A. Precise, Corre-
lated Fluorescence Microscopy and Electron Tomography of Lowicryl Sections Using Fluorescent
Fiducial Markers. In Methods in cell biology, volume 111, pages 235-257. 2012. doi: 10.1016/
B978-0-12-416026-2.00013-3. URL http://www.ncbi.nlm.nih.gov/pubmed/22857932http://

linkinghub.elsevier.com/retrieve/pii/B9780124160262000133.

Kuzmich, A. I., Vvedenskii, A. V., Kopantzev, E. P., and Vinogradova, T. V. Quantitative compar-
ison of gene co-expression in a bicistronic vector harboring IRES or coding sequence of porcine
teschovirus 2A peptide. Russian Journal of Bioorganic Chemistry, 39(4):406-416, jul 2013. doi:
10.1134/51068162013040122.

Lam, S. S., Martell, J. D., Kamer, K. J., Deerinck, T. J., Ellisman, M. H., Mootha, V. K., and
Ting, A. Y. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nature
Methods, 12(1):51-54, nov 2014. doi: 10.1038/nmeth.3179.

128



Laplante, M. and Sabatini, D. M. mTOR signaling at a glance. Journal of Cell Science, 122(20),
20009.

Le Clainche, C.,; Pauly, B. S., Zhang, C. X., Engqvist-Goldstein, s. E. Y., Cunningham, K., and
Drubin, D. G. A HiplR/cortactin complex negatively regulates actin assembly associated with

endocytosis. The EMBO Journal, 26(5):1199-1210, mar 2007. doi: 10.1038/sj.emboj.7601576.

Leeson, C. R. and Leeson, T. S. An Unusual Arrangement of Ribosomes in Mesenchymal Cells.

Journal of Chemical Biology, 24(2):324-328, 1965.

Li, D., Shao, L., Chen, B.-C., Zhang, X., Zhang, M., Moses, B., Milkie, D. E., Beach, J. R., Ham-
mer, J. A., Pasham, M., Kirchhausen, T., Baird, M. A., Davidson, M. W., Xu, P., and Betzig,
E. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics.

Science, 349(6251):aab3500-aab3500, aug 2015. doi: 10.1126/science.aab3500.

Licitra, E. J. and Liu, J. O. A three-hybrid system for detecting small ligand-protein receptor inter-
actions. Proceedings of the National Academy of Sciences of the United States of America, 93(23):
12817-21, nov 1996.

Liu, J., Farmer, J. D., Lane, W. S., Friedman, J., Weissman, 1., and Schreiber, S. L. Calcineurin is
a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell, 66(4):807-815,
aug 1991. doi: 10.1016/0092-8674(91)90124-H.

Loerke, D., Mettlen, M., Schmid, S. L., and Danuser, G. Measuring the Hierarchy of Molecular Events
During Clathrin-Mediated Endocytosis. Traffic, 12(7):815-825, jul 2011. doi: 10.1111/j.1600-0854.
2011.01197.x.

Ludwig, A., Howard, G., Mendoza-Topaz, C., Deerinck, T., Mackey, M., Sandin, S., Ellisman, M. H.,
and Nichols, B. J. Molecular Composition and Ultrastructure of the Caveolar Coat Complex. PLoS
Biology, 11(8):€1001640, aug 2013. doi: 10.1371/journal.pbio.1001640.

Ma, H., Fu, R., Xu, J., and Liu, Y. A simple and cost-effective setup for super-resolution localization

microscopy. Scientific Reports, 7(1):1542, dec 2017. doi: 10.1038/s41598-017-01606-6.

Magidson, V., He, J., Ault, J. G., O?Connell, C. B., Yang, N., Tikhonenko, I., McEwen, B. F., Sui, H.,
and Khodjakov, A. Unattached kinetochores rather than intrakinetochore tension arrest mitosis
in taxol-treated cells. The Journal of Cell Biology, 212(3):307-319, feb 2016. doi: 10.1083/jcb.
201412139.

129



Mahamid, J., Pfeffer, S., Schaffer, M., Villa, E., Danev, R., Kuhn Cuellar, L., Forster, F., Hyman,
A. A, Plitzko, J. M., and Baumeister, W. Visualizing the molecular sociology at the HeLa cell
nuclear periphery. Science, 351(6276):969-972, feb 2016. doi: 10.1126/science.aad8857.

Manna, P. T., Gadelha, C., Puttick, A. E., and Field, M. C. ENTH and ANTH domain proteins
participate in AP2-independent clathrin-mediated endocytosis. Journal of Cell Science, 128(11),
2015.

Maranto, A. R. Neuronal mapping: a photooxidation reaction makes Lucifer yellow useful for electron

microscopy. Science (New York, N.Y.), 217(4563):953-5, sep 1982.

Martell, J. D., Deerinck, T. J., Sancak, Y., Poulos, T. L., Mootha, V. K., Sosinsky, G. E., Ellisman,
M. H., and Ting, A. Y. Engineered ascorbate peroxidase as a genetically encoded reporter for

electron microscopy. Nature biotechnology, 30(11):1143-8, nov 2012.

Martin, B. R., Giepmans, B. N. G., Adams, S. R., and Tsien, R. Y. Mammalian cell-based optimiza-
tion of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nature

biotechnology, 23(10):1308-14, oct 2005. doi: 10.1038/nbt1136.

Masuda, T., Goto, F., Yoshihara, T., and Mikami, B. The universal mechanism for iron translocation
to the ferroxidase site in ferritin, which is mediated by the well conserved transit site. Biochemical

and biophysical research communications, 400(1):94-9, sep 2010. doi: 10.1016/j.bbrc.2010.08.017.

Matsumoto, Y., Chen, R., Anikeeva, P., and Jasanoff, A. Engineering intracellular biomineralization
and biosensing by a magnetic protein. Nature Communications, 6(1):8721, dec 2015. doi: 10.1038/

ncomms9721.

McDonald, K. and Webb, R. Freeze substitution in 3 hours or less. Journal of Microscopy, 243(3):

227-233, sep 2011. doi: 10.1111/j.1365-2818.2011.03526.x.

McDonald, K. L., Morphew, M., Verkade, P., and M?ller-Reichert, T. Recent Advances in High-
Pressure Freezing. In Methods in molecular biology (Clifton, N.J.), volume 369, pages 143—
173. 2007. doi: 10.1007/978-1-59745-294-6_8. URL http://www.ncbi.nlm.nih.gov/pubmed/

17656750http://link.springer.com/10.1007/978-1-59745-294-6{_3}8.

McMahon, H. T. and Boucrot, E. Molecular mechanism and physiological functions of clathrin-
mediated endocytosis. Nature Reviews Molecular Cell Biology, 12(8):517-533, jul 2011. doi: 10.
1038 /nrm3151.

130



Medalia, O., Weber, 1., Frangakis, A. S.; Nicastro, D., Gerisch, G., and Baumeister, W. Macromolec-
ular architecture in eukaryotic cells visualized by cryoelectron tomography. Science (New York,

N.Y.), 298(5596):1209-13, nov 2002. doi: 10.1126/science.1076184.
Meister, M. Physical limits to magnetogenetics. eLife, 5, aug 2016. doi: 10.7554/eLife.17210.

Miyamoto, T., DeRose, R., Suarez, A., Ueno, T., Chen, M., Sun, T.-p., Wolfgang, M. J., Mukherjee,
C., Meyers, D. J., and Inoue, T. Rapid and orthogonal logic gating with a gibberellin-induced

dimerization system. Nature chemical biology, 8(5):465-70, mar 2012. doi: 10.1038/nchembio.922.

Moor, H. Theory and Practice of High Pressure Freezing. 1In Cryotechniques in Biologi-
cal Electron Microscopy, pages 175-191. Springer Berlin Heidelberg, Berlin, Heidelberg, 1987.
doi:  10.1007/978-3-642-72815-0_8.  URL http://www.springerlink.com/index/10.1007/

978-3-642-72815-0{_}8.

Moor, H. and Miihlethaler, K. Fine Structure In Frozen-Etched Yeast Cells. The Journal of cell
biology, 17(3):609-28, jun 1963.

Morphew, M., O’toole, E., Page, C., Pagratis, M., Meehl, J., Giddings, T., Gardner, J., Ackerson,
C., Jaspersen, S., Winey, M., Hoenger, A., and Mcintosh, J. Metallothionein as a clonable tag for
protein localization by electron microscopy of cells. Journal of Microscopy, 260(1):20-29, oct 2015.
doi: 10.1111/jmi.12262.

Motley, A., Bright, N. A.; Seaman, M. N., and Robinson, M. S. Clathrin-mediated endocytosis in
AP-2-depleted cells. The Journal of Cell Biology, 162(5):909-918, sep 2003. doi: 10.1083/jcb.
200305145.

Miiller-Reichert, T. and Verkade, P. Introduction to correlative light and electron microscopy. In Meth-
ods in cell biology, volume 111, pages xvii—xix. 2012. doi: 10.1016/B978-0-12-416026-2.03001-6.

URL http://www.ncbi.nlm.nih.gov/pubmed/22857938.

Myasnikov, A. G., Kundhavai Natchiar, S., Nebout, M., Hazemann, I., Imbert, V., Khatter, H.,
Peyron, J.-F., and Klaholz, B. P. Structure-function insights reveal the human ribosome as a cancer

target for antibiotics. Nature Communications, 7:12856, sep 2016. doi: 10.1038 /ncomms12856.

Nakatsu, F., Perera, R. M., Lucast, L., Zoncu, R., Domin, J., Gertler, F. B., Toomre, D., and De
Camilli, P. The inositol 5-phosphatase SHIP2 regulates endocytic clathrin-coated pit dynamics.
The Journal of Cell Biology, 190(3), 2010.

131



Nisman, R., Dellaire, G., Ren, Y., Li, R., and Bazett-Jones, D. P. Application of quantum dots
as probes for correlative fluorescence, conventional, and energy-filtered transmission electron mi-

croscopy. The journal of histochemistry and cytochemistry : official journal of the Histochemistry

Society, 52(1):13-8, jan 2004. doi: 10.1177/002215540405200102.

Nixon, F. M., Honnor, T. R., Clarke, N. L., Starling, G. P., Beckett, A. J., Johansen, A. M.,
Brettschneider, J. A., Prior, I. A., and Royle, S. J. Microtubule organization within mitotic spin-
dles revealed by serial block face scanning electron microscopy and image analysis. Journal of Cell

Science, 130(10), 2017.

Nunez, D., Antonescu, C., Mettlen, M., Liu, A., Schmid, S. L., Loerke, D., and Danuser, G. Hotspots
Organize Clathrin-Mediated Endocytosis by Efficient Recruitment and Retention of Nucleating
Resources. Traffic, 12(12):1868-1878, dec 2011. doi: 10.1111/j.1600-0854.2011.01273.x.

Olmos, Y., Hodgson, L., Mantell, J., Verkade, P., and Carlton, J. G. ESCRT-III controls nuclear
envelope reformation. Nature, 522(7555):236-239, jun 2015. doi: 10.1038 /nature14503.

Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., and Remington, S. J. Crystal structure
of the Aequorea victoria green fluorescent protein. Science (New York, N.Y.), 273(5280):1392-5,

sep 1996.

Paez-Segala, M. G., Sun, M. G., Shtengel, G., Viswanathan, S., Baird, M. A., Macklin, J. J., Patel,
R., Allen, J. R., Howe, E. S., Piszczek, G., Hess, H. F., Davidson, M. W., Wang, Y., and Looger,
L. L. Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nature Methods, 12(3):

215-218, jan 2015. doi: 10.1038/nmeth.3225.

Paul-Gilloteaux, P., Heiligenstein, X., Belle, M., Domart, M.-C., Larijani, B., Collinson, L., Raposo,
G., and Salamero, J. eC-CLEM: flexible multidimensional registration software for correlative

microscopies. Nature Methods, 14(2):102-103, jan 2017. doi: 10.1038/nmeth.4170.

Peddie, C. J., Blight, K., Wilson, E., Melia, C., Marrison, J., Carzaniga, R., Domart, M. C., O’Toole,
P., Larijani, B., and Collinson, L. M. Correlative and integrated light and electron microscopy of
in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells. Ultramicroscopy, 143:

3-14, 2014. doi: 10.1016/j.ultramic.2014.02.001.

Peddie, C. J., Domart, M.-C., Snetkov, X., O’Toole, P., Larijani, B., Way, M., Cox, S., and
Collinson, L. M. Correlative super-resolution fluorescence and electron microscopy using conven-

tional fluorescent proteins in vacuo. Journal of Structural Biology, 199(2):120-131, aug 2017. doi:
10.1016/J.JSB.2017.05.013.

132



Porstmann, T. and Kiessig, S. T. Enzyme immunoassay techniques. An overview. Journal of im-

munological methods, 150(1-2):5-21, jun 1992.

Pucadyil, T. J. and Holkar, S. S. Comparative analysis of adaptor-mediated clathrin assembly reveals
general principles for adaptor clustering. Molecular biology of the cell, 27(20):3156-3163, oct 2016.
doi: 10.1091/mbec.E16-06-0399.

Putyrski, M. and Schultz, C. Protein translocation as a tool: The current rapamycin story. FEBS
Letters, 586(15):2097-2105, jul 2012. doi: 10.1016/j.febslet.2012.04.061.

Rhee, H.-W., Zou, P., Udeshi, N. D., Martell, J. D., Mootha, V. K., Carr, S. A., and Ting, A. Y.
Proteomic Mapping of Mitochondria in Living Cells via Spatially Restricted Enzymatic Tagging.
Science, 339(6125):1328-1331, mar 2013. doi: 10.1126/science.1230593.

Risco, C., Sanmart?n-Conesa, E., Tzeng, W.-P., Frey, T., Seybold, V., and De?Groot, R. Specific,
Sensitive, High-Resolution Detection of Protein Molecules in Eukaryotic Cells Using Metal-Tagging
Transmission Electron Microscopy. Structure, 20(5):759-766, may 2012. doi: 10.1016/j.str.2012.
04.001.

Rivera, V. M., Clackson, T., Natesan, S., Pollock, R., Amara, J. F., Keenan, T., Magari, S. R.,
Phillips, T., Courage, N. L., Cerasoli, F., Holt, D. A., and Gilman, M. A humanized system
for pharmacologic control of gene expression. Nature Medicine, 2(9):1028-1032, sep 1996. doi:
10.1038/nm0996-1028.

Robinson, C. V., Sali, A., and Baumeister, W. The molecular sociology of the cell. Nature, 450(7172):
973-982, dec 2007. doi: 10.1038/nature06523.

Robinson, M. S.; Sahlender, D. A., and Foster, S. D. Rapid inactivation of proteins by rapamycin-
induced rerouting to mitochondria. Developmental cell, 18(2):324-31, feb 2010. doi: 10.1016/j.
devcel.2009.12.015.

Roth, T. F. and Porter, K. R. Yolk Protein Uptake in the Oocyte of the Mosquito Aedes Agypti. L.
The Journal of cell biology, 20:313-32, feb 1964.

Royle, S. J. Protein adaptation: mitotic functions for membrane trafficking proteins. Nature Reviews

Molecular Cell Biology, 14(9):592-599, aug 2013. doi: 10.1038/nrm3641.

Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F., and Jungmann, R. Super-resolution
microscopy with DNA-PAINT. Nature Protocols, 12(6):1198-1228, may 2017. doi: 10.1038/nprot.
2017.024.

133



Schorb, M., Gaechter, L., Avinoam, O., Sieckmann, F., Clarke, M., Bebeacua, C., Bykov, Y. S.,
Sonnen, A. F.-P., Lihl, R., and Briggs, J. A. New hardware and workflows for semi-automated cor-

relative cryo-fluorescence and cryo-electron microscopy/tomography. Journal of Structural Biology,

197(2):83-93, feb 2017. doi: 10.1016/.jsb.2016.06.020.

Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. A guide to choosing fluorescent proteins. Nature
Methods, 2(12):905-909, dec 2005. doi: 10.1038/nmeth819.

Shu, X., Lev-Ram, V., Deerinck, T. J., Qi, Y., Ramko, E. B., Davidson, M. W., Jin, Y., Ellisman,
M. H., and Tsien, R. Y. A Genetically Encoded Tag for Correlated Light and Electron Microscopy
of Intact Cells, Tissues, and Organisms. PLoS Biology, 9(4):¢1001041, apr 2011. doi: 10.1371/
journal.pbio.1001041.

Shvets, E., Bitsikas, V., Howard, G., Hansen, C. G., and Nichols, B. J. Dynamic caveolae exclude
bulk membrane proteins and are required for sorting of excess glycosphingolipids. Nature commu-

nications, 6:6867, apr 2015. doi: 10.1038/ncomms7867.

Singer, S. J. Preparation of an electron-dense antibody conjugate. Nature, 183(4674):1523—4, may
1959.

Sochacki, K. A., Shtengel, G., van Engelenburg, S. B., Hess, H. F., and Taraska, J. W. Correlative
super-resolution fluorescence and metal-replica transmission electron microscopy. Nature Methods,

11(3):305-308, jan 2014. doi: 10.1038/nmeth.2816.

Sochacki, K. A., Dickey, A. M., Strub, M.-P.; and Taraska, J. W. Endocytic proteins are partitioned
at the edge of the clathrin lattice in mammalian cells. Nature cell biology, 19(4):352-361, apr 2017.
doi: 10.1038/ncb3498.

Sosinsky, G. E., Giepmans, B. N., Deerinck, T. J., Gaietta, G. M., and Ellisman, M. H. Markers
for Correlated Light and Electron Microscopy. In Methods in cell biology, volume 79, pages 575—
591. 2007. doi: 10.1016/S0091-679X(06)79023-9. URL http://www.ncbi.nlm.nih.gov/pubmed/

17327175http://linkinghub.elsevier.com/retrieve/pii/S0091679X06790239.

Spencer, D. M., Wandless, T. J., Schreiber, S. L., and Crabtree, G. R. Controlling signal transduction

with synthetic ligands. Science (New York, N.Y.), 262(5136):1019-24, nov 1993.

Srinivasan, S., Dharmarajan, V., Reed, D. K., Griffin, P. R., and Schmid, S. L. Identification and
function of conformational dynamics in the multidomain GTPase dynamin. The EMBO Journal,

35(4):443-457, feb 2016. doi: 10.15252/embj.201593477.

134



Strickland, D., Lin, Y., Wagner, E., Hope, C. M., Zayner, J., Antoniou, C., Sosnick, T. R., Weiss,
E. L., and Glotzer, M. TULIPs: tunable, light-controlled interacting protein tags for cell biology.
Nature Methods, 9(4):379-384, mar 2012. doi: 10.1038/nmeth.1904.

Tabuchi, M., Tanaka, N., Nishida-Kitayama, J., Ohno, H., and Kishi, F. Alternative Splicing Regu-
lates the Subcellular Localization of Divalent Metal Transporter 1 Isoforms. Molecular Biology of

the Cell, 13(12):4371-4387, dec 2002. doi: 10.1091/mbc.E02-03-0165.

Takizawa, T. and Robinson, J. M. FluoroNanogold Is a Bifunctional Immunoprobe for Correlative
Fluorescence and Electron Microscopy. Journal of Histochemistry € Cytochemistry, 48(4):481-485,
apr 2000. doi: 10.1177/002215540004800405.

Takizawa, T., Powell, R. D., Hainfeld, J. F., and Robinson, J. M. FluoroNanogold: an important
probe for correlative microscopy. Journal of Chemical Biology, 8(4):129-142, oct 2015. doi: 10.
1007/s12154-015-0145-1.

Taslimi, A., Zoltowski, B., Miranda, J. G., Pathak, G. P., Hughes, R. M., and Tucker, C. L. Optimized
second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase. Nature chemical

biology, 12(6):425-30, 2016. doi: 10.1038/nchembio.2063.

Taylor, M. J., Perrais, D., and Merrifield, C. J. A high precision survey of the molecular dynamics of
mammalian clathrin-mediated endocytosis. PLoS biology, 9(3):1000604, mar 2011. doi: 10.1371/

journal.pbio.1000604.

Taylor, M. J., Lampe, M., and Merrifield, C. J. A Feedback Loop between Dynamin and Actin
Recruitment during Clathrin-Mediated Endocytosis. PLoS Biology, 10(4):€1001302, apr 2012. doi:

10.1371/journal.pbio.1001302.

Tokuyasu, K. T. A technique for ultracryotomy of cell suspensions and tissues. The Journal of cell

biology, 57(2):551-65, may 1973.

van Weering, J. R. T., Brown, E., Sharp, T. H., Mantell, J., Cullen, P. J., and Verkade, P. Intracellular
membrane traffic at high resolution. Methods in cell biology, 96:619-48, 2010. doi: 10.1016/

S0091-679X(10)96026-3.

Wang, Q., Mercogliano, C. P., and Lowe, J. A ferritin-based label for cellular electron cryotomography.

Structure (London, England : 1993), 19(2):147-54, feb 2011. doi: 10.1016/j.str.2010.12.002.

Wang, W. and Malcolm, B. A. Two-stage PCR protocol allowing introduction of multiple mutations,
deletions and insertions using QuikChange Site-Directed Mutagenesis. BioTechniques, 26(4):680-2,

apr 1999.

135



Wilbur, J. D., Chen, C.-Y., Manalo, V., Hwang, P. K., Fletterick, R. J., and Brodsky, F. M. Actin
Binding by Hipl (Huntingtin-interacting Protein 1) and HiplR (Hip1l-related Protein) Is Regulated
by Clathrin Light Chain. Journal of Biological Chemistry, 283(47):32870-32879, nov 2008. doi:
10.1074/jbc.M802863200.

Wilkinson, J., Di, X., Schonig, K., Buss, J. L., Kock, N. D.; Cline, J. M., Saunders, T. L., Bujard,
H., Torti, S. V., Torti, F. M., and Torti, F. M. Tissue-specific expression of ferritin H regulates
cellular iron homoeostasis in vivo. The Biochemical journal, 395(3):501-7, may 2006. doi: 10.1042/

BJ20060063.

Willox, A. K. and Royle, S. J. Stonin 2 is a major adaptor protein for clathrin-mediated synaptic
vesicle retrieval. Current biology : CB, 22(15):1435-9, aug 2012. doi: 10.1016/j.cub.2012.05.048.

Wong, M. and Munro, S. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil
proteins. Science, 346(6209):1256898-1256898, oct 2014. doi: 10.1126/science.1256898.

Wood, L. A., Clarke, N. L., Sarkar, S., and Royle, S. J. Hot-wiring clathrin-mediated endocytosis in

human cells. bioRziv, 2016.

Wood, L. A., Larocque, G., Clarke, N. 1., Sarkar, S., and Royle, S. J. New tools for ’hot-wiring’
clathrin-mediated endocytosis with temporal and spatial precision. The Journal of cell biology, 216

(12):4351-4365, dec 2017. doi: 10.1083/jcb.201702188.

Zoncu, R., Perera, R. M., Sebastian, R., Nakatsu, F., Chen, H., Balla, T., Ayala, G., Toomre, D., and
De Camilli, P. V. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol
4,5-bisphosphate. Proceedings of the National Academy of Sciences of the United States of America,
104(10):3793-8, mar 2007. doi: 10.1073/pnas.0611733104.

136






Appendix

5.1 Published Work

1) Auckland, P., Clarke, N. I., Royle, S. J., McAinsh, A.D. Congressing kinetochores progres-
sively load Ska complexes to prevent force-dependant detachment. Journal Cell Biology (2017): doi:
10.1083/jcb.201607096

Overview

In this work I used correlated light microscopy movies with serial block face scanning electron
microscopy (SBF-SEM) to track congressing sister kinetochore pairs that were orientated and breath-
ing. As sample processing for electron microscopy had been optimized to enable clear visualization of
microtubules, we could demonstrate congressing pairs were bi-oriented at high resolution (Figure 1).
We also discovered that aligned kinetochores have a 50% increase in bound microtubules compared
to those that have not yet congressed (Figure 6). This data provided strong evidence that supported

the model for how increasing pulling forces could be generated at kinetochores during congression.

2) Nixon, F.M., Honnor, T.R., Clarke, N.I., Starling, G.P., Beckett, A.J., Johansen, A.M., Brettschnei-
der, J.A., Prior, .A., Royle, S. J. Microtubule organization within mitotic spindles revealed by serial

block face scanning EM and image analysis. J Cell Sci (2017): doi: 10.1242/jcs.203877
Overview

For this paper, I used correlative light SBF-SEM to visualize microtubules within the mitotic
spindle. Acquired datasets were segmented and rendered in 3D to provide information on microtubule
organization. Specifically, my data contributed to the further quantification of the number of micro-
tubules that terminate at kinetochores using this method (Figure 2). Furthermore, I provided 3D
rendered images that show single microtubules could be resolved (Figure 2) and gave the idea for

volumetric analysis of kinetochores (Figure 6).
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3) Wood, L.A., Larocque, G., Clarke, N. I., Sarkar, S., Royle, S. J. New tools for “hot-wiring”
clathrin-mediated endocytosis with temporal and spatial precision. Journal Cell Biology (2017): doi:
10.1083/jcb.201702188

Overview

In this work I used correlative light-electron microscopy to locate synthetic endocytic vesicles
made by this system. Live-cell uptake of fluoronanogold bound to CD8«a was tracked following the
chemical induction of endocytosis, cells where processed for electron microscopy and gold particles
where located in resin sections (figure 2). This experiment provided key ultrastructural information
about the created vesicles, 1) It supported and confirmed they were clathrin-coated and, 2) The

synthetic vesicles where structurally different to normal clathrin-coated vesicles.
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