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Abstract

Decision making in the context of crime execution and crime prevention can be

successfully investigated with the implementation of game-theoretic tools. Evolu-

tionary and mean-field game theory allow for the consideration of a large number of

interacting players organized in social and behavioural structures, which typically

characterize this context. Alternatively, ‘traditional’ game-theoretic approaches

can be applied for studying the security of an arbitrary network on a two player

non-cooperative game. Theoretically underpinned by these instruments, in this thesis

we formulate and analyse game-theoretic models of inspection, corruption, counter-

terrorism, patrolling, and similarly interpreted paradigms. Our analysis suggests

optimal strategies for the involved players, and illustrates the long term behaviour of

the introduced systems. Our contribution is towards the explicit formulation and the

thorough analysis of real life scenaria involving the security in network structures.

viii



Chapter 1

Introduction

This thesis consists of five chapters, the first chapter being the Introduction, and the

last chapter being the Conclusion. The main body consists of Chapters 2, 3, and 4.

In each one of Chapters 2, 3, and 4, a game-theoretic problem is described,

formulated, and thoroughly analysed. Although the aforementioned models can be

studied independently, they form a whole as they all discuss instances of networks

security concentrating primarily on inspection, corruption, counter-terrorism, and

patrolling. The network element in our modelling is introduced either through the

idea of a large number of interacting players organized in social and behavioural

structures, or through the traditional notion of two player games played on graphs.

Game theory provides the necessary scientific mechanisms required to investigate

these and relative contexts. In principle, game theory studies the strategic interaction

(conflict or cooperation) of rational individuals, that is, a game can be thought of as a

multi-agent decision problem in a strategic setting. This element of strategic decision

making where individuals’ actions are interdependent is what distinguishes game

theory from decision theory. For a general introduction one can recommend, e.g.,

Kolokoltsov and Malafeyev [2010], Myerson [2013], Osborne and Rubinstein [1994].

The publication of the Theory of games and economic behavior by von Neumann and

Morgenstern in 1944, Von Neumann and Morgenstern [2007], is widely recognised

as the first formal establishment of the field. Game theory has rapidly advanced

ever since, and has been used almost in every branch of social, natural and formal

sciences. Some of its prominent representatives were awarded the Nobel prize in

economics for their contribution to sub-fields of game theory over the latest years;

John Nash, John Harsanyi and Reinhard Selten (1994), Robert Aumann and Thomas

Schelling (2005), Leonid Hurwicz, Eric Maskin and Roger Myerson (2007), Alvin

Roth and Lloyd Shapley (2012). In what follows, we briefly summarize what each of

1
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our introduced game-theoretic models entails. We strictly refer to dynamic game

paradigms, that is, to strategic interactions that reoccur over time, so that decision

making of the agents at any time influences the evolution of their system’s state and

thus their future reaction.

In Chapter 2, we extend a standard two-person, non-cooperative, non-zero

sum, imperfect inspection game, including a large number of interacting inspectees

and a single inspector. Each inspectee adopts one strategy within a finite/infinite

bounded set of strategies returning increasingly illegal profits, including compliance

with the established rules. The inspectees may periodically update their strategies

after randomly inter-comparing the obtained payoffs, setting their collective behaviour

subject to evolutionary pressure. Accordingly, the inspector decides, at each update

period, the optimum fraction of his/her finite renewable budget to invest on his/her

interference with the inspectees’ collective effect. To deter the inspectees from

violating, the inspector assigns a fine (penalty) to each illegal strategy. We formulate

the game mathematically, study its dynamics, and investigate its evolution subject

to two key control parameters, the inspection budget and the punishment fine.

Introducing a simple linguistic twist, we additionally capture the relative conception

of a corruption game.

In Chapter 3, we combine the recently developed mean-field game models

of corruption and bot-net defence in cyber-security, along with the evolutionary

game approach of inspection and corruption, under an extended scheme including

the pressure-resistance game element. We propose a generalised framework for

complex interaction in network structures of large number of small players, that

includes their individual decision making inside their environment (i.e. the mean-field

game component), their binary interactions (i.e. the evolutionary game component),

and the pressure of a major player (i.e. the pressure-resistance game component).

To perform concrete calculations with this overall complicated model, we suggest

working, in turn, in three asymptotic regimes; we assume fast execution of personal

decisions, weak binary interactions, and small discounting in time. We attempt

to provide a link between the stationary and the time-dependent mean-field game

consistency problem.

In Chapter 4, we consider a variation of the recently introduced network

patrolling game, where an Attacker carries out an attack on a node of his/her choice

for a given number m of consecutive time periods. The critical parameter m indicates

the difficulty of the attack, or infiltration, at a given node. To thwart such an attack,

the Patroller adopts a walk on the network, aiming to be at the attacked node during

one of the attack periods. If this occurs, the attack is intercepted and the Patroller
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wins the game; otherwise the Attacker wins. To model the important alternative

where the Patroller can be identified when he/she is at the Attacker’s node, we allow

the Attacker to initiate the attack after waiting for a chosen number d of consecutive

periods during which the Patroller has been away. Thus, we introduce the term

Uniformed Patroller (alternatively we can use the term noisy in contrast to silent)

to denote this new information structure. We solve this new version of the network

patrolling game, that is more favourable to the Attacker, for various networks: star,

line, circle and a mixture. We restrict the Patroller to Markovian strategies, which

cover the whole network.



Chapter 2

Evolutionary Inspection and

Corruption Games

2.1 Introduction

An inspection game consists of a game-theoretic framework, modelling the non-

cooperative interaction between two strategic parties, called the inspector and the

inspectee; see, e.g., Avenhaus, von Stengel and Zamir [2002], Avenhaus and Canty

[2012], Hohzaki [2013] for a general survey. The inspector aims to verify that certain

regulations, imposed by the benevolent principal he/she is acting for, are not violated

by the inspectee. On the contrary, the inspectee has a selfish incentive to disobey

the established regulations, risking the enforcement of a punishment fine in the case

of detection. The introduced punishment mechanism is a key element in the analysis

of inspection games, since deterrence is generally considered to be the inspector’s

highest priority. Typically, the inspector has limited means of inspection at his/her

disposal, so that his/her detection efficiency can only be partial.

The central objective of inspection games is to develop an effective inspection

policy for the inspector to adopt, given that the inspectee acts according to a

strategic plan. Within the last five decades, inspection games have been applied in

the game-theoretic analysis of a wide range of issues, mainly in arms control and

nuclear non-proliferation, but also in the accounting and auditing of accounts, in

tax inspections, environmental protection, crime control, passenger ticket control,

stock-keeping and many others; see, e.g., Alferov, Malafeyev and Maltseva [2015],

Avenhaus, von Stengel and Zamir [2002], Avenhaus [2004], Deutsch et al. [2013]

and the references therein. Though when initially introduced, inspection games

appeared almost exclusively as two-person, zero-sum, non-cooperative games, the

4
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need to depict more realistic, and therefore of increased complexity, scenaria gradually

shifted attention towards N-person and non-zero-sum games.

Dresher’s two-person, zero-sum, perfect recall, recursive inspection game,

Dresher [1962], is widely recognized as the first formal approach in the field. In his

model, Dresher considered n periods of time available for an inspectee to commit,

or not, a unique violation, and m ≤ n one-period lasting inspections available for

the inspector to investigate the inspectee’s abidance by the rules, assuming that a

violator can be detected only if he/she is caught (inspected) in the act. This work

initiated the application of inspection games to arms control and disarmament; see,

e.g., Avenhaus et al. [1996] and the references therein. Maschler [1966] generalized

this archetypal model, introduced the equivalent non-zero-sum game and, most

importantly, adopted from economics the notion of inspector leadership, showing

(among others) that the inspector’s option to pre-announce and commit to a mixed

inspection strategy actually increases his/her expected payoff.

Thomas and Nisgav [1976] used a similar framework to investigate the problem

of a patroller aiming to inhibit a smuggler’s illegal activity. In their so-called

customs-smuggler game, customs patrol, using a speedboat, in order to detect

a smuggler’s motorboat attempting to ship contraband through a strait. They

introduced the possibility of more than one patrolling boats, namely the possibility

of two or more inspectors, potentially not identical, and suggested the use of linear

programming methods for the solution of those scenario. Baston and Bostock [1991]

provided a closed-form solution for the case of two patrolling boats, and discussed

the withdrawal of the perfect-capture assumption, stating that detection is ensured

whenever violation and inspection take place at the same period. Garnaev [1994]

provided a closed-form solution for the case of three patrolling boats.

Von Stengel [1991] introduced a third parameter in Dresher’s game, allowing

multiple violations, but proving that the inspector’s optimal strategy is independent

of the maximum number of the inspectee’s intended violations. He studied another

variation, optimizing the detection time of a unique violation that is detected at

the following inspection, given that inspection does not currently take place. On a

later version, von Stengel [2016] additionally considered different rewards for the

inspectee’s successfully committed violations, extending as well Maschler’s inspector

leadership version under the multiple intended violations assumption. Ferguson and

Melolidakis [1998], motivated by Sakaguchi [1977], treated a similar three-parameter,

perfect-capture, sequential game, where: (i) the inspectee has the option to ‘legally’

violate at an additional cost; (ii) a detected violation does not terminate the game;

(iii) every non-inspected violation is disclosed to the inspector at the following stage.
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Non-zero-sum inspection games were already discussed at an early stage by

Maschler [1966, 1967], but were mainly developed after the 1980s, in the context of the

nuclear non-proliferation treaty (NPT). The prefect-capture assumption was partly

abandoned, and errors of Type 1 (false alarm) and Type 2 (undetected violation given

that inspection takes place) were introduced to formulate the so-called imperfect

inspection games. Avenhaus and von Stengel [1992] solved Dresher’s perfect-capture,

sequential game, assuming non-zero-sum payoffs. Canty, Rothenstein and Avenhaus

[2001] solved an imperfect, non-sequential game, assuming that players ignore any

information they collect during their interaction, where an illegal action must be

detected within a critical timespan before its effect is irreversible. They discussed the

sequential equivalent, as well. Rothenstein and Zamir [2002] included the elements

of imperfect inspection and timely detection in the context of environmental control,

extending Diamond’s models for a single inspection, Diamond [1982].

Avenhaus and Kilgour [2004] introduced a non-zero-sum, imperfect (Type 2

error) inspection game, where a single inspector can continuously distribute his/her

effort-resources between two non-interacting inspectees, exempted from the simplistic

dilemma whether to inspect or not. They related the inspector’s detection efficiency

with the inspection effort through a non-linear detection function and derived results

for the inspector’s optimum strategy subject to its convexity. Hohzaki [2007] moved

two steps forward, considering a similar n+ 1 players inspection game, where the

single inspection authority not only intends to optimally distribute his effort among

n inspectee countries, but also among lk facilities within each inspectee country

k. Hohzaki presents a method of identifying a Nash equilibrium for the game and

discusses several properties of the players’ optimal strategies.

In the special case when the inspector becomes himself/herself the individual

under investigation, namely when the philosophical question “Who will guard the

guardians?” eventually arises (first stated in the work of the Roman satirist Juvenal,

Satire VI, Green [2004]), see Hurwicz [2008], the exact same framework can be used

for modelling corruption. In the so-called corruption games, a benevolent principal

aims to ensure that his/her non-benevolent affiliate does not intentionally fail his/her

duty; see, e.g., Aidt [2003], Jain [2001], Kolokoltsov and Malafeyev [2015], Malafeyev,

Redinskikh and Alferov [2014] and the references therein for a general survey.

For example, in the tax audit/inspection regime, the tax inspectors employed

by the respective competent authority are often open to bribery from the tax payers

in order not to report detected tax evasions. Generally speaking, when we switch

from inspection to corruption games, the competing pair of an inspector versus an

inspectee is replaced by the pair of a benevolent principal versus a non-benevolent
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employee, but the framework of analysis that is used for the first one can almost

identically be applied for the second one, as well.

Lambert-Mogiliansky, Majumdar and Radner [2008] developed a dynamic

game where various private investors anticipate the processing of their applications

by an ordered number of low level bureaucrats in order to ensure specific privileges;

such an application is approved only if every bureaucrat is bribed. Nikolaev [2014]

introduced a game theoretic study of corruption with a hierarchical structure, where

inspectors of different levels audit the inspectors of the lower level and report

(potentially false reports) to the inspectors of the higher level; the inspector of the

highest level is assumed to be honest. In the context of ecosystem management

and biodiversity conservation, Lee et al. [2015] studied an evolutionary game, where

they analyse illegal logging with respect to the corruption of forest rule enforcers,

while in the context of politics and governance, Giovannoni and Seidmann [2014]

investigated how power may affect the government dynamics of simple models of

a dynamic democracy, assuming that “power corrupts and absolute power corrupts

absolutely” (the famous quote of the British politician Lord Acton).

In this chapter we focus on the study of inspection (and corruption) games

from an evolutionary perspective, aimed at the analysis of the class of games with

a large number of inspectees. However, we highlight that our setting should be

distinctly separated from the general setting of the standard evolutionary game theory.

We emphasize the networking aspects of these games by allowing the inspectees

to communicate with each other and update their strategies purely on account of

their interactions. This way, we depict the real-life scenario of partially-informed,

optimizing, interacting, indistinguishable agents. For the same purpose, we set

the inspectees to choose from different levels of illegal behaviour. Additionally,

we introduce the inspector’s budget as a distinct parameter of the game, and we

measure his/her interference with the interacting inspectees with respect to this. We

examine carefully the critical effect of the punishment fine on the evolution of the

game. In fact, we attempt to get quantitative insights into the interplay of these key

parameters and analyse respectively the dynamics of the game.

For a real-world implementation of our game, one can think of tax inspections.

Tax payers are ordinary citizens who interact on a daily basis exchanging information

on various issues. Arguably, in their vast majority, if not universally, tax payers

have a selfish incentive towards tax evasion. Depending on the degree of confidence

they have in their fellow citizens, on a pairwise level, they discuss their methods, the

extent to which they evade taxes and their obtained payoffs. As experience suggests,

interacting agents, and therefore the tax payers as well, imitate the more profitable
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strategies. The tax inspector (say the chief of the tax department) is in charge of

fighting tax evasion. Having to deal with many tax payers, primarily he/she aims

to confront their collective effect rather than each one individually. Then, provided

with a bounded budget from a superior authority (say the finance ministry), the tax

inspector aims to manage this, along with his/her punishment policy, so that he/she

maximizes his/her utility (namely the payoff of the tax department).

Though we restrict ourselves to the use of inspection game terminology, our

model also intends to capture the relevant class of corruption games as those are

introduced above. Indicatively, we aim to investigate the dynamics of the interaction

between a large group of corrupted bureaucrats and their incorruptible superior,

again from an evolutionary perspective. In accordance with our earlier approach, the

bureaucrats discuss in pairs their bribes and copy the more efficient strategies, while

their incorruptible superior aims to choose attractive wages to discourage bribery, to

invest in means of detecting fraudulent behaviour and to adopt a suitable punishment

policy. Evidently, the two game settings are fully analogous, and despite the linguistic

twist of inspection to corruption, they can be formulated in an identical way.

We organize Chapter 2 as follows. In Section 2.2, we discuss the standard

setting of a two-player, non-cooperative, non-zero-sum inspection game, and we

introduce what we call the conventional inspection game. In Sections 2.3 and 2.4, we

present our generalization; we extend the two-player inspection game considering a

large population of indistinguishable inspectees, interacting against a single inspector,

we formulate our model for a discrete and a continuous strategy setting respectively,

and we demonstrate our analysis of the system’s dynamics. In Section 2.5, we include

a game-theoretic interpretation of our fixed points analysis.

2.2 Standard Inspection Game

A standard inspection game describes the strictly competitive interaction between

an inspectee and an inspector, whose interests in principle contradict. The inspectee,

having to obey certain rules imposed by the inspector, either chooses indeed to

comply with the established rules, obtaining a legal profit, r > 0, or to violate them,

targeting at an additional illegal profit, ` > 0, but undertaking additionally the risk

of being detected and, consequently, having to pay the corresponding punishment

fine, f > 0. Likewise, the inspector chooses either to inspect at some given inspection

cost, c > 0, in order to detect any occurring violation, ward off the loss from the

violator’s illegal profit and receive the debited fine, or not to inspect, avoiding the

cost of inspection, but risking the occurrence of a non-detected violation.
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In this two-player game-theoretic setting, both parties are considered to be

rational optimizers who decide their strategies independently of each other, without

observing or being informed about their competitor’s behaviour. Namely, the game

under discussion is a non-cooperative one. The following 2× 2 normal-form table

(Table 2.1) illustrates the framework we described above, where the inspectee is

the row player and the inspector is the column player. Left and right cells’ entries

correspond to the inspectee’s and the inspector’s payoffs respectively. Notice that,

in general, the game is formulated as a non-zero-sum one.

Inspect Not Inspect

Violate r − f , −c+ f r + `, −`
Comply r, −c r, 0

Table 2.1: Two-player perfect inspection game.

Table 2.1 illustrates the so-called perfect inspection game, in the sense that

inspection always coincides with detection (i.e. given that a violator is inspected,

the inspector will detect his/her violation with probability one). However, this is

an obviously naive approach, since in practice, numerous factors deteriorate the

inspector’s efficiency and potentially obstruct detection (recall the errors of Type 1

and Type 2 we mentioned above). Consequently, the need to introduce a game

parameter determining the inspection’s efficiency naturally arises.

In this more general setting, the critical parameter λ ∈ [0, 1] is introduced to

measure the conditional probability with which a violation is detected given that

the inspector conducts an inspection. Alternatively, one can think of λ as a measure

of the inspector’s detection efficiency. Obviously, for λ = 1, the ideal scenario of

perfect inspection is captured, while, for λ = 0, detection can be never achieved.

The following 2× 2 normal-form table (Table 2.2) illustrates the so-called imperfect

inspection game.

Inspect Not Inspect

Violate r + `− λ · (`+ f), −c− `+ λ · (`+ f) r + `, −`
Comply r, −c r, 0

Table 2.2: Two-player imperfect inspection game.

The key feature of the discussed game setting is that under specific conditions,

it describes a two-player competitive interaction without any pure strategy Nash
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equilibria. Starting from the natural assumption that the inspector, in principle,

would like the inspectee to comply with his/her rules, and that ideally he/she would

prefer to ensure compliance without having to inspect, the game obtains no pure

strategy Nash equilibria when both of the following two conditions apply

−c− `+ λ · (`+ f) > −`⇒ λ · (f + `) > c, (2.1)

r > r + `− λ · (`+ f)⇒ λ · (f + `) > `. (2.2)

Indicatively, one can verify that the pure strategy profile (V, I), where V

stands for Violate and I stands for Inspect, is the unique Nash equilibrium of

the imperfect inspection game when only condition (2.1) applies. Accordingly,

profile (V,NI), where NI stands for Not Inspect, is the unique pure strategy Nash

equilibrium when only condition (2.2) applies. When neither of the two conditions

apply, profile (V,NI) is again the unique pure strategy Nash equilibrium. Hence,

given that at least one of the above conditions (2.1) and (2.2) does not apply, a pure

strategy equilibrium solution always exists.

Back to the no pure strategy Nash equilibria environment, the first condition

assumes that when the inspectee is violating, the inspector’s expected payoff is higher

when he/she chooses to inspect. Accordingly, the second condition assumes that

when the inspector is inspecting, the inspectee’s expected payoff is higher when

he/she chooses to comply (note that this is always true for the perfect inspection

game of Table 2.1).

Under these assumptions, regardless of the game’s outcome and given the

competitor’s choice, both players would in turn switch their previously chosen

strategies to the alternative ones, in an endlessly repeated switching cycle (see Figure

2.1). This lack of no-regrets pure strategies states that the game contains no pure

strategy Nash equilibria. We name it the conventional inspection game.

Comply Not Inspect Violate Inspect Comply
. . .

- - - - -

Figure 2.1: No pure strategy Nash equilibria conventional inspection game.

Typically, a two-player game without any pure strategy Nash equilibria is

resolved by having at least one of the players randomising over his/her available

pure strategies. In this specific scenario, it can be proven that both players resort

to mixed strategies, implying that both inspection and violation take place with

non-zero probabilities. In particular, the following theorem proven in Kolokoltsov



Draft of 9:20 pm, Sunday, March 25, 2018 11

and Malafeyev [2010] gives the unique mixed strategy Nash equilibrium of the

conventional inspection game described above.

Theorem 1. Let p ∈ [0, 1] be the probability with which the inspectee violates and

q ∈ [0, 1] be the probability with which the inspector inspects. The unique mixed

strategy Nash equilibrium of the two-player inspection game described in Table 2.2

along with conditions (2.1) and (2.2) is the mixed strategy profile (p∗, q∗) with:

p∗ =
c

λ · (f + `)
, q∗ =

`

λ · (f + `)
. (2.3)

Proof. See Kolokoltsov and Malafeyev [2010].

2.3 Discrete Strategy Setting

Let us now proceed with the natural extension of the two-player game we introduced

in the previous section to the real-life scenario of a multi-player problem.

We consider a large population of N indistinguishable, pairwise interacting

inspectees exchanging opinions under the pressure of a single inspector. Equivalently

in the context of corruption games, one can think of N indistinguishable, pairwise

interacting bureaucrats against their incorruptible superior. The game mechanism

can be summarized into the following dynamic process.

Initially, the N inspectees decide their strategies individually. They retain

their group’s initial strategy profile for a certain time span, but beyond that point,

on account of the inspector’s response to their collective effect, some of the inspectees

are eager to update and switch to evidently more profitable strategies. In principle,

we assume that an inspectee is an updater with a non-zero probability ω that is

characteristic of the inspectees’ population.

Indicatively, assume on a periodic basis, and in particular at the beginning of

each update period, that an updater discusses his/her payoff with another randomly-

chosen inspectee, who is not necessarily an updater himself/herself. If the two

interacting inspectees have equal payoffs, then the updater retains his/her strategy.

If, however, they have a payoff gap, then the updater is likely to revise his/her

strategy, subject to how significant their payoffs’ difference is.

Clearly, we do not treat the inspectees as strictly rational optimizers. Instead,

we assume that they periodically compare their obtained payoffs in pairs, and

they mechanically copy more efficient strategies purely in view of their pairwise

interaction and without necessarily being aware of the overall prevailing crime rate
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or the inspector’s response. This assumption is described as the myopic hypothesis,

and we introduce it to illustrate the lack of perfect information and the frequently

adopted imitating behaviour in various multi-agent social systems. However, as we

will see in Section 2.5, ignoring the myopic hypothesis in a strictly game-theoretic

context, we can still interpret our results.

Regarding the inspector’s response, we no longer consider his/her strategy

to be the choice of the inspection frequency (recall the inspector’s dilemma in the

standard game setting whether to inspect or not). Instead, we take into account

the overall effort the inspector devotes to his/her inspection activity. In particular,

we identify this generic term as the fraction of the available budget that he/she

invests on his/her objective, making the assumption that the inspection budget

controls every factor related with his/her detection effectiveness (e.g., the inspection

frequency, the no-detection probability, the false alarms, etc.).

At each update event, we assume that the inspector is limited to the same

finite, renewable available budget B. Without experiencing any policy-adjusting

costs, he/she aims at maximizing his/her payoff against each different distribution

of the inspectees’ strategies at the least possible cost. Additionally, we assume that

at each time point, he/she is perfectly informed about the inspectees’ collective

behaviour. Therefore, we treat the inspector as a rational, straightforward, payoff

maximizing player. This suggestion is described as the best response principle.

Under this game-theoretic framework, the distribution of violating the es-

tablished regulation in the population of the inspectees is subject to evolutionary

pressure over time. As a result, the term evolutionary is introduced to describe the

inspection (corruption) game. It turns out that the more efficient strategies gradually

become dominant through imitation.

2.3.1 Analysis

We initiate our analysis by assuming that the inspectees choose their strategies within

a finite bounded set of strategies S = {0, 1, ..., d}, generating increasingly illegal

profits. Their group’s state space is then the set of sequences of d+ 1 non-negative

integers n = (n0, . . . , nd), ni denoting the occupation frequency of strategy i ∈ S.

Equivalently, it is the set of sequences of the corresponding d+ 1 relative occupation

frequencies x = (x0, . . . , xd), where xi = ni/N .

We consider a constant number of inspectees, namely we have N = n0+· · ·+nd
for every group’s state n. Provided that the population size N is sufficiently large

(formally the following is valid for N →∞ through the law of large numbers), we

approximate the relative occupation frequencies xi with ρi ∈ [0, 1], denoting the



Draft of 9:20 pm, Sunday, March 25, 2018 13

probabilities with which the strategies i ∈ S are adopted. To each strategy i we

assign an illegal profit `i, `0 = 0 characterizing the compliers, and a strictly increasing

punishment fine fi = f(`i), with f0 = 0. We assume that |`i+1 − `i| is constant,

namely that `i’s form a one-dimensional regular lattice.

As explained, the inspector has to deal with an evolving crime distribution in

the population of the inspectees, that is p = p(t) = (ρi)(t). We thus define the set of

probability vectors Σd+1, such that:

Σd+1 =
{

p(t) = (ρ0, . . . , ρd)(t) ∈ Rd+1
+ :

∑
ρi(t) = 1

}
. (2.4)

We introduce the inner product notation to define the group’s expected

(average) illegal profit by ¯̀= ¯̀(p) = 〈`,p〉. Respectively, we define the group’s ex-

pected (average) punishment fine by f̄ = f̄(p) = 〈f,p〉. We also define the inspector’s

invested budget against crime distribution p by b(·) ∈ [0, B] and the inspector’s

efficiency by G(b). The last function measures the probability with which a violating

inspectee is detected given that the inspector invests budget b.

To depict a plausible scenario, we assume that perfect efficiency cannot be

achieved within the inspector’s finite available inspection budget B (namely, the

detection probability is strictly smaller than one, G(B) < 1).

Assumption 1. The inspector’s efficiency, G : [0,∞) 7→ [0, 1), is a twice continu-

ously differentiable, strictly increasing, strictly concave function, satisfying:

G′′ < 0, G′ > 0, lim
x→0

G′(x) =∞, G(0) = 0, lim
x→∞

G(x) = 1.

An inspectee who plays strategy i ∈ S, either escapes undetected with

probability 1−G(b) and obtains an illegal profit `i, or gets detected with probability

G(b) and is charged with a fine fi. Additionally, every inspectee receives a legal

income r, regardless of his/her strategy being legal or illegal.

Therefore, to an inspectee playing strategy i, against the inspector investing

budget b, we assign the following inspectee’s payoff function:

Πi(b) = r +
(
1−G(b)

)
· `i −G(b) · fi. (2.5)

Accordingly, we need to introduce a payoff function for the inspector investing

budget b against a crime distribution p. Recall that the inspector is playing against a

large population of indistinguishable, interacting agents and intends to suppress their

collective illegal behaviour. That being the case, for his/her macroscopic assessment,

the larger the group is, the less considerable the absolute values corresponding to a



Draft of 9:20 pm, Sunday, March 25, 2018 14

single agent ( i.e., r, `i, fi ) are. To depict this inspector’s subjective evaluation, we

introduce the inspector’s payoff function as follows:

ΠI(b,p, N) = −b+N ·G(b) · f̄t ·
κ

N
−N ·

(
1−G(b)

)
· ¯̀t ·

κ

N
, (2.6)

where κ is a positive scaling constant and ¯̀
t, respectively f̄t, denotes the expected

(average) illegal profit, respectively the expected (average) punishment fine, at time t.

Without loss of generality, we can set κ = 1. Note that the inspector’s payoff always

obtains a finite value, including the limit N →∞.

As already mentioned, an inspectee (updater) revises his/her strategy with a

switching probability depending on his/her payoff’s difference with another randomly-

chosen individual’s payoff, with whom he/she discusses outcomes. Then, for an

updater playing strategy i ∈ S and exchanging information with an inspectee playing

strategy j ∈ S, we define this switching probability by sij ·∆t, for a timespan ∆t,

where:

sij =

 β ·
(
Πj(b)−Πi(b)

)
, if Πj(b) > Πi(b)

0 , if Πj(b) ≤ Πi(b)
(2.7)

and β > 0 is an appropriately-scaled normalization parameter.

This transition can be summarised in the following dynamic process; in every

period following an update event, the number of inspectees playing strategy i is

equal to the corresponding sub-population in the previous period, plus the number of

inspectees having previously played strategies j 6= i and switching now into strategy i,

minus the number of inspectees having previously played strategy i and switching

now into strategies j 6= i.

Hence, we derive the following iteration formula:

ρi(t+ ∆t) = ρi(t) +ω ·ρi(t) ·
d∑
j=0

(
ρj(t) · sij

)
·∆t−ω ·ρi(t) ·

d∑
j=0

(
ρj(t) · sji

)
·∆t (2.8)

which can be suitably reformulated, taking the limit as ∆t → 0, into an equation

resembling the well-known replicator equation (see, e.g., Zeeman [1980]):

ρ̇i(t) = ω · β · ρi(t) ·
(

Πi(b)−
∑
j∈S

ρj ·Πj(b)
)
. (2.9)

Remark 1. We have used here a heuristic technique to derive equation (2.9), bearing

in mind that we consider a significantly large group of interacting individuals (formally

valid for the limiting case of an infinitely large population). A rigorous derivation
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with the use of the law of large numbers for interacting Markov chains can be found

for example in Kolokoltsov [2012] or Kolokoltsov [2014].

In agreement with our game setting (in particular with the myopic hypothesis),

equation (2.9) is not a best-response dynamic. However, it turns out that successful

strategies, yielding payoffs higher than the group’s average payoff, are subject to

evolutionary pressure. This interesting finding of our setting, which is put forward

in the above replicator equation, simply states that although the inspectees are

not considered to be strictly rational maximizers (but instead myopic optimizers),

successful strategies propagate into their population through the imitation procedure.

This characteristic classifies equation (2.9) into the class of the payoff monotonic

game dynamics, see, e.g., Hofbauer and Sigmund [1998].

Before proceeding any further, it is important to state that our setting

is quite different from the general setting of standard evolutionary game theory.

Unlike standard evolutionary games, in our approach there are no small games of a

fixed number of players through which successful strategies evolve. On the contrary,

at each step and throughout the whole procedure, there is only one N + 1 players

game taking place (see also the analysis in Section 2.5).

In regard to the inspector’s interference with the interacting inspectees, the

best response principle states that at each time step, against the crime distribution

he/she confronts, the inspector aims to maximize his/her instantaneous payoff with

respect to his/her available budget:

max
b∈[0,B]

{
−b+G(b) · f̄t −

(
1−G(b)

)
· ¯̀t
}
. (2.10)

On the one hand, the inspector chooses his/her fine policy strategically in

order to manipulate the evolution of the future crime distribution. On the other

hand, at each update period, he/she has at his/her disposal the same finite renewable

budget B, while he/she is not charged with any policy adjusting costs. Namely,

the inspector has a period-long planning horizon regarding his/her financial policy,

and he/she instantaneously chooses at each step his/her response b that maximizes

his/her payoff (2.6) against the prevailing crime distribution.

Let us define the inspector’s best response (optimum employable budget),

maximizing his/her payoff (2.6) against the prevailing crime distribution, by:

b̂(·) := argmax
b∈[0,B]

{
−b+G(b) ·

(
f̄t + ¯̀

t

)
− ¯̀

t

}
. (2.11)

Having analytically discussed the inspectees’ and the inspector’s individual
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dynamic characteristics, we can now combine them and obtain a clear view of the

system’s dynamic behaviour as a whole.

In particular, we substitute the inspector’s best response (optimum employable

budget) b̂(·) into the system of ordinary differential equations (ODEs) (2.9), and

we obtain the corresponding system governing the dynamic evolution of the non-

cooperative game described above:

ρ̇i(t) = ω · β · ρi(t) ·
(
`i − (`i + fi) ·G(b̂) +G(b̂) · (¯̀+ f̄)− ¯̀

)
. (2.12)

Recall that through the system (2.12) we aim to investigate the evolution

of illegal behaviour within a large group of interacting, myopically-maximizing,

indistinguishable inspectees (bureaucrats) under the pressure of a single rationally-

maximizing inspector (incorruptible superior).

Without loss of generality, we can set the normalization parameter β = 1.

Let us also introduce the following auxiliary notation:

Ki(p, b̂) = `i − ( `i + fi ) ·G(b̂) +G(b̂) · (¯̀+ f̄)− ¯̀. (2.13)

Proposition 1. A probability vector p(t) ∈ Σd+1 is a singular point of (2.12),

namely it satisfies the system of equations:

ω · ρi(t) ·Ki(p, b̂) = 0, (2.14)

if and only if there exists a subset I ⊂ S, such that ρi(t) = 0 for i ∈ I, and

Ki(p, b̂) = 0 for i /∈ I.

Proof. For any subset I ⊂ S such that ρi(t) = 0, i ∈ I, system (2.12) reduces to

the same system, but only with the coordinates i /∈ I (notice that I must be a

proper subset of S). Then, for the fixed point condition to be satisfied, we must

have Kj(p, b̂) = 0 for every j ∈ S\I.

The determination of the fixed points defined in Proposition 1, as well as their

stability analysis (namely the deterministic evolution of the game), clearly depend

on the explicit form of the auxiliary function Ki. One can distinguish, then, two

control elements that appear in Ki and thus govern the dynamics of the game; the

functional control f(·) and the control parameter B. We have set the fine f(·) to be

a strictly increasing function, and we further consider three eventualities regarding

its convexity; (i) linear; (ii) convex; (iii) concave. To each of the above three versions
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we assign a different inspector’s punishment profile.

Indicatively, we claim that a convex fine function reveals an inspector who

is lenient against relatively low collective violation, but rapidly jumps to stricter

policies when coming up against increasing collective violation. On the contrary,

we claim that a concave fine function reveals an inspector who is already punishing

aggressively even for a relatively low collective violation (pre-empting inspector).

Finally, we assume that a linear fine function represents the severity of the ‘average’

inspector. In each case, we vary the constant, increasing, or decreasing gradient of

function f(·), respectively for a linear, convex, or concave fine. Accordingly, we vary

the size of the finite available budget B.

The different settings we establish with these control parameter variations,

and therefore, the corresponding dynamics we obtain in each occasion, have clear

practical interpretation providing useful insight into applications. For example, the

fine function f(·) can be, and usually is, defined by the inspector himself (think of

the different fine policies when dealing with tax evasion), while the level of budget

B is decided from the benevolent principal by whom the inspector is employed.

Contrariwise, the detection efficiency G(·) is not regarded as an additional

control since it characterizes the inspector’s behaviour endogenously. However, say

the inspector has an excess of budget, which he/she could invest in improving his/her

expertise (e.g., the technical know-how). This is related (indirectly) with his/her

efficiency, and thus could partially improve G(·). We do not engage with this scenario.

2.3.2 Linear Fine

Equivalently to (2.11), for a linear fine fi = σ · `i, σ ∈ R+, the inspector’s best

response (optimum employable budget) can be written as:

b̂(¯̀) = min
[
B, (G

′
)
−1
( 1

σ · ¯̀t + ¯̀
t

)]
. (2.15)

We conclude from (2.15) that we cannot have b̂(¯̀) > B for every ¯̀∈ [0, `d],

since at least for the case when ¯̀= 0, it is b̂(0) = 0. However, depending on the size

of the available budget B, we may have B > b̂(¯̀) for every ¯̀∈ [0, `d].

Then, it is reasonable to introduce the following notation:

`c := min
{
` : b̂(`) = B

}
, (2.16)

where `c is not necessarily deliverable, i.e., `c may not belong to [0, `d]. One should

think of this critical value `c as a measure of the adequacy of the inspector’s available
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budget B, namely as the ‘strength’ of his/her available budget. Obviously, if `c ≤ `d,
the inspector benefits from exhausting all his/her available budget when dealing

with a collective violation ¯̀∈ [`c, `d], while, if `c > `d, the inspector never needs to

exhaust B in order to achieve an optimum response.

Theorem 2. Let Assumption 1 hold. The d + 1 unit vectors pi = (δij), i, j ∈ S,

lying on the vertices of the d-simplex, are fixed points of (2.12). Moreover:

1. If G(b̂(`d)) >
1

1+σ , there is additionally a unique hyperplane of fixed points,

Θ =
{

pθ ∈ Σd+1 | ∃! ¯̀∈ (0,min[`c, `d]) : 〈`,pθ〉 = ¯̀ & G(b̂(¯̀)) =
1

1 + σ

}
,

2. If G(b̂(`d)) = 1
1+σ and `d > `c, there are additionally infinitely many hyper-

planes of fixed points,

Φ =
{

pφ ∈ Σd+1 | ∀ ¯̀∈ [`c, `d] : 〈`,pφ〉 = ¯̀ & G(b̂(¯̀)) =
1

1 + σ

}
.

Proof. In any case, the unit probability vectors pi = (δij), i, j ∈ S, satisfy system

(2.14), since by the definition of pi, it is ρj = 0, ∀ j 6= i, whilst it is 〈`,pi〉 = `i.

The setting we introduce with Assumption 1 ensures that b̂ : [0, `d] 7→ [0, b̂(`d)]

is a continuous, non-decreasing, surjective function. In particular, we have that G(·)
is strictly increasing in b̂ ∈ [0, B] and b̂(·) is strictly increasing in ¯̀∈ [0,min[`c, `d]].

Hence, the following hold:

1. When G(b̂(`d)) >
1

1+σ , there is a unique average value ¯̀ ∈ (0,min[`c, `d])

satisfying G(b̂(¯̀)) = 1
1+σ . This unique ¯̀ is generated by infinitely many

probability vectors, pθ : 〈`,pθ〉 = ¯̀, forming a hyperplane of vector points

satisfying (2.14).

2. When G(b̂(`d)) = 1
1+σ and `d > `c, every average value ¯̀ ∈ [`c, `d] satisfies

G(b̂(¯̀)) = 1
1+σ . Each one of these infinitely many ¯̀ is generated by infinitely

many probability vectors, pφ : 〈`, pφ〉 = ¯̀, forming infinitely many hyperplanes

of vector points satisfying (2.14).

We refer to the vector points pi as pure strategy fixed points, to emphasize that

they correspond to the population’s strategy profiles such that every inspectee plays

the same strategy i ∈ S. Accordingly, we refer to the vector points pθ, pφ, as mixed
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strategy fixed points, to emphasize that they correspond to the population’s strategy

profiles such that the inspectees are distributed among two or more strategies.

Before proceeding with the general stability results, we present the detailed

picture in the simplest case of three available strategies generating increasingly illegal

profits including compliance.

p0

p1

p2

(a) G(b̂(`2)) ≤ 1
1+σ

p0

p1

p2

(b) G(b̂(`1)) <
1

1+σ
< G(b̂(`2))

p0

p1

p2

(c) 1
1+σ

< G(b̂(`1)) < G(b̂(`2))

Figure 2.2: Dynamics for a linear f(·), where `c ≥ `d. Set of strategies S = {0, 1, 2}.

p0

p1

p2

(a) G(b̂(`2)) <
1

1+σ

p0

p1

p2

(b) G(b̂(`1)) <
1

1+σ
= G(b̂(`2))

p0

p1

p2

(c) G(b̂(`1)) =
1

1+σ
= G(b̂(`2))

p0

p1

p2

(d) G(b̂(`1)) <
1

1+σ
< G(b̂(`2))

p0

p1

p2

(e) 1
1+σ

< G(b̂(`1)) < G(b̂(`2))

Figure 2.3: Dynamics for a linear f(·), where `d > `c. Set of strategies S = {0, 1, 2}.

Figure 2.2 represents a budget B such that the inspector never exhausts

it. For a relatively low B, or for an overly lenient f(·) (see Figures 2.2(a), 2.3(a)),

the pure strategy fixed point p2 is asymptotically stable. Increasing though B or,



Draft of 9:20 pm, Sunday, March 25, 2018 20

accordingly, toughening up the fine policy f(·) (see Figure 2.2(b)), a hyperplane

of asymptotically stable mixed strategy fixed points appears. Depending on the

critical parameter `c, we may have infinitely many hyperplanes of asymptotically

stable mixed strategy fixed points (see Figures 2.3(b), 2.3(d)). Finally, keeping B

constant, the more we increase the slope of f(·), the closer this(ese) hyperplane(s)

moves towards compliance (see Figures 2.2(c), 2.3(c), and 2.3(e)).

We generalize these results into the following theorem.

Theorem 3. Let Assumption 1 hold. Consider the fixed points given by Theorem 2.

Then:

1. the pure strategy fixed point p0 is a source, thus unstable;

2. the pure strategy fixed points pj /∈ Θ,Φ, j ∈ S : j 6= 0, d, are saddles, thus

unstable;

3. the pure strategy fixed point pd is asymptotically stable when Φ = Θ = ∅;
otherwise, it is a source, thus unstable;

4. the mixed strategy fixed points pθ, pφ are asymptotically stable.

Proof. See Section 2.6.

2.3.3 Convex/Concave Fine

Let us introduce the auxiliary variable ξi = `i + fi. As we did before, using the inner

product notation, we define the corresponding group’s expected (average) value by

ξ̄ = ξ̄(p) = 〈ξ, p〉, where ξ̄ = ¯̀+ f̄ . Then, equivalently to expression (2.11), or (2.15),

the inspector’s best response (optimum employable budget) can be written as:

b̂(ξ̄) = min
[
B, (G

′
)
−1
( 1

ξ̄t

)]
. (2.17)

For every i, j ∈ S : i < j, let us introduce as well the parameter:

qi,j =
`i − `j

`i − `j + fi − fj
. (2.18)

Lemma 1. For a convex fine, qi,j is strictly decreasing in i for constant j (or vice

versa), while for a concave fine, qi,j is strictly increasing in i for constant j (or vice

versa). Furthermore, for a convex fine, qi,j is strictly decreasing in i, j for constant

(j − i), while for a concave fine, qi,j is strictly increasing in i, j for constant (j − i).
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Theorem 4. Let Assumption 1 hold. The d + 1 unit vectors pi = (δij), i, j ∈ S,

lying on the vertices of the d-simplex are fixed points of system (2.12). Moreover,

there may be additionally up to
(
d+1

2

)
internal fixed points pi,j ∈ Σd+1, living on the

support of two strategies i, j ∈ S : i < j, uniquely defined for each pair of strategies;

these internal fixed points exist given that the following condition applies respectively:

G(b̂(ξj)) > qi,j > G(b̂(ξi)). (2.19)

Proof. In any case, the unit probability vectors pi = (δij) satisfy system (2.14), since

by the definition of pi, it is ρj = 0, ∀ j 6= i, whilst it is 〈`,pi〉 = `i, 〈f, pi〉 = fi.

Consider now a probability vector p∗ ∈ Σd+1 satisfying (2.14), such that

〈`, p∗〉 = `∗, 〈f, p∗〉 = f∗, 〈ξ, p∗〉 = ξ∗ and p∗ 6= pi. Then, from Proposition 1, vector

p∗ should satisfy Ki(p
∗, b̂) = 0, ∀ i /∈ I, namely the fraction qi,j should be constant

∀ i, j /∈ I, and equal to G(b̂(ξ∗)).

To satisfy this, according to Lemma 1, the complement set I
′

= S\I may

not contain more than two elements, namely the distributions p∗ may live on the

support of only two strategies.

For such a distribution p∗ = pi,j , such that 〈`, pi,j〉 = `i · ρi + `j · ρj = `i,j and

〈f, pi,j〉 = fi · ρi + fj · ρj = fi,j , i, j ∈ S : i < j, where `i,j + fi,j = ξi,j , we get:

G(b̂(ξi,j)) = qi,j . (2.20)

The setting we introduce with Assumption 1 ensures that b̂ : [0, ξd] 7→ [0, b̂(ξd)]

is a continuous, non-decreasing, surjective function. In particular, we have that G(·)
is strictly increasing in b̂ ∈ [0, B] and b̂(·) is strictly increasing in ξ̄ ∈ [0,min[ξc, ξd]].

Then, for any pi,j to exist, namely for (2.20) to hold in each instance, the

following condition must hold respectively:

G(b̂(ξj)) > qi,j > G(b̂(ξi)). (2.21)

We refer to the vector points pi,j as double strategy fixed points, to emphasize

that they correspond to the group’s strategy profiles, such that the inspectees are

distributed between two available strategies.

Again, we present the detailed picture in the simplest case of three available

strategies generating increasingly illegal profits including compliance. Like above, in

Figures 2.4 and 2.5, we observe how the interplay of the key control parameters B

and f(·) affect the game dynamics. The general pattern is similar to Figures 2.2, 2.3.
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(a) q12 > q02 > q01 > G(B)

p0

p1

p2

(b) q12>q02>G(B)>q01>G(b̂(ξ1))

p0

p1

p2

p0,1

(c) q12>q02>G(B)≥G(b̂(ξ1))>q01

p0

p1

p2 p0,2

(d) q12>G(B)>q02>q01>G(b̂(ξ1))

p0

p1

p2

p0,1

p0,2

(e) q12>G(B)>q02>G(b̂(ξ1))>q01

p0

p1

p2

p0,1

p0,2

(f) q12>G(B)≥G(b̂(ξ1))>q02>q01

p0

p1

p2

p1,2

p0,2

(g) G(B)>q12>q02>q01>G(b̂(ξ1))

p0

p1

p2

p0,1
p1,2

p0,2

(h) G(B)>q12>q02>G(b̂(ξ1))>q01

p0

p1

p2

p0,1
p1,2

p0,2

(i) G(B)>q12>G(b̂(ξ1))>q02>q01

p0

p1

p2

p0,1

p0,2

(j) G(B)≥G(b̂(ξ1))>q12>q02>q01

Figure 2.4: Dynamics for the case of concave f(`) and three available
strategies/S = {0, 1, 2}

Initially, the pure strategy fixed point p2 appears to be asymptotically stable

(see Figures 2.4(a)–2.4(c), 2.5(a)), but gradually, either increasing B or toughening

up f(·), this unique asymptotically stable fixed point shifts towards compliance.

However, the shifting in this case takes place through double strategy fixed points, not
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through hyperplanes of fixed points. For a concave f(·), shifting towards compliance

occurs through the fixed point p0,2 living on the support of the two border strategies

(see Figures 2.4(d)–2.4(j)), while for a convex f(·), it occurs through the fixed points

p1,2, p0,1, living on the support of consecutive strategies (see Figures 2.5(b)–2.5(j)).

p0

p1

p2

(a) q01 > q02 > q12 > G(B)

p0

p1

p2

p1,2

(b) q01>q02>G(B)>q12>G(b̂(ξ1))

p0

p1

p2

(c) q01>q02>G(B)≥G(b̂(ξ1))>q12

p0

p1

p2

p1,2

p0,2

(d) q01>G(B)>q02>q12>G(b̂(ξ1))

p0

p1

p2 p0,2

(e) q01>G(B)>q02>G(b̂(ξ1))>q12

p0

p1

p2 p0,2

(f) q01>G(B)≥G(b̂(ξ1))>q02>q12

p0

p1

p2

p1,2

p0,2

(g) G(B)>q01>q02>q12>G(b̂(ξ1))

p0

p1

p2 p0,2

(h) G(B)>q01>q02>G(b̂(ξ1))>q12

p0

p1

p2 p0,2

(i) G(B)>q01>G(b̂(ξ1))>q02>q12

p0

p1

p2

p0,1

p0,2

(j) G(B)≥G(b̂(ξ1))>q01>q02>q12

Figure 2.5: Dynamics for the case of convex f(`) and three available
strategies/S = {0, 1, 2}
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Proposition 2. Consider the fixed points given by Theorem 4. For a convex fine:

1. the set of double strategy fixed points contains at most one fixed point pi,i+1

living on the support of two consecutive strategies;

2. there is at most one pure strategy fixed point pi satisfying:

qi−1,i > G(b̂(ξi)) > qi,i+1. (2.22)

Proof. We prove the two statements by contradiction.

1. Assume there are two double strategy fixed points, pi,i+1, pj,j+1, i, j ∈ S, such

that i < j, both living on the support of two consecutive strategies. In line with

Theorem 4, both of them should satisfy (2.19). However, since we consider a

convex fine, then from Lemma 1, it is also qi,i+1 > qj,j+1, and since it is j > i,

then from Assumption 1, it is also G
(
b̂(ξj)

)
≥ G(b̂(ξi+1)). Overall, we get that:

qi,i+1 > qj,j+1 > G(b̂(ξj)) ≥ G(b̂(ξi+1)),

which contradicts the initial assumption.

2. Assume there are two pure strategy fixed points, pi, pj , i, j ∈ S, such that

i 6= 0, i < j, both satisfying (2.22). However, since we consider a convex fine,

then from Lemma 1, it is also qi,i+1 ≥ qj−1,j , and since it is j > i, then from

Assumption 1, it is also G(b̂(ξj)) ≥ G(b̂(ξi)). Overall, we get that:

qi,i+1 ≥ qj−1,j > G(b̂(ξj)) ≥ G(b̂(ξi)),

which contradicts the initial assumption.

We generalize the findings discussed above on the occasion of Figures 2.4, 2.5,

into the following theorem.

Theorem 5. Let Assumption 1 hold. Consider the fixed points given by Theorem 4.

For a concave fine:

1. the pure strategy fixed point p0 is a source, thus unstable;

2. the pure strategy fixed points pi, i 6= 0, d, are saddles, thus unstable;

3. the double strategy fixed points pi,j 6= p0,d are saddles, thus unstable;
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4. the double strategy fixed point p0,d is asymptotically stable;

5. the pure strategy fixed point pd is asymptotically stable when p0,d does not exist;

otherwise, it is a source, thus unstable.

For a convex fine:

1. the pure strategy fixed point p0 is a source, thus unstable;

2. the double strategy fixed points pi,j , j 6= i+ 1, are saddles, thus unstable;

3. ∗ the double strategy fixed points pi,i+1 are asymptotically stable;

4. ∗ the pure strategy fixed points pi, i 6= 0, d, are saddles, thus unstable;

5. ∗ the pure strategy fixed point pd is a source, thus unstable.

∗ When no double strategy fixed point pi,i+1 living on the support of two consecutive

strategies exists, the pure strategy fixed point satisfying (2.22) is asymptotically stable.

Proof. See Section 2.6.

2.4 Continuous Strategy Setting

The discrete strategy setting is our first approach towards introducing multiple levels

of violation available for the inspectees. It is an easier framework to work with

for our analytic purposes, and it is more appropriate to depict certain applications.

For example, in the tax inspections regime, the tax payers can be thought of as

evading taxes only in discrete amounts (this is the case in real life). However, in the

general crime control regime, the intensity of criminal activity should be treated as

a continuous variable. Therefore, the continuous strategy setting is regarded as the

natural extension of the discrete setting that captures the general picture.

We consider the scenario where the inspectees choose their extend of compli-

ance within an infinite bounded set of strategies, Λ = [0, d], generating increasingly

illegal profits. Here, we identify the inspectees’ available strategies with the cor-

responding illegal profits that they generate to an undetected violator. We retain

the initially introduced framework (i.e., the myopic hypothesis, the best response

principle, etc.), adjusting our assumptions and our analysis to the continuous local

strategy space when needed. Our intention is to extend the findings of Section 2.3.
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The population’s state space ΛN is the set of sequences x = (`1, . . . , `N ),

where `n ∈ Λ is the n-th inspectee’s strategy. This can be naturally identified with

the set MN consisting of the normalized sums of N Dirac measures (δ`1 +· · ·+δ`N )/N .

Let the set of probability measures on Λ be M(Λ). We rewrite the inspectee’s

payoff function (2.5), playing for illegal profit ` ∈ Λ against inspector’s invested

budget b in the form:

Π(`, b) = r +
(
1−G(b)

)
· `−G(b) · f(`). (2.23)

Let us introduce the notation δx for the sum δ`1 + · · ·+ δ`N . We rewrite the

inspector’s payoff function (2.6) in the form:

Π(δx/N, b,N) = −b+N ·G(b) · 〈f, δx/N〉 ·
κ

N
−N ·

(
1−G(b)

)
· 〈`, δx/N〉 ·

κ

N
, (2.24)

where for the positive scaling constant, without loss of generality, we set κ = 1.

Recall the argument we introduced in Section 2.3.2 regarding the inspector’s

subjective evaluation, which leads to expressions (2.6) and (2.24).

It is rigorously proven in Kolokoltsov [2014] that, given that the initial

distribution δx/N converges to a certain measure µ ∈M(Λ) as N →∞, the group’s

strategy profile evolution under the inspector’s optimum pressure b̂ corresponds to

the deterministic evolution on M(Λ) solving the kinetic equation ∀A ⊆ Λ:

µ̇t(A) = ω ·
∫
z∈A

∫
y∈Λ

[
Π(z, b̂)−Π(y, b̂)

]
µt(dy)µt(dz), (2.25)

or equivalently in the weak form:

d

dt
〈g(·), µt〉 = ω ·

∫
Λ2

g(z) ·
[
Π(z, b̂)−Π(y, b̂)

]
µt(dy)µt(dz). (2.26)

Recall that Assumption 1 ensures that b̂ is well defined. Furthermore, notice

that notation ¯̀, f̄ , ξ̄ introduced in Section 2.3 stands here for the expected values

〈`, µ〉, 〈f, µ〉, 〈ξ, µ〉, ∀µ ∈M(Λ), respectively, where f = f(`) and ξ = ξ(`) = `+ f(`).

Using this inner product notation and substituting (2.23) into (2.25), the

kinetic equation can be written in a symbolic form:

µ̇t(dz) = ω · µt(dz) ·
[
z −G(b̂) · (z + f(z)) + 〈G(b̂) · (f(·) + ·)− ·, µt〉

]
. (2.27)

One can think of (2.25) and (2.27) as the continuous local strategy space

equivalents of equations (2.9) and (2.12).
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Proposition 3. A (non-negative) probability measure µ ∈M(Λ) is a singular point

of (2.25), namely, it satisfies:∫
z∈A

∫
y∈Λ

[
Π(z, b̂)−Π(y, b̂)

]
µt(dy)µt(dz) = 0, (2.28)

∀A ⊆ Λ, if and only if the inspectees’ payoff (2.23) is constant on the support of µ.

Since M(Λ) is the set of probability laws on Λ, then supp(µ) cannot be an empty set.

Proof. We use the inner product notation,
∫
y∈Λ Π(y, b̂(µt))µt(dy) = 〈Π(·, b̂), µt〉, to

rewrite (2.28) in the equivalent form:∫
z∈A

(
Π(z, b̂)− 〈Π(·, b̂), µt〉

)
µt(dz) = 0, (2.29)

and the result follows, since (2.29) holds when Π(z, b̂) = 〈Π(·, b̂), µt〉 for any z ∈ A.

2.4.1 Linear Fine

We consider a linear fine f(`) = σ · `, ` ∈ Λ, and we extend the definitions (2.11),

(2.15) and (2.16) to the continuous strategy setting.

Theorem 6. Let Assumption 1 hold. Every Dirac measure δz, ∀z ∈ Λ is a fixed

point of (2.25). Moreover:

1. If G(b̂(d)) > 1
1+σ , there is additionally a unique hyperplane of fixed points:

Θ =
{
µθ ∈M(Λ) | ∃! ¯̀∈ (0,min[`c, d]) : 〈`, µθ〉 = ¯̀ & G(b̂(¯̀)) =

1

1 + σ

}
,

2. If G(b̂(d)) = 1
1+σ and d > `c, there are additionally infinitely many hyperplanes

of fixed points:

Φ =
{
µφ ∈M(Λ) | ∀ ¯̀∈ [`c, d] : 〈`, µφ〉 = ¯̀ & G(b̂(¯̀)) =

1

1 + σ

}
.

Proof. Every Dirac measure δz for arbitrary z ∈ Λ satisfies (2.28), since by definition

it is 〈Π(·, b̂), δz〉 = Π(z, b̂).

Furthermore, Assumption 1 ensures that b̂ : Λ 7→ [0, b̂(d)] is a continuous, non-

decreasing, surjective function. In particular, G(·) is strictly increasing in b̂ ∈ [0, B],

and b̂(·) is strictly increasing in ¯̀∈ [0,min[`c, d]]. Therefore:
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1. When G(b̂(d)) > 1
1+σ , there is a unique average value ¯̀∈ (0,min[`c, d]) satisfy-

ing G(b̂(¯̀)) = 1
1+σ . This unique ¯̀ is generated by infinitely many probability

measures, µθ such that 〈`, µθ〉 = ¯̀, forming a hyperplane of points in M(Λ)

satisfying (2.25).

2. When G(b̂(d)) = 1
1+σ , and d > `c, every average value ¯̀ ∈ [`c, d] satisfies

G(b̂(¯̀)) = 1
1+σ . Each one of these infinitely many ¯̀ is generated by infinitely

many probability measures, µφ such that 〈`, µφ〉 = ¯̀, forming infinitely many

hyperplanes of points satisfying (2.25).

We refer to the points δz as pure strategy fixed points, to emphasize that they

correspond to the group’s strategy profiles, such that every inspectee plays the same

strategy z. Accordingly, we refer to the points µθ, µφ as mixed strategy fixed points.

Theorem 7. Let Assumption 1 hold. Consider the fixed points given by Theorem 6.

For a linear fine:

1. the pure strategy fixed points δz /∈ Θ,Φ, z ∈ Λ : z 6= d, are unstable;

2. the pure strategy fixed point δd is asymptotically stable on the topology of the

total variation norm, when Φ = Θ = ∅; otherwise, it is unstable;

3. the mixed strategy fixed points µθ, µφ are stable.

Proof. See Section 2.6.

2.4.2 Convex/Concave Fine

Let us extend definitions (2.11) and (2.17) to the continuous strategy setting.

For every x, y ∈ Λ : x < y, let us also introduce the auxiliary parameter:

qx,y =
x− y

x− y + f(x)− f(y)
. (2.30)

Lemma 2. For a convex fine, qx,y is strictly decreasing in x for constant y (or vice

versa), while for a concave fine, qx,y is strictly increasing in x for constant y (or vice

versa). In addition, for a convex fine, qx,y is strictly decreasing in x, y for constant

(y−x), while for a concave fine, qx,y is strictly increasing in x, y for constant (y−x).
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Theorem 8. Let Assumption 1 hold. Then, every Dirac measure δz, ∀z ∈ Λ, is

a fixed point of (2.25). Moreover, every normalized sum of two Dirac measures

µx,y = ax · δx + ay · δy,∀x, y ∈ Λ : x < y, ax + ay = 1, is a fixed point of (2.25),

uniquely defined for each pair of strategies x, y; µx,y exist on condition that they

satisfy respectively:

G(b̂(ξ(y))) > qx,y > G(b̂(ξ(x))). (2.31)

Proof. Every Dirac measure δz, for arbitrary z ∈ Λ, satisfies (2.28), since by definition,

it is 〈Π(·, b̂), δz〉 = Π(z, b̂).

Consider a probability measure µ∗ ∈ M(Λ) satisfying (2.28), such that

〈`, µ∗〉 = `∗, 〈f, µ∗〉 = f∗, 〈ξ, µ∗〉 = ξ∗, µ∗ 6= δz. Then, from Proposition 3, µ∗ should

satisfy Π(x, b̂) = Π(y, b̂) for every pair of x, y ∈ supp(µ∗), namely the fraction qx,y

should be constant ∀x, y ∈ supp(µ∗) and equal to G(b̂(ξ∗)).

According to Lemma 2, this is possible only when the support of µ∗ contains

no more than two elements, namely when it is equivalent to the normalised sum of two

Dirac measures, such that µ∗ = µx,y = ax · δx + ay · δy, ∀x, y ∈ Λ : x < y, ax + ay = 1.

Such a probability measure satisfies:

G(b̂(ξx,y)) = qx,y, (2.32)

where ξx,y = 〈ξ, ax · δx + ay · δy〉 = ax · (x+ f(x)) + ay · (y + f(y)).

In addition, Assumption 1 ensures that b̂ : [0, ξ(d)] 7→ [0, b̂(ξ(d))] is a continu-

ous, surjective, non-decreasing function. Particularly, G(·) is strictly increasing in

b̂ ∈ [0, B], and b̂(·) is strictly increasing in ξ̄ ∈ [0,min[ξ(c), ξ(d)]]. Therefore, for any

µx,y to exist, namely for (2.32) to hold in each instance, the following condition must

hold respectively:

G(b̂(ξ(y))) > qx,y > G(b̂(ξ(x))). (2.33)

We refer to the points µx,y as double strategy fixed points, since they cor-

respond to the group’s strategy profiles such that the inspectees are distributed

between two available strategies.

Theorem 9. Let Assumption 1 hold. Consider the fixed points given by Theorem 8.

Then, for a concave fine:

1. the pure strategy fixed points δz, z 6= d are unstable;

2. the double strategy fixed points µx,y 6= µ0,d are unstable;
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3. the double strategy fixed point µ0,d is asymptotically stable;

4. the pure strategy fixed point δd is asymptotically stable on the topology of the

total variation norm, when µ0,d does not exist; otherwise, it is unstable.

Proof. See Section 2.6.

2.5 Fixed Points and Nash Equilibria

So far, we have deduced and analysed the dynamics governing the deterministic

evolution of the multi-player system we have introduced (assuming the myopic

hypothesis for an infinitely large population of indistinguishable, interacting agents).

Our intention now is to provide a game-theoretic interpretation of the fixed points

we have identified. We work in the context of the discrete strategy setting. The

extension to the continuous strategy setting is straightforward.

Let us consider the game ΩN involving a finite number of N + 1 players

(N inspectees, one inspector). When the inspector chooses to play strategy b ∈ B
and each of the N inspectees chooses to play the same strategy i ∈ S, then the

inspector receives the payoff ΠI(b, x,N), and each inspectee receives the payoff Πi(b).

Note that the inspectees’ collective strategy profile can be thought of as the collection

of relative occupation frequencies, x = (xi).

One then defines an ε-approximate Nash equilibrium of ΩN as a profile of

strategies (b̂(xN ), xN ), such that:

b̂(xN ) = argmax ΠI(b, xN , N), (2.34)

and for any pair of strategies i, j ∈ {0, . . . , d}, the inequality:

Πj(b̂(xN − ei/N + ej/N)) ≤ Πi(b̂(xN )), (2.35)

holds up to an additive correction term not exceeding ε, where ei denote the standard

basis in Rd.
It turns out that the fixed points identified in Section 2.3 for the discrete

strategy setting (and by extension in Section 2.4 for the continuous strategy setting)

describe approximate Nash equilibria of ΩN . We state here the relevant result without

a proof. A rigorous discussion can be found in Kolokoltsov [2014]. Recall that for a

sufficiently large population N (formally valid for N →∞), we can approximate the

relative occupation frequencies xi with the probabilities ρi obeying (2.12).
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Proposition 4. Under suitable continuity assumptions on Πi and ΠI :

1. any limit point of any sequence xN , such that (b̂(xN ), xN ) is a Nash equilibrium

of ΩN , is a fixed point of the deterministic evolution (2.12);

2. for any fixed point x of (2.12), there exists a 1/N−Nash equilibrium (b̂(xN ), xN )

of ΩN , such that the difference of any pair of coordinates of xN , x does not

exceed 1/N in magnitude.

The above result provides a game-theoretic interpretation of the fixed points

that were identified by Theorems 2, 4, 6 and 8, independent of the myopic hypothesis.

Moreover, it naturally raises the question of which equilibria can be chosen by the

agents in the long run. The fixed points stability analysis performed in Sections

2.3 and 2.4 aims to investigate this issue. Furthermore, Proposition 4 states, in

simple words, that our analysis and our results are also valid for a finite population

of inspectees (recall our initial assumption for an infinitely large N), with precision

that is inversely proportional to the size of N .

2.6 Proofs

We make use of the Hartman-Grobman theorem, stating that the local phase portrait

near a hyperbolic fixed point is topologically equivalent to the phase portrait of the

linearisation, see, e.g., Strogatz [2014], namely that the stability of a hyperbolic fixed

point is preserved under the transition from the linear to the non-linear system. For

the non-hyperbolic fixed points we resort to Liapunov’s method, see, e.g., Jordan

and Smith [2007]. Recall that a fixed point is hyperbolic if all the eigenvalues of

the linearisation evaluated at this point have non-zero real parts. Such a point is

asymptotically stable if and only if all the eigenvalues have strictly negative real

part, while it is unstable (either a source or a saddle) when at least one has strictly

positive real part.

Proof of Theorem 3

We rewrite (2.12) in the equivalent form, for i ∈ S : i 6= j, and arbitrary j ∈ S:

ρ̇i(t) = ρi(t) ·
(
1− (1 + σ) ·G(b̂)

)
·
(
`i − `j +

∑
n6=j

ρn · (`j − `n)
)
. (2.36)

The linearization of (2.36) around a pure strategy fixed point pj , can be

written in the matrix form:

ṗ(t) = A · p(t) (2.37)
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where A is a d × d diagonal matrix, with main diagonal entries, that is, with

eigenvalues:

λi|pj =
(
1− (1 + σ) ·G(b̂(`j))

)
· (`i − `j). (2.38)

(i) For the pure strategy fixed point p0 we get:

λi|p0 = `i, (2.39)

that is strictly positive ∀ i ∈ S : i 6= 0. Then p0 is a source.

(ii) For the pure strategy fixed point pd we get:

λi|pd = (`i − `d) ·
(
1− (1 + σ) ·G(b̂(`d))

)
, (2.40)

that is strictly negative ∀ i ∈ S : i 6= d when G(b̂(`d)) <
1

1+σ ⇔ Θ = Φ = ∅.
Then pd is asymptotically stable.

Otherwise, (2.40) is strictly positive, and pd is a source.

(iii) For the pure strategy fixed points pj , ∀ j ∈ S : j 6= 0, d, (2.38) changes sign

between `j < `i and `j > `i, when i ∈ S : i 6= j. Then pj are saddles.

(iv) For the non-isolated, non-hyperbolic mixed strategy fixed points pθ, pφ we resort

to Liapunov’s method. In particular, we consider the real valued Liapunov

function V ∈ C1(Σd+1):

V (p) =
(
1− (1 + σ) ·G(b̂)

)2
. (2.41)

Differentiating with respect to time, we get:

V̇ (p) = −(1 + σ) ·
(
1− (1 + σ) ·G(b̂)

)
· ∂G
∂b̂
· ∂b̂
∂ ¯̀ ·

∂ ¯̀

∂t
. (2.42)

From Assumption 1, G(·) is strictly increasing in b̂ ∈ [0, B], and b̂(·) is strictly

increasing in ¯̀∈ [0,min[`c, `d]]. Additionally, differentiating (2.36) with respect

to time we get:

d¯̀

dt
=
(
1− (1 + σ) ·G(b̂(¯̀))

)
·
(
〈`, p〉2 − 〈`2, p〉

)
. (2.43)

Overall, we have that V (pθ) = 0, V (p) > 0 if p 6= pθ, and V̇ (p) ≤ 0 for all

p ∈ Σd+1 (respectively for pφ and p 6= pφ). Therefore, according to Liapunov’s

Theorem, pθ,pφ are stable.
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Proof of Theorem 5

We rewrite (2.12) in the equivalent form, i ∈ S : i 6= d:

ρ̇i(t) = gi(p) =
(
(`i − `d + fi − fd) · (qi,d −G(b̂))−

∑
j 6=d

(`j − `d + fj − fd)

×(qj,d −G(b̂)) · ρj
)
· ρi.

(2.44)

Around an arbitrary fixed point p∗ = (ρ∗i ), the nonlinear system (2.44) is

approximated by:

ρ̇i(t) =
∑
l 6=d

∂gi(p)

∂ρκ
|p=p∗ · (ρκ − ρ∗κ), (2.45)

which is a linear system with coefficient matrix A = (aiκ), κ ∈ S : κ 6= d, with:

aiκ :=
∂gi(p)

∂ρκ
|p=p∗ =

(
−(`κ − `d + fκ − fd) · (qκ,d −G(b̂(ξ∗))

+
(
`d − `i + fd − fi +

∑
j 6=d

(`j − `d + fj − fd) · ρ∗j
)
· ∂G(b̂(ξ̄))

∂ρκ
|ξ̄=ξ∗

)
· ρ∗i

+δiκ ·
(
(`d − `i + fd − fi) · (G(b̂(ξ∗))− qi,d) +

∑
j 6=d

(`j − `d + fj − fd)

×(G(b̂(ξ∗))− qj,d) · ρ∗i
)
,

(2.46)

where ξ∗ = 〈ξ, p∗〉. This is the Jacobian Matrix of (2.44) at an arbitrary fixed point

p∗ = (ρ∗i ). We use the characteristic equation:

det(A− λ · I) = 0,

to identify the eigenvalues of matrix A for every fixed point.

Let us introduce the notation Ei,j for the elementary matrix corresponding

to the row/column operation of swapping rows/columns i� j . The inverse matrix

of Ei,j is itself, namely it is E
−1

i,j = Ei,j .

For a pure strategy fixed point pl, l ∈ S : l 6= 1, first swapping rows 1 � l of

A, and then swapping columns 1 � l of the resulting matrix, we obtain the upper

triangular matrix:

B = E
−1

1,l ·A · E1,l. (2.47)

For l = 1, the Jacobian matrix A is already an upper triangular matrix.

Matrices A and B are similar, that it, they have the same characteristic polynomial

and thus the same eigenvalues. Note that the eigenvalues of an upper triangular

matrix are precisely its diagonal elements.
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Consequently, the eigenvalues of A at a pure strategy fixed point pl, l ∈ S,

are given by:

λi|pl = (`l−`i+fl−fi)·(G(b̂(ξl))−qi,l)+δil ·(`i−`d+fi−fd)·(G(b̂(ξl))−qi,d). (2.48)

For a double strategy fixed point pm,n, m,n ∈ S : m < n,m 6= 1, 2, n 6= 2,

swapping rows 1 � m of A, and then swapping in order rows 2 � n, columns 1 � m,

columns 2 � n, we obtain the matrix:

C = (E1,m · E2,n)
−1 ·A · E1,m · E2,n, (2.49)

where we have used the inverse matrix product identity.

For (m,n) = (1, 2) the Jacobian matrix A has already the form of C. For

m = 1, n 6= 2 we need to swap only the n row, n column. Respectively for m = 2.

Matrices A and C are similar. The characteristic polynomial of C, and thus of A, is:

(amm − λ) · det
(
(ciκ)i,κ 6=1 − λ · I

)
+ (amn − λ) · det

(
(ciκ)i 6=1,κ6=2 − λ · I

)
= (amm − λ) ·

∏
i 6=m

(aii − λ) + (amn − λ) · (anm − λ) ·
∏
i 6=m,n

(aii − λ)

=
(
(amm − λ) · (ann − λ) + (amn − λ) · (anm − λ)

)
·
∏
i 6=m,n

(aii − λ)

= 0,

(2.50)

where (ciκ)i,κ 6=1 and (ciκ)i 6=1,κ6=2 are upper triangular matrices.

Thus, the eigenvalues of A at a double strategy fixed point pm,n,m, n ∈ S :

m < n, are given by:

λi|pm,n = (`m − `i + fm − fi) · (G(b̂(ξm,n))− qi,m) + (δin · ρn + δim · ρm)

×
(
(`i − `d + fi − fd) · (G(b̂(ξm,n))− qi,d)

+(ρn · (`n − `m + fn − fm) + `m − `i + fm − fi) ·
∂G(b̂(ξ̄))

∂ρi
|ξ̄=ξm,n

)
.

(2.51)

Concave Fine;

(i) For the pure strategy fixed point p0, we get form (2.48):

λi|p0 = `i + δi0 · (`d − `i), (2.52)

that is strictly positive ∀ i ∈ S : i 6= d. Then p0 is a source.
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(ii) For the pure strategy fixed points pl, l 6= 0, d, say it is G(b̂(ξl)) > qi,l (or

G(b̂(ξl)) < qi,l), ∀ i ∈ S : i 6= d; then (2.48) changes sign between i < l

and i > l. Alternatively, say there is some w such that G(b̂(ξl)) > qw,l,

G(b̂(ξl)) < qw+1,l; then (2.48) indicatively changes sign between i < w < l and

w < i < l (or between l < i < w and l < w < i). Then pl, l 6= 0, d, are saddles.

(iii) For the double strategy fixed points pm,n 6= p0,d, (2.51) changes sign, indica-

tively between i > n > m and n > i > m (since qi,m is strictly increasing in i).

Then pm,n 6= p0,d are saddles.

(iv) For the double strategy fixed point p0,d, we get from (2.51):

λi|p0,d
= −(`i + fi) · (G(b̂(ξ0,d))− q0,i) + δi0 · ρ0 ·

(
(`i − `d + fi − fd)

×(G(b̂(ξ0,d))− qi,d) + (ρd · (`d + fd)− `i − fi) ·
∂G(b̂(ξ̄))

∂ρi
|ξ̄=ξ0,d

)
,

(2.53)

that is strictly negative ∀ i ∈ S : i 6= d (since G(b̂(ξ0,d)) = q0,d, q0,i is strictly

increasing in i). Then p0,d is asymptotically stable.

(v) For the pure strategy fixed point pd, we get from (2.48):

λi|pd = (`d − `i + fd − fi) · (G(b̂(ξd))− qi,d), (2.54)

that is strictly negative ∀i ∈ S : i 6= d when p0,d does not exist, namely when

q0,d > G(b̂(ξd)). Then pd is asymptotically stable.

Otherwise, it is strictly positive ∀i ∈ S : i 6= d, that is, pd is a source.

Convex Fine;

(i) For the pure strategy fixed point p0, we get from (2.48):

λi|p0 = `i + δi0 · (`d − `i), (2.55)

that is strictly positive ∀i ∈ S : i 6= d. Then p0 is a source.

(ii) For the double strategy fixed points pm,n, n 6= m + 1, (2.51) changes sign,

indicatively between i > n > m and n > i > m (since qi,m is strictly decreasing

in i). Then pm,n are saddles.

(iii) For the double strategy fixed points pj,j+1, (2.51) is strictly negative ∀i ∈ S :

i 6= d (since G(b̂(ξj,j+1)) = qj,j+1, qi,j is strictly decreasing in i). Then pj,j+1

is asymptotically stable.
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(iv) For the pure strategy fixed points pl, l 6= 0, d, (2.48) is strictly negative ∀i ∈ S :

i 6= d when pl satisfies (2.22), namely when ql−1,l > G(b̂(ξl)) > ql,l+1. Then pl

is asymptotically stable.

Otherwise (2.48) changes sign (see part (ii) of the proof for a concave fine),

that is, pj is a saddle.

(v) For the pure strategy fixed point pd, we get from (2.48):

λi|pd = (`d − `i + fd − fi) · (G(b̂(ξd))− qi,d), (2.56)

that is strictly negative ∀i ∈ S : i 6= d when pd satisfies (2.22), namely when

qd−1,d > G(b̂(ξd)). Then pd is asymptotically stable.

Otherwise, it is strictly positive ∀i ∈ S : i 6= d, that is, pd is a source.

Proof of Theorem 7

(i) From the proof of Theorem (3), we have seen that the pure strategy fixed

points δz /∈ Θ,Φ, z ∈ Λ : z 6= d, have at least one unstable trajectory.

(ii) For the pure strategy fixed point δd, consider the real valued (Liapunov)

function L1 ∈ C1(E), where E is an open subset of M(Λ), with radius r < 2

and center δd, such that:

L1(µ) = d− 〈`, µ〉. (2.57)

The total variation distance between any two Dirac measures δx, δy ∈M(Λ) is:

dTV (δx − δy) = sup
|f |≤1

∫
f(z)(δx − δy)dz = 2. (2.58)

No Dirac measures are contained in E. Using variational derivatives, we get:

L̇1(µ) =
(
1− (1 + σ) ·G(b̂(¯̀))

)
·
(
〈`, µ〉2 − 〈`2, µ〉

)
. (2.59)

When Φ = Θ = ∅ ⇔ G(b̂(d)) < 1
1+σ , we have that L1(δd) = 0, L1(µ) > 0

if µ 6= δd, and L̇1(µ) < 0 for all µ ∈ E\δd. Then, according to Liapunov’s

Theorem, δd is asymptotically stable.

(iii) For the mixed strategy fixed points µθ, µφ, take the real valued (Liapunov)

function L2 ∈ C1(M(Λ))

L2(µ) =
(
1− (1 + σ) ·G(b̂(¯̀))

)2
. (2.60)



Draft of 9:20 pm, Sunday, March 25, 2018 37

Using variational derivatives, we get:

L̇2(µ) = 2 · (1 + σ) · L2(µ) · dG

db̂
· db̂

d¯̀ ·
(
〈`, µ〉2 − 〈`2, µ〉

)
. (2.61)

From Assumption 1, G(·) is strictly increasing in b̂ ∈ [0, B], and b̂(·) is strictly

increasing in ¯̀∈ [0,min[`c, d]]. Hence, we have that L2(µθ) = 0, L2(µ) > 0 if

µ 6= µθ, and L̇2(µ) ≤ 0 for all µ ∈M(Λ) (respectively for µφ). Then, according

to Liapunov’s theorem, µθ, µφ are stable.

Proof of Theorem 9

(i)-(ii) From the proof of Theorem (5), we have seen that the pure strategy fixed

points δz, z 6= d, and the double strategy fixed points µx,y 6= µ0,d, have at least

one unstable trajectory.

(iii) For the mixed strategy fixed point µ0,d, consider the real valued (Liapunov)

function U1 ∈ C1(E) where E is an open subset of M(Λ), with radius r < 2

and center µ0,d:

U1(µ) =
(
q0,d −G(b̂(ξ̄))

)2
. (2.62)

Using variational derivatives we get:

U̇1(µ) = −2 · dG

db̂
· db̂

dξ̄
·
(
q0,d −G(b̂(ξ̄))

)
·
(
〈`2, µ〉 − 〈`, µ〉2 + 〈` · f(`), µ〉

−〈`, µ〉 · 〈f(`), µ〉 −G(b̂(ξ̄)) ·
(
〈`2, µ〉 − 〈`, µ〉2 + 〈f(`)2, µ〉 − 〈f(`), µ〉2

+2 · (〈` · f(`), µ〉 − 〈`, µ〉 · 〈f(`), µ〉)
))
.

(2.63)

Consider a small deviation from µ0,d:

ν = (1− ε) · (a0 · δ0 + ad · δd) + ε · µ, (2.64)

where ε is small, and ‖µ‖ = 1. In first order approximation, one can show that:

〈`2, ν〉 − 〈`, ν〉2 + 〈` · f(`), ν〉 − 〈`, ν〉 · 〈f(`), ν〉
〈`2, ν〉 − 〈`, ν〉2 + 〈f(`)2, ν〉 − 〈f(`), ν〉2 + 2 · (〈` · f(`), ν〉 − 〈`, ν〉 · 〈f(`), ν〉)

> (<)q0,d

⇒ 〈(f(d) · `− d · f(`)) · (`− ad + f(`)− ad · f(d)), µ〉 > (<)0,

(2.65)
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holds, when:

G
(
b̂
(
ad · (d+ f(d)) + ε · 〈`+ f(`)− ad · (d+ f(d))〉

))
> (<)q0,d

⇔ `+ f(`)− ad · (d+ f(d)) > (<)0,
(2.66)

where:

〈ξ, ν〉 = ad · (d+ f(d)) + ε · 〈`+ f(`)− ad · (d+ f(d))〉. (2.67)

For a concave fine, it is:

f(d) · `− d · f(`) < 0, (2.68)

and from Assumption 1, G(·) is strictly increasing in b̂, and b̂(·) is strictly

increasing in ¯̀. Then, overall we have that U1(µ0,d) = 0, U1(µ) > 0 if µ 6= µ0,d,

and U̇1(ν) < 0, for any small deviation from µ0,d. Thus, according to Liapunov’s

theorem µ0,d is asymptotically stable.

(iv) For the pure strategy fixed point δd, consider the real valued (Liapunov)

function U2 ∈ C1(E), where E is an open subset of M(Λ), with radius r < 2

and center δd (so that E does not contain any other dirac measures):

U2(µ) = d− 〈`, µ〉. (2.69)

Using variational derivatives we get:

U̇2(µ) = −
(
〈`2, µ〉 − 〈`, µ〉2 −G(b̂(ξ̄)) · (〈`2, µ〉 − 〈`, µ〉2

+〈` · f(`), µ〉 − 〈`, µ〉 · 〈f(`), µ〉)
)
.

(2.70)

When µ0,d does not exist, namely when d
d+f(d) > G(b̂(ξ(d))), take a small

deviation from δd:

ν = (1− ε) · δd + ε · µ, (2.71)

where ε is small, and ‖µ‖ = 1. In first order approximation, one can show that:

〈`2, ν〉 − 〈`, ν〉2

〈`2, ν〉 − 〈`, ν〉2 + 〈` · f(`), ν〉 − 〈`, ν〉 · 〈f(`), ν〉
>

d

d+ f(d)

⇒ 〈(`− d) · (` · f(d)− d · f(`)), µ〉 > 0,

(2.72)
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holds, since for a concave fine it is:

` · f(d)− d · f(`) < 0, (2.73)

and, for any ξ̄ < ξ(d) it is:

G(b̂(ξ̄)) < G(b̂(ξ(d))). (2.74)

Then, overall we have that U2(δd) = 0, U2(µ) > 0 if µ 6= δd, and U̇2(ν) < 0 for

any small deviation from δd within E. Thus, according to Liapunov’s theorem,

δd is asymptotically stable.



Chapter 3

Evolutionary, Mean-Field and

Pressure-Resistance Game

Modelling of Networks Security

3.1 Introduction

The issue of social security and crime prevention dominantly concerns the modern

societies. In the traditional terrain of counter-terrorism, corruption and tax evasion,

the corresponding authorities in charge struggle to deal with large populations of

increasingly informed violating individuals (this term will be used interchangeably

with the terms agents or small players). Reversely, in the recently emerging field

of cyber-security, large groups of individuals aim to defend their private computers

against a lurking cyber-criminal (bot-net defence). Similar reasoning can be asserted

for the citizens of a large city defending against a biological weapon (bio-terrorism).

The rapid advance in the means and the speed of interaction, communication and

exchange of information has established the individuals’ social network as a decisive

parameter of their strategic decision making in the above and similar instances.

Here we consider agents who are organized in specific social or phenotypic (or even

geographical), and behavioural network structures. The central focus of this chapter

is to investigate the evolution of the complex process where a (very) large number of

interacting individuals, susceptible to engage in or be affected by criminal behaviour,

decide their strategies subject to a benevolent, or respectively to a malicious, major

player’s (this term will be used interchangeably with the term principal) pressure, to

their individual optimization criterion, and to their (social) environment’s influence.

In the real life scenaria we aim to capture with our approach, it is natural then

40
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to distinguish two main dimensions of (network) structure. The first dimension refers

to the individuals’ objective distribution among different levels of social, bureaucratic,

or phenotypic hierarchy, or to their geographical distribution, in general to any

finite partition according to their independent characteristics. One can think for

example of tax payers of different bands, employees of different grades, or infected

computers/individuals of different degrees. The second dimension refers to the agents’

distribution among different types of strategy or behaviour, subject (mainly) to the

agents’ individual control; say for example the level of tax evasion in the field of

inspection games, the extent of bribery acceptance in the field of corruption games,

or the level of defence against terrorist activity or a malware in the fields of counter

terrorism and cyber-security respectively.

Note that our game theoretic approach is developed under the basic idea of a

very large number of non-cooperative, interacting agents playing against (i.e under

the pressure of) a single major player. In principle, our model belongs to the class of

non-linear Markov games, see, e.g., Kolokoltsov [2010], combining under an extended

scheme the pressure-resistance, the evolutionary, and the mean-field game approach.

The pressure-resistance terminology was introduced in Kolokoltsov [2014],

where ideas captured from evolutionary game theory were extended, including the

pressure of a major player on a large group of interacting small players. Here,

the pressure-resistance game component refers to the principal’s interference that

generates transitions solely on the first dimension of structure (e.g. a benevolent

director able to promote or downgrade interacting bureaucrats, computers and

individuals getting infected or recovering subject to a cyber-criminal’s and a bio-

terrorist’s activity respectively). This approach of major and minor players has also

been considered for the analysis of mean-field type models, see, e.g., Bensoussan,

Chau and Yam [2016], Carmona and Zhu [2016], Huang [2010].

The evolutionary game component refers to the agents’ pairwise interactions,

with particular focus on the effect of the established social norms, potentially

generating transitions on both dimensions of structure. For a general survey on

the literature of population dynamics applications on game theory, that is, on

evolutionary game theory, see, e.g., Gintis [2000], Hofbauer and Sigmund [2003],

Samuelson [2002], Smith [1988], Szabó and Fath [2007], Taylor et al. [2004], Weibull

[1997]. See also Friedman [1991, 1998] for specific application in economics.

The mean-field game (MFG) component refers to the agents’ individual opti-

mization controlled by their strategic position on the second dimension of structure,

taking into account the entire population’s behaviour. This element of ‘globally’

rational optimization introduces an additional level of complexity compared to Kat-
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sikas, Kolokoltsov and Yang [2016], Kolokoltsov [2014], where optimization strictly

upon imitation of successful strategies on the basis of binary comparison of payoffs

was considered (purely evolutionary approach). MFGs were introduced by Larsy

and Lions [2007], by analogy with the mean-field theory in statistical mechanics,

and were also introduced independently by Huang, Malham and Caines [2006] as

large population stochastic dynamic games. In principle, they represent a natural

extension of earlier work in the economics literature under the assumption of infinite

number of players, see, e.g. Aumann [1964], Dubey, Mas-Colell and Shubik [1980]

for static games, Bergin and Bernhardt [1992], Jovanovic and Rosenthal [1988] for

dynamic games. The literature on MFGs is growing fast, see, e.g., Bensoussan,

Frehse and Yam [2013], Caines [2013], Cardaliaguet [2010], Carmona and Delarue

[2013], Gomes and Saude [2014], Tembine et al. [2009] for a general survey.

Here we shall work in three asymptotic regimes, that is, we shall consider

fast execution of the agents’ personal decisions, weak binary interactions, and small

discounting in time. The need to introduce this ternary asymptotic approach

is revealed from the analysis of a similar setting conducted in Kolokoltsov and

Bensoussan [2016], where the distribution of infection in a computers network with a

malicious software controlled by a cyber-criminal was described by a stationary MFG

model with four states. Whilst the three states model describing the distribution of

corruption in a population of bureaucrats under the pressure of a benevolent principal

that was studied in Kolokoltsov and Malafeyev [2015], is solved explicitly without

any asymptotic simplifications, the introduction of a fourth state in Kolokoltsov and

Bensoussan [2016] already increases the complexity significantly, such that the need

to consider (though not as strongly as we do here) the assumption of large λ (fast

decisions execution) is critical to obtain descent solutions.

Similarly, for the even more complex n×m states model we introduce here,

the need to consider the three asymptotic regimes mentioned above becomes obvious.

In principle, even without working in these asymptotic regimes one can sometimes

obtain explicit but extremely lengthy formulas, not revealing any clearer insights. But

also form a practical point of view our asymptotic approach has clear interpretation.

Indicatively, an infinitely large transition rate λ implies the natural process of

immediate execution of personal decisions as long as they have already been taken,

while a vanishingly small discounting δdis implies a short planning horizon. Both of

the models studied in Kolokoltsov and Malafeyev [2015], Kolokoltsov and Bensoussan

[2016], and our extended approach here, belong to the category of finite state space

mean-field games that were initially considered in Gomes, Mohr and Souza [2010,

2013]. See also Gomes, Velho and Wolfram [2014] for socio-economic applications.
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Added to the applications on corruption, and cyber-security, here we introduce

the bio-terrorism interpretation, that is, the defence of a population against a

biological weapon. The implementation of game theoretic methods to the analysis of

terrorism has been vastly developed ever since the 1980s, with game theory allowing

the investigation of different instances of strategic interaction (e.g. terrorists vs

government, terrorists vs terrorists, terrorists for sponsors, terrorists for supporters),

see, e.g., Arce, Daniel and Sandler [2005], Sandler and Arce [2007], Sandler and

Siqueira [2009]. The pairing we capture here is civilians vs a bio-terrorist.

We organize Chapter 3 as follows. In Section 3.2 we specify explicitly the

time-dependent and stationary MFG consistency problems. In Section 3.3 we solve

the stationary problem in our proposed asymptotic regimes, and we show that the

identified solution is a stable fixed point of the corresponding evolutionary dynamics.

In Section 3.4 we construct the class of time-dependent solutions that stay in a neigh-

bourhood of the identified stationary solution. In the terminology of mathematical

economics, this stationary solution represents a turnpike (see, e.g., Kolokoltsov and

Yang [2012], Zaslavski [2006]) for the class of time-dependent solutions.

3.2 Formal Model

Let H = {1, · · · , |H| = n} be a finite set characterizing the hierarchical partition of

small players inside the environment, say their position in the bureaucratic staircase of

an organization. Alternatively, it may describe the extend of individuals’ infection to

a bio-weapon. Moreover, let B = {1, · · · , |B| = m} be a finite set characterizing the

behavioural or strategic partition of agents, say the level of compliance with official

regulations, or the degree of protection for PCs/citizens against cyber-criminals/bio-

terrorists. Then, the states of an agent are given by ordered pairs of the form (h, b),

with h ∈ H, b ∈ B, the finite state space being S = H ×B.

Remark 2. In some cases it is reasonable to include an additional zero state, some

kind of a rank-less sink, where no choice of B is available, say a corrupted civil

servant suspended from duty without the potential to be bribed, an infected individual

put in quarantine, and so forth. Thus, the state space can be either S = H ×B as

initially defined above, or S̃ = H ×B ∪ {0} = S ∪ {0} as alternatively implied with

this comment. We shall stick here to the first instance.

We distinguish the following three structures. Firstly, the decision structure

(B,ED, λ), that is a non-oriented graph with the set of vertices B and the set of

edges ED, where an edge e joins the vertices i and j when an agent is able to switch
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between states (h, i) and (h, j). Every such transition in B requires certain random

λ-exponential time. For simplicity, a single parameter λ is chosen for all possible

transitions. As mentioned, we shall mostly look at the asymptotic regime with

λ→∞. We take the agents to be homogeneous and indistinguishable, in the sense

that their strategies and payoffs depend only on their states, and not on any other

individual characteristics. Hence, a decision of an agent in a state (h, b) at any time

is given by the decision matrix u = (uhb→hb̃), expressing his intention to switch from

b to b̃, for all b̃ ∈ B such that b̃ 6= b. IWe consider agents without mixed strategies,

that is, for any state (h, b) the decision vector (uhb→hb̃) is either identically zero,

when the agent does not wish to change strategy, or there exists one strategy b1 6= b

such that uhb→hb1 = 1, and all the other coordinates of (uhb→hb̃) being zero, when

the agent wishes to change from strategy b to b1.

Secondly, the pressure structure (H,EP , qjb→ib), that is an oriented graph,

where an edge e joins the vertices j and i whenever a major player has the power (or

the authority) to upgrade or downgrade the small players from the hierarchy level

j to i. In this case, coefficients qjb→ib represent the rates of such transitions in H,

that is, every such transition requires certain qjb→ib-exponential waiting time. In

general, these rates may depend on some control of the principal (one can think of

some parameter describing the principal’s efforts or interference, for example his/her

budget). We shall not exploit this version here.

Finally, we consider the evolution structure that characterizes the change

in the distribution of states due to the agents’ pairwise interaction (e.g. through

exchange of opinions, fight with competitors, effect of established social norms, and

so forth). This can be described by the set of rates qss1→s2 , by which an agent in state

s can stimulate the transition of another agent from state s1 to state s2. For instance,

an honest agent (or even a corrupted one) may help the principal to discover, and

therefore punish, the illegal behaviour of a corrupted agent. Note that transitions due

to binary interaction can be naturally separated into transitions in B and transitions

in H, yielding respectively the behavioural and the hierarchical evolution structures.

Remark 3. The scaling 1/N for the rates of binary interactions is the standard

procedure of making the strength of N2 (total number of pairs) binary transitions

comparable to the strength of N unilateral transitions.

Here we shall ignore the behavioural element of the evolution structure. That

is, we shall assume that transition rates qss1→s2/N may not vanish only for two states

s1, s2 that differ strictly in their h-component. Moreover, since we shall work in

the asymptotic regime of small binary interactions, it would be helpful to introduce
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directly a small parameter δint discounting the power of these interactions. Then,

we shall denote thereafter the corresponding transition rates by δint · qsh1b→h2b/N .

Remark 4. The evolutionary transitions in B represent an alternative to the individ-

ual transitions described by the decision structure (B,ED, λ), and can be considered

negligible in the limit λ → ∞ that we shall look at here. Taking into account a

behavioural evolution structure is more appropriate in the absence of a decision

structure, which was the case developed in Kolokoltsov and Malafeyev [2015].

To introduce a more detailed description of our game-theoretic framework,

note that the states of the corresponding N players game are the N -tuples of the

form, {(h1, b1), . . . , (hN , bN )}, where each pair (hi, bi) describes each of the N players

position on the hierarchy and the behaviour axis respectively. Assuming that each

player adopts a decision matrix u, then the system evolves according to the continuous

time Markov chain introduced above, with the corresponding transitions rates as

were specified. If we further specify the rewards for staying in each state per unit of

time, the transition fees/costs for transiting from one state to another, as well as the

terminal payoffs corresponding to each state for some finite terminal time, then we

shall be working in the setting of a stochastic dynamic game of N players.

As usual in a MFG approach, we are interested in estimating the approximate

symmetric Nash equilibria. Assuming indistinguishable agents, the system’s state

space can be reduced to the set Znm+ of vectors n = (nij), i ∈ H, j ∈ B, where nij

denotes the number of agents in state (i, j), and N =
∑

ij nij denotes the (constant)

total number of agents. Therefore, the initially introduced Markov chain reduces to

the Markov chain on Znm+ , described by the time-dependent generator:

LtNF (n) =
n∑
a

m∑
β

n∑
c

naβ · qaβ→cβ ·
(
F (ncβaβ)− F (n)

)
+

n∑
a

m∑
β

n∑
c

n∑
γ

m∑
k

naβ · δint · qγkaβ→cβ/N · nγk ·
(
F (ncβaβ)− F (n)

)
+

n∑
a

m∑
β

m∑
c

naβ · λ · uaβ→ac ·
(
F (nacaβ)− F (n)

)
,

(3.1)

where the unchanged values in the arguments of function F on the right-hand side

are omitted. Equivalently, in the normalized version the system’s state space can be

reduced to the subset of the probability simplex ΣN
n×m ⊆ Rn×m, with vectors of the

form x = (xij) = n/N , i ∈ H, j ∈ B, where each coordinate will represent now the

occupation density (alternatively the occupation probability) of each state (i, j). For
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the Markov chain on ΣN
n×m, generator (3.1) can be rewritten in the equivalent form:

LtNf(x) =
n∑
a

m∑
β

n∑
c

xaβ ·N · qaβ→cβ ·
(
f(x+ (ecβ − eaβ)/N)− f(x)

)
+

n∑
a,c,γ

m∑
β,k

xaβ ·N · δint · qγkaβ→cβ/N · xγk ·N ·
(
f(x+ (ecβ − eaβ)/N)− f(x)

)
+

n∑
a

m∑
β

m∑
c

xaβ ·N · λ · uaβ→ac ·
(
f(x+ (eac − eaβ)/N)− f(x)

)
,

(3.2)

where {eij} is the standard orthonormal basis in Rn×m. Assuming, additionally, that

f is a continuously differentiable function on ΣN
n×m, and taking its Taylor expansion,

in the limit of infinitely many agents N →∞, (3.2) eventually converges to:

Ltf(x) =

n∑
a

m∑
β

n∑
c

xaβ · qaβ→cβ ·
( ∂f
∂xcβ

− ∂f

∂xaβ

)
+

n∑
a

m∑
β

n∑
c

n∑
γ

m∑
k

xaβ · δint · qγkaβ→cβ · xγk ·
( ∂f
∂xcβ

− ∂f

∂xaβ

)
+

n∑
a

m∑
β

m∑
c

xaβ · λ · uaβ→ac ·
( ∂f
∂xac

− ∂f

∂xaβ

)
,

(3.3)

or equivalently to the form:

Ltf(x) =
n∑
a6=c

m∑
β

n∑
c

(xaβ · qaβ→cβ − xcβ · qcβ→aβ) · ∂f
∂xcβ

+

n∑
a6=c

m∑
β

n∑
c

n∑
γ

m∑
s

(xaβ · δint · qγsaβ→cβ · xγs − xcβ · δint · q
γs
cβ→aβ · xγs) ·

∂f

∂xcβ

+

m∑
β

n∑
c

m∑
s 6=β

(xcs · λ · ucs→cβ − xcβ · λ · ucβ→cs) ·
∂f

∂xcβ
.

(3.4)

This is a first order partial differential operator, that generates a deterministic

Markov process, whose dynamics are governed by the characteristic equations of Lt:

ẋij =
m∑
k 6=j

(xik · λ · uik→ij − xij · λ · uij→ik) +
n∑
a6=i

(xaj · qaj→ij − xij · qij→aj)

+

m∑
k

n∑
a6=i

n∑
γ

(xaj · δint · qγksj→ij · xγk − xij · δint · q
γk
ij→aj · xγk).

(3.5)
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These calculations make the following result plausible:

Proposition 5. Given the Markovian interaction we introduced above consisting

of the decision, the pressure-resistance and the evolution structures, if the elements

of the matrix-valued function x = (xij) denote the occupation probabilities of states

(i, j), and (ui,k→j) is the decision matrix that may depend on time, then the evolution

of x is given by system (3.5).

Remark 5. For a rigorous explanation (not just the formal description we provide

here) of the Markov chain’s convergence to the deterministic process given by (3.5),

see, e.g., Kolokoltsov [2012].

The above general structure is rather complicated. To deal effectively with

this complexity, one can distinguish two natural simplifying frameworks: (i) the

set of edges is ordered and only the transitions between neighbours are allowed,

(ii) the corresponding graph is complete, so that all transitions are allowed and

have comparable rates. We shall choose the second alternative for B, and the first

alternative for H thinking of it as an hierarchy of agents. Moreover, we shall assume

that the binary interaction occurs only within a common level in H, ignoring the

binary interaction between the agents in different levels of the hierarchy structure.

Therefore, for the transition rates qij→i+1,j of the pressure structure increasing in

i ∈ H, we introduce the shorter notation q+
ij , and for the transition rates qij→i−1,j

decreasing in i ∈ H, we introduce the notation q−ij . Accordingly, for the transition

rates δint · qikij→i+1,j of the hierarchical evolution structure increasing in i ∈ H, we

introduce the shorter notation δint · q+k
ij , and for the transition rates δint · qiki→i−1,j

decreasing in i ∈ H, we shall use the notation δint · q−kij .

•••••

•••••

•••••

•••••

•••••
usj→sl(λ)

q+k
il

q−kil

q+
ij

q−ij

H

s

i

j k l B

Figure 3.1: The simplified version of our network: only the transitions between
neighbours are allowed in H, all transitions are allowed in B, binary interaction

occurs only within a common level in H.
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Applying the above (geometric) simplifications, the kinetic equations (3.5)

reduce to the following system:

ẋij = λ ·
∑
k 6=j

(uik→ijxik − uij→ikxij) + q−i+1,j · xi+1,j + q+
i−1,j · xi−1,j − (q+

ij + q−ij) · xij

+δint ·
∑
k∈B

(q+k
i−1,j · xi−1,k · xi−1,j + q−ki+1,j · xi+1,k · xi+1,j − (q+k

ij + q−kij ) · xik · xij).

(3.6)

Note that (3.6) hold only for the internal states (i, j), i ∈ H, j ∈ B, such

that i 6= 1, |H|, while for the boundary states (i, j) the terms involving downgrading

to i− 1 and upgrading to i+ 1 respectively are omitted. In particular, we consider:

q+k
nj = q−k1j = 0 , q+

nj = q−1j = 0. (3.7)

Additionally, to simplify further the final explicit calculations, for all i ∈ H,

j ∈ B, we shall consider the constraint:

q+
ij = q−i+1,j , (3.8)

which can be interpreted as a detailed balance condition; it actually asserts that the

number of downgrades is compensated in average by the number of upgrades.

Remark 6. An alternative simple (and analogously manageable) model allows the

principal either to move an agent one-step upward in the hierarchy with rates q+
ij

and q+k
ij respectively, or send an agent directly down to the lowest state with rates qdij

and qdkij respectively. In this case the system describing the evolution of occupation

densities becomes, for i 6= 1:

ẋij = λ ·
∑
k 6=j

(ui,k→j · xik − ui,j→k · xij) + q+
i−1,j · xi−1,j − (q+

ij + qdij) · xij

+δint ·
∑
k∈B

(q+k
i−1,j · xi−1,k · xi−1,j − q+k

ij · xik · xij)− δint ·
∑
k∈B

qdkij · xik · xij ,
(3.9)

with an obvious modification for i = 1.

To identify the agents’ optimal decision vector, we need first to define certain

game characteristics such as the state rewards and the transition costs. In particular,

we assign the reward wij per unit of time to an agent for staying in state (i, j), the

fee/cost fBkj for an agent’s elective transition from state (h, k) to state (h, j) (which

we assume independent of h for brevity), and the fine/cost fHj for an agent’s enforced
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transition from state (j, b) to state (j − 1, b) (which we assume independent of b for

brevity). Let, additionally, gij = gij(t) be the payoff corresponding to state (i, j) in

the process starting at time t and terminating at time T . Then, for an infinitesimally

small time step τ , and assuming that g(t) is continuously differentiable in time, an

agent at state (i, j) decides his/her strategy targeting to optimize the expression:

gij(t) = max
u

{
τ · wij + τ ·

(
λ · uij→ik · (gik(t+ τ)− fBjk) + q+

ij · gi+1,j(t+ τ)

+q−ij(gi−1,j(t+ τ)− fHi ) +
m∑
k

xikδint(q
+k
ij gi+1,j(t+ τ) + q−kij (gi−1,j(t+ τ)− fHi ))

)
+
(
1− τ · (λ · uij→ik + q+

ij + q−ij +
m∑
k

xik · δint · (q+k
ij + q−kij ))

)
· gij(t+ τ)

}
.

(3.10)

Remark 7. Depending on the application we investigate in each instance, the agent’s

optimum is either to maximize his/her payoff (fitness), or to minimize his/her cost.

Here we stick to the first case, thinking of the agents as bribed bureaucrats or defending

civilians.

Taking the Taylor expansion specifically of the term gij(t+ τ), and omitting

terms of order O(τ2), the above optimization equation turns into the following form:

wij +
∂gij(t)

∂t
+ max

u
{λ · uij→ik · (gik(t+ τ)− fBjk − gij(t))}

+

m∑
k

xik · δint · (q+k
ij · (gi+1,j(t+ τ)− gij(t)) + q−kij · (gi−1,j(t+ τ)− fHi − gij(t)))

+q+
ij · (gi+1,j(t+ τ)− gij(t)) + q−ij · (gi−1,j(t+ τ)− fHi − gij(t)) = 0.

(3.11)

In the limit of infinitesimally small time step τ → 0, (3.11) implies the evolu-

tionary Hamilton-Jacoby-Bellman (HJB) equation, satisfied by the agents’ individual

optimal payoffs gij . A rigorous derivation of the HJB equation can be found in every

standard textbook on dynamic programming and optimal control, see, e.g., Kamien

and Schwartz [1991]. For stochastic dynamic programming, see, e.g., Ross [2014].

The above yields the following result:

Proposition 6. Given the Markovian interaction we introduced above consisting

of the decision, the pressure-resistance and the evolution structure, if gij = gij(t)

denotes the payoff to an agent at state (ij) in the process starting at time t and

terminating at time T , and subject to a given evolution of the occupation density
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vector x given by (3.6), these individual optimal payoffs will satisfy the following

evolutionary HJB equation:

ġij + λ ·max
u
{uij→ik · (gik − gij − fBjk)}+ q+

ij · (gi+1,j − gij) + q−ij · (gi−1,j − gij − fHi )

+δint · (
∑
k∈B

q+k
ij · xik · (gi+1,j − gij) +

∑
k∈B

q−kij · xik · (gi−1,j − gij − fHi )) + wij = 0.

(3.12)

As above, note that (3.12) hold only for the internal states (i, j), i ∈ H,

j ∈ B, such that i 6= 1, |H|, while for the boundary states (i, j) the terms involving

transitions to i− 1 or from i+ 1 respectively are omitted. Indicatively, for i = 1 it is:

ġ1j = w1j + λ ·max
u
{u1,j→k · (gik − g1j − fBjk)}+ q+

1j · (g2,j − g1,j)

+δint ·
∑
k∈B

q+k
1j · xik · (g2j − g1j).

(3.13)

We shall consider here the optimization problem of estimating the discounted

optimal payoff (alternatively one can look for the average payoff in a long time

horizon). Hence, assuming the discounting coefficient δdis for future payoffs, the

evolutionary HJB equation for the discounted optimal payoff e−δdis·t · gij(t) of an

agent occupying state (i, j), with any finite planning horizon T , can be written as:

ġij + λ ·max
u
{uij→ik · (gik − gij − fBjk)}+ q+

ij · (gi+1,j − gij) + q−ij · (gi−1,j − gij − fHi )

+
∑
k∈B

δint · xik · (q+k
ij · (gi+1,j − gij) + q−kij · (gi−1,j − gij − fHi )) + wij = δdis · gij(t).

(3.14)

The basic mean-field game consistency problem states that, for some interval

[0, T ], every agent will benefit from applying the same common control, that is, from

adopting the same decision vector. In other words, the MFG consistency condition

states that one needs to consider the kinetic equations (3.6) (i.e. the forward system),

where the collective control is taken into account, and the evolutionary HJB equations

(3.14) (i.e. the backward system), where individual controls are taken into account,

as a coupled forward-backward system of equations on a given time horizon [0, T ],

complemented by some initial condition x0 for the occupation density vector x,

and some terminal condition gT for the optimal payoff g, such that x, g and the

common u solve the aforesaid system. Our aim here is first to identify the solution

of the stationary consistency problem, and then to investigate the general time-

dependent problem, extending (if possible) our findings for the stationary problem.
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As mentioned, we shall work in three asymptotic regimes; fast execution of the agents’

personal decisions, weak binary interactions, and small payoff discounting in time.

3.3 Stationary Problem

The stationary MFG consistency problem consists of the stationary HJB equation for

the discounted optimal payoff of an agent at state (i, j), with a finite time horizon:

wij + λ ·max
u

ui,j→k · (gik − gij − fBjk) + q+
ij · (gi+1,j − gij) + q−ij · (gi−1,j − gij − fHi )

+δint ·
∑
k∈B

xik · (q+k
ij · (gi+1,j − gij) + q−kij · (gi−1,j − gij − fHi )) = δdis · gij ,

(3.15)

where the evolution given by (3.6) is replaced with the analogous fixed point condition:

λ ·
∑
k 6=j

(ui,k→j · xik − ui,j→k · xij) + q−i+1,j · xi+1,j + q+
i−1,j · xi−1,j − (q+

i,j + q−i,j) · xij

+δint ·
∑
k∈B

q+k
i−1,j · xi−1,k · xi−1,j + q−ki+1,j · xi+1,k · xi+1,j − (q+k

ij + q−kij ) · xik · xij = 0.

(3.16)

By analogy with the time-dependent problem, for the stationary mean-field

game consistency problem one needs to consider equations (3.15), (3.16) as a coupled

stationary system. In the asymptotic limit of fast execution of individual decisions,

λ→∞, the terms in (3.15), (3.16) containing the transition rates λ should obviously

vanish (otherwise they would ‘explode’ to infinity). For a practical interpretation

of this observation, one can think that if the execution of personal decisions is

significantly fast, then in a stationary state no agent should be interested in switching

his/her strategy. In this case (3.15), (3.16) turn respectively into the following form:

wij + q+
ij · (gi+1,j − gij) + q−ij · (gi−1,j − gij − fHi )

+δint ·
∑
k∈B

xik · (q+k
ij · (gi+1,j − gij) + q−kij · (gi−1,j − gij − fHi )) = δdis · gij , (3.17)

and,

q−i+1,j · xi+1,j + q+
i−1,j · xi−1,j − (q+

i,j + q−i,j) · xij
+δint ·

∑
k∈B

q+k
i−1,j · xi−1,k · xi−1,j + q−ki+1,j · xi+1,k · xi+1,j − (q+k

ij + q−kij ) · xik · xij = 0,

(3.18)
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supplemented by the consistency condition:

gik − gij − fBjk ≤ 0, (3.19)

for all i ∈ H, j, k ∈ B, such that xij 6= 0. In fact, the consistency condition (3.19)

ensures that all terms in (3.15) and (3.16) including elements of the decision matrix

indeed vanish in (3.17) and (3.18) for all the occupied states.

Introducing further the auxiliary notation w̃ij = wij − q−ij · fHi , (3.17) and

(3.18) are written respectively in the form:

(−ATj + δdis − δint · ETj (x)) · gij = w̃ij − δint · fHi ·
∑
k∈B

q−kij · xik, (3.20)

and,

(Aj + δint · Ej(x)) · xij = 0, (3.21)

where the matrices Aj , with the transpose matrix ATj , and Ej(x), with the transpose

matrix ETj (x), are given respectively by:

Aj =



−q+
1j q−2j 0 . . .

q+
1j −q+

2j − q
−
2j q−3j . . .

. . . . . . . . . . . .

. . . q+
n−2,j −q+

n−1,j − q
−
n−1,j q−nj

. . . 0 q+
n−1,j −q−nj


, (3.22)

and,

Ej =



−
∑
k

q+k
1j x1k

∑
k

q−k2j x2k 0 . . .∑
k

q+k
1j x1k −

∑
k

(q+k
2j + q−k2j )x2k

∑
k

q−k3j x3k . . .

. . . . . . . . . . . .

. . .
∑
k

q+k
n−2,jxn−2,k −

∑
k

(q+k
n−1,j + q−kn−1,j)xn−1,k

∑
k

q−knj xnk

. . . 0
∑
k

q+k
n−1,jxn−1,k −

∑
k

q−knj xnk


.

(3.23)

We shall look further for the asymptotic regime with small binary interaction

transition rates δint ·q±kij . Therefore, starting with (3.21) we are looking for stationary

solutions of the form:

xij = x0
ij + δint · x1

ij +O(δ2
int). (3.24)
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Substituting (3.24) into (3.21), and equating terms of the same order in δ0
int,

δ1
int, we obtain respectively the equations:

O(δ0
int) : Aj · x0

ij = 0, (3.25)

O(δ1
int) : Aj · x1

ij + E0
j · x0

ij = 0. (3.26)

where the notation E0
j corresponds to the matrix Ej containing only elements of

order O(δ0
int) (we use respectively the notation E0T

j for the transpose matrix).

Assumption 2. Let the detailed balance condition (3.8) hold with all transition

rates q+
ij (or all q−ij respectively) being strictly positive. We shall use then the shorter

notation, for i ∈ H : i 6= n, j ∈ B:

qij = q+
ij = q−i+1,j . (3.27)

In the linear approximation of vanishing δint, we end up with an uncoupled

system. Since different elements of B are also uncoupled, then, equations (3.25) and

(3.26) can be solved separately for any j ∈ B. Looking at the zero order of small

evolution transition rates, by (3.25), we have the following result:

Proposition 7. Let Assumption 2 hold. Then, the rank of Aj is exactly n− 1, while

the kernel of Aj is generated by the following vector:

x0
2j =

q+
1j

q−2j
· x0

1j , x0
3j =

q+
2j

q−3j
·
q+

1j

q−2j
· x0

1j , . . . , x0
nj =

n−1∏
l=1

q+
lj

q−l+1,j

· x0
1j

x0
1j =

1 +
q+

1j

q−2j
+
q+

2j

q−3j
·
q+

1j

q−2j
+ · · ·+

n−1∏
l=1

q+
lj

q−l+1,j

−1

x0
j .

(3.28)

where we have introduced the auxiliary notation x0
j =

∑
i x

0
ij. Specifically, under

the detailed balance condition Aj is symmetric, and its kernel generated by (3.28) is

proportional to the uniform distribution, x0
ij = x0

j/n for all i ∈ H, j ∈ B, that is,

Ker(Aj) is generated by (1, · · · , 1).

Proof. Notice that system (3.25) is degenerate, as expected, since we are looking

for non-negative solutions satisfying
∑

j x
0
1j + · · · + x0

nj = 1. Thus, one of the n

equations of (3.25) can be discarded, say for example the last one. Rewriting the

system of the remaining (n − 1) equations by using the first equation, and then

adding sequentially to each of the next (n − 2) equations their previous one, one
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eventually obtains the following system:

q+
1j · x

0
1j − q−2j · x

0
2j = 0

q+
2j · x

0
2j − q−3j · x

0
3j = 0

...

q+
n−1,j · x

0
n−1,j − q−nj · x

0
nj = 0.

(3.29)

This has an obvious solution, that is unique up to a multiplier, and is given

by (3.28). Alternatively, starting the exclusion from the last equation of (3.29), the

solution to (3.25) is given then by:

x0
n−1,j =

q−nj

q+
n−1,j

· x0
nj , x

0
n−2,j =

q−n−1,j

q+
n−2,j

·
q−nj

q+
n−1,j

· x0
nj , . . . , x

0
1j =

n−1∏
l=1

q−l+1,j

q+
l,j

· x0
nj

x0
nj =

1 +
q−nj

q+
n−1,j

+
q−n−1,j

q+
n−2,j

·
q−nj

q+
n−1,j

+ · · ·+
n−1∏
l=1

q−l+1,j

q+
l,j

−1

· x0
j .

(3.30)

Given now the detailed balance condition (3.8), and the non-degeneracy

established by Assumption 2, one observes from (3.28), or (3.30), that for every

strategy j ∈ B we have:

x0
1j = x0

2j = · · · = x0
nj = x0

j/n.

We have shown that in the main order of small evolution rates δint · q±κij ,

x0∗
ij = x0∗

j /n is a fixed point of the evolution (3.6), along with the common control

ucom = (uij→iκ = 0), ∀i ∈ H, ∀j, κ ∈ B, that is consistent with condition (3.19), and

expresses the instantaneous execution of the agents’ personal decisions. Moreover,

this will be a stable solution of the stationary system, if x0∗
ij = x0∗

j /n is a stable fixed

point of (3.6), for ucom = (uij→iκ = 0), ∀i ∈ H, ∀j, κ ∈ B.

Assumption 3. For technical (computational) purposes only, let the hierarchy and

the strategy set be of the same size, i.e. |H| = |B| ⇒ n = m.

To conduct a stability analysis, in the asymptotic regimes of large λ and

small δint, let us introduce the auxiliary variables:

yκ = x0
ij − x0∗

ij , (3.31)
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where κ = i+ (j − 1) · n, such that κ ∈ K = {1, . . . , n2 − 1}.
Using the above variables, we transform system (3.6) into the non-degenerate

linear homogeneous system:

ẏ = Λ · y, (3.32)

where Λ is the block matrix:

Λ =



A1 0 . . . . . . . . .

0 A2 0 . . . . . .

. . . 0 Aj 0 . . .

. . . . . . 0 An−1 0

∆ . . . . . . ∆ D


. (3.33)

Each matrix ∆ has the same non zero entries −q−nn on its bottom row, while

the rest of its elements are equal to zero. Note, as well, that the Aj matrices are of

dimension n× n, and each zero matrix to the right of an Aj matrix is of dimension

n× n · (n− j)− 1. The (n− 1)× (n− 1) matrix D is given by:

D =



−q+
1n q−2n 0 . . .

q+
1n −q+

2n − q
−
2n q−3n . . .

. . . . . . . . . . . .

. . . q+
n−3,n −q+

n−2,n − q
−
n−2,n q−n−1,n

. . . 0 q+
n−2,n − q−nn −q+

n−1,n − q
−
n−1,n − q−nn


. (3.34)

Applying sequentially (starting with C1 ≡ A1, setting in the next step C1 ≡ A2

etc.) the following block matrix formula:

det

 C1 0

C2 C3

 = detC1 · detC3,

where C1, C2, and C3 are n × n, m × n, and m × m matrices respectively, the

determinant of Λ is given by:

det Λ = det(A1) · det(A2) · · · det(An−1) · detD. (3.35)

We further apply sequentially n− 1 times the elementary row operation of

row addition on every n× n matrix Aj , starting with row n and adding in each step

row i to row i− 1. Eventually, we transform Aj into a lower triangular matrix of the
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form: 

0 0 0 . . .

q+
1j −q−2j 0 . . .

. . . . . . . . . . . .

. . . q+
n−2,j −q

−
n−1,j 0

. . . 0 q+
n−1,j −q−nj


, (3.36)

with a single zero eigenvalue, and n− 1 negative eigenvalues −q−ij , for i = 2, . . . , n.

Note that since Aj are symmetric matrices (due to the detailed balance condition),

the algebraic multiplicity of each of their eigenvalues is equal to the geometric

multiplicity.

Regarding the (n− 1)× (n− 1) matrix D, and bearing in mind the detailed

balance condition, we apply once the elementary row operation of adding row n− 1

to row n− 2, and then, we apply sequentially n− 2 times the elementary column

operation of adding column i to column i+ 1, starting with column 1, to eventually

transform D into the following lower triangular form:

−q+
1n 0 0 . . .

q+
1n −q+

2n 0 . . .

. . . . . . . . . . . .

. . . q+
n−3,n −q−n,n 0

. . . 0 (q+
n−2,n − q−n,n) −q−n−1,n


, (3.37)

with n − 1 negative eigenvalues −q+
in, for i = 1, . . . , n − 1. In total, we find that

matrix Λ has one zero eigenvalue of algebraic multiplicity n − 1, and n · (n − 1)

negative eigenvalues. Now it is trivial to transform Λ into a block diagonal matrix,

subtracting sequentially from each column i, ∀i = {1, . . . , n · n− n}, each column j,

∀j = {n · n− n+ 2, . . . , n · n− 1}. For a block diagonal matrix, both the algebraic

and the geometric multiplicity of an eigenvalue is given by adding the multiplicities

from each block. Then, for the block matrix Λ the algebraic multiplicity of the zero

eigenvalue is equal to its geometric multiplicity.

We, thus, have the following result:

Lemma 3. Let the Assumptions 2, 3 hold. Consider the linear system ẏ = Λ · y as

defined above. The solution to this system, that is the vector x0∗
ij = x0∗

j /n given by

Proposition 7, is stable (but not asymptotically stable) since Λ has n · (n− 1) negative

eigenvalues, and a single zero eigenvalue whose algebraic multiplicity equals to its
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geometric multiplicity.

The third asymptotic regime we shall look at is that of small discounting δdis.

Obviously, no payoff discounting terms appear in the stationary kinetic equations

(3.18). Moving to the stationary HJB equation (3.17), or (3.20), initially we are

looking for solutions of the form:

gij = g0
ij + δdis · g1

ij . (3.38)

Substituting (3.38) into (3.20), and equating terms of zero order in δint and

δdis, we get the equation:

−ATj · g0
ij = w̃ij , (3.39)

In general, equation (3.39) has no (non-degenerate) solution, since (by Propo-

sition 7) the kernel of the symmetric matrix ATj = Aj is one dimensional, implying

that the image of the transpose matrix ATj is (n−1) dimensional (by the rank-nullity

theorem). More precisely, equation (3.39) has in general no solution if:

(w̃ij , x
0
ij) =

x0
j

n
·
∑
i

w̃ij 6= 0. (3.40)

Thus, to remain in the non-degenerate regime, we need to introduce addition-

ally the following assumption;

Assumption 4. For every strategy j ∈ B the following is true;
∑
i
w̃ij 6= 0.

As a result, we are looking next for solutions of (3.20) in the form of the

expansion:

gij = g0
ij/δdis + g1

ij + g2
ij · δdis. (3.41)

Recall that we are looking at the asymptotic regime with small δint (weak

binary interaction), and small δdis (small payoff discounting). One needs to distinguish

clear assumptions on the relationship between the small parameters δint and δdis, for

a full perturbation analysis. In principle, the following three basic regimes can be

naturally identified:

ID1: Interaction is relatively very small, i.e. δdis = δ and δint = δ2.

ID2: Interaction and Discounting are small effects of comparable order,

i.e. δdis = δint = δ.

ID3: Discounting is relatively very small, i.e. δint = δ and δdis = δ2.
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We initially concentrate on the ID1 regime. Substituting (3.41) into (3.20),

and equating terms of order δ−1, δ0, δ1, we find respectively the following equations:

ATj · g0
ij = 0

−ATj · g1
ij + g0

ij = w̃ij

−ATj · g2
ij + g1

ij − E0T
j · g0

ij = 0.

(3.42)

The first equation in (3.42) tells us that g0
ij belongs to the kernel of Aj (since

Aj = ATj ), that is, for arbitrary constants aj ∈ R, we get:

g0
ij = aj · x0

ij . (3.43)

The second equation in (3.42) tells us that w̃ij − g0
ij belongs to the image of

Aj , which coincides with the orthogonal compliment to Ker(Aj), given the identity:

Im(Aj) = Ker⊥(ATj ).

Besides, from Proposition 7 we find that the orthogonal compliment to Ker(Aj) is:

Ker⊥(Aj) = {x :
∑
i

xij = 0}. (3.44)

In this case, the fact that w̃ij − g0
ij ∈ Im(Aj) further implies that:∑

i

w̃ij =
∑
i

g0
ij ⇒ · · · ⇒ g0

ij =
∑
i

w̃ij/n. (3.45)

Looking at the third equation in (3.42), and noting that E0T
j g0

ij = 0 for a

uniform g0
·j , we conclude that g1

ij ∈ Im(Aj) as well, that is, g1
ij ∈ Ker⊥(Aj). Thus,

to identify g1
ij we need to invert Aj on the reduced (n− 1) dimension of Ker⊥(Aj).

Lemma 4. Let Assumption 2 hold, and let y ∈ Ker⊥(Aj). Then all solutions z to

the matrix equation Aj · z = y are given by the formula:

zij = z1j −
i−1∑
a=1

( a∑
β=1

yβj
qaj

)
, (3.46)

∀i 6= 1, with arbitrary z1j. There exists a unique solution z·j ∈ Ker⊥(Aj) specified

by:

z1j =

n−1∑
a=1

(n− a
n
·

a∑
β=1

yβj
qaj

)
. (3.47)



Draft of 9:20 pm, Sunday, March 25, 2018 59

Notice that formulae (3.46) and (3.47) yield zij = g1
ij when yij = g0

ij − w̃ij .
In particular, for g1

ij we find the explicit expression:

g1
ij =

n−1∑
a=1

((
1(i > a)·n− a− 1

n
+1(i ≤ a)·n− a

n

)
·
( a
qaj
·
∑
κ∈H

w̃κj
n
−

a∑
β=1

w̃βj
qaj

))
. (3.48)

where 1(·) is the indicator function.

Regarding the consistency condition (3.19), in the main order in small δ it

can be written in the equivalent form:∑
i

w̃ik <
∑
i

w̃ij , (3.49)

for all i ∈ H, k, j ∈ B. Given that w̃·,· does not depend on δ, this leads to the

interesting result that in the equilibrium of the asymptotic regime of small δ, only

those strategic levels j ∈ B are occupied (that is, x0
j 6= 0), where the sum

∑
i w̃ij

obtains its maximum. For simplicity, let us further consider the following assumption;

Assumption 5. There exists a unique behavioural level b ∈ B, such that:∑
i

w̃ib >
∑
i

w̃ij . (3.50)

Note that Assumption 5 implies that in any equilibrium x∗, with δ sufficiently

small, all terms with j 6= b become irrelevant for the analysis.

We, thus, have the following result:

Proposition 8. Let Assumptions 2, 3, 4 and 5 hold. Consider the ID1 regime.

Then, the solution to the stationary problem described by (3.17), (3.18) and (3.19),

in the main order in small δ, is given by:

x∗ib = x0∗
ib = 1/n, x0∗

iκ = 0 ∀κ 6= b ∈ B, i ∈ H, gib = δ−1 · g0
ib = δ−1 ·

∑
i

w̃ib/n,

(3.51)

where x0∗
ij is a stable fixed point of (3.6).

Remark 8. If we continue in the next order of our perturbation analysis (subsequently

in the second next order, and so forth) we can obtain explicit approximate solutions

with arbitrary precision.

Next we consider the ID2 regime. In this case, we look at the solutions to

(3.18) in the next order with respect to small δ. In view of (3.51), we write (3.26) in



Draft of 9:20 pm, Sunday, March 25, 2018 60

the form:

Ab · x1
ib + (q+b

i−1,b − q
+b
ib + q−bi+1,b − q

−b
ib )/n2 = 0, (3.52)

where
∑

i x
1
ib = 0, and the usual convention for the boundary terms, i = 1, n, apply.

Note that the right-hand side of equation (3.52) belongs to Ker⊥(Aj), imply-

ing that: ∑
i

−(q+b
i−1,b − q

+b
ib + q−bi+1,b − q

−b
ib )/n2 = 0, (3.53)

Moreover, given that x1
ib ∈ Ker⊥(Aj), we can identify x1

ib applying Lemma 4.

Formulae (3.46), (3.47) yield zib = x1
ib when yib = −(q+b

i−1,b − q
+b
ib + q−bi+1,b − q

−b
ib )/n2.

Regarding the solution to (3.20) in ID2, substituting (3.41) into (3.20), and

equating terms of order δ−1, δ0, δ1, we get respectively the following equations:

ATj · g0
ij = 0

−ATj · g1
ij + g0

ij − E0T
j · g0

ij = w̃ij

−ATj · g2
ij + g1

ij − E0T
j · g1

ij − E1T
j · g0

ij = −fHi ·
∑
k

q−kij · x
0
ik,

(3.54)

where the notation E1
j corresponds to the matrix Ej containing only elements of

order O(δint) (we use respectively the notation E1T
j for the transpose matrix).

The first two equations in (3.54) are identical with the corresponding equations

in (3.42) (recall that E0T
j g0

ij = 0 for a uniform g0
ij), and provide the same results

expressed through (3.43), (3.45). Looking at the third equation in (3.54), and noting

that E1T
j g0

ij = 0, we observe that (g1
ij − E0T

j g1
ij + fHi ·

∑
k q
−k
ij · x0

ik) ∈ Ker⊥(Aj),

implying that g1
ij can be uniquely identified through formula (3.46) of Lemma 4,

with zij = g1
ij and yij = g0

ij − w̃ij , under the condition:∑
i

(g1
ij − E0T

j · g1
ij + fHi

∑
k

q−kij · x
0
ik) = 0. (3.55)

Last we consider the ID3 regime. Substituting (3.41) into (3.20), but equating

now terms of order δ−2, δ−1, δ0, we get the equations (in analogy to (3.42), (3.54)):

ATj · g0
ij = 0

E0T
j · g0

ij = 0

−ATj · g1
ij + g0

ij − E1T
j · g0

ij = w̃ij .

(3.56)

Again, the first and the third equations in (3.56) lead to the same results with

the first and the second equations in (3.42), namely to (3.43) and (3.45) respectively,
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while the second equation in (3.56) always holds for a uniform g0
ij .

We, thus, have the following result:

Proposition 9. The solution to the stationary consistency problem in the main

order in small δ in ID2 and ID3, is the same with the one identified in Proposition 8

for ID1.

3.4 Time-dependent Problem

In principle, the solution to a non-linear Markov game of mean-field type like the

one we consider here (on a finite time horizon), defines an ε-Nash equilibrium of the

corresponding game with a finite number of players, see, e.g., Basna, Hilbert and

Kolokoltsov [2014]. Having identified the solution to the stationary MFG consistency

problem, we need next to look at the time-dependent consistency problem in order

to validate our results for initial/terminal conditions other than those given by the

solution of the stationary problem. We further need to investigate the stability of

the fixed point x0∗
ij (see Lemma 3) without assuming that from the very beginning

all players apply the same stationary control ucom = (uij→iκ = 0).

For the full time-dependent problem, the HJB equation for the discounted

optimal payoff e−δdis·t ·gij(t) of an individual at state (i, j) with any planning horizon

T is given by (3.14), where now the occupation density vector x = (xij) is also time

varying. For definiteness, we shall focus on the ID1 regime (the same method applies

for ID2, ID3 regimes). Our aim is to show that by fixing the control uiα→iβ = 0 in

(3.14), ∀i ∈ H,α, β ∈ B, the solution to the occurring system:

ġiα + wiα + q+
iα · (gi+1,α − giα) + q−iα · (gi−1,α − giα − fHi )

+
∑
k∈B

δint · xik · (q+k
iα · (gi+1,α − giα) + q−kiα · (gi−1,α − giα − fHi )) = δdis · giα(t),

(3.57)

will be consistent, that is, the control uiα→iβ = 0 will indeed give a maximum in

(3.14) in all times.

Fixing the control uiα→iβ = 0, ∀i ∈ H,α, β ∈ B, is actually equivalent to

assuming that:

giβ(T )− fBαβ ≤ giα(T ). (3.58)

Our aim here is to show that starting with a terminal condition belonging to

the cone defined by (3.58), we shall stay inside the cone for all t ≤ T . Therefore, it

is sufficient to show that on the boundary of this cone the inverted tangent vector of
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(3.57) is never directed outside the cone. The necessary condition that needs to be

satisfied for this to be true for any boundary point gjβ − fBαβ = gjα is the following:

ġjα − ġjβ ≤ 0, (3.59)

where,

ġjα − ġjβ = δdis · (gjα − gjβ) + (wjβ − wjα) + q+
jβ · (gj+1,β − gjβ)

−q+
jα · (gj+1,α − gjα) + q−jβ · (gj−1,β − gjβ − fHj )− q−jα · (gj−1,α − gjα − fHj )

+
∑
k∈B

δint · xjk ·
(
q+k
jβ · (gj+1,β − gjβ) + q−kjβ · (gj−1,β − gjβ − fHj )

−q+k
jα · (gj+1,α − gjα)− q−kjα · (gj−1,α − gjα − fHj )

)
.

(3.60)

Substituting gij from (3.41), and xij from (3.24) into (3.60) (assuming that

fHj is independent of δ), and equating terms of similar order, then, in the main order

o(δ−1) in small δ, condition (3.59) will be equivalent to (recall that we are in the

ID1 regime):

q+
jβ ·(g

0
j+1,β−g0

jβ)+q−jβ ·(g
0
j−1,β−g0

jβ) ≤ q+
jα ·(g

0
j+1,α−g0

jα)+q−jα ·(g
0
j−1,α−g0

jα). (3.61)

Note that in the main order o(δ−1) in small δ (assuming that fBαβ is indepen-

dent of δ) for the specified boundary point of the cone we get:

g0
jβ = g0

jα, (3.62)

while for all the other i ∈ H, such that i 6= j, will be:

g0
iβ ≤ g0

iα. (3.63)

Combining (3.62) and (3.63) we obviously get:

g0
jα − g0

iα ≤ g0
jβ − g0

iβ, (3.64)

and rewriting (3.61) in the equivalent form:

q+
jα ·(g

0
jα−g0

j+1,α)+q−jα ·(g
0
jα−g0

j−1,α) ≤ q+
jβ ·(g

0
jβ−g0

j+1,β)+q−jβ ·(g
0
jβ−g0

j−1,β), (3.65)

we check that condition (3.65) is satisfied when qiα ≤ qiβ, ∀i ∈ H (the first term is

smaller or equal than the third term, the second term is smaller or equal than the

fourth term).
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But also for the case when qiβ < qiα, ∀i ∈ H, rewriting (3.64) in the equivalent

form:

g0
iβ − g0

jβ ≤ g0
iα − g0

jα, (3.66)

we check that (3.61) is satisfied (again the first term is smaller or equal than the

third term, the second term is smaller or equal than the fourth term).

We, thus, have the following result:

Proposition 10. Let Assumptions 2, 3, 4 and 5 hold. Assume additionally, ∀α, β ∈
B, that:

qiα ≤ qiβ or qiβ < qiα, ∀i ∈ H. (3.67)

Then, for sufficiently small discounting δdis = δ, and relatively smaller binary

interaction coefficient δint = δ2, in the main order in small δ, for any T > t, and

for any initial occupation probability distribution x(t), and any terminal payoffs such

that:

giβ(T )− fBαβ ≤ giα(T ),

there exists a unique solution to the time-dependent discounted MFG consistency

problem such that the control u is stationary, and is given by uiα→iβ = 0, ∀i ∈ H,

∀α, β ∈ B, x(s) stays near the fixed point of Proposition 8 as s→ T , and gij(s) stays

near the stationary solution of Proposition 8 (almost for all time), for large T − t.



Chapter 4

The Uniformed Patroller

4.1 Introduction

When patrolling a given network against an attack, or infiltration, at an unknown

node, there are two plausible scenaria. Either (i) the Patroller may be essentially

invisible to the Attacker (e.g. a stealthy drone, a plain-clothes policeman, or a driver

of an unmarked car); or (ii) the Patroller may be immediately identifiable by the

Attacker (e.g. through his/her uniform - hence our title, or his/her driving a police

car). Thus far the literature on patrolling games has concentrated exclusively on

the first (invisible Patroller) scenario. To the best of our knowledge, this is the first

attempt to model the consequences of the second scenario of a uniformed (noisy)

Patroller. Some consequences of this distinction are fairly obvious; for example, a

rational mugger will never initiate an attack in a subway car when a uniformed

policemen is present. Other consequences, to be explored here, are less obvious.

A game theoretic model of the Attacker-Patroller conflict on a network has

recently been the subject of several investigations. Among others, Alpern, Morton

and Papadaki [2011] modelled the problem as a zero-sum game between a Patroller

and an Attacker, where the Attacker can attack a chosen node in a chosen time

period and the Patroller hopes to intercept the attack in time, by following a chosen

walk on the network. Their common payoff is the probability that the attack is

intercepted. Formally, the Attacker chooses a node i to carry out an attack for a

time interval J (a finite sequence of m ≥ 2 consecutive periods of time); accordingly,

the attack is intercepted if the Patroller is at node i at some time period within the

interval J . Here, we keep these dynamics and payoff the same. However, to partially

simplify the problem we restrict the Patroller to Ergodic Markovian strategies, such

that every time the Patroller arrives at a node of the network he/she leaves it by the

64
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same distribution over its neighbours (and the node itself).

Note that in the original game-theoretic formulation presented above, the

Attacker’s strategy (i, J) cannot depend in any way on the Patroller’s locations at

any time prior to the interval J . However, in many real world situations of this

type, the Patroller is identifiable; he/she might be wearing a uniform, driving in a

marked car, or making a characteristic noise. Therefore, as we assume in our model

presented here, the Attacker can go to the node he/she wishes to attack, and wait

there prior to his/her attack. The Attacker can observe when the Patroller is present

at the chosen attack node, and when he/she is not. Once the Patroller leaves the

attack node, the Attacker only knows that the Patroller is not there; namely, he/she

cannot see the Patroller from a distance (vision is limited to the attack node). This

assumption defines a game U(Q,m), where Q is the network to be defended, and m

is the difficulty of the attack or infiltration as measured in terms of the time required.

The Attacker’s pure strategy can now be defined as an ordered pair (i, d), such

that he/she goes to node i and initiates his/her attack after the Patroller has been

there first and, subsequently, has been away for d consecutive periods (delay time).

However, since the Patroller is identifiable (e.g. wearing a uniform), his/her Ergodic

Markovian strategy can be assumed to be known to the Attacker; therefore, we adopt

a Stackelberg approach where the Patroller is the first to move. This is actually a

common assumption in patrolling problems. We solve this game for small values of

m and several families of networks: star networks, line networks, circle networks and

star-in-circle networks. In particular, both line and circle networks can be interpreted

as perimeters of regions to be defended against infiltration. As such, these are models

of border defence by uniformed patrollers, thus modifying the border patrol game

introduced by Papadaki et al. [2016].

The motivation for the Uniformed Patroller Problem originates in the 1970’s,

when a uniformed policeman was assigned to every subway train (consisting of ten

cars, thus being equivalent to the line network L10) in New York City. In the first

months at least, the policeman patrolled in a back and forth motion, from car 1 to

car 10 and backwards. This patrol was evidently quite foolish as, in our notation,

the attack strategy (1 , 1) (attacking an end car as soon as the Patroller has left it)

would guarantee a win even if the difficulty m of the attack (i.e. the attack duration)

was as large as 17. Finding optimal patrolling strategies in this context remains an

open issue until now, over thirty years later. Indicatively, note that if the Patroller

on this train is following a random walk and the time required for a mugging is for

example m = 2, it is not optimal to attack as soon as the Patroller leaves your end

car (d = 1), as he will catch you with probability 1/2. It is clearly better to wait for
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some larger number of periods d in which the Patroller is away.

Patrolling related problems have been studied for long, see, e.g., Morse and

Kimball [1951], but almost exclusively from the Patroller’s point of view. A game

theoretic approach, modelling an adversarial Attacker who wants to infiltrate or

attack a network at a node of his/her choice, has only recently been introduced by

Alpern, Morton and Papadaki [2011]. The techniques developed there were later

applied to the class of line networks by Papadaki et al. [2016], with the interpretation

of patrolling a border. Other research following a similar reasoning includes Lin et al.

[2013] for random attack times, Lin, Atkinson and Glazebrook [2014] for imperfect

detection, Hochbaum, Lyu and Ordez [2014] on security routing games, and Basilico,

De Nittis and Gatti [2015] for uncertain alarm signals. See also Baykal-Gürsoy et al.

[2014] on infrastructure security games. Earlier work on patrolling a channel/border

with different paradigms, includes Washburn [1982, 2010], Szechtman et al. [2008],

Zoroa N, Fernández-Sáez and Zoroa P [2012], and Collins et al. [2013]. The related

problem of ambush is studied by Baston and Kikuta [2004, 2009], while an artificial

intelligence approach to patrolling is given by Basilico, Gatti and Amigoni [2012].

Applications to airport security and counter terrorism, are given respectively by Pita

et al. [2008], and Fokkink and Lindelauf [2013]. The problem introduced here, of

patrolling a network where the Attacker can identify the Patroller only when he/she

is in close proximity (e.g. when both being at the same node), appears to be new.

We organize Chapter 4 as follows. In Section 4.2 we explain our model giving

a specification of the uniformed Patroller problem on an arbitrary finite network. In

Section 4.3 we solve the game for the star network Sn with a central node connected

to n ends. It turns out that the Attacker must attack at an end after delaying for

d = 2 periods; accordingly, the Patroller must decide with what probability to stay at

the center when being there. In Section 4.4 we solve the game for the line graph Ln

with n nodes, for n = 4, 5. Here an attack should be executed at an end node. The

optimal delay and the (Ergodic) Markovian patrol depend on the attack difficulty m

and the number of nodes. In Section 4.5 we analyse the game on the circle network

Cn with n nodes. A point of interest here is that the Patroller can intercept an

attack either returning from the direction that he/she left the attack node, or from

the opposite direction around the circle. In Section 4.6 we consider a hybrid network

consisting of a circle network with a center that is connected to all nodes of the circle.

Finally, in Section 4.7 we allow non-Markovian patrols, and identify links between

our game and the so-called ‘spy games’, where both players can see each other, or

surveillance problems, where an unmanned aerial vehicle (UAV) must travel across a

network being away from each node for no longer than a specified time.
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4.2 Formal Model

An attack strategy is a pair (i, d), where i is a node of a given finite network Q, and

d is the number of consecutive time periods that the Patroller (e.g. the subway train

policeman) must be away from node i for the Attacker to initiate his/her attack.

To illustrate the waiting parameter d (we use for this alternately the terms waiting

time and delay), suppose that the presence (at the Attacker’s chosen node i) of

the Patroller is indicated by a 1, respectively his/her absence is indicated by a 0.

Suppose further that the Attacker waits until the Patroller arrives at the attack

node, and after that his/her presence-absence sequence is say 11010110 . . . . If the

Attacker’s waiting time is for example d = 2, then his/her decision as to whether or

not to attack in each subsequent period is illustrated below:

1 11 110 1101 11010 110101 1101010 11010100

wait wait wait wait wait wait wait attack!

Table 4.1: The Attacker attacks after d = 2 periods of the Patroller’s absence

If for example the attack difficulty is m = 3, then the attack will be successful

only if the Patroller’s sequence continues with two more 0’s, that is, 1101010000 . . .

Note that the attack can begin in the same period that the Patroller’s absence has

been observed. Thus, we take m > 1 as otherwise the Attacker could win simply

by attacking as soon as the Patroller is not present at his/her node. The above

discussion explains the critical parameter d from the Attacker’s point of view, who

simply observes the alternation of Patroller’s presence or absence at his/her chosen

node. To illustrate the attack mechanism in the context of both players, take the

network Q as the line graph L4 with four nodes, and consider the dynamics presented

in Figure 4.1, where the time axis is drawn horizontally and the line graph is drawn

vertically (the nodes are labelled 1 to 4 from top to bottom).

Suppose that the Attacker chooses to attack node 2 , of difficulty m = 2, with

delay d = 2, and say the Patroller is at this node at time t = 0. Hence, the Attacker

will remain at node 2 indicated by the horizontal red line in Figure 4.1. We consider

two potential patrols adopted by the Patroller on the line network L4; the walk

w1 = (2, 1, 2, 1, 1, 2, . . . ) drawn in green on top, and the walk w2 = (2, 3, 4, 3, 2, 3, . . . )

drawn in blue on the bottom. Take first the Attacker’s response to w1. At time t = 2

the Attacker resets his/her waiting clock to zero, but at time t = 4 since the Patroller

is still away after d = 2 periods, he/she initiates the attack that lasts for the time

interval {4, 5} indicated by a thick green horizontal line. However, since the Patroller
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is back at node 2 at time t = 5, the attack is intercepted (the green patrol intersects

the thick green horizontal attack). Next, consider the Attacker’s response to w2.

At time t = 2 he/she begins the attack that lasts for the time interval {2, 3} indicated

by a thick blue horizontal line. Since the Patroller is not back at node 2 after m = 2

periods, the attack is not intercepted (the blue patrol is disjoint from the thick blue

horizontal attack). Thus, against the attack strategy (node 2 , d = 2), the patrol w1

wins for the Patroller, while the patrol w2 loses.

11111

22222

33333

44444

1

2

3

4

0t = 1 2 3 4 5

Figure 4.1: Example of Attacker-Patroller dynamics for the line graph L4.

The reader might as well think that the Attacker has additional strategies

which are not specified by our restriction simply to pairs (i, d). For example he/she

could initiate the attack after say three consecutive 0’s when he/she initially arrives

at node i, without necessarily first waiting for the Patroller to visit node i and then

counting three consecutive 0’s. However, we show that the Attacker can always gain

at least as good an outcome using a strategy of the type (i, d). In particular, since we

assume that the Patroller has been patrolling for an arbitrarily long time before the

period when the Attacker arrives at node i, then we could tell the Attacker, for free,

the total number of 0’s at node i since the last 1 (including the three 0’s the Attacker

has witnessed). Say for example this total is 7. If the Attacker chooses to ignore this

new information, and attack as planned, his/her expected payoff is the same as that

of the strategy (i, 7). On the other hand, if the Attacker changes his/her strategy

and decides not to attack, then he/she is consistent with some strategy (i, d).

4.3 The Star Network

The network Sn is the star with a single center connected to n end nodes. We restrict

the Patroller to Markovian strategies that reflect from the ends with probability s,

from the center c go to each end with equal probability p, and remain at the center
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with probability r = 1 − n · p. This setting simplifies the game by introducing a

single parameter family of patrolling strategies. We begin by assuming that the

attack takes place at an end node, which we denote by e, and then we show that the

Patroller should reflect from the ends (s = 1). Note that since we have taken m ≥ 2,

reflecting from the ends will further imply that the Attacker should never attack at

the center c because in that case the Patroller will never be away from it for two

consecutive periods (i.e. will always intercept such an attack).

s s

ss

p

p p

p

e
′

e
′

e
′

e

c

Figure 4.2: The star network Sn with a central node connected to n ends.

4.3.1 Attack duration m = 2

Initially we assume that an attack takes m = 2 periods. In this case, an attack at

node e cannot be intercepted if it starts when the Patroller is at another end node

e
′ 6= e, but only if the Patroller is at the center. Therefore, an attack at node e will

be intercepted with probability q ·p, where q is the probability that the Patroller is at

the center c at the beginning of the attack, which in turn implies that the Attacker

should choose the waiting time d so as to minimize q.

We wish to calculate how the probability q that the Patroller is at c changes

over time, as the Patroller continues to be away from the Attacker’s chosen node e.

Thus, suppose that at some period t the Patroller is not at e, but he/she is either at

c with probability q, or at one of the end nodes other than e with probability 1− q.
Then, in the following period t+ 1 the Patroller will be either at c with probability

q · r + (1− q) · s, or he/she will be at node e with probability q · p+ (1− q) · 0.

Hence, conditional on the Patroller not being at node e, the probability that

he/she is at the center c is given by:

f(q, s) =
q · r + (1− q) · s

1− p · q
. (4.1)
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Fraction (4.1) is increasing in s, and since it is s ≤ 1, then we have that

f(q, s) is maximized for s = 1 at:

f(q) = f(q, 1) =
q · r + (1− q)

1− p · q
=

1− n · p · q
1− p · q

. (4.2)

Additionally, since from equation (4.2) we find that:

f
′
(q) = − p · (n− 1)

(1− p · q)2
< 0,

then f(q) is decreasing and therefore minimized for q = 1, with f(1) = q̂, where it is:

q̂ =
(1− n · p)

(1− p)
. (4.3)

The Attacker can obtain this minimum probability q̂ of the Patroller being

at the central node c at the beginning of the attack, by initiating the attack on the

second period that the Patroller is away from his/her chosen node e, that is, by

adopting the waiting time d = 2. Notice that the optimal Attacker’s strategy (e, 2)

does not depend on p, namely the initial assumption that the Attacker knows p is

not necessary in this case. The attack (e, 2) will be intercepted if the Patroller is at c

in its first period and he/she goes to e in its second period, that is, with probability:

a2(n, p) = q̂ · p = b(p) =
(1− n · p) · p

1− p
. (4.4)

For a given star network Sn, the Patroller will choose the value of p in order

to maximize the interception probability (4.4). Figure 4.3 shows the variation of the

interception probability a2(n, p) with p, respectively for n = 2, . . . , 8 arcs in the star

network. Recall that p ∈ [0, 1/n] is the probability with which the Patroller moves

to an end node when he/she is at the center c.
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Figure 4.3: The interception probability a2(n, p), for n = 2(blue), . . . , 8(yellow).
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Indicatively, for the n = 2 arcs star (which is equivalent to a line network with

three nodes), the Patroller’s optimal walk is to move from the center towards each

end with probability about 0.3, and remain at the center with probability about 0.4.

For the n = 3 arcs star, the Patroller’s optimal walk is to move towards each of the

three end nodes with probability about 0.2, and remain at the center with probability

about 0.4, etc.. We can be more precise about these Patroller’s optimal strategies.

In particular, the optimal value p̂ = p̂(n) for p depends on n and can be found

by solving the first order equation:

a
′
2(p) =

(n · p2 − 2 · n · p+ 1)

(1− p)2
. (4.5)

This can be simply written in the following form:

n · p2 − 2 · n · p+ 1 = 0, (4.6)

giving the optimal values:

p̂ = 1−
√
n · (n− 1)

n
, (4.7)

and

r̂ =
√
n · (n− 1)− (n− 1). (4.8)

Equations (4.7), (4.8) show respectively that the optimal probability p̂ is

asymptotic to 1/(2 · n), while the optimal probability r̂ goes asymptotically to 1/2.

The value V of the game is given by

V = a(n, p̂) = (2 · n− 1)− 2 ·
√
n · (n− 1). (4.9)

In Figure 4.4 we plot the optimal patrol in terms of the probability of remaining

at the center, and the corresponding value of the game, for increasing number of nodes.
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Figure 4.4: Optimal values for m = 2.
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We can pull together the above results into the following proposition;

Proposition 11. Consider the Uniformed Patroller Problem on the star network Sn

consisting of n arcs, and an attack difficulty of m = 2. The optimal Patroller’s strategy

is to reflect off the end nodes and to remain at the central node with probability:

r̂(n) =
√
n · (n− 1)− (n− 1). (4.10)

Accordingly, the optimal Attacker’s strategy is to locate at a random end node and

initiate the attack in the second period that the Patroller is away (i.e. d = 2).

The interception probability under these strategies, namely the value of the game, is:

V (n) = (2 · n− 1)− 2 ·
√
n · (n− 1). (4.11)

Remark 9. We observe that Proposition 11 suggests an attack strategy which does

not require any prior knowledge of the Patroller’s Ergodic Markovian strategy. That is,

the pair of strategies we mention there determines a Nash equilibrium of the uniformed

Patroller game. This is indeed a significantly stronger result compared to what we

were seeking for when initially considered a Stackelberg approach. Note that this

Nash property holds in our later results as well, though we make no claim here for

the general existence of a Nash equilibrium in our game for all networks.

4.3.2 Attack duration m = 3

Here we investigate the case when the attack takesm = 3 periods. Again, suppose that

the attack takes place at the end node e, and at a time period when the conditional

probability that the Patroller is at the center provided that he/she is not at node e

is given by q. Then, the attack will be intercepted in three different instances

corresponding to the Patroller’s location at the three periods of the ongoing attack;

ce , cce , e
′
ce

(where e
′ 6= e is any other end node),

The cumulative probability of these three distinct events, namely the inter-

ception probability of the attack, is given by:

q · p+ q · r · p+ (1− q) · s · p = p ·
(
(1 + r − s) · q + s

)
, (4.12)

which is increasing in q, since p < 1/n. Therefore, as for the case when m = 2,

the Attacker should begin the attack when the conditional probability q that the



Draft of 9:20 pm, Sunday, March 25, 2018 73

Patroller is at the center given that he/she is not at the attack end node is minimized.

We have seen from the same analysis for m = 2 in Section 4.3.1 that this

occurs when d = 2, where the minimized q = q̂ is given by (4.3). Then, substituting

equation (4.3) into (4.12) we get:

p ·
(

(1 + r − s) · r

1− p
+ s
)

=
(

1− 1− np
1− p

)
· s− r

p− 1
· (r + 1). (4.13)

Since the coefficient of s on the right hand of (4.13) is evidently positive,

it follows that the Patroller maximizes the interception probability (4.13) by taking

s = 1 (i.e. reflection), so that the interception probability (4.12) simply becomes:

q · p+ q · r · p+ (1− q) · p. (4.14)

Conclusively, substituting the optimal values q = q̂ and s = 1, the interception

probability (4.12) becomes:

a3(n, p) = p ·
(

1 +
(1− n · p)2

1− p

)
. (4.15)

Lemma 5. For n > 1, the interception probabilities a3(n, p) = gn(p) are increasing

for 0 ≤ p ≤ 1
n .

Proof. We have from (4.15) that:

g
′
n(p) =

hn(p)

(1− p)2
, (4.16)

where hn(p) is the polynomial:

hn(p) = −2 · n2 · p3 + 3 · n2 · p2 + 2 · n · p2 − 4 · n · p+ p2 − 2 · p+ 2. (4.17)

To prove our claim we must show that hn(p) are positive on [0, 1
n ]. The poly-

nomials hn(p) are convex on [0, 1
n ], since:

h
′′
n(p) = 6 · n2 + 4 · n− 12 · n2 · p+ 2 ≥ 6 · n2 + 4 · n− 12 · n+ 2, (4.18)

where p · n ≤ 1. Then, we have for n ≥ 1 that:

h
′′
n(p) ≥ 6 · n2 − 8 · n+ 2 ≥ 0. (4.19)

Moreover, the polynomials hn(p) have a unique minimum on [0, 1
n ] when their
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first derivative satisfies:

h
′
n(p) = −6 · n2 · p2 + 6 · n2 · p+ 4 · n · p− 4 · n+ 2 · p− 2 = 0, (4.20)

or equivalently, when probability p is equal to:

p̄ =
2 · n+ 1

3 · n2
, (4.21)

which is evidently less than 1
n , since for n ≥ 1 it is:

1

n
− 2 · n+ 1

3 · n2
=
n− 1

3 · n2
. (4.22)

Conclusively, we find for n ≥ 1 that:

hn(p̄) =
(n− 1)2 · (18 · n2 + 8 · n+ 1)

27 · n4
≥ 0. (4.23)

which proves our claim.

According to Lemma (5), the interception probability (4.15) is maximized for

p ∈ [0, 1
n ] at p̂ = 1

n with a maximum value of a3(n, 1
n) = 1

n . This corresponds to a

random walk with probability r̂ = 0 of remaining at the center. In particular, if the

attack is initiated after any even number of periods with the Patroller being away

from the attack node e, that is, with an even delay d, then the Patroller visits a

single random end node in the three period attack interval, which means that he/she

visits the attack node e with probability 1
n , as seen by an alternative calculation

above. We can summarize our findings into the following proposition;

Proposition 12. The solution to the Uniformed Patroller Problem on the star

network Sn with m = 3 is for the Patroller to follow a random walk with reflection

at the ends (i.e. r = 0, s = 1), and for the Attacker to initiate her attack at an end

node after d = 2 consecutive periods of the Patroller being away. Then, the value

of the game (i.e. the probability that the optimal attack is intercepted) is given by

V = 1/n.

4.3.3 Attack duration m = 4

We finally consider the case where the attack lasts for four periods. Here, if the

Attacker initiates her attack with the Patroller being at the center, then he gets two

chances to intercept it, namely to find the correct end. However, if the attack starts
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with the Patroller being at an end node, then he gets only one chance. In the first

case, the Patroller can intercept the attack with any of the following sequences:

ce , cce , ccce , ce
′
ce,

where e
′

is any end node other than the attack end node e, while in the second case

the Patroller can intercept the attack with either of the following two sequences:

e
′
ce , e

′
cce , e

′
e
′
ce.

It follows that the attack will be intercepted with overall probability:

a4(n, p, s, q) = q ·
(
1 + r + r2 + (1− p− r) · s

)
· p

+(1− q) ·
(
s+ s · r + (1− s) · s

)
· p

= q · p ·
(
1 + r + r2 + (1− p− r) · s− s− s · r − (1− s) · s

)
+p · (2 · s+ r · s− s2),

(4.24)

where, like before, q is the conditional probability that the Patroller is at the center

at the beginning of the attack given that he/she is not at the attack node e. Note

that the coefficient of q in (4.24) is given by the product of p with the expression

1 + r · (1− s) + r2 + (1− p− r) · s− s · (2− s)

≥ 1 + r · (1− s) + r2 + (1− p− r) · s− 1

= r · (1− s) + r2 + (1− p− r) · s

≥ 0,

(4.25)

since r+p ≤ r+n ·p = 1, and s ≤ 1. It follows that for fixed n and p, the interception

probability (4.24) is increasing in q. Thus, by the same reasoning that we have used

for m = 2 and m = 3, it further follows that the Attacker should choose to wait for

d = 2 periods to attain q = q̂, and the minimum interception probability of

a4 =
p

1− p
(
(p+ r − 1) · s2 + 2 · (1− p− r · p− r2) · s+ r · (1 + r + r2)

)
. (4.26)

To check that (4.26) is increasing in s, notice that the derivative with respect

to s in the bracketed quadratic above is given by

2 · (p+ r − 1) · s+ 2 · (1− p− r · p− r2)

≥ 2 · (p+ r − 1) · 1 + 2 · (1− p− r · p− r2),
(4.27)
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since r + p < 1, which is equivalent to:

2 · r · (1− p− r) ≥ 0, (4.28)

since both factors are non-negative.

Consequently, it turns out that the Patroller maximizes the interception

probability for fixed p by choosing s = 1 (i.e. reflecting at the ends). Taking s = 1

in (4.26), gives:

a4(n, p) =
p

1− p
·
(
2 · r − p− 2 · p · r − r2 + r3 + 1

)
=
−n3 · p4 + 2 · n2 · p3 + 2 · n · p3 − 3 · n · p2 − 3 · p2 + 3 · p

1− p
.

(4.29)

In Figure 4.5 we plot the variation of the interception probability a4(n, p)

with p, for different number of nodes, while in Table 4.2 we give the maxima of

a4(n, p̂) for the optimal p̂ given by (4.7).
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Figure 4.5: The interception probability
a4(n, p), for n = 2 (blue), . . . , 8 (grey).

n p̂ a4(n, p̂)

2 0.4111 0.5391

3 0.2705 0.3618

4 0.2019 0.2720

5 0.1611 0.2179

6 0.1340 0.1817

7 0.1147 0.1559

8 0.1003 0.1364

Table 4.2: The interception probability
a4(n, p̂), for n = 2, . . . , 8.

4.4 The Line Network

The line network Ln consists of n nodes i ∈ K, and n− 1 edges. The two end nodes

1 and n are connected respectively to the penultimate nodes 2 and n − 1 , while the

n− 2 internal nodes j 6= 1 ,n, are connected respectively to nodes j − 1 to the left,

and j + 1 to the right. We restrict the Patroller to Ergodic Markovian strategies,

introducing the following setting. At the ends he/she reflects with probability κ,

while he/she stays put with probability ` = 1 − κ. From any other internal node

j 6= 1 ,n, he/she moves towards the closest and the furthest end with probability pj

and qj respectively, while he/she remains at the node with probability rj = 1−pj−qj .
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To be consistent with this notation, we set p0 = pn = 0, q0 = qn = κ, and r0 = rn = `.

In the special case when Ln consists of an odd number of nodes, the Patroller shifts

from the center towards the two end nodes with equal probability c, staying around

with probability s = 1− 2 · c.
We further assume that the Patroller is symmetric in his/her random pa-

trolling, namely that:

pj = pn+1−j and qj = qn+1−j ,

which ensures that the transition matrix An characterizing the Patroller’s walk

consists of n− 1 parameters.

This last assumption establishes a symmetry regarding the Attacker’s strategy

as well. That is, provided that the Patroller ‘announces’ an Ergodic Markovian

patrol (pi, qi, c, κ)i∈K , the Attacker anticipates equivalent interception probabilities

(i.e. payoff) for her attack adopting either of the strategies (i, d) and (n+ 1− i, d),

where i, n+1−i are symmetric, with respect to the center, nodes, and d is the number

of periods the Attacker waits after the Patroller leaves her node before attacking.

We focus our attention on the analysis of an attack planned to take place at

an end node, in particular at node 1 . The Patroller’s initial position distribution

in this case is x(0) = (1, 0, . . . , 0). His/Her future position distribution conditional

to him/her not having returned to the attack node 1 for t consecutive periods is

denoted by x(t) = (x
(t)
1 , . . . , x

(t)
n ), where x

(t)
1 = 0 for t > 0. Notice that whenever

the Patroller returns to the attack node, t is reset to zero and his/her position

distribution becomes again x(0). For that, we refer to x(t) as the Patroller’s away

distribution at t > 0. For example, the first two periods that the Patroller is away

from node 1 , his/her away distribution is:

x(1) = (0, 1, 0, . . . , 0), x(2) = (0,
r2

1− p2
,

q2

1− p2
, 0, . . . , 0), etc.

More generally, if we define the row vector y(t), for t ≥ 0, by the product:

y(t) = x(t) ×An, (4.30)

then the Patroller’s away distribution at t ≥ 1 is given by the following iteration

formula:

x(t) =
x(t−1) ×An − (y

(t−1)
1 , 0, 0, 0)

1− y(t−1)
1

. (4.31)

Recall that we adopt a Stackelberg approach where the Patroller moves first,
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hence we set the Patroller to ‘announce’ first his/her strategy. Of course, in practice

we interpret this as the Attacker observing the Patroller’s motion on the network

prior to deciding her strategy. The objective for the Patroller is to ‘announce’ the

optimum strategy (p̂i, q̂i, κ̂, ĉ) that maximizes the interception probability of an attack

of known difficulty m for what is rationally the Attacker’s optimum waiting time

t̂. Contrarily, the objective for the Attacker is to decide how many periods to wait

in the absence of the Patroller from his/her chosen node before starting the attack.

Namely, the Attacker aims to decide the optimum waiting time t̂ that minimizes

the interception probability of his/her attack for what is the announced-observed

Markovian patrol. Hence, the interception probability of an attack under the two

players’ optimal strategies, that is the value V of the game, is given by:

V = max
An

min
t
πm(pi, qi, κ, c, t) = πm(p̂i, q̂i, κ̂, ĉ, t̂), (4.32)

where πm(pi, qi, κ, c, t) is the interception probability of an attack at node 1 of

duration m, under the patrol An and with attack delay d = t.

We solve this game numerically for the line networks L4 and L5, for given

values of the attack duration m. The line network L3 has been examined as a

sub-case of the star network, since it is equivalent to S2.

4.4.1 The Network L4

First we analyse the uniformed patrolling game on the line network L4 drawn below.

1 2 3 4

κ

` `

q2p2 p2q2 κ

r2 r2

Figure 4.6: The line network L4

To avoid unnecessary subscripts we introduce the following notation; p2 = p,

q2 = q, r2 = r. The general formula for recursively calculating the Patroller’s away

distribution, given by the vector equation (4.31), reduces to the following system:

(1− p · x(t−1)
2 ) · x(t)

2 = (1− p− q) · x(t−1)
2 + q · x(t−1)

3 ,

(1− p · x(t−1)
2 ) · x(t)

3 = (q − κ) · x(t−1)
2 + (1− p− q − κ) · x(t−1)

3 + κ.
(4.33)

For fixed p, q and κ, system (4.33) defines a continuously differentiable

mapping T2 : ∆2 → ∆2. Any vector of the form (0, x2, x3, x4), such that x2, x3, x4 ∈
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(0, 1) and x2 + x3 + x4 = 1, will be a fixed point of T2, if it also satisfies the system:

(p+ q − p · x2) · x2 = q · x3,

(κ+ p+ q − p · x2) · x3 = κ+ (q − κ) · x2.
(4.34)

For the optimal patrolling strategies we estimate below, these equations have

a unique solution which gives the limiting Patroller’s away distribution under these

optimal patrols. We aim to calculate the interception probability πm of an attack at

node 1 , considering five cases regarding its duration m = 2, 3, 4, 5, 6.

• For m = 2, if the Attacker initiates the attack when the Patroller is anywhere

else but node 2 , he/she executes it without interception with probability 1. If

however the Patroller is at node 2 when the attack starts, then it is intercepted

with probability p. The interception probability is given by:

π2(p, q, κ, t) = p · x(t)
2 .

• For m = 3, if the Attacker initiates the attack when the Patroller is at the

opposite end node, he/she executes it without interception with probability 1.

If however the Patroller is at nodes 2 or 3 when the attack starts, then it

is intercepted with non-zero probability. The overall interception probability is

given by:

π3(p, q, κ, t) = p ·
(
1 + (1− p− q)

)
· x(t)

2 + p · q · x(t)
3 .

• For m = 4, 5, 6 respectively, the Patroller intercepts an attack at node 1 with

non-zero probability regardless of the node he/she is at when the Attacker

initiates it. Indicatively, the overall interception probability for the attack

duration m = 4 is given by:

π4(p, q, κ, t) = p ·
(
1 + (1− p− q) + (1− p− q)2 + q2

)
· x(t)

2

+p · q ·
(
1 + 2 · (1− p− q)

)
· x(t)

3 + p · q · κ · x(t)
4 ,

whereas we omit the lengthy explicit formulas for π5(p, q, κ, t) and π6(p, q, κ, t).

We have estimated numerically, for d = t ≤ 15, the critical game values for

the above five cases, and we present our findings in Table 4.3 rounded to four decimal

places. Note that we include an additional column with the interception probabilities

under the Patoller’s optimal walk (p̂, q̂, κ̂) for each case, but for the Attacker’s waiting
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time d = t� 15. One can think of πm(p̂, q̂, κ̂,∞) as the interception probability the

Attacker can expect if he/she waits a long time before starting his/her attack.

for d = t ≤ 15 (p̂, q̂, κ̂) t̂ πm(p̂, q̂, κ̂, t̂) πm(p̂, q̂, κ̂,∞)

m = 2 (0.3935, 0.3309, 1) 4 0.1032 0.1067

m = 3 (0.5, 0.5, 1) 2 0.25 0.25

m = 4 (0.4317, 0.4076, 1) 4 0.2960 0.3158

m = 5 (0.5, 0.5, 1) 2 0.4375 0.4375

m = 6 (0.4974, 0.4267, 1) 4 0.4551 0.4766

Table 4.3: Critical Game Values for L4 (Attack node 1 )

Remark 10. We find that the Patroller should always reflect at the ends (κ̂ = 1).

Additionally, for an odd attack duration (m = 3, 5) the optimal patrol is a random

walk (p̂ = q̂ = 0.5) that reflects at the boundaries, that is, the Patroller should never

remain at the same node for two consecutive periods; respectively, the Attacker’s best

strategy is (1 , 2). For an even attack duration (m = 2, 4, 6) the Patroller optimally

remains at an internal node with non-zero probability, which, however, decreases as

we increase m (rm=2 > rm=4 > rm=6). We further observe that p̂ > q̂ for an even m.

Indicatively, when m = 4 the optimal values of p and q are respectively 0.4317

and 0.4076. The optimal Attacker’s response to this Markovian patrol is to initiate

his/her attack (at node 1 ) in the fourth period (d = 4) that the Patroller is away

from the attack node. Under these optimal strategies the attack is intercepted with

probability 0.2960. In the alternative case when the Attacker chooses to wait for a

long time at the absence of the Patroller before attacking (d = t� 1), his/her attack

will be more likely to be intercepted (with probability 0.3158).

However, there are two questions that naturally arise regarding our analysis,

and need further investigation. To treat both of them we adopt a qualitative approach.

(i) How confident we can be that for a waiting time d = t > 15 the Attacker cannot

achieve a lower interception probability?

A method to investigate this first issue is to generate the interception

probabilities πm(p, q, κ, t) for increasing values of t (and for the optimum

probabilities p̂, q̂, κ̂ given in Table 4.3), and check whether we reach the limiting

interception probabilities πm(p̂, q̂, κ̂,∞) without crossing below the optimum

interception probabilities πm(p̂, q̂, κ̂, t̂) that we have estimated for d = t ≤ 15.
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As we see in Figure 4.7, this appears to be the case for m = 2 (4.7a), m = 4

(4.7b), and m = 6 (4.7c), while for m = 3 and m = 5 we already reach the

Patroller’s stationary away distribution from the second period.
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Figure 4.7: Interception probability for an attack at node 1 of L4, under the
optimal patrol, for increasing delay.

(ii) Can the Attacker do any better by attacking a penultimate node (2 or 3 ) instead

of attacking an end node?

Regarding the second issue, we work as follows. For every attack duration

m, we consider the optimum patrol (p̂, q̂, κ̂) that we have estimated for an

attack at the end node 1 , say for example the patrol (0.4947, 0.4267, 1) for

m = 6, and we generate the corresponding interception probability for an

attack at node 2 for various waiting times d = t. Indicatively, for m = 6 we get
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Figure 4.8: Interception probability for an attack at node 2 of L4, under the
optimal patrol estimated for an attack at node 1 , for increasing delay, for m = 6.

As we see in Figure 4.8, the minimum interception probability (0.7207)

that we find for the attack strategy (2 , 1) is greater than the corresponding

interception probability (0.4551) that we have found for the attack strategy

(1 , 4), both estimated under the optimal patrol (0.4974, 0.4267, 1), see Table 4.3.

Hence, attacking at an end node, under the strategy (1 , 4), is the Attacker’s

optimal choice. Similar results we obtain for the rest of the cases, as we present



Draft of 9:20 pm, Sunday, March 25, 2018 82

in the following table.

for (p̂, q̂, κ̂) πm(p̂, q̂, κ̂, t̂)/Node 1 πm(p̂, q̂, κ̂, t̂)/Node 2

m = 2 (1 , 4)− 0.1032 (2 , 2)− 0.1363

m = 3 (1 , 2)− 0.2500 (2 , 1)− 0.5000

m = 4 (1 , 4)− 0.2960 (2 , 2)− 0.5237

m = 5 (1 , 2)− 0.4375 (2 , 1)− 0.7500

m = 6 (1 , 4)− 0.4551 (2 , 2)− 0.7207

Table 4.4: Compare attacks at nodes 1 and 2 under the optimal patrol for node 1

4.4.2 The Network L5

Next we consider the line network L5 which differs from L4 in having a central node.

` `r s r

1 2 3 4 5

κ qp cc q p κ

Figure 4.9: The line network L5

Expanding the general recursive formula (4.31), we can rewrite the Patroller’s

away distribution for L5 into the following system of equations:

(1− p · x(t−1)
2 ) · x(t)

2 = (1− p− q) · x(t−1)
2 + c · x(t−1)

3 ,

(1− p · x(t−1)
2 ) · x(t)

3 = q · x(t−1)
2 + (1− 2 · c) · x(t−1)

3 + q · x(t−1)
4 ,

(1− p · x(t−1)
2 ) · x(t)

4 = κ− κ · x(t−1)
2 + (c− κ) · x(t−1)

3

+(1− p− q − κ) · x(t−1)
4 .

(4.35)

For fixed p, q, c and κ, system (4.35) defines a continuously differentiable

mapping T3 : ∆3 → ∆3. Again, to be able to determine the limiting behavior of

the Patroller’s away distribution in L5 for any fixed p, q, c and κ, we note that any

stochastic vector (0, x2, x3, x4, x5) is a fixed point of T3, if it satisfies the system:

(p+ q − p · x2) · x2 = c · x3,

(2 · c− p · x2) · x3 = q · (x2 + x4),

(p+ q + κ− p · x2) · x4 = κ− κ · x2 + (c− κ) · x3.

(4.36)
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For the optimal patrolling strategies we estimate below, these equations have

a unique solution, that is the Patroller’s away distribution the Attacker can expect

if he/she waits a long time at the Patroller’s absence before initiating the attack.

We can now determine the interception probability πm corresponding to the

Markovian parameters p, q, c and κ of the Patroller’s walk, and the Attacker’s delay

d = t. We consider the same five cases regarding the attack duration, m = 2, 3, 4, 5, 6.

• In the first case, where m = 2, the Patroller may intercept the attack only by

being at node 2 when it starts. Then, the interception probability is given by:

π2(p, q, c, κ, t) = p · x(t)
2 .

• In the second case, where m = 3, the Patroller intercepts the attack by being at

either of nodes 2 or 3 when it starts. The overall interception probability:

π3(p, q, c, κ, t) = p ·
(
1 + (1− q − p)

)
· x(t)

2 + p · c · x(t)
3 .

• In the third case, where m = 4, the Patroller intercepts the attack by being at

nodes 2 , 3 , or 4 when it starts. The overall interception probability is given by:

π4(p, q, c, κ, t) = p ·
(
1 + (1− p− q) + q · c+ (1− p− q)2

)
· x(t)

2

+c · p ·
(
1 + (1− p− q) + (1− 2 · c)

)
· x(t)

3 + q · c · p · x(t)
4 .

• In the last two cases, where m = 5, 6 respectively, the Patroller intercepts an

attack at node 1 with non-zero probability regardless of the node he/she is at

the beginning of the attack. We omit the explicit formulas for π5 and π6.

We have estimated numerically, for d = t ≤ 15, the critical game values for the above

five cases, and we present our findings in Table 4.5 rounded to four decimal places.

for d = t ≤ 15 (p̂, q̂, ĉ, κ̂) t̂ πm(p̂, q̂, ĉ, κ̂, t̂) πm(p̂, q̂, ĉ, κ̂,∞)

m = 2 (0.4342, 0.4110, 0.4096, 1) 10 0.0646 0.0664

m = 3 (0.5, 0.5, 0.5, 1) 12 0.1464 0.1464

m = 4 (0.4663, 0.4330, 0.4216, 1) 8 0.1890 0.1932

m = 5 (0.5, 0.5, 0.5, 1) 14 0.2714 0.2714

m = 6 (0.4821, 0.4598, 0.4332, 1) 8 0.3 0.3088

Table 4.5: Critical game values for L5 (Attack node 1 )
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Remark 11. As expected from the analysis for L4, the Patroller should reflect at the

ends in this case too. Similarly, we conclude that a random walk is the optimal patrol

when the duration of the attack is odd (i.e. for m = 3, 5). A third observation is

that for an even attack duration (i.e. for m = 2, 4, 6) the optimal p̂ is always greater

than the optimal q̂, namely the optimal strategy for the Patroller is always to move

towards the closest end with higher probability than move towards the center. One

can conclude, as well, that increasing the attack duration for even values, the optimal

patrol converges to a random walk, since p̂, q̂ and ĉ increase in even m. Note that

our findings are in principle identical with those obtained in Subsection 4.4.1 for the

network L4.

However, the same issues arise here regarding the validity of our findings for a

rather long delay d = t > 15, and the choice of the optimal attack node. To treat both

we work the same way like before. Firstly, we generate the values of πm(p̂, q̂, ĉ, κ̂, t),

m = 2, 3, 4, 5, 6, for increasing values of t, and check whether we reach the limiting in-

terception probabilities without crossing below the optimal interception probabilities

that we have estimated for d = t ≤ 15. As we see in Figure 4.10, this appears to be

the case for every m, which validates our findings given in Table 4.5, for d = t > 15.
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Figure 4.10: Interception probabilities for an attack at node 1 of L5, under the
optimal patrol, for increasing delay.

Regarding the optimal attack node, assuming the optimal patrols we have esti-

mated for an attack at node 1 , first we generate the corresponding interception prob-

abilities for an attack at nodes 2 and 3 for increasing delays t, then we identify their
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minima occurring at a specific t value, and last we compare those minima with the

maxmin probabilities πm(p̂, q̂, ĉ, κ̂, t̂) of Table 4.5. Indicatively, for m = 4 we obtain:
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Figure 4.11: Interception probability for an attack at nodes 2 and 3 of L5, under
the optimal patrol estimated for an attack at node 1 , for increasing delay, for m = 4.

As we see in Figures 4.11(a) and 4.11(b), for m = 4, the minimum interception

probabilities 0.2886 and 0.5132, that we find respectively for the attack strategies

(2 , 4) and (3 , 2), are both greater than the minimum interception probability 0.1890

that we have found for the attack strategy (1 , 8) (all estimated for the optimal

patrol (0.4663, 0.4330, 0.4216, 1), see Table 4.5). Similar results, confirming that the

Attacker should comparatively attack at an end node (node 1 in this instance), we

obtain for the rest of the m values we have considered, as we present in Table 4.6.

for (p̂, q̂, ĉ, κ̂) πm/Node 1 πm/Node 2 πm/Node 3

m = 2 0.0646− (1 , 10) 0.0876− (2 , 4) 0.1080− (3 , 2)

m = 3 0.1464− (1 , 12) 0.25− (2 , 2) 0.5− (3 , 1)

m = 4 0.1890− (1 , 8) 0.2886− (2 , 4) 0.5132− (3 , 2)

m = 5 0.2714− (1 , 14) 0.4375− (2 , 2) 0.75− (3 , 1)

m = 6 0.3− (1 , 8) 0.4545− (2 , 4) 0.7473− (3 , 2)

Table 4.6: Compare attacks at nodes 1 and 2 , 3 under the optimal patrol for node 1

4.5 The Circle Network

The circle network Cn is a closed walk consisting of n nodes, and equal number of

edges. Like above, we restrict the Patroller to Ergodic Markovian strategies such

that the Patroller leaves every node with overall probability 2 · p, moving clockwise

and anticlockwise with the same probability p, while he/she remains at the same
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node with probability r = 1− 2 · p. Given this symmetric patrol, every strategy (i, d),

for a random node i and a given delay d, is equally advantageous for the Attacker.

According to our setting, the transition matrix Bn characterizing the Pa-

troller’s Ergodic Markovian walk on the circle network is parametrized by a single

parameter p. Without loss of generality, we take node 1 as the attack node.
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Figure 4.12: The circle network Cn

We denote the Patroller’s away distribution from node 1 , for t > 0, by

x(t) = (0, x
(t)
2 , . . . , x

(t)
n ), where x(0) = {1, 0, . . . , 0}. Equivalently to our approach in

Section 4.4, if we define the row vector y(t), for t ≥ 0, by:

y(t) = x(t) ×Bn, (4.37)

then the Patroller’s away distribution from node 1 , at t ≥ 1, is given by the iteration:

x(t) =
x(t−1) ×Bn − (y

(t−1)
1 0, 0, 0)

1− y(t−1)
1

. (4.38)

We consider networks C4, C5, and we solve the game numerically for given values of m.

4.5.1 The Network C4

We start with the circle network with four nodes. Equivalently to (4.38), we can

rewrite the Patroller’s away distribution for C4 into the following system of equations:

(1− p+ p · x(t−1)
3 ) · x(t)

2 = (1− 2 · p) · x(t−1)
2 + p · x(t−1)

3 ,

(1− p+ p · x(t−1)
3 ) · x(t)

3 = p+ (1− 3 · p) · x(t−1)
3 ,

(4.39)

which defines a continuously differentiable map T (x
(t)
2 , x

(t)
3 ) = (x

(t+1)
2 , x

(t+1)
3 ). There is
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a unique stationary solution of T of the form (0, x2, x3, x4), independent of p, given by:

(0, x2, x3, x4) = (0,
2−
√

2

2
,
√

2− 1,
2−
√

2

2
). (4.40)

We take four cases regarding the attack duration, m = 2, 3, 4, 5. Indicatively we have:

• In the first case, where m = 2, the interception probability is given by:

π2(p, t) = p · (x(t)
2 + x

(t)
4 ).

• In the second case, where m = 3, the interception probability is given by:

π3(p, t) = 2 · p · (1− p) · (x(t)
2 + x

(t)
4 ) + 2 · p2 · x(t)

3 .

• In the third case, where m = 4, the interception probability is given by:

π4(p, t) = p ·
(
2− 2 · p+ (1− 2 · p)2 + 2 · p2

)
· (x(t)

2 + x
(t)
4 )

+2 · p2 · (3− 4 · p) · x(t)
3 .

• In the fourth case, where m = 5, the interception probability is given by:

π5(p, t) = p ·
(
2− 2 · p+ (1− 2 · p)2 + (1− 2 · p)3 + 2 · p2 · (4− 6 · p)

)
×(x

(t)
2 + x

(t)
4 ) + 2 · p2 ·

(
2 · p2 + 2 · (1− 2 · p)2 + 3− 4 · p

)
· x(t)

3 .

We have estimated numerically, for d = t ≤ 15, the critical game values for the above

four cases, and we present our results in Table 4.7 rounded to four decimal places.

for d = t ≤ 15 p̂ t̂ πm(p̂, t̂) πm(p̂,∞)

m = 2 0.2929 2 0.1716 0.1716

m = 3 0.5 1 0.5 0.5

m = 4 0.4515 2 0.5216 0.6021

m = 5 0.5 1 0.75 0.75

Table 4.7: Critical game values for C4

Like before, we aim to examine (qualitatively) whether our results are valid for

a relatively long delay d = t > 15. For m = 2, 3, 5, the optimal interception probabili-

ties coincide with the corresponding limiting interception probabilities (see Table 4.7).



Draft of 9:20 pm, Sunday, March 25, 2018 88

Accordingly, for m = 4, we reach the limiting interception probability without cross-

ing below the optimum interception probability that we have estimated for d = t ≤ 15

(see Figure 4.13). Thus, we claim our results are valid for infinitely large delay d = t.
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Figure 4.13: Interception probability for an attack at a random node of C4 under
the optimal patrol, for increasing delay, for m = 4.

4.5.2 The Network C5

Next we consider the circle network with five nodes. Equivalently to (4.38), we can

rewrite the Patroller’s away distribution from node 1 into the following system:

(1− p+ p · x(t−1)
3 + p · x(t−1)

4 ) · x(t)
2 = (1− 2 · p) · x(t−1)

2 + p · x(t−1)
3 ,

(1− p+ p · x(t−1)
3 + p · x(t−1)

4 ) · x(t)
4 = p+ (1− 3 · p) · x(t−1)

4 − p · x(t−1)
2 ,

(1− p+ p · x(t−1)
3 + p · x(t−1)

4 ) · x(t)
3 = p · (x(t−1)

2 + x
(t−1)
4 )

+(1− 2 · p) · x(t−1)
3 ,

(4.41)

which defines a continuously differentiable mapping T3 : ∆3 → ∆3. There is a unique

stationary solution of T3 of the form (0, x2, x3, x4, x5), that is also independent of p:

(0, x2, x3, x4, x5) = (0,
3−
√

5

4
,

√
5− 1

4
,

√
5− 1

4
,
3−
√

5

4
). (4.42)

We take here the same four cases as in Section 4.5.1 regarding the attack duration m.

• In the first case, where m = 2, the interception probability is given by:

π2(p, t) = p · (x(t)
2 + x

(t)
5 ),

• In the second case, where m = 3, the interception probability is given by:

π3(p, t) = 2 · p · (1− p) · (x(t)
2 + x

(t)
5 ) + p2 · (x(t)

3 + x
(t)
4 ),
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• In the third case, where m = 4, the interception probability is given by:

π4(p, t) = p ·
(
2− 2 · p+ (1− 2 · p)2 + p2

)
· (x(t)

2 + x
(t)
5 )

+3 · p2 · (1− p) · (x(t)
3 + x

(t)
4 ),

• In the last case, where m = 5, the interception probability is given by:

π5(p, t) = p ·
(
2− 2 · p+ (1− 2 · p)2 + p2 + 2 · p2 · (1− 2 · p) + p3

)
×(x

(t)
2 + x

(t)
5 ) + p2 ·

(
3− 4 · p2 + 3 · (1− 2 · p)2

)
· (x(t)

3 + x
(t)
4 ).

We have estimated numerically, for d = t ≤ 15, the critical game values for the above

four cases, and we gather our results in Table 4.8 rounded to four decimal places.

for d = t ≤ 15 p̂ t̂ πm(p̂, t̂) πm(p̂,∞)

m = 2 0.3820 2 0.1459 0.1459

m = 3 0.3820 2 0.2705 0.2705

m = 4 0.4450 2 0.3808 0.4282

m = 5 0.5 2 0.5 0.5716

Table 4.8: Optimal game values for C5

Like before, we want to examine whether increasing the attack duration

d = t ≥ 15 (for constant p = p̂), we reach the limiting interception probability

without crossing below the optimum interception probability that we have estimated

for d = t ≤ 15. For m = 4, 5 this appears to be the case as we see in Figure 4.14,

while for m = 2, 3 the optimum interception probability coincides with the limiting

interception probability (see Table 4.8).

0 2 4 6 8 10

0.40

0.45

0.50

0.55

t

in
te
rp
ro
b

(a) m = 4

0 2 4 6 8 10

0.50

0.55

0.60

0.65

t

in
te
rp
ro
b

(b) m = 5

Figure 4.14: Interception probability for an attack at a random node of C5 under
the optimal patrol, for increasing delay.
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4.6 The Star in the Circle Network

The star in the circle network En combines the star and the circle networks we have

considered above. It consists of n end nodes, one central node, and 2 · n edges. As

usual, we take a Markovian Patroller, leaving an end node towards an adjacent end

node with probability p, and towards the centre with probability q, moves from the

centre towards each of the end nodes with probability r, while remains at an end

node with probability a = 1−2 ·p− q, and at the centre with probability b = 1−n · r.
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Figure 4.15: The star in the circle network En

The transition matrix Γn describing the Patroller’s walk on the star in the

circle network is parametrized by three parameters, p, q, r. Regarding the Attacker,

he/she has two options. Either to attack, equally preferably, at one of the ends, or

to attack at the centre. To highlight the Attacker’s bounded rationality, here we

introduce an additional strategic element. We set the Attacker holding a counter of

limited storing capacity counting his/her delay. When the Patroller leaves the attack

node, the Attacker turns on the counter recording periods at the Patroller’s absence

up to a finite level D (max delay). If the Patroller has not returned after D periods,

the Attacker can no longer count his/her absence and adjust the attack, that is, the

Attacker can rationally initiate the attack after waiting at most for D periods. We

call such an Attacker a Finite Automata Agent, in alignment with Rubinstein [1986].

Without loss of generality, we take the end node 1 as the attack node. In accordance

with (4.31) and (4.44), the Patroller’s away distribution from node 1, for t ≥ 1, is:

x(t) =
x(t−1) × Γn − (z

(t−1)
1 , 0, 0, 0)

1− z(t−1)
1

, (4.43)

where z(t) = x(t) × Γn is the row vector defined for t ≥ 0, and x(0) = (1, 0, . . . , 0).

The Patroller’s away distribution from the centre, for t ≥ 1, is defined by
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y(t) = (y
(t)
1 , . . . , y

(t)
n , 0). For an attack at the centre of duration m, the interception

probability is given by:

πc(q,m) = (m− 1) · q. (4.44)

Recall that we aim to find the optimal patrol (p̂, q̂, r̂), and the optimal

delay t̂. First though we need to examine which node the Attacker optimally attacks.

Obviously, if the Patroller announces q̂ such that πc(q̂,m) < πm(p, q̂, r, t) then the

Attacker should attack the centre. Therefore, here we deal with the following problem:

max
Γn

min
t
πm(p, q, r, t) = πm(p̂, q̂, r̂, t̂) : πm(p̂, q̂, r̂, t̂) ≤ πc(q̂,m), (4.45)

the solution of which actually makes the Attacker indifferent of which node to attack.

4.6.1 The Network E3

First we consider the star in the circle network with three ends. The interception

probability of an attack at node 1 of duration m = 2, 3, 4, as a function of p, q, r, t, is:

• for m = 2,

π2(p, q, r, t) = p · (x(t)
2 + x

(t)
3 ) + r · x(t)

c ,

• for m = 3,

π3(p, q, r, t) = (p+ a · p+ p2 + q · r) · (x(t)
2 + x

(t)
3 ) + (r + 2 · r · p+ b · r) · x(t)

c ,

• for m = 4,

π4(p, q, r, t) = r · (2 · p+ b+ 1 + b2 + 2 · q · r + p2 + 2 · b · p+ 2 · a · p) · x(t)
c

+
(
p · (1 + a+ p+ a2 + 2 · a · p+ 3 · q · r + p2) + q · r · (1 + a+ b)

)
· (x(t)

2 + x
(t)
3 ).

We solve the game numerically, for D = 15, and we gather our results in

Table 4.9, rounded to four decimal places.

for D = 15 (p̂, q̂, r̂) d = t̂ πm(p̂, q̂, r̂, t̂)

m = 2 (0.3333, 0.3333, 0.3333) 1 0.3333

m = 3 (0.3560, 0.2881, 0.3333) 2 0.5761

m = 4 (0.3762, 0.2476, 0.3333) 2 0.7428

Table 4.9: Critical game values for E3
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4.6.2 The Network E4

Next we consider the star in the circle network with four end nodes. The interception

probability of an attack at node 1 of duration m = 2, 3, 4 as a function of p, q, r, t is:

• for m = 2,

π2(p, q, r, t) = p · (x(t)
2 + x

(t)
4 ) + r · x(t)

c ,

• for m = 3,

π3(p, q, r, t) = (p+ a · p+ q · r) · (x(t)
2 + x

(t)
4 ) + (2 · p2 + q · r) · x(t)

3

+r · (1 + 2 · p+ b) · x(t)
c ,

• for m = 4,

π4(p, q, r, t) = r · (1 + 2 · p+ b+ 2 · b · p+ 2 · a · p+ b2 + 3 · r · q + 2 · p2
)
· x(t)

c

+
(
2 · p2 + q · r + 4 · a · p2 + 4 · p · q · r + a · q · r + q · b · r

)
· x(t)

3

+
(
2 · p3 + 3 · q · r · p+ p+ a · r + q · r + a2 · p+ a · q · r + q · b · r

)
· (x(t)

2 + x
(t)
4 ).

We solve the game numerically, for D = 15, and we gather our results in

Table 4.10, rounded to four decimal places.

for D = 15 (p̂, q̂, r̂) d = t̂ π̂m(p̂, q̂, r̂, t̂)

m = 2 (0.2835, 0.1695, 0.25) 2 0.1695

m = 3 (0.3993, 0.2013, 0.25) 2 0.4026

m = 4 (0.4147, 0.1706, 0.25) 2 0.5118

Table 4.10: Critical game values for E4

4.7 Variations with a Non-Markovian Patroller

In this last section, we drop the requirement that the Patroller adopts a Markovian

strategy, allowing him/her to adopt arbitrary walks on the patrolling network Q.

By extension, we relate variations of the Uniformed Patroller problem introduced

here, with two deterministic problems on networks considered extensively in the

computer science literature. We take the search-patrolling region Q to be a finite

network with integer edge lengths, that is, with integer travel times.
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4.7.1 The UAV-Pinwheel Problem

Suppose a reconnaissance unmanned aerial vehicle (UAV) must return to locations

i at most every κi periods. Is this possible when the locations i are the nodes of

a given network Q, where d(i, j) is the given integer number of periods to travel

between nodes i and j? If not, how many UAV’s K are required to make this task

possible? This problem is called the cyclic routing UAV (CRUAV) problem, see, e.g.,

Ho and Ouaknine [2015]. For K = 1 it is related to a winning condition for the

Patroller in an extended patrolling game U∗ = U∗(Q,m1,m2, . . . ,mn), where mi is

the duration of an attack at node i of Q (in our original setting mi = m for every

node i). If there is a solution to the CRUAV problem with κi = mi − 1, then this

solution is a winning solution for the Patroller in the patrolling game U∗. Of course

such strategies are non-Markovian.

To illustrate this problem, consider the network drawn below as taken from

Ho and Ouaknine [2015]. This problem has a positive solution with K = 1, that

is, the periodic walk DCABACDACBA, which has period 11. The return times

to A are 2, 5, 5, 5 (≤ 5), to B are 7, 10 (≤ 10), to C are 5, 5, 6 (≤ 6), and to D

are 8, 9 (≤ 9). Note that no walk of period 4 (a minimum period walk visiting all

nodes) returns to node A (node with the minimum attack duration) in time 5, as

the required edges have at most two with length 1 and the rest with length 2, that

is, such a four period walk/patrol lasts at least for 1 + 1 + 2 + 2 = 6 periods. Hence,

the Uniformed Patroller problem on this network has value 1, that is, the Patroller

intercepts any attack of the given durations with probability 1.

C6

B10

A5

D9

2

1

2

12
2

Figure 4.16: Example of the cyclic routing UAV problem. Ho and Ouaknine [2015]

Apparently, the CRUAV problem is a variant of the so-called Pinwheel

Problem, see, e.g., Holte et al. [1989], and of the Patrolling Security Games, as those

have been discussed in Basilico, Gatti and Amigoni [2012], Basilico, De Nittis and

Gatti [2015]. In principle, the CRUAV problem has direct, important connections

with the general family of scheduling problems.
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4.7.2 Spy Games

Our model gives the Attacker additional information compared with the original

Patrolling Games, that is, he/she can see whether the Patroller is located at the

same location with him/her. Suppose that we let the Attacker can see the Patroller

wherever he/she is. We keep our original assumption that the attacks at any node

require the same number of periods m. In this case the Attacker may want to move,

for example in a direction away from the Patroller, before starting his/her attack.

We allow the two players to alternate in moving, with the Patroller constrained to

moving only to an adjacent node per turn, and the Attacker constrained to moving

to a node at a distance at most S nodes away per turn. Of course, during his/her

attack the Attacker must stay still. In the ‘spy-game’ introduced by Cohen et al.

[2016], the Attacker (identified as the Robber) wins if he/she ever gets a distance

δ away from the Patroller (identified as the Cop, who in their game can see the

Attacker). If we take δ = m+ 1, and tell the Attacker to begin his/her attack (and

stay still ever since) as soon as he/she has achieved distance δ, then the Patroller

cannot intercept the attack given his/her unit speed, their initial distance and the

attack duration. This idea yields a connection between the Patroller-Attacker games

and what are known as the Cops and Robber games, see, Aigner and Fromme [1984].



Chapter 5

Conclusion

In Chapter 2, we study the distribution of illegal activity in a population of my-

opic inspectees (e.g., tax payers) interacting under the pressure of a short-sighted

benevolent inspector (e.g., tax inspector). Equivalently, we investigate the spread

of corruption in a population of myopic bureaucrats (e.g., ministerial employees)

interacting under the pressure of an incorruptible supervisor(e.g., governmental fraud

investigator). We consider two game settings with regards to the inspectees’ available

strategies, where the continuous strategy setting is a natural extension of the discrete

strategy setting we initially consider. We introduce, and vary both qualitatively and

quantitatively, two key control elements that govern the deterministic evolution of

the illegal activity in the population, the punishment fine and the inspection budget.

We derive the ODEs (2.12) and (2.27) that characterize the dynamics of our

system. In particular, we identify explicitly the fixed points that occur under our

different scenarios, and we carry out respectively their stability analysis. We show

that although the indistinguishable ‘agents’ (e.g., inspectees, corrupted bureaucrats)

are treated as myopic maximizers, profitable strategies eventually prevail in their

population through imitation. We verify that an adequately financed inspector

achieves an increasingly law-abiding environment when there is a stricter fine policy.

We show, however, that although the inspector can establish any desirable average

violation by suitably manipulating his/her renewable budget and his/her fine policy,

he/she is not able to combine this with any desirable group’s strategy profile. Finally,

we provide a game-theoretic interpretation of the limiting dynamics fixed points

stability analysis (link with the Nash equilibria of the corresponding N-player game).

There are many directions towards which one can extend our approach.

To begin with, one can consider an inspector experiencing policy-adjusting costs.

Equivalently, one can withdraw the assumption of a renewable budget. Moreover,

95
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the case of two or more inspectors, possibly collaborating with each other or even

with some of the inspectees, could be examined. Regarding the inspectees, an

additional source of interaction based on the social norms established within their

population could be introduced. Another interesting variation would be to add

a spatial distribution of the population, assuming indicatively that the inspectees

interact on a specific network. Some of these alternatives have been studied for

similar game settings; see, e.g., Kolokoltsov [2014], Kolokoltsov and Malafeyev [2015].

In Chapter 3 we formulate the interaction of a large number of small players under

the pressure of a major player (principal), on n-dimensional arrays, having in mind

the paradigm of individuals defending against a bio-terrorist; alternatively, the

similar context of corrupted tax inspectors against a benevolent authority. The n-

dimensional arrays dual structure naturally describes on the one hand the distribution

of individuals among m levels of ‘behaviour’ (e.g. levels of defence) and on the

other, their distribution according to a phenotypic characteristic among n levels

of ‘hierarchy’ (e.g. levels of infection). Transitions on the first structure is mainly

subject to the individuals’ control, while transitions on the second is mainly subject

to the principal’s pressure. Transitions on both structures may also be an outcome

of the individuals’ binary interactions. Our model is a performance of a finite state

non-linear Markov game combining mean-field, evolutionary, and pressure-resistance

types of interaction.

For our analysis, we consider the discounted mean-field game consistency

problem. We demonstrate the kinetic equations governing the evolution of the

individuals’ distribution among the n×m states (forward equation), and the Hamilton-

Jacobi-Bellman equation giving the individuals’ optimal payoff (backward equation).

We solve the stationary problem and we provide a link of the stationary solution

to the time-dependent problem. For simplicity, we work in the asymptotic regimes

of fast execution of personal decisions, weak binary interactions, and small payoff

discounting in time. Considering a stationary control that is consistent with the

assumption of fast execution of personal decisions, in the main order of small payoff

discounting in time (or in the main order of weak binary interactions), we find

that individuals will be uniformly distributed among the ‘behaviours’ of the unique

‘hierarchy’ level where the sum of rewards is maximised, and we obtain the optimal

payoff as a function of these rewards. We show that there is a unique solution to the

time-dependent problem, that is very close to the stationary solution.

Our simplifications, while necessary for concrete calculations, consist only the

first step towards a more comprehensive treatment of the game we have formulated.

In Chapter 4, we introduce the characteristic of limited vision to the Attacker in a
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network patrolling game by letting him/her see, at the beginning of every period,

whether or not the Patroller is present at the node he/she is planning to attack.

Obviously, the Attacker will not initiate the attack when the Patroller is present, and

we further show here that optimally he/she will also not immediately attack when

the Patroller leaves his/her node, but will rather wait an optimal number of periods,

resetting his/her count if the Patroller returns before that time. This behaviour

is in stark contrast to the optimal behaviour when the Patroller follows a known

periodic tour of the network, where an immediate attack is often the best strategy.

For example many prison escape movies show the prisoners (i.e. the Attackers)

attempting to escape just after the spotlight (i.e. the Patroller) leaves their location.

We have adopted here the assumption that the Patroller’s motion can be

observed (and therefore be recorded) prior to the beginning of the game, or generally

speaking, that is somehow a known element of the game. That is, we consider a

Stackelberg game approach. However, an interesting observation of our analysis and

results for several networks is that, in fact, the Attacker has an optimal strategy

that does not require any prior knowledge of the Patroller’s motion. In other words,

there exists a Nash equilibrium between the Patroller and the Attacker.

A number of possible extensions of our model naturally suggest themselves

after our results are further taken into consideration. For one, it would be interesting

to give the Attacker a greater range of vision, perhaps initially to nodes adjacent

to the planned attack node. Of course, if the Attacker has significant vision in this

respect, he/she might have an incentive to move away from the Patroller’s current

location by changing his/her choice of which node to attack. This approach might

then lead to one-sided information in the so called Cops and Robbers games, with

only the Robbers (the Attacker in our case) having vision. In terms of the search and

pursuit-evasion games wording, this might be called a search-evasion game approach.

Another extension to our model, seemingly rather difficult to deal with, would be to

provide the Patroller with the same range of motions, that is mixtures over general

walks, that was allowed in the original formulation of network patrolling games,

Alpern, Morton and Papadaki [2011]. A first step towards this direction would be to

introduce Markovian strategies with short memories.

Moreover, our model raises the question of why patrols are ever carried

out with uniforms that give to a potential attacker or infiltrator additional helpful

information. One answer might lie in the direction of deterrence. Under some of our

game parameters, where the interception probability is relatively high, the Attacker

might choose to abandon his/her attempt altogether, leading to a non zero-sum game.

Clearly, the Uniformed Patroller model leads to many open, unanswered questions.
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