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•  Background and Aims  Diurnal changes in solar position and intensity combined with the structural 
complexity of plant architecture result in highly variable and dynamic light patterns within the plant canopy. 
This affects productivity through the complex ways that photosynthesis responds to changes in light intensity. 
Current methods to characterize light dynamics, such as ray-tracing, are able to produce data with excellent spatio-
temporal resolution but are computationally intensive and the resulting data are complex and high-dimensional. 
This necessitates development of more economical models for summarizing the data and for simulating realistic 
light patterns over the course of a day.
•  Methods  High-resolution reconstructions of field-grown plants are assembled in various configurations to 
form canopies, and a forward ray-tracing algorithm is applied to the canopies to compute light dynamics at high 
(1 min) temporal resolution. From the ray-tracer output, the sunlit or shaded state for each patch on the plants is 
determined, and these data are used to develop a novel stochastic model for the sunlit–shaded patterns. The model 
is designed to be straightforward to fit to data using maximum likelihood estimation, and fast to simulate from.
•  Key Results  For a wide range of contrasting 3-D canopies, the stochastic model is able to summarize, and 
replicate in simulations, key features of the light dynamics. When light patterns simulated from the stochastic 
model are used as input to a model of photoinhibition, the predicted reduction in carbon gain is similar to that from 
calculations based on the (extremely costly) ray-tracer data.
•  Conclusions  The model provides a way to summarize highly complex data in a small number of parameters, 
and a cost-effective way to simulate realistic light patterns. Simulations from the model will be particularly useful 
for feeding into larger-scale photosynthesis models for calculating how light dynamics affects the photosynthetic 
productivity of canopies.
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INTRODUCTION

Plant canopies are complex three-dimensional (3-D) structures 
in which the light distribution is complicated and dynamic, for 
example due to solar movement. Diurnal changes in solar pos-
ition and occlusion caused by overlapping leaves mean that leaves 
alternate throughout the day between periods in which they are 
sunlit and periods in which they are shaded. Sun rays that tempor-
arily penetrate to the lower layers of the canopy give rise to ‘sun-
flecks’ that are highly intermittent. The spatio-temporal dynamics 
of direct light influences many fundamental physiological func-
tions, such as photosynthesis, photoacclimation and photoinhibi-
tion (Walters, 2005; Athanasiou et al., 2010; Ruban and Belgio, 
2014; Vialet-Chabrand et al., 2017), and secondary biophysical 
processes such as drought tolerance, water-use efficiency (Qu 
et al., 2016), plant growth and crop yield (Maddonni et al., 2002). 
This is because photosynthesis does not directly track the fluctua-
tions in light; for example, delays in photosynthetic induction to 

high light result from the time taken to activate enzymes in the 
Calvin cycle, open stomatal pores and build up metabolite pool 
sizes, and delays in recovery from photoprotection in low light re-
sult from the xanthophyll cycle, impacting productivity (Lawson 
and Blatt, 2014; Burgess et al., 2015, 2017b; Retkute et al., 2015; 
Kromdijk et al., 2016; Townsend et al., 2018). Optimizing photo-
synthesis by addressing these inefficiencies is clearly a target for 
improving crop yield but doing so requires a clear understanding 
of the dynamic light conditions in a canopy, rather than just static 
or time-averaged conditions.

Light dynamics may be measured empirically by various 
methods, such as hemispherical canopy photographs (Pearcy 
and Yang, 1996), a photosynthetically active radiation sensor 
moving on a horizontal track (Ross et  al., 1998), an electro-
magnetic 3-D digitizer (Sinoquet et al., 1998) or a near-ground 
imaging spectroscopy system (Zhou et  al., 2017). However, 
spatial resolution of these techniques is typically very poor. 
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This limitation is overcome by digitally reconstructing plants 
and canopies (Pound et  al., 2014) then using ray-tracing to 
compute light dynamics (Song et al., 2013). In spite of tech-
nical challenges, for example due to occlusion and very fine 
structures such as wheat ears, digital reconstruction of field-
grown plants tends to provide a highly accurate description of 
canopy geometry. However, our understanding of photosyn-
thetic characteristics in canopies is hampered by a current reli-
ance on using ray-tracing to understand the light dynamics in 
3-D reconstructed canopies (Kim et al., 2016).

Current ray-tracing approaches are costly in computer 
resources and produce vast data sets as output, especially if 
computing at high spatio-temporal resolution. Here we develop 
a novel mathematical model to describe and rapidly simulate 
sunlit–shaded patterns within a canopy. The model involves 
two states, sunlit and shaded, and rates of switching between 
them that we model as functions of time of day and the depth 
within the canopy. We construct several different realistic digi-
tal canopies and use a ray-tracer to identify the times of switch-
ing between sunlit and shaded states at positions throughout 
the canopies. We then use these switching times to estimate the 
rate functions for switching between states. This offers insight 
into how light dynamics in a particular canopy depends on 
time of day and depth within canopy, and how light dynamics 
varies between canopies involving different plant species, can-
opy planting density and canopy leaf area index (LAI).

We use light patterns simulated from the fitted models as an 
input into a model to predict the reduction in photosynthetic 
yield attributable to photoinhibition.

MATERIALS, MODELS AND METHODS

Digital canopy reconstruction and ray-tracing

To investigate light dynamics in a range of canopies with 
different structural characteristics, we constructed digital 
canopies by assembling imaged and digitally reconstructed 
plants of wheat (lines 1 and 2 in Burgess et  al., 2015a) and 
Bambara groundnut (from Burgess et al., 2017a, at two differ-
ent growth stages: 39 and 80 d after sowing) in various con-
figurations. The reconstructions represent the surface of a plant 
with a large number, N, of small triangular patches. Figure 1A 
shows an example of a reconstructed wheat plant, with an 
individual leaf at the lower part of the plant shown in blue. 
A  triangular patch indexed, say, by j is defined by the set of 
coordinates { , ,x x x1 2 3j j j } of its three vertices. The centroid of  

this patch is x xj =( ) =∑1
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Fig. 1.  Quantifying sunlit and shaded dynamics. (A) Reconstructed wheat plant from Burgess et al. (2015). (B) Set-up for the ray-tracer (Song et al., 2013). Red 
arrows show direct light rays; once a ray hits the boundary of the bounding box, it is moved to the opposed vertical face of the box. (C) Shading will occur when a 
ray is obstructed by other leaves or a stem. (D) Construction of canopies was done in two ways: putting the bounding box just outside the plant (red rectangle) or 
putting plants on a 3 × 3 grid at a distance d apart and putting the bounding box through the centres of boundary plants (blue rectangle). (E) Diurnal dynamics of 
light, in µmol m−2 s−1, at a particular patch showing ray-tracer simulation (solid black curve), light amplitude envelope (solid red curve) and inferred shaded periods 
(horizontal grey lines). Time resolution is 1 min. One of the shaded periods is extended to (C) to indicate schematically the occlusion caused. (F) Sunlit–shaded 
patterns for the patches comprising the leaf shown in blue in (A); each row corresponds to an individual patch, with patches ordered by the height of their centroids. 
The row shown in red corresponds to the particular patch shown in (E). (G) The two-state sunlit–shaded model: switching on (from shaded to sunlit) occurs at rate 

λh ton ( )  and switching off (from sunlit to shaded) at rate λh
ff to ( ) .
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in which ( )x j 3  denotes height from the ground of the jth patch’s 
centroid, and z ij ijmin min= {( ) }x 3 , z ij ijmax max { )= ( }x 3  are 
respectively the minimum and maximum heights amongst all 
the vertices in the canopy. The models developed later involve 
dependence on these normalized heights.

We constructed canopies in silico by arranging into vari-
ous configurations several individual-plant reconstructions of 
Burgess et  al. (2015) and Burgess et  al. (2017a), exploiting 
the periodic boundary conditions of the ray-tracer (explained 
below) which give a natural way to ‘tile’ individual plants to 
form an effective canopy. We investigated two ways to do this: 
(1) by putting the bounding box just outside the plant (as shown 
by the red rectangle in Fig. 1D); or (2) arranging plants on 3 × 3 
square lattice a distance d apart, and putting the bounding box 
through the centres of boundary plants (as shown by the blue 
rectangle in Fig. 1D). The periodic boundary conditions mean 
that case (1) amounts to considering an infinite square lattice 
of identical copies of the same plant. Case (2) is similar, but 
it introduces additional heterogeneity through randomizing the 
orientation of the different plants. We positioned the plants at 
distances d equal to 200 mm, 150 mm, 125 mm and 100 mm. 
In case (2), we analysed the light dynamics for the plant in the 
centre of the 3 × 3 lattice. Configuring plants in these various 
ways led to canopies with a wide range of different structures 
and LAIs.

To compute the light distribution within the constructed 
canopies we used Fast-Tracer v3.0 (Song et al., 2013), a soft-
ware implementation of a forward ray-tracing algorithm. This 
simulates three categories of light (direct, diffuse and scattered 
light), and determines where individual rays of light are even-
tually absorbed on leaf surfaces. Figure 1B shows a configur-
ation for the ray-tracer software (Song et al., 2013). In-bound 
rays are arranged over a grid above the plant. The direction and 
amplitude of each ray depends on latitude and time of day. Ray 
tracing is performed in a cubic domain with periodic bound-
ary conditions on the vertical faces so that when a ray exits 
one boundary of the domain it re-enters on the opposite vertical 
face. We used latitude 53° (for Sutton Bonington, UK), atmos-
pheric transmittance 0.5, light scattering 7.5%, light transmit-
tance 7.5% and day 182 (1 July), corresponding to the location 
where the plants were grown and the day they were imaged 
(Burgess et al., 2015). We calculated the direct light intercepted 
during the day at 1 min resolution for every patch in the canopy. 
The high temporal resolution enabled us to investigate even 
short-term light fluctuations in the canopy. Figure 1E shows an 
example of the light pattern computed for a particular patch.

Computing sunlit–shaded patterns from ray-tracing data

To construct sunlit–shaded patterns for each patch we com-
pared values of direct light computed by the ray-tracing algo-
rithm (Song et al., 2013) with the direct light irradiance, Adr, 
on a unit surface in the absence of any shading (Cambell and 
Normal, 1998); the latter, defined in eqn (18) in the Appendix, 
depends on latitude, day of year, time of day, and the angle 
between a light ray and the normal to the patch in question. 
Figure 1E shows, for a particular patch in the lower part of a 
canopy, the direct light computed from the ray-tracer (in black) 

and Adr (in red). We designated a patch at a given time point 
as being shaded if the value of direct light computed by the 
ray-tracer differed from Adr by >10%. The shaded periods are 
indicated in Figure  1E by vertical grey bars. The substantial 
shaded period between 1000 and 1100 h, for example, shown 
in Fig. 1E is a consequence of the shading shown in Fig. 1C. 
These binary sunlit–shaded light patterns, computed for each 
patch in the canopy, are the inputs to the models we develop 
below. Figure 1F shows the sunlit–shaded patterns for all the 
patches constituting the leaf shown in blue in Fig.  1A, with 
each row corresponding to an individual patch, the patches (and 
hence rows) having been ordered according to the normalized 
heights of the patch centroids. The diagram reveals an intricate 
pattern, with shadows from the upper leaves moving along the 
surface of the leaf as the sun changes position in the sky.

In the following sections we develop models for the sun-
lit–shaded patterns: first Model 1, a simple preliminary model 
which we use to introduce ideas and notation; and then Model 
2, which is the novel modelling contribution of this paper. In 
each case, we present (1) the model definition; (2) how the 
model can be fitted to experimental data; and (3) how the fitted 
model can be simulated to generate realistic light patterns.

Sunlit-shaded dynamics: Model 1

In this initial model, we limit attention to a single patch and 
consider how its rate of switching from sunlit to shaded, or vice 
versa, changes with time, t, in a time interval of interest, (0,T). 
The central assumption is that switching events arise from a 
non-homogeneous Poisson process (e.g. Ross, 2006). A non-
homogeneous Poisson process is a stochastic process defined 
via: (1) an intensity function λ(t) ≥ 0 such that, for 0 < δt ≪ 1,

	 Prob event in interval t t t t t O t, ,+( ){ }= ( ) + ( )δ λ δ δ 2 	 (1)

where O(δt2) denotes terms involving squared or higher powers 
of δt, which are negligible for small δt; and (2) the assumption 
that the probabilities of events in distinct intervals are inde-
pendent (Ross, 2006). From this independence, and eqn (1), it 
follows that for any interval (t, t + u) ⊆ (0,T),

	 Prob no events in interval exp,t t u t dt
t

t u

+( ){ }= − ′( ) ′


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+
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� (2)

where Λ t t dt
o

t
( )= ′( ) ′∫ λ . Equation (2) is useful in the fol-

lowing section for constructing expressions needed for fitting 
the model to data.

Fitting Model 1.  The goal is to fit the model by estimating the 
intensity function λ(t) based on a set of switching times 0 < v1 
< · · · < vn < T. We will use maximum likelihood estimation, a 
standard statistical principle for estimating model parameters 
from data (Cox, 2006). This involves constructing the likeli-
hood function for the model, which is the probability (density) 
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function evaluated at the observed realization of switching 
times but regarded as a function of the parameter λ(t) to be esti-
mated. The likelihood function for this model is

	

L t v v v
i

n

i iλ( )( )= − ( )+ ( ){ }
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Equation (3) can be derived by discretizing the interval (0,T) 
with increments of size δt, writing the likelihood as a product 
of factors (using independence of increments) with each fac-
tor either eqn (1) or its complement, depending on whether the 
increment contains an event, then taking the limit δt → 0. The 
four factors in square brackets have the following interpreta-
tions: the first factor is a contribution from having no events 
in the interval (0,v1); the second factor from having no events 
in (vi, vi−1) for i = 2, ..., n; the third from having no event in 
the interval (vn,T); and the fourth is the contribution from the 
switching events occurring at times v1, ..., vn. These interpreta-
tions are helpful in constructing likelihood functions for Model 
2 below, but in the present case, telescoping in the exponent 
means that eqn (3) simplifies to

	 L t T v
i

n

iλ λ( )( )= − ( ){ } ( )
=
∏exp Λ

1

	 (4)

Maximizing L(λ(t)) directly with respect to an unrestricted λ(t) 
is ill-posed (since the maximizing λ(t) would blow up at the 
switching instants t =v1, ..., vn, and be zero elsewhere). A solu-
tion to this is to impose a functional form for λ(t) in terms of 
a small number of parameters, θ = (θ1, ..., θp). We then write 
λ(t) = λ(t; θ), and fit the model by maximizing the likelihood 
eqn (4) with respect to θ. In fact, it is equivalent and usually 
more convenient to compute this maximum likelihood estimate 
(MLE) of θ by maximizing the log of the likelihood function, 
which is

	 l T v
i

n

iθ θ λ θ( ) = − ( ) + ( ){ }
=
∑Λ ; ;

1

log 	 (5)

We discuss below specific choices for the form of λ(t;θ). 
Function (5) can be maximized by a numerical optimization 
routine, and for the calculations in this paper we have used the 
Nelder–Mead simplex method (Nelder and Mead, 1965). If 
λ(t;θ) is linear in θ then eqn (5) is concave in θ, making the 
numerical optimization particularly straightforward.

Simulating from Model 1.  From eqn (1), the distribution func-
tion for the additional time until the next event occurs given that 
an even occurred at time v is

	 F s v s vv ( )= − − +( )+ ( )( )1 exp Λ Λ 	 (6)

and a random variable can be simulated from this distribution 
using the inversion method (Ross, 2006). An algorithm to simu-
late a sequence of event times v1, v2, v3, ... is thus as follows. 
Let v1 be a simulated value from the distribution F0. Then let 

v2 equal v1 plus a simulated value from the distribution Fv1
. 

Continue in this way, letting vi+1 equal vi plus a simulated value 
from the distribution Fvi

 until vi+1 > T.

Sunlit–shaded dynamics: Model 2

The main contribution of this paper is to extend Model 1 in 
two ways: (1) to incorporate distinct rate functions, λon(t) and 
λoff(t), for switching ‘on’ (from shaded to sunlit) and ‘off’ (from 
sunlit to shaded), respectively; and (2) to describe multiple 
patches, with the rate functions for different patches depending 
on the normalized height, h, within the canopy (in addition to 
time, t, as in Model 1).

Extension (1) requires a notational distinction between the 
times of on-switching events, say xi, and off-switching events, 
yi. For a given patch, on- and off-switching events necessarily 
alternate, and hence a sunlit–shaded pattern is characterized by 
the ordered set of times {x1, y1, x2, y2, ..., xn, yn}. We represent a 
state initially ‘on’ at time 0 by having x1 < 0, and ‘off’ at time 
T by yn > T (the particular values of x1 and yn in these cases do 
not need to be specified) but besides these exceptions we other-
wise assume that 0 < xi < yi < T for all i. Figure 2 illustrates 
the notation, with the four different examples showing the four 
possible cases involving the different combinations of ‘on’ and 
‘off’ states at t = 0 and t = T.

Fitting Model 2.  In terms of the switching times, {x1, y1, x2, y2, 
..., xn, yn}, for a given patch, the likelihood functions for λon(t) 
and λoff(t) are then
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where I(·) is the indicator function, equal to 1 if its argument is 
true and 0 otherwise. Equations (7) and (8) generalize eqn (3) 
to distinguish between sunlit-to-shaded and shaded-to-sunlit 
switches, and they are constructed in a similar way to eqn (3); 
see Fig. 2, in which sections of example sunlit–shaded patterns 
are coloured to indicate how they contribute to either eqn (7) 
or eqn (8).

The final step is to generalize to multiple patches, incorpo-
rating dependence of the rates on the heights of the different 
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patches. Let j  =  1, ..., m index the different patches, and 
quantities specific to the jth patch be indicated by suffix j. As 
before, we assume x1,j < 0 and yn,j > T if the state is ‘on’ at the 
beginning and end, respectively, of the interval (0,T). We let 
hj denote the height of the jth patch and use subscripts on the 
rate functions to denote their dependence on height, i.e. the 
rate functions for the jth patch are λon(t) and λoff(t). Assuming 
independence of patches (an assumption discussed later in the 
Discussion section), the likelihood functions for λon(t) and 
λoff(t) can be constructed as a product of factors of the form 
eqn (7) or (8) over index j = 1, ..., m, giving log-likelihood 
functions
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j

m

i

n

h i j h i j h i j

j

j j j
λ λon on on onlog( )= − ( )+ ( )+

= =
−∑ ∑

1 2
1, , ,Λ Λ (( )















+ >( ) − ( )+ (I x x xj h j h jj j1 1 10, , ,Λon onlog λ )){ }
+ <( ) − ( )+ ( ){ }I y T T yn j h h n jj j j j, , ,Λ Λon on

	

(9)

and

	

l y xff

j

m

i

n

h i j h i j h

j

j j j
λ λo o olog( )= − ( )+ ( )+

= =

−

∑ ∑
1 2

1

Λ Λff off ff
, , yy

y y I x

i

h j h jj j

( )














− ( )+ ( )+Λo ologff ff
1 1 1, , ,λ jj h j

h h n j n j

h

j

j j j j

j

x

T x I y T

>( ) ( )
− ( )+ ( )+ <( )
−

0 1Λ

Λ Λ

Λ

o

o o

o

ff

ff ff

,

, ,

fff ff ffy T yn j h h n jj j j j, ,( )+ ( )+ ( ){ }Λo olog λ

	

� (10)

Like before, it is necessary to choose functional forms for 
λon

h(t) and λoff
h(t), and we discuss specific choices in the Results 

sections below.

Simulating from Model 2.  This model distinguishes whether at 
time t = 0 a patch is in a sunlit or shaded state. For simulations 
we choose a random starting state from the distribution

	 Prob sunlit at ; ,t h h={ }=0 	 (11)

Sunlit

0 Time T
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Fig. 2.  Illustration of the notation for the model, showing the four possible combinations of states at the beginning and end of the interval 0,T[ ] . At time t = 0 , a 
sunlit state is indicated by x1 0<  and a shaded state by x1 0> ; at time t T=  a sunlit state is indicated by y Tn >  and a shaded state by y Tn < . The different 
sections are coloured to indicate how they contribute to the (log) likelihood functions: red denotes a contribution to on-switching functions [eqns (7) and (9)] and 

yellow to off-switching function [eqns (8) and (10)].
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where h is the normalized height of the patch’s centroid, so that 
patches high in the canopy tend to start off sunlit whereas those 
at the bottom tend to start shaded.

The distribution for the time until the next event depends on 
whether switching is from sunlit to shaded or vice versa. We 
denote the distribution for the time to the next ‘on’ event given 
an ‘off’ event occurred at time x1  by Fx1

on ; and the time to the 
next ‘off’ event, given an ‘on’ event occurred at time y1  by 
Fy1

off . An algorithm to simulate from Model 2 is then as follows. 
Simulate the initial state as either sunlit or shaded. Supposing 
it is sunlit, let x1  be a simulated value from F0

off . Then let y1 
equal x1 plus a simulated value from Fx1

on . Continue letting 
xi+1 equal yi plus a simulated value from Fyi

off  and yi+1  equal 
xi+1 plus a simulated value from Fxi+1

on  until either x Ti+ >1  or 
y Ti+ >1 . If in the first step above the initial state is instead 
shaded, then the following two steps are replaced by simulating 
y1  from F0

on , but the algorithm otherwise proceeds the same.
This algorithm simulates the binary state of whether the patch 

is sunlit at time t. The corresponding direct light flux density 
(adjusting intensity during sunlit periods to account for factors 
including solar position at time t and patch orientation) is

	 flux density patch sunlit at timet A t I tdr( )= ( ) ( )

where Adr is as described earlier and defined in eqn (18) in the 
Appendix.

Case study: photoinhibition model

To assess the models, we investigate whether light patterns 
simulated from Model 2 and used as input into a photoinhibition 
model lead to similar results compared with when the ray-tracer 
dynamics are used as input. Photoinhibition is a light-depend-
ent decline in the maximal quantum yield of photosynthesis and 
can lead to a lowering of photosynthesis and potential growth 

(Long et al., 1994) and hence it is a good physiological quantity 
with which to test the impact of light dynamics. The effect of 
photoinhibition can be characterized by changes in the shape of 
the light–response curve, in terms of changes in the parameters 
that define it. The light–response curve is often modelled by a 
non-rectangular hyperbola (defined in the Appendix) involving 
two shape parameters: the quantum yield of PSII, ϕ , and con-
vexity, θ.

Following Burgess et al. (2015), we quantify the impact of 
photoinhibition by predicting the reduction in carbon gain over 
a day within a wheat canopy. We use the same canopy, pho-
toinhibition model and physiological measurements as Burgess 
et al. (2015), so that the only difference here is that the light 
dynamics are simulated from the model, rather than coming 
directly from the ray-tracer. The model of photoinhibition was 
parameterized by field data consisting of chlorophyll fluores-
cence and light–response curves of carbon dioxide assimila-
tion. The canopy was divided into three layers (top, middle and 
bottom), and for leaves at each layer light–response curves and 
dark-adapted maximum quantum yield, F Fv m/ , were meas-
ured at midday, giving scaling factors 0.857 for the top layer 
and 0.955 for the middle layer.

RESULTS

Model 1: example of simulation and model fitting

For λ t( )  we assume the simple functional form 
t t t( )= + − −( )3 0 05 0 075 6

2
. . . Here time t is measured in 

hours over a T = 12-h period starting at 0600 h, so that t = tmd ≡ 
6 h represents noon. The coefficients have been chosen some-
what arbitrarily to simulate a high degree of variation over the 
period, in which the rate of switching increases from sunrise, 
reaches its maximum near the middle of the day, then decreases 
until sunset. Figure 3B shows λ t( )  plotted in grey, and Fig. 3A 
shows a single realization from this model.
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MLE (n = 1)
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Fig.  3.  A simulated realization of Model 1, and maximum likelihood estimation from fitting the model to the realization. (A) A  realization with 
λ t t t( )= + − −( )3 0 05 0 075 6

2
. . . (B) A plot of this true λ t( )  together with estimates of it based on data with various numbers of realizations, n, showing conver-

gence of the estimates to the true λ t( )  as n increases.
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Using maximum likelihood estimation to fit the model 
λ θ θ θ θt t t;( )= + + −( )1 2 3

2
6  based on the realiza-

tion in Fig.  3A leads to the estimated intensity function 
ˆ . . .λ t t t( )= + + −( )2 2 0 14 0 061 6

2
 (shown in green in Fig. 3B). 

The estimated intensity function matches the true intensity 
function reasonably well, but not exactly because the estimate 
is based on a small amount of data. Typically, the MLE gets 
closer to the true answer as the amount of data increases. This is 
illustrated by the blue and red curves in Fig. 3B, which are the 
MLEs based on data from multiple realizations.

Model 2 fitted to ray-tracer data

We constructed canopies by assembling 3-D reconstructions 
of wheat and Bambara groundnut plants, as described above. 
Figure 4 shows images of plants and canopies we constructed 
and analysed: an individual wheat plant in four different orien-
tations; the plant randomly rotated and positioned at distances 
d = 200, 150, 125 and 100 mm from a replica of a plant from 
the same line; individual plants from different wheat lines; and 
individual Bambara groundnut plants at two different growth 
stages (39 and 80 d after sowing). Canopies (A)–(D), (I) and (J) 
are configurations for which we placed the bounding box just 
outside the plant (as shown by the red rectangle in Fig. 1D), 
whereas for canopies (E)–(H) we arranged plants on a 3 × 3 

square lattice at different distances d apart. Cumulative leaf 
area index (cLAI), shown in Fig. 4(ii) for the various canopies, 
describes how plant mass accumulates from top to bottom of 
each canopy. The cLAI profiles for canopies (A)–(D) are iden-
tical since rotation of the plant does not change the distribution 
of leaf mass with respect to depth.

For the rate functions λh ton ( )  and λh toff ( )  we chose

	 λh t a h b b t ton on on on
md( )= −( ) + −( )( )1 1 2

2
	 (12)

	 λh t a h b b t to o o o
md

ff ff ff ff( )= −( ) + −( )( )1 1 2
2

	 (13)

so that the switching rates depend linearly on height, h, and 
parabolically on t. This is the simplest form we can choose 
for eqns (12) and (13) such that they depend on h and t, and 
with their dependence on t being both smooth and symmetrical 
about midday.

We estimate the parameters θ =( )a b b a b bon on on o o o, , , , ,1 2 1 2
ff ff ff  

from the sunlit–shaded patterns extracted from ray-tracing data 
by maximum likelihood estimation, as described above. Table 1 
shows the fitted parameters for the various canopies we con-
sidered, and each canopy’s LAI. Notable from the table is that 
aon  and aoff  both tend to be far from zero, indicating that the 
switching rates are strongly dependent on depth within the can-
opy. For many of the canopies aoff  is very close to 1, so that 
the ‘off’ rate at the very top of the canopy is close to zero; this 
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Fig. 4.  Plants, canopies and fitted models: (i) Reconstructed plants (A–O); (ii) cumulative leaf area index as a function of depth; (iii) principal component analysis 
of fitted parameters; and (iv) relationship between the first principal component and LAI. Images of original plant (A); original plant rotated 90° (B), 180° (C) and 
270° (D); original plant randomly rotated and positioned at distances 200 mm (E), 150 mm (F), 125 mm (G) and 100 mm (H); replica of a plant from the same line 
(I); plants from two different wheat lines (J, K); three plants of Bambara groundnut 39 d after sowing (L, M, N) and 80 d after sowing (O). For a detailed descrip-

tion of the lines and reconstructions, see Burgess et al. (2015, 2017a).
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is because patches at the very top are not obstructed by other 
leaves and are hence permanently sunlit. Typically, the param-
eters b1

off  and b2
off  contributing to the ‘off’ rate are larger for 

canopies with higher LAI and the corresponding parameters 
b1

on  and b2
on  in the ‘on’ rate are slightly smaller. This is con-

sistent with the intuition that in dense canopies sun flecks are 
typically shorter and less frequent.

The information in Table 1 can be visualized in two dimen-
sions using principal component analysis (PCA). We per-
formed PCA based on the correlation matrix of the fitted 

a b b a b bon on on o o o, , , , ,1 2 1 2
ff ff ff( )  parameters. The first principal 

component (PC), which explains 59% of the variability, has 
loadings (0.27, 0.54, 0.54, −0.46, 0.18, −0.30) suggesting the 
interpretation that it contrasts the ‘off’ and ‘on’ rates, or in 
other words that it is a measure of typical ‘shadedness’ within 
the canopy. Indeed, the first PC correlates very strongly with 
LAI (Pearson correlation coefficient of 0.984, P  <  10−7) 
[Fig. 4(iii)]. The second PC, which explains 30% of the vari-
ability, has loadings (0.60, −0.09, 0.04, 0.2, 0.60, 0.49), with 
the dominant values corresponding to aon , b1

off  and b2
off . This 

has the interpretation of contrasting the height-dependent part 
of the ‘on’ rate with the constant and time-dependent parts 
of the ‘off’ rate. Taking this together with Fig. 4(iii), which 
shows clear clustering in PC2 according to species, lines and 
planting density, this PC provides insight into how the light 
dynamics between different canopies differ by depth and time 
of day. Plotting PC1 versus PC2, as in Fig.  4(iii), indicates 
very clear clustering of canopies we expect to be similar, 
showing clearly that the PCs (and the fitted parameters from 
which they were computed) encode meaningful information 
about the canopies.

Model evaluation: summary plots and photoinhibition case study

To assess the goodness of fit of Model 2, we show in Fig. 5 
a comparison of the distributions of sunlit and shaded periods, 
aggregated by canopy over h and t. The periods for the ray-
tracer data tend to be slightly more variable than for the fitted 
model, which is consistent with our imposing, via eqns (12) 

and (13), stringent smoothness in the dependence of rates on h 
and t (and imposing the condition that there is no dependence at 
all on the other spatial coordinates), which restricts variability 
between patches. This aside, the histograms match well.

As a further evaluation, we consider how different the outcome 
is if we feed into a photoinhibition model the light dynamics 
simulated from Model 2, rather than from the ray-tracer. To do 
this, it is necessary to estimate diffused light values, as the rate 
of photosynthesis depends on the total intercepted irradiance. 
In contrast to direct light and its properties discussed above, the 
diffused light does not fluctuate during the day, but depends on 
the position of a patch within a canopy, latitude, day of the year 
and time of the day. The latter three attributes (latitude, day and 
time) can be used to calculate the diffused light profile over a 
day on a horizontal surface. Diffused light over all patches has 
the same shape as this profile, but each patch has an individual 
scaling of diffused light amplitude. Figure 6A shows profiles of 
diffused light during a day on a particular patch obtained from 
the ray-tracer (red) and by fitting a scaling factor to the analytic 
expression of direct light (given in the Appendix). We have fit-
ted scaling factors using a least-squares method to all patches 
of line 2 in Burgess et al. (2015). This is shown in Fig. 6B as 
grey dots. To determine the scaling-factor dependence on the 
normalized height, we calculated an average value of the scal-
ing factor in intervals i i i/ , / , , , ;100 1 100 1 99+( )



 = …  (black 

curve in Fig. 6B).
Photosynthetic rate is light-intensity-dependent and so 

depends on the position of the patch, and the light–response 
curves were measured at the top, middle and bottom of the 
canopy (Burgess et  al., 2015). The maximum photosynthetic 
capacity was estimated as 28.6 µmol m−2 s−1 for the top layer, 
12.6 µmol m−2 s−1 for the middle layer and 4.7 µmol m−2 s−1 
for the bottom layer. Light response curves were taken from 
Burgess et al. (2015) (Fig. 6C). As the LAI of the canopy from 
line 2 in Burgess et al. (2015) was close to the LAI of canopy 
G, we used parameter values from Table 1 associated with this 
canopy. We simulated light patterns for all patches for the line 2 
canopy (Burgess et al., 2015) with direct light calculated using 
simulations from Model 2 and diffused light calculated using 
the relationship of the scaling factor and normalized height as 

Table 1.  Parameter estimation for the model eqns (12) and (13). The canopy letters correspond to canopy labels shown in Fig. 4

Canopy LAI
aon b1

on b2
on aoff b1

off b2
off

A 0.69 0.85 3.83 0.031 1. 1.75 0.099
B 0.69 0.85 4.19 0.043 1. 1.54 0.10
C 0.69 0.85 4.40 0.017 1. 2.12 0.087
D 0.69 0.85 4.35 0.057 1. 2.01 0.099
E 1.15 0.79 3.29 0.063 0.94 1.92 0.24
F 2.11 0.62 3.32 -0.017 0.99 4.83 0.38
G 2.89 0.54 3.17 -0.021 0.99 5.58 0.43
H 4.18 0.34 2.14 -0.026 1. 8.29 0.55
I 1.23 0.78 1.73 0.047 1. 1.36 0.072
J 0.76 0.66 2.39 0.096 1. 1.053 0.19
K 1.32 0.64 1.77 0.051 0.99 1.33 0.16
L 0.49 0.62 0.42 0.012 0.55 1.04 0.016
M 0.38 0.73 0.65 0.019 0.51 1.13 0.0075
N 0.39 0.98 0.36 0.025 0.93 1.17 0.0095
O 0.79 0.94 1.034 0.0037 0.43 0.9 0.0033

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article-abstract/122/2/291/5004660 by U

niversity of W
arw

ick user on 25 Septem
ber 2018



Retkute et al. — Stochastic model for sunlit–shaded dynamics 299

0.20

A B

C D

(i) (ii) (i) (ii)

(i) (ii) (i) (ii)

Ray tracer
Stochastic model

0.15

0.10

Fr
eq

ue
nc

y

0.05

0

0.20

0.15

0.10

Fr
eq

ue
nc

y

0.05

0

0.20

0.25

0.15

0.10Fr
eq

ue
nc

y

0.05

0

0.15

0.10

Fr
eq

ue
nc

y

0.05

0

0.50 1.0

Duration (h)

1.5 2.0 0.50 1.0

Duration (h)

1.5 2.0 0.50 1.0

Duration (h)

1.5 2.0 0.50 1.0

Length (h)

1.5 2.0

0.25

0.20

0.15

0.15

0.10

0.05

0

0.10

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

0.05

0

0.25

0.30

0.20

0.15

0.10

Fr
eq

ue
nc

y

0.05

0

0.12

0.14

0.10

0.08

0.06Fr
eq

ue
nc

y

0.04

0.02

0
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distance 100 mm (D). Parameters are as given in Table 1.
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discussed above. A few of the light patterns from different lay-
ers are shown in Fig. 6D.

We compared daily carbon gain calculated based on light 
patterns from both model simulations and ray-tracer output for 
1000 patches selected uniformly at random (Fig. 6E). The val-
ues plotted on the vertical axis are averages over ten realizations 
of sunlit–shaded patterns simulated from the model. The results 
show strong correlation for the two sources of light patterns 
(Pearson correlation coefficient 0.92, P < 10−6). In Fig. 6E we 
have plotted a locally estimated scatterplot smoothing (LOESS) 
curve for the data, and the 1:1 line for comparison. These lines 
deviate somewhat and we note two reasons why. First, we have 
assumed, via eqns (12) and (13), a very smooth dependence 
of the switching rates on height, h. Second, we have made no 
attempt to characterize heterogeneity amongst patches at com-
mon h, so the model characterizes an ‘average’ patch at each 
height h such that, for example, there are no predictions of 
patches with exactly zero carbon gain, unlike for the ray-tracing 
patterns, in which some patches remain permanently shaded. 
Either or both of these can be relaxed at the expense of mak-
ing the model (which is deliberately very parsimonious, involv-
ing only six parameters) more complex (see the Discussion 
section).

Finally, we have used light patterns obtained using the sto-
chastic model to infer the effect of photoinhibition. We ana-
lysed three scenarios: reduction in quantum use efficiency, ϕ , 
reduction in the convexity, θ , and reduction in both φ and θ. It 
has been shown previously in Burgess et al. (2015) that the lat-
ter scenario gives the largest reduction in carbon gain relative to 
a non-inhibited canopy, and this reduction mostly comes from 
the top layer. Results in Fig.  6F show generally good agree-
ment between using the simpler stochastic model and using the 
full ray-tracing data, as in Burgess et al. (2015), in predicting 
the reduction in carbon gain. In the top layer the reduction is 
consistently slightly lower than for the ray-tracer, but this is 
actually more in line than Burgess et al. (2015) with other pho-
toinhibition studies, e.g. Zhu et al. (2004).

DISCUSSION

We have used ray-tracing to compute the light dynamics in 
complex canopies and developed a novel model to characterize 
the dynamics. The model is useful for summarizing vast and 
complex ray-tracing data in a small number of parameters, and 
for simulating light dynamics in a simple and computationally 
cheap way. Comparing fitted models offers a way to understand 
differences in light dynamics between different canopies, and 
the models can be easily simulated to generate realistic light 
patterns to use as inputs to larger-scale models, for example for 
computing absorbed radiation and photosynthetic production of 
a canopy.

In the new field of plant and crop phenotyping, high-reso-
lution 3-D canopy reconstructions can now be developed rou-
tinely, but bottlenecks exist in analysing them for physiological 
function. For example, using the reconstructions available in 
Pound et al. (2014), running the ray-tracer Fast-Tracer to pro-
vide data from a wheat canopy (nine plants) for a simulated 
24-h period can take several days. In comparison the stochastic 
model takes less than a minute to simulate an individual direct 

light pattern without the need to run calculations for all of the 
canopy. Light dynamics characterized by the model are a means 
to investigate canopy photosynthetic responses (as in Fig.  6) 
and various aspects of crop cultivation, such as varietal selec-
tion and altered architectural characteristics, and cultivation 
practices such as cropping system and row spacing.

In this paper we have fitted the models based on ray-trac-
ing data, and so have not avoided the computational cost of 
ray-tracing. However, in work not presented here we have also 
investigated fitting the model to only a small random subset of 
the patches and have found that models fitted this way typically 
do not differ much from the full fitted models. For the small 
subset of patches, sunlit–shaded patterns can be computed by 
simple geometrical reasoning (considering whether there is line 
of sight between a patch and the sun as the day progresses), 
sidestepping ray-tracing altogether. This is highly promising 
for making model-fitting very fast, and thus opens possibilities 
for using the model for high-throughput analysis.

As with any model, our model is only an abstraction, intended 
to be a simple description of something complex, which retains 
only the features of greatest importance at the expense of dis-
carding others. We have made no attempt, for example, to 
describe spatial correlation between the light patterns of dif-
ferent patches. There seems no obvious way to do so without 
retaining the full 3-D geometry of the canopy, and this would 
forsake the simplicity that makes the model useful. In any case, 
we do not foresee many applications of a light-dynamics model 
requiring such high spatial resolution that spatial correlation 
is important. The assumption of independent patches, made in 
constructing eqns (9) and (10), embodies the decision to neglect 
spatial correlation.

There are many natural extensions to the modelling we have 
introduced. We have considered only very simple functional 
forms [eqns (12) and (13)] for the rate functions, but there is 
scope (especially given the scale of the data from ray-tracing 
studies) for exploring much more elaborate forms, or using 
non-parametric methods such as splines. The model could also 
be made more elaborate by allowing for greater heterogeneity 
amongst leaves at a common height, h, perhaps by the inclu-
sion of random effects (e.g. Dunson, 2008). The maximum 
likelihood framework naturally extends to model selection, so 
criteria such as the likelihood ratio (Cox, 2006), and various 
information criteria such as Akaike and Bayes (Burnham and 
Anderson, 2002), each of which is based on the likelihood, can 
be used for formal comparison between different candidate 
models. We have focused our attention on direct light, model-
ling a binary sunlit–shaded state stochastically and the ampli-
tude during sunlit periods by a deterministic light amplitude 
envelope function. We could similarly model scattered and 
diffuse light, and thus model the total incident light flux as an 
additive combination of direct, scattered and diffuse contribu-
tions. A limitation of the current work is that we have focused 
on light dynamics within a static canopy and not yet considered 
the effects of canopy motion, for example due to wind. Even 
moderate wind may substantially impact canopy photosyn-
thesis (Burgess et al., 2016) and a goal of ongoing work is to 
characterize the effect of canopy movement on light dynam-
ics. The technical challenges of imaging and ray-tracing mov-
ing canopies are much more substantial (Burgess et al., 2016). 
However, the mathematical model presented here will, at least 
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as a starting point, be appropriate to apply to ray-tracing data 
from dynamic canopies once such data are forthcoming. An 
ultimate goal is to connect the light dynamics to the movement 
of the canopy, and to connect movement of the canopy to the 
mechanical properties of the plants comprising it. Achieving 
this will enable identification of which plant mechanical prop-
erties can be targeted for improving biomass production and 
yield (Burgess et al., 2016).

The heterogeneity of the light environment influences how 
plants respond to and exploit available resources for photosyn-
thesis and crop production. This has been recently demonstrated 
using recovery from photoprotection (Kromdijk et  al., 2016). 
However, to quantify the impact of a particular photosynthetic 
process (Rubisco activation, stomatal opening, photoprotection) 
on productivity requires knowledge of the precise ‘signature’ of 
light–shade dynamics. For example, longer periods in high light 
and low light are likely to be less productive than rapid fluctua-
tions (Roden and Pearcy, 1993; Burgess et al., 2016). This is 
because rapid fluctuations are likely to result in a higher induc-
tion state of photosynthesis. A high induction state means, for 
example, that Rubisco is maintained in a high state of activation 
and stomata remain open for longer. Longer periods of low light 
cause de-activation of enzymes and stomatal closure. The situ-
ation is complex since, for example, stomata that remain open 
during a period of low light will have a higher transpiration rate 
and hence their instantaneous water use efficiency will be lower 
during this period (Lawson and Blatt, 2014) despite the enhanced 
ability to respond to any new high-light event. Additionally, the 
rapid deactivation of non-photochemical quenching can be an 
advantage in low light (Kromdijk et al., 2016) and during the 
subsequent high-light induction (Hubbart et al., 2012). It is only 
by understanding the precise spatio-temporal light dynamics in 
different canopy structures, aided by models such as those as we 
have presented here, that we can predict the impact of these dif-
ferent processes on whole-plant photosynthesis.

ACKNOWLEDGEMENTS

This work was supported by Biotechnology and Biological 
Sciences Research Council [grant number BB/J003999/1]. The 
authors thank the anonymous reviewers for the suggestions 
and comments, and Professor Xinguang Zhu and Dr Qinfeng 
Song (Shanghai Insititue of Plant Physiology and Ecology, 
Chinese Academy of Sciences) for useful discussions regarding 
Fast-Tracer.

LITERATURE CITED

Athanasiou K, Dyson BC, Webster RE, Johnson GN. 2010. Dynamic ac-
climation of photosynthesis increases plant fitness in changing environ-
ments. Plant Physiology 152: 366–373.

Burgess AJ, Retkute R, Pound MP, et  al. 2015. High-resolution three-
dimensional structural data quantify the impact of photoinhibition on 
long-term carbon gain in wheat canopies in the field. Plant Physiology 
169: 1192–1204.

Burgess AJ, Retkute R, Preston SP, et al. 2016. The 4-dimensional plant: 
effects of wind-induced canopy movement on light fluctuations and photo-
synthesis. Frontiers in Plant Science 7: 1392.

Burgess AJ, Retkute R, Pound MP, Mayes S, Murchie EH. 2017a. Image-
based 3d canopy reconstruction to determine potential productivity in 
complex multi-species crop systems. Annals of Botany 119: 517–532.

Burgess AJ, Retkute R, Herman T, Murchie EH. 2017b. Exploring relation-
ships between canopy architecture, light distribution, and photosynthesis 
in contrasting rice genotypes using 3D canopy reconstruction. Frontiers in 
Plant Science 8: 734.

Burnham JP, Anderson DR. 2002. Model selection and multimodel infer-
ence: a practical information-theoretic approach. New York: Springer.

Cambell JS, Normal JM. 1998. An introduction to environmental biophysics. 
New York: Springer.

Cox DR. 2006. Principles of statistical inference. Cambridge: Cambridge 
University Press.

Dunson D. 2008. Random effect and latent variable model selection. New 
York: Springer.

Hubbart S, Ajigboye OO, Horton P, Murchie EH. 2012. The photoprotec-
tive protein PsbS exerts control over CO2 assimilation rate in fluctuating 
light in rice. Plant Journal 71: 402–412.

Kim JH, Lee JW, Ahn TI, Shin JH, Park KS, Son JE. 2016. Sweet pepper 
(Capsicum annuum L.) canopy photosynthesis modeling using 3D plant 
architecture and light ray-tracing. Frontiers in Plant Science 7: 1321.

Kromdijk K, Glowacka K, Leonelli L, et al. 2016. Improving photosynthesis 
and crop productivity by accelerating recovery from photoprotection. 
Science 354: 857–861.

Lawson T, Blatt MR. 2014. Stomatal size, speed, and responsiveness impact on 
photosynthesis and water use efficiency. Plant Physiology 164: 1556–1570.

Long SP, Humphries S, Falkowski PG. 1994. Photoinhibition of photosyn-
thesis in nature. Annual Review of Plant Biology 45: 633–662.

Maddonni GA, Otegui ME, Andrieu B, Chelle M, Casal JJ. 2002. Maize 
leaves turn away from neighbors. Plant Physiology 130: 1181–1189.

Nelder JA, Mead R. 1965. A simplex method for function minimization. 
Computer Journal 7: 308–313.

Pearcy RW, Yang WM. 1996. A three-dimensional crown architecture model 
for assessment of light capture and carbon gain by understory plants. 
Oecologia 108: 1–12.

Pound MP, French AP, Murchie EH, Pridmore TP. 2014. Automated re-
covery of 3D models of plant shoots from multiple colour images. Plant 
Physiology 166: 1688–1698.

Qu M, Hamdani S, Li W, et al. 2016. Rapid stomatal response to fluctuating 
light: an under-explored mechanism to improve drought tolerance in rice. 
Functional Plant Biology 43: 727–738.

Retkute R, Smith-Unna SE, Smith RW, et  al. 2015. Exploiting heteroge-
neous environments: does photosynthetic acclimation optimize carbon 
gain in fluctuating light? Journal of Experimental Botany 66: 2437–2447.

Roden JS, Pearcy RW. 1993. Photosynthetic gas exchange response of poplars 
to steady-state and dynamic light environments. Oecologia 93: 208–214.

Ross J, Sulev M, Saarelaid P. 1998. Statistical treatment of the PAR vari-
ability and its application to willow coppice. Agricultural and Forest 
Meteorology 91: 1–21.

Ross SM. 2006. Simulation, 4th edn. Orlando: Academic Press.
Ruban AV, Belgio E. 2014. The relationship between maximum tolerated light 

intensity and photoprotective energy dissipation in the photosynthetic 
antenna: chloroplast gains and losses. Philosophical Transactions of the 
Royal Society of London B: Biological Sciences 369: 20130222.

Sinoquet H, Thanisawanyangkura S, Mabrouk H, Kasemsap P. 1998. 
Characterization of the light environment in canopies using 3D digitizing 
and image processing. Annals of Botany 82: 203–212.

Song Q, Zhang G, Zhu XG. 2013. Optimal crop canopy architecture to maxi-
mise canopy photosynthetic CO2 uptake under elevated CO2 – a theoretical 
study using a mechanistic model of canopy photosynthesis. Functional 
Plant Biology 40: 109–124.

Townsend AJ, Retkute R, Chinnathambi K, et al., 2018. Suboptimal accli-
mation of photosynthesis to light in wheat canopies. Plant Physiology 
176: 1233–1246.

Vialet-Chabrand S, Matthews JSA, Simkin AJ, Raines CA, Lawson T. 
2017. Importance of fluctuations in light on plant photosynthetic acclima-
tion. Plant Physiology 173: 2163–2179.

Walters RG. 2005. Towards an understanding of photosynthetic acclimation. 
Journal of Experimental Botany 56: 435–447.

Zhou K, Deng X, Yao X, et al. 2017. Assessing the spectral properties of sunlit 
and shaded components in rice canopies with near-ground imaging spec-
troscopy data. Sensors 17: E578.

Zhu XG, Ort DR, Whitmarsh J, Long SP. 2004. The slow reversibility of 
photosystem II thermal energy dissipation on transfer from high to low 
light may cause large losses in carbon gain by crop canopies: a theoretical 
analysis. Journal of Experimental Botany 55: 1167–1175.

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article-abstract/122/2/291/5004660 by U

niversity of W
arw

ick user on 25 Septem
ber 2018



Retkute et al. — Stochastic model for sunlit–shaded dynamics302

APPENDIX

Direct and diffused light

Solar ray direction depends on the time and location via day, d, 
hour, t, and latitude, la  (Cambell and Normal, 1998). The sun 
declination angle is

	 s
d

=−
+






23 5

10

365
. cos 	 (14)

The hour angle is

	 h t tmang = −( )0 262: ; 	 (15)

where tm is time of solar noon. The solar elevation angle is

	 θs a as l s l= ( ) ( )+ ( ) ( ) ( )( )arcsin sin sin cos cos cos hang . 	(16)

The solar azimuth angle is:

	 ϕ πs
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Then the direction of direct light is given by a vector (x; y; 
z) with:
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Here y > 0 if t < 6 h, and y≥ 0  if t ≥ 6  h.
Direct light irradiance on a unit surface is given by

	
A Adr s

s= ( )( )α βθ
1

sin cos
	 (18)

where α is atmosphere transmittance, As is a solar constant 
( 2600 molµ  m−2  s−1 ) and β  is the angle between the light 
ray and the normal to the surface.

Diffused light irradiance on a horizontal plane is

	 A Adf s s
s= −( ) ( )( )0 5 1 1. /α θθsin sin 	 (19)

Diffused radiation does not depend on orientations of a leaf 
(Cambell and Normal, 1998).

Light response curve

The response of photosynthesis to light irradiance, A, is calcu-
lated using a non-rectangular hyperbola:

	 P
A A A A A

A=
+ +( ) − + +( )( ) + +( )

−
ϕ α ϕ α θϕ α

θ
α

1 1 4 1

2

2

max max max

max

The light response curve is defined by four parameters: the 
quantum use efficiency, ϕ, the convexity, θ, the maximum 
photosynthetic capacity, Amax, and the rate of respiration, 
which we assume is proportional to maximum photosynthetic 
capacity, .αAmax
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