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Abstract: The Dynamic Time Warping (DTW) algorithm is widely used in finding the global alignment of time

series. Many time series data mining and analytical problems can be solved by the DTW algorithm. However,

using the DTW algorithm to find similar subsequences is computationally expensive or unable to perform accurate

analysis. Hence, in the literature, the parallelisation technique is used to speed up the DTW algorithm. However,

due to the nature of DTW algorithm, parallelising this algorithm remains an open challenge. In this paper, we first

propose a novel method that finds the similar local subsequence. Our algorithm first searches for the possible

start positions of subsequence, and then finds the best-matching alignment from these positions. Moreover, we

parallelise the proposed algorithm on GPUs using CUDA and further propose an optimisation technique to improve

the performance of our parallelization implementation on GPU. We conducted the extensive experiments to evaluate

the proposed method. Experimental results demonstrate that the proposed algorithm is able to discover time

series subsequences efficiently and that the proposed GPU-based parallelization technique can further speedup

the processing.

Key words: Dynamic Time Warping, Time series data, Data mining, Pattern Discovery, GPGPU, Parallel processing

1 Introduction

Time series data is a series of values sampled at
time intervals [1]. Time series data captures a lot
of information including inter-patterns, trends, and
correlations. Also, time series data usually contains a
high volume of numerical data and a time dimension.
Many different techniques have been developed to
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model, compare, and predict time series data.
Due to the ubiquity of time series data, many real life

data mining tasks can be modelled as mining time series
data. These jobs often relate to finding known patterns,
discovering unknown patterns and locating common
subsequences in time series data [2–5]. Locating
common subsequence or sequence matching is an
important domain in time series data analysis.

As suggested in [6] and [7], many applications can
be solved by finding the common subsequence pairs
in two time series data. For example: finding the
association rules in time series data [8,9]; classification
algorithms that are based on building typical prototypes
of each class [10, 11]; anomaly detection [12] and
finding periodic patterns [13].

Dynamic Time Warping (DTW)[14] is a well-known
algorithm for comparing similarities between two time
series data. DTW algorithm is designed for finding
the global sequence alignment in speech recognition.
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To find local alignments, previous researchers focus
on finding subsequence within a longer sequence that
match a shorter query sequence (Subsequence DTW)
[15–17].

However, DTW algorithm suffers from high
computational complexity. A straightforward
implementation of DTW is quadratic in time and
space. Using DTW to find local similarity between
two time series normally requires applying the DTW
algorithm to input data multiple times [18–20].
Therefore, it is necessary to improve the performance
of the DTW algorithm.

Based on the above considerations, many efforts are
made to develop methods and techniques that execute
the DTW algorithm in parallel to reduce the execution
time. Recently, with the development of general
purpose GPUs and programming environment, much
research is conducted to study how to execute the DTW
algorithm on GPUs [21–23].

However, due to the data dependency, parallelising
DTW algorithm on GPU is challeging and suffers
from low parallelisation degree [21]. Therefore, in
this paper, we propose a novel method to parallelise
the DTW algorithm on GPU. Based on dynamic
programming, we first propose a new algorithm of
discovering similar local subsequences between time
series sequences efficiently. Then we parallelise the
proposed algorithm on GPU and use the diagonal order
technique to optimise the memory access pattern in
GPU.

This paper is organised as follows: Section 2 and 3
provide the related work and the backgrounds in time
series data analysis. Section 4 proposes the design of
the subsequence matching method. Section 5 presents
the GPU implementation of the parallelised algorithm.
We present the evaluation and experimental results in
Section 6. Section 7 concludes this paper.

2 Related Work

Many researchers have conducted work in finding
subsequences in time series data. In [6], Lin et
al. developed a symbolic representation-based local
subsequence matching algorithm to find the kth most
similar subsequence, but the algorithm requires a user-
input length of the subsequence. A probabilistic method
for subsequence matching is proposed in [7]. The
method tries to match arbitrary subsequence of one time
series to an arbitrary subsequence of another time series

and analyze the statistical pattern of a result matrix to
locate the position of the sequence. This method also
requires the length of the subsequence to be known
in advance. In [24], a local subsequence matching
algorithm for multi-dimensional data is proposed. [25]
presents a method of discovering exact subsequence
(the length and the shape of the subsequence are known
in advance). The algorithm provides a feasible solution
in finding exact subsequence from short time series in a
reasonable time. However, the time complexity of the
method is still very high, which makes it not practical
to work with long time series.

Toyoda et al. [26] proposed a novel method to
discover similar subsequence in time series. The
algorithm creates two matrices, score matrix and
position matrix respectively. The score matrix locates
the end position of the found subsequence, and the
position matrix uses the information collected from
the process of computing score matrix to calculate
the start position of the subsequence. This method
can find subsequences at any length and of any
shape without producing meaningless subsequences
and reduces required time and space complexity
significantly in the meantime. Moreover, this method
only needs three parameters and does not require
prior knowledge of the subsequences to be found.
However, this algorithm is still lack of scalability thanks
to the exponential increase of matrix size with the
accumulation of time series.

The work in [27] exploits the possibility of
using CPU clusters to speed up DTW. They assign
subsequences starting from different positions of the
time series to different processors, and each processor
performs the classic DTW algorithm. The method
proposed in [28] explores the use of the multi-core
processor to parallelize the DTW algorithm. In the
work, they separate different patterns into different
cores, and each subsequence will be assigned to
different cores, where it is compared with different
patterns naively. In these two parallel implementations,
because a subsequence consists of several hundred or
thousands of tuples, the data transferring becomes the
bottleneck of the system.

In [23] a GPU implementation of DTW algorithm
is proposed. In this work, multi-threads are used to
generate the warping matrix in parallel, but the path
search is performed serially. This implementation
exploits the partial fine-grained parallelism of DTW
itself. Because it separates the matrix generation phase
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and the path search phase into two kernels, it needs
to store and transfer the whole warping matrix for
each DTW calculation, which is also a heavy burden
in the whole system. In [22] the authors claim that
they are “the first to present hardware acceleration
techniques for similarity search in streams under the
DTW measure”. Their GPU implementation is similar
to [27].

3 Background

In this section we review the concepts of time series
and dynamic time warping (DTW) distance [14] as well
as some background knowledge for the ease of further
discussion.

3.1 Time series

A time series can be represented as T =

(t1, t2, . . . , tn) which denotes ordered values in a time
series of n samples [14]. The sequence are measured
within fixed time intervals. A subsequence S with
length k of T is denoted as S = (ti, ti+1, . . . , ti+k),
where 1 ≤ i ≤ n− k.

Given sequence X = (x1, x2, . . . , xn) of length
n and sequence Y = (y1, y2, . . . , ym) of length m,
the similar subsequences of X and Y are Sx and
Sy that satisfy the pre-defined similarity measurement
condition. In this paper, we aim to find all similar
subsequences Xs and Ys from two time series.

3.2 Classic DTW algorithm

Since the classic Dynamic Time Warping (DTW)
algorithm serves as the foundation of our proposed
algorithm in this paper, we introduce the algorithm in
this section briefly.

The classic DTW algorithm is based on dynamic
programming technique, which stores the previous
computed results in a matrix so that the later calculation
can use these results directly without re-computing
them. Each cell in the matrix corresponds to an
alignment of a point in both time series in each
dimension - e.g cell (i, j) corresponds to the alignment
of ith and jth time stamp in each time series. The value
represents the DTW distance between the time series
starting from the first data point up to the corresponding
alignment point.

Therefore, given two time series, X =

{x1, x2, · · · , xm} of length m and Y =

{y1, y2, · · · , yn} of length n. The DTW distance

is calculated by following equations:
d(0, 0) = 0

d(i, 0) = d(0, j) =∞

d(i, j) =|| xi − yj || +min


d(xi−1, yj)

d(xi, yj−1)

d(xi−1, yj−1)

D(X,Y ) = d(m,n)

(1)

Where i = 1, 2, · · · ,m and j = 1, 2, · · · , n and
D(X,Y ) is the DTW distance between X and Y .
|| xi − yj || is the distance between xi and yj , which

can be (xi−yj)
2 or simply | xi−yj |, or other possible

measures.

3.3 Distance Measure

Given two time series X and Y , the distance between
any two points xi and yj from these two time series can
be computed by cost function. There are many choice
of the cost function, the most intuitive way is to use
Manhattan distance, which is the absolute difference
between xi and yj :

Manhattan distance(xi, yj) = abs(xi − yi) (2)

Euclidean distance is a well known method in
measuring distance, which is the root of square
difference:

Euclidean distance(xi, yj) =
√

(xi − yj)2 (3)

Another widely used measurement is the normalised
distance, which measures the difference between the
two points in the sequence with regard to the range
of the sequences. That is, the difference between the
maximum and minimum value in the sequences: Rx =

|X|, Ry = |Y |. The normalised Manhattan distance
can be computed with the following formula:

Manhattan distance norm(xi, yj) =
abs(xi − yi)× 2

Rx + Ry

(4)

3.4 GPGPU and CUDA

Using GPU as a general computing unit has attracted
considerable attention. GPU provides massive parallel
processing power. As the host for the GPU device, CPU
organizes and invokes the kernel functions that execute
on GPU. As shown in Figure 1(a), a GPU device
consists of a number of streaming multiprocessors
(SM), each comprising simple processing engines,
called CUDA cores in the NVIDIA terminology [29].
Each SM has its own shared memory, which is equally
accessible by all CUDA cores in the SM. At any given
cycle, the CUDA cores in a SM execute the same
instruction on different data items. SMs communicate
with each other through the global memory of GPU.

From the programmers’ perspective, the CUDA
model [29] is a collection of threads running in
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Fig. 1 CUDA programming Model

parallel. A warp is a collection of threads that
can run simultaneously on a streaming multiprocessor
(SM). The warp size is fixed for a specific GPU. The
programmer decides the number of blocks and threads
to be executed. If the number of threads is more
than the warp size, they are time-shared internally on
the SM. A collection of threads (called a block) runs
on a multiprocessor at a given time. Multiple blocks
can be assigned to a single multiprocessor and their
execution is time-shared. A single execution generates a
number of blocks. A collection of all blocks in a single
execution is called a grid (Figure 1(b)). All threads of
a block executing on a single multiprocessor divide its
resources equally amongst themselves. Each thread and
block is given a unique ID that can be accessed within
the thread during its execution. Each thread executes a
single instruction set called the kernel.

4 Algorithm for finding all similar
subsequences

In this section, we propose a novel subsequence
pattern mining algorithm. The objective of our
algorithm is to discover all similar subsequences
between two time series. Our proposed algorithm is
based on the classical dynamic time warping algorithm
and is adapted so that it can capture all subsequence
patterns. We first introduce an intuitive strategy to find
all similar subsequences. Then we propose two novel
pattern mining algorithms.

4.1 Naive Subsequence Matching

The naive approach is to break the time series X into
all possible subsequences, and compare them with all
the subsequences of Y using the DTW algorithm and
select the best matches based on the defined matching
condition. That is, for all Xs = (xi, xi+1, . . . , xi+k),
where 1 ≤ i ≤ n − k, compute the DTW distance
against all Ys = (yj, yj+1, . . . , yj+l), where 1 ≤ j ≤

m− l, n and m are the length of X and Y respectively.
This approach will compute m DTW matrix for every

timestamp in X , this is because it needs to examine all
possibilities. Therefore, the complexity of this method
is in quadratic time: O((1+2+ · · ·+n)(1+2+ · · ·+
m)) = O(n2m2).

Another brute force method is to use the shotgun
window and try to match every possible window
between the two sequences. For each window in the
first sequence, compute DTW for all windows in the
second sequence, and select the pairs with the best
match, that is, with the lowest DTW cost. Figure 2
illustrates this approach. The complexity of the shotgun
window approach is O(m2n2/w2), which only reduces
the complexity by w2 times. These naive approaches
are not suitable for large-scale datasets, as the time
complexity increases quadratically.

Fig. 2 The brute force shotgun windows approach. In these
figures, the x-axis represents the length of input time series data
(number of data points), the y-axis represents the value of each
data point.

Both algorithms presented in this section need to
examine all possible combinations between different
time series. Hence, the time complexity of both
algorithms is high, which motivates us to design more
efficient algorithms to find all similar patterns between
two time series.

4.2 Proposed algorithm

The intuitive algorithms work by applying the DTW
algorithm on all subsequences in two time series. Recall
that the DTW algorithm works by adding the distance
between two data points from two time series together.
Therefore, we argue that if the distance between two
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data points is large, it is less likely that it will lead to a
similar pattern.

To verify our hypothesis, we conducted the following
experiment. For two time series X and Y , we use
the cost function to compute the distance between
every data point and store the results in a matrix. We
call this matrix the cross-distance matrix between two
sequences, the value stored in each cell represents the
distance between data points xi and yj . We visualise
this matrix in Figure 3. In this figure, the darker area
represents small values, and they correspond to the data
points that have a shorter distance. From Figure 4, we
can see that the alignments lie in the low-cost areas
in the matrix, where the colours are the darkest in the
visualisation.

Fig. 3 Normalised Manhattan Cost Matrix. In two input data
frames, the x-axis represents the length of input time series
data (number of data points), the y-axis represents the value of
each data point. The x and y-axes in the Distance/Cost matrix
represent the distance between two corresponding data points.

Fig. 4 Annotated Cost Matrix. In two input data frames, the
x-axis represents the length of input time series data (number
of data points), the y-axis represents the value of each data
point. The x and y-axes in the Distance/Cost matrix represent
the distance between two corresponding data points.

Based on the finding above, we modify the classic
DTW algorithm so that it will only search for similar
subsequences from the low-cost values cells.

In this algorithm, we first determine the low-cost
values of the input time series. To achieve this, we
introduce the cost threshold t, which is defined as the
minimum average cost for each matching data points.
This threshold t is used to determine whether to start
or continue a DTW calculation. The procedure should
accept the alignment (i, j) (1 ≤ i ≤ N and 1 ≤ j ≤
M ) if dtwDistance

dtwLength
< t, where:

dtwDistance =
∑

i,j∈warppingPath

cost(xi, yj) (5)

and dtwLength is the length of the warpping path.
If the DTW distance is smaller than this threshold,

the path is considered as a possible match and will be
included in the further computation.

To avoid over-warping in the warping path during
the searching, the window constraint is imposed on
the computation. In this method, we define an offset
threshold o to control the length of the warping window,
as illustrated in Figure 5. In this figure, the warping
window is defined by the red region, and the threshold
o is the length of the warping window offset from
the starting position. With the offset threshold, the
computation of DTW will stop when the computation
reaches the warping window boundary, and therefore,
the warping path will not exceed the length of the
warping window.

Fig. 5 Offset Threshold and Warping Window

In some cases, the matching subsequences founded
by the DTW algorithm may be too short to be
considered as a valid match. To tackle this problem,
we define the window threshold w to filter out the
subsequences that are too short. The window threshold
w is defined as the minimum alignment length of a
sequence. As shown in Figure 6, suppose the red line
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is a warping path, the length of the warping path must
be longer than w for the subsequence to be considered.

Fig. 6 Window Threshold: Warping Path Length

4.3 Formal Definition of the algorithm

Based on the discussion in the previous sections, we
first summarise the problem as the following:

Given sequence X = (x1, x2, . . . , xn) of length
n and sequence Y = (y1, y2, . . . , ym) of length
m, the algorithm searches for all subsequence S =

si, si+1, . . . , si+k, where S is a set of all subsequence
of both X and Y that satisfy the following conditions:

(1) The cost of the alignment per data point is less
than t, that is, d

l
<= t. Where : d is total

cost of the alignment, i.e. the sum of the cost
of every alignment point in the warping path of
the matching subsequence; l is the length of the
warping path, i.e. the total number of the alignment
points in the warping path.

(2) The offset of the warping path from the perfect
diagonal line must not exceed o data points, as
explained in subsection 4.2.

(3) The length of the warping path must be longer
than the window threshold w, as explained in
subsection 4.2. If the found match is too short, i.e.
smaller than w, this match will not be included in
the final result.

The proposed algorithm is based on the dynamic
programming, which updates a matrix of size m × n,
where m and n are the length of two time serials X and
Y respectively. In our algorithm design, we first create
the following matrix to store the intermediate and final
results:

• D: This matrix is used to hold the cumulative time
warping cost, which takes O(mn) space.

• C: This matrix is used to store the distance
between two data points. It is worth noting that this
matrix is optional, since the cost between two data
points can be computed on the fly while updating
D.

• L: This matrix stores the current length of the
warping path of the corresponding alignment.
We increment the length of warping path while
calculating the cumulated cost and finding the
matched subsequences. We use the value stored
in this matrix to determine if the match can be
included in the final results.

• R: This matrix is the region-marking matrix that
stores the position of the start point and end point
of the matched subsequences, which will be used
in the lookup and the trace-back processes.

• P : This matrix is used to store the direction
of previous alignment point of the warping path,
which is used in trace back to find the warping
path.

The proposed algorithm is performed in three steps:
initialisation, update the matrix, and find the path(trace
back), which are detailed as follows.

(1) Initialisation: The algorithm initialises all the
matrices to zero and initialises cumulative cost
matrix D to infinity. Therefore, during the
update, the infinity will be ignored in the minimum
comparison. If required, the cost matrix C can be
computed.

(2) Subsequence DTW calculation : This step
performs the modified DTW algorithm. The
algorithm starts from the top left position of the
matrices, and iterates these matrices in the diagonal
order.

If the current cell in the matrix is not part of any
warping path and the cost of the current alignment
is smaller than the cost threshold t, we mark this
position as the start point in the region marking
matrix R. Then we set the length of the warping
path from the current cell in length matrix L as 1,
update the cumulative cost to the current cost, and
update other matrices accordingly. Otherwise, if
the cost of current alignment is not smaller than
threshold t, then we move on to the next position.
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If the cell being examined belongs to a warping
path, then we select the cell with the smallest
cumulative cost from the warping path. Next, we
compute the average cost by adding the cost of the
current position to the cumulative cost and divide
this value by the total length. If the sum of the
average cost and the cost of the current cell are
smaller than threshold t, we include this cell as part
of the matching subsequence from the cell with the
smallest cumulative cost in the warping path, and
update L, D, R, P respectively.

If all the elements in the warping path are not part
of any matching subsequences, we first determine
if the cost of this cell is smaller than t. If it is, then
we start a new subsequence from the current cell
and update all the matrices accordingly.

(3) Finding Paths: in this step the algorithm simply
uses matrix R and L to find all the matched
subsequences. The algorithm also uses threshold
w to check if the length of the warping path is
valid, then use P to trace back the warping path
and return the results.

We outlined the above procedure in algorithms 1 and
2.

4.3.1 Further improvement
The algorithm described in the last section uses

the minimum cumulative cost in matrix D to select
the best cell for the DTW path. This approach
requires the computation of the cumulative cost and the
extra memory to store the results. Therefore, in this
section, we propose a greedy algorithm to overcome this
problem and further improve the performance.

The design of the greedy algorithm is based on
the Markov assumption. That is, instead of using
the cumulative cost, we only select the cell with the
minimum cost from the warping path, and assume that
the path from this cell will lead to a path with the lowest
cumulative cost. With this assumption in mind, we
change line 10 and line 12 in Algorithm 1 to Equation 6
and 7, respectively, and remove lines 16 and 22.

minpre = min(C[i, j − 1], C[i− 1, j], C[i− 1, j − 1]); (6)

mini,minj = argmin([C[i, j − 1)], C[i− 1, j], C[i− 1, j − 1]); (7)

However, compared to the original design, the greedy
algorithm does not achieve significant improvement
in terms of performance and space. This is due

Procedure 1: DTW-based Subsequence Pattern Mining
Input: Time series X and Y , threshold t and o
Output: Matrices with subsequence matching info: D, L, R, P

1 Initialisation: D to inf ;
2 L, R and P to 0 ;
3 calculate cost matrix C ;

/* begin dynamic programming */
4 for i = 1 : length(X) do
5 for j =1 : length(Y) do
6 if i == 1 and j == 1 then
7 minpre = 0;
8 mini = i; minj = j;
9 else

10 minpre = min( D[i-1, j-1], D[i-1, j], D[i, j-1] ) ;
11 minpre = ( minpre == inf ) ? 0 : minpre ;

// set back to 0 if all previous cells are
still in init state

12 mini, minj = argmin( D[i-1, j-1], D[i-1, j], D[i, j-1] ) ;
13 end

14 dtwm = (minpre + C[i, j])/(L[mini,minj] + 1) ;

15 if dtwm ≤ t and L[mini,minj] == 0 then
/* start a new region */

16 D[i, j] = C[i, j] ; // update dtw distance
17 L[i, j] = 1 ; // update path length
18 R[i, j] = (i, j, i, j) ; // update start and end

cell

19 else if dtwm ≤ t then
/* continue from previous region */

20 (si, sj, li, lj ) = R[mini, minj] ; // find si, ji as the
region start cell

// if current not diverge too much from
offset

21 if abs((i− si)− (j − sj)) < o then
22 D[i, j] = minpre + C[i, j] ; // update dtw

distance
23 L[i, j] = L[mini,minj] + 1 ; // update

path length
24 R[i, j] = (si, sj, 0, 0) ; // update start

cell
25 P [i, j] = (mini,minj) ; // update path

26 if i > li and j > lj then
// update end cell if furthest away

27 R[si, sj] = (si, sj, i, j);
28 end
29 end
30 end
31 end

Procedure 2: Find Paths
Input: Matrices with subsequence matching info: L, R, P , threshold o
Output: Matrices Path marking : OP

1 Initialisation: OP to 0 ;

2 for i = 1 : length(X) do
3 for j =1 : length(Y) do

// if this is the start
4 if L[i, j] == 1 then
5 , , li, lj = R[i, j] ; // find end position

6 if L[li, lj] > w then // if path length > w
7 while li > si and lj > sj do
8 mark OP [li, lj] as matching sequence path;
9 (li, lj) = P [li, lj] ; // get previous

step

10 end
11 mark OP [li, lj] as matching sequence path;
12 end
13 end
14 end
15 end
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to the following reasons. First, since the original
algorithm is based on dynamic programming, in every
iteration the cumulative cost is computed based on the
result produced in the last step. Therefore, computing
the cumulative cost is not an expensive operation.
Second, although the greedy algorithm does not require
matrix D to store the cumulative cost, it still uses all
the rest matrices in computation. Hence, the space
complexity is not reduced significantly. In addition, the
greedy algorithm cannot find the optimal path because
it only uses the local optimal results in finding the
subsequence. However, in the DTW algorithm, the
local optimal result may not lead to the global optimal
solution.

5 GPU Acceleration

In this section, we discuss how to use CUDA to
parallelize the algorithm presented in last section. We
first introduce the parallelisation strategy used in our
design, and then present the CUDA implementation.
Further, we present our method to optimise this GPU
implementation for the GPU memory hierarchy.

5.1 Data Dependencies

Recall that our algorithm uses the DTW algorithm
as core to search for similar patterns. In DTW
algorithm, however, the computation of each iteration
depends on the result from the last step, which will
limit the parallelisation degree during the computation.
Therefore, we first analyze the data dependencies in
our algorithm and then design a strategy to improve the
parallelisation degree.

We show the data dependencies of the DTW
computation in 7(a). In the matrix, each cell represents
the DTW distance between two data points. The
computation of each cell depends on the results from
left, top, and top-left cells. That is, for cell (i, j) in the
matrix D, the value of D[i, j] depends on the values in
D[i, j − 1], D[i− 1, j], and D[i− 1, j − 1].

Therefore, for any cell (i, j) in the matrix, all cells
between (0, 0) and (i, j) need to be computed before
calculating the value of position (i, j). In the classic
DTW algorithm, this computation is carried out in the
row or column order. The cells in the same row or
column are computed in sequence. On the other hand,
there is no data dependency between the diagonal cells,
as illustrated in 7(b). The cells connected by a red stripe
have no data dependency. Therefore, these cells can
be computed in parallel. The data dependency exist

(a) Computation Dependencies (b) Anti-diagonal Matrix Update

Fig. 7 Matrix Update Order

between two neighbouring red strips. Therefore, we
can only compute the data within one red strip at time.
We illustrate this in 7(b) with grey arrow. The arrow
indicates the data dependency and compute direction.

Based on the above discussion, we can summarise
the parallel strategy as follows. The computation starts
with the first cell, then updates the cells in the closest
diagonal lines (the red stripe in 7(b)). Since these cells
only depend on the first cell, they can be computed
in parallel. Then the computation moves to the next
diagonal line. By updating the matrix in this way, it is
guaranteed that the data dependency is not broken and
the reasonable degree of parallelism can be achieved.

5.2 Implementation of Parallelisation strategy

The previous section outlines a strategy to update the
matrix in diagonal order. In this section, we describe
how to implement this strategy in CUDA.

To implement this strategy on GPU, we need to
consider how to map the CUDA threads to the data that
need to be processed. Recall that the parallel diagonal
computation model solves the data dependency issue by
computing the matrix cells in diagonal order. Therefore,
for each diagonal line, we can assign one thread to a cell
within this line, and compute these cells in parallel.

An intuitive method to implement this strategy is to
launch one kernel with enough threads, the number
of threads within this kernel is larger or equal to the
longest diagonal. In this design, the computation forms
a loop within the kernel and each iteration processes one
diagonal line. By implementing the algorithm in this
way, we only need to launch one kernel, and therefore,
reduce the overhead of multiple kernel launch.

In this implementation, we assign each column
of the matrix to a thread first. Due to the data
dependency, these threads are not processing each
column simultaneously. Instead, each thread except
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……threads:

t1
t2

t3

t4

t5

nx

ny

ny-1

synchronise

synchronise

synchronise

synchronise

synchronise

synchronise

synchronise

synchronise

synchronise

synchronise

synchronise

synchronise

synchronise

synchronise

synchronise

Fig. 8 Subsequence DTW Matrix Update Threading

the first one starts the processing when the previous
thread finishes processing one cell in the matrix. By
arranging the computation in this way, we can ensure
that the data dependency is preserved and the data in
the same diagonal line can be processed in parallel.
This is because when the first thread processes the first
cell in the matrix, the rest threads are waiting for this
thread to finish. Once this computation is finished, the
thread moves to the next item in the column, and its
consecutive thread can start processing the first cell in
the column assigned to it. These two threads can run in
parallel because the cells involved in the computation
can form a diagonal line in the matrix, and therefore,
there are no dependency between them. However,
as we mentioned in the last section, the results of
the cells within a diagonal line depend on the cells
in the previous diagonal line. Therefore, to enforce
this dependency, we need to synchronise all threads
involved in the computation along the diagonal line.
We illustrate this design in Figure 8. In this Figure,
the orange area represents the matrix that needs to be
processed, the threads are represented by the red arrow,
and the synchronisation point is labelled by the red
diagonal line.

From this Figure, we can see that the computation

forms a parallelogram. The number of threads
needed in the computation equals to the height of
this parallelogram, which is ny. And the number
of iterations required equals to the base of the
parallelogram, which is nx + ny − 1 number of rows.
Therefore, the time complexity of this implementation
is: O(nx + ny − 1), which is a significant reduction
from O(nx× ny).

5.3 Memory Access Optimisation

Coalesced access data in the global memory is
critical to the performance of a GPU application.
Non-coalesced memory access will lead to poor
performance. In this section, we present how to
enforce the coalesced memory access by enabling
the consecutive threads to access consecutive memory
address in our implementation.

Recall that our initial implementation processes the
data in the diagonal order. However, the data is
stored as a matrix in the memory, and the elements on
one diagonal line are not stored consecutively in the
memory. Therefore, to achieve the coalesced access
to the global memory, the data stored in the memory
need to be rearranged so that the elements on the
same diagonal line are stored consecutively in the GPU
memory.

Intuitively, rearranging the matrix can be achieved
by reallocating another 2D array. In this new array,
the length of x-dimension is the length of the longest
diagonal line in the original matrix, while the y-
dimension is the number of the diagonal lines in the
original matrix. In the new array, the diagonal lines
from the original matrix are stored consecutively in the
memory. We illustrate the array in Figure 9.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 

1,1 1,2 1,3 1,4 1,5 1,6 1,7 

2,1 2,2 2,3 2,4 2,5 2,6 2,7 

3,1 3,2 3,3 3,4 3,5 3,6 3,7 

4,1 4,2 4,3 4,4 4,5 4,6 4,7 

5,1 5,2 5,3 5,4 5,5 5,6 5,7 

6,1 6,2 6,3 6,4 6,5 6,6 6,7 

7,1 7,2 7,3 7,4 7,5 7,6 7,7 

8,1 8,2 8,3 8,4 8,5 8,6 8,7 

(a) Original Matrix

0,0 

1,1 0,1 

2,1 1,2 0,2 

3,1 2,2 1,3 0,3 

4,1 3,2 2,3 1,4 0,4 

5,1 4,2 3,3 2,4 1,5 0,5 

6,1 5,2 4,3 3,4 2,5 1,6 0,6 

7,1 6,2 5,3 4,4 3,5 2,6 1,7 

8,1 7,2 6,3 5,4 4,5 3,6 2,7 

8,2 7,3 6,4 5,5 4,6 3,7 

8,3 7,4 6,5 5,6 4,7 

8,4 7,5 6,6 5,7 

8,5 7,6 6,7 

8,6 7,7 

8,7 

(b) Diagonal Matrix

Fig. 9 Rearranging the matrix
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However, as shown in the Figure, storing the diagonal
line into the new matrix leads to the waste of memory
space. To address this problem, instead of storing the
diagonal line into a 2D array, we use a flat array to store
the data from the diagonal line consecutively.

In addition, when calculating the warping boundary
for the offset threshold, it is necessary to know the row
and column position of each element. Therefore, we
create another matrix, namely index matrix I , to store
the index of the flat array in the corresponding row and
column position.

The array indices can be determined through
mathematical derivation, and be calculated in the
initialisation step in parallel. In the next section, we
present how to derive these index numbers in the matrix.

5.3.1 Calculating diagonal index
We draw some small matrix and fill in the index

number to study the relationship between the array
index and the row and column (i, j) in the matrix. The
indices in the upper left corner and bottom-right corner
in the matrix should be calculated differently. This is
due to the following reason. If the index is computed
from left to right, then the upper left part starts from the
left most column, while the bottom right part starts from
the bottom most row. As shown in the Figure 10 and
Figure 11, these figures outlined two situations of the
index number. The matrix represents the alignment of
sequence X and Y , where the size of X is nx and size
of Y is ny. The matrix size is nx×ny; the row index is
represented by i while the column index is represented
by j, as shown in the figure. The red arrows in the
matrix represents the direction of the increment of the
array index.
Top-left:

As illustrated in Figure 10, when j < nx−i, the array
index falls into the top left part in the matrix. We denote
the index of an element in the left most column as Si,
where i is the row index of the element. As shown in
Figure 10(b), the number increases along the red arrow
from the left most column. E.g. index(0, 1) = S1+1;
index(1, 3) = S4 + 3.

For an arbitrary element residing in the top left part
of the matrix (i.e. j < nx − i), if we denote the start
position of the diagonal line that this element belongs
to as Sistart

, then we can compute its index by the
following formula:

index(i, j) = Sistart + j (8)

Fig. 10 Optimised memory access index - top left

Because for any arbitrary element it forms a right
triangle with x and y-axes, the position of istart can be
found by counting the number of steps needed for this
arbitrary element to reach the leftmost column:

istart = i + j (9)

Since the number of elements in each diagonal
line increases in each line, we can use the arithmetic
sequence to calculate the Sistart

. However, as illustrated
in Figure 10(c) and (d), when nx > ny, the computation
has to be considered carefully. Since when the length of
x-axis is greater than that of the y-axis, the arithmetic
sequence stops at ny and increases by ny in each row,
which can be formally defined as:

istart > ny

⇒ i + j > ny
(10)

Hence, we separate the computation in following two
cases:

• Case: i+ j < ny

Recall that the sum of an arithmetic sequence can
be calculated by:

Sn =
n(a1 + an)

2
where :

Sn : sum of n terms;

a1 : first term;

an : n-th term
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As illustrated in Figure 10(a) and (b) we get:
Sistart = 0 + 1 + 2 + · · ·+ istart

=
istart × (istart + 1)

2

(11)

Substituting Equation 11 with Equation 8 and
Equation 9:

index(i, j) = Sistart + j

=
(i + j)× (i + j + 1)

2
+ j

• Case: i+ j ≥ ny

As illustrated in Figure 10(c) and (d), we get:
Sistart = 0 + 1 + 2 + · · ·+ (ny − 1) + (istart − ny + 1)× ny

=
(ny − 1)× ny

2
+ (istart − ny + 1)× ny

(12)

Substituting Equation 12 with Equation 8 and
Equation 9:

index(i, j) = Sistart + j

=
(ny − 1)× ny

2
+

(i + j − ny + 1)× ny + j

Bottom-right:

Fig. 11 Optimised memory access index - bottom right

We now considering the case when j ≥ nx − i,
i.e when the position falls into the bottom-right part of
the matrix as shown in Figure 11. Similar to the top-
left case, two cases need to be considered, as shown in
Figure 11(a),(b) and (c),(d).

We denote the cells (i, j) in the bottommost row
(i.e, where the red arrows start from) as Tjstart

. The
index(i, j) equals to Tjstart

adding the row index

counting from the bottom (called the reverse row index).
We denote the reverse row index by i′, which can be
computed by the formula:

i
′
= nx − 1− i (13)

Hence, we can calculate the index(i, j) by:
index(i, j) = Tjstart + i

′

= Tjstart + nx − 1− i
(14)

Similar to the Top-left case, the jstart is the number
of steps required to reach the left most column from the
current row:

jstart = j − i
′

= j − nx + 1 + i
(15)

The arithmetic sequence is used to calculate the
Tjstart

. In this case, the sequence is in the decreasing
order from ny to ny − 1− jstart. Hence, the arithmetic
sequence starts at the point when:

jstart > ny − nx

⇒ j − nx + 1 + i > ny − nx
(16)

When ny > nx, the computation needs to be
addressed differently. Hence, we handle the calculation
in following 3 cases:

• Case: ny ≤ nx

Tjstart = index(nx − 1, 0) + (ny + (ny − 1)

+ · · ·+ (ny − 1− jstart))

= index(nx − 1, 0)+

(ny + ny − 1− jstart)× (jstart)

2

(17)

Substituting Equation 14 and Equation 15:

index(i, j) =index(nx − 1, 0)+

(2ny − j + nx − i)× (j − nx + 1 + i)

2

+ nx − 1− i

(18)

• Case: ny > nx and jstart ≤ ny − nx

In this case, the Tjstart
is defined as:

Tjstart = index(nx − 1, 0) + nx × jstart (19)

By substituting Equation 14 and Equation 15, we
can compute the index(i, j) as:

index(i, j) = Tjstart + nx − 1− i

= index(nx − 1, 0)+

nx× (j − nx + 1 + i) + nx − 1− i

(20)

• Case: ny > nx and jstart > ny − nx In this case,
we compute the Tjstart

with the following formula:



H Zhu et al.: 13

Tjstart =index(nx − 1, 0) + nx ∗ (ny − nx)

+ (nx + (nx− 1) + · · ·+ (ny − 1− jstart))

=index(nx − 1, 0) + nx ∗ (ny − nx)+

(nx + ny − 1− jstart)× (jstart − (ny − nx))

2

(21)

Again, substituting Tjstart
into Equation 14 and

Equation 15 we get:

index(i, j) =Tjstart + nx − 1− i

=index(nx − 1, 0) + nx ∗ (ny − nx)

+
(ny − j + i)× (j + 1 + i− ny)

2

+ nx − 1− i

(22)

6 Evaluation

To evaluate the effectiveness and efficiency of the
proposed pattern mining algorithm, we have conducted
extensive experiments with different time series dataset
drawn from real life. We first apply the proposed
algorithm on different datasets to evaluate the ability
of the proposed pattern mining method in capturing the
repeated patterns between two time series. Then we
evaluate the performance of the serial implementation
and the parallel implementation. Finally, we evaluate
our proposed technique for memory optimisation.

6.1 Preprocessing and parameters setting

We first evaluate the effectiveness of our proposed
algorithm. In our experiments, the data preprocessing
is needed before the pattern mining process. The
preprocessing step includes removing trend, using
Haar-wavelet-transfrom to smooth and reduce the
complexity of time series with much noise and
fluctuation. Preprocessing is beneficial to pattern
mining, for example, the preprocessing steps such as
Haar-wavelet-transform can reduce the size of the data,
and hence will reduce the computation time.

In our experiments, we use the normalised cost
threshold, offset threshold and window threshold.
Hence, the same parameters can be applied on different
datasets. In normalised cost threshold, we use the
normalised cost function described in subsection 3.3.
Therefore, the cost are in the range between 0 to 1.
The time-series data should also be normalised in the
preprocessing step if they are in similar ranges. In
normalised offset and window threshold, we represent
the offset/window as a factor of the average length of
the time series instead of actual size. Therefore, the
threshold parameters are independent on the dataset.

6.2 Subsequence Pattern Mining

A number of experiments have been conducted to
evaluate the quality of proposed DTW-based pattern
mining algorithm. In this section, we evaluate the
algorithm with different datasets. The dataset used in
these experiments are from the real world, synthetic
data and random data.

6.2.1 Experiments with internet traffic data
Our first experiment is conducted by applying

our algorithm on the datasets containing the same
subsequence with different order. In this experiment,
we use a subset of internet traffic data from The Time
Series Data Library (TSDL) [30]. We crop a small piece
of sequence, around 100 data points, as test dataset X .
We also select another set of data with the similar length
from the original dataset as dataset Y , and certain data
in datasets X and Y are overlapped. In this experiment,
we set the thresholds to the following values: t =

0.13, o = 0.15, w = 0.2. The DTW cumulative
cost matrix and paths for discovered subsequences are
visualised in Figure 12 and Figure 13, respectively.

Fig. 12 Modified DTW method cumulative cost matrix. In
two input data frames, the x-axis represents the length of input
time series data (number of data points), the y-axis represents the
value of each data point. The x and y-axes in the Distance/Cost
matrix represent the distance between two corresponding data
points.

The DTW cumulative cost matrix in Figure 12
shows that the DTW calculation starts from the start
of potential matching subsequence, which is the low
cost regions in the figure, the computation continues
as long as the subsequence is still a eligible candidate.
Figure 13 shows the results of trace back from the DTW
cumulative cost matrix to report matching subsequence
with the length more than the window threshold. These
results demonstrate that the proposed algorithm is able
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Fig. 13 Modified DTW method matched subsequence paths.
In two input data frames, the x-axis represents the length
of input time series data (number of data points), the y-axis
represents the value of each data point. The x and y-axes in
the matrix represent the distance between two corresponding data
points.The matching subsequences between two data frames are
shown with the yellow line.

to capture the subsequence pattens between the time
series. The exact subsequence is discovered, along with
other similar subsequences.

This experiment shows that the modified DTW
method picks up the local alignment regions in the
matrix first, then calculates the possible subsequence
alignments path. However, executing the algorithm
with different distance function and thresholds
will generate slightly different alignment results.
Although the algorithm will find different alignments,
these alignments will still correspond to the similar
subsequence between two sequences.

6.2.2 Effect of different thresholds
The thresholds designed in the proposed algorithm

can help the algorithm to discover the patterns and have
impact on subsequence found by the algorithm. In this
section, we study how the threshold values will affect
the performance of proposed algorithm.

In these experiments, we use the same dataset from
the previous section. This way, we can see the effect
on the results with different thresholds. We first study
the cost threshold t, which controls the toleration of the
matching subsequence. In this experiment, we reduce
the threshold t from 0.13 to 0.05. The results are shown
in Figure 14.

The results shows that by reducing the cost threshold,
the subsequences found by the algorithm lie in the
lower cumulative cost in the path. Therefore, these
subsequences are more similar. On the other hand,

Fig. 14 Result with lower cost threshold. In two input data
frames, the x-axis represents the length of input time series
data (number of data points), the y-axis represents the value of
each data point. The x and y-axes in the matrix represent the
distance between two corresponding data points.The matching
subsequences between two data frames are shown with the
yellow line.

with larger value t, the algorithm will produce more
matching sequences as it will consider more candidates.

We then study the effect of threshold o. This
threshold controls how much the path can be diverged
from the perfect matching sequence path (i.e a one to
one correspondence in time warping path). If the offset
threshold o is too big, the discovered path will include
long tails as demonstrated in Figure 15, which uses
a larger offset threshold of 1. On the other hand, if
the offset is too small, the result may only include the
straight path and they may be clustered together. Unlike
other thresholds, the offset threshold o has a bigger
influence on the quality of the result.

The window threshold is used to filter out the shorter
sequences and only report the matching sequences that
have the warping path longer than the threshold. In this
experiment, we increase the window threshold from 0.2
to 0.3 and plot the results in Figure 16. From this figure,
we can see that by increasing the window length, the
results produced by the algorithm is less than the small
threshold.

6.2.3 Experiments with the data containing spikes
- WordsSynonyms

We now evaluate how the proposed algorithm
performs when the datasets are not perfect. In
real-world time series data, peaks or spikes can be
observed frequently. Thus it is essential to know
how our algorithm can handle this problem. In these
experiments, we use the WordSynonyms time series
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Fig. 15 Result with large offset threshold. In two input data
frames, the x-axis represents the length of input time series
data (number of data points), the y-axis represents the value of
each data point. The x and y-axes in the matrix represent the
distance between two corresponding data points.The matching
subsequences between two data frames are shown with the
yellow line.

Fig. 16 Result with larger window threshold. In two input
data frames, the x-axis represents the length of input time series
data (number of data points), the y-axis represents the value of
each data point. The x and y-axes in the matrix represent the
distance between two corresponding data points.The matching
subsequences between two data frames are shown with the
yellow line.

data from UCR Time Series Classification Archive [31],
which contains the possible patterns but also contains
the spikes in one of the sequences. In this dataset, the
training and testing datasets are different but are from
the same source.

We compare the training and testing data from
this dataset to evaluate our pattern mining algorithm.
Unlike the training data, the testing dataset contains
spikes in it. In order to see how well our algorithm
performs, we compare the results produced with the
original dataset against the dataset with the spikes

being removed. There are many different techniques to
remove the spikes from the dataset. In our experiment,
we choose Median filter to eliminate the spikes in time
series dataset due to the popularity of this methods.
The experiment results are shown in Figure 17 and
Figure 18.

Fig. 17 Result of WordsSynonyms data. In two input data
frames, the x-axis represents the length of input time series
data (number of data points), the y-axis represents the value of
each data point. The x and y-axes in the matrix represent the
distance between two corresponding data points.The matching
subsequences between two data frames are shown with the
yellow line.

Fig. 18 Result of WordsSynonyms data filtered. In two input
data frames, the x-axis represents the length of input time series
data (number of data points), the y-axis represents the value of
each data point. The x and y-axes in the matrix represent the
distance between two corresponding data points.The matching
subsequences between two data frames are shown with the
yellow line.

From these figures, we can see that the matching
subsequence results found in the original data are
similar to the result obtained with the data in which the
spikes are removed. These results prove that our method
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is resistant to spikes in the data and it will treat them as
part of the pattern.
6.2.4 Experiments with the circular trend data

In this section we evaluate the performance of
proposed algorithm with the data that have the circular
patterns. In this experiment, we use the data with the
repeating patterns and the increasing trend (the absolute
value of the data increases over time) from TSDL [30].
The time series is tested against itself in this experiment
to see how our method handles the type of time series
data. We create another dataset by removing the trend
in the data, and compare the results with the original
dataset. As we can see from Figure 19 and Figure 20,
our algorithm is able to is able to pick up all the circular
patterns after removing the trend.

Fig. 19 Data with circular trend. In two input data frames, the
x-axis represents the length of input time series data (number of
data points), the y-axis represents the value of each data point.
The x and y-axes in the matrix represent the distance between two
corresponding data points.The matching subsequences between
two data frames are shown with the yellow line.

6.2.5 Experiments with noisy data - cluster load
We then evaluate our algorithm using the data with

the noisy signals. In this experiment, we use two sets of
trace data in clusters from [32]. The result alignments
look very scattered without any preprocessing. To
improve the result, we applied the Haar Wavelet
transform [33] to the data sequence. Figure 21 and
Figure 23 show the result before and after applying
the Haar-Wavelet-transform to the two sets of data.
Figure 22 and Figure 24 demonstrate that the paths of
the patterns in the cost matrix. The results show that the
patterns are discovered correctly.

6.3 Performance

In this section, we conduct the performance analysis
on both serial and parallel implementation. In these

Fig. 20 Data with circular trend - removed trend. In two input
data frames, the x-axis represents the length of input time series
data (number of data points), the y-axis represents the value of
each data point. The x and y-axes in the matrix represent the
distance between two corresponding data points.The matching
subsequences between two data frames are shown with the
yellow line.

Fig. 21 Haar wavelet transform on complicated time series. In
these figures, the x-axis represents the length of input time series
data (number of data points), the y-axis represents the value of
each data point.

experiments, we use a very large dataset collected
by [34]. We test the performance by using different
implementations to analyze a subset of the data with
different lengths. The experiments are conducted on
a machine with NVIDIA Tesla K40 GPU with 12GB
memory. We use a subset from the dataset that can fit
into the GPU memory.

6.3.1 Serial vs CUDA Implementation
We profile the implementation using the same

data on the vertical and horizontal axis. The
execution time is recorded with different lengths of
the data. Figure 25 shows the execution time of the
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Fig. 22 Modified DTW on transformed sequence. In two input
data frames, the x-axis represents the length of input time series
data (number of data points), the y-axis represents the value of
each data point. The x and y-axes in the matrix represent the
distance between two corresponding data points.The matching
subsequences between two data frames are shown with the
yellow line.

Fig. 23 Haar wavelet transform on complicated time series. In
these figures, the x-axis represents the length of input time series
data (number of data points), the y-axis represents the value of
each data point.

serial implementation (Host Matrix) and the CUDA
implementation (CUDA Matrix).

From the figure, we can see that the CUDA
implementation achieves the faster execution time than
the serial implementation.

We then compare the execution time between the
CUDA implementation and the CUDA implementation
with the optimised memory access.

It can be seen from Figure 26 that by optimising the
memory access the optimised CUDA implementation
has the shorter execution time. This result demonstrates
the effectiveness of our technique in optimising the
memory access.

Fig. 24 Modified DTW on transformed sequence. In two input
data frames, the x-axis represents the length of input time series
data (number of data points), the y-axis represents the value of
each data point. The x and y-axes in the matrix represent the
distance between two corresponding data points.The matching
subsequences between two data frames are shown with the
yellow line.

Fig. 25 Execution time of the serial and CUDA
implementations. The x-axis represents the length of input
time series data (number of data points), the y-axis represents
the execution time in millisecond.

Fig. 26 Comparison of dtwm calculation time. The x-axis
represents the length of input time series data (number of data
points), the y-axis represents the execution time in millisecond.

7 Conclusion

In this paper, we proposed a novel algorithm to find
all similar subsequences in the time series data. Our
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algorithm first identifies the possible start positions
of similar alignments, and then uses the dynamic
programming technique to expand the subsequences.
Further, we parallelize the proposed algorithm using
GPGPU and CUDA, and develop a optimization
technique to improve the memory access in the GPU
implementation. Extensive evaluation experiments have
been conducted. The results show that our algorithm
can discover similar subsequences between two time
series and achieve much better performance with the
GPU parallelisation.
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