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Abstract

We combine quantified natural transition orbital (QNTO) analysis with large-scale

linear response time-dependent DFT (TDDFT) to investigate the concerted [2 + 2]

thymine dimerisation reaction. This reaction is a main cause of UV-light induced

damage to DNA, but its mechanism has remained poorly understood. QNTO analysis

enables the electronic excitations of a molecule to be identified on the basis of their

transition origins across a wide range of molecular geometries, allowing the participat-

ing excited states to be identified relatively straightforwardly. We identify a barrierless

funnel that is responsible for the ultrafast reaction previously indicated in experiments.

The reactive state is found to have crossings with several bright excited states, reveal-

ing how the initially populated bright states can decay rapidly to the reactive state.

We also examine the contribution of environmental factors such as inclusion of the

DNA backbone, which can affect the conformation of the potential energy surfaces of

the relevant states.

1 INTRODUCTION

Extensive previous research addressing the singlet channel of the thymine dimerisation has

focused on the potential energy surface of the first singlet excited state (S1) of a thymine

complex (denoted di-Thy).1–5 For example, a barrierless path from the S1 excitation of di-

Thy to the S0 state of a cis-syn thymine dimer (denoted Th<>Th) has been identified.1–4

However, the photo-induced cycloaddition reaction must be initiated on a bright electronic

excited state, whereas the S1 state is dark: the process by which this bright state is depop-

ulated to the dimerisable S1 state is still unclear. Furthermore, the (changeable) character

of the dimerisable S1 requires further clarification.

The properties of energetically adjacent excited states, as well as the ground state itself,

thus clearly need to be investigated in order to obtain a thorough picture of the reaction

process. It is important to know how the initially populated bright state(s) proceed through
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the configuration space interacting with other close-lying states with different character, so

that the dimerisable S1 state can be formed.

In the present work, we approach this problem by sampling a series of molecular structures

and calculating their vertical excitation properties using TDDFT. We then use the QNTO

approach6,7 to analyse the character of multiple excited states of these structures, from which

we aim to identify the relevant reaction pathway(s).

2 METHOD

All the calculations are carried out using the linear scaling (LS) DFT/TDDFT package

ONETEP,8,9 which uses an efficient representation of the density matrix in terms of in-situ

optimised localised support functions known as Nonorthogonal Generalised Wannier Func-

tions (NGWFs). Separate valence and conduction NGWF representations can be used to

represent the occupied and unoccupied subspaces respectively.10 This allows a minimal num-

ber of functions to be used while maintaining an overall accuracy equivalent to plane wave

methods. In the linear response11 (LR) TDDFT calculations, we employ the Tamm-Dancoff

approximation (TDA) throughout this work. While this introduces a further approximation,

it has the advantage, as well as considerably simplifying the formalism, of avoiding the singlet

instability issue12 which occurs for full LR-TDDFT when the ground state (S0) and the first

singlet excited state (S1) are nearly degenerate. The LR-TDDFT/TDA (denoted TDDFT)

results are analysed by the QNTO method6,7 that quantifies the characters of electronic

excitations and can be used to identify similar excitations across a variety of molecular sys-

tems.7 We employ a cut-off Coulomb method13 to exclude the effect of periodic images from

neighbouring simulation cells. Norm-conserving pseudopotentials are used to remove core

electrons from the calculation. The in-situ optimisation of the NGWFs8 ensures a minimal

set (1 NGWF for H and 4 for C and O atoms) is suitable for the present study. We use a

cutoff of 10 bohr radii for valence NGWFs and 16 bohr for conduction NGWFs, and a 1000
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eV kinetic energy cutoff for the psinc grid. These settings ensure that the DFT/TDDFT

results are well-converged. The (A)LDA functional in the Perdew-Zunger parameterisation14

for DFT/TDDFT calculations is used throughout. While a wide variety of more advanced

functionals are available, we expect that (A)LDA is able to qualitatively describe low-lying

excitations of small systems such as two stacked thymines. For large system calculations, we

employ transition density kernels15 confined in the region of the two thymines that are able

to exclude long-ranged charge transfer contributions that are incorrectly represented within

LR-TDDFT. Molecules and molecular orbitals are visualised using VMD.16

2.1 Construction of Initial di-Thy

We first perform a linear synchronous transit calculation followed by conjugate gradient

minimisation17,18 (LST-CG) between an ideal-B-DNA extracted di-Thy and a geometrically

optimised Th<>Th to build the initial structure (Fig. 1) for subsequent constrained opti-

misation scans. Two main coordinates will be used in the constrained optimisations: the

distances between the two C5 carbon atoms on the two thymine units (C5 and C5’), and

the angle between the C5’-C5 and C5-C6 bonds: these are proxies for the separation and

alignment of the two rings.

These optimisation scans for the C5-C5’ distance and the C5’-C5-C6 angle close to the

LST-CG structure (Table S1) show a range of structures, from those resembling Th<>Th,

as reflected by a shortened C6-C6’ bond, to those resembling the thymine complex. Fur-

thermore, we note that the two groups of molecular structures have distinct ground state

characters as verified by QNTO analysis. Therefore, there must be a crossing of S0, the

ground state, and S1, the first singlet excited state, between the two groups of structures.

2.2 Ground State Optimisation Scans of di-Thy

Our next target is to find the specific excited state (or states) of di-Thy that are reaction can-

didates leading to the Th<>Th structure. We first perform finer ground state optimisation
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Figure 1: Flow chart (left) of calculations and the energy map (right) for the di-Thy ground
state optimisation scans. We first obtain an intermediate structure from an LST-CG cal-
culation between an ideal-B-DNA extracted di-Thy and a geometrically optimised cis-syn
thymine dimer. Constrained ground state optimisation scans of C5-C5’ and C5’-C5-C6 for
the intermediate structure (Table S1) then generate structures tending towards Th<>Th
and di-Thy, respectively. Next, finer ground state optimisation scans are followed, starting
from (2.6, 74)di−Thy, namely, di-Thy with C5-C5’=2.6 Å and C5’-C5-C6=74◦. These are
used to construct a di-Thy ground state energy map. The colour of each cell denotes its
energy relative to the energy of the (2.2, 74)Th<>Th structure. Some cells at the left-hand
corner of the map are left blank (shaded red region) due to their highly distorted structures.
For more discussions see the text.

scans in the di-Thy region, with C5-C5’=2.2−3.6 Å in steps of 0.2 Å and C5’-C5-C6=26◦−98◦

in steps of 8◦. The ground state energies of these scanned structures are shown in Fig. 1.

Some parameter sets of di-Thy at the left-hand corner of the map are left blank because the

geometries are considered to be highly distorted, reflected also by the relatively large ground

state energies at this border. As expected, a repulsive force is built up pushing the two

thymines apart, as indicated by the higher ground state energies for those structures with

shorter C5-C5’ distances. A smaller C5’-C5-C6 angle also leads to a higher ground state

energy, reflected by the more distorted base planes that can be seen in the structure to the

bottom-left of the map.

2.3 Identification of Similar-character States

For all structures in the map, we calculate the first 8 electronic excitations and compare their

transition origins of the first natural transition orbital pair (NTO1) for identifying excitations
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with a similar character. In order to examine the effect of chemical environment, i.e. DNA

backbone, in the later part of this work, we define the core region7 of di-Thy by excluding

the two hydrogen atoms (H1 atom of each thymine) such that the core region is identical

to the ones for larger systems containing the DNA backbone. We then renormalise the core

sections of the hole and electron orbitals of NTO1 (NTO1-H and NTO1-E, respectively), and

focus on those excitations which have a ≥ 50% density contribution from the core region.

This condition may be expressed as

|〈sc|s〉| ≥ 1/
√

2 (1)

for both the NTO1-H and NTO1-E, where |s〉 and |sc〉 denote the NTO and the renormalised

core section of NTO (cNTO), respectively.7

A specific di-Thy structure, C5-C5’=2.6 Å and C5’-C5-C6=74◦ (denoted as (2.6, 74)di-Thy),

which should lie reasonably close to the S0/S1 crossing (see Table S1), is selected as a stan-

dard. The excitations of (2.6, 74)di-Thy that satisfy Eq. 1 (the first 5 excitations, plus the 7th

and 8th excitations) are referred to as standard excitations. Each of these standard excita-

tions is given an identification label which is used for the purpose of consistently labelling

similar excitations across the whole di-Thy map shown in Fig. 1.

Note that the ranges covered in the C5-C5’ and C5’-C5-C6 scans are quite wide, such

that the NTO1 transition origins of some geometries can have little overlap with any of

the excitations for the (2.6, 74)di-Thy geometry used as a standard. This could be due to:

(1) evolution of transition origins along the molecular coordinates, (2) mixture of different

transition origins, and (3) significant difference of molecular geometries in comparison to the

standard geometry. Hence, in such cases, we identify the transition origins of a targeted

excited state by comparing to other intermediate structures. This propagation method was

also employed in ref 7. Note, however, that in the present case the situation is more com-

plicated as the system size is larger and there are two, instead of one, dimensions of the

6



scanned molecular coordinates. For robustness we also employ a self-consistent scheme in

the present work that is detailed in the Supporting Information.

3 RESULTS AND DISCUSSION

3.1 Candidate Reactive States

The self-consistently identified similar excitations of all the structures in the di-Thy map

(Fig. 1) are plotted in Fig. 2. There are three states which remain bright across the map,

which we call b1 (marked by a rhombus), b2 (star), and b3 (plus+circle), respectively. Their

oscillator strengths are shown in the corresponding panel below the potential energy profiles.

From the plot of the NTO1-H and NTO1-E orbitals in Fig. 3 for the three excitations, it

can be seen that they all have a 1(ππ∗) feature. Note also that b2 and b3 are defined on

(2.8, 42)di-Thy instead of (2.6, 74)di-Thy because they cannot be derived, and are thus distinct

from any of the standard excitations of (2.6, 74)di-Thy. It can be seen that the first eight ex-

citations of (2.6, 74)di-Thy respectively correspond to the 5th, 8th, N/A, 2nd, 3rd, N/A, 1st,

N/A excitation of (2.8, 42)di-Thy, where N/A denotes that no matching standard excitation of

(2.6, 74)di-Thy is found. Similarly, the 6th (b2) and 7th (b3) excitation of (2.8, 42)di-Thy have

no corresponding excitation in the first 8 excitations of (2.6, 74)di-Thy. Therefore, we add b2

and b3 to the list of standard excitations in addition to those defined on (2.6, 74)di-Thy in order

to include all possible (low-lying) excitations that could participate in the thymine dimeri-

sation reaction. The substantial reordering of excitations suggests that (2.6, 74)di-Thy and

(2.8, 42)di-Thy are considerably far apart in the configuration space. Moreover, it can be seen

that the further away a structure moves from the standard, (2.6, 74)di-Thy, or (2.8, 42)di-Thy

for b2 and b3, the more likely it is that multiple (mostly two) excitations are derived to

have the same labels. This suggests that as the structure evolves, some states have strong

couplings with each other and their transition origins mix strongly such that each of them
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Figure 2: Potential energy profiles and oscillator strengths for the first 8 excitations of the
map of di-Thy structures shown in Fig. 1. Similar-character excitations are marked by the
same label defined at (2.6, 74)di-Thy or (2.8, 42)di-Thy. The labels for (2.2, 74)Th<>Th are used
in other figures for linear interpolation/TDDFT calculations. The five types of excitation:
d1(•), d2(J), b1(�), b2(F), b3(⊕) are the focus of the present work. Different sizes of
label are used in the oscillator strength panel when there are multiple excitations that are
assigned the same label (the smaller size the label, the higher the excitation rank). Crosses
(+) denote ‘no label’ for those excitations that have a character distinct from any of the
standard excitations. Dashes (-) denote those excitations that do not satisfy Eq. 1 for both
NTO1-H and NTO1-E. Because of the evolution and mixing of transition origins as the
molecular structure changes, there can be multiple excitations assigned to the same label
whereas some others no label. See the text for further discussion.
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(2.6,74)-d1( ) (2.6,74)-d2( ) (2.6,74)-b1( ) (2.8,42)-b2( ) (2.8,42)-b3( )

NTO1-E

NTO1-H

Figure 3: The NTO1-H and NTO1-E of the five types of standard excitation. Isovalue=0.04
e/bohr3. The d1 and d2 (b1, b2, and b3) are in general dark (bright) excitations for the
map of structures in Fig. 1. From the orbital shapes of these NTOs, it can be seen that d1,
b1, b2, and b3 have a 1(ππ∗) feature, whereas d2 has a 1(nπ∗) feature.

evolves eventually to have a substantial component of the same standard excitation. Note

also that the oscillator strengths of the three bright states vary strongly as the structure

changes.

Crucially, the state we call d1 (filled circle), which is generally a dark state, can be seen

to be a leading candidate for providing a route to dimerisation, as will be detailed in later

discussions. In spite of the fact that the d1-state is generally dark, it has a 1(ππ∗) feature

as can be seen in Fig. 3. Hence, it shows that a dark excitation is not necessarily associated

with a 1(nπ∗) feature, and the oscillator strength of the 1(ππ∗) state can vary substantially

due to the geometry of molecules. It is therefore of paramount importance to examine

the transition origins of excitations alongside the excitation energy and oscillator strength

before a specific excited state can be correctly identified. We also find that a generally dark

state which we call d2 (left-pointed triangle) plays a role in fostering the [2 + 2] thymine

dimerisation reaction. The plot of NTO1-H and NTO1-E orbitals for the b2-state (Fig. 3)

shows that it has a 1(ππ∗) feature. Thus, the five types of excitations, d1, d2, b1, b2, and

b3, will be our primary focus in the following discussion; other types of excitation are simply

marked in light grey.
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Figure 4: (a) Linear interpolation between (2.2, 74)Th<>Th and (2.6, 74)di-Thy with each
LI-structure being calculated by TDDFT. (b) LI/TDDFT calculations performed between
LIP=4 and LIP=7 of Fig. 4a. (c) LI/TDDFT calculations performed between LIP=1 and
LIP=2 of Fig. 4b. Molecular structures corresponding to the two end-points of the linear
interpolation are displayed above the potential energy diagrams. Triangles linked by dash
lines denote HOMO-LUMO gap. A d1-funnel, as indicated by the red arrow in (a), can be
seen linking S1 (red filled circles) of the di-Thy to S0 of the Th<>Th. Similarly, the S0 of
di-Thy (black squares) is linked to S1 of Th<>Th. More discussions are given in Sec. SIII.

3.2 Dimerisable State

We now define the structure which has C5-C5’=2.2 Å and C5’-C5-C6=74◦ (denoted as

(2.2, 74)Th<>Th) as the standard for the Th<>Th structure. (2.2, 74)Th<>Th is expected

to lie reasonably close to the S0/S1 crossing (see Table S1). We then perform a linear in-

terpolation (LI) with 10 steps between the (2.2, 74)Th<>Th and (2.6, 74)di-Thy geometries in

order to identify the exact location of the S0/S1 crossing between them. TDDFT calculations

are then carried out for these LI-derived conformations for the purpose of identifying the

reaction pathway(s). Since we have already mapped the space of di-Thy structures (Fig. 1)

using excitation labels that are determined self-consistently (Fig. 2), we can now derive cor-

responding excitation labels for those LI conformations with a di-Thy ground state character

by simply referencing to all the structures in the di-Thy map. For those LI structures with

a Th<>Th ground state character, on the other hand, the excitation labels are determined

self-consistently among themselves. The results are plotted in Fig. 4a. It can be seen that the

first singlet excited state (S1) with d1-character decreases monotonically in energy towards
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the Th<>Th geometry. We discuss this in more detail in Sec. SIII demonstrating that the

S1 states at LI path (LIP)=5 − 10, which all have the d1-character, evolve to become the

ground state, S0, of the Th<>Th.

In addition to predicting a crossing between the S0 and S1, the current results also

demonstrate that it is a d1-character state of di-Thy, which can be traced to different exci-

tation order for different di-Thy conformations, that evolves to become the ground state of

Th<>Th. Thus, the d1-state forms a barrierless funnel proceeding from a thymine complex

to the dimerised configuration. A barrierless path on S1 of a d1-state character leading to

the thymine dimer has also been predicted by CASSCF/CASPT2 calculations.19 This can

in fact be understood by considering the bonding indicated by the form of the excitations

in Fig. 3. The NTO1-E of the d1-state clearly suggests the formation of C5-C5’ and C6-C6’

bonds as the electron density intensifies between them. It is not hard to imagine that the

consequent rearrangement of electrons promotes the formation of C5-C5’ and C6-C6’ bonds

of Th<>Th as the electronic structure of di-Thy proceeds through the d1-funnel.19,20 Note

also that the d1-state is not always the first singlet excited state S1. Therefore, the S1 state

of some structures has a distinct character from d1 and cannot result in the dimerisation

reaction. In the following we will examine how the d1-state can be populated and under

what conditions the barrierless funnel is present.

3.3 Bright States that Cross with the Dimerisable State

It can be seen in Fig. 2 that the energies of the excitations of most similar character vary

strongly with the scanning coordinates, and these states cross or become nearly degenerate

with other states in several places. In particular, a b1-state can be seen to cross a d1-state

at a structure where the b1-state is bright. The d1-state in question is slightly lower in

energy (< 0.3 eV) than the b1-state at (2.6, 50)di-Thy and slightly higher than the b1-state at

(2.6, 42)di-Thy. Similarly, a crossing between a d1 and a b2 or b3 occurs in a structure where
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Figure 5: Ground state optimisation scans map for di-Thy with the positions of d1-funnel
and several crossings indicated. The cells marked by red filled circles have an underlying
barrierless d1-funnel (see main text) linking di-Thy to Th<>Th. Two types of crossing are
marked, one between a b1- and a d1-state (green circle), the other between a d1- and a b2-
or b3-state (blue circle).

the b2 or b3 has a substantial absorption. The d1 in question is slightly lower (higher) in

energy than the b2 or b3 at (2.8, 42)di-Thy ((3.0, 42)di-Thy and (3.0, 34)di-Thy). These struc-

tures are marked by circles in Fig. 5. Moreover, despite the fact that the d2-state is dark in

many geometries, it has a substantial oscillator strength at (2.6, 50)di-Thy and a crossing of

the d2 and d1 can be found, for example, between (2.6, 50)di-Thy and (2.8, 42)di-Thy. Thus,

we have identified three types of crossing that can funnel the energy of a bright state to a

d1-character dark state via internal conversion, at structures for which the d1-state is not

yet the lowest energy singlet S1.

3.4 Identification of Ultrafast Dimerisable Structures

To investigate further whether a reaction can proceed after the system crosses to the d1-state,

we can investigate other parts of the phase space of possible configurations. We perform LI

calculations between (2.2, 74)Th<>Th and the structures discussed above. The results for

(2.6, 50)di-Thy and (2.8, 42)di-Thy are plotted in Fig. 6. It can be seen again that the d1-
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Figure 6: TDDFT calculations at LI geometries between (2.2, 74)Th<>Th and (a)
(2.6, 50)di-Thy, (b) (2.8, 42)di-Thy. A crossing between d1-state and a bright b1-state occurs
near the former case whereas between d1-state and bright b2- or b3-state in the latter case.
Molecular structures corresponding to the linear interpolation end-points are plotted above
the potential energy diagrams. As can be seen in both diagrams, the crossing links to a
barrierless d1-funnel (red filled circles), facilitating the ultrafast decay from the bright states
to the ground state of thymine dimer.

funnel is present near these crossings. We further explore the whole di-Thy map of Fig. 1,

performing similar LI/TDDFT calculations to identify the d1-funnel. The results are shown

in Fig. 5, where the cells marked by red filled circles indicate that a barrierless d1-funnel

is present. Thus, once the system is de-excited to the d1-state at these structures, either

via the three types of crossing discussed above or other internal conversion mechanisms, it

will readily result in the [2 + 2] cycloaddition reaction. This is consistent with the finding

that the ground state configuration of the thymine pair determines if the dimerisation can

occur.21,22

Our results also indicate that the reactive d1-state has higher energies than other excita-

tions at some structures, corroborating the CASSCF/CASPT2 results3 that indicate dimeri-

sation requires appropriate conformations and environments for the reactive state to have a

low enough energy to favour its population. In ref 22, Law et al., introduced a ‘dimerisable’

condition by studying the results of molecular dynamics simulations for thymidylyl-(3’-5’)-

thymidine molecule in aqueous cosolvent mixtures. This condition can be expressed as d

< 3.63 Å and |η| < 48.2◦, where d is the distance between the midpoints of the C5-C6 and
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C5’-C6’ double bonds and η is the C5-C6-C6’-C5’ dihedral angle. We note that except for

(3.2, 26)di-Thy, all the conformations where the d1-funnel is present satisfy the ‘dimerisable’

condition.

Furthermore, we have demonstrated that, of all the configurations studied (Fig. 5), the

d1-state is generally dark at the configurations in which the d1-funnel is present. Thus, it

would require internal conversion to populate the d1-state from one of the bright state(s).

The ‘peaked’ topology23 of the S0/S1 crossing for the d1-funnel suggests that the system

would also be able to evolve back to the di-Thy ground state at the crossing. It is significant

that the regions where the d1-funnel is present are regions of relatively high ground state

energy. This must play a role in suppressing the reaction and preventing it from occurring

with excessive frequency, hence the low quantum yield (∼ 3%) of the reaction.

3.5 Thymine Dimerisation in DNA Environment

3.5.1 dTpdT

Now we examine the environmental effects of DNA on the thymine dimerisation reaction.

We first look at a system, dTpdT, that is formed by a thymine pair linked by the deoxyribose

and phosphate group of the DNA backbone. In particular, the presence of the backbone can

result in conformational constraints that make some structures highly unfavourable. The

system is neutralised by adding a proton next to the phosphate group; the neutralisation

widens the band gap as the HOMO orbitals located at the phosphate are stabilised by the

proton next to it.

Note that in B-DNA the phosphate groups are stabilised by metal ions such as Mg(II),24

which is partially modelled here by the proton atom next to the phosphate group. The

stabilisation of the phosphate group not only widens the fundamental band gap but also

improves the energy underestimation of the charge transfer (CT) transitions which would

occur for TDDFT with (semi-)local density functionals such as LDA.25 Nevertheless, the cor-

rect positions of the CT states remain an open question: the use of different HF-exchange
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mixture can result in the backbone-to-base CT transitions having significantly different ener-

gies.26 Here, we employ a scheme of confining the transition density kernel15 in the TDDFT

calculations for dTpdT in order to suppress backbone-to-base charge transfer states.

First, we perform ground state optimisations with constrained values of C5-C5’ distance

and C5’-C5-C6 angle for several dTpdT structures, whose ground state energies are plotted

in Fig. 7. We then calculate the first 8 excitations of these structures (Fig. S3) with the

transition density kernel, Kαβ
{1}I , being built in the localised basis functions centered on

the di-Thy core atoms. Thus, 〈sc|s〉 for both the NTO1-H and NTO1-E of an excitation

is consequently equal to 1. This can help filter out the energetically underestimated CT

transitions.

We examine the effect of using a localised transition density kernel on the calculated

excitation properties in Sec. SIV, where we also show that the presence of backbone is able

to substantially change the excitation energies and oscillator strengths of several excitations.

However, by examining the dTpdT structures for which the C5-C5’ and C5’-C5-C6 values

lie close to the region where the two types of crossing of di-Thy are located (Fig. 5), we

are still able to identify the same types of crossing as in the case of isolated thymine pair,

with the positions being slightly shifted in the map (Fig. 7). As can be seen in Fig. S3,

the crossing of d1 and b1 move to structures lying between (2.8, 50)dTpdT and (2.8, 42)dTpdT.

For the crossing of d1 and b2 or b3, on the other hand, the structure(s) where the former

has slightly lower (higher) energy than the latter move to (3.0, 34)dTpdT ((3.2, 34)dTpdT and

(3.2, 26)dTpdT). We also see that the d2-state, which is mostly dark in the di-Thy map

(Fig. 2), shows substantial absorption at several dTpdT structures (see Fig. S3). Moreover,

a crossing of a d1- and d2-state can be seen to occur when the d2-state has a significant

absorption: A d1-state is slightly lower (higher) in energy than a d2-state at (2.8, 50)dTpdT

((2.8, 34)dTpdT and (3.0, 42)dTpdT).

We also perform LI calculations between (2.2, 74)T<p>T, where T<p>T denotes cis-syn

dimerised dTpdT, and each of the structures mentioned above. The excitations of those
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Figure 7: Ground state optimisation scans for dTpdT with C5-C5’ and C5’-C5-C6 set close
to the region where the two types of crossing of di-Thy are located in Fig. 5. The colour of
each cell denotes its ground state energy relative to that of (2.2, 74)dTpdT. The cells marked
by green (blue) circles denote the structures at which a crossing between the d1-funnel and
a b1- (b2- or b3-)state is located, e.g. (2.8, 42)dTpdT, whose molecular structure is plotted to
the right of the map. The d1-funnel is present at those structures indicated by a red filled
circle.

structures with an undimerised ground state character are characterised by directly refer-

encing the di-Thy structures of Fig. 5. The excitations of those with a T<p>T ground state

character are self-consistently characterised among themselves. The results for (2.8, 50)dTpdT

and (3.0, 34)dTpdT are plotted in Fig. S5. Again, the d1-funnel can be clearly seen, as the

energy of the d1-state decays monotonically towards the T<p>T configuration.

Thus, the bright states discussed above all provide a pathway for the [2 + 2] dimerisation

reaction when the system absorbs light to populate the bright state(s), decays to the d1-

state via crossing(s), and proceeds through the d1-funnel. The widely present d1-funnel can

gather energy from any states that happen to have significant absorption due to geometrical

or environmental factors and have nearby crossing(s) with the d1-state.

3.5.2 TTTT/AAAA

We have also performed TDDFT calculations for two thymines embedded within two short-

ened complementary B-DNA strands to study the base stacking and base pairing effects

on the electronic excitations of a thymine pair. The two strands are in the ideal B-DNA

geometry and are neutralised by adding protons adjacent to the phosphate groups as in the
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NTO1-H NTO1-E

Figure 8: The NTO1-H and NTO1-E of an electronic excitation of two shortened comple-
mentary B-DNA strands with TTTT/AAAA sequence. The transition density kernel for the
TDDFT calculation has been locally confined to the middle two thymine bases. By referenc-
ing the excitations of all the di-Thy map structures in Fig. 7, the excitation is characterised
as a b1-state. The similarity of transition origins between this excitation and the standard
b1-state (Fig. 2) can clearly be seen by comparing the plots of their NTO1-H and NTO1-E
orbitals, although noticeable differences between them also exist due to the environmental
and geometrical factors for the embedded thymine pair, which in turn have altered the orbital
shapes of the NTO1 electron-hole pair.

previous dTpdT study. The middle two thymines are then set to C5-C5’=2.8 Å and C5’-

C5-C6=42◦ and, along with the local backbone, are locally optimised by fixing the positions

of heavy atoms of the other DNA backbone and nucleobases. The system here is used as

an example to demonstrate that the TDDFT/QNTO can be employed to investigate much

larger molecular systems.

The transition density kernel for the TDDFT calculation of this system is confined locally

to the two central thymine bases as in the dTpdT study. The NTO1-H and NTO1-E orbitals

of the 2nd electronic excitation calculated by TDDFT are plotted in Fig. 8. The NTO1

transition vector component,7
√
λ1, is 0.99, showing that the excitation is dominated by

the NTO1 electron-hole pair. Thus, we have been able to use the present TDDFT/QNTO

method to analyse local excitations of a very large molecular system such as the two shortened

DNA strands here. Because of the subtle balance of forces in realistic DNA strands, we leave

a more sophisticated environmental setting of the DNA systems, e.g. including the effects of
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solvent, counterions and geometry optimisation, to future work.

4 CONCLUSIONS

We have applied the TDDFT/QNTO approach to study the concerted [2 + 2] thymine

dimerisation reaction, which is the most common type of UV-light induced damage to DNA,

and thus a leading cause of skin cancer. We are able to show that a barrierless funnel can be

identified that is responsible for the ultrafast reaction previously indicated in experiments.

The reactive state is also found to have crossings with several bright excited states, revealing

how the initially populated bright states can decay rapidly to the reactive state.

We have also studied a system of two thymines linked by the DNA backbone to look into

the effect of the DNA environment in mediating the properties of electronic excitations of

the two thymines. Although the presence of backbone is able to substantially change the

excitation energies and oscillator strengths of several excitations, we are still able to identify

the d1-funnel and observe bright states that cross with the d1-state. This suggests that the

ultrafast dimerisation can occur in a similar scenario as in the case of two pure thymines as

discussed above.

We have also shown that a very large system of two thymines embedded within two

shortened complementary DNA strands can also be studied using the QNTO method and

local excitations on the two thymines can be compared with those of di-Thy. Thus, it

can be anticipated that in future we will be able to investigate, based on the approaches

presented in this work, various interesting large and/or complex biomolecular systems for

their photophysical/photochemical properties involving multiple electronic excited states.
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