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On a problem of Janusz Matkowski and Jacek Weso�lowski

Janusz Morawiec and Thomas Zürcher

Abstract. We study the problem of the existence of increasing and continuous solutions
ϕ : [0, 1] → [0, 1] such that ϕ(0) = 0 and ϕ(1) = 1 of the functional equation

ϕ(x) =
N∑

n=0

ϕ(fn(x)) −
N∑

n=1

ϕ(fn(0)),

where N ∈ N and f0, . . . , fN : [0, 1] → [0, 1] are strictly increasing contractions satisfying
the following condition 0 = f0(0) < f0(1) = f1(0) < · · · < fN−1(1) = fN (0) < fN (1) = 1.
In particular, we give an answer to the problem posed in Matkowski (Aequationes Math.
29:210–213, 1985) by Janusz Matkowski concerning a very special case of that equation.

Mathematics Subject Classification. Primary 39B12; Secondary 26A30, 26A46, 28A80.

Keywords. Functional equations, Probabilistic iterated function systems, Continuously sin-

gular functions, Absolutely continuous functions.

1. Introduction

During the 47th International Symposium on Functional Equations in 2009
Jacek Weso�lowski asked whether the identity on [0, 1] is the only increasing
and continuous solution ϕ : [0, 1] → [0, 1] of the equation

ϕ(x) = ϕ
(x

2

)
+ ϕ

(
x + 1

2

)
− ϕ

(
1
2

)
(e1)

satisfying
ϕ(0) = 0 and ϕ(1) = 1. (1)

This question was posed in connection with studying probability measures in
the plane which are invariant by “winding” (see [10]).

A negative answer to this question was obtained in [5] and reads as follows.

Theorem 1.1. (i) The identity on [0, 1] is the only increasing and absolutely
continuous solution ϕ : [0, 1] → [0, 1] of Eq. (e1) satisfying (1).
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(ii) For every p ∈ (0, 1) the function ϕp : [0, 1] → [0, 1] given by

ϕp

( ∞∑

k=1

xk

2k

)
=

∞∑

k=1

xkpk−∑k−1
i=1 xi(1 − p)

∑k−1
i=1 xi , (2)

where xk ∈ {0, 1} for all k ∈ N, is an increasing and continuous solution
of Eq. (e1) satisfying (1). Moreover, ϕp is singular for every p �= 1

2 .

Let us note that the first assertion of Theorem 1.1 is known (see e.g. [13]
or [8]), however in [5] we can find an independent proof of it.

It turns out that in 1985 Janusz Matkowski posed a problem asking if
Eq. (e1) has a non-linear monotonic and continuous solution ϕ : [0, 1] → R

(see [9]). Moreover, he observed that monotonic solutions of Eq. (e1) are
connected with invariant measures for a certain map on [0, 1]. Note that
Matkowski’s problem is equivalent to Weso�lowski’s question.

Remark 1.2. (i) If ϕ : [0, 1] → [0, 1] is an increasing and continuous solution
of Eq. (e1) satisfying (1), then for all a, b ∈ R the function aϕ + b is
monotonic, continuous and satisfies (e1) for every x ∈ [0, 1].

(ii) If ϕ : [0, 1] → R is a monotonic and continuous solution of Eq. (e1),
different from a constant function, then ϕ−ϕ(0)

ϕ(1)−ϕ(0) is an increasing and
continuous function satisfying (1) and (e1) for every x ∈ [0, 1].

2. Preliminaries

Fix N ∈ N, strictly increasing contractions f0, . . . , fN : [0, 1] → [0, 1] such that

0 = f0(0) < f0(1) = f1(0) < · · · < fN−1(1) = fN (0) < fN (1) = 1 (3)

and consider the functional equation

ϕ(x) =
N∑

n=0

ϕ(fn(x)) −
N∑

n=1

ϕ(fn(0)) (E)

for every x ∈ [0, 1]. Denote by C the class of all continuous and increasing
solutions ϕ : [0, 1] → [0, 1] of Eq. (E) satisfying (1). Following the idea from [5]
we show that C contains many functions, however, we manage to identify a
quite large class of contractions that includes the similitudes such that there
is exactly one absolutely continuous solution.

We begin with two observations showing that in many situations the class
C is determined by two of its subclasses Ca and Cs, consisting of all absolutely
continuous and all singular functions, respectively.

Remark 2.1. If ϕ1, ϕ2 ∈ C and if α ∈ (0, 1), then αϕ1 + (1 − α)ϕ2 ∈ C.
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To formulate the next remark we recall that a Lebesgue measurable func-
tion f : [0, 1] → [0, 1] is said to be nonsingular if the set f−1(A) has Lebesgue
measure zero for every set A ⊂ [0, 1] of Lebesgue measure zero (see [6]). Ob-
serve that an invertible Lebesgue measurable function f is nonsingular if and
only if its inverse f−1 satisfies Luzin’s condition (N).

Remark 2.2. Assume that all the contractions f0, . . . , fN are nonsingular.
Then, both the absolutely continuous and the singular parts of every element
from C satisfy (E) for every x ∈ [0, 1].

Proof. Fix ϕ ∈ C and denote by ϕa and ϕs its absolutely continuous and
singular parts,1 respectively. By (E), for every x ∈ [0, 1] we have

ϕa(x) −
N∑

n=0

ϕa(fn(x)) = −ϕs(x) +
N∑

n=0

ϕs(fn(x)) −
N∑

n=1

ϕ(fn(0)),

and hence there exists a real constant c such that

ϕa(x)−
N∑

n=0

ϕa(fn(x)) = c and −ϕs(x)+
N∑

n=0

ϕs(fn(x))−
N∑

n=1

ϕ(fn(0)) = c.

This jointly with the fact that f0(0) = 0 stipulated in (3) gives

c = ϕa(0) −
N∑

n=0

ϕa(fn(0)) = −
N∑

n=1

ϕa(fn(0)),

and in consequence

ϕa(x) =
N∑

n=0

ϕa(fn(x)) −
N∑

n=1

ϕa(fn(0))

and

ϕs(x) =
N∑

n=0

ϕs(fn(x)) −
N∑

n=1

ϕs(fn(0))

for every x ∈ [0, 1]. �
For all k ∈ N and n1, . . . , nk ∈ {0, . . . , N} denote by fn1,...,nk

the composi-
tion fn1 ◦· · ·◦fnk

. We extend the notation to the case k = 0 by letting fn1,...,n0

be the identity.

Lemma 2.3. Let (nk)k∈N be a sequence of elements of {0, . . . , N}. Then the
sequence (fn1,...,nk

(0))k∈N is increasing and the sequence (fn1,...,nk
(1))k∈N is

decreasing. Moreover,

lim
k→∞

fn1,...,nk
(y) = lim

k→∞
fn1,...,nk

(z)

1 The parts are unique up to a constant. For definiteness, we choose them such that ϕa(0) =
ϕs(0) = 0.
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for all y, z ∈ [0, 1].

Proof. Fix a sequence (nk)k∈N of elements of {0, . . . , N} and an integer number
k ≥ 2. From (3) we have

0 ≤ fnk
(0) < fnk

(1) ≤ 1

and by the strict monotonicity of fn1,...,nk−1 we conclude that

fn1,...,nk−1(0) ≤ fn1,...,nk
(0) < fn1,...,nk

(1) ≤ fn1,...,nk−1(1).

To complete the proof it is enough to observe that for all y, z ∈ [0, 1] and
k ∈ N we have

|fn1,...,nk
(y) − fn1,...,nk

(z)| ≤ fn1,...,nk
(1) − fn1,...,nk

(0) ≤ ck,

where c ∈ (0, 1) is the largest Lipschitz constant of the given contractions
f0, . . . , fN . �

Lemma 2.4. For every x ∈ [0, 1] there exists a sequence (xk)k∈N of elements of
{0, . . . , N} such that

x = lim
k→∞

fx1,...,xk
(0). (4)

Proof. Fix x ∈ [0, 1] and observe that according to Lemma 2.3 it is enough to
show that there exists a sequence (xk)k∈N of elements of {0, . . . , N} such that

fx1,...,xk
(0) ≤ x ≤ fx1,...,xk

(1) (5)

for every k ∈ N.
By (3) there exists x1 ∈ {0, . . . , N} such that

fx1(0) ≤ x ≤ fx1(1).

Thus, (5) holds for k = 1.
Fix k ∈ N and assume inductively that there exist x1, . . . , xk ∈ {0, . . . , N}

such that (5) holds. Then

0 ≤ f−1
x1,...,xk

(x) ≤ 1

and by (3) there exists xk+1 ∈ {0, . . . , N} such that

fxk+1(0) ≤ f−1
x1,...,xk

(x) ≤ fxk+1(1).

Hence

fx1,...,xk+1(0) ≤ x ≤ fx1,...,xk+1(1),

and the proof is complete. �
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3. General case

Fix positive real numbers p0, . . . , pN such that
N∑

n=0

pn = 1. (6)

Then there exists a unique Borel probability measure μ such that

μ(A) =
N∑

n=0

pnμ(f−1
n (A)) (7)

for every Borel set A ⊂ [0, 1] (see [4]; cf. [3]). From now on the letter μ will
be reserved for the unique Borel probability measure satisfying (7) for every
Borel set A ⊂ [0, 1].

Lemma 3.1. The measure μ is continuous.

Proof. As a first step we want to show that

μ
({fn(0)}) = μ

({fn(1)}) = 0 (8)

for every n ∈ {0, . . . , N}.
Applying (7) and using (3), we obtain

μ({0}) = μ({f0(0)}) =
N∑

n=0

pnμ({f−1
n (f0(0))}) = p0μ({0}) +

N∑

n=1

pnμ(∅).

By the fact that p0 ∈ (0, 1) we conclude that

μ({f0(0)}) = μ({0}) = 0.

Similarly, applying (7), (3) and the fact that pN ∈ (0, 1) we conclude that

μ({fN (1)}) = μ({1}) = 0.

If n ∈ {1, . . . , N}, then applying again (7) and (3), we obtain

μ({fn−1(1)}) = μ({fn(0)}) = pn−1μ({1}) + pnμ({0}) = 0.

Our second step is to prove that

μ
(
[fn1,...,nk

(0), fn1,...,nk
(1)]

)
=

N∏

n=0

p#{i∈{1,...,k}:ni=n}
n (9)

for all k ∈ N ∪ {0} and n1, . . . , nk ∈ {0, . . . , N}.
Since μ([0, 1]) = 1, it follows that (9) is satisfied for k = 0.
Fix k ∈ N ∪ {0} and assume that (9) holds for all n1, . . . , nk ∈ {0, . . . , N}.

Fix also nk+1 ∈ {0, . . . , N}.
Note first that from (8), (3), and (7), we get

μ(B) = pnμ(f−1
n (B)) (10)
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for all n ∈ {0, . . . , N} and Borel sets B ⊂ [fn(0), fn(1)]. This jointly with (9)
implies

μ
(
[fn1,...,nk+1(0), fn1,...,nk+1(1)]

)
= pn1μ

(
[fn2,...,nk+1(0), fn2,...,nk+1(1)]

)

= pn1

N∏

n=0

p#{i∈{2,...,k+1}:ni=n}
n

=
N∏

n=0

p#{i∈{1,...,k+1}:ni=n}
n .

To prove that μ is continuous it is sufficient to show that μ has no atoms.
Fix x ∈ [0, 1]. From Lemma 2.4 we conclude that there exists a sequence

(xk)k∈N of elements of {0, . . . , N} such that (4) holds. Then applying
Lemma 2.3 and (9) with ni = xi for i ∈ {1, . . . , k}, we obtain

μ({x}) = μ

(
⋂

k∈N

[
fx1,...,xk

(0), fx1,...,xk
(1)

]
)

= lim
k→∞

μ
([

fx1,...,xk
(0), fx1,...,xk

(1)
])

= lim
k→∞

N∏

n=0

p#{i∈{1,...,k}:xi=n}
n ≤ lim

k→∞
(max{p0, . . . , pN})k = 0,

and the proof is complete. �

The next lemma is folklore (the reader can consult [2,12] in the case where
f0, . . . , fN are similitudes and [7] in the case where f0, . . . , fN are contractions).
More general results in this direction can be found e.g. in [14,15].

Lemma 3.2. The measure μ is either singular or absolutely continuous with
respect to the Lebesgue measure on R.

Define the function ϕ : [0, 1] → [0, 1] by

ϕ(x) = μ([0, x]).

From now on the letter ϕ will be reserved for the just defined function.

Theorem 3.3. Either ϕ ∈ Ca or ϕ ∈ Cs.

Proof. We first prove that ϕ ∈ C.
That ϕ is increasing is a consequence of the monotonicity of μ. The conti-

nuity of ϕ and that ϕ(0) = 0 follows from Lemma 3.1. Since μ is a probability
measure, we have ϕ(1) = 1.

From (10) we get
μ(fn(B)) = pnμ(B)
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for all n ∈ {0, . . . , N} and Borel sets B ⊂ [0, 1]. This jointly with (6) gives
N∑

n=0

μ(fn(B)) =
N∑

n=0

pnμ(B) = μ(B)

for every Borel set B ⊂ [0, 1]. Hence,

ϕ(x) = μ([0, x]) =
N∑

n=0

μ
(
fn([0, x])

)
=

N∑

n=0

μ
(
[fn(0), fn(x)]

)

=
N∑

n=0

μ
(
[0, fn(x)]

) −
N∑

n=0

μ
(
[0, fn(0)]

)

=
N∑

n=0

ϕ(fn(x)) −
N∑

n=0

ϕ(fn(0)) =
N∑

n=0

ϕ(fn(x)) −
N∑

n=1

ϕ(fn(0))

for every x ∈ [0, 1].
Thus, we have proved that ϕ ∈ C. Now the assertion of the lemma follows

from Lemma 3.2; to see it the reader can consult [1, Theorem 31.7]. �
It is a very difficult (and still open) problem to decide for which parame-

ters p0, . . . , pN the function ϕ is absolutely continuous. However, it turns out
that under some assumptions on the given contractions f0, . . . , fN Eq. (E) has
exactly one absolutely continuous solution in the class C.

Theorem 3.4. Assume that f0, . . . , fN ∈ C2([0, 1]) and there exist λ ∈ (0, 1)
and c ∈ (0,∞) such that 0 < f ′

n(x) ≤ λ and f ′′
n (x) ≤ cf ′

n(x) for all n ∈
{0, . . . , N} and x ∈ [0, 1]. Then Ca consists of exactly one function.

Proof. Define S : [0, 1] → [0, 1] by

S(x) =

{
f−1

n (x) for x ∈ [fn(0), fn(1)) and n ∈ {0, . . . , N},

1 for x = 1.

Now it is enough to apply [6, Theorem 6.2.1]. �
Theorem 3.4 enforces looking for these unique parameters p0, . . . , pN for

which ϕ ∈ Ca. It is still difficult in full generality. However, it can be done
with success in the case where f0, . . . , fN are similitudes; such a case will be
considered in the next section.

Now let us set down an obvious characterization of these contractions
f0, . . . , fN for which id[0,1] ∈ Ca.

Proposition 3.5. The identity on [0, 1] belongs to Ca if and only if
N∑

n=0

fn(x) − x =
N∑

n=1

fn(0) (11)

for every x ∈ [0, 1].
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The last result of this section gives a precise formula for ϕ.

Theorem 3.6. Assume that x ∈ [0, 1] and let (xk)k∈N be a sequence of elements
of {0, . . . , N} such that (4) holds. Then

ϕ(x) =
∞∑

k=1

sgn(xk)

(
N∏

n=0

p#{i∈{1,...,k−1}:xi=n}
n ·

xk−1∑

n=0

pn

)
.

Proof. We begin with showing inductively that

μ
(
[fn1,...,nk−1(0), fn1,...,nk

(0)]
)

= sgn(nk)
N∏

n=0

p#{i∈{1,...,k−1}:ni=n}
n ·

nk−1∑

n=0

pn (12)

for all k ∈ N and all n1, . . . , nk ∈ {0, . . . , N}.
If n1 = 0, then sgn(n1) = 0, and hence

μ
(
[0, fn1(0)]

)
= μ

({0})
= 0 = sgn(n1)

n1−1∑

n=0

pn.

If n1 ≥ 1, we have sgn(n1) = 1, and then by (3), (10) and Lemma 3.1 we
obtain

μ
(
[0, fn1(0)]

)
=

n1−1∑

n=0

μ
(
[fn(0), fn(1)]

)
=

n1−1∑

n=0

pnμ([0, 1]) = sgn(n1)
n1−1∑

n=0

pn.

Therefore (12) holds for k = 1 and all n1, . . . , nk ∈ {0, . . . , N}.
Fix k ∈ N and assume that (12) holds for all n1, . . . , nk ∈ {0, . . . , N}.
Fix nk+1 ∈ {0, . . . , N}. Applying (10) and (12) we get

μ
(
[fn1,...,nk

(0), fn1,...,nk+1(0)]
)

= pn1μ
(
[fn2,...,nk

(0), fn2,...,nk+1(0)]
)

= pn1sgn(nk+1)
N∏

n=0

p#{i∈{2,...,k}:ni=n}
n ·

nk+1−1∑

n=0

pn

= sgn(nk+1)
N∏

n=0

p#{i∈{1,2,...,k}:ni=n}
n ·

nk+1−1∑

n=0

pn.

By the continuity of ϕ (see Theorem 3.3) we have

ϕ(x) = ϕ

(
lim
l→∞

fx1,...,xl
(0)

)
= lim

l→∞
ϕ(fx1,...,xl

(0)).

Then using (3), Lemma 3.1 and (12) with ni = xi for all i ∈ {1, . . . l}, we get

ϕ(fx1,...,xl
(0)) = μ([0, fx1,...,xl

(0)]) =
l∑

k=1

μ([fx1,...,xk−1(0), fx1,...,xk
(0)])

=
l∑

k=1

sgn(xk)

(
N∏

n=0

p#{i∈{1,...,k−1}:xi=n}
n ·

xk−1∑

n=0

pn

)
.
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Passing with l to ∞ we obtain the required formula for ϕ. �

4. Similitudes case

Throughout this section we assume that f0, . . . , fN are similitudes, i.e. there
exist real numbers ρ0, . . . , ρN ∈ (0, 1) such that

N∑

n=0

ρn = 1 (13)

and

fn(x) = ρnx +
n−1∑

k=0

ρk

for all x ∈ [0, 1] and n ∈ {0, . . . , N}.
Note that (3) holds.
Since the above defined similitudes satisfy the assumptions of Theorem 3.4,

it follows that the class C has exactly one absolutely continuous solution. Thus
according to Theorem 3.3 we conclude that ϕ is singular except one very
particular case of parameters p0, . . . , pN , which we are looking for.

Theorem 4.1. If pn = ρn for every n ∈ {0, . . . , N}, then ϕ = id[0,1].

Proof. Assume that pn = ρn for every n ∈ {0, . . . , N}.
Observe first that applying (13), we get

N∑

n=0

fn(x) − x =
N∑

n=0

ρnx +
N∑

n=0

n−1∑

k=0

ρk − x =
N∑

n=0

fn(0) =
N∑

n=1

fn(0)

for every x ∈ [0, 1]. Thus, id[0,1] ∈ Ca, by Proposition 3.5.
Now we can use Theorem 3.4 or argue as follows.
Denote by ν the one-dimensional Lebesgue measure restricted to [0, 1]. Ac-

cording to [1, Theorem 12.4] we infer that ν is the unique Borel measure on
[0, 1] such that ν([0, x]) = x for every x ∈ [0, 1]. Fix n ∈ {0, . . . , N} and choose
x ∈ [

fn(0), fn(1)
]
. Then

ν([fn(0), x]) = ν([0, x]) − ν([0, fn(0)]) = x − fn(0) = ρn

(
x

ρn
−

n−1∑

k=0

ρk

ρn

)

= pnf−1
n (x) = pnν

(
[0, f−1

n (x)]
)

= pnν
(
f−1

n ([fn(0), x])
)
.

Hence

ν(A) = pnν(f−1
n (A))
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for every Borel set A ⊂ [fn(0), fn(1)], and in consequence,

ν(A) =
N∑

n=0

pnν(f−1
n (A))

for every Borel set A ⊂ [0, 1]. Finally, by the uniqueness of μ we obtain

ϕ(x) = μ([0, x]) = ν([0, x]) = x

for every x ∈ [0, 1]. �

Combining Theorems 3.3, 3.4 and 4.1 we get the following corollary.

Corollary 4.2. If pn �= ρn for some n ∈ {0, . . . , N}, then ϕ ∈ Cs.

Note that in our setting
∏N

n=0 ppn
n ρ−pn

n ≥ 1. Observe also that the iterated
function system consisting of the contractions f0, . . . , fN satisfies the open set
condition. Therefore Theorem 4.1 jointly with Corollary 4.2 can be written in
the following form, which corresponds to Theorem 1.1 from [11].

Theorem 4.3. We have ϕ ∈ Ca if and only if pn = ρn for every n ∈ {0, . . . , N}.
Moreover, if ϕ ∈ Ca, then ϕ = id[0,1].

To the end of this section we assume that

ρ0 = ρ1 = · · · = ρN =
1

N + 1
.

Note that (13) is satisfied and Eq. (E) now takes the form

ϕ(x) =
N∑

n=0

ϕ

(
x + n

N + 1

)
−

N∑

n=1

ϕ

(
n

N + 1

)
. (eN )

It is clear that for N = 1 Eq. (eN ) reduces to Eq. (e1).
Fix x ∈ [0, 1] and define a sequence (xk)k∈N of elements of {0, . . . , N} as

follows:
if x = 1 we put xk = N for every k ∈ N;
if x < 1 we put x1 = [(N + 1)x] and then inductively

xk+1 =

[
(N + 1)k+1

x −
k∑

i=1

(N + 1)k+1−i
xi

]

for every k ∈ N, where [y] denotes the integer part of y ∈ R.
Clearly,

x = lim
k→∞

fx1,...,xk
(0) =

∞∑

k=1

xk

(N + 1)k
,

and Theorem 3.6 yields

ϕ

( ∞∑

k=1

xk

(N + 1)k

)
=

∞∑

k=1

sgn(xk)

(
N∏

n=0

p#{i∈{1,2,...,k−1}:xi=n}
n ·

xk−1∑

n=0

pn

)
. (14)
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In particular,

ϕ

(
n

N + 1

)
=

n−1∑

k=0

pk (15)

for every n ∈ {1, . . . , N}.
Now we are able to calculate the integral of ϕ on [0, 1].

Proposition 4.4. We have

∫ 1

0

ϕ(x)dx =
1
N

N∑

n=1

npN−n.

Proof. Using (15) and (eN ), we get

∫ 1

0

ϕ(x)dx =
N∑

n=0

∫ 1

0

ϕ

(
x + n

N + 1

)
dx −

∫ 1

0

N∑

n=1

ϕ

(
n

N + 1

)
dx

= (N + 1)
N∑

n=0

∫ n+1
N+1

n
N+1

ϕ (y) dy −
N∑

n=1

ϕ

(
n

N + 1

)

= (N + 1)
∫ 1

0

ϕ(x) dx −
N−1∑

k=0

(N − k)pk.

This implies the required formula for the integral of ϕ. �

We end this section by observing that ϕ can be extended to an increasing
and continuous function satisfying (eN ) for every x ∈ R.

Proposition 4.5. The function φ : R → R given by

φ(x) = [x] + ϕ(x − [x])

is increasing, continuous and satisfies (eN ) for every x ∈ R.

Proof. Fix x ∈ R and assume that x ∈ [m(N +1)+l,m(N +1)+l+1) for some
m ∈ Z and l ∈ {0, 1, . . . , N}. Then [ x+i

N+1 ] = m for every i ∈ {0, . . . , N − l} and
[ x+i
N+1 ] = m + 1 for every i ∈ {N − l + 1, . . . , N}. Consequently,
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φ(x) = [x] + ϕ(x − [x]) =

= m(N + 1) + l +
N∑

n=0

ϕ

(
x − [x] + n

N + 1

)
−

N∑

n=1

ϕ

(
n

N + 1

)

= m(N + 1) + l +
N∑

n=0

ϕ

(
x + n − l

N + 1
− m

)
−

N∑

n=1

ϕ

(
n

N + 1

)

= (m + 1)l +
l−1∑

n=0

ϕ

(
x + n − l + N + 1

N + 1
− m − 1

)

+ m(N + 1 − l) +
N∑

n=l

ϕ

(
x + n − l

N + 1
− m

)
−

N∑

n=1

ϕ

(
n

N + 1

)

= (m + 1)l +
N∑

n=N+1−l

ϕ

(
x + n

N + 1
− m − 1

)

+ m(N − l + 1) +
N−l∑

n=0

ϕ

(
x + n

N + 1
− m

)
−

N∑

n=1

ϕ

(
n

N + 1

)

=
N∑

n=N−l+1

{[
x + n

N + 1

]
+ ϕ

(
x + n

N + 1
−

[
x + n

N + 1

])}

+
N−l∑

n=0

{[
x + n

N + 1

]
+ ϕ

(
x + n

N + 1
−

[
x + n

N + 1

])}
−

N∑

n=1

ϕ

(
n

N + 1

)

=
N∑

n=0

φ

(
x + n

N + 1

)
−

N∑

n=1

φ

(
n

N + 1

)
.

To prove that φ is increasing fix x < y. If [x] = [y], then

φ(x) = [x] + ϕ(x − [x]) = [y] + ϕ(x − [y]) ≤ [y] + ϕ(y − [y]) = φ(y),

and if [x] < [y], then

φ(x) = [x] + ϕ(x − [x]) ≤ [y] ≤ [y] + ϕ(y − [y]) = φ(y).

It is clear that φ is continuous at every point of the set R\Z. If k ∈ Z, then
by the continuity of ϕ and (1) we obtain

lim
x→k+

φ(x) = lim
x→k+

(
[x] + ϕ(x − [x])

)
= k + lim

y→0+
ϕ(y) = k = φ(k)

and

lim
x→k−

φ(x) = lim
x→k−

(
[x] + ϕ(x − [x])

)
= k − 1 + lim

y→1−
ϕ(y) = k,

which completes the proof. �
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5. Matkowski–Weso�lowski case

First of all observe that formula (14) with N = 1 coincides with formula (2).
So the main part of assertion (ii) of Theorem 1.1 is a very special case of
Theorem 3.6, whereas its moreover part follows from Corollary 4.2. Now we
would like to get a little bit more information about the class C. For this
purpose, we denote the convex hull of a set A by conv(A) and put

W = {ϕp : p ∈ (0, 1)},

where ϕp : [0, 1] → [0, 1] is the function defined by (2).

Proposition 5.1. The set W is linearly independent. Moreover:
(i) conv(W) ⊂ C;
(ii) conv(W\{ϕ 1

2
}) ⊂ Cs.

Proof. To prove that W is linearly independent fix n ∈ N, α1, . . . , αn ∈ R,
0 < p1 < p2 < · · · < pn < 1 and assume that

n∑

i=1

αiϕpi
(x) = 0,

for every x ∈ [0, 1]. Applying (2) we conclude that ϕpi
( 1
2k

) = pk
i for all k ∈ N

and i ∈ {1, . . . , n}. Then for every k ∈ N we have
n∑

i=1

αi

(
pi

pn

)k

= 0.

Taking the limit as k → ∞ we get αn = 0. Repeating this procedure n − 1
times gives αn = αn−1 = · · · = α1 = 0.

Assertion (i) follows from Remark 2.1 and assertion (ii) is a consequence of
the moreover part of assertion (ii) of Theorem 1.1. �

To formulate an answer to the problem posed in [9] by Janusz Matkowski
define first a function ϕ1 : [0, 1] → R putting ϕ1(x) = 1 and observe that by
Proposition 5.1 and the fact that ϕ1(0) = 1 and ϕp(0) = 0 for every p ∈ (0, 1)
the set W∪{ϕ1} is linearly independent. Let M denote the vector space whose
basis is W ∪ {ϕ1}, i.e.

M = lin
(W ∪ {ϕ1}

)
.

Applying Proposition 5.1 and Remark 1.2, we get the following result.

Theorem 5.2. Every function belonging to M is a continuous solution of
Eq. (e1). Moreover,

∑n
i=1 αiϕpi

∈ M is:
(i) monotone provided that sgn(αi) = sgn(αj) for all i, j ∈ {1, . . . , n} such

that pi, pj ∈ (0, 1);
(ii) singular for all p1, . . . , pn ∈ (0, 1

2 ) ∪ ( 12 , 1].
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Mathematics Institute
University of Warwick
Coventry CV4 7AL
UK
e-mail: thomas.zurcher@us.edu.pl;

T.Zurcher@warwick.ac.uk

Received: March 24, 2017


	On a problem of Janusz Matkowski and Jacek Wesołowski
	Abstract
	1. Introduction
	2. Preliminaries
	3. General case
	4. Similitudes case
	5. Matkowski–Wesołowski case
	Acknowledgements
	References




