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Tuning a musical instrument with vibrato system: a mathematical framework to

study mechanics and acoustics and to calculate optimal tuning strategies

D. Hebenstreit1

School of Life Sciences, University of Warwick, Gibbet Hill Rd, CV4 7AL, Coventry,

UKa)

String instruments such as electric guitars are often equipped with a ‘vibrato system’,1

which allows varying the pitch of all strings as a musical effect. It is usually based2

on a mobile bridge that is kept in balance by the strings and a coiled spring. Tuning3

such an instrument is complex, since adjusting the tension on one string will alter all4

other strings’ tensions. In practice, a heuristic method is used, where all strings are5

repeatedly tuned to their desired pitch, which appears to reliably yield correct pitches6

after a while. It is unclear why this method works; an analysis is lacking. I present7

here a mathematical model that allows studying this subject in detail; the model8

captures the underlying mechanics and acoustics and can be used to simulate a typical9

tuning process. I verify the model with experimental data and show that it permits10

calculation of optimal tuning strategies that use the least number of adjustment steps.11

a)d.hebenstreit@warwick.ac.uk;
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I. INTRODUCTION12

Electric guitars are among the most popular musical instruments. They are commonly13

equipped with a ‘vibrato system’9, also known as ‘tremolo system/bar/arm’ or ‘whammy14

bar/arm’.15

The function of a vibrato system is that it allows to reversibly and in a controlled fashion16

alter the pitch of all strings for the purpose of musical expression. It is usually constructed17

by replacing the fixed bridge of a normal guitar with a movable bridge that is kept under18

tension by a coiled spring. The spring counteracts the strings’ tensions and keeps the bridge19

at an equilibrium position, where the string and spring forces balance each other. A lever20

that is attached to the bridge allows applying force to move it and so to either increase or21

decrease the strings’ tensions and thus pitches. Releasing the lever returns the bridge to its22

original position. Softly and repeatedly varying the pitch of a note in both directions is used23

for expressivity and is generally known as vibrato in music; this gave the vibrato system its24

name since it can be used for this, albeit some older vibrato systems permit only detuning25

in one direction.26

Guitars are not the only instruments with vibrato systems; another example would be27

the Vietnamese đàn bầu, which is basically a monochord where one end of the string is28

fixed to a flexible stick that can be bent for vibrato effects11. However, a peculiar aspect29

of instruments with vibrato systems is relevant only if multiple strings are used: changing30

the tuning of one string will change the tuning of all other strings, since all strings are fixed31
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to the movable bridge, and the latter will change position upon any changes to the force32

balance. How can the instrument be tuned in light of this?33

Practical experience suggests that repeatedly adjusting strings will eventually result in34

the desired pitches for all strings, as the adjustments become successively smaller. This35

approach is usually adapted by the average guitarist as a result of trial and error, assumption,36

or personal communication, etc. However, there does not appear to be literature that37

establishes this method and/or explains why it succeeds. While several works establish basic38

physical principles involved in the acoustics of string instruments and guitars in particular39

(e.g.3,4,7,10,12), none appears to discuss vibrato systems in detail.40

In this work, I want to address this issue. I construct a mathematical model that de-41

scribes the most important features of the mechanics and acoustics of a string instrument42

with vibrato system. Based on this model, I derive an algorithm that captures the typical43

tuning process of such an instrument and which allows following changes in the underlying44

mechanics. I present some results from an application of the algorithm to an example set-45

ting. The model represents a crucial first step towards understanding the tuning process46

of instruments equipped with a vibrato system; it will provide a useful starting point for47

further studies. I furthermore demonstrate how the presented framework can be used to48

pre-calculate tuning frequencies for each string, which allows achieving a defined overall49

tuning with single adjustments at each string.50
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II. BASICS51

The acoustic behaviour of a vibrating string on a vibrato system guitar is mainly governed52

by three laws or principles from physics. Mersenne’s law (or, more precisely, one of several53

M.’s laws)8 relates the string’s vibration frequency (denoted f) to the string’s length, L0,54

the stretching force F acting on it, and a material-specific constant, µ, that corresponds to55

the string’s mass per unit length:56

f =
1

2L0

√
F

µ
(1)

The force F can be factorised using Young’s modulus in the following way1:57

F =
E A l

L0

, l ≥ 0. (2)

Here, E is Young’s modulus (modulus of elasticity) and A is the string’s cross sectional58

area. If the string is extended by length l beyond its original length L0, the stretching force59

F results.60

This is an approximation, but describes a guitar string well. Hence, stretching a string61

further (using a machine head) by a factor a, so that l̄ = a l, will increase its vibration62

frequency by
√
a, if the vibrating length is kept constant (e.g. by the ‘nut’ or by fretting63

the string at a fixed position).64

The distinguishing feature of a guitar with vibrato system is its movable bridge, which65

is not fixed, but rather under tension by a coiled spring that counteracts the string’s ten-66

sion. The force exerted by this spring, Fspring, scales with its extension x and a constant k67

according to Hooke’s law 6,13:68

Fspring = kx, x ≥ 0. (3)
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FIG. 1. Scheme illustrating the Bigsby vibrato system (color online). The image is taken from its

patent application, with orange markings added to indicate movements. The arm can be moved

vertically (i.e. in the direction normal to the soundboard), which turns the cylinder around which

strings are wound, thereby changing their tensions.

This relation has the same form as Eq. 2, a force that increases linearly with extension.69

In this model, back- and forth movements of the bridge are only permitted along the same70

direction as the string. This is probably a good representation of a system such as the71

relatively simple ‘Bigsby vibrato tailpiece’2 (Fig. 1), but many other vibrato system designs72

exist (see Conclusions).73
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74

75

III. THE FORCE BALANCE76

Let us adapt the facts above to a guitar with n strings (n > 1). Numbering the strings77

and assuming their vibrating lengths the same (L from nut to bridge viz. vibrato system),78

Eq. 1 becomes79

fj =
1

2L

√
Fj

µj

, 1 ≤ j ≤ n. (4)

and Eq. 2 becomes80

Fj =
Ej Aj lj
Lj

, lj ≥ 0. (5)

Note that L corresponds to the vibrating length only, while the Lj denote the total original81

(unextended) string lengths. To simplify things, I now collect the constants in Eq. 5 into82

single constants kj :=
Ej Aj

Lj
, which capture the physical characteristics of each string that83

contribute to the pitch and frequency content aside from the tensions they are under. Thus,84

Eq. 5 and Eq. 4 become85

Fj = kj lj, (6)

and86

fj =
1

2L

√
kj lj
µj

(7)

respectively.87
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The combined forces of the strings and the spring coil of the tremolo balance each other:88

89

n∑
j=1

Fj = Fspring (8)

which, following Eq. 3, further becomes90

n∑
j=1

kjlj = kx. (9)

IV. PERTURBING THE SYSTEM91

How will this system of balanced forces change if a string’s tuning of the vibrato system

guitar is changed? Let us assume we start with a situation where at least one lj > 0 and we

want to change the pitch of string i by adjusting li. Such a change will alter the combined

string force and will thus move the bridge’s position, which in turn alters tension of the

strings, and so forth.

Let ∆l be the change in li and ∆x the resulting change in x, the spring coil’s extension

(Figure 2). The new vibrato system force, F̄spring, will become

F̄spring = k(x+ ∆x) (10)

= Fspring

(x+ ∆x

x

)
(11)

=
n∑

j=1

Fj

(x+ ∆x

x

)
(12)

=
n∑

j=1

kjlj

(x+ ∆x

x

)
, (13)
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FIG. 2. Schematic overview of the model (color online). Three strings are shown as examples,

string 1, i and n. The orange parts reflect the changing positions of elements upon extension by

∆l of string i. Note that the strings may have different total lengths as indicated by the different

endpoints of strings 1, i and n on the left, and that the string parts extending beyond the machine

head position to the left correspond to the parts wound up at the machine head (l1 in the case of

string 1). L = vibrating length of all strings, L1 = total original length (unextended) of string 1,

l1 = extension of string 1, i = index (‘name’) of string to be tuned, n = total number of strings

and index/name of last string, j = index/name of any string not to be tuned (= not string i), ∆l

= extra extension of string i by tuning it, x = extension of coiled spring, ∆x = resulting extra

extension of coiled spring (i.e. change in the position of the bridge) by tuning string i, ΣFj =

combined force of strings pulling the bridge to the left, Fspring = force of coiled spring pulling the

bridge to the right.
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while the combined new string forces will become

n∑
j=1

F̄j = F̄i +
n∑

j=1, j 6=i

F̄j (14)

= ki(li + ∆l −∆x) +
n∑

j=1, j 6=i

kj max(lj −∆x, 0). (15)

The maximum function guarantees that a string’s contribution to the total force disappears92

once it is relaxed to its original length. We skip the maximum function for the ‘i’ term and93

require ∆l > ∆x− li, as we are not interested in a complete detuning of string i.94

Since strings and coiled spring must balance each other (Eq. 8), we get95

ki(li + ∆l −∆x) +
n∑

j=1, j 6=i

kj max(lj −∆x, 0) =
n∑

j=1

kjlj

(x+ ∆x

x

)
, (16)

from Eq. 13 and 15. Here, ∆x > −x, since the left hand side is strictly positive. This96

expression can be used to calculate ∆x and thus the new balance of forces as a function of97

∆l. Before I do that, I make the following changes to the underlying assumptions to allow98

for a more powerful model:99

1. Let us number the strings in order of length of the lj, so that lj ≤ lk if j < k.100

2. Let us permit some strings to be detuned even beyond complete relaxation. This means101

that the original lengths of the strings are significantly longer than the vibrating part,102

Lj � L, which is true in practice.103

3. In line with the previous two points, I reinterpret the lj as the machine head setting,104

i.e. lj > 0 stretches the string, while some lj ≤ 0 are permitted (at least one must be105

positive) and correspond to (incomplete-) unspooling of a relaxed string by length |lj|.106
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These assumptions permit handling better situations where some strings are completely107

relaxed. For instance, if one string’s pitch is strongly decreased, then the decreasing ∆x108

might make one or more other relaxed strings gain tension. The negative lj then ‘remember’109

when these strings will start contributing.110

The assumptions require the following modification of Eq. 16:111

ki(li + ∆l −∆x) +
n∑

j=1, j 6=i

kj max(lj −∆x, 0) =
n∑

j=1

kj max(lj, 0)
(x+ ∆x

x

)
. (17)

∆x is a function of ∆l (and of the remaining string parameters, which I will not write down112

explicitly since adjusting ∆l will not change these). Before I derive this function explicitly,113

I make some observations about these variables and Eq. 17.114

Lemma 1. ∆l and ∆x have the same sign, and |∆l| > |∆x| if ∆l 6= 0.115

Proof. In every situation discussed below, the first term on the left hand side of Eq. 17116

must be positive, since we ruled out leaving string i completely relaxed.117

118

Let us first assume li > 0.119

If ∆l = 0, the equation is satisfied for ∆x = 0. If we started from this state and wanted120

to increase ∆x to some value ∆x > 0, then the right-hand side would strictly increase.121

This means that ∆l must increase as well (-for the sake of the argument; this cannot be122

interpreted causally of course, since moving the bridge would not turn the tuning peg), and123

by a larger amount than ∆x, as ∆x contributes negatively to the left-hand side. Therefore124

we have ∆x > 0 =⇒ ∆l > ∆x.125
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The converse would happen if we decreased ∆x instead of increasing it, yielding ∆x <126

0 =⇒ ∆l < ∆x.127

Furthermore, equivalent results are obtained if we repeated the considerations above for128

de- or increased ∆l instead of ∆x: ∆l > 0 =⇒ ∆l > ∆x > 0 and ∆l < 0 =⇒ ∆l < ∆x <129

0.130

By implication, ∆l = 0 ⇐⇒ ∆x = 0. Thus, Eq. 17 is consistent with the notion that131

∆l = 0 leaves the tuning unchanged and therefore must result in ∆x = 0.132

133

Let us now assume li ≤ 0.134

∆l and ∆x cannot both equal zero because the leftmost term must be positive. We can also135

rule out ∆x ≤ 0, since string i is completely detuned on the right-hand side, but not on the136

left-hand side, requiring positive ∆x if the rightmost factor is considered. If ∆x > 0, we137

must have ∆l > ∆x+ |li| > 0.138

V. ∆x AS EXPLICIT FUNCTION OF ∆l, h(∆l)139

∆x can be obtained as an explicit function of ∆l from Eq. 17, ∆x = h(∆l). This140

will be a piecewise linear function; ∆x will scale linearly with changing ∆l as long as the141

number of strings under tension remains the same. However, continuously increasing ∆l142

will eventually move the bridge forward enough to completely detune the other strings, one143

after another (and vice versa for decreasing ∆l when starting from a situation where some144

strings are completely detuned). This will lead to kinks in the graph of h(∆l) that reflect145

the maximum functions in Eq. 17, and each linear section will have a different slope that146
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is greater than 0 and less than 1 (both strictly). This requires the distinction of many147

relatively complex cases (shown in the Appendix), which would successively apply if ∆l was148

changed continuously.149

VI. CHANGES IN VIBRATION FREQUENCIES150

I now study how the vibration frequencies of all strings will change upon altering string151

i’s tuning. Following Eq. 7, we get152

f̄i =
1

2(L−∆x)

√
ki(li + ∆l −∆x)

µi

, (18)

and

f̄j =
1

2(L−∆x)

√
kj max(lj −∆x, 0)

µj

.

Lemma 2. f̄i is a strictly monotonic function of ∆l.153

Proof. According to Lemma 1, ∆l and ∆x have the same sign, and |∆l| > |∆x| if ∆l 6= 0,154

which, together with the form of h(∆l), proves that f̄i is a strictly monotonically increasing155

function in an interval where ∆x < L (and ∆l −∆x > −li, as before).156

The singularity of f̄i at ∆x = L corresponds to the exploding frequency predicted by157

Mersenne’s law if the vibrating part of the string becomes tiny. This will not actually occur,158

of course, as the law will not be a realistic model then anymore. Furthermore, increasing159

∆l anywhere near L is also usually prohibited by the vibrato system’s design and by string160

i’s tensile strength; the string will snap much earlier.161

Corollary 1. Because of Lemma 2, a bijection exists between the target tuning of string i162

and the length ∆l it needs to be adjusted by to achieve this tuning.163

12



We can thus define a function g(∆l) = |f ∗i − f̄i| = d, that yields the distance d of164

the string’s vibration frequency to a desired target frequency f ∗i , and its inverse function165

g−1(d) = ∆l. Since f̄i depends on ∆x and ∆x implicitly depends on the other strings’166

parameters, so will g and g−1.167

VII. TUNING ALGORITHM168

The above information can be combined into an algorithm (Figure 3) that mirrors the169

tuning procedure of a guitar with vibration system in practice: each string is successively170

tuned to its target pitch and, once the last string is tuned, the cycle restarts with the first171

string. This procedure is repeated for as many cycles as necessary until the instrument172

is perceived as fully tuned. The algorithm corresponds to a multi-step, multidimensional173

fixed-point iteration over the n independent variables lj, and x (or L). Questions relating174

to its convergence properties appear non-trivial.175

I implemented this algorithm in Mathematica 11. The code numerically calculates the176

required machine head adjustments through ∆l = g−1(0) and reorders the strings internally177

at each step so that function h(∆l) can be used in accordance with its definition.178179180

181

VIII. EXPERIMENTAL SETUP182

I test the tuning algorithm by comparing its predictions with experimental data obtained183

with an electric guitar. I chose three typical situations as test scenarios: (i) detuning of a184

guitar in standard E tuning to a ‘D tuning’ (each string is tuned one whole tone lower);185
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TABLE I. String parameters used in Figures 4 to 6. The bottom three strings are wound.

j Ej , Pa Aj ,m
2 µj , kg/m String name String gauge, in String diameter, m

1 179× 109 5× 10−8 4× 10−4 high E 0.010 2.54× 10−4

2 188× 109 9× 10−8 7× 10−4 B 0.013 3.3× 10−4

3 178× 109 1.5× 10−7 1.1× 10−3 G 0.017 4.32× 10−4

4 62× 109 3.6× 10−7 2.3× 10−3 D 0.026 6.6× 10−4

5 42× 109 6.8× 10−7 4.3× 10−3 A 0.036 9.14× 10−4

6 33× 109 1.10× 10−6 7.0× 10−3 E 0.046 11.7× 10−4

(ii) tuning the low E string of a guitar in standard E tuning down by one whole tone to D,186

known as ‘Drop D tuning’; (iii) tuning a guitar to standard E tuning after restringing, i.e.187

starting with no tension on the strings (all tunings are equal temperament). The guitar I188

used was a ‘Jackson Kelly Standard’, which is equipped with a ‘Floyd Rose’ vibrato system.189

The latter has a more complex geometry than the model is based on, but I assumed it190

would behave roughly linear over a small range (see Conclusions section). For the strings’191

properties I referred to5 (Table 1). I further used the guitar’s nominal scale length of 25.5" to192

set L = 0.6477 m. All parameters of the tuning algorithm are thus fixed, with the exception193

of x, which cannot be measured without specialized equipment. I thus decided to leave this194

as a single free parameter and determined its value based on the best fit to the experimental195

data (see next section).196
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FIG. 3. Tuning algorithm. σ(T ) is the function that orders the set T handed over to it based on

the lj as shown. The other individual variables are used as in the main text, with some additional

letters added to refer to sets of these.

The only readout of the experimental setup were the fundamental frequencies of the197

strings’ vibrations, which I measured using the ‘n-Track Tuner’ app on an iPhone 7 Plus, after198

amplifying the guitar’s sound with a ‘Marshall G 15R CD’ amplifier. Correct function of the199
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n-Track Tuner was verified using an online tone generator (http://onlinetonegenerator.com)200

and the Play[] function in Mathematica 11, confirming 0.1 Hz precision of the app.201

IX. COMPARISON OF TUNING ALGORITHM AND EXPERIMENTAL RE-202

SULTS203

As the first test scenario, I tuned the guitar to standard guitar tuning, i.e. string 1 to 6204

were tuned to E4 (329.6 Hz), B3 (246.9 Hz), G3 (196 Hz), D3 (146.8 Hz), A2 (110 Hz), and205

E2 (82.4 Hz), respectively (Figure 4). I then successively tuned each string, from high to206

low strings, to its target frequency (Figure 4) in accordance with the tuning algorithm and207

measured the remaining strings’ frequencies at each step for four full cycles. I carried out the208

experiment a total of three times at different days. I then determined x by minimizing the209

mean square deviations between the algorithm’s output and the experimental data using the210

bisection method, obtaining a value of x = 0.005 m. As an overlay of the algorithm’s predic-211

tions (lines) on the experimental data (data with error bars) demonstrates, the agreement212

is excellent (Figure 4a). Output at each step of the algorithm demonstrates how machine213

head settings (Fig. 4b), L (Fig. 4c), and ∆x (Fig. 4d) begin to converge after four cycles.214

I repeated this approach for the second scenario, the ‘Drop D tuning’. I started with215

standard tuning and then used three tuning cycles to tune the low E string to D while216

repeatedly tuning back the other strings (high to low) to their nominal standard pitches.217

I used the value for x as determined before. Since only a single string is being detuned,218

the frequency changes are much smaller. Agreement between experiment and theory was219

excellent again (Fig. 5).220

16



FIG. 4. Comparison of the tuning algorithm with experimental data for detuning a guitar from

standard E tuning to D tuning (color online). Parameters used for the algorithm are shown in Table

1 and in the main text, while the value for x was derived from the best fit to the experimental data.

(a), Overlay of experimental data (data with error bars) and predictions of the tuning algorithm

(lines). The (tiny) error bars correspond to the data range of three independent experiments (i.e.

maxima and minima). Individual strings are distinguished by colour, as indicated below figure.

Target frequencies are indicated by black dots in (a) and are shown below the figure. The beginning

of each tuning cycle at string 1 is indicated by red dots and dashed, red, vertical lines. (b), (c),

and (d) show the algorithm’s predicted machine head settings, lj , the relative change in L, and

∆x, respectively, during the procedure.
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FIG. 5. Comparison of the tuning algorithm with experimental data for establishing a Drop D

tuning from standard E tuning (color online). Panels and labels are equivalent to those of Figure

4. The (tiny) error bars in (a) denote the range of values from two independent experiments.

As the third test scenario, I detuned the guitar so that all strings were completely re-221

laxed, and applied the tuning algorithm to re-establish standard E tuning (two independent222

experiments; strings were tuned from high to low in each cycle as before). This simulates223

the common situation of restringing the instrument. Again, I obtained the value for x based224

on which x yielded the best fit of the algorithm’s output to the data. Agreement between225

18



the tuning algorithm’s predictions and the experimental data is good again (Figure 6) but226

worse than with scenarios 1 & 2. This is probably due to the non-linear behaviour of strings227

and vibration system at very low tensions. Interestingly, convergence was achieved much228

faster in this situation (Figure 6).229

These results demonstrate that the algorithm captures properties of a real instrument230

well. While its predictions are somewhat less precise at very low tension forces, it yields231

excellent fits when the bridge is close to its centre position.232

X. TUNING STRATEGIES233

The computational implementation of the tuning algorithm provides a tool to quickly and234

efficiently study different tuning strategies. For all practical matters, the fewer adjustment235

steps are necessary to achieve a certain tuning, the better. An obvious variation of the236

strategy used in the situations above concerns the order of string adjustments. Instead of237

tuning from highest to lowest string in each cycle, the reverse order can be used. For this238

analysis, I counted the number of cycles necessary for each string to deviate less than 0.1239

Hz from its target frequency.240

The tuning algorithm predicts that the specifics of the situation determines which strategy241

is sensible; both strategies perform equally for the D tuning scenario, while restringing is242

quicker when adjustments are made from low to high string in each cycle. I also tested243

a strategy where adjustments are performed in random order in each cycle. In 100 trials244

each, the average random strategy takes longer than both ‘ordered’ strategies in the D245
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FIG. 6. Comparison of the tuning algorithm with experimental data for establishing standard E

tuning after restringing (color online). Panels and labels are equivalent to those of Figures 4 & 5.

The (tiny) error bars in (a) denote the range of values from two independent experiments.

tuning setting, but slightly outperforms the slower high-to-low strategy in the restringing246

case (Figure 7a).247

Finally, an optimal tuning strategy can be devised. Letting the algorithm run to conver-248

gence yields the final machine head settings l̄j for a desired tuning. This allows calculating249

the frequency each string needs to be tuned to in each step of a single cycle, if the order250
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of string adjustments is decided on in advance. In other words, for each tuning step, ∆l251

can be calculated from ∆l = l̄i − li, which in turn yields ∆x = h(∆l). ∆l and ∆x can252

then be inserted into Eq. 18 to obtain the frequency f̄i the string needs to be tuned to. I253

used this procedure to pre-calculate frequencies each string needs to be tuned to if using254

the high-to-low tuning order for the D tuning scenario (Figure 7b). The predicted string255

frequencies at each step are shown in Figure 7c, theoretically achieving the target tuning in256

a single cycle.257

To test this in practice, I applied the exact tuning strategy based on these figures to the258

guitar and measured the final frequency of each string at the end. The results demonstrate259

that this strategy indeed achieves the desired tuning in a single cycle, with only minor260

deviations from the target frequencies remaining (Figure 7d).261

XI. CONCLUSIONS262

I have introduced here a framework that allows exploring the acoustic, mechanical, and263

procedural aspects of the tuning of an instrument with a vibrato system. I illustrate its264

application based on experimental examples, which demonstrate how the main features of265

a real tuning process are captured by the model. The underlying algorithm is also relevant266

from a mathematical viewpoint and represents an interesting case of a relatively complex267

fixed-point iteration.268

The presented framework can be used to find optimal tuning strategies as demonstrated269

and could be helpful in the design of future instruments. This paper can also serve as a270

starting point for further work in this direction; many different designs for vibrato systems271
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FIG. 7. Comparison of tuning strategies based on computational predictions of the tuning algorithm

(color online). (a) Three different strategies were used in both test scenarios; ‘High to low’ and vice

versa correspond to ordered adjustments in each cycle, while ‘Random’ corresponds to randomly

unordered adjustments. The latter is shown as the average of 100 trials, with the error bars denoting

the standard deviations from the average. (b) Pre-calculated target frequencies for an optimal

tuning strategy for the D tuning scenario, using a high-to-low tuning order. (c) Predicted frequency

changes of all strings at each step of the optimal strategy described in (b). (d) Experimental test

of the optimal strategy shown in (b) and (c). The (tiny) error bars denote the range of values from

two independent experiments.
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exist and frequently have more complex geometries than the one assumed here; often, the272

bridge does not move in a linear, one-dimensional fashion, but rather pivots, leading also to273

minor vertical movements of the strings’ endpoints, as it is the case for the guitar used in274

the experiments. It is straightforward to adapt the model presented here to the specifics of275

a particular instrument and/or vibrato system.276
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APPENDIX: DERIVATION OF ∆x = h(∆l)280

To derive the piecewise linear function ∆x = h(∆l), I first distinguish cases depending on281

the magnitudes of ∆x and lj and which string is to be tuned. The lj (at least one positive)282

are ordered as explained in the main text and j ∈ {1, ..., n}. Let m ∈ {1, ..., n + 1} be283

defined so that lj −∆x ≤ 0 for all j < m, and lj −∆x > 0 for all j ≥ m.284

285

If i ≥ m, Eq. 17 becomes:286

ki(li + ∆l −∆x) +
∑n

j=m, j 6=i kj(lj −∆x) =
∑n

j=1 kj max(lj, 0)
(

x+∆x
x

)
,287

which further becomes:288

kili+ki∆l−ki∆x+
∑n

j=m, j 6=i kjlj−
∑n

j=m, j 6=i kj∆x =
∑n

j=1 kj max(lj, 0)+∆x
x

∑n
j=1 kj max(lj, 0).289

We can collect the ∆x terms and rearrange this to get:290
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∆x

[
ki +

n∑
j=m, j 6=i

kj +
1

x

(
n∑

j=1

kj max(lj, 0)

)]
= ki∆l + kili +

n∑
j=m,j 6=i

kjlj −
n∑

j=1

kj max(lj, 0)

∆x

[
n∑

j=m

kj +
1

x

(
n∑

j=1

kj max(lj, 0)

)]
= ki∆l +

n∑
j=m

kjlj −
n∑

j=1

kj max(lj, 0)

∆x

[
n∑

j=m

kj +
1

x

(
n∑

j=1

kj max(lj, 0)

)]
= ki∆l −

m−1∑
j=1

kj max(lj, 0) +
n∑

j=m

kj min(lj, 0)

∆x =
x
[
ki∆l −

∑m−1
j=1 kj max(lj, 0) +

∑n
j=m kj min(lj, 0)

]
x
∑n

j=m kj +
∑n

j=1 kj max(lj, 0)
.

Similarly, if i < m, Eq. 17 becomes:291

ki(li + ∆l −∆x) +
∑n

j=m kj(lj −∆x) =
∑n

j=1 kj max(lj, 0)
(

x+∆x
x

)
,292

which further becomes:293

kili+ki∆l−ki∆x+
∑n

j=m kjlj−
∑n

j=m kj∆x =
∑n

j=1 kj max(lj, 0)+ ∆x
x

∑n
j=1 kj max(lj, 0).294

Collecting the ∆x terms and rearranging yields:295

∆x

[
ki +

n∑
j=m

kj +
1

x

(
n∑

j=1

kj max(lj, 0)

)]
= ki∆l + kili +

n∑
j=m

kjlj −
n∑

j=1

kj max(lj, 0)

∆x

[
ki +

n∑
j=m

kj +
1

x

(
n∑

j=1

kj max(lj, 0)

)]
= ki∆l + kili −

m−1∑
j=1

kj max(lj, 0) +
n∑

j=m

kj min(lj, 0)

∆x =
x
[
ki∆l + kili −

∑m−1
j=1 kj max(lj, 0) +

∑n
j=m kj min(lj, 0)

]
xki + x

∑n
j=m kj +

∑n
j=1 kj max(lj, 0)

.

296

Given the premise, both of these expressions for ∆x hold if lm > ∆x ≥ lm−1. Both sides of297

this inequality can be rearranged for both, i ≥ m and i < m, to yield boundaries for ∆l,298
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which define the individual linear sections of h(∆l). I show this for the example lm−1 ≤ ∆x,299

i ≥ m, m > 1, while the other boundaries can be derived in the same, simple way:300

301

x
[
ki∆l −

∑m−1
j=1 kj max(lj, 0) +

∑n
j=m kj min(lj, 0)

]
x
∑n

j=m kj +
∑n

j=1 kj max(lj, 0)
= ∆x ≥ lm−1302

xki∆l−x
[∑m−1

j=1 kj max(lj, 0)−
∑n

j=m kj min(lj, 0)
]
≥ lm−1

[
x
∑n

j=m kj +
∑n

j=1 kj max(lj, 0))
]

303

xki∆l ≥ lm−1

[
x
∑n

j=m kj +
∑n

j=1 kj max(lj, 0))
]
+x
[∑m−1

j=1 kj max(lj, 0)−
∑n

j=m kj min(lj, 0)
]

304

∆l ≥
lm−1

[
x
∑n

j=m kj +
∑n

j=1 kj max(lj, 0))
]

+ x
[∑m−1

j=1 kj max(lj, 0)−
∑n

j=m kj min(lj, 0)
]

xki
.305

The expressions for ∆x can further be inserted into the additional assumption of ∆l >306

∆x− li, which adds another condition for ∆l for each case. Finally, the following cases for307

∆x = h(∆l) result (I treat i = 1 and m = n+ 1 as separate, boundary cases):308

Case 1.309

If i = 1,

and ∆l >
x
∑n

j=1 kj min(lj, 0)− l1
∑n

j=1 kj[x+ max(lj, 0)]∑n
j=1 kj[x+ max(lj, 0)]− xk1

,

and ∆l <
l1[x

∑n
j=2 kj +

∑n
j=1 kj max(lj, 0)] + xk1 max(l1, 0)− x

∑n
j=2 kj min(lj, 0)

xk1

,

then ∆x =
x[k1∆l +

∑n
j=1 kj min(lj, 0)]∑n

j=1 kj[x+ max(lj, 0)]
.

310

311
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Case(s) 2.312

Let m ∈ {2, ..., n}.

If i ≥ m,

and ∆l >
x[
∑n

j=m kj min(lj, 0)−
∑m−1

j=1 kj max(lj, 0)]− li[x
∑n

j=m kj +
∑n

j=1 kj max(lj, 0)]

x
∑n

j=m kj +
∑n

j=1 kj max(lj, 0)− xki
,

and ∆l ≥
lm−1[x

∑n
j=m kj +

∑n
j=1 kj max(lj, 0)] + x

∑m−1
j=1 kj max(lj, 0)− x

∑n
j=m kj min(lj, 0)

xki
,

and ∆l <
lm[x

∑n
j=m kj +

∑n
j=1 kj max(lj, 0)] + x

∑m−1
j=1 kj max(lj, 0)− x

∑n
j=m kj min(lj, 0)

xki
,

then ∆x =
x[ki∆l −

∑m−1
j=1 kj max(lj, 0) +

∑n
j=m kj min(lj, 0)]

x
∑n

j=m kj +
∑n

j=1 kj max(lj, 0)
.

Case(s) 3.313

Let m ∈ {2, ..., n}.

If i < m,

and ∆l >
x[
∑n

j=m kj min(lj, 0)−
∑m−1

j=1 kj max(lj, 0)]− li[x
∑n

j=m kj +
∑n

j=1 kj max(lj, 0)]

x
∑n

j=m kj +
∑n

j=1 kj max(lj, 0)
,

and ∆l ≥
lm−1[xki + x

∑n
j=m kj +

∑n
j=1 kj max(lj, 0)] + x

∑m−1
j=1 kj max(lj, 0)

xki

−
x
∑n

j=m kj min(lj, 0) + xkili

xki
,

and ∆l <
lm[xki + x

∑n
j=m kj +

∑n
j=1 kj max(lj, 0)] + x

∑m−1
j=1 kj max(lj, 0)

xki
,

−
x
∑n

j=m kj min(lj, 0) + xkili

xki
,

then ∆x =
x[ki∆l + kili −

∑m−1
j=1 kj max(lj, 0) +

∑n
j=m kj min(lj, 0)]

xki + x
∑n

j=m kj +
∑n

j=1 kj max(lj, 0)
.
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Case 4.314

If ∆l > −x− li,

and ∆l ≥
ln[xki + xkn +

∑n
j=1 kj max(lj, 0)] + x

∑n−1
j=1 kj max(lj, 0)− xkn min(ln, 0)− xkili

xki
,

then ∆x =
x[ki∆l + kili −

∑n
j=1 kj max(lj, 0)]

xki +
∑n

j=1 kj max(lj, 0)
.

315

This completes the function definition for ∆x = h(∆l).316
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