

warwick.ac.uk/lib-publications

Original citation:
Hui, Xia, He, Ligang, Wang, Bin, Chang, Cheng, Han, Xie and Maple, Carsten (2018)
Developing offloading-enabled application development frameworks for android mobile
devices. In: The 20th IEEE International Conference on High Performance Computing and
Communications (HPCC-2018) , Exeter, UK, 28-30 Jun 2018

Permanent WRAP URL:
http://wrap.warwick.ac.uk/102607

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP url’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/102607
mailto:wrap@warwick.ac.uk

Developing Offloading-enabled Application
Development Frameworks for Android Mobile

Devices

Hui Xia*, Ligang He$1, Bin Wang*, Cheng Chang*, Xie Han#, Carsten Maple+

* School of Information Science and Engineering, Hunan University, China

$ Department of Computer Science, University of Warwick, UK

#School of Electronics and Computer Science and Technology, North University of China, China

+WMG, University of Warwick, UK

Email: ligang.he@warwick.ac.uk

Abstract. Mobile devices, such as smartphones, offer people great convenience in accessing information and
computation resources. However, mobile devices remain relatively limited in terms of computing, memory and
energy capacity when compared with desktop machines. A promising solution to mitigate these limitations is to
enhance the services mobile devices can provide by utilizing powerful cloud platforms through offloading
mechanisms, i.e., offloading the heavy information processing tasks from mobile devices to the Cloud. This paper
addresses this issue by developing two offloading-enabled application development frameworks by adapting
certain Android OS interfaces. The applications developed using these frameworks will be equipped with
offloading capability. In the first framework, each application is selfish and makes offloading decisions
independently, whereas in the second, a central offloading manager resides in the mobile device and is responsible
for making the offloading decisions for all applications. The two frameworks are designed in a way that
application developers only need to make minimal changes to their programming behavior. Experiments have been
conducted that verify the feasibility and effectiveness of the offloading mechanisms that are proposed.

Keywords: Mobile computing, computational offloading, information processing.

1. Introduction

Mobile devices, such as smartphones with microprocessor, memory, Internet access and
various applications offer people great convenience in accessing the information and using
computational resources. However, mobile devices are still limited in computing, memory
and energy capacity, compared with desktop servers. A promising solution to mitigate the
limitations is to integrate the mobile devices with powerful cloud platforms through
offloading mechanisms, i.e., offloading the heavy information processing tasks from mobile
devices to the Cloud [1]. For this purpose, this paper develops two offloading mechanisms:
Selfish Offloading Mechanism (SOM) and Global Offloading Mechanism (GOM). SOM is
utilised by each individual application on the mobile, with each application assuming it has
exclusive usage of the resources in the mobile device, making offloading decisions
independently. In contrast, GOM is adopted by the mobile device and acts as a central
offloading manager for all applications.

These two offloading mechanisms are developed for mobile devices with the Android
Operating System [2] (OS) and adapt certain functions in Android OS. Application
developers can integrate SOM and GOM allowing applications developed to have an
offloading capability. Although developers need to change their programming behaviors to
some extent, SOM and GOM are designed in the way that the changes in the application
development procedure is minimal. In particular, SOM offers a Java Class to encapsulate the
offloading, while GOM is packaged as a separate application that make the offloading
decisions for all applications in the device.

Overall, this paper make the following contributions: i) we design a Selfish Offloading
Mechanism and implement as a Java class; ii) we design a Global Offloading Mechanism and

1
Corresponding author

implement as an independent application; iii) we demonstrate that SOM and GOM are
effective by conducting experiments on a real cloud platform.

The rest of this paper is organized as follows. Section 2 presents related work, before the
design of SOM and GOM are presented in Section 3. Section 4 presents the evaluation of
experiments and the paper is concluded in Sections 5.

2. Related Work

There are the existing research studies [3,4,5] to investigate offloading strategies and
frameworks. The research on the first aspect mainly focuses on the theoretical analysis of
better offloading strategies [6,7,8,9], while the research on the latter aspect focuses on
developing the application development frameworks that enable the applications to have an
offloading capability.

Aimed at energy management, a compile-time framework supporting remote task
execution was first introduced in [10]. Based on the same approach, a more detailed cost
graph was used in [11], with a parametric analysis on its effect at runtime presented in [12].
Another compiler-assisted approach was introduced in [13], which turns the focus to reducing
the application's overall execution time. Spectra, [14], adds application fidelity (a run-time
QoS measurement) into the decision making process and uses it to leverage execution time
and energy usage in its utility function. Spectra monitors the hardware environment at run-
time and choose between programmer pre-defined execution plans. Chroma [15] builds on
Spectra but constructs the utility function externally in a more automated fashion. The offload
decision engine applies an integer programming technique to produce allocation schemes.
Aimed at reducing the communication costs, [16] proposes the concept of cloudlets, which
bring the distant Cloud to the more commonly accessible WiFihotspots. A dynamic VM
synthesis approach is proposed in [16].

Cuckoo [17] integrates the popular open source Android framework with the Eclipse
development tools [18]. It provides a simple programming model, allowing an interface for
implementing the computation tasks to be executed locally in the mobile device and remotely
in the Cloud; Cuckoo makes the offloading decisions at runtime. It is also equipped with a
common remote server, which is used to run the computation-intensive services offl the
mobile.

MAUI [19] provides a programming environment in which developers use a
"remoteable" keyword to declare the methods that can be run remotely in the Cloud. MAUI
uses the four features of the .NET common language runtime to perform computation
offloading. It uses code portability to produce two versions of smartphone applications, one
running locally and the other running on a remote server. In addition, MAUI uses the type
security feature to send the application state to the remote execution method. Each method of
the application is analyzed and the serialization characteristics are used to determine its
network transportation costs.

3. Design and Implementation of SOM and GOM

3.1 The underlying mechanisms and functions for developing SOM and GOM
There are four types of components in an Android application: Activity, Service, Content

Provider, and Broadcast Receiver. Of these, Activity and Service are the two components that
relate to this work. The Activity component provides an interface that interacts with the users,
e.g., takes data input by users. The Service component runs in the background, performing the
actual computations of an application.

When a user launches an application on a mobile device, it invokes an Activity
component that provides the user's graphical interface. The Activity component then binds to
the service currently running or start a new service. Services can be shared between multiple

activities. Once the Activity is bound to the running service, it can invoke service operations
through Inter-Process Communication (IPC). In particular, the Activity issues a request to
invoke the Service. The request is passed to the proxy subcomponent residing within the
Activity. The request is further passed, by the Android kernel, to the stub sub-component
within the Service. Finally, the stub invokes the actual service operations implemented in the
Service component.

The underlying IPC mechanism in Android is implemented through the IBinder
interface. IBinder is a base interface for calling a remote object and the core part of the
lightweight remote procedure call mechanism. This interface describes the abstract protocol
for interacting with a remote object. The frameworks developed in this work do not
implement this interface directly, but rather extend it. The key method in the IBinderinterface
is transact(), which allows the programmer to send a call to an IBinderobject. The transact()
method is matched by the Binder.onTransact() method in the Binder interface in the Service
component, i.e., the call sent by transact() will be received by onTransact().

3.2 The Design of SOM

Figure 1. The architecture of SOM

The architecture and the execution flow of the SOM is illustrated in Figure 1. In SOM,
the MainActivity method calls the proxy. In the proxy, XBinder, which extends from IBinder,
is invoked. The internal structure of XBinder is illustrated in Figure 2. The offloading
decision (by calling the makeDecision method shown in Figure 2) is made inXBinder. If the
offloading decision is yes, the service implemented in the Cloud is invoked (by invoking the
service specified by "http" in Figure 2). Otherwise, the local service is called (by calling
iBinder shown in Figure 2), in which the stub in the Service is called and then the local
service operation (KMeansService in this example) is called.

Figure 2. Internal structure of XBinder in SOM

Figure 3. Internal code of XBinder in SOM

The internal code of XBinder is outlined in Figure 2. Line 1 shows that XBinder extends
IBinder (Line 1).The original transact method is overwritten to insert the function of making
offloading decisions (Line 13-19).

(a) (b)
Figure 4. The comparison between the default programming behaviors and those in SOM

Using SOM, the application developer needs to change his programming behavior to
some extent. All changes are in the proxy code. When the proxy subcomponent in the Activity
calls the stub in the Service, the developer uses the Java Class provided by SOM (i.e.,
XBinder) instead of the default Java Class iBinder. XBinder implements Android’s IBinder
and override its methods. The function for making offloading decisions and the specific
offloaded operations are implemented in in the transact method of XBinder. Figure 4 gives
an example to show the program segments that are different from the default program. Figure
4a is the default program while 4b is the program that is coded utilising SOM. There are 3
changes to the default way of writing the proxy code: i) using our own Java Class XBinder to

declare the variable instead of using Android’s own default Java Class iBinder (Line 2); ii)
using the constructor of XBinder to take in the variables passed from the outside (the default
iBinder) (Line 4-6); iii) using the transact method of XBinder to perform IPC (Line 16).

3.3 The Design of GOM

SOM is used to enable an individual application to have offloading capability. Each
application makes the offloading decisions independently, assuming it has the exclusive use
of resources in the mobile device. In contrast, GOM is used to develop an application (which
we call the Offloading Manager) that makes offloading decisions for all applications on the
mobile device. In GOM, all applications send their own data to the offloading manager, which
can make a device-wide optimal offloading decision based on the data collected, such as the
global status of the resources and other variables in the mobile device. The architecture of
GOM is shown in Figure 5. In this case the operation is different from SOM, and XBinder in
the proxy of every application calls the service (DecisionService) in the offloading manager
to make offloading decisions.

Figure 5. The architecture of GOM

Figure 6. The code structure of the XBinderin GOM

The application developer also needs to change the default way of programming to use

GOM. As with SOM, the developers need to use XBinder to provide IPC communications in
GOM. In addition, the developers need to use the other Java Class provided in GOM to bind
to the offloading decision application. The XBinder in GOM is more complex than the
XBinder in SOM. XBinder in GOM also needs to pass the IBinder interface object. In the
transact method, the decision making algorithms are invoked to use the IBinder interface to
make decisions. The code in the GOM XBinder is outlined in Figure 6.

As can be seen from Figure 6, The IDecision variable is created in the XBinder
constructor (Line 3). The iDecision variable refers to the Service in the offloading manager
application. The makeDecision method in iDecision is called to make offloading decisions
(Line 12).

4. Experiments
In this section we use a smartphone application to showcase the applicability and

effectiveness of SOM and GOM. We measure the energy consumption and execution time of
the mobile application in both native execution and offloading-enabled execution.

4.1 The Offloading Strategy
The purpose of this work is to develop an application development framework to enable

the applications to have the offloading ability, not to develop better offloading strategies. In
the exemplar application, we adopt an existing offloading strategy from the literature [20, 21],
as shown in Eq. 1, where C is Computation size; D is Communication size; M is the
Computation speed of the mobile device; Pc is the energy consumed for computation in a time
unit; Ptr is energy consumed for communication in a time unit; Pi is energy used when idle for
a time unit; S is the computation speed of the cloud server; B is the network bandwidth. The
values of all these parameters can be benchmarked. When the output of the equation, which is
the energy saved when the computation is offloaded, is positive, it is regarded beneficial to
offload the computation to the cloud. Otherwise, the computation is run locally on the mobile
device.

(1)
4.2 Mobile Device and Cloud Resources

In the experiment, the smartphone we use is a Huawei Honor 8. The following is the
specification of this smartphone: Android OS version 7.0, the Hisilicon Kirin 950 processor
with 4GB memory.

There are a number of cloud service providers such as Ali cloud, Baidu cloud, Amazon
cloud [22], Qing cloud [23] and others. In our experiment, the Qing cloud is used as the cloud
server. We rented a server in the Qing cloud, and created a router and switch, and acquired a
public network IP and other resources. Figure 7 shows the main resources we rented on the
Qing cloud and its cost. The specification of the cloud server is as follows: Ubuntu Server
16.04 LTS 64bit, dual core, 2G memory. Figure 8 lists the specification of the Cloud server.

Figure 7. The resources rented in the Qing cloud in the experiment

We use the Trepn Profiler to test the power consumption of smartphone in order to

calculate the energy consumption of the phone. Figure 8 shows the result of the Trepn
Profiler.

Figure 8. The server configuration in Qing cloud

Figure 9. Testing the power consumption with the Trepn Profiler

4.3 Mobile application in the experiment

The mobile application we use in the experiments is an image segmentation application
based on the K-means clustering algorithm. The main steps of the algorithm are as follows:

Figure10. The energy consumption of the native App, application developed by SOM and
application by GOM

Input: the number of clusters k, the number of iterations m and the input image.
Output: A segmented image.
1: Select the initial center of k clusters;
2: For a sample, find the distance to the k clusters and place the sample in the cluster

with the shortest distance;
3: Using the mean and other methods to update the center of the clusters;
4: Repeat Step 2 and 3 for m times.

We developed the offloading-enabled image segmentation application using SOM and

GOM. We tested the execution time and power consumption in three scenarios: i) native
application, ii) application developed with SOM and iii) application with GOM.

Figure 11. The execution time of the native application, application developed with SOM
and application with GOM

4.4 Experimental Results
Figure 10 shows the energy consumption of the applications. It can be seen from Figure

10 that compared with the native application, SOM and GOM reduce the energy consumption
when m is greater than 15. The gap increases as the number of iterations (m, i.e., the problem
size) increases. This is because as m increases it becomes increasingly better off to offload the
computation to the Cloud for energy savings. The reason why SOM is worse than the native
application when m is less than 15 is because with SOM each application thinks it
monopolizes the usage of resources in the mobile device. However, it is not the case in reality.
So when all applications decide to offload the computation to the cloud, they compete for the
communication bandwidth. As a result, offloading is an unfavourable decision in reality for
such situations. On the other hand, the application by GOM always makes the best decision.
Another observation from the figure is that when m becomes bigger (than 15 in the figure),
the energy consumed by the application with SOM is almost the same as that by GOM. This
is because when m is big, offloading is always a better decision, no matter whether making a
global decision or individual decision.

Figure 11 shows the execution time of the applications. The first observation from Figure
11 is that the native application achieves the shortest execution time among all three
applications. This is because the objective function for the offloading decision used in GOM
and SOM is energy saved. Therefore, GOM and SOM will offload the computations to the
cloud as long as energy can be saved, even if this will increase the execution time. If this is an
undesirable situation, it can be solved by adjusting the offloading strategy (e.g, also taking the
execution time into account when making offloading decisions). When m becomes big
(greater than 40 in this figure), the applications developed by SOM and GOM also have
shorter execution times.

5. Conclusion

In this paper, we have developed two offloading-enable application frameworks, SOM and
GOM, for Android mobile devices. With SOM, each application can make individual
offloading decisions; with GOM, an application is developed as a central offloading manager,
which makes offloading decisions for all applications on the mobile device. In these
frameworks, a new Java class, XBinder, extends the original class IBinder in the Android OS.
The two frameworks are tested with a real mobile application and on a real Cloud platform
called Qing.

6. Acknowledgement

This work is partially sponsored by Shandong Worldwide Byte Security Information
Technology, Co., Ltd, and by PETRAS, the UK Research Hub for Cyber Security of the
Internet of Things, through the EPSRC Grant EP/N02334X/1.

References

[1] Kumar, K., Lu, Y.-H.: Cloud computing for mobile users. Computer 99 (2010)
[2] Android, http://developer.android.com/
[3] Chun, B.-G., Maniatis, P.: Augmented smart phone applications through clone cloud
execution. In: Proceedings of the 12th Workshop on Hot Topics in Operating
[4] Kemp, R., Palmer, N., Kielmann, T., Seinstra, F., Drost, N., Maassen, J., Bal, H.E.:
eyeDentify: Multimedia Cyber Foraging from a Smartphone. In: IEEE International
Symposium on Multimedia (2009)
[5] C. Shin, J.-H. Hong, and A. K. Dey, ‘‘Understanding and prediction of mobile
application usage for smart phones,’’ in Proc. ACM Conf. Ubiquitous Comput. (UbiComp),
2012, pp. 173–182
[6] B. Gao, L. He, "Modelling Energy-Aware Task Allocation in Mobile Workflows", The
10th Annual International Conference on in Mobile and Ubiquitous Systems: Computing,
Networking and Services (MobiQuitous), 2013
[7] B. Gao, L. He and C. Chen, "Modelling the Bandwidth Allocation Problem in Mobile
Service-Oriented Networks", The 18th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems (MSWiM'15), Cancun, Mexico, November
2-6, 2015
[8] B. Gao, L. He, L. Liu, K. Li and S. Jarvis, "From Mobiles to Clouds: Developing
Energy-aware offloading Strategies for Workflows", The 13th IEEE/ACM International
Conference on Grid Computing (Grid 2012)
[9] Bo Gao, Ligang He and S. A. Jarvis, "Offload Decision Models and the Price of Anarchy
in Mobile Cloud Application Ecosystems," in IEEE Access, vol. 3, no. , pp. 3125-3137, 2015.
doi: 10.1109/ACCESS.2016.2518179
[10] U. Kremer, J. Hicks, and J. M. Rehg, ‘‘Compiler-directed remote task execution for
power management,’’ in Proc. Workshop Compil. Oper. Syst. Low Power (COLP), 2000, pp.
1–8.
[11] Z. Li, C. Wang, and R. Xu, ‘‘Computation offloading to save energy on handheld
devices: A partition scheme,’’ in Proc. Int. Conf. Compil., Archit., Synthesis Embedded Syst.
(CASES), 2001, pp. 238–246.
[12] C. Wang and Z. Li, ‘‘Parametric analysis for adaptive computation offloading,’’ in Proc.
ACM SIGPLAN Conf. Program. Lang. Design Implement. (PLDI), New York, NY, USA,
Jun. 2004, pp. 119–130.
[13] S. Kim, H. Rim, and H. Han, ‘‘Distributed execution for resource constrained mobile
consumer devices,’’ IEEE Trans. Consum. Electron.,vol. 55, no. 2, pp. 376–384, May 2009.
[14] J. Flinn and M. Satyanarayanan, ‘‘Balancing performance, energy, and quality in
pervasive computing,’’ in Proc. 22nd Int. Conf. Distrib. Comput. Syst., 2002, pp. 217–226.
[15] R. K. Balan, M. Satyanarayanan, S. Y. Park, and T. Okoshi, ‘‘Tactics-based remote
execution for mobile computing,’’ in Proc. 1st Int. Conf. Mobile Syst., Appl. Services
(MobiSys), New York, NY, USA, 2003, pp. 273–286.
[16] M. Satyanarayanan, P. Bahl, R. CÆceres, and N. Davies, ‘‘The case for VM-based
cloudlets in mobile computing,’’ IEEE Pervasive Comput., vol. 8, no. 4, pp. 14–23, Oct./Dec.
2009.
[17] Kemp R, Palmer N, Kielmann T, Bal H (2012) Cuckoo: a computation offloading
framework for smartphones. In: Mobile computing application and service, vol 76 of LNCS.
Springer, pp 59–79

[18] Eclipse, http://www.eclipse.org/
[19] E. Cuervo et al., ‘‘MAUI: Making smartphones last longer with code offload,’’ in Proc.
8th Int. Conf. Mobile Syst., Appl., Services (MobiSys), Jun. 2010, pp. 46–62.
[20] M. A. Khan, ‘‘A survey of computation offloading strategies for performance
improvement of applications running on mobile devices,’’ J. Netw. Comput. Appl., vol. 56,
pp. 28–40, Oct. 2015.
[21] C. Chekuri and M. Bender, ‘‘An efficient approximation algorithm for minimizing
makespan on uniformly related machines,’’ in Proc. 6th Conf. Integer Program. Combinat.
Optim.,1998, pp. 383–393.
[22] Amazon Elastic Computing, http://aws.amazon.com/ec2/
[23] QingCloud, https://www.qingcloud.com/

