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Abstract

In this thesis, a mixed continuous and discontinuous Galerkin finite element method

is developed for the three-dimensional quasi-geostrophic equations, and is used to

investigate the role that weather front formation plays in the transfer of energy to

small scales that would produce a k−5/3 energy spectrum as observed in the atmo-

sphere. The quasi-geostrophic equations are used for computational efficiency and

are found to be sufficient for producing simple fronts. Discontinuous Galerkin finite

elements are used for the potential vorticity as continuous Galerkin methods perform

poorly with advection dominated problems. The less dynamical vertical direction

is discretised with finite differences to simplify the finite element method in the

horizontal. Streamfunction boundary values are derived for free-slip boundary con-

ditions in the three-dimensional model. The scheme is verified with numerical tests

and is shown to converge at optimal rates until free-slip boundaries are introduced.

Conservation of energy and enstrophy are shown numerically. Using the numerical

method, a channel model simulation suggests that the bend up of fronts produced

by a meandering zonal jet could be a viable mechanism for producing a k−5/3 regime.
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ŷ Meridional unit vector.

y Meridional coordinate.

Z Enstrophy.
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Chapter 1

Introduction

An unsolved problem in atmospheric dynamics is the origin of the horizontal k−5/3

energy regime for wavenumber magnitude k for mesoscales, smaller than the synop-

tic scale of about Rossby radius Lf ≈ 1000 km. Due to stratification, rotation and

the thinness of the troposphere, most models would predict quasi-two-dimensional

behaviour with a k−3 spectrum, which is what global forecast models consistently

generate [9]. The k−5/3 regime extends to scales far too large for a traditional three-

dimensional turbulent cascade to work which is known to produce such an energy

profile, therefore, other mechanisms must be considered. When frontal dynamics do

not dominate and the atmosphere is predominantly stratified, the k−5/3 regime can

be explained by simulations of horizontally homogeneous stratified turbulence which

display a horizontal k−5/3 regime and a flow of kinetic energy to small scales [7, 31].

However, there is no reason for this to apply where frontal dynamics are dominant.

Fronts generate small scale structures, but it is difficult to identify which possible

source of spectra shallower than k−3 dominates. This is where reduced models are

useful.

The goal of this thesis is to develop a finite element method for the three-dimensional

quasi-geostrophic equations that can be used to see if front formation can also gener-

ate the observed transfer of kinetic energy to small scales. Ultimately such research

is designed to advance the understanding of Earth’s atmosphere to improve the ac-

curacy of global circulation models and weather prediction.
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1.1 Nature of the Atmosphere

The atmosphere is a large and complex fluid system that is driven by a multitude

of processes including; planetary rotation, heating from the sun and planet surface,

stratification, topological effects from mountain ranges and city landscapes, ocean

currents, as well as anthropological activity. The vast scale of weather systems can

be seen in Figure 1.1 and with such a large dynamical system depending on so

many variables, one can see how the atmosphere can behave in a chaotic fashion

and become difficult to predict.

Figure 1.1: “The Blue Marble” taken from Apollo 17. The scale of the cloud patterns
stretches across the Earth’s atmosphere. Image from NASA [94].

When studying the atmosphere, the effects of rotation, temperature gradients and

stratification are of particular importance [39]. The rotation of the planet has a

significant effect on the motion of flows within the atmosphere and is responsible for

the behaviour of large scale flows such as cyclones. Strong horizontal temperature

gradients combined with this rotation are responsible for powerful zonal jet streams

that generate and carry weather systems around the planet. The stratification of

the atmosphere refers to the decrease in density with height which organises the

atmosphere into distinct layers as in Figure 1.2. This stratification has a significant

effect on the flows within the atmospheric boundary layer (or troposphere), and can

generate internal waves and drive baroclinic instability that creates large meanders

in jet streams which can break off into large cyclones and anticyclones (see Appendix

A for more information on jet streams and Rossby waves).
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Figure 1.2: Structure of Earth’s atmosphere. The red line indicates the temperature
profile. The troposphere is the layer closest to the Earth’s surface and contains the
majority of weather systems. [Figure in [82], © 2013. Reprinted by permission of
Pearson Education, Inc., New York, New York.]

The atmosphere is known as a geophysical fluid, that is a fluid motion of large enough

scale to experience the effects discussed above. Geophysical fluids are fundamentally

three-dimensional, however, the geophysical constraints (eg. stratification, rotation)

suggest two-dimensional effects. Brethouwer et al. [31] demonstrated that atmo-

spheric like turbulence can be simulated numerically, which displays strong strati-

fication indicating some two-dimensional behaviour. It is well known that rapidly

rotating flows can behave as a two-dimensional fluid as described by the Taylor-

Proudman Theorem [39], which states that in such a flow the vertical derivative of

the horizontal velocity must be zero. Although atmospheric flows are subjected to

the rotation of the Earth, the rotation is not strong enough for three-dimensional

effects to be ignored. The atmosphere experiences a wide range of flows, in particu-

lar high Reynolds number flows where inertial forces are large compared to viscous

forces and the flow becomes turbulent.
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Figure 1.3: Horizontally homogeneous periodic calculation by Brethouwer, Billant,
Lindborg and Chomaz [31]. Strong layering suggests two-dimensional dynamics.
[Reprinted from [31] with permission from Cambridge University Press.]

1.2 Energy Cascades and Turbulence

Currently, there is no rigorous definition of turbulence. However, it may be char-

acterised as a state of continuous instability where fully developed turbulence has

a complex spatial structure with rapid, irregular velocity fluctuations at any par-

ticular point in space and motions on many different length scales [1, 115]. In a

three-dimensional flow, isotropic turbulence can be characterised by the transfer of

energy from large-scale eddies to smaller-scale eddies until the energy is dissipated

by viscous effects. Turbulent flows can sometimes be identified by their energy

spectrum. Consider a wavevector k whose components are the wavenumbers in the

x, y and z directions. Denote the wavevector magnitude k = |k|. Then the energy

spectrum E(k) of a three-dimensional flow is defined as

E(k) =
k2

4π2

ˆ
〈u(x) · u(x+ r)〉 e−ik·r dr (1.1)

such that

E =

ˆ ∞
k=0

E(k) dk (1.2)

where E is the total energy of the system and 〈·〉 is an ensemble average [40, 100]. As

discussed below, a turbulent flow will exhibit an energy spectrum E(k) ∼ k−5/3. It

should be noted that such an energy spectrum profile does not necessarily indicate

that a flow is turbulent.

The most commonly quoted evidence for two-dimensional effects in geostrophic tur-
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bulence is the existence of this k−5/3 energy spectrum at mesoscales (∼ 600 km to

2 km) in the stratosphere as seen in Figure 1.4. Nastrom and Gage [95] present the

atmospheric wavenumber spectra of wind and temperature from over 6000 commer-

cial aircraft flights. The spectra slopes follow a k−5/3 regime in the range of scales

from 2.5 km to 400 km. For larger scales, the slope steepens to k−3. The spectra

were found to be independent of latitude, season and location in the troposphere or

stratosphere.

Figure 1.4: Nastrom and Gage energy spectrum, stratospheric measurements taken
from Global Atmospheric Sampling Program (GASP) aircraft data. Wavenumber
plotted against energy spectrum E(k) on logarithmic axes. Meridional wind and
temperature profiles are shifted one and two decades to the right, with the zonal
wind being the left most profile. [Figure in [95]. © American Meteorological Society.
Used with permission.]

There are two situations in which this energy spectrum is predicted to occur [117]:

first in three-dimensional homogeneous isotropic turbulence with a downscale or

forward energy cascade as predicted by Kolmogorov [71], and secondly in two-

dimensional homogeneous isotropic turbulence on the large-scale side of energy in-

jection with an upscale or inverse energy cascade as predicted by Kraichnan [73].

It is clear that the spectrum cannot be due to two-dimensional turbulence as the

atmosphere is not two-dimensional. A forward energy cascade in three-dimensional

turbulence is caused by eddy diffusion elongating vortex tubes and thereby increas-

ing vorticity on smaller and smaller scales [34]. A purely three-dimensional argument

is not supported since the scales at which the k−5/3 regime is observed is far too large

5



for isotropic three-dimensional turbulence; at these large scales the atmosphere has

greater dynamics in the horizontal than the vertical and is therefore not isotropic.

Tung and Orlando [117] proposed that the spectrum observed in the atmosphere is

produced by an injection of energy at synoptic scales (greater than 600 km) from

thermal energy of the sun, with a forward energy cascade to small scales.

Figure 1.5: Energy and enstrophy cascades proposed by Tung and Orlando [117].
[Figure in [117]. © American Meteorological Society. Used with permission.]

Structure functions are useful for providing insight into the direction and strength

of energy cascades. Let

δu = u(x+ r)− u(x) (1.3)

be the velocity difference with separation r, then the nth order structure function

is

Sn(r) = 〈δun〉, (1.4)

where the angle brackets indicate a statistical average. The second order structure

Figure 1.6: Scatterometer study area over the Pacific Ocean. Figure in [69].

function S2(r) ∼ r2/3 corresponds to the energy spectrum E(k) ∼ k−5/3, [70]. In a

study by King & Kerr (2009) [69], oceanic measurements were taken over the Pacific

6



(a) (b)

Figure 1.7: Scatterometer data from Pacific Ocean showing (a) a r2/3 regime in the
second order structure function for small scales and (b) the dynamics are somewhere
in between isotropic two-dimensional and three-dimensional turbulence (SLL and
STT denote the second order structure functions of two components of the velocity
difference: along the separation r and orthogonal to r). Figures in [69].

Ocean using backscattered microwaves emitted from a satellite, see Figure 1.6. They

performed structure function analysis on this data and found that the second order

structure function exhibited a r2/3 profile for length scales below around 600km as

seen in Figure 1.7. The data shown in Figure 1.7b indicates that the dynamics are

neither purely three-dimensional nor two-dimensional but somewhere in between.

The r2/3 (or k−5/3) regime appears to be ubiquitous, it is observed in atmospheric

measurements [35, 69, 76, 95], experiments and numerical simulations [8, 31, 55, 70,

77, 92]. Evidence for a forward energy cascade being responsible for this regime

can be shown using third order structure functions. The three-dimensional forward

energy cascade third order structure function is [52, 71],

S3(r) = −4

5
εr, (1.5)

and is found in geostrophic turbulence [69, 76, 77] indicating a forward energy cas-

cade as discussed in Section 1.3.

So, it appears that this energy spectrum is definitely there, however, the mechanisms

underlying its formation are not understood. The first weather forecast simulations

with a resolution of around 250 km gave a steeper k−3 spectrum instead of the ex-

pected k−5/3, possibly due to numerical dissipation. However, new simulations with

finer 25 km resolutions still have this regime (see Figure 1.9) and it is unknown why

this is the case [9, 97, 98, 110, 114]. Until this is resolved, next generation General
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Figure 1.8: 4/5 Kolmogorov law for a third order structure function providing evi-
dence for a cascade of energy to small scales. Figure in [70].

Circulation Models (GCM) will be flawed and will have repercussions in mesoscale

numerical weather prediction. The underlying mechanisms leading to this problem

is what this thesis intends to investigate. Augier [9] states that some GCMs have

achieved a realistic k−5/3 mesoscale regime, whilst others have not, possibly because

of too much dissipation at synoptic scales. Yet, the mechanisms behind this regime

are still unknown. GCMs simulate atmospheric flows on a global scale and cannot

resolve small scale physical processes, such as frontogenesis, due to computational

limitations. These sub-grid scale processes may be where the missing energy lies.

Attempts to model these processes with stochastic schemes, to inject this energy into

the scales resolved by the numerical model, produce more realistic energy spectra

[97, 110]. Although, these techniques may be just compensating for model deficien-

cies.

Early studies aimed at trying to understand the mechanics of geostrophic turbu-

lence in terms of two-dimensional turbulence and an inverse energy cascade [65,

83, 85, 90, 101, 124]. As first shown by McWilliams (1984) [85], two-dimensional

turbulence displays the emergence of coherent vortices from the background turbu-

lence. This is due to the inverse energy cascade where energy is transported from

small scales to larger scales, whilst enstrophy (kinetic energy related to dissipation)

cascades from large to small scales. This is in contrast to three-dimensional turbu-

lence where energy observes a forward cascade due to vortex stretching and tilting

[81, 83, 101]. Investigation into geostrophic turbulence using the barotropic (single

layer) quasi-geostrophic equations revealed that the β-plane (effect of rotation and

Earth’s curvature, see Section 2.2) turbulence also exhibits coherent vortices. These

vortices coexist with Rossby waves and the inverse energy cascade is inhibited for

scales above (U/β)1/2 for typical velocity U . This is typical of β-plane turbulence,
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Figure 1.9: Missing energy in weather forecast models. Total kinetic energy spec-
trum from European Centre for Medium-Range Weather Forecasts (ECMWF) model
with 25 km resolution (T799). Figure provided by Tim Palmer, similar figures in
[97, 110].

however, the coherent vortices still had a significant effect on transport [101]. As

geostrophic turbulence is not fully two-dimensional, the inverse energy cascade and

the emergence of coherent vortices cannot fully describe the nature of geostrophic

turbulence. Waves and jets also represent key components of geostrophic turbulence.

Understanding these as well as their interaction with each other and topographical

features is necessary for correct parameterisation in general circulation models [101].

In a further study of vortex interactions in geostrophic turbulence, McWilliams and

Weiss (1999) [90] found that the vortex population decays much faster in geostrophic

flows than two-dimensional flows. This suggests that the three-dimensional pro-

cesses that amalgamate or destroy geostrophic vortices are more efficient than those

in two-dimensional flows. They also observed that vortex interactions are much

more frequent than in two-dimensional turbulence and vortices often aligned verti-

cally to form tall vortex columns [83, 90]. Rossby waves have been suggested as a

possible mechanism for this vortex alignment [65]. Hardenberg et al. (2000) [124]

showed that there are important differences between continuous stratification and

two-layer dynamics, indicating that further study of greater vertical resolution mod-

els is needed. Indeed Hardenberg found that the merging of baroclinic (stratified

effects) vortices has a much more complex structure than in the barotropic case.

Taller vortices become flattened over time and ejected vorticity filaments become

curved in the vertical and spiral around the merging vortices. This can lead to a

more rapid homogenization of the merging vortex cores in geostrophic turbulence.

9



Figure 1.10: Relative vorticity field from a numerical simulation of freely decaying
turbulence on the β-plane. Bright and dark tones indicate negative and positive
vorticity respectively. Rossby waves coexist with coherent vortices, these vortices
are generally smaller than those in pure two-dimensional or f -plane (β = 0) flows.
Figure in [101].

Building on McWilliams and Weiss’s research, Martinsen-Burrell and Weiss [83]

broke down turbulent flows into vortex cores, strain cells and vortex filaments. They

found that both two-dimensional and three-dimensional quasi-geostrophic turbu-

lence indicated inverse cascades, whilst the vortex cores showed much steeper spec-

tra indicating that the cores slow down the inverse cascade. A significant difference

between the three-dimensional QG and the two-dimensional results was the back-

ground component of the three-dimensional QG flow contained many more vortex

filaments than the two-dimensional flow. These filaments contain a greater amount

of enstrophy and dominates the flow with a Gaussian probability density function

(PDF) for the velocity. This Gaussian PDF is relevant for parameterising turbulent

diffusion. It is noted, however, that physical measurements indicate non-Gaussian

velocity fields which may be due to forcing from solar-driven advection and bound-

ary forcing.

These earlier attempts to explain geostrophic turbulence in terms of two-dimensional

dynamics with vortex merging and an inverse energy cascade provide useful insight

into the similarities between the atmosphere and two-dimensional fluids. However,

this cannot provide an explanation [76] for geostrophic turbulence since the atmo-

sphere is clearly not two-dimensional. Whilst the atmosphere is strongly stratified,
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vertical dynamics play an important role [59, 82] and there is strong evidence for a

forward energy cascade [31, 77, 79].

1.3 Stratification and Geostrophic Turbulence

As seen in Figures 1.2 and 1.3, the atmosphere is stratified. This stratification can

exhibit layering with two-dimensional effects and large horizontal structures which

rules out isotropic three-dimensional turbulence as an explanation for the k−5/3 in-

ertial range. Geostrophic turbulence is a prominent research area as a result of this

lack of understanding of the mechanics underlying the inertial range.

Work by Billant, Chomaz and Augier (2000-2012), [6, 7, 21, 22, 23, 24, 25, 26, 43]

followed the idea that an instability could be responsible for the layering in strongly

stratified fluids proposed by Herring and Métais (1989) [55, 92]. They arranged an

experiment in a water tank and created two antiparallel vertical vortices using a dou-

ble flap mechanism and tracked the vortices using dyes. They observed an instability

distinct from the Crow (reconnection of vortex pairs) and short-wavelength insta-

bilities known to appear in homogeneous fluids. The vortices formed a zigzag shape

when viewed from the side, hence giving the instability its name. This instability

is antisymmetric with respect to the plane separating the vortices and eventually

the vortex pair is sliced into thin horizontal layers of independent pancake dipoles.

These pancake like structures have been observed in laboratory experiments, nu-

merical simulations and oceanic measurements and is known to enhance the energy

dissipation through the vertical shear [23]. This has been proposed as an explana-

tion for the significant difference between stratified turbulence and two-dimensional

turbulence despite the majority of motion being horizontal [55]. Vertical motion

is largely inhibited by stratification and leaves internal gravity waves and vertical

vortices as the two main forms of vertical motion.

A recreation of the Billant and Chomaz’s numerical experiments was done by Robert

Kerr et al. [66]. A pair of counter-rotating vertical vortices with propagation

aligned with the x-direction were perturbed. There were strong temperature gra-

dients around the zigzag corners generated by the overturning of different densities

(Figure 1.11). These strong temperature gradients instigate baroclinic enstrophy

production which generates vorticity hence large horizontal velocities. It is pro-

posed that baroclinic production of vorticity in two-dimensions is analogous to the
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vortex stretching mechanism that generates turbulence.

(a) (b) (c)

Figure 1.11: Zigzag instability formation. (a) Vortex pair shortly after initial per-
turbation. (b) Formation of zigzag instability. (c) Enstrophy production is strong
in the corners of the instability. Images produced from calculation by Robert Kerr.

Brethouwer, Billant, Lindborg and Chomaz (2006) [31] performed scaling analysis

and direct numerical simulations to provide evidence for a k−5/3 regime in strongly

stratified turbulent flows, that is for large Reynolds numbers Re � 1 and small

Froude number Fh � 1. The Reynolds number UL/ν and Froude number U/NL

(for typical velocity U , length L, viscosity ν and Brunt-Väisälä frequency N) were

varied over a significant range to observe their influence on turbulence, length scales,

energy spectra and instabilities. The aim was to contribute to a better understand-

ing of the dynamics of strongly stratified flows, so that laboratory and numerical

experiments may be more precisely designed to resemble geophysical flows.

The analysis reveals that two different regimes occur determined by the parame-

ter R = ReFh, which is the ratio of vertical advection and diffusion terms. The

strongly stratified turbulence regime is when R � 1. This led to the hypothesis of

three-dimensional turbulence in strongly stratified flows with an anisotropic forward

energy cascade. Scaling arguments [31, 77] suggest that the horizontal kinetic and

potential energy spectra of stratified turbulence follow the Kolmogorov regimes [40],

EK(k) = C1ε
2
3k−

5
3 , EP (k) = C2εP ε

− 1
3k−

5
3 (1.6)

for horizontal wavenumbers k and εP is the potential energy dissipation. It is also

suggested that the vertical energy spectra have the form

EK(kv) ∼ EP (kv) ∼ Nk−3
v (1.7)
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for vertical wavenumbers kv. The R � 1 regime is less relevant to geophysical flows

and large-scale dynamics are determined by a balance between inertial and viscous

forces due to vertical shearing. Therefore, dissipation occurs mainly at large scales

and no inertial cascade can develop.

Brethouwer’s work concludes that R > 1 is required for a clear transfer of kinetic

and potential energy from large to small scales and emergence of an inertial range

with a k−5/3 regime. It also states that numerical simulation of strongly strati-

fied turbulence with a clear inertial subrange is important to study further, but

achieving R � 1 and Fh � 1 at the same time is difficult with current computer

resources. Whilst the upper ocean and middle atmosphere (10−100 km above sea

level) fall into the category of strongly stratified flows, it is not always the case for

the troposphere (below 10 km).

1.4 Frontogenesis

A horizontally homogeneous stratified mechanism, as described in the previous sec-

tion, is one possible mechanism for generating k−5/3 at small scales that is viable

in the stratosphere. However, this doesn’t appear to be the case in the troposphere

as vertical motions play a crucial role. There is still strong evidence for a k−5/3 law

throughout the atmospheric boundary layer [95, 117], but not strong in terms of a

horizontally homogeneous interpretation. Other possible mechanisms include effects

of the ocean on the atmosphere, sea surface temperatures and frontogenesis.

Figure 1.12: Illustration of the structures of cold (left) and warm (right) weather
fronts. [Figure in [82], © 2013. Reprinted by permission of Pearson Education, Inc.,
New York, New York.]

Atmospheric fronts are regions of sharp temperature gradients that form boundaries

between cold and warm air masses and are a prominent feature in weather forecasts.

Cushman-Roisin and Beckers [39] provides a useful introduction to frontogenesis,
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which is summarised in what follows. Cold fronts, depicted in weather charts as

spiked lines, occur when a colder air mass overtakes a warmer air mass, therefore

causing a temperature drop as it passes. Similarly, a warm front, depicted in weather

charts as lines with semicircles, occurs when warm air overtakes a cold air mass,

causing a temperature rise as is passes. The term front was coined by Vilhelm

Bjerknes who initiated the study of fronts during World War I and related the

meeting of air masses to the clash of military lines at a front. Fronts take around a

day to form, which is a relatively fast process on atmospheric scales, suggesting that

local heating is unimportant in the process and temperature changes are caused by

advection. A simple example demonstrating how this can be achieved by advection

is the horizontal velocity field

u = αx, v = −αy, (1.8)

with α denoting a deformation rate. It is assumed that vertical velocity is zero

over a flat surface. Now, suppose that this velocity field advects a temperature

gradient that varies in the y-direction. Neglecting non-conservative processes gives

the following equation for temperature θ,

dθ

dt
=
∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
= 0. (1.9)

Differentiating this with respect to x gives

d

dt

(
∂θ

∂x

)
= −α∂θ

∂x
. (1.10)

Since the temperature gradient in the x-direction is initially zero it must remain

zero. Therefore, the temperature gradient may change in intensity but not in direc-

tion. Differentiating with respect to y shows that the magnitude of the temperature

gradient increases exponentially with time,

∂θ

∂y
=
∂θ

∂y

∣∣∣∣
t=0

eαt. (1.11)

The evolution of an air parcel’s y position is given by

dy

dt
= v = −αy =⇒ y = y0e

−αt. (1.12)

Therefore, all fluid parcels are converging toward y = 0 and the temperature gra-

dient is increased by the advecting process. The intensifying temperature gradient
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will produce a stronger thermal wind which changes the advecting wind velocity to

accelerate the frontogenesis process and can produce an infinite temperature gradi-

ent in finite time. Cushman-Roisin and Beckers then notes that with accelerating

dynamics and shorter length scales, a geostrophic approximation becomes invalid.

Since fronts have sharp variations across the front and weak variations along the

front, geostropy can be retained in one direction. This leads to a semi-geostrophic

model used in [36, 38, 58, 61].

Cushman-Roisin and Beckers [39] continues to analyse frontogenesis under a semi-

geostrophic model which predicts discontinuities at the top and bottom rigid bound-

aries. These discontinuities represent a frontal collapse and the solution becomes

multi-valued after this point with the discontinuities propagating into the interior

of the fluid. This model loses physical relevance at this point; in reality, dissipation

keeps the temperature single valued and finite.

Frontogenesis drives the formation of weather systems in the atmosphere and can

be modelled by modern numerical codes that simulate the full fluid equations. The

aim is to generate frontogenesis as an alternative mechanism for a downscale energy

cascade from a simple model. Frontogenesis has been observed in the three-layer

quasi-geostrophic model of McWilliams and Chow (1981) [87]. This is the well-

known two-layer model plus drag on the surface layer and a shear from the upper

layer. The shear represents the thermal wind generated by a north-south temper-

ature gradient. A jet developed in the centre and the jet became baroclinically

unstable as in the atmosphere. Fronts and convective cells appeared naturally.

Therefore, some signs of frontal formation can appear in a three-layer model with

surface drag and an Eady model with an imposed thermal wind, that is a vertical

shear that balances a temperature gradient. The goal of this project is to apply one

of the latest numerical methods for accurate continuum simulations, discontinuous

Galerkin methods, to this three-dimensional problem. The quasi-geostrophic equa-

tions, with forcing F and diffusion D, are written as [86]

∂q

∂t
+ J(ψ, q) = F +D, (1.13)

where the potential vorticity is

q = ∆ψ +
∂

∂z

(
f2

0

N2

∂ψ

∂z

)
+ βy, (1.14)
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for Coriolis frequency f0 (see Section 2.2), streamfunction ψ and

J(ψ, q) = −∂ψ
∂y

∂q

∂x
+
∂ψ

∂x

∂q

∂y
= (ug · ∇)q. (1.15)

Figure 1.13: Instantaneous patterns from McWilliams channel simulation of tem-
perature (top) and vertical velocity (bottom) at the fluid layer interfaces depicting
an unstable jet. [Figure in [87]. © American Meteorological Society. Used with
permission.]

The work in [87] provides a basis for the research in quasi-geostrophic frontogenesis

presented in this thesis. In the 1981 paper, a numerical solution is calculated via

second order finite difference methods. A jet stream forms much like in the Earth’s

atmosphere and front formations are observed. Further analysis within the paper

shows that the kinetic energy spectrum displays a k−3 inertial range. McWilliams

uses a layered model and not full three-dimensional equations. The results are also

limited by the computational power available in the 1970’s/80’s. Similar results are

found in [56, 89] with finer resolution studies displaying spectra slopes shallower

than k−3 [93, 111].

There are many mechanisms involved in the formation of fronts, one of the most

important being a horizontal deformation field acting upon a temperature gradient

[61, 112, 128, 129, 130]. A deformation field with an axis of contraction perpen-

dicular to a temperature gradient intensifies the gradient. Frontogenesis using the
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primitive equations, Boussinesq equations and quasi-geostrophic equations has been

achieved analytically [19, 61, 112, 130] and numerically [87, 128, 129].

Stone [112] presents an analytical solution for front formation within a horizontal

wind deformation field acting on a horizontal temperature gradient using the Boussi-

nesq equations to derive a quasi-geostrophic model. Stone credits Bergeron [19] for

first proposing that atmospheric frontogenesis is caused by this configuration, this

was met with criticism suggesting that such deformation fields do not persist for long

enough to generate fronts. This criticism fails to account for the wide variations in

the strength and duration of atmospheric deformation fields and it can be expected

that some are capable of producing fronts, Stone refers to the work of Elliott and

Brown [46] to support this.

Stone uses an initial temperature field with constant vertical and horizontal gradi-

ents. The top and bottom boundary conditions are chosen to be rigid so that vertical

velocity is zero at these boundaries. The zonal direction extends to infinity and the

meridional direction is periodic. The initial deformation field is then set with stream-

function ψ = −x sin(y), resembling an arrangement of low and high pressure cells.

The asymptotic solution was solved analytically with appropriate approximations.

The initial state develops characteristics of an atmospheric front. The solution was

shown to develop regions of strong baroclinicity, large static stability and vertical

circulations, with a steepening of the horizontal temperature gradient within a few

hours, sufficient to account for observed rapid increases in the gradient in atmo-

spheric frontogenesis. Additionally, the solution displays sharper gradients near the

ground and zonal winds increasing with altitude due to the thermal wind relation,

which are features of realistic fronts. Stone concludes that the analytical solution is

in close agreement with observed atmospheric frontogenesis and therefore provides

evidence that horizontal deformation fields are important in the phenomenon.

Williams [128] uses a numerical experiment with the Boussinesq equations to pro-

duce atmospheric frontogenesis, pointing out how the process of producing a front

from initially large-scale motions of around 1000 km creates small-scale motions of

the order of 100 km. It is also argued that the front produced by Stone [112] is not

realistic because the potential vorticity q given in equation (1.14) is conserved by

the quasi-geostrophic equations without forcing or diffusion, therefore an initially

small potential vorticity must remain small.
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The potential vorticity must be large at a true front: the first term in the potential

vorticity equation is the relative vorticity, which will be a large positive value at a

true front. The only way for the second term in (1.14) to become large and negative

is for ∂θ/∂z to become negative, where θ is the potential temperature. This would

contradict the condition for a statically stable atmosphere. Therefore, the potential

vorticity needs to be large at a true front which cannot evolve from an initial state

where q was everywhere small. This implies that the quasi-geostrophic equations

cannot produce a realistic front from large-scale initial conditions. The work by

Stone [112] shows that the quasi-geostrophic equations can produce a pseudo front

from a deformation field. The front does not tilt with height and the vorticity is zero

at the front, which are not in agreement with observations in real atmospheric fronts.

Williams [128] tackles this by including the vertical and divergent parts of the hori-

zontal deformation field in the advecting velocities. A finite difference approximation

is used with an initial small-amplitude sinusoidal disturbance combined with an un-

stable baroclinic current. A horizontal to vertical grid spacing ratio of ∆x/∆z ≈ 50

is used to capture the slope of a cold front. The wavelength of the initial distur-

bance is selected to give the maximum growth rate according to Eady [44]. This

disturbance grows exponentially over time and, once the amplitude is large enough,

becomes distorted by the advecting terms to form a realistic frontal zone. The width

of the frontal zone is limited by the numerical grid resolution and it is concluded

that the width would attain zero in finite time in the absence of numerical errors.

The time scale of frontogenesis in the numerical experiment is less than 24 hours. It

is found that these numerical results are consistent with atmospheric observations

[109]. Williams expresses that a satisfactory analytical solution describing the fron-

togenesis process would be useful.

Williams [130] expands on the quasi-geostrophic solution derived by Stone [112]

in similar work. Williams’ work differs from Stone’s in that the deformation field

extends to infinity and the initial variation in the temperature field is confined to

a zone of finite width. This model is not necessarily more realistic in terms of

atmospheric frontogenesis, but a complete solution is obtained. The model assumes

incompressibility and that the atmosphere is bounded above and below by two

rigid planes at a distance H apart, with the vertical velocity set to zero on these

boundaries. The Coriolis parameter f is assumed to be constant and heating and

friction are neglected. These approximations with the quasi-geostrophic equations

18



are the same in Stone’s work. The deformation field used is

ud =

(
U

L

)
x, vd = −

(
U

L

)
y, (1.16)

where U is a characteristic velocity scale and L a length scale. Note that this

deformation field is similar to the one used by Stone especially near the centre since

sin(x) ≈ x for small x. The initial non-dimensional potential temperature field

disturbance is

θ′(x, y, 0) = −
(

2

π

)
arctan(x). (1.17)

An analytical solution is then derived where the asymptotic temperature field as

t→∞ is given by

θ′(x, y,∞) = −
(

2

π

)
arctan

[
sinh(πx)

cos(πy)

]
, (1.18)

which is the same form as Stone’s approximate solution. It is also shown that if the

initial temperature field θ = θs(z) + θ′ satisfies the following conditions,

∂

∂z
θ′(x, y, 0) = 0

θ′(x, y, 0) = −θ′(−x, y, 0) (1.19)

θ(∞, y, 0)− θ(−∞, y, 0) = −2,

then the final solution as t→∞ will be independent of the initial state. A necessary

condition for frontogenesis to occur is that the initial disturbance is of a scale larger

than the Rossby radius of deformation

Lf =
H

f

(
g

θ0

∂θs
∂z

) 1
2

=
HN

f
(1.20)

where N is the Brunt-Väisälä frequency. For an initial disturbance with scale smaller

than Lf , then frontolysis (weakening of the front) is expected to occur, except near

the boundaries. As can be seen in Stone’s work, the front is stronger near the top

and bottom boundaries. Williams points out that, despite the restrictions, Stone’s

solution is very general. Williams claims that the production of a discontinuity

requires the transfer of energy to small scales. Charney [34] shows that the quasi-

geostrophic equations do not exhibit an energy cascade if the temperature is constant

on each of the boundaries. This does not apply in Williams’ work because the initial

temperature field is not constant on the boundaries and the front forms. Williams
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comments on the unrealistic nature of the front; the frontal zone does not tilt with

height, and the vorticity at the front is zero. In contrast, realistic fronts have maxi-

mum vorticity at the frontal zone. It is also pointed out that the quasi-geostrophic

equations cannot describe the entire frontogenesis process since as the frontal scale

becomes small the local Rossby number will become large and the quasi-geostrophic

approximation breaks down.

As mentioned, Charney [34] showed how the quasi-geostrophic equations require a

surface temperature gradient for an energy cascade to occur and produce fronts,

which is consistent with real world atmospheric fronts. This is due to a bound-

ary term in the energy integral that evaluates to zero if the surface temperature is

constant, this then violates energy conservation if a discontinuity were to appear.

Charney also points out that the frontal motions in a quasi-geostrophic model can-

not remain quasi-geostrophic because of the large velocity gradients and high Rossby

numbers (QGE assume a small Rossby number).

Hoskins and Bretherton [61] also studied the geostrophic balance approximation

across a front. They introduce several mechanism believed to be important in the

formation of atmospheric fronts: (i) a horizontal deformation field, stretching in one

horizontal dimension balanced by contraction in another, (ii) a horizontal shear-

ing motion, (iii) a vertical deformation field balanced by vertical displacements,

(iv) differential vertical motion, (v) latent heat release, (vi) surface friction, (vii)

turbulence and mixing, and (viii) radiation. Their research confirms the time devel-

opment of a horizontal deformation field acting upon a temperature gradient forms

a vertical front in the quasi-geostrophic model. They claim that mechanisms (i)

and (ii) are synoptic quasi-geostrophic scale motions whereas (iii) and (iv) are dom-

inant on smaller frontal scales. Their research aims to show how the ageostrophic

effects and true front formation arise as a response to the increasing temperature

gradient. Hoskins and Bretherton refer to work by Edelmann [45] which used a

five-layer model with a linear zonal thermal wind from the west with a maximum

in the middle of the channel. In Edelmann’s model, a small amplitude wave distur-

bance was imposed on this basic state which grew into a strong cyclone anticyclone

system. This occurred regardless of whether surface friction or latent heat release

was present, implying they are not essential for frontogenesis.

Hoskins and Bretherton [61] show that in an inviscid, adiabatic system, disconti-

nuities in velocity and temperature can occur only at a boundary. This suggests
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that frontogenesis will occur either at the surface (surface fronts) or at discon-

tinuities in potential vorticity (upper tropospheric fronts). It is shown that the

quasi-geostrophic equations describe an intensification of the temperature gradients

and an increase in relative vorticity until the scaling assumptions required by the

QGE breakdown. When the relative vorticity is no longer small compared to the

Coriolis parameter, the ageostrophic motions become important and produce tilt of

the front and motions up this slope. The vertical deformation field soon dominates

and discontinuities tend to form at rigid boundaries in a finite time. Hoskins and

Bretherton conclude that sharp surface fronts will form whenever quasi-geostrophic

theory predicts a band of relative vorticity at the Earth’s surface of magnitude

comparable to the Coriolis parameter. Furthermore, the Boussinesq and rigid lid

approximations are found to have little effect on the frontogenesis results.

Cullen and Purser [38] expands on the semi-geostrophic model used by Hoskins

and Bretherton [61]. A finite difference approximation is used and takes the solu-

tion beyond the formation of a discontinuity where the front is found to propagate

from the boundary to the fluid interior. Chynoweth and Sewell [36] also studied

semi-geostrophic frontogenesis using Legendre transformations relating dual sets of

variables and models fronts as a half-line of gradient discontinuity on a continuous

convex surface, obtained as the self-intersection on a swallowtail surface. Convexifi-

cation is used to remove non-physical multivaluedness. Chynoweth obtains a front

which becomes steeper as it nears the ground. Holt [58] extended a Lagrangian

model to study moist frontogenesis forced by a deformation flow. Holt found that

adding cooling to the model to mimic evapouration effects had a significant effect

on the overall evolution of the moist front. Whilst a semi-geostrophic model may

increase accuracy in a simplified frontogenesis model, this accuracy would be lost

in a more complex channel model where all fronts are not necessarily aligned with

one axis. Therefore the quasi-geostrophic model is used for the research is this thesis.

Hoskins [60] points out that when upper atmospheric data became available in the

1950’s, it could be seen that strong frontal regions occurred in the upper tropo-

sphere as well as near the surface of the Earth. Hoskins claims that experimental

and observational data indicates that latent-heat release and other diabatic heating

are not crucial to the frontogenesis process. Whilst a rigorous definition of a front is

difficult to attain, Hoskins defines a front as a region whose length scale is compa-

rable with the radius of deformation (NH/f) in one direction but much less in the

cross direction. In this cross direction there are significant changes in buoyancy and
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velocity with gradients tending to become very large in a finite time. The rotation

of the fluid is crucial to the existence of the front.

Hoskins highlights two simple cases in which frontogenesis could occur. The first

considered by Bergeron [19] is a simple deformation field u = −αx, v = αy. The

second is a shear flow perpendicular to the temperature gradient investigated by

Williams [128]. Hoskins concludes that quasi-geostrophic theory correctly suggests

the formation of strong surface fronts with positive vorticity on the warm side of the

front and that the front slopes in the vertical with warm air rising above the sloping

cold region. Hoskins also highlights the role of the boundaries above and below the

fluid; in the free atmosphere the ageostrophic circulation inhibits the formation of

large gradients. However, quasi-geostrophic theory does not suggest the formation

of frontal discontinuities in finite time, only exponential growth of gradients. More

realistic models can be obtained by including the cross-front ageostrophic velocity

producing the semi-geostrophic equations, or using the full primitive equations.

Therefore, it is certain that fronts can be produced using the quasi-geostrophic

equations, even if they do not fully represent real atmospheric fronts. The quasi-

geostrophic model will provide an indication of where frontogenesis will occur. The

gap in research that this thesis will fill lies in a lack of numerical simulation of

frontal dynamics using a finite element discretisation of the three-dimensional quasi-

geostrophic equations with free-slip boundaries.

1.5 Finite Element Methods

The creation of finite element methods (FEM) has been attributed to the efforts

of several groups and individuals that have contributed to the development of the

modern method known as finite elements. A brief history of the method and an

analysis of the contributors can be found in [54]. The development of FEM is often

attributed to Courant, Argyris, Turner et al., Clough and Zienkiewicz. Clough gave

the name finite element methods to the ideas and credited Turner for leading the

development of the method in response to the need for solving complex engineering

problems. Turner et al. [118] introduces triangular elements, derives the stiffness

matrix and addresses convergence.

The idea behind FEM is to split the domain of a problem into a set of smaller
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problems, or finite elements. The problem is then represented by a combination of

equations on each element so that the global system can be solved. This is achieved

using a form of Galerkin methods, where the problem is written into a weak for-

mulation and approximation with basis functions. These elements can take many

shapes, the most common of which are triangles and squares. This domain dis-

cretisation allows for meshes that represent very complex domains that may even

change over time. This makes the finite element method useful for a wide range of

applications across engineering and physics. The mesh flexibility of finite element

methods is attractive for geophysical fluid flows, compared to the restrictive grids

of finite difference and spectral methods.

However, these continuous Galerkin methods can perform poorly when attempting

to simulate problems where the solution has sharp gradients or discontinuities. Such

problems include shock waves, boundary layers and strong advection. This is where

the discontinuous Galerkin finite element method is useful as it allows the solution

to be discontinuous between elements. As the quasi-geostrophic model studied in

this thesis is advection dominated and fronts contain sharp gradients by definition,

a discontinuous approach seems prudent. The success of DG methods in this regard

highlights them as a possible future solver for frontogenesis and atmospheric models.

Penalty terms are used to penalise discontinuities and enforce boundary conditions.

Arnold et al. provides a unified analysis of the DG method for elliptic problems

in [4]. The use of penalty methods for enforcing Dirichlet boundary conditions can

be traced back to Lions (1968) [80] where elliptic problems with rough boundary

data were considered. This approach was also used by Aubin (1970) [5] for finite

difference approximations where he showed that the approximation converges to the

analytical solution if the penalty parameter goes to infinity as the grid spacing goes

to zero. In 1973, the penalty approach was used in the finite element method by

Babuška [11] to weakly enforce zero Dirichlet boundary conditions. Convergence was

not optimal because the weak formulation was inconsistent with the true solution

to the strong problem. Nitsche [96] successfully implemented the penalty method

with finite elements by including the boundary term produced by integration by

parts in the weak formulation accompanied by another term to ensure symmetry of

the discrete problem. Furthermore, Nitsche proved optimal order convergence if the

penalty parameter scales with 1/h where h is the element size. It was soon realised

that the continuity of the solution could be weakly enforced in the same way as

Dirichlet boundary conditions with penalty terms [12].

23



One of the few papers that implement a finite element method for the quasi-

geostrophic equations is by Erich Foster et al. [50, 51]. In his research he uses

conforming finite elements to discretise the streamfunction formulation of the equa-

tions, requiring very complex elements. Foster describes the advantages of finite

element methods, including natural treatment of boundaries and local grid adap-

tivity. It also mentions that there are very few instances of the numerical method

being applied to the quasi-geostrophic equations. A streamfunction formulation of

the equations is used yielding a fourth order partial differential equation, hence re-

quiring the use of a high order C1 element. Numerical tests are also done to verify

the method and are found to be close to existing published results. A Mediterranean

Sea mesh is also used to test the method on a complex domain (Figure 1.14). Results

on this mesh had lower convergence rates than the theoretical results dictate which

they attribute to the sharp corners of the domain. Foster concludes that the method

met theoretical expectations, however, encouraged the use of non-conforming lower

order finite element methods or other numerical techniques (finite difference, finite

volume or spectral). This is probably due to the high computational cost that the

method demanded.

Figure 1.14: Streamfunction on a Mediterranean Sea mesh. [Reprinted from [51]
with permission from Elsevier.]

Foster shows that a conforming method, whilst valid, is not the best approach.

Although, it does confirm that finite element methods can be applied to quasi-

geostrophic equations. Foster also takes on the task of dealing with the streamfunc-

tion formulation of the equations, something others seem to have avoided due to the

high order partial differential equation (PDE) that it involves.

A paper by Bernsen et al. [20] constructs a mixed continuous and discontinuous

Galerkin finite element discretization for a generalized vorticity streamfunction for-

mulation in two spatial dimensions. This formulation consists of a hyperbolic (po-

tential) vorticity equation and a linear elliptic equation for a transport streamfunc-
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tion. This generalized formulation applies to three important systems in geophysical

fluid dynamics; the incompressible Euler equations, the barotropic (where density

depends only on pressure) quasi-geostrophic equations and the rigid-lid equations.

Bernsen et al. considers multiple connected domains and shows energy is conserved

in the system.

The equations in Bernsen’s research are inviscid with potential vorticity ξ = ξ(x, y, t)

and streamfunction ψ = ψ(x, y, t) in a bounded domain Ω ⊂ R2.

∂tξ/A+∇ · (ξ−→U ) = 0, (1.21a)
−→
U = ∇⊥ψ, (1.21b)

∇ · (A∇ψ)−Bψ +D = ξ/A, (1.21c)

where the two-dimensional curl operator is given by ∇⊥ = [−∂y, ∂x]T .

Choose the coefficients A = 1, B = f2
0 /(gH), D = βy with Coriolis parameter

f0 = 2Ωe sin(ϕ0) and β = 2Ωe cos(ϕ0)/a, where a is Earth’s radius, ϕ0 a typical

value of the latitude and Ωe Earth’s rotation speed. Doing this reduces the general

equations (1.21) to the quasi-geostrophic equations in two dimensions.

Another alternative approach to discretising the QGE is using a full discontinuous

Galerkin method for the potential vorticity and streamfunction, then recreating the

velocity and potential vorticity from the streamfunction using a Raviart-Thomas

projection to recover divergence properties. The accuracy of the Raviart-Thomas

projection is proven by Alexandre Ern [47], but, Alexandre’s work applies the tech-

nique to a stationary problem. This approach was explored (Section B.2), however,

results appeared to show this method to be insufficient as the reconstruction did not

behave well once fed back into the equations and the numerical solution deteriorated

over time. The method presented in Bernsen et al. [20] avoids this problem with

the matched continuous/discontinuous method where the velocity is single valued

at element boundaries due to the fact that the streamfunction is continuous. This

method can be extended into three dimensions since the advecting velocity remains

the same as (1.21b). Bernsen et al. does not consider viscous diffusion terms or full

three-dimensionality.

Bernsen et al. considers treatment of free-slip boundary conditions on multiple
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connected domains, important in geophysical and meteorological applications. The

free-slip condition
−→
U · n = 0, for outward unit normal n to the boundary, requires

the streamfunction to take unknown values on the boundary that can depend on

time. Although, the streamfunction boundary values were prescribed using exact

solutions during numerical testing.

Energy conservation of the discretisation was shown for a θ−method time discreti-

sation, with energy fully conserved for θ = 1/2. Despite this, the implicit method

would require solving the full system in a large system matrix somehow treating the

continuous and discontinuous parts appropriately. This could be the reason that

numerical tests were performed using an explicit timestepping method, where ten-

dency towards energy conservation was shown numerically.

Bernsen et al. derived error estimates, claiming convergence of order O(hp) for grid

spacing h and pth order basis functions. Regardless, numerical experiments tended

to converge with an order higher than this. The test used for the quasi-geostrophic

case is a travelling wave solution which serves as a useful numerical convergence test

for the method presented in this thesis.

Figure 1.15: (a) Potential vorticity and (b) Streamfunction at t = 12π for travellinig
wave. [Reprinted from [20] with permission from Elsevier.]

Bernsen et al. [20] highlights a viable finite element method for the two-dimensional

quasi-geostrophic equations. This provides an alternative in the geophysical field as

traditionally fluid dynamics codes run on spectral methods which are awkward when

dealing with topographic boundaries. Bernsen’s research is important in highlight-

ing that fluid dynamics simulations can be done with the flexible and powerful finite

element methods that are becoming more popular within atmospheric simulations.
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It is apparent that some work has gone towards implementing a finite element dis-

cretisation of the quasi-geostrophic equations, in particular for the two-dimensional

case. However, there appears to be no work on a finite element method for the

full three-dimensional quasi-geostrophic equations with complete free-slip boundary

treatment. The main objective of this thesis is to develop such a scheme to fill

this research gap and test it numerically whilst using the method to provide some

investigation into weather front formation.

1.6 Thesis Outline

This thesis aims to develop a fully three-dimensional quasi-geostrophic code us-

ing finite element and finite difference methods. Previous numerical QGE codes

have been restricted to two-dimensions with zero or approximate diffusive terms

[20, 50, 51, 63] or two/three layer models [56, 87, 89]. This thesis extends this to

a fully three-dimensional implementation with diffusive terms that are consistent

with the model and generalised free-slip boundary conditions. The purpose of this

new numerical method is to allow for the role of frontogenesis to be studied using

a quasi-geostrophic model that is less computationally intensive than the primitive

equations. This model is then used to investigate the bend up of fronts in a me-

andering jet as a possible mechanism underlying the k−5/3 kinetic energy regime

observed in the atmosphere.

A literature review in the introduction of this thesis outlines the current research

that exists within this area as well as the progression of the finite element numeri-

cal techniques that will be used. This thesis begins by discussing the equations and

assumptions involved in atmospheric modelling in Chapter 2 and deriving the three-

dimensional quasi-geostrophic equations including diffusion and forcing terms which

are seldom included in the literature [39, 99]. Energy equations for the QGE are also

derived. The QGE are then prepared for discretisation by non-dimensionalisation of

the equations, followed by a derivation of the top and bottom temperature equations

required to satisfy vertical boundary conditions and formulation of the expressions

used to calculate the streamfunction boundary values at the north and south walls.

The mathematical framework needed to formulate finite element methods is pro-

vided in Chapter 3. In Chapter 4, a combination of finite element methods in the

horizontal directions and finite difference methods in the vertical are used to de-
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velop a discretisation of the quasi-geostrophic equations. Numerical tests are done

in Chapter 5 to verify the method converges and exhibits expected vortex dynamics.

Chapter 6 presents a discussion of the frontogenesis results produced by a turbulent

jet channel model with a conclusion in Chapter 7.
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Chapter 2

Atmospheric Equations

The equations of motion for a fluid are discussed and the quasi-geostrophic model

is derived and non-dimensionalised. The difficulty in dealing with the boundary

conditions in the three-dimensional quasi-geostrophic model is also explicitly treated

which has not been widely studied for a continuous model in literature [51, 56, 84].

Boundary conditions are usually only treated for a three-layer model or simplified

to assume that the streamfunction is zero on the boundary.

2.1 Equations of Motion

A fluid continuum is usually described mathematically using the Navier-Stokes equa-

tions, which were derived by Navier, Poisson, Saint-Venant and Stokes between 1827

and 1845 [1]. These equations in a rotating frame of reference provide the basis

for atmospheric models. However, further equations are needed to described the

movement of energy and water vapour in the atmosphere as these can change the

properties of the atmosphere. For efficient numerical simulation of an atmospheric

model, certain approximations can be made to produce the Primitive Equations. To

study the key dynamics of the atmosphere, one can strip the equations down even

further resulting in the quasi-geostrophic equations. The background information

provided here can be found in Cushman-Roisin and Beckers [39] and McWilliams

[86].

2.1.1 Navier-Stokes Equations

At the heart of any fluid flow, the equations that govern the flow are the Navier-

Stokes equations [1, 39]. For a velocity u = (u, v, w), density ρ, pressure p and
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forcing F = (Fx, Fy, Fz) the Navier-Stokes equations are

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+
∂τxx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
+ ρFx (2.1a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+
∂τyx

∂x
+
∂τyy

∂y
+
∂τyz

∂z
+ ρFy (2.1b)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
− ρg +

∂τxz

∂x
+
∂τyz

∂y
+
∂τ zz

∂z
+ ρFz,

(2.1c)

where the stress tensor

τ =

τ
xx τxy τxz

τyx τyy τyz

τ zx τ zy τ zz

 (2.2)

represents the normal and shear stresses due to friction. The three equations rep-

resent the momentum in the x, y and z directions respectively. For an atmospheric

model, rotation must be introduced to these equations as well as some other gov-

erning equations. For a given latitude ϕ and rotation Ω, the rotation vector of

a three-dimensional rotating planet is Ωe = (0,Ω cosϕ,Ω sinϕ) [39]. The Navier-

Stokes equations in this rotating frame are,

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+ f∗w − fv

)
= −∂p

∂x
+
∂τxx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
+ ρFx

(2.3a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu

)
= −∂p

∂y
+
∂τyx

∂x
+
∂τyy

∂y
+
∂τyz

∂z
+ ρFy (2.3b)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
− f∗u

)
= −∂p

∂z
− ρg +

∂τxz

∂x
+
∂τyz

∂y
+
∂τ zz

∂z
+ ρFz,

(2.3c)

where f = 2Ω sinϕ is the Coriolis parameter and f∗ = 2Ω cosϕ is the reciprocal

Coriolis parameter. The centrifugal force is ignored since the Earth’s slightly ellip-

soidal shape causes the gravitational and centrifugal forces to result in a combined

force that is aligned with the local vertical to the surface. This adjusted gravita-

tional acceleration is what g represents. Note that the variables in these equations

are now as they would be observed in the rotating frame of reference, that is from

the viewpoint of someone standing on the surface of the Earth or a satellite in geo-

stationary orbit. This provides equations for all the velocity components u, v and

w, now equations for the pressure p and density ρ are required. An equation for the

density is provided by conservation of mass. This means that any compressions in
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the fluid must be balanced with an expansion elsewhere in the fluid. The continuity

equation describes this behaviour,

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0. (2.4)

For pressure the equation of state must be considered, which for air is given by,

ρ =
p

RT (1 + 0.608qs)
(2.5)

where R = 287 m2s−2K−1, T is absolute temperature and qs is the specific humidity

defined as the ratio of mass of water vapour to the total mass of air. Note that

for seawater, salinity needs to be considered (see [39]). The introduction of the

variables T and qs requires further equations. One of these is the energy equation

which arises from conservation of energy,

ρCv

[
∂T

∂t
+

(
u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)]
+ p

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= kT∆T +Ht. (2.6)

Here Cv = 718 J kg−1K−1 is the heat capacity, kT is thermal conductivity of the

fluid and Ht is external heating. Finally, the equation for specific humidity is

∂qs
∂t

+

(
u
∂qs
∂x

+ v
∂qs
∂y

+ w
∂qs
∂z

)
= kq∆qs, (2.7)

where kq is the specific humidity diffusion coefficient. This equation can be compli-

cated by evapouration and condensation processes.

2.1.2 Boussinesq Approximation

The equations in their current form are quite complex and would be very costly

to simulate numerically. A standard approximation to make in geophysical fluid

dynamics is the Boussinesq Approximation. This approximation is based on the

fact that the density of a geophysical fluid does not vary greatly from a mean value

[39]. Therefore density can be expressed as

ρ = ρ0 + ρ′(x, y, z, t) (2.8)
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where |ρ′| � ρ0. Inserting this into the continuity equation (2.4) and ignoring terms

of order ρ′,
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (2.9)

For the x and y momentum equations (2.3a) and (2.3b), any term multiplied by ρ is

dominated by ρ0 and terms multiplied by density variations can be ignored. With

the assumption of a Newtonian fluid the stress tensor is defined as

τxx = µ

(
∂u

∂x
+
∂u

∂x

)
, τxy = µ

(
∂u

∂y
+
∂v

∂x

)
, τxz = µ

(
∂u

∂z
+
∂w

∂x

)
τyy = µ

(
∂v

∂y
+
∂v

∂y

)
, τyz = µ

(
∂v

∂z
+
∂w

∂y

)
, τ zz = µ

(
∂w

∂z
+
∂w

∂z

)
(2.10)

where µ is the coefficient of dynamic viscosity. Dividing the x and y momentum

equations by ρ0 and setting the kinematic viscosity ν = µ/ρ0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+ f∗w − fv = − 1

ρ0

∂p

∂x
+ ν∆u+ Fx (2.11)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = − 1

ρ0

∂p

∂y
+ ν∆v + Fy. (2.12)

Now the z momentum equation (2.3c) requires treatment of the gravity term ρg.

To do this define the hydrostatic pressure p0 which varies only in z so that for some

reference pressure P0

p = p0(z) + p′(x, y, z, t) where p0(z) = P0 − ρ0gz. (2.13)

This gives
dp0

dz
= −ρ0g, (2.14)

then the z momentum equation becomes

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
− f∗u = − 1

ρ0

∂p′

∂z
− ρ′g

ρ0
+ ν∆w + Fz. (2.15)

The ρ′g term is important for buoyancy force in the equations, therefore ignoring

it would result in a bad geophysical model. Finally, the energy equation (2.6) and

specific humidity equation (2.7) can be linearised, then with the assumption that

heat and water vapour diffuse at the same rate they can be combined into the

equation
∂ρ′

∂t
+ u

∂ρ′

∂x
+ v

∂ρ′

∂y
+ w

∂ρ′

∂z
= κ∆ρ′ +Ht. (2.16)
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Since the variables ρ and p do not appear explicitly in the equations, the prime

notation on the variations ρ′ and p′ will be dropped from now on.

2.1.3 Eddy Coefficients

Geophysical flows are typically very turbulent. Since turbulence can manifest at

many different scales, it requires very refined computational grids to sufficiently re-

solve a turbulent flow. This can be extremely computationally expensive, therefore,

further modelling is required to be able to incorporate the effects of subgrid-scale

turbulence into the simulation. The statistical average of a flow is described by the

Reynolds-averaged equations. These equations are achieved by defining, for each

variable u, v, w, p and ρ, the mean 〈u〉 and fluctuation u′ such that

u = 〈u〉+ u′. (2.17)

Definition 2.1. The time average 〈u〉 of a variable u is given by

〈u〉 =
1

T

ˆ t0+T

t0

u dt, (2.18)

for some time t0 and time scale T that is long enough to average the turbulent

motions but short enough to retain the slow evolutions of the flow. The fluctuation

u′ is such that 〈u′〉 = 0.

To obtain a true time average take the limit as T → ∞, but this would result in a

stationary solution. Note that, by basic properties of a converging sequence, there

will exist some time scale T such that integration from t0 to T will be arbitrarily

close to the true time average. Therefore, it is possible to numerically calculate such

averages with a small error. Averaging over time on the governing equations and

using the following property results in equations for the average fluid flow.

Proposition 2.2. The time average of a product of two variables u and v is

〈uv〉 = 〈u〉〈v〉+ 〈u′v′〉. (2.19)
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Proof. Using the definition of time averages,

〈uv〉 =

ˆ t0+T

t0

uv dt =

ˆ t0+T

t0

(〈u〉+ u′)(〈v〉+ v′) dt

=

ˆ t0+T

t0

〈u〉〈v〉+ 〈u〉v′ + 〈v〉u′ + u′v′ dt (2.20)

=

ˆ t0+T

t0

〈u〉〈v〉+ u′v′ dt+ 〈u〉
��

�
��
�*0ˆ t0+T

t0

v′ dt+ 〈v〉
��

�
��
�*0ˆ t0+T

t0

u′ dt

= 〈u〉〈v〉+ 〈u′v′〉,

where the last two terms vanish by the definition of fluctuations. Assuming that

the limits as T →∞ exist (which is true of a fluid velocities, pressures and densities

due to the bounded nature of a fluid system) this result also holds for a true time

average.

Using the continuity equation (2.9) to write the governing equations in conservative

form and averaging over time, the x momentum equation becomes,

∂〈u〉
∂t

+
∂〈uu〉
∂x

+
∂〈vu〉
∂y

+
∂〈wu〉
∂z

+ f∗〈w〉 − f〈v〉 = − 1

ρ0

∂〈p〉
∂x

+ ν∆〈u〉+ 〈Fx〉.

(2.21)

Definition 2.3. Denote the three dimensional coordinate system as (x, y, z) =

(x1, x2, x3). Let u = (u1, u2, u3) be a velocity vector and ρ be some other fluid

quantity. Then the eddy viscosity approximation is

−〈u′iρ′〉 ≈ νe
∂〈ρ〉
∂xi

, (2.22)

for some eddy viscosity coefficient νe.

Now apply Proposition 2.2 to the advection terms,

∂〈uu〉
∂x

+
∂〈vu〉
∂y

+
∂〈wu〉
∂z

=
∂(〈u〉〈u〉)

∂x
+
∂(〈v〉〈u〉)

∂y
+
∂(〈w〉〈u〉)

∂z
(2.23)

+
∂〈u′u′〉
∂x

+
∂〈v′u′〉
∂y

+
∂〈w′u′〉
∂z

and make the standard eddy viscosity approximation for the Reynolds stresses

〈u′u′〉, 〈u′v′〉 and 〈u′w′〉 [86],

−〈u′u′〉 ≈ AH
∂〈u〉
∂x

, −〈v′u′〉 ≈ AH
∂〈u〉
∂y

, −〈w′u′〉 ≈ AV
∂〈u〉
∂z

, (2.24)
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where separate eddy viscosities AH and AV are used for the horizontal and verti-

cal since the horizontal spatial dimensions typically cover a much larger area and

therefore need to model a greater amount of subgrid-scale turbulence. Modelling

turbulence with eddy coefficients which may depend on grid properties and vary in

spatial dimensions is a form of subgrid-scale parameterisation. Performing similar

approximations for the y and z momentum equations,

du

dt
+ f∗w − fv = − 1

ρ0

∂p

∂x
+

∂

∂x

(
AH

∂u

∂x

)
+

∂

∂y

(
AH

∂u

∂y

)
+

∂

∂z

(
AV

∂u

∂z

)
+ Fx

(2.25a)

dv

dt
+ fu = − 1

ρ0

∂p

∂y
+

∂

∂x

(
AH

∂v

∂x

)
+

∂

∂y

(
AH

∂v

∂y

)
+

∂

∂z

(
AV

∂v

∂z

)
+ Fy

(2.25b)

dw

dt
− f∗u = − 1

ρ0

∂p

∂z
− gρ

ρ0
+

∂

∂x

(
AH

∂w

∂x

)
+

∂

∂y

(
AH

∂w

∂y

)
+

∂

∂z

(
AV

∂w

∂z

)
+ Fz (2.25c)

where it is understood that all variables have been replaced with averages, therefore,

the angle bracket notation is omitted. Observe that the viscosity coefficient ν has

been absorbed into the eddy coefficients. The above equations have also used the

material time derivative

du

dt
=
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
. (2.26)

Similarly, for the energy equation use the horizontal eddy viscosity KH and vertical

eddy diffusivity KV . It is acceptable to use KH = AH , however, the coefficients

are differentiated here for reasons that will become apparent when deriving the

quasi-geostrophic equations in Section 2.3. The vertical eddy diffusivity KV is dis-

tinguished from the vertical momentum eddy viscosity AV for reasons discussed in

[39],

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
=

∂

∂x

(
KH

∂ρ

∂x

)
+

∂

∂y

(
KH

∂ρ

∂y

)
+

∂

∂z

(
KV

∂ρ

∂z

)
+Ht.

(2.27)

The continuity equation is unchanged by the decomposition of variables into mean
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and fluctuations. A commonly used horizontal eddy viscosity is given by [39],

AH = ∆x∆y

√(
∂u

∂x

)2

+

(
∂v

∂y

)2

+
1

2

(
∂u

∂y
+
∂v

∂x

)2

. (2.28)

2.1.4 Scales of Motion

In order to simplify the equations further, scales are introduced for each of the vari-

ables involved. For the horizontal lengths x and y assign a scale L with typical

atmospheric values of around 105m. In the vertical z assign H with typical values

much less than horizontal length scales around 103 m. Time t has the scale T with

geophysical values typically 104 s. Also, assign horizontal velocity scales U and V

to variables u and v with typical values of 10 ms−1, and W to the vertical velocity

w. Finally, P and ∆ρ denote the scales of pressure p and density fluctuations ρ

respectively.

Within geophysical fluid dynamics it is assumed that the time scale is greater than

or of the same order of the time scales involved with rotation effects,

T &
1

Ω
(2.29)

and velocity and length scales satisfy

U

L
. Ω. (2.30)

Also, assume that the horizontal area of the domain is much larger than the vertical

direction

H � L. (2.31)

By considering the continuity equation (2.9) one can determine that W/H is less

than or on the order of U/L otherwise ∂w/∂z = 0 and w is constant in the vertical,

therefore,

W .
HU

L
(2.32)

and by (2.31)

W � U, (2.33)

meaning geophysical flows are close to two-dimensional. Now, observing the scales
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of the Coriolis terms in the x−momentum equation (2.25a),

f∗w ∼ ΩW and fv ∼ ΩU. (2.34)

Since W � U , the first of these terms can be neglected.

Due to the importance of rotation in geophysical fluids, assume the pressure gradient

term scales as the Coriolis terms,

P

ρ0L
= ΩU. (2.35)

Furthermore, assume that dissipation processes are smaller than Coriolis forces,

AHU
L2

. ΩU,
AV U
H2

. ΩU, (2.36)

but not small enough to be neglected otherwise the model would lose the effects of

subgrid-scale turbulence. This scaling also applies to the y−momentum equation

(2.25b). The vertical momentum equation (2.25c)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂u

∂z
− f∗u =

− 1

ρ0

∂p

∂z
− gρ

ρ0
+

∂

∂x

(
AH

∂w

∂x

)
+

∂

∂y

(
AH

∂w

∂y

)
+

∂

∂z

(
AV

∂w

∂z

)
+ Fz, (2.37)

can be simplified further by observing the scales of each term,

W

T
,
UW

L
,
UW

L
,
W 2

H
, ΩU,

P

ρ0H
,
g∆ρ

ρ0
,
AHW
L2

,
AHW
L2

,
AVW
L2

, Fz. (2.38)

For the first term W/T . ΩW � ΩU by (2.29) and (2.33). Using (2.30), (2.32) and

(2.33) it can be seen that the advection terms are also much less than ΩU :

UW

L
. ΩW � ΩU and

W 2

H
.
WU

L
. ΩW � ΩU. (2.39)

Therefore, the first four terms are dominated by the Coriolis term and can be ne-

glected. However, the Coriolis term is also small compared to the vertical pressure

gradient since by (2.33) and (2.35)

ΩU ∼ P

ρ0L
� P

ρ0H
. (2.40)
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Finally, assuming that diffusion and external forcing cannot dominate Coriolis terms

AHU
L2

. ΩW � ΩU and
AV U
H2

. ΩW � ΩU, (2.41)

and can therefore be neglected. The most dominant terms in the z−momentum

equation forms the hydrostatic balance

0 = − 1

ρ0

∂p

∂z
− gρ

ρ0
. (2.42)

That is the pressure exerted by the air close to the ground is balanced by the weight

of the air above. The hydrostatic balance approximation holds when H � L as is

generally true in geophysical flows, this does not hold if the horizontal and vertical

length scales become comparable.

2.1.5 Primitive Equations

As previously seen, the Boussinesq approximation assumes that the density of a

fluid ρ does not depart very much from a reference density ρ0, this assumption

means that the variations in density have no effect on the flow except for buoyancy

forces. Applying the Boussinesq and hydrostatic approximations to the Navier-

Stokes equations produces the primitive equations, which are used as the basis of

atmospheric modelling. For a full three-dimensional velocity u = (u, v, w), pressure

p and density ρ the equations are,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv =

− 1

ρ0

∂p

∂x
+

∂

∂x

(
AH

∂u

∂x

)
+

∂

∂y

(
AH

∂u

∂y

)
+

∂

∂z

(
AV

∂u

∂z

)
+ Fx (2.43a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu =

− 1

ρ0

∂p

∂y
+

∂

∂x

(
AH

∂v

∂x

)
+

∂

∂y

(
AH

∂v

∂y

)
+

∂

∂z

(
AV

∂v

∂z

)
+ Fy (2.43b)

0 = −∂p
∂z
− ρg (2.43c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.43d)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
=

∂

∂x

(
KH

∂ρ

∂x

)
+

∂

∂y

(
KH

∂ρ

∂y

)
+

∂

∂z

(
KV

∂ρ

∂z

)
+Ht, (2.43e)
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where ρ0 is a reference density, g is gravitational acceleration, f = 2Ω sinϕ is the

Coriolis parameter (for a latitude ϕ) and AH , AV , KH and KV are eddy viscosity

and diffusivity coefficients. The first three equations govern x, y and z momentum.

The fourth equation is the continuity equation and the fifth is the energy equation.

2.2 Rotation and the Shallow Water Equations

The Earth is a rotating body with a rotation rate 2π radians per day ≈ 0.73 ×
10−4 rad s−1. With the Earth’s atmosphere being thin on a planetary scale, one

can use a Cartesian coordinate frame with rotation about a vertical axis aligned with

the direction of gravity. Whilst small scale motions experience very little influence

from rotation, large scales motions will be affected. However, due to the thinness

of the atmosphere, only the vertical component of Earth’s rotation is significant as

seen in section 2.1.4 (although this isn’t necessarily true close to the equator). For

the Earth’s true rotation vector Ωe = (0,Ω cosϕ,Ω sinϕ) with its direction pointing

outward through the North Pole, consider the local vertical component

Ω = (Ωe · ẑ) = |Ωe| sin(ϕ)ẑ = (0, 0,Ω sinϕ), (2.44)

where ϕ is the latitude and the unit vector in the vertical ẑ = (0, 0, 1). The magni-

tude Ω = |Ω| is positive in the Northern Hemisphere and negative in the Southern

Hemisphere. The Coriolis parameter f = 2Ω sinϕ can be approximated using a

Taylor expansion around a reference latitude ϕ0. Let the meridional coordinate y

be measured from the reference latitude ϕ0 then ϕ = ϕ0 + y/a for Earth’s radius

a ≈ 6.4× 106m [86], where y/a is a small perturbation such that ϕ− ϕ0 � 1. The

Coriolis parameter may then be approximated as

f = 2Ω sinϕ0 + 2Ω cosϕ0(ϕ− ϕ0) + ... = f0 + βy + ... (2.45)

The Coriolis frequency and its gradient are defined as

f0 = 2Ω sinϕ0 and β =
2Ω

a
cosϕ0. (2.46)

In the Northern Hemisphere f0 is positive and in the Southern Hemisphere it is

negative, whilst vanishing at the equator and being the strongest at the poles. The

β parameter is positive everywhere and is largest at the equator. This is known as

the f -plane approximation when the typical length scale L is small and the β term

is dropped, this comes from the visualisation of a plane tangent to the surface of the
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planet at the expansion point. Otherwise, when L/a is not negligible, the β term

is used to approximate the curvature of the Earth and is known as the β-plane ap-

proximation. This approximation means the rotation does not introduce nonlinear

terms into the governing equations, therefore, making them easier to solve. If L/a

is large then this approximation to Ω cannot be justified.

Atmospheric flows usually have very large horizontal length scales compared to the

vertical length scale. For such a thin fluid layer it is reasonable to approximate the

motion with the Shallow-Water Equations (SWE) [39, 86],

∂u⊥
∂t

+ (u⊥ · ∇)u⊥ − f ẑ × u⊥ = −g∇η, (2.47)

∂h

∂t
+∇ · (hu⊥) = 0 (2.48)

with u⊥ = (u, v) the horizontal velocity, f Coriolis frequency, g gravitational accel-

eration, η the surface deviations and h = H + η − B the depth of the fluid. H is

the mean fluid depth and B(x, y) is a bottom topography. These equations can be

derived from the Primitive Equations by assuming no viscosity, no density variation

(ρ = 0) and integrating the continuity equation (2.43d) over the fluid depth.

2.3 Quasi-geostrophic Equations

The Quasi-Geostrophic Equations (QGE) are approximations to the shallow water

equations for small Rossby numbers U/Lf , that is when inertial forces are an or-

der of magnitude smaller than the Coriolis and pressure forces [86]. The flow is

purely geostrophic if the Rossby number is equal to zero. The QGE are a popu-

lar model for large scale atmospheric motions [20, 51, 64, 86, 87]. The QGE are

simplified enough to allow for efficient numerical simulation, whilst still containing

the underlying characteristics of atmospheric or oceanic flows. The assumptions

used in the QGE approximation include the hydrostatic balance, β-plane approxi-

mation, geostrophic balance and the eddy viscosity parameterisation [39, 51]. For

completeness, a derivation of the QGE is presented which can be found in standard

fluid dynamics and atmospheric modelling texts [39, 86]1, a more rigorous deriva-

tion can be found in Pedlosky [99]. Forcing and diffusion terms are included in the

following derivation for this thesis, because they are often neglected in the literature.

The underlying assumptions of the QGE are that the velocities are relatively small,

1The derivation presented here closely follows that in Cushman-Roisin and Beckers [39].
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so that the flow is close to geostrophic (pressure gradient balances with Coriolis

force), and there is a maintained state of stratification. That is the density profile

takes the form

ρ = ρ̄(z) + ρ′(x, y, z, t), (2.49)

where |ρ′| � |ρ̄|. Substituting this along with p = p̄(z) + p′(x, y, z, t) into the

primitive equations (2.43) and using the β-plane,

du

dt
− f0v − βyv = − 1

ρ0

∂p′

∂x
+

∂

∂x

(
AH

∂u

∂x

)
+

∂

∂y

(
AH

∂u

∂y

)
(2.50a)

+
∂

∂z

(
AV

∂u

∂z

)
+ Fx

dv

dt
+ f0u+ βyu = − 1

ρ0

∂p′

∂y
+

∂

∂x

(
AH

∂v

∂x

)
+

∂

∂y

(
AH

∂v

∂y

)
(2.50b)

+
∂

∂z

(
AV

∂v

∂z

)
+ Fy

0 = −∂p
′

∂z
− ρ′g (2.50c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.50d)

∂ρ′

∂t
+ u

∂ρ′

∂x
+ v

∂ρ′

∂y
+ w

∂ρ̄

∂z
=

∂

∂x

(
KH

∂ρ′

∂x

)
+

∂

∂y

(
KH

∂ρ′

∂y

)
+

∂

∂z

(
KV

∂ρ′

∂z

)
+

∂

∂z

(
KV

∂ρ̄

∂z

)
+Ht, (2.50e)

where the w∂ρ′/∂z term has been dropped since it is dominated by w∂ρ̄/∂z. The

KV ∂ρ′/∂z term is retained to avoid losing the subgrid-scale motions that it models.

Only the perturbations of density and pressure appear in the hydrostatic balance

equation (2.50c) since the average stratification and pressure are in hydrostatic bal-

ance (∂p̄/∂z = −ρ̄g).

For the quasi-geostrophic approximation, assume that advective velocities are weak,

making the Rossby number (U/fL) small. Also, assume that the time scale is long

compared to the inertial time scale (2π/f0), so that the acceleration terms are small.

For the β-plane approximation |βy| � f0. With these assumptions the dominant

terms in the momentum equations are in geostrophic equilibrium,

−f0v = − 1

ρ0

∂ρ′

∂x
(2.51a)

f0u = − 1

ρ0

∂ρ′

∂y
. (2.51b)
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A system in complete geostrophic balance has no vertical velocity and does not vary

in time. Therefore, to deviate from this basic state, consider a non-geostrophic (or

ageostrophic) component of of velocity (ua, va) so that,

u = ug + ua, v = vg + va, (2.52)

where the geostrophic components are defined as

ug = − 1

f0ρ0

∂p′

∂y
, vg =

1

f0ρ0

∂p′

∂x
. (2.53)

Now, in the horizontal momentum equations of (2.50) replace the velocities in all

terms, except the Coriolis term, with the geostrophic velocity approximation (2.53).

Since the Coriolis terms are assumed to be more dominant, they retain the full

velocity. Vertical advection is neglected as it is small compared to horizontal velocity

which is already small compared to Coriolis terms. The horizontal momentum

equations now become,

− 1

ρ0f0

∂2p′

∂y∂t
− 1

ρ2
0f

2
0

J

(
p′,

∂p′

∂y

)
− f0v −

βy

ρ0f0

∂p′

∂x
= (2.54a)

− 1

ρ0

∂p′

∂x
− 1

ρ0f0

∂

∂x

(
AH

∂2p′

∂x∂y

)
− 1

ρ0f0

∂

∂y

(
AH

∂2p′

∂y2

)
− 1

ρ0f0

∂

∂z

(
AV

∂2p′

∂z∂y

)
+ Fx

1

ρ0f0

∂2p′

∂x∂t
+

1

ρ2
0f

2
0

J

(
p′,

∂p′

∂x

)
+ f0u−

βy

ρ0f0

∂p′

∂y
= (2.54b)

− 1

ρ0

∂p′

∂y
− 1

ρ0f0

∂

∂x

(
AH

∂2p′

∂x2

)
− 1

ρ0f0

∂

∂y

(
AH

∂2p′

∂y∂x

)
− 1

ρ0f0

∂

∂z

(
AV

∂2p′

∂z∂x

)
+ Fy

where the Jacobian operator is defined as

J(a, b) = −∂a
∂y

∂b

∂x
+
∂a

∂x

∂b

∂y
. (2.55)

Rearranging for velocities u and v,

u = ug + ua = − 1

ρ0f0

∂p′

∂y
− 1

ρ0f2
0

∂2p′

∂x∂t
− 1

ρ2
0f

3
0

J

(
p′,

∂p′

∂x

)
+

βy

ρ0f2
0

∂p′

∂y
(2.56a)

− 1

ρ0f2
0

[
∂

∂x

(
AH

∂2p′

∂x2

)
+

∂

∂y

(
AH

∂2p′

∂y∂x

)
+

∂

∂z

(
AV

∂2p′

∂z∂x

)]
+

1

f0
Fy

v = vg + va =
1

ρ0f0

∂p′

∂x
− 1

ρ0f2
0

∂2p′

∂y∂t
− 1

ρ2
0f

3
0

J

(
p′,

∂p′

∂y

)
− βy

ρ0f2
0

∂p′

∂x
(2.56b)

+
1

ρ0f2
0

[
∂

∂x

(
AH

∂2p′

∂x∂y

)
+

∂

∂y

(
AH

∂2p′

∂y2

)
+

∂

∂z

(
AV

∂2p′

∂z∂y

)]
− 1

f0
Fx
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which provides a better approximation for the velocity than the purely geostrophic

velocity approximation in (2.51). Substituting this into the continuity equation

(2.50d) yields

∂w

∂z
=

1

ρ0f2
0

[
∂

∂t
∆p′ +

1

ρ0f0
J(p′,∆p′) + β

∂p′

∂x

]
− 1

ρ0f2
0

[
∂2

∂x2

(
AH

∂2p′

∂x2

)
+ 2

∂2

∂x∂y

(
AH

∂2p′

∂x∂y

)
+

∂2

∂y2

(
AH

∂2p′

∂y2

)
(2.57)

+
∂2

∂x∂z

(
AV

∂2p′

∂x∂z

)
+

∂2

∂y∂z

(
AV

∂2p′

∂y∂z

)]
+

1

f0

(
∂Fx
∂y
− ∂Fy

∂x

)
,

where it is understood from now on that ∆ = ∂2/∂x2+∂2/∂y2 is the two-dimensional

Laplacian operator (similarly ∇ = (∂/∂x, ∂/∂y) is the two-dimensional gradient op-

erator). Observe that the vertical velocity is indeed of the order of ageostrophic

terms. The right hand side of the above equation is formed only from ageostrophic

components, hence justifying the neglect of vertical velocity in advection terms.

Considering the density equation (2.50e), the density perturbations and horizontal

velocities are small and vertical velocity even smaller compared to the dominant

Coriolis forces. Therefore, the geostrophic velocity approximation is sufficient for

this equation and the ageostrophic corrections (2.56) are not necessary. This gives

the equation

∂ρ′

∂t
+

1

ρ0f0
J(p′, ρ′)− ρ0N

2

g
w =

∂

∂x

(
KH

∂ρ′

∂x

)
+

∂

∂y

(
KH

∂ρ′

∂y

)
+

∂

∂z

(
KV

∂ρ′

∂z

)
+

∂

∂z

(
KV

∂ρ̄

∂z

)
+Ht

=
∂

∂x

(
KH

∂ρ′

∂x

)
+

∂

∂y

(
KH

∂ρ′

∂y

)
+

∂

∂z

(
KV

∂ρ′

∂z

)
− ρ0

g

∂

∂z

(
KVN2

)
+Ht, (2.58)

where the stratification or Brunt-Väisälä frequency is

N2(z) = − g

ρ0

dρ̄

dz
. (2.59)

Now dividing by N2/g, taking a z-derivative and using the hydrostatic balance

43



(2.50c) to eliminate density perturbations ρ′,

∂

∂t

[
∂

∂z

(
1

N2

∂p′

∂z

)]
+

1

ρ0f0
J

[
p′,

∂

∂z

(
1

N2

∂p′

∂z

)]
+ ρ0

∂w

∂z
=

∂2

∂x∂z

(KH
N2

∂2p′

∂x∂z

)
+

∂2

∂y∂z

(KH
N2

∂2p′

∂y∂z

)
+

∂

∂z

(
1

N2

∂

∂z

(
KV

∂2p′

∂z2

))
+

∂

∂z

(
ρ0

N2

∂

∂z

(
KVN2

))
− ∂

∂z

( g

N2
Ht

)
. (2.60)

Observe that the fourth term on the right hand side of the above equation vanishes

when N2 is constant or of the form c1 exp(c2z) for constants c1 and c2. Due to

the tendency for the atmosphere to follow such a density profile, this term will be

dropped. The equations (2.57) and (2.60) provide equations for pressure perturba-

tions p′ and vertical stretching ∂w/∂z. Eliminating the vertical stretching gives an

equation for p′,

∂

∂t

[
∆p′ +

∂

∂z

(
f2

0

N2

∂p′

∂z

)]
+

1

ρ0f0
J

[
p′,∆p′ +

∂

∂z

(
f2

0

N2

∂p′

∂z

)]
+ β

∂p′

∂x
=

∂2

∂x2

(
AH

∂2p′

∂x2

)
+ 2

∂2

∂x∂y

(
AH

∂2p′

∂x∂y

)
+

∂2

∂y2

(
AH

∂2p′

∂y2

)
+

∂2

∂x∂z

(
AV

∂2p′

∂x∂z

)
+

∂2

∂y∂z

(
AV

∂2p′

∂y∂z

)
(2.61)

+
∂2

∂x∂z

(
KH

f2
0

N2

∂2p′

∂x∂z

)
+

∂2

∂y∂z

(
KH

f2
0

N2

∂2p′

∂y∂z

)
+

∂

∂z

(
f2

0

N2

∂

∂z

(
KV

∂2p′

∂z2

))
− g ∂

∂z

(
f2

0

N2
Ht

)
+ ρ0f0

(
∂Fy
∂x
− ∂Fx

∂y

)
.

For simplification, choose the eddy coefficients to be constants (which may depend on

discretisation parameters). Also, define the following forcing terms for convenience,

Ht = − g

ρ0f0
Ht and F =

(
∂Fy
∂x
− ∂Fx

∂y

)
= (∇× F ) · ẑ. (2.62)

Finally, define the streamfunction ψ = p′/ρ0f0 and divide through by ρ0f0. Now,

the quasi-geostrophic equations for nonlinear motions in a continuously stratified

fluid on a beta plane with diffusion are:

∂q

∂t
+ J(ψ, q) = F +

∂

∂z

(
f2

0

N2
Ht
)

+AH∆2ψ +AV
∂2∆ψ

∂z2
(2.63)

+KH
∂

∂z

(
f2

0

N2

∂∆ψ

∂z

)
+KV

∂

∂z

(
f2

0

N2

∂3ψ

∂z3

)
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where the potential vorticity is introduced

q = ∆ψ +
∂

∂z

(
f2

0

N2

∂ψ

∂z

)
+ βy, (2.64)

which is a conserved quantity in the absence of diffusion or external sources/sinks.

There has been extensive work on the QGE one-layer (assumption that flow is ho-

mogeneous in vertical direction) and N -layer models, the work in this thesis will use

the continuous model above.

Numerical approximations often use an eddy viscosity on the potential vorticity to

approximation diffusive processes [39], however, the above derived diffusion terms

provide a more accurate and consistent model. The following recapitulates the

quasi-geostrophic model that was just derived. The QGE are written,

∂q

∂t
+ J(ψ, q) = F +D (2.65a)

for forcing F and diffusion terms D, where ψ is the streamfunction and the potential

vorticity is

q = ∆ψ +
∂

∂z

(
f2

0

N2

∂ψ

∂z

)
+ βy (2.65b)

and the Jacobian is

J(ψ, q) = −∂ψ
∂y

∂q

∂x
+
∂ψ

∂x

∂q

∂y
= (ug · ∇)q. (2.65c)

The parameter β is the Coriolis parameter that multiplies the latitudinal coordinate

y, f0 is the Coriolis frequency and N is the Brunt-Väisälä frequency given by

N2 = − g

ρ0

∂ρ̄

∂z
, (2.65d)

for density ρ and gravitational acceleration g. The horizontal geostrophic velocity

ug is given by the two-dimensional curl of the streamfunction

ug = ∇⊥ψ =

 −
∂ψ

∂y

+
∂ψ

∂x

 . (2.65e)

Possible diffusion terms D, as derived above, and a surface friction term as intro-
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duced in McWilliams [84] are

Vertical Momentum Diffusion DVM = AV
∂2∆ψ

∂z2
, (2.66)

Horizontal Momentum Diffusion DHM = AH∆2ψ, (2.67)

Vertical Buoyancy Diffusion DV B = KV
∂

∂z

(
f2

0

N2

∂3ψ

∂z3

)
, (2.68)

Horizontal Buoyancy Diffusion DHB = KH
∂

∂z

(
f2

0

N2

∂∆ψ

∂z

)
, (2.69)

Surface Friction FSF = CD∆ψ. (2.70)

The parameter AV is the viscosity for vertical momentum diffusion, AH is the

horizontal momentum diffusion coefficient, KV is the vertical buoyancy diffusion

coefficient, KH is the horizontal buoyancy diffusion coefficient and CD is the surface

friction coefficient. Ageostrophic horizontal velocities ua and va, vertical velocity

w, temperature θ, pressure p′ and density ρ′ fluctuations can be recovered from

the streamfunction as follows [39, 84, 86], for a reference density ρ0 and thermal

expansion coefficient γ,

ug = −∂ψ
∂y

(2.71a)

vg =
∂ψ

∂x
(2.71b)

ua = − 1

f0

∂2ψ

∂t∂x
− 1

f0
J

(
ψ,
∂ψ

∂x

)
+
β

f0
y
∂ψ

∂y
− 1

f0

∂

∂x

[
AH∆ψ +AV

∂2ψ

∂z2

]
+
Fy
f0

(2.71c)

va = − 1

f0

∂2ψ

∂t∂y
− 1

f0
J

(
ψ,
∂ψ

∂y

)
− β

f0
y
∂ψ

∂x
+

1

f0

∂

∂y

[
AH∆ψ +AV

∂2ψ

∂z2

]
− Fx
f0

(2.71d)

w = − f0

N2

[
∂2ψ

∂t∂z
+ J

(
ψ,
∂ψ

∂z

)
−KV

∂3ψ

∂z3
−KH

∂∆ψ

∂z
−Ht

]
(2.71e)

p′ = ρ0f0ψ (2.71f)

ρ′ = −ρ0f0

g

∂ψ

∂z
(2.71g)

θ =
f0

γg

∂ψ

∂z
, (2.71h)

Note that the model is inconsistent, when considering boundaries, unless KH =

AV = 0 because each diffusion term requires a condition preventing momentum or

buoyancy flux across the boundaries [84]. This would require a sixth order PDE,
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however, the QGE is only a fourth order PDE. At this point the horizontal buoyancy

diffusion is removed from the model (KH = 0) and vertical momentum diffusion is

retained for now as it is sometimes used in numerical models [87]. Assume that

the domain is periodic or contained by side walls in the horizontal and there are

rigid top and bottom boundaries, then these equations are complimented with the

following no-flow through and no-flux boundary conditions imposed on side walls

ΓSW and top/bottom boundaries ΓTB:

∂ψ

∂τ
= AH

∂2ψ

∂n2
= KH

∂2ψ

∂z∂n
= 0 on side walls ΓSW , (2.72a)

w = KV
∂2ψ

∂z2
= 0 and AV

∂∇ψ
∂z

= 0 on top and bottom boundaries ΓTB, (2.72b)

where n and τ are the horizontal outer unit normal and tangent vectors to the

side wall boundaries. Observe that the first condition ∂ψ
∂τ = 0 on ΓSW means that

the streamfunction takes some value Ci(z, t) on each connected side wall Γi which

depends on height and time only.

2.3.1 Energetics

Definition 2.4. (Kinetic and Potential Energy)

Define the energy in the system in a domain Ω as [39, 56],

E =

ˆ
Ω

1

2
|∇ψ|2 dx+

ˆ
Ω

1

2

f2
0

N2

(
∂ψ

∂z

)2

dx. (2.73)

Observing that |∇ψ|2 = ψ2
y + ψ2

x = u2 + v2 makes it clear that the first integral

is equivalent to kinetic energy. This leaves the second integral as an expression

for available potential energy, which is defined as the difference between the existing

potential energy and the potential energy in the unperturbed basic stratification state.

Therefore, the Kinetic Energy is defined as

KE =

ˆ
Ω

1

2
|∇ψ|2 dx (2.74)

and the Potential Energy as

PE =

ˆ
Ω

1

2

f2
0

N2

(
∂ψ

∂z

)2

dx. (2.75)

Theorem 2.5. The energy E is conserved by the quasi-geostrophic equations (2.65)

when diffusion and external forcing are zero.
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Proof. Substituting (2.65b) into (2.65a) with F = 0 and D = 0, multiplying by the

streamfunction ψ and integrating over the domain Ω,

ˆ
Ω

∂

∂t
(∆ψ)ψ +

ˆ
Ω

∂2

∂t∂z

(
f2

0

N2

∂ψ

∂z

)
ψ +

ˆ
Ω
∇ · (ug∆ψ)ψ

+

ˆ
Ω

∂

∂z
∇ ·
(
ug

f2
0

N2

∂ψ

∂z

)
ψ = 0, (2.76)

where the final term follows from

∂

∂z
∇ ·
(
ug

f2
0

N2

∂ψ

∂z

)
=

∂

∂z

(ug · ∇)
f2

0

N2

∂ψ

∂z
+ (∇ · ug)︸ ︷︷ ︸

=0

f2
0

N2

∂ψ

∂z


=

(
∂ug
∂z
· ∇
)
f2

0

N2

∂ψ

∂z
+ (ug · ∇)

∂

∂z

(
f2

0

N2

∂ψ

∂z

)
(2.77)

=
f2

0

N2

(
∂2ψ

∂y∂z

∂2ψ

∂x∂z
− ∂2ψ

∂y∂z

∂2ψ

∂x∂z

)
+ (ug · ∇)

∂

∂z

(
f2

0

N2

∂ψ

∂z

)
= (ug · ∇)

∂

∂z

(
f2

0

N2

∂ψ

∂z

)
.

Applying integration by parts and multiplying by −1 gives

ˆ
Ω

∂

∂t
(∇ψ) · ∇ψ −

ˆ
ΓSW

∂

∂t
(∇ψ · n)ψ +

ˆ
Ω

∂

∂t

(
f2

0

N2

∂ψ

∂z

)
∂ψ

∂z
−
ˆ

ΓTB

∂

∂t

(
f2

0

N2

∂ψ

∂z

)
ψ

+

ˆ
Ω

(ug∆ψ) · ∇ψ −
ˆ

ΓSW

(ug · n)∆ψψ +

ˆ
Ω
∇ ·
(
ug

f2
0

N2

∂ψ

∂z

)
∂ψ

∂z
(2.78)

−
ˆ

ΓTB

∇ ·
(
ug

f2
0

N2

∂ψ

∂z

)
ψ = 0.

The fifth and sixth terms vanish since ug ⊥ ∇ψ and ug ·n = 0 on ΓSW . The second

term vanishes since ψ =
∑

iCi(z, t)1Γi on ΓSW =
⋃
i Γi (where 1Γi is an indicator

function of Γi) then

ˆ
ΓSW

∂

∂t
(∇ψ · n)ψ =

∑
i

Ci(z, t)
∂

∂t

ˆ
Γi

(ug · τ ) = 0 (2.79)

by Kelvin’s Circulation Theorem [1]. The seventh term vanishes as follows,

ˆ
Ω
∇ ·
(
ug

f2
0

N2

∂ψ

∂z

)
∂ψ

∂z
=

ˆ
Ω

1

2
∇ ·
(
ug

f2
0

N2

(
∂ψ

∂z

)2
)

=

ˆ
ΓSW

1

2
(ug · n)

f2
0

N2

(
∂ψ

∂z

)2

= 0, (2.80)
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where the last step follows by the divergence theorem. Now,

∂

∂t

ˆ
Ω

1

2
|∇ψ|2 +

∂

∂t

ˆ
Ω

1

2

f2
0

N2

(
∂ψ

∂z

)2

=

ˆ
ΓTB

∂

∂t

(
f2

0

N2

∂ψ

∂z

)
ψ +

ˆ
ΓTB

∇ ·
(
ug

f2
0

N2

∂ψ

∂z

)
ψ = −

ˆ
ΓTB

f0wψ = 0 (2.81)

since w = 0 on the top and bottom boundaries. Therefore ∂E/∂t = 0.

Definition 2.6. (Enstrophy)

Define the enstrophy in the system in a domain Ω as [39, 119],

Z =

ˆ
Ω

1

2
|q|2 dx. (2.82)

Theorem 2.7. The enstrophy Z is conserved by the quasi-geostrophic equations

(2.65) when diffusion and external forcing are zero.

Proof. Assuming F = 0 and D = 0, multiply (2.65a) by q and use incompressibility

to get

q
∂q

∂t
+ q∇ · (ugq) = 0. (2.83)

Applying the chain rule gives

1

2

∂q2

∂t
+

1

2
∇ · (ugq2) = 0. (2.84)

Integrating over the domain Ω, applying the divergence theorem to the second in-

tegral and using the no-flow boundary condition gives

∂

∂t

ˆ
Ω

1

2
q2 = 0. (2.85)

Therefore, ∂Z/∂t = 0.

The kinetic energy equation is found by substituting potential vorticity (2.65b) into

the QGE (2.65a), multiplying by −ψ and integrating over the domain. After, apply

integration by parts with boundary terms vanishing as in the proof of Theorem 2.5,

∂KE

∂t
= f0

ˆ
Ω
w
∂ψ

∂z
−
ˆ

Ω
AH∆2ψψ −

ˆ
Ω
AV

∂2∆ψ

∂z2
ψ −
ˆ

Ω
Fψ. (2.86)

Similarly, by multiplying the vertical velocity equation (2.71e) by f0∂ψ/∂z, integrat-

ing over the domain and applying integration by parts gives the potential energy
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equation

∂PE

∂t
= −f0

ˆ
Ω
w
∂ψ

∂z
−
ˆ

Ω
KV

f2
0

N2

(
∂2ψ

∂z2

)2

−
ˆ

Ω
KH

f2
0

N2

(
∂∇ψ
∂z

)2

+

ˆ
Ω

f2
0

N2
Ht
∂ψ

∂z

(2.87)

where boundary terms vanish due to the boundary conditions in (2.72).

2.3.2 Non-dimensionalisation

It is convenient to non-dimensionalise equations when simulating them numerically.

The quasi-geostrophic equations,

∂q

∂t
+ J(ψ, q) = F +D, (2.88)

for forcing F and additional diffusive terms D, where the potential vorticity is

q = ∆ψ +
∂

∂z

(
f2

0

N2

∂ψ

∂z

)
+ βy. (2.89)

can be non-dimensionalised as follows. Let L be a characteristic horizontal length

scale, H a vertical length scale, U a velocity scale and N0 a reference Brunt-Väisälä

frequency, then the non-dimensional variables, denoted with a ∗, are

x∗ =
x

L
, y∗ =

y

L
, z∗ =

z

H
, t∗ =

Ut

L
, q∗ =

Lq

U
, ψ∗ =

ψ

UL
, β∗ =

βL2

U
,N∗ =

N

N0
.

(2.90)

Non-dimensionalising equation (2.89) first gives

U

L
q∗ =

U

L
∆∗ψ∗ +

ULf2
0

H2N2
0

∂

∂z∗

(
1

N∗2
∂ψ∗

∂z∗

)
+
Uβ∗

L
y∗. (2.91)

Then dividing through by U/L gives

q∗ = ∆∗ψ∗ +
L2f2

0

H2N2
0

∂

∂z∗

(
1

N∗2
∂ψ∗

∂z∗

)
+ β∗y∗ (2.92)

= ∆∗ψ∗ +
1

Bu

∂

∂z∗

(
f2

0

N2

∂ψ∗

∂z∗

)
+ β∗y∗, (2.93)

where the Burger number Bu is defined as,

Bu =

(
HN0

Lf0

)2

=

(
Lf
L

)2

, (2.94)
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with the Rossby deformation radius Lf = HN0/f0. Substituting the non-dimensional

variables into equation (2.88) gives

U2

L2

∂q∗

∂t∗
+
U2

L2
J(ψ∗, q∗) = F +D, (2.95)

and dividing by U2/L2,

∂q∗

∂t∗
+ J(ψ∗, q∗) =

L2

U2
F +

L2

U2
D. (2.96)

Turn attention to the diffusion terms,

D = AV
∂2∆ψ

∂z2
+AH∆2ψ +KV

∂

∂z

(
f2

0

N2

∂3ψ

∂z3

)
− CD∆ψ, (2.97)

where the last term is the surface friction. Non-dimensionalising these terms gives

L2

U2
D = D∗ = AV

L2

U2

UL

L2H2

∂2∆∗ψ∗

∂z∗2
+AH

L2

U2

UL

L4
∆∗2ψ∗

+KV
L2

U2

f2
0UL

N2
0H

4

∂

∂z∗

(
1

N∗2
∂3ψ∗

∂z∗3

)
− CD

L2

U2

UL

L2
∆∗ψ∗, (2.98)

= AV
∂2∆∗ψ∗

∂z∗2
+AH∆∗2ψ∗ +KV1

∂

∂z

(
1

N2

∂3ψ∗

∂z3

)
− CD∆∗ψ∗

with non-dimensional coefficients

AV =
AV L
UH2

,

AH =
AH
UL

, (2.99)

KV1 =
KV L3f2

0

UH4N2
0

,

CD =
CDL
U

.

Assuming any additional forcing terms can be suitably non-dimensionalised as F∗,
and dropping the superscript notation so that all variables from here on represent

non-dimensional quantites, the final non-dimensionalised equations are,

∂q

∂t
+ J(ψ, q) = F +AV

∂2∆ψ

∂z2
+AH∆2ψ +KV1

∂

∂z

(
1

N2

∂3ψ

∂z3

)
− CD∆ψ (2.100a)

q = ∆ψ +Bu−1 ∂

∂z

(
1

N2

∂ψ

∂z

)
+ βy. (2.100b)
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2.3.3 Auxiliary and Boundary Conditions

Assume a three-dimensional domain Ω × [0, H] = [0, Lx] × [0, Ly] × [0, H]. Impose

no-flow through the north-south (y = 0, Ly) boundaries, periodicity on the east-west

boundaries and no-flow through on the top and bottom (z = 0, H) boundaries. For

simplicity set Ly = L and then the non-dimensional domain becomes [0, Lx/L] ×
[0, 1] × [0, 1] which allows for a greater range in the zonal direction. The full non-

dimensionalised quasi-geostrophic model with external forcing F = (∇ × F ) · ẑ,

bottom friction and horizontal and vertical diffusion is,

∂q

∂t
+ (ug · ∇)q = (∇× F ) · ẑ +AH∆2ψ +KV1

∂

∂z

(
1

N2

∂3ψ

∂z3

)
− CD∆ψ, (2.101a)

q = ∆ψ +Bu−1 ∂

∂z

(
1

N2

∂ψ

∂z

)
+ βy, (2.101b)

where in this case ∇× is the three dimensional curl operator on the external forcing

F = (Fx, Fy, Fz). This forcing F is in fact the same term from the Primitive

Equations (2.43) if forcing is applied. The reason for writing the forcing in this

form becomes apparent in the auxiliary conditions. For a three-dimensional domain

with rigid walls at the north, south, top and bottom and periodic in the zonal (east-

west) direction, the equations are complimented with free-slip boundary conditions,

where there is no normal velocity or diffusive flux at the walls [84];

∂ψ

∂τ
= AH

∂2ψ

∂n2
= 0 on ΓN ∪ ΓS , (2.102a)

w = KV1

∂2ψ

∂z2
= 0 on ΓT ∪ ΓB, (2.102b)

where ΓN ,ΓS ,ΓT ,ΓB are north, south, top and bottom boundaries respectively with

unit normal n and tangent τ . Note that on the north and south walls ∇ψ · τ =

−ug · n = 0 and 0 = ∂2ψ/∂n2 = ∂2ψ/∂y2 = ω since ∂2ψ/∂x2 = 0 on these

boundaries. For the top and bottom boundaries it is required that vertical velocity

w = 0, therefore, from equation (2.71e)

w = − 1

N2

[
∂2ψ

∂t∂z
+ J

(
ψ,
∂ψ

∂z

)
−KV2

∂3ψ

∂z3
−Ht

]
= 0 on ΓT ∪ ΓB. (2.103)

Taking care to realise that non-dimensionalising vertical velocity (order f0U
2/HN2

0 )

gives the non-dimensional constant KV2 = KV L/UH2. This differs from the con-
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stant KV1 that results from non-dimensionalising the main equation since the length

scale L is not necessarily equal to the Rossby deformation length Lf = HN0/f0.

Indeed, KV2 is equal to the coefficient KV1 = KV L3f2
0 /UH

4N2
0 if L = Lf .

The zero normal velocity boundary condition (ug ·n = −∇ψ · τ = 0) results in the

streamfunction adopting an unknown value on the boundary that may depend on

time t or height z. That is,

ψ = CN (z, t) on ΓN , (2.104a)

ψ = CS(z, t) on ΓS . (2.104b)

For the quasi-geostrophic equations to provide an accurate solution to the primitive

equations, the model needs to satisfy some auxiliary conditions. These conditions

will determine the unknown streamfunction values on the horizontal walls. The

work on quasi-geostrophic models by McWilliams [84] gives the following auxiliary

conditions. For a two-dimensional horizontal domain Ω and a fixed height z,

fi
ΓS

(
∂

∂n

(
∂ψ

∂t
−AH∆ψ + CDψ

)
− F · ŝ

)
ds = 0, (2.105a)

ˆ
Ω
w dxdy = 0. (2.105b)

The line integral in the first condition is in the clockwise direction as though the

southern boundary forms and island in a basin contained by the northern boundary.

The following derivation is not taken from literature. Suppose ψ is a solution to the

quasi-geostropic equations (2.101), satisfying boundary conditions (2.102). Then for

a fixed level of z, let

ψ = Ψ + ψNCN + ψSCS , (2.106)

where ψ solves (2.101b) with Ψ = 0 on ΓN ∪ ΓS . The other two components ψN

and ψS solve

∆ψN +Bu−1 ∂

∂z

(
1

N2

∂ψN
∂z

)
= ∆ψS +Bu−1 ∂

∂z

(
1

N2

∂ψS
∂z

)
= 0, (2.107)

on the interior with

ψN =

{
1 on ΓN

0 on ΓS
, (2.108)
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and

ψS =

{
0 on ΓN

1 on ΓS
. (2.109)

The unique solutions for ψN = y and ψS = 1 − y can be shown analytically and

numerically. Substituting the streamfunction decomposition (2.106) into the first

auxiliary condition in (2.105), and using the fact that the outward unit normal at

the south boundary is n = (0,−1),

fi
ΓS

(
− ∂

2Ψ

∂t∂y
− ∂2ψNCN

∂t∂y
− ∂2ψSCS

∂t∂y
+AH∆

∂

∂y
(Ψ + CNψN + CSψS)

)
dx

+

fi
ΓS

(
−CD

∂

∂y
(Ψ + CNψN + CSψS)− Fx

)
dx = 0. (2.110)

Substituting in the analytical solutions for ψN and ψS gives

fi
ΓS

(
− ∂

2Ψ

∂t∂y
− ∂CN

∂t
+
∂CS
∂t

+AH∆
∂Ψ

∂y
− CD

[
∂Ψ

∂y
+ CN − CS

]
− Fx

)
dx = 0.

(2.111)

Moving the x-independent terms out of the integral and rearranging gives

∂

∂t
(CN − CS) =

fi
ΓS

(
− ∂

2Ψ

∂t∂y
+AH∆

∂Ψ

∂y
− CD

[
∂Ψ

∂y
+ CN − CS

]
− Fx

)
dx.

(2.112)

A second condition on the values of CN and CS can be obtained by substituting the

streamfunction decomposition (2.106) into the second auxiliary condition in (2.105).

0 =

ˆ
Ω
w dxdy =

ˆ
Ω

(
∂2ψ

∂t∂z
+∇ ·

(
ug
∂ψ

∂z

)
−KV2

∂3ψ

∂z3
−Ht

)
dxdy. (2.113)

Using the divergence theorem on the advection term causes it to vanish since the

normal component of velocity is zero at the boundaries. Now,

ˆ
Ω

(
∂2Ψ

∂t∂z
+

∂2

∂t∂z
(CNψN + CSψS)−KV2

[
∂3Ψ

∂z3
+

∂3

∂z3
(CNψN + CSψS)

])
dxdy

−
ˆ

Ω
Ht dxdy = 0 (2.114)

which rearranges to

∂2

∂t∂z
(CN + CS) =

2L

Lx

ˆ
Ω

(
− ∂

2Ψ

∂t∂z
+KV2

∂3Ψ

∂z3
+Ht

)
dxdy +KV2

[
∂3CN
∂z3

+
∂3CS
∂z3

]
.

(2.115)
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Observe that, the integrals of ψN and ψS over a horizontal plane both evaluate to

Lx/2L since the horizontal domain is [0, Lx/L]× [0, 1]. Integrating with respect to

z produces an arbitrary constant that can depend only on time which is set to zero

as it will not affect the dynamics. This leaves

∂

∂t
(CN + CS) =

2L

Lx

ˆ
Ω

(
−∂Ψ

∂t
+KV2

∂2Ψ

∂z2
+ Ht

)
dxdy +KV2

∂2

∂z2
(CN + CS)

(2.116)

where Ht =
´
Ht dz is the antiderivative of Ht with respect to z. Adding and

subtracting equations (2.112) and (2.116) provides expressions for how the boundary

values change with time,

∂

∂t
CN =

L

Lx

ˆ
Ω

(
−∂Ψ

∂t
+KV2

∂2Ψ

∂z2
+ Ht

)
dxdy +

KV2

2

∂2

∂z2
(CN + CS)

+
1

2

fi
ΓS

(
− ∂

2Ψ

∂t∂y
+AH∆

∂Ψ

∂y
− CD

∂Ψ

∂y
+ CD(CS − CN )− Fx

)
dx,

(2.117a)

∂

∂t
CS =

L

Lx

ˆ
Ω

(
−∂Ψ

∂t
+KV2

∂2Ψ

∂z2
+ Ht

)
dxdy +

KV2

2

∂2

∂z2
(CN + CS)

− 1

2

fi
ΓS

(
− ∂

2Ψ

∂t∂y
+AH∆

∂Ψ

∂y
− CD

∂Ψ

∂y
+ CD(CS − CN )− Fx

)
dx.

(2.117b)

It must also be ensured that this solution created by combining the zero-boundary

solution Ψ with the boundary values CN and CS satisfies the zero vertical velocity

condition (2.103) at the top and bottom boundaries. Substituting the streamfunc-

tion decomposition (2.106) into this condition (2.103),

∂2Ψ

∂t∂z
+ (ug · ∇)

∂Ψ

∂z
−KV2

∂3Ψ

∂z3
+

∂2

∂t∂z
(CNψN + CSψS)

+(ug · ∇)
∂

∂z
(CNψN + CSψS)−KV2

∂3

∂z3
(CNψN + CSψS)−Ht = 0, (2.118)

on ΓT and ΓB. Since CN and CS are equal to the streamfunction ψ evaluated at
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the north and south boundaries

∂2CN
∂t∂z

ψN +
∂2CS
∂t∂z

ψS −KV2

[
∂3CN
∂z3

ψN +
∂3CS
∂z3

ψS

]
=

[
∂2ψ

∂t∂z
+ (ug · ∇)

∂ψ

∂z
−KV2

∂3ψ

∂z3

]∣∣∣∣
ΓN

ψN +

[
∂2ψ

∂t∂z
+ (ug · ∇)

∂ψ

∂z
−KV2

∂3ψ

∂z3

]∣∣∣∣
ΓS

ψS

= −N
2

f0
(w|ΓN

ψN + w|ΓS
ψS) +Ht|ΓN

ψN +Ht|ΓS
ψS (2.119)

= Ht|ΓN
ψN +Ht|ΓS

ψS

where w = 0 has been used on the top and bottom boundaries and (ug · ∇)CN =

(ug · ∇)CS = 0 on the side walls. Therefore, the boundary condition on Ψ at the

top and bottom is

∂2Ψ

∂t∂z
+ (ug · ∇)

∂Ψ

∂z
−KV2

∂3Ψ

∂z3
= vg

∂

∂z
(CS − CN ) +Ht −Ht|ΓN

ψN −Ht|ΓS
ψS .

(2.120)

Similarly, one must also make a correction to the potential vorticity equation (2.101b).

Substituting the streamfunction decomposition into this equation,

q = ∆Ψ +Bu−1 ∂

∂z

(
1

N2

∂Ψ

∂z

)
+Bu−1 ∂

∂z

(
1

N2

∂

∂z
(CNψN + CSψS)

)
+ βy

= ∆Ψ +Bu−1 ∂

∂z

(
1

N2

∂Ψ

∂z

)
+ βy (2.121)

+Bu−1

[(
∂CN
∂z

∂N−2

∂z
+N−2∂

2CN
∂z2

)
ψN +

(
∂CS
∂z

∂N−2

∂z
+N−2∂

2CS
∂z2

)
ψS

]
.

Notice that the extra term only comes from the vertical derivatives since ∆ψN =

∆ψS = 0 and CN and CS depend on t and z only. This can be simplified further

when AH 6= 0 so that ∆ψ = 0 on ΓN and ΓS ; since CN and CS are the values of the

full streamfunction solution ψ at the boundaries,

q|ΓN
=

[
∆ψ +Bu−1 ∂

∂z

(
1

N2

∂ψ

∂z

)
+ βy

]∣∣∣∣
ΓN

=

[
Bu−1 ∂

∂z

(
1

N2

∂ψ

∂z

)
+ βy

]∣∣∣∣
y=1

= Bu−1 ∂

∂z

(
1

N2

∂CN
∂z

)
+ (βy)|ΓN

⇒ Bu−1 ∂

∂z

(
1

N2

∂CN
∂z

)
= (q − βy)|ΓN

(2.122)

where the boundary condition ∆ψ = 0 on ΓN has been used. Likewise, for the south
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boundary

Bu−1 ∂

∂z

(
1

N2

∂CS
∂z

)
= (q − βy)|ΓS

. (2.123)

So, the correction is now

q = ∆Ψ +Bu−1 ∂

∂z

(
1

N2

∂Ψ

∂z

)
+ βy + (q − βy)|ΓN

ψN + (q − βy)|ΓS
ψS . (2.124)
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Chapter 3

Mathematical Framework

This chapter presents the mathematical framework required for finite element theory.

Finite element methods revolve around Sobolev spaces which are vector spaces of

functions equipped with a norm on the functions and their weak derivatives. These

are the natural spaces to use as the finite element method involves formulating the

problem in a weak sense and then approximating the solution in a finite dimensional

subspace using a tessellation of the domain. The material here can be found in

standard texts on partial differential equations and finite element methods [4, 48,

105].

3.1 Sobolev Spaces

Definition 3.1. (Inner Product)

Let f and g be square integrable functions f, g : Ω → R, on a domain Ω ⊂ Rd for

dimension d. Then their inner product is defined as

(f, g) :=

ˆ
Ω
fg dx. (3.1)

Definition 3.2. (Lebesgue Space)

The Lebesgue space Lp(Ω) consists of all those functions that are measurable (limit

of a sequence of step functions almost everywhere) and whose pth power is Lebesgue

integrable;

Lp(Ω) = {f : f measurable and ||f ||Lp <∞} , (3.2)

where

||f ||Lp =

(ˆ
Ω
|f |p dx

) 1
p

. (3.3)
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Lebesgue spaces are Banach spaces when equipped with their norms.

Definition 3.3. (Sobolev Space)

Let k ≥ 0 and α be a multi-index with |α| ≤ k. Then the Sobolev space W k,p(Ω) is

defined as

W k,p(Ω) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω), 0 ≤ |α| ≤ k}, (3.4)

where Dαf is the order α weak derivative of f . The space is equipped with the norm

||f ||Wk,p =

 ∑
0≤|α|≤k

||Dαf ||pLp

1/p

. (3.5)

W k,p(Ω) is a Banach space and separable if 1 ≤ p <∞. Denote W k,2(Ω) as Hk(Ω),

also define Hk
0 (Ω) as the closure in Hk(Ω) of infinitely differentiable functions com-

pactly supported in Ω which can be heuristically defined as

Hk
0 (Ω) = {f ∈ Hk(Ω) : Dαf = 0 on ∂Ω for |α| ≤ k − 1}. (3.6)

Finite element methods rely on the division of a domain into a grid or tessellation.

Definition 3.4. (Tessellation)

A tessellation of a polyhedral domain Ω is a partitioning Th of Ω into closed polygons

or polyhedra such that

Ω =
⋃
T∈Th

T, (3.7)

and the elements T ∈ Th have pairwise disjoint interiors. Define the maximal ele-

ment diameter as

h := max
T∈Th

hT where hT := max
x,y∈T

|x− y|. (3.8)

Discontinuous Galerkin finite element methods allow for discontinuities in the solu-

tion between elements in a tessellation. A discontinuous solution therefore requires

an adjustment to the Sobolev space definition to allow for these discontinuities.

These broken Sobolev spaces depend on a subdivision of the domain defined above.

Definition 3.5. (Broken Sobolev Space)

Let Th be a tessellation of Ω, then the broken Sobolev spaces needed for a discon-

tinuous Galerkin finite element framework are defined as

Hm(Th) =
{
v ∈ L2(Ω) : v|T ∈ Hm(T ) for all T ∈ Th

}
. (3.9)
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For the discontinuous Galerkin approach, one must also pay attention to the values

on the element intersections.

Definition 3.6. (Intersections)

Let Th be a tessellation of Ω . Then define the set of interior intersections in Th as

Ih = {e ⊂ Ω : e = T+
e ∩ T−e for T+

e , T
−
e ∈ Th with T+

e 6= T−e and |e| 6= 0} (3.10)

and the set of boundary intersections as

I∂h = {e ⊂ ∂Ω : e = T ∩ ∂Ω is an edge of T ∈ Th}. (3.11)

This definition has used the notation T+
e , T−e to define two elements with e ⊂ ∂T±e .

Outer unit normals to ∂T±e are similarly denoted n±e .

Functions in broken Sobolev spaces can have two values on interior intersections.

Therefore, it is useful to define the jump and average operators which map u ∈
Hm(Th) to L2(Γh) functions, where Γh =

⋃
e∈Ih∪I∂h

e denotes the union of the edges

of the elements T ∈ Th.

Definition 3.7. (Jumps and Averages)

For v ∈ Hm(Th) define the average and jump operators over an intersection e ∈ Ih
as

{v} =
1

2

(
v|T+

e
+ v|T−

e

)
, [v] =

(
v|T+

e
n+
e + v|T−

e
n−e

)
on e ∈ Ih. (3.12)

For vector valued functions u ∈ (Hm(Th))d define

{u} =
1

2

(
u|T+

e
+ u|T−

e

)
, [u] =

(
u|T+

e
· n+

e + u|T−
e
· n−e

)
on e ∈ Ih. (3.13)

For boundary intersections e ∈ I∂h define

{v} = v, [v] = (v − gD)n, {u} = u, [u] = (u− fD) · n on e ∈ I∂h , (3.14)

where gD and fD are given boundary data for v and u respectively. The notation

v|T+
e

denotes the trace of v in element T+
e along edge e.

The following jump and average operator properties will be required to manipulate

the terms involved with a discontinuous formulation.

Lemma 3.8. (Properties of Jumps and Averages)

Consider functions u ∈ (H1(Th))d and v ∈ H1(Th) and an edge e ∈ Ih ∪ I∂h then
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1. [uv] = {u} · [v] + [u] {v} on e ∈ Ih.

2. [uv] = {u} · [v] + [gDu] on e ∈ I∂h .

3. [uv] = [u]v for v ∈ C0(Ω).

4. [u] = 0, {u} = u if u ∈ (H1(Ω))d

Proof. To prove the first equality, consider an interior intersection e ∈ Ih, then

[u] {v}+ {u} · [v] =
1

2

(
u|T+

e
· n+

e + u|T−
e
· n−e

)
·
(
v|T+

e
+ v|T−

e

)
+

1

2

(
u|T+

e
+ u|T−

e

)(
v|T+

e
n+
e + v|T−

e
n−e

)
=

1

2

(
2u|T+

e
v|T+

e
· n+

e + 2u|T−
e
v|T−

e
· n−e

+ u|T+
e
v|T−

e
· n+

e + u|T+
e
v|T−

e
· n−e

+ u|T−
e
v|T+

e
· n+

e + u|T−
e
v|T+

e
· n−e

)
= u|T+

e
v|T+

e
· n+

e + u|T−
e
v|T−

e
· n−e = [uv]. (3.15)

For the second equality, take a boundary intersection e ∈ I∂h , then

{u} · [v] = (v − gD)n · u = [uv]− [gDu] (3.16)

where it is assumed that the boundary data fD = 0 for u. The third and forth

equalities follow easily by the continuity of the functions.

A key component that is vital to the finite element method in the formulation of

the weak problem is integration by parts, the continuous form is as follows.

Theorem 3.9. (Integration by Parts)

Suppose that Ω ⊂ Rd is a domain, consider u ∈ (H1(Ω))r and v ∈ H1(Ω) then

ˆ
Ω
∇ · uv dΩ =

ˆ
∂Ω
u · nv dΓ−

ˆ
Ω
u · ∇v dΩ, (3.17)

for unit outer normal n to the surface Γ = ∂Ω formed by the boundary of the domain.

Proof. Apply the divergence theorem to uv, (see [48]).

This will also need to be applied to functions in broken Sobolev spaces for the

discontinuous Galerkin weak formulations.
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Theorem 3.10. (Integration by Parts for Broken Sobolev Spaces)

Suppose that Th is a tessellation of the domain Ω, consider u ∈ (H2(Th))r and

v ∈ H2(Th) then

∑
T∈Th

ˆ
T
∇ · uv =

∑
e∈Ih∪I∂h

ˆ
e

[v] · {u}+
∑

e∈Ih∪I∂h

ˆ
e

[u] {v} −
∑
T∈Th

ˆ
T
u · ∇v. (3.18)

Proof. First apply integration by parts in Theorem 3.9 to get

∑
T∈Th

ˆ
T
∇ · uv =

∑
T∈Th

(ˆ
∂T
u · nv −

ˆ
T
u · ∇v

)
. (3.19)

Now, each intersection e ∈ Ih appears two times in the boundary term; once for

T = T+
e with normal n+

e and another for T = T−e with normal n−e . Therefore, by

writing the boundary term as a sum over the element intersections

∑
T∈Th

ˆ
T
∇ · uv =

∑
e∈Ih

ˆ
e

(
u|T+

e
· n+

e v|T+
e

+ u|T−
e
· n−e v|T−

e

)
+
∑
e∈I∂h

ˆ
e
u · nv

−
∑
T∈Th

ˆ
T
u · ∇v (3.20)

=
∑

e∈Ih∪I∂h

ˆ
e

[uv]−
∑
T∈Th

ˆ
T
u · ∇v

which follows from the definition of the jump operator with zero Dirichlet gD = 0

or no-flow u · n = 0 boundary conditions.

The proof of Theorem 3.10 is only for the cases of zero Dirichlet or no-flow boundary

conditions as these are the only cases that will be required.

3.2 Weak Formulations

The concept of finite element methods is centred around a Galerkin approach where

the problem is formulated in weak or variational form. To demonstrate the method,

suppose one is tasked with the problem of finding a solution u : Ω→ R such that

−∆u+ u = f, in Ω, (3.21a)

u = 0 on ∂Ω, (3.21b)
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for some function f ∈ C0(Ω,R). Using the space V = H1
0 (Ω), multiply (3.21a) by

a test function v ∈ V , integrate over the domain Ω and apply integration by parts

where the boundary term vanishes since v ∈ V . Defining the bilinear form

a(u, v) =

ˆ
Ω
∇u · ∇v + uv dx (3.22)

and the linear form using the inner product

l(v) = (f, v) =

ˆ
Ω
fv dx (3.23)

allows one to write the weak formulation of the problem as: find u ∈ V such that

a(u, v) = l(v) ∀v ∈ V. (3.24)

This can be shown to be equivalent to the strong form of the problem (3.21) given

certain regularity assumptions on f and the domain boundary ∂Ω [116]. A finite

element method can now be implemented by creating a tessellation Th of the domain

and defining a finite dimensional discrete subspace Vh ⊂ V that approximates a

solution by a combination of piecewise polynomials. The problem is then to find a

discrete solution uh ∈ Vh such that

a(uh, vh) = l(vh) ∀vh ∈ Vh. (3.25)

Note that, the discrete solution and finite element space depend upon a parameter

h that is the grid spacing determined by a maximal length within the polygons of

the tessellation. High accuracy solutions are then obtained by letting h→ 0 so that

uh → u.

3.3 Lax Milgram

The following theorem is important in variational theory and shows that the finite

element numerical method will have a unique solution.

Theorem 3.11. (Lax Milgram)

For a bilinear form a : V × V → R and linear functional l : V → R, consider the

following variational problem; find u ∈ V such that a(u, v) = l(v) for all v ∈ V .

Suppose the following conditions hold,

1. a(·, ·) is bounded, that is there exists a Ca > 0 such that |a(u, v)| ≤ Ca‖u‖V ‖v‖V
for all u, v ∈ V .
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2. a(·, ·) is coercive, that is there exists an α > 0 such that a(v, v) ≥ α‖v‖2V for

all v ∈ V .

3. l(·) is bounded, that is there exists a Cl > 0 such that |l(v)| ≤ Cl‖v‖V for all

v ∈ V .

Then the variational problem has a unique solution and the solution u satisfies

‖u‖ ≤ 1

α
‖l‖V ∗ (3.26)

Proof. See [48].

3.4 Non-zero Boundary Conditions

Lax Milgram can be used to show that there is a unique solution to the weak problem

(3.24). However, suppose that a problem has non-zero Dirichlet boundary given by

g ∈ H1(Ω): find u : Ω→ R such that

−∆u+ u = f, in Ω, (3.27a)

u = g on ∂Ω. (3.27b)

Lax Milgram cannot be directly applied to the weak formulation for u since the

space Vg =
{
w ∈ H1(Ω) : w = v + g, for some v ∈ H1

0 (Ω)
}

is not a linear space.

Although, one may solve the problem: find u0 = u − g ∈ V with g ∈ H1(Ω) such

that

a(u0, v) = l(v)− a(g, v) =: l0(v), ∀v ∈ V. (3.28)

Lax Milgram is applicable to this problem and so there is a unique solution u0,

therefore, there exists a unique u = u0 + g. This allows the implementation of a

finite element method for non-zero boundaries by solving for the solution u0 and

then combining this with the function g to get the desired solution u.

3.5 Interior Penalty Discontinuous Galerkin Method

When using a discontinuous space to solve problem (3.27), the weak formulation

must consider the sum of elements of the tessellation Th instead of the whole domain
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when integrating, so that the bilinear form becomes for u, v ∈ H2(Th)

aDG(u, v) =
∑
T∈Th

ˆ
T

(∇u · ∇v + uv)−
∑

e∈Ih∪I∂h

ˆ
e
{∇u} · [v]−

∑
e∈Ih∪I∂h

ˆ
e
{∇v} · [u]

+
∑

e∈Ih∪I∂h

βe

ˆ
e

[u] · [v], (3.29)

where integration by parts for broken Sobolev spaces (Theorem 3.10) has been used

and the [∇u]{v} term has been neglected since the jump of the gradient of the

true solution [∇u] = 0. The third term has been added to make the problem

symmetric, allowing for more efficient numerical solvers to be used. A penalty term

with penalty parameter βe has been added to penalise jumps in the solution for

stability and to weakly enforce boundary conditions. In a discontinuous Galerkin

method, the boundary conditions are enforced weakly within the formulation itself

rather than as a requirement in the solution space. The addition of these terms also

ensure uniqueness of the solution without affecting the consistency with the original

problem since [u] = 0. The solution is required to be in H2(Th), so that the traces of

∇u and ∇v are well defined (see trace theorems in [105]) and aDG(·, ·) is a bilinear

form. This formulation is known as the symmetric interior penalty method [3].
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Chapter 4

Finite Element Discretisation

Finite element methods involve discretising the domain into a tessellation of ele-

ments, usually square or triangular, and solving the equations in a distributional

sense using local basis functions. These methods were developed for solving com-

plex engineering problems and have been used for a long time in the field [4, 54].

Finite element methods have recently become popular within fluid dynamics and

atmospheric simulation as it allows for easy treatment of complex boundaries and

multiply connected domains with high order accuracy [20, 51, 63, 102, 107, 127].

This chapter presents a discretisation of the quasi-geostrophic equations using a

combination of finite elements in the horizontal directions and finite differences in

the less dynamical vertical direction.

4.1 Numerical Scheme

The numerical scheme will work on a cuboid domain Ω× [0, 1] = [0, Lx/L]× [0, 1]×
[0, 1] using the method of lines in the vertical z direction and a finite element method

on a mesh on the horizontal layers. Denote each layer Ωj for j = 0, ...,N with equal

spacing ∆z with Ω0 on the bottom of the domain (z = 0) and ΩN at the top

(z = 1). Once the horizontal has been discretised, finite difference approximations

will be used to discretise vertical derivatives with ψj : Ωj → R denoting ψ|Ωj =

ψ(x, y, j∆z), that is the function ψ evaluated at level j. Boundary conditions given

by equation (2.102) are no-flow through the rigid north, south, top and bottom

boundaries. Therefore, the advecting horizontal velocity ug = ∇⊥ψ must satisfy

ug · n = 0 at the north (y = 1) and south (y = 0) walls and the vertical velocity

w must also satisfy w = 0 on the top ΓT := ΩN and bottom ΓB := Ω0 boundaries.

In the case where diffusion is present, there must also be no diffusive flux at these
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walls as stated in (2.102). The east-west boundaries are periodic.

...

Ω0

ΩN

z

y

x

Figure 4.1: Domain split into N + 1 horizontal layers with equal spacing ∆z. Each
layer is divided up with the same tessellation Th.

ΓB

ΓT

z

y

x

ΓS

ΓN

Figure 4.2: Domain boundaries. Black: top and bottom boundaries with no-flow
through condition w = 0 (and no flux ∂2ψ/∂z2 = 0 if vertical buoyancy diffusion
present), Blue: north and south boundaries with no-flow through condition ug·n = 0
(and no flux ∂2ψ/∂y2 = 0 if horizontal momentum diffusion present), Red: periodic
east and west boundaries.

4.1.1 Finite Element Spatial Discretisation

The method solves for potential vorticity q in a discontinuous space with continuous

streamfunction ψ. This ensures velocity is not discontinuous across element inter-

sections in the normal direction and an upwind flux can be used without instability

issues. This can been seen from ug ·n = ∇⊥ψ ·n = −∇ψ ·τ , where ∇⊥ = (−∂y, ∂x)

and ∇ = (∂x, ∂y) are the two-dimensional curl and gradient operators. Then be-

cause the streamfunction ψ is continuous, the gradient in the tangential direction at

the element boundary is single valued, and so is the normal component of velocity.

This method was implemented using the two-dimensional, inviscid QGE by Bernsen
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et al. (2006), [20], the work presented here will extend this to the three-dimensional

QGE with diffusion, forcing and free-slip boundary conditions providing a more use-

ful atmospheric model. Recall the non-dimensionalised quasi-geostrophic equations

(2.100) from Section 2.3.2,

∂q

∂t
+ J(ψ, q) = F +AH∆2ψ +KV1

∂

∂z

(
1

N2

∂3ψ

∂z3

)
− CD∆ψ (4.1a)

q = ∆ψ +Bu−1 ∂

∂z

(
1

N2

∂ψ

∂z

)
+ βy. (4.1b)

The heating term Ht has been absorbed into F since they serve the same pur-

pose with regards to discretising the main equations. The Laplacian and gra-

dient operators are two-dimensional. Define the relative vorticity ω := ∆ψ =

∂2ψ/∂x2 + ∂2ψ/∂y2 and substitute this into equation (4.1a) to get

∂q

∂t
+ (ug · ∇)q = F +AH∆ω +KV1

∂

∂z

(
1

N2

∂3ψ

∂z3

)
− CDω, (4.2)

where relative vorticity can be alternatively calculated as

ω = q − βy − ∂

∂z

(
Bu−1

N2

∂ψ

∂z

)
. (4.3)

Consider the two-dimensional domain Ω = [0, Lx/L] × [0, 1] ⊂ R2. The problem

is, find ψ : Ω × [0, 1] × [0,∞) → R (and therefore q : Ω × [0, 1] × [0,∞) → R,

ug : Ω× [0, 1]× [0,∞)→ R and ω : Ω× [0, 1]× [0,∞)→ R) such that (4.1b), (4.2)

and (4.3) are satisfied, subject to the boundary conditions (2.102),

∂ψ

∂τ
= AH

∂2ψ

∂n2
= 0 on ΓN ∪ ΓS , (4.4a)

w = KV1

∂2ψ

∂z2
= 0 on ΓT ∪ ΓB, (4.4b)

and auxiliary conditions (2.105),

fi
ΓS

(
∂

∂n

(
∂ψ

∂t
−AH∆ψ + CDψ

)
− F · ŝ

)
ds = 0, (4.5a)

ˆ
Ω
w dxdy = 0, (4.5b)

with initial condition

ψ(x, y, z, 0) = ψ0 for (x, y, z) ∈ Ω× [0, 1], (4.6)
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for some given ψ0 : Ω× [0, 1]→ R which determines all other initial fields.

Now, define the space that will be applicable to continuous solutions as

Vψ :=
{
φ ∈ H1(Ω) : φ = 0 on ΓN ∪ ΓS

}
. (4.7)

The north ΓN and south ΓS boundaries are as shown in Figure 4.2. Consider a

tessellation Th of the two-dimensional domain Ω, let Vq = H2(Th), then define

finite element spaces V p
qh and V p

ψh
of piecewise polynomials such that V p

qh ⊂ Vq and

V p
ψh
⊂ Vψ. Define the pth order continuous discrete space

V p
ψh

=
{
v ∈ C0(Ω) ∩ Vψ : v|T ∈ P p(T ) for all T ∈ Th

}
(4.8)

and the pth order discontinuous discrete space

V p
qh

= {v ∈ Vq : v|T ∈ P p(T ) for all T ∈ Th} (4.9)

where p is the degree of the polynomial space P p. For quadrilateral elements, the

space of polynomial products Qp = {p : p = p1p2, for p1, p2 ∈ P p} is used instead

of P p. The order of finite element methods are determined by the order of the dis-

crete space used, hence the order of the polynomials on each element. To simplify

notation, define the finite element spaces Vψh
:= V p

ψh
and Vqh := V p

qh where it is

understood that the order p of these spaces may be varied during implementation

and need not be identical.

To begin the finite element discretisation in the horizontal directions, consider a

fixed vertical height z and a two-dimensional horizontal domain Ω so that the weak

formulation required by the finite element method may be obtained. The existence of

global weak solutions to the QGE is shown in [103]. Assume that the true solutions

ψ, q, ω,ug are smooth. Transform the first equation into a weak form by multiplying

(4.2) by a test function ϕ ∈ Vq, integrating over an element T ∈ Th and summing

over all elements to get

∑
T∈Th

ˆ
T

∂q

∂t
ϕ =−

∑
T∈Th

ˆ
T
J(ψ, q)ϕ+

∑
T∈Th

ˆ
T
AH∆ωϕ+

∑
T∈Th

ˆ
T
KV1

∂

∂z

(
1

N2

∂3ψ

∂z3

)
ϕ

−
∑
T∈Th

ˆ
T
CDωϕ+

∑
T∈Th

ˆ
T
Fϕ. (4.10)

The third and fifth terms on the right hand side require no further manipulation
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within the weak form as no horizontal gradients are involved and the vertical deriva-

tives just need to be discretised using an appropriate finite difference approximation.

The bottom friction term (forth term on the right hand side) can be rewritten using

(4.3) so that

∑
T∈Th

ˆ
T
CDωϕ = CD

∑
T∈Th

ˆ
T

(
q − βy − ∂

∂z

(
Bu−1

N2

∂ψ

∂z

))
ϕ (4.11)

which allows for the q term to be treated implicitly during the time discretisation,

although stability constraints should be dominated by the non-linear advection term.

Notice that the advection term can be written in conservative form

J(ψ, q) =
∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
= ug · ∇q = ∇ · (ugq), (4.12)

due to incompressibility (∇ · ug = ∂xug + ∂yvg = ∂xyψ − ∂yxψ = 0). Now, apply

the discontinuous form of integration by parts from Theorem 3.10, noting that I∂h
is the set of edges on the north and south boundaries only,

∑
T∈Th

ˆ
T
∇ · (ugq)ϕ =

∑
e∈Ih∪I∂h

ˆ
e
[ugqϕ]−

∑
T∈Th

ˆ
T
qug · ∇ϕ

=
∑

e∈Ih∪I∂h

ˆ
e
[ugq]{ϕ}+

∑
e∈Ih

ˆ
e
{ugq} · [ϕ] +

∑
e∈I∂h

ˆ
e
ug · n+

e︸ ︷︷ ︸
0

qϕ

−
∑
T∈Th

ˆ
T
qug · ∇ϕ

=
∑
e∈Ih

ˆ
e
ûe(q) · [ϕ]−

∑
T∈Th

ˆ
T
qug · ∇ϕ, (4.13)

where the [ugq] term was dropped since the normal velocity components are single

valued at element edges [ug] = (ug|T+
e
− ug|T−

e
) · n+

e = 0 and the true solution

satisfies [q] = 0. The following upwind numerical flux has been introduced for

numerical stability [105],

ûe(q) =

{
q|T+

e
ug if ug · n+

e ≥ 0

q|T−
e
ug if ug · n+

e < 0
(4.14)

with n+
e denoting the outer unit normal at an element edge e of element T+

e . This is

equal to {ugq} for smooth solutions ug and q. The upwind flux is introduced here

in anticipation of substitution of the discrete solutions, where the potential vorticity

70



will be discontinuous on element intersections and (4.14) will become meaningful.

Finally, turning attention to the horizontal momentum diffusion term

∑
T∈Th

ˆ
T
AH∆ωϕ =−

∑
T∈Th

ˆ
T
AH∇ω · ∇ϕ+

∑
e∈Ih∪I∂h

ˆ
e
AH{∇ω} · [ϕ]

+

���
���

���
���:0∑

e∈Ih∪I∂h

ˆ
e
AH [∇ω]{ϕ}, (4.15)

where the last term is ignored for simplicity, this is possible since the true vorticity

solution ω is smooth and has no jumps hence [∇ω] = 0. One can also add a penalty

term to penalise jumps in the solution and improve stability of the numerical method

[105]

P βe(ω, ϕ) =
∑

e∈Ih∪I∂h

βe

ˆ
e
[ω] · [ϕ], (4.16)

and a symmetry term

S(ω, ϕ) =
∑

e∈Ih∪I∂h

ˆ
e
AH{∇ϕ} · [ω], (4.17)

without effecting consistency since for the continuous solution [ω] = 0. Here βe > 0

is a penalty parameter. Now,

∑
T∈Th

ˆ
T
AH∆ωϕ =−

∑
T∈Th

ˆ
T
AH∇ω · ∇ϕ+

∑
e∈Ih∪I∂h

ˆ
e
AH{∇ω} · [ϕ]

+
∑

e∈Ih∪I∂h

ˆ
e
AH{∇ϕ} · [ω]−

∑
e∈Ih∪I∂h

βe

ˆ
e
[ω] · [ϕ]. (4.18)

Boundary intersection terms are calculated using the boundary condition ω = 0 on

ΓN and ΓS . This will weakly enforce the no-flux boundary condition on the north

and south walls within the discontinuous Galerkin finite element method. A weak
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formulation for (4.2) is now find q ∈ Vq such that

∑
T∈Th

ˆ
T

∂q

∂t
ϕ =−

∑
e∈Ih

ˆ
e
ûe(q) · [ϕ] +

∑
T∈Th

ˆ
T
qug · ∇ϕ

−
∑
T∈Th

ˆ
T
AH∇ω · ∇ϕ+

∑
e∈Ih∪I∂h

ˆ
e
AH{∇ω} · [ϕ]

+
∑

e∈Ih∪I∂h

ˆ
e
AH{∇ϕ} · [ω]−

∑
e∈Ih∪I∂h

βe

ˆ
e
[ω] · [ϕ]

+
∑
T∈Th

ˆ
T
KV1

∂

∂z

(
1

N2

∂3ψ

∂z3

)
ϕ

−
∑
T∈Th

ˆ
T
CDωϕ+

∑
T∈Th

ˆ
T
Fϕ (4.19)

for all ϕ ∈ Vq.

From Section 2.3.3, equation (4.1b) can be expressed using the streamfunction de-

composition ψ = Ψ + ψNCN + ψSCS to get

q − qc = ∆Ψ +Bu−1 ∂

∂z

(
1

N2

∂Ψ

∂z

)
+ βy. (4.20)

where qc := (q − βy)|ΓN
ψN + (q − βy)|ΓS

ψS is defined for conciseness. Multiplying

by a test function ξ ∈ Vψ and integrating over the domain Ω

−
ˆ

Ω
∇Ψ · ∇ξ +

ˆ
∂Ω
∇Ψ · nξ︸ ︷︷ ︸

0

+

ˆ
Ω

∂

∂z

(
Bu−1

N2

∂Ψ

∂z

)
ξ =

ˆ
Ω

(q − qc − βy)ξ (4.21)

where the second term vanishes since ξ ∈ Vψ is zero on the boundary. A weak

formulation for (4.1b) is therefore: find Ψ ∈ Vψ such that

−
ˆ

Ω
∇Ψ · ∇ξ +

ˆ
Ω

∂

∂z

(
Bu−1

N2

∂Ψ

∂z

)
ξ =

ˆ
Ω

(q − qc − βy)ξ (4.22)

for all ξ ∈ Vψ.

4.1.2 Vertical and Time Discretisation

The weak formulations (4.19) and (4.22) have been derived above with smooth so-

lutions to express the quasi-geostrophic equations in a form suitable for applying a
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finite difference method in the horizontal directions. Now, substitute the smooth

solutions with the discrete solutions so that the finite difference approximations and

time discretisations can be applied. With the notation qnj ≈ q(x, y, j∆z, nτ) denot-

ing the approximation at timestep n and vertical level j, the full solution is written

qn = (qn0 , ..., q
n
N ) ∈ V N+1

qh
= Vqh(Ω0)× ...× Vqh(ΩN ). Other variables ψ, ug, ω and

F are discretised in a similar fashion. The terms on the right hand side of (4.19) are

treated explicitly, except for the bottom friction term where a θm-method allows for

the possibility of a semi-implicit scheme (the subscript on θm is only used to avoid

confusion with the temperature variable θ that will be introduced in Section 4.1.3).

A fourth order central finite difference approximation is used in the vertical allow-

ing a simplification of the finite element discretisation restricted to the horizontal.

This high order method is used to reduce the impact of the low vertical resolution

on the accuracy of the numerical solutions (see Chapter 5). The finite difference

approximation of an mth order derivative of ψ at vertical level j ∈ {0, ...,N} will

take the form

∂m

∂zm
ψj(x, y) ≈

N∑
i=0

αi(j,m)

∆zm
ψi(x, y) =: D(m)

z ψi, (4.23)

for coefficients α0, ..., αN depending on the centre of the approximation and order of

the derivative. Table 4.1 presents the coefficients used in this fourth order scheme.

Derivative (m)
Point (i− j)

-3 -2 -1 0 1 2 3

1 1/12 −2/3 0 2/3 −1/12

2 −1/12 4/3 −5/2 4/3 −1/12

3 1/8 −1 13/8 0 13/8 1 −1/8

4 −1/6 2 −13/2 28/2 −13/2 2 −1/6

Table 4.1: Fourth order central finite difference coefficients as calculated in [49].

For example, the second order derivative of ψ(x, y) at level j is given by

∂2

∂z2
ψj(x, y) ≈ D(2)

z ψj =
− 1

12ψj−2 + 4
3ψj−1 − 5

2ψj + 4
3ψj+1 − 1

12ψj+2

∆z2

∣∣∣∣∣
(x,y)

. (4.24)

After applying the vertical and time discretisations, (4.19) becomes: for each j ∈
{0, ...,N}
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∑
T∈Th

ˆ
T

(1 + µ) qn+1
j ϕ =

∑
T∈Th

ˆ
T
qnj ϕ+ τ

∑
T∈Th

ˆ
T
qnj ug

n
j · ∇ϕ− τ

∑
e∈Ih

ˆ
e
ûne (qnj ) · [ϕ]

− τ
∑
T∈Th

ˆ
T
AH∇ωnj · ∇ϕ+ τ

∑
e∈Ih∪I∂h

ˆ
e
AH{∇ωnj } · [ϕ]

+ τ
∑

e∈Ih∪I∂h

ˆ
e
AH{∇ϕ} · [ωnj ]− τ

∑
e∈Ih∪I∂h

βe

ˆ
e
[ωnj ] · [ϕ]

+ τ
∑
T∈Th

ˆ
T
KV1D

(1)
z

(
1

N2
D(3)
z ψnj

)
ϕ

− τCD
∑
T∈Th

ˆ
T

(
(1− θm)qnj − βy −D(1)

z

(
Bu−1

N2
D(1)
z ψnj

))
ϕ

+ τ
∑
T∈Th

ˆ
T
Fn+1
j ϕ for all ϕ ∈ Vqh , (4.25)

where µ := τCDθm and the z-derivatives of order m have been discretised by finite

difference operators D
(m)
z . Recall the upwind numerical flux is

ûe(q
n
j ) =

q
n
j |T+

e
ug

n
j if ug

n
j · n+

e ≥ 0

qnj |T−
e
ug

n
j if ug

n
j · n+

e < 0
. (4.26)

The relative vorticity solution does not require a weak formulation as it can be

calculated directly as

ωnj = qnj − βy −D(1)
z

(
Bu−1

N2
D(1)
z ψnj

)
. (4.27)

Similarly the geostrophic velocity is calculated directly as

ug
n
j = ∇⊥ψnj . (4.28)

For (4.22), taking a test function ξ ∈ Vψh
with support on an arbitrary element

T ∈ Th and summing over all elements

−
∑
T∈Th

ˆ
T
∇Ψ · ∇ξ +

∑
T∈Th

ˆ
T

∂

∂z

(
Bu−1

N2

∂Ψ

∂z

)
ξ =

∑
T∈Th

ˆ
T

(q − qc − βy)ξ (4.29)
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and substituting the discrete streamfunction solution Ψn+1
j ∈ Vψh

gives

−
∑
T∈Th

ˆ
T
∇Ψn+1

j · ∇ξ +
∑
T∈Th

ˆ
T
D(1)
z

(
Bu−1

N2
D(1)
z Ψn+1

j

)
ξ

=
∑
T∈Th

ˆ
T

(qn+1
j − qcn+1

j − βy)ξ (4.30)

for all ξ ∈ Vψh
.

The problem discretised spatially in the horizontal and in time is now encapsulated

by defining the bilinear forms a1 : Vψh
× Vψh

→ R and a2 : Vψh
× Vψh

→ R,

a1(u, v) =
∑
T∈Th

ˆ
T
uv, (4.31)

a2(u, v) =
∑
T∈Th

ˆ
T
∇u · ∇v (4.32)

with a1 : Vqh × Vqh → R also defined as in (4.31) without ambiguity as it will be

clear which bilinear form is used. Also, define the linear forms l1,j : Vqh → R and

l2,j : Vψh
→ R,

ln1,j(ϕ) =
∑
T∈Th

ˆ
T
qnj ϕ+ τ

∑
T∈Th

ˆ
T
qnj ug

n
j · ∇ϕ− τ

∑
e∈Ih

ˆ
e
ûne (qnj ) · [ϕ]

− τ
∑
T∈Th

ˆ
T
AH∇ωnj · ∇ϕ+ τ

∑
e∈Ih∪I∂h

ˆ
e
AH{∇ωnj } · [ϕ]

+ τ
∑

e∈Ih∪I∂h

ˆ
e
AH{∇ϕ} · [ωnj ]− τ

∑
e∈Ih∪I∂h

βe

ˆ
e
[ωnj ] · [ϕ]

+ τ
∑
T∈Th

ˆ
T
KV1D

(1)
z

(
1

N2
D(3)
z ψnj

)
ϕ

− τCD
∑
T∈Th

ˆ
T

(
(1− θm)qnj − βy −D(1)

z

(
Bu−1

N2
D(1)
z ψnj

))
ϕ

+ τ
∑
T∈Th

ˆ
T
Fn+1
j ϕ, (4.33)

ln2,j(ξ) =
∑
T∈Th

ˆ
T

(qnj − qcnj − βy)ξ. (4.34)
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For each j ∈ {0, ...,N}, given qnj and Ψn
j find qn+1

j ∈ Vqh and Ψn+1
j ∈ Vψh

such that

(1 + µ)a1(qn+1
j , ϕ) = ln1,j(ϕ) for all ϕ ∈ Vqh ,

(4.35a)

and − a2(Ψn+1
j , ξ) + a1(D(1)

z (Bu−1N−2D(1)
z Ψn+1

j ), ξ) = ln+1
2,j (ξ) for all ξ ∈ Vψh

(4.35b)

where

µ = τCDθm. (4.36)

This is not yet complete, as the finite difference operators in the vertical require

boundary conditions.

4.1.3 Top and Bottom Boundary Treatment

Treatment of the vertical boundaries is complicated by the nature of the qausi-

geostrophic model. The model requires no-flow through at the top and bottom

boundaries, that is the vertical velocity w = 0. From (2.103) it is, therefore, required

that

w = − 1

N2

[
∂2ψ

∂t∂z
+ J

(
ψ,
∂ψ

∂z

)
−KV2

∂3ψ

∂z3
−Ht

]
= 0 on ΓT ∪ ΓB. (4.37)

Rearranging this gives

∂2ψ

∂t∂z
+ J

(
ψ,
∂ψ

∂z

)
= KV2

∂3ψ

∂z3
+Ht on ΓT ∪ ΓB, (4.38)

where the non-dimensional constant KV2 = KV L/UH2. Notice that this is equal

to KV1 = KV L3f2
0 /UH

4N2
0 if the horizontal length scale L is equal to the Rossby

radius L = Lf = HN0/f0. The quasi-geostrophic model defines temperature θ

(non-dimensionalised from equation (2.71h)) as

θ =
∂ψ

∂z
. (4.39)

Therefore, equation (4.38) is an advection-diffusion equation for temperature on

the top and bottom boundaries, with advection in the horizontal xy-directions and

diffusion in the vertical z-direction. Equation (4.38) can be written as

∂θ

∂t
+ J (ψ, θ) = KV2

∂2θ

∂z2
+Ht on ΓT ∪ ΓB. (4.40)
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This will provide the boundary data necessary to complete the finite difference

approximations for the streamfunction. To implement this let θnj for j = 0,N be

the discrete solution of θ at the top and bottom boundaries at timestep n. Then

provided θnj is known, calculate θn+1
j using a finite element discretisation of (4.40).

This data can then be used as the vertical Neumann boundary condition on the

streamfunction

∂ψn+1

∂z
= θn+1

0 at z = 0, (4.41a)

∂ψn+1

∂z
= θn+1
N at z = 1, (4.41b)

for each timestep. This is implemented by using a finite element discretisation in

the horizontal and finite difference approximation in the vertical to solve for θ at the

boundary layers. A discontinuous Galerkin approach is applied for the finite element

discretisation as was done for the potential vorticity for improved accuracy and

stability for the non-linear advection term. Multiplying (4.40) by a discontinuous

test function ϕ ∈ Vq, integrating over an element T ∈ Th and summing over all

elements gives

∑
T∈Th

ˆ
T

(
∂θ

∂t
+∇ · (ugθ)

)
ϕ =

∑
T∈Th

ˆ
T

(
KV2

∂2θ

∂z2
+Ht

)
ϕ. (4.42)

This equation only holds on the horizontal planes at z = 0, 1, that is Ω0 = ΓB and

ΩN = ΓT . Similar to the discretisation of the potential vorticity, after integration

by parts and using an upwind numerical flux, for z = 0, 1 (or j = 1,N ),

∑
T∈Th

ˆ
T
θn+1
j ϕ =

∑
T∈Th

ˆ
T
θnj ϕ+ τ

∑
T∈Th

ˆ
T

(
ug

n
j θ
n
j · ∇ϕ+KV2D

(2)
z θnj ϕ

)
− τ

∑
e∈Ih

ˆ
e
ûne
(
θnj
)
· [ϕ] + τ

∑
e∈Th

ˆ
T
Htn+1

j ϕ (4.43)

where the vertical z derivatives are discretised using finite differences and the nu-

merical flux ûe is given by

ûe
(
θnj
)

=

θ
n
j

∣∣
Te+

ug
n
j if ug

n
j · n+

e ≥ 0

θnj
∣∣
Te−

ug
n
j if ug

n
j · n+

e < 0
. (4.44)

In the case of no vertical diffusion KV = 0 and heating Ht = 0, the values of tem-

perature at the north and south boundaries of the top and bottom layers will not
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be altered from the initial values by equation (4.40). Otherwise, there are no pre-

scribed values for temperature at the horizontal walls. However, it is known from

the no-flow through boundary condition that ∂ψ/∂x = 0 along the north and south

boundaries ΓN and ΓS , therefore along this boundary ∂2ψ/∂x∂z = ∂θ/∂x = 0 and

so temperature should not vary in the x-direction along the north and south bound-

aries.

For KV = 0 temperature simply needs to be advected on the top and bottom bound-

aries to provide Neumann data for the streamfunction ψ. If p ∈ {−3,−2,−1,N +

1,N + 2,N + 3} is the ghost point level, let

q =

{
2N − p if p > N
−p if p < 0

, (4.45)

and the Neumann value provided by the temperature solution

gN =

{
θn+1
N if p > N
θn+1

0 if p < 0
, (4.46)

then using a second order central finite difference approximation at the top and

bottom boundaries, the values of the ghost points outside the domain are given by

ψn+1
p = ψn+1

q − (q − p)∆zgN . (4.47)

This reduces the accuracy of the approximation to second order in the vertical at

the boundaries, which can propagate into the interior solution over time.

For KV 6= 0 there is the additional no-flux boundary condition ∂2ψ/∂z2 = 0 at the

top and bottom boundaries. This must be combined with the Neumann data pro-

vided by the temperature equation (4.38) in the finite difference discretisation. The

interior temperature is calculated using the relation (4.39) with a finite difference

approximation of the vertical derivative of the streamfunction. Finite differences

are calculated at the top and bottom boundaries using ghost points outside the do-

main with values defined in terms of the boundary data and the interior nodes. The

vertical diffusion term KV2∂
2θ/∂z2 in (4.40) can be calculated using zero Neumann

data for temperature (∂θ/∂z = 0 on ΓN and ΓS). Otherwise, streamfunction ghost

points are found using the fourth and sixth order finite difference expressions for

∂ψ/∂z = gN and ∂2ψ/∂z2 = 0 at z = 0, 1. The values of the streamfunction at the
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ghost points are then

ψ−1 =
15

4
ψ0 − 3ψ1 +

1

4
ψ2 +

3

2
∆zgN (4.48a)

ψ−2 = 30ψ0 − 32ψ1 + 3ψ2 + 24∆zgN (4.48b)

ψ−3 =
575

4
ψ0 − 16ψ1 +

81

4
ψ2 − ψ3 +

243

2
∆zgN (4.48c)

ψN+1 =
15

4
ψ0 − 3ψ1 +

1

4
ψ2 −

3

2
∆zgN (4.48d)

ψN+2 = 30ψ0 − 32ψ1 + 3ψ2 − 24∆zgN (4.48e)

ψN+3 =
575

4
ψ0 − 16ψ1 +

81

4
ψ2 − ψ3 −

243

2
∆zgN . (4.48f)

When applying free-slip boundary conditions, top and bottom boundary conditions

are required on the zero-boundary component Ψ that is used to calculate the stream-

function boundary values. This can be provided in a similar way by solving the

zero-boundary temperature equation given by (2.120), which can be written as

∂Θ

∂t
+ (ug · ∇)Θ−KV2

∂2Θ

∂z2
= vg

∂

∂z
(CS − CN ) +Ht −Ht|ΓN

ψN −Ht|ΓS
ψS

(4.49)

where Θ := ∂Ψ/∂z. The discretised form of this equation becomes for j = 1,N ,

∑
T∈Th

ˆ
T

Θn+1
j ϕ =

∑
T∈Th

ˆ
T

Θn
j ϕ+ τ

∑
T∈Th

ˆ
T

(
ug

n
j Θn

j · ∇ϕ+KV2D
(2)
z Θn

j ϕ
)

− τ
∑
e∈Ih

ˆ
e
ûne
(
Θn
j

)
· [ϕ] + τ

∑
e∈Th

ˆ
T
vg
n
jD

(1)
z (CS

n
j − CNnj )ϕ (4.50)

+ τ
∑
e∈Th

ˆ
T

(Htn+1
j −Htn+1

j |ΓN
ψN −Htn+1

j |ΓS
ψS)ϕ

for all ϕ ∈ Vqh . Vertical derivatives of Ψ are calculated the same as for ψ in (4.47)

or (4.48) with

gN =

{
Θn+1
N if p > N

Θn+1
0 if p < 0

. (4.51)

4.1.4 Free-Slip Boundary Treatment

As stated in Section 3.4, the problem may be solved with zero Dirichlet boundary

and then the boundary data g can be added onto this solution. Unfortunately, in this

case the boundary data is not explicitly known. To satisfy the free-slip boundary

condition ∂ψ/∂τ = 0 on ΓN and ΓS , the derived relations (2.117) are used to find the
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values of the streamfunction ψ on the north and south boundaries. These equations

are advanced in time using a forward Euler discretisation and the integrals are

calculated using a numerical quadrature. The integral relations in (2.117) require

the zero-boundary streamfunction component Ψ = ψ −CNψN −CSψS to be solved

using equations (2.124) and (2.120). This can be done using the discrete problems

(4.35) and (4.50). The solution Ψn+1 can then be used to find CN
n+1 and CS

n+1 as

CN
n+1
j = CN

n
j + τ

L

Lx

ˆ
Ω

(
Ψn
j −Ψn+1

j

τ
+KV2D

(2)
z Ψn

j + Ht
n
j

)
dxdy

+
τ

2

fi
ΓS

(
∂

∂y

(
Ψn
j −Ψn+1

j

τ

)
+AH∆

∂Ψn
j

∂y
− CD

∂Ψn
j

∂y

)
dx (4.52a)

+
τ

2

fi
ΓS

(
CD(CS

n
j − CNnj )− Fxnj

)
dx+ τ

KV2

2
D(2)
z (CN

n
j + CS

n
j ),

CS
n+1
j = CS

n
j + τ

L

Lx

ˆ
Ω

(
Ψn
j −Ψn+1

j

τ
+KV2D

(2)
z Ψn

j + Ht
n
j

)
dxdy

− τ

2

fi
ΓS

(
∂

∂y

(
Ψn
j −Ψn+1

j

τ

)
+AH∆

∂Ψn
j

∂y
− CD

∂Ψn
j

∂y

)
dx (4.52b)

− τ

2

fi
ΓS

(
CD(CS

n
j − CNnj )− Fxnj

)
dx+ τ

KV2

2
D(2)
z (CN

n
j + CS

n
j ).

The streamfunction is then calculated as ψn+1 = Ψn+1 +CN
n+1ψN +CS

n+1ψS . The

full algorithm is detailed in Section 4.4.

4.1.5 Matrix Formulation

For the numerical method to be implemented, it must be formulated as a matrix

problem so that it can be solved computationally. To write the problem in matrix

form, express the solutions qnj and Ψn
j at each vertical level j in terms of a linear

combination of basis functions,

qnj =
∑
k

ck(j, n)ϕk, (4.53)

Ψn
j =

∑
k

dk(j, n)ξk (4.54)

for constants ck(j, n), dk(j, n) ∈ R and basis functions {ϕk}k ⊂ Vqh and {ξk}k ⊂ Vψh

of the finite-dimensional discrete solution spaces. For information on how these

bases are constructed see [30]. Substituting (4.53) into (4.35a) and taking the test
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function to be a basis function ϕl ∈ Vqh∑
k

(1 + µ)ck(j, n+ 1)a1(ϕk, ϕl) = ln1,j(ϕl). (4.55)

Assuming the discrete space has P = dim(Vqh) basis functions, one may write the

solution coefficients (known as degrees of freedom) in a vector

cnj =



c1(j, n)

c2(j, n)

c3(j, n)
...

cP (j, n)


(4.56)

and defining the finite element matrix and right hand side vector

A =


a1(ϕ1, ϕ1) . . . a1(ϕP , ϕ1)

...
. . .

...

a1(ϕ1, ϕP ) . . . a1(ϕP , ϕP )

 , Fnj =


ln1,j(ϕ1)

...

ln1,j(ϕP )

 (4.57)

the matrix problem at each level j ∈ {0, ...,N} is

(1 + µ)Acn+1
j = Fnj . (4.58)

The full problem for equation (4.25) in matrix form is then

L0 0 0 0 · · · 0

0 L0 0 0 · · · 0

0
. . .

. . .
. . .

...
...

... · · · 0 0 L0 0

0 · · · 0 0 0 L0





cn+1
0

cn+1
1
...

cn+1
N−1

cn+1
N


=



Fn0
Fn1
...

FnN−1

FnN


(4.59)

with

L0 = (1 + µ)A. (4.60)
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For equation (4.35b) which recovers the streamfunction,

−
∑
T∈Th

ˆ
T
∇Ψn+1

j · ∇ξ +
∑
T∈Th

ˆ
T
D(1)
z

(
Bu−1

N2
D(1)
z Ψn+1

j

)
ξ

=
∑
T∈Th

ˆ
T

(qn+1
j − qcn+1

j − βy)ξ, (4.61)

for all ξ ∈ Vψh
. For simplicity, a second order centred difference is used below to

demonstrate the matrix problem, so that

D(1)
z

(
Bu−1

N2
D(1)
z Ψn+1

j

)
= λj(Ψ

n+1
j+1 −Ψn+1

j−1 ) + µj(Ψ
n+1
j+1 − 2Ψn+1

j + Ψn+1
j−1 ), (4.62)

λj =
Bu−1

4∆z2

(
N−2
j+1 −N−2

j−1

)
, (4.63)

µj = N−2
j

Bu−1

∆z2
. (4.64)

See Table 4.1 for the fourth order scheme. Recall the bilinear forms

a1(Ψ, ξ) =
∑
T∈Th

ˆ
T

Ψξ (4.65)

a2(Ψ, ξ) =
∑
T∈Th

ˆ
T
∇Ψ · ∇ξ, (4.66)

and the linear form

ln2,j(ξ) =
∑
T∈Th

ˆ
T

(qnj − qcnj − βy)ξ, (4.67)

the problem can be written as; for each j ∈ {0, ...,N} find Ψj ∈ Vψh
such that

−a2(Ψn+1
j , ξ) + λja1(Ψn+1

j+1 −Ψn+1
j−1 , ξ) + µja1(Ψn+1

j+1 − 2Ψn+1
j + Ψn+1

j−1 , ξ)

= ln+1
2,j (ξ) ∀ξ ∈ Vψh

. (4.68)

Substituting in the approximation written as a linear combination of basis functions

(4.54)∑
k

− dk(j, n+ 1)a2(ξk, ξl) + λj(dk(j + 1, n+ 1)− dk(j − 1, n+ 1))a1(ξk, ξl)

+ µj(dk(j + 1, n+ 1)− 2dk(j, n+ 1) + dk(j − 1, n+ 1)a1(ϕk, ξl)) = ln2,j(ξl),

(4.69)
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Writing the vector for the streamfunction solution coefficients for Q = dim(Vψh
),

dnj =



d1(j, n)

d2(j, n)

d3(j, n)
...

dQ(j, n)


, (4.70)

and defining

Ai =


ai(ξ1, ξ1) . . . ai(ξQ, ξ1)

...
. . .

...

ai(ξ1, ξQ) . . . ai(ξQ, ξQ)

 , Gnj =


ln2,j(ξ1)

...

ln2,j(ξQ)

 (4.71)

gives

(µj + λj)A1d
n+1
j+1 − (A2 + 2µjA1)dn+1

j + (µj − λj)A1d
n+1
j−1 = Gn+1

j . (4.72)

Finally, (4.30) is given in matrix form as

L0
0 L∂+

1 L∂+
2 0 · · · 0

L−0 L0
1 L+

2 0 · · · 0

0
. . .

. . .
. . .

...
...

... · · · 0 L−N−2 L0
N−1 L+

N
0 · · · 0 L∂−N−2 L∂−N−1 L0

N





dn+1
0

dn+1
1
...

dn+1
N−1

dn+1
N


=



Gn+1
0

Gn+1
1
...

Gn+1
N−1

Gn+1
N


(4.73)

where

L−j = (µj − λj)A1,

L0
j = −(A2 + 2µjA1), (4.74)

L+
j = (µj + λj)A1

and L∂±j depend upon the order of the finite difference approximation, see Section

4.1.3 for the treatment of the vertical boundary conditions.

For constant Brunt-Väisälä frequency N , the values λj = 0 and so L+
j = L−j . This

means the matrix is symmetric except for the top and bottom rows due to the vertical

boundary conditions. Therefore, it cannot be guaranteed that a conjugate gradient

method can be used to solve this system. However, a preconditioner may allow the
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method to converge. Otherwise, a bi-conjugate gradient or GMRES method will be

required to recover the streamfunction ψ. A direct solver such as a block Thomas

algorithm may also be efficient for solving the system.

4.1.6 Timestep Restriction

After applying a suitable finite element space discretisation, one is left with solving

the system of ordinary differential equations of the form(
∂q

∂t
, ϕ

)
= f(t, q), (4.75)

for some function f . An explicit Euler time discretisation is used as detailed in the

previous discretisations, that is

(
qn+1, ϕ

)
= (qn, ϕ) + τf(t, qn) (4.76)

with the exception of the bottom friction term which has the option of a theta

method as seen in (4.25). This explicit timestepping means the system matrices

only need to be assembled once. An implicit method would require linearisation of

the advection term, therefore, making the matrix depend on previous timestep data

or requiring several iterations to solve each timestep. This would be very computa-

tionally expensive. Furthermore, a fully implicit method would require all equations

to be assembled into a single system matrix increasing the complexity of the prob-

lem. The bottom friction term does have the option of using a theta method which

causes the matrix to depend on the timestep τ , but only requires the matrix to be

reassembled if the timestep changes.

A standard timestep restriction used in advection dominated problems is the Courant-

Friedrichs-Lewy (CFL) condition [20],

∆t <
h

‖ug‖∞
, (4.77)

for supremum norm

‖ug‖∞ = sup{|ug(x)| : x ∈ Ω× [0, 1]}. (4.78)

It has also been shown, [37, 74], that DG methods with a Runge-Kutta time dis-
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cretisation require the timestep restriction

∆t <
h

‖ug‖∞(2p+ 1)
, (4.79)

where p is the order of the polynomial basis functions of the discrete space, this is

used as the timestep restriction in the implementation.

4.2 Full Discretisation Summary

The full problem is now summarised using the bilinear forms

a1(u, v) =
∑
T∈Th

ˆ
T
uv, (4.80)

a2(u, v) =
∑
T∈Th

ˆ
T
∇u · ∇v (4.81)

and linear forms

ln1,j(ϕ) =
∑
T∈Th

ˆ
T
qnj ϕ+ τ

∑
T∈Th

ˆ
T
qnj ug

n
j · ∇ϕ− τ

∑
e∈Ih

ˆ
e
ûne (qnj ) · [ϕ]

− τ
∑
T∈Th

ˆ
T
AH∇ωnj · ∇ϕ+ τ

∑
e∈Ih∪I∂h

ˆ
e
AH{∇ωnj } · [ϕ]

+ τ
∑

e∈Ih∪I∂h

ˆ
e
AH{∇ϕ} · [ωnj ]− τ

∑
e∈Ih∪I∂h

βe

ˆ
e
[ωnj ] · [ϕ]

+ τ
∑
T∈Th

ˆ
T
KV1D

(1)
z

(
1

N2
D(3)
z ψnj

)
ϕ

− τCD
∑
T∈Th

ˆ
T

(
(1− θm)qnj − βy −D(1)

z

(
Bu−1

N2
D(1)
z ψnj

))
ϕ

+ τ
∑
T∈Th

ˆ
T
Fn+1
j ϕ, (4.82)

ln2,j(ξ) =
∑
T∈Th

ˆ
T

(qnj − βy − (qnj − βy)|ΓN
ψN − (qnj − βy)|ΓS

ψS)ξ, (4.83)
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ln3,j(φ) =
∑
T∈Th

ˆ
T
θnj ϕ+ τ

∑
T∈Th

ˆ
T

(
ug

nθnj · ∇ϕ+KV2D
(2)
z θnj ϕ

)
− τ

∑
e∈Ih

ˆ
e
ûne
(
θnj
)
· [ϕ] + τ

∑
e∈Th

ˆ
T
Htn+1

j ϕ, (4.84)

ln4,j(φ) =
∑
T∈Th

ˆ
T

Θn
j ϕ+ τ

∑
T∈Th

ˆ
T

(
ug

nΘn
j · ∇ϕ+KV2D

(2)
z Θn

j ϕ
)

− τ
∑
e∈Ih

ˆ
e
ûne
(
Θn
j

)
· [ϕ] + τ

∑
e∈Th

ˆ
T
vg
n
jD

(1)
z (CS

n
j − CNnj )ϕ

+ τ
∑
e∈Th

ˆ
T

(Htn+1
j −Htn+1

j |ΓN
ψN −Htn+1

j |ΓS
ψS)ϕ. (4.85)

Provided with initial data q0, θ0 and ψ0, the discrete formulation of the PDEs in

(4.1) is; for each j ∈ {0, ...,N}, given qnj and ψnj = Ψn
j + CN

n
j ψN + CS

n
j ψS find

qn+1
j ∈ Vqh and Ψn+1

j ∈ Vψh
such that

(1 + τCDθm)a1(qn+1
j , ϕ) = ln1,j(ϕ) for all ϕ ∈ Vqh ,

(4.86)

and − a2(Ψn+1
j , ξ) + a1(D(1)

z (Bu−1N−2D(1)
z Ψn+1

j ), ξ) = ln+1
2,j (ξ) for all ξ ∈ Vψh

,

(4.87)

where vertical derivatives are discretised using the fourth order finite difference

method detailed in Section 4.1.2. The no-flow through (∂ψ/∂τ = −ug ·n = 0) and

no-flux (∂2ψ/∂n2 = ω = 0) boundary conditions at the north and south walls are

enforced weakly through the penalty terms in (4.86). However, the zero Dirichlet

boundary condition on Ψ is strongly enforced through the discrete space Vψh
when

solving (4.87) with the streamfunction boundary values CN
n and CS

n calculated

each timestep using (4.52). Therefore, this culminates in a weak enforcement of the

free-slip boundaries. Figure 4.3 details the solution algorithm.

The top/bottom Neumann boundary data for ψ and Ψ is provided by the following

discretisation of the temperature equations (4.40) and (4.49): given θnj = Θn
j +

ψND
(1)
z CN

n
j + ψSD

(1)
z CS

n
j find θn+1

0 , θn+1
N ∈ Vqh and Θn+1

0 ,Θn+1
N ∈ Vqh such that

a1(θn+1
0 , φ) = ln3,0 and a1(θn+1

N , φ) = ln3,N for all φ ∈ Vqh , (4.88)

and a1(Θn+1
0 , φ) = ln4,0 and a1(Θn+1

N , φ) = ln4,N for all φ ∈ Vqh . (4.89)
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4.3 Solvability and Error Estimates

The discrete problem at each timestep is solvable. Consider the problem in matrix

form given by (4.59) and (4.73). The first matrix equation solves for potential

vorticity. To show that this system can be solved set N = 3 for simplicity giving

the augmented coefficient matrix L0 0 0 Fn0
0 L0 0 Fn1
0 0 L0 Fn2

 (4.90)

where

L0 = (1 + τCDθm)A. (4.91)

Applying row reduction to this matrix gives 1 0 0 L−1
0 Fn0

0 1 0 L−1
0 Fn1

0 0 1 L−1
0 Fn2

 , (4.92)

therefore, for this system to be solvable τCDθm 6= −1 which is clearly true since

τ, CD > 0 and θm ≥ 0. Also, the finite element matrix A must be invertible which

is true since it is positive definite due to the coercivity of the bilinear form a1(·, ·).

The streamfunction can be solved by (4.73); from the finite difference coefficients

in Table 4.1 and the symmetry of the invertible finite element matrices A1 and A2,

the matrix is strictly diagonally dominant and therefore solvable.

It is shown in [20], for the inviscid two-dimensional QGE, that the velocity solution

ug
n follows the error estimate

||ug − ugn||L2(Ω) = O(hp) (4.93)

where h is the mesh size, and p is the polynomial order of the discrete finite element

space basis functions. It is also suggested that the potential vorticity q follows this

error estimate, however, their numerical results indicate that the streamfunction ψ

and potential vorticity q have O(hp+1) convergence which is optimal for a discontin-

uous finite element method [105]. Since the finite element discretisation presented

in this thesis is in the horizontal plane, similar results are expected given a high
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order finite difference approximation in the vertical, at least for zero diffusion and

fixed Dirichlet boundary conditions.

4.4 Implementation Details

The method is implemented using the C++ programming language within the Dis-

tributed and Unified Numerics Environment (DUNE) [16, 17, 18, 28, 29]. Using the

finite element framework provided by dune-fem [41, 42] a module was created in

the dune project called dune-qg-dg relying on the 2.5 version release of the core

modules. The framework is built upon the code in dune-fem-howto. The structure

of the code is split into classes for elliptic operators, models, problems and a finite

element scheme. Two elliptic operators are written for continuous and discontinuous

spaces. The potential vorticity and temperature discontinuous solutions are solved

using the discontinuous elliptic operator that interfaces with models for the potential

vorticity and temperature equations. Similarly, the continuous elliptic operator is

used to recover the streamfunction. The finite element scheme handles the discreti-

sation scheme by initialising the solutions using the problem class and assembling

and solving the system matrices using the elliptic operators. The auxiliary integrals

used to calculate the unknown streamfunction boundary values are handled by a

freeslipconstraints class. This class calculates the discrete integrals using the same

quadrature rules as the finite element scheme and stores the boundary values.

The grid implementation YASPGRID was used to enable periodic boundary treatment

with quadrilateral elements. As the method uses a finite element approximation

only in the horizontal direction, a two-dimensional computational grid was used via

setting the preprocessor parameters WORLDDIM=GRIDDIM=2. This way the finite ele-

ment framework can be used unchanged and a finite difference class can be written

separately to handle the vertical discretisations. This finite difference class takes

advantage of the dimension of the range of the discrete functions being set to the

number of vertical layers in the grid. The number of vertical layers is controlled

using the preprocessor variable VERTICAL_LAYERS. The finite element polynomial

basis function order is set with the variable POLORDER. The DUNE interface for the

PETSc solvers [13, 14, 15] was used to solve the linear systems, where the MUMPS

solver was found to be particularly efficient. For data output, a wrapper class trans-

fers the layered data onto a three-dimensional grid written into .vtu files suitable

for visualisation in ParaView [2, 10] or similar software.
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The variables stored during runtime include; the streamfunction ψn, new and pre-

vious timestep zero-boundary streamfunction Ψn and Ψn−1, potential vorticity qn,

velocity ug
n, vorticity ωn, temperature θn and zero-boundary temperature Θn. The

algorithm for solving the system, assuming data is known at timestep n, is shown

in the flowchart in Figure 4.3.

Checkpointing is implemented to periodically store the current state of the solutions

and the streamfunction boundary values. The minimal set of solutions required to

recover from a checkpoint are; the potential vorticity qn, temperature θn and Θn at

the vertical boundaries as well the streamfunction horizontal boundary values CnN
and CnS at timestep n. The remainder of the data can be recovered from this.

4.4.1 Coriolis Parameter

Section 2.2 introduced the β-plane approximation to the Coriolis parameter f ≈
f0 + βy where f0 = 2Ω sinϕ0 and β = (2Ω/a) cosϕ0 for Earth’s radius a where the

meridional coordinate y is measured as a perturbation from the reference latitude

ϕ0. Due to restrictions in the code, computations were performed on a [0, L/Lx]×
[0, 1]× [0, 1] domain which places the reference latitude at the south boundary of the

domain. This means that the β-plane approximation is less accurate at the north

boundary than at the south. If not for the (0, 0, 0) grid origin restriction one could

simply use a [0, L/Lx] × [−1/2, 1/2] × [0, 1] computational grid. This is resolved

by moving the reference latitude to the centre of the domain which requires the

coordinate change y′ = y − y0 where y′ = y0 corresponds to the reference latitude

in the centre of the domain. This coordinate change does not effect any of the

dynamics in the QGE except for the βy term in (2.100b) where the meridional

coordinate appears explicitly, which now becomes β(y − y0). This provides a more

consistent approximation of the Earth’s rotational forces throughout the domain.
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Figure 4.3: Program flow chart detailing full solution algorithm.
90



Chapter 5

Numerical Tests

5.1 Travelling Wave (TW2D)

Documented here is a test used to verify the two-dimensional implementation of the

equations during development, similar to tests used in [20]. The numerical method

used is detailed in Section 4.1.1 where the three-dimensional term is replaced with

the two-dimensional term −Bu−1ψ. Due to this being a two-dimensional problem,

no finite difference approximations are required. The two-dimensional QGE are [86],

∂tq + J(ψ, q) = F + CD∆ψ (5.1a)

q = ∆ψ −Bu−1ψ + βy. (5.1b)

where the bottom friction CD and Burger number Bu = (N0H/f0L)2 are dimen-

sionless constants. The boundary conditions are ψ = 0 at the north and south

boundaries and zonally periodic. The finite element method is verified by testing

the two-dimensional formulation with a travelling wave solution. This test uses the

exact solution

ψ(x, y, t) = sin(2πx− ct) sin(2πy) (5.2)

q(x, y, t) = −(8π2 +Bu−1) sin(2πx− ct) sin(2πy) + βy. (5.3)

For these to provide an exact solution to (5.1) set,

F(x, y, t) = [(8π2 +Bu−1)c+ 2πβ] cos(2πx− ct) sin(2πy)

+ 8CDπ
2 sin(2πx− ct) sin(2πy). (5.4)

A computational domain [0, 1]2 is used with parameter values shown in Table 5.1.
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Take note that the choice of the wave speed constant c simplifies the forcing term.

Parameter Value

Bu 1

CD 10−3

β 1

c −2πβ/(8π2 +Bu−1)

Table 5.1: Parameter values used for 2D travelling wave test.

L2 errors for the streamfunction ψ, potential vorticity q and velocity ug are listed in

Table 5.2 for linear elements and Table 5.3 for quadratic elements. The streamfunc-

tion and potential vorticity are seen to converge according to O(hp+1) and velocity

to O(hp) for grid spacing h. The velocity convergence is an order lower because it

is directly calculated from the gradient of the streamfunction. This is in agreement

with optimal convergence rates of O(hp+1) for a finite element scheme using pth

order polynomial basis functions of the discrete finite element spaces, indicating a

(p+ 1)th order scheme [105]. This test shows that the finite element discretisation

of the advection term and recovery of the streamfunction from a discontinuous po-

tential vorticity is successful and can be advanced in time whilst retaining optimal

convergence.

Grid Size L2 Error ψ EOC ψ L2 Error q EOC q L2 Error ug EOC ug

8 × 8 0.043593 - 4.28992 - 1.0196 -
16 × 16 0.00868395 2.32767 0.919827 2.22152 0.503512 1.01791
32 × 32 0.00233053 1.89769 0.219522 2.067 0.251826 0.999602
64 × 64 0.000543162 2.1012 0.0474644 2.20945 0.125908 1.00005

128 × 128 0.000126787 2.09897 0.010588 2.16442 0.0629559 0.999958

Table 5.2: Linear elements 2D. L2 errors and experimental order of convergence
(EOC) for the streamfunction ψ, potential vorticity q and velocity ug for travelling
wave test run for 2D QGE using linear elements (p = 1) at t = 8π2 + 1.

Grid Size L2 Error ψ EOC ψ L2 Error q EOC q L2 Error ug EOC ug

8 × 8 0.00229405 - 0.476252 - 0.102612 -
16 × 16 0.000254975 3.16947 0.0571252 3.05953 0.0255342 2.0067
32 × 32 3.09147e-05 3.04399 0.00692878 3.04345 0.00638298 2.00013
64 × 64 3.85486e-06 3.00354 0.000860197 3.00986 0.00159584 1.99992

Table 5.3: Quadratic elements 2D. L2 errors and experimental order of con-
vergence (EOC) for the streamfunction ψ, potential vorticity q and velocity ug for
travelling wave test run for 2D QGE using quadratic elements (p = 2) at t = 8π2 +1.
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Figure 5.1: (Left) Potential vorticity q and (Right) streamfunction ψ for the trav-
elling wave test TW2D at t = 8π2 + 1 using linear elements. Computed on [0, 1]2

domain with 128× 128 grid.

5.2 Travelling Wave 3D Full Mechanics (TW3DF)

To test the full finite element / finite difference discretisation for the quasi-geostrophic

model (2.101) that will be used to investigate frontogenesis, the previous test from

[20] is extended to a three-dimensional travelling wave example. This is with hor-

izontal momentum and vertical buoyancy diffusion terms (AH > 0,KV > 0) and

bottom friction (CD > 0) with the full vertical boundary conditions (2.102) that

require temperature to be solved on the top and bottom boundaries using (2.103).

This test uses the exact solution

ψ(x, y, t) = sin(2πx− ct) sin(2πy) sin(2πz) (5.5)

q(x, y, t) = −
(

8π2 +
4π2

BuN2

)
sin(2πx− ct) sin(2πy) sin(2πz) + βy. (5.6)
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For these to satisfy the equations set the forcing term,

F(x, y, t) =

[(
8π2 +

4π2

BuN2

)
c+ 2πβ

]
cos(2πx− ct) sin(2πy) sin(2πz)

−
[
64π4AH +

16π4

N2
KV1 + 8π2CD

]
sin(2πx− ct) sin(2πy) sin(2πz).

(5.7)

Two different runs were performed; one with the streamfunction fixed to zero at

the north-south boundaries and another with free-slip boundaries where the bound-

ary values are calculated as described in Section 2.3.3. Tests with both linear and

quadratic elements were done and L2 errors and EOCs at t = 12π2 were calculated.

Parameter Value

KV 10−5 m2s−1

AH 0.01 m2s−1

CD 0.1 s−1

β 1 m−1s−1

f0 1 s−1

N 1 s−1

c −β/2π(2 +Bu−1N−2)

U 1 ms−1

L 1 m

Lx 1 m

H 1 m

Table 5.4: Parameter values used for three-dimensional travelling wave test with
full mechanics. Since the characteristic values are set to 1, the above parameters
are equal to the non-dimensional parameters.

Grid Size L2 Error ψ EOC ψ L2 Error q EOC q L2 Error ug EOC ug

8 × 8 × 15 0.139772 - 20.7081 - 2.7481 -
16 × 16 × 15 0.0276283 2.33886 4.41112 2.23098 1.3357 1.04084
32 × 32 × 15 0.00677504 2.02784 1.04021 2.08427 0.666707 1.00247
64 × 64 × 15 0.00128219 2.40162 0.204547 2.34637 0.333137 1.00094

128 × 128 × 15 0.000182996 2.80873 0.0417762 2.29168 0.166578 0.999921

Table 5.5: Linear elements with zero Dirichlet boundaries. L2 errors and
EOCs for the streamfunction ψ, potential vorticity q and velocity ug for travelling
wave test run for 3D QGEs with full mechanics (TW3DF) and fixed ψ = 0 boundary
conditions using linear elements.

The parameters used for this test are in Table 5.4 and the experimental convergence
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Grid Size L2 Error ψ EOC ψ L2 Error q EOC q L2 Error ug EOC ug

8 × 8 × 15 0.00776318 - 2.142 - 0.276004 -
16 × 16 × 15 0.000671369 3.53147 0.230193 3.21805 0.0675882 2.02985
32 × 32 × 15 0.000212143 1.66207 0.0271393 3.08439 0.0169798 1.99295
64 × 64 × 15 0.000203956 0.0567762 0.00430776 2.65537 0.00459478 1.88575

8 × 8 × 23 0.0092559 - 2.07106 - 0.343144 -
16 × 16 × 23 0.000885614 3.38562 0.220849 3.22924 0.0847133 2.01815
32 × 32 × 23 0.000116862 2.92187 0.0259789 3.08765 0.0211763 2.00014
64 × 64 × 23 5.94814e-05 0.96625 0.00526677 2.30234 0.00531805 1.99348

Table 5.6: Quadratic elements with zero Dirichlet boundaries. L2 errors and
EOCs for the streamfunction ψ, potential vorticity q and velocity ug for travelling
wave test run for 3D QGEs with full mechanics (TW3DF) and fixed ψ = 0 boundary
conditions using quadratic elements. The convergence suffers from the low vertical
resolution and improves with greater vertical resolution as seen in the second set of
tests with 23 vertical layers.

results for the fixed boundary value run are shown in Table 5.5 for linear elements

and 5.6 for quadratic elements. The suboptimal convergence rates in the quadratic

element run are due to the low vertical resolution, and improve with finer vertical

resolution. It is evident that increasing the order of the horizontal finite element

discretisation is overshadowed by the vertical resolution and first order time dis-

cretisation. Despite the optimal convergence observed with the linear elements, the

discrete velocity solution contains large discontinuities. It is for these reasons that

quadratic elements will be used for all further tests and calculations in this thesis.

The convergence results displayed in Table 5.7 and 5.8 were produced from the

run with free-slip north and south boundaries. It is evident that the boundary

value calculation causes an error increase, most notable in the coarsest grids and

interferes with the optimal convergence of the finite element method. This is to

be expected since the boundary value calculation involves integration over gradient

approximations at the boundary, which improve with finer grids. It was found

that convergence was sensitive to the diffusion parameter AH when using free-slip

boundaries. This is likely due to the no-flux boundary condition ω = 0 on the north

and south boundaries that accompanies the horizontal momentum diffusion term,

which is weakly enforced by the AH term as seen in the linear form (4.82). If AH
is not sufficiently large, then errors on the boundary will lead to poor accuracy in

the calculation of the streamfunction boundary values using (2.117).
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Grid Size L2 Error ψ EOC ψ L2 Error q EOC q L2 Error ug EOC ug

8 × 8 × 15 1.55217 - 169.006 - 13.4619 -
16 × 16 × 15 0.58696 1.40296 59.4951 1.50624 5.25068 1.35831
32 × 32 × 15 0.137608 2.09269 14.2832 2.05845 1.39821 1.90892
64 × 64 × 15 0.03797 1.85764 3.92194 1.86468 0.475683 1.55551

128 × 128 × 15 0.00988741 1.94120 1.01737 1.94672 0.188563 1.33495

Table 5.7: Linear elements with free-slip boundaries. L2 errors and EOCs for
the streamfunction ψ, potential vorticity q and velocity ugfor travelling wave test
run for 3D QGEs with full mechanics (TW3DF) using linear elements and free slip
boundary treatment.

Grid Size L2 Error ψ EOC ψ L2 Error q EOC q L2 Error ug EOC ug

8 × 8 × 15 0.639233 - 68.9266 - 5.28244 -
16 × 16 × 15 0.0365257 4.12936 3.5196 4.29158 0.31465 4.06938
32 × 32 × 15 0.00496421 2.87927 0.474554 2.89077 0.0442313 2.83061
64 × 64 × 15 0.000634833 2.96712 0.0585782 3.01814 0.00671889 2.71877

Table 5.8: Quadratic elements with free-slip boundaries. L2 errors and EOCs
for the streamfunction ψ, potential vorticity q and velocity ug for travelling wave
test run for 3D QGEs with full mechanics (TW3DF) using quadratic elements and
free slip boundary treatment. Convergence is less effected by the vertical resolution
than in Table 5.6, suggesting that convergence is somewhat determined by the free-
slip boundary value calculations. Only three refinements were performed due to
computational limits.

5.3 Numerical Conservation of Energy and Enstrophy

The energy and enstrophy are conserved quantities of the inviscid QGE (2.65) as

shown in Theorems 2.5 and 2.7, it is therefore desirable for these quantities to be

conserved numerically as tested in [20]. Define the energy of the numerical solution

as

Eh =
1

2
‖∇ψn‖2L2 +

1

2

∥∥∥∥f0

N

∂ψn

∂z

∥∥∥∥2

L2

(5.8)

and the enstrophy (dissipation energy) of the numerical solution as

Zh =
1

2
‖qn‖2L2 , (5.9)

where the L2 norms are taken over the whole computational domain. Figure 5.2

shows the energy and enstrophy plotted over time of the TW3DF test with quadratic

basis functions and free-slip boundaries (Table 5.8). The numerical quantities of the

travelling wave solution can be seen to converge towards the analytical values for

energy E = 3π2/4 ≈ 7.4022 and enstrophy Z = 9π4 + 1/6 ≈ 876.8485 as h → 0.
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Furthermore, the relative changes in numerical energy and enstrophy from the initial

values decreases as the horizontal grid spacing h decreases indicating that the spatial

discretisation conserves these quantities.
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Figure 5.2: Numerical conservation of energy and enstrophy with refinement in grid spacing
h. Solutions are taken from the test in Table 5.8. (Left) Energy and enstrophy for the
numerical solutions converge to true values E and Z as h→ 0. (Right) Change in numerical
energy and enstrophy relative to initial values E0 and Z0 at t = 0. The initial values are
calculated after projection of the initial conditions onto the grid. The quantities from the
coarsest grid (h = 0.125) have been excluded from the plots on the left to provide a clearer
view of the more refined solutions.

5.4 Vortex Pair without Rotation (VPwoR)

This section tests the motion of a vortex pair as described in [1, 62], similar to tests

performed in [75, 91, 121], where a vortex pair of opposing vorticities will propagate

along their axis of separation. Set diffusion and rotation to zero (f0 = β = 0) so

that the QGE are reduced to the vorticity equation for the two-dimensional Euler
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equations

∂q

∂t
+ (ug · ∇)q = 0 (5.10)

where the potential vorticity is now equivalent to relative vorticity q = ∆ψ, north/-

south boundaries are free-slip and east/west boundaries are periodic. The stream-

function of a point vortex with infinite vorticity at a position (x0, y0) and zero

vorticity everywhere else is given by

ψ = − Γ

4π
log((x− x0)2 + (y − y0)2). (5.11)

Clearly, one must add a small constant δ into this formulation to remove the singu-

larity for computational purposes. Therefore, an initial two-dimensional vortex of

strength Γ0 = Γ at (x0, y0) is given by,

ψ(x, y, 0) = −
2∑
i=0

Γi
4π

log((x− xi)2 + (y − yi)2 + δ2), (5.12a)

ug(x, y, 0) = −∂ψ
∂y

=
2∑
i=0

Γi
2π

y − yi
(x− xi)2 + (y − yi)2 + δ2

, (5.12b)

vg(x, y, 0) =
∂ψ

∂x
= −

2∑
i=0

Γi
2π

x− xi
(x− xi)2 + (y − yi)2 + δ2

, (5.12c)

q(x, y, 0) = −
2∑
i=0

Γi
π

δ2

((x− xi)2 + (y − yi)2 + δ2)2
, (5.12d)

where image vortices, at (x1, y1) = (x0,−y0) and (x2, y2) = (x0, 2Ly−y0) for domain

width Ly in the y−direction of strengths Γ1 = Γ2 = −Γ, ensure the no-flow through

boundary condition ug · n = 0 is satisfied.

Using the above equations to ensure boundary conditions are satisfied, a vortex

pair is placed with vortices at (0.5, 0.4) and (0.5, 0.6) with strengths −Γ and Γ

respectively where Γ = 0.005. The computational domain is a two-dimensional unit

square [0, 1]2. Such a configuration generates a westward flow on the structure,

indeed, the pair propagates westward as shown in Figure 5.3. The approximate

velocity at which this vortex pair should travel is given by the velocity that each

vortex induces on the other

ug = −∂ψ
∂y

=
Γ

2π

0.4− 0.6

(0.5− 0.5)2 + (0.4− 0.6)2
= − Γ

0.4π
≈ −0.004. (5.13)
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This velocity is reduced slightly by the effect of the north and south boundaries

that create the effect of counter-rotating image vortices on the other side of the

boundaries. The closest image vortices at (0.5, 1.4) and (0.5,−1.4) induce a velocity

of

Γ

2π

0.8

(0.8)2
=

Γ

1.6π
≈ 0.001 (5.14)

on the structure which gives the total velocity of the vortex pair to be approximately

−0.003. Therefore, at t = 50 the vortex pair should have travelled approximately

a distance of 0.15 across the domain to x = 0.35. As seen in Figure 5.3c, the pair

has moved slightly less than this due to the vorticity that the vortex pair sheds as

it propagates, weakening the structure. This test shows that the numerical scheme

can produce accurate dynamics of a vortex pair.

5.5 Boundary Image Vortex without Rotation (VwoR)

This section tests the method with a vortex near the free-slip boundary similar to

the test in [108]. The vortex is expected to propagate along the boundary as if an

image vortex (of opposite vorticity) is on the opposite side of the boundary creating a

vortex pair [1, 62]. Therefore, the vortex propagates along the boundary in a similar

way to a vortex pair as shown in Figure 5.4. The vortex propagates slightly faster

than the vortex pair because it experiences less distortion from the north boundary

than in the vortex pair test case and has a propagation velocity of approximately

−0.0035, therefore, moving to around x = 0.325 at t = 50. This shows that the

free-slip boundaries have been implemented correctly in the numerical scheme and

vortex dynamics behave as expected near the boundaries.

5.6 Vortex in a β-plane (VwR)

Now, set β = 1 to observe the β-plane effect on a vortex as tested in [86, 88]. The

equation is now (5.10) with q = ∆ψ + βy. The same initial conditions (5.12) are

used with the vortex initially placed at (0.5, 0.1).

An explanation for the behaviour of the vortex in the β-plane found in [86] is outlined

in the following. For a characteristic velocity scale U and length scale L, one can

estimate a scaling ratio between the β-term and vorticity advection in the potential
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(a) Initial vortex pair t = 0.

(b) Vortex pair begins to propagate westward, moving as a single structure, t = 25.

(c) Fluid moves around the vortex pair as it propagates and sheds vorticity, t = 50.

Figure 5.3: A vortex pair propagating westward due to the velocity each vortex induces on
the other, computed on a 128× 128 grid with quadratic elements and free-slip boundaries.
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(a) Initial vortex at t = 0.

(b) Vortex begins to propagate westward as if there is a counter-rotating vortex on the other
side of the solid boundary, t = 25.

(c) The vortex sheds vorticity and weakens slightly as it propagates along the boundary,
t = 50.

Figure 5.4: Potential vorticity and streamlines with arrows indicating fluid velocity direc-
tion of a vortex propagating westward along the south boundary as if part of a vortex pair,
computed on a 128× 128 grid.
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(a) Initial vortex near south boundary at t = 0.

(b) Vortex at t = 100, westward motion becomes dominant over the boundary propagation.

(c) Vortex at t = 250, Rossby waves shed in the wake of the vortex.

(d) Vortex hits the north boundary at t = 500

Figure 5.5: A cyclonic vortex propagating northwest due to β-plane rotation effects. The
vortex propagates along the boundary in the eastward direction for a short time, but as it
moves north due to the rotation effects, the westward motion dominates. Rossby waves can
be seen in the wake of the vortex.
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vorticity equation (5.10),

R =
βv

u · ∇ω ∼
βU

(U/L)(U/L)
=
βL2

U
, (5.15)

where vorticity ω = ∆ψ. The β influence is strong when R is large. When this is

true, the initially axisymmetric streamfunction ψ propagates westward and changes

shape by Rossby wave dispersion. To understand this propagation, observe when

the flow is primarily an axisymmetric vortical flow ψ(x, y) ≈ Ψa(r), the β-term

creates a forcing term in (5.10) since

(u · ∇)βy = β
∂ψ

∂x
≈ β ∂

∂x
Ψa(r) = β cos(θ)

dΨa

dr
. (5.16)

The cos(θ) represents a dipole structure, which generates an advective flow. Initially,

the dipole centres are separated in the zonal direction (east-west), but after time

this is rotated by azimuthal (angular) advection from Ψa towards a more meridional

(north-south) separation. This results in an approximately westward advection. The

dipole centre separation is not completely meridional, so the vortex propagation is

not exactly westward. The north-south motion is dependent on the sign of dΨa/dr:

if it is positive, then the motion will be to the north as in Figure 5.5 and if it is nega-

tive, then motion will be to the South as in Figure 5.6. Rossby waves can be seen in

the wake of the vortices, where weather fronts often form in the atmosphere. Such

low/high pressure systems can be carried eastward by the Northern Hemi-sphere jet

stream, causing weather fronts to precede the cyclone/anticyclone. Clearly the vor-

tices in the numerical tests behave in accordance with this theoretical explanation,

demonstrating that the planetary rotation effects have been implemented correctly.

5.7 Vortex in an f-plane with East-West Tilt (VEWT)

This test is constructed using an initial vortex with an east-west tilt with height is

used to test the effects of the f-plane. For this test set β = 0, f0 = 10 and N = 1

with the unforced (F = 0), inviscid (AH = KV = 0) three-dimensional QGE (2.65)

in a unit cube domain [0, 1]3 to observe strong rotation effects. Figure 5.7 shows

how the initial vortex evolves. The vortex becomes flattened in the y-direction and

rotates anti-clockwise. Over time, this flattening and rotating of the vortex structure

forms into a vertical vortex column aligned with the global rotation axis as would

be expected in a strongly rotating fluid due to the Taylor-Proudman theorem [39].
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(a) Initial vortex at t = 0.

(b) Vortex begins to experience rotational effects at t = 150.

(c) Vortex propagating southwest at t = 300.

(d) Vortex at t = 1000.

Figure 5.6: Potential vorticity and streamlines of an axisymmetric anti-cyclonic
vortex propagating southwest due to β-plane rotation effects.
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: Potential vorticity isosurfaces of an anti-cyclonic vortex with an east-
west tilt evolving in an f-plane. The initially tilted vortex straightens up and be-
comes more uniform with height. This demonstrates that the numerical method
exhibits the expected behaviour of rapidly rotating flows. Computed on [0, 1]3 do-
main with 128× 128× 15 grid using quadratic elements and free-slip boundaries.
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Chapter 6

Quasi-geostrophic Frontogenesis

The goal of this chapter is to use a reduced model for the formation of weather

fronts and from this gain insight into their origin and the role of frontal dynamics

upon atmospheric flows. The following presents a brief discussion of how weather is

generated in Earth’s atmosphere from [86]. The mean circulation patterns for the

ocean and atmosphere are unstable to perturbation and are therefore intrinsically

variable, despite the invariant compositions of the ocean and atmosphere and fixed

land and sea-floor topography. The statistics of this variability may be considered

stationary in time under steady-state external influences; generating a statistical

equilibrium comprised of unstable mean flows, turbulent eddies, waves, and vortices

generated by the instabilities. On longer time scales, the mean eddy fluxes of mo-

mentum, heat, potential vorticity, and material tracers shape the structure of the

mean circulation and material distributions.

Synoptic scale or mesoscale mean circulations are approximately geostrophic, hydro-

static and subject to two broad groups of instabilities: Barotropic instability: the

mean horizontal shear is the principal energy source for the eddies, and horizontal

momentum flux (Reynolds stress) is the dominant eddy flux. Baroclinic instability:

the mean vertical shear and horizontal buoyancy gradient (related through the ther-

mal wind) is the energy source, and the vertical momentum and horizontal buoyancy

fluxes are the dominant eddy fluxes, with Reynolds stress playing a secondary role.

Under some circumstances, the mean flows are unstable to other smaller scale types

of instability: convective, Kelvin-Helmholtz, or centrifugal, which are relatively rare

as direct instabilities of the mean flows on the planetary scale. More often these

instabilities arise either in response to locally forced flows such as in boundary lay-
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ers or as secondary instabilities of the synoptic and mesoscale flows as part of a

general cascade of variance toward dissipation on very small scales. The mean zonal

wind pattern in the mid-latitude troposphere is a result of geostrophic flow with an

associated meridional temperature gradient created by tropical heating and polar

cooling.

This wind profile is baroclinically unstable to extra-tropical fluctuations on the syn-

optic scale of O(103) km. This is the primary origin of weather, and in turn weather

events collectively cause a poleward heat flux that limits the strength of the zonal

wind and its geostrophically balancing meridional temperature gradient.

This chapter will demonstrate that the QGE can produce fronts using a horizontal

deformation field acting on a temperature gradient. This then sets the stage for a

more dynamic channel model that generates fronts along a strong zonal jet within

geostrophic turbulence. The goal of this chapter is to characterise the resulting

fronts in terms of profiles and horizontal spectra that could eventually be compared

to atmospheric data or further reduced models.

6.1 Deformation Field Front Formation

There are many mechanisms involved in the formation of fronts, one of the most

important being a horizontal deformation field acting upon a temperature gradient

[61, 112, 128, 129, 130]. A deformation field with an axis of contraction perpendicular

to a temperature gradient will intensify the gradient. Frontogenesis using the quasi-

geostrophic equations has been achieved analytically [130] and numerically [87, 129].

Williams analytically and numerically solved the quasi-geostrophic equations by

decomposing the streamfunction into one part describing the deformation field and

another part independent of x to get the non-dimensionalised equations (after a

change of coordinates)

∂q

∂t
− y∂ψ

∂y
= 0

∂2ψ

∂t∂z
− y ∂

2ψ

∂y∂z
+ w = 0 (6.1)

where

q =
∂2ψ

∂y2
+
∂2ψ

∂z2
, (6.2)
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removing the x dependence. These equations are solved in a vertical slice with a

y − z plane streamfunction with a simple setup to achieve frontogenesis [129, 130];

impose a deformation field with horizontal velocity and length scales U and L,

ud =
U

L

(
x− L

2

)
vd = −U

L

(
y − L

2

)
(6.3)

and initial temperature field with vertical length scale H,

θ =
∂θI
∂z

(
z − H

2

)
−A

(
2

π

)
arctan

(
sinh

(
α

[
y − L

2

]))
, (6.4)

where A is the variation in temperature and α = 1/(2Lf ) for frontal length scale

Lf = HN/f0. This choice of temperature disturbance is close to the large time

analytical solution found by Williams and the particular value of α used is such

that the length scale of the initial disturbance is no smaller than the frontal scale

(or Rossby deformation radius) Lf . Otherwise, the vertical motions of rising warm

air and falling cool air will be dominant over the frontogenesis causing frontoly-

sis (weakening of the front) to occur [130]. Williams’ numerical results displayed

an increase in the meridional temperature gradient, however, oscillations near the

boundary occurred due to the inexactness of the constant flux boundary condi-

tions [129]. Despite this, the results clearly indicate formation of a front within the

quasi-geostrophic and non-geostrophic settings, with the non-geostrophic equations

producing a front with more realistic vertical sloping.

Figure 6.1: (Left) Initial potential temperature (6.7) and (Right) velocity field (6.6)
with streamlines (contours of (6.8)) at z = 900 m.

Within this thesis, an attempt is made to reproduce the inviscid quasi-geostrophic
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Parameter Value

KV 0 m2s−1

AH 0 m2s−1

CD 0 s−1

β 1.4× 10−11 m−1s−1

f0 1.1× 10−4 s−1

γ 3.3× 10−3 K−1

N 0.0114 s−1

θ0 300 K

∂θI/∂y −3× 10−6 Km−1

∂θI/∂z 4× 10−3 Km−1

g 9.806 65 Km−1

L 7.2× 106 m

Lx 7.2× 106 m

H 9000 m

U 20 m s−1

Table 6.1: Parameter values used for deformation field.

results, using an approach similar to that used by Williams [130]. The equations

will be the unforced, inviscid dimensional quasi-geostrophic equations

∂q

∂t
+ (ug · ∇)q = 0, (6.5a)

with

q = ∆ψ +
∂

∂z

(
f2

0

N2

∂ψ

∂z

)
+ βy, (6.5b)

with rigid north, south, top and bottom boundaries and periodicity in the zonal

direction. Instead of using the deformation field given by (6.3), this work uses the

sinusoidal field,

ud = U sin

(
2π

L

(
x− L

2

))
cos

(
2π

L

(
y − L

2

))
, (6.6a)

vd = −U cos

(
2π

L

(
x− L

2

))
sin

(
2π

L

(
y − L

2

))
, (6.6b)

and an initial temperature field with a linear north-south gradient

θ =
∂θI
∂y

(
y − L

2

)
+
∂θI
∂z

(
z − H

2

)
+ θ0. (6.7)
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Here θ0 is a reference temperature with ∂θI/∂y = −3× 10−6 Km−1 and ∂θI/∂z =

4× 10−3 Km−1 being the horizontal and vertical temperature variations of the initial

field. The vertical potential temperature variation ∂θI/∂z is taken to be positive as

in a stable atmosphere. This produces the initial streamfunction

ψ =
gγ

f0

[
−UL

2π
sin

(
2π

L

(
x− L

2

))
sin

(
2π

L

(
y − L

2

))
+

(
∂θI
∂y

(
y − L

2

)
+

1

2

∂θI
∂z

(z −H) + θ0

)
z

]
, (6.8)

where g is the gravitational acceleration and γ is the thermal expansion coefficient.

Initial potential vorticity is then

q =
4πU

L
sin

(
2π

L

(
x− L

2

))
sin

(
2π

L

(
y − L

2

))
+
f2

0

N2

∂θI
∂z

+ βy. (6.9)

Figure 6.2: Formation of a front at t = 30 h, horizontal slice at z = 900 m. Strong
temperature gradients can be seen at y = 3600km between x = 2160−6480km. The
deformation field and front formation have drifted east due to the geostrophic winds
that form to balance the meridional temperature gradient. The vertical structure
of the front is seen in Figure 6.4. Computed on a 64× 64× 15 grid.

This setup is similar to that used by Stone [112], and the spurious oscillations near

the boundary should not occur with the zero flux boundary conditions. This initial

temperature gradient is representative of the average natural state of the atmo-

sphere, with warmer air near the equator and cold air at the poles. Note that,

because the temperature gradient extends over the whole domain, only L > Lf is

required to observe frontogenesis. The choice of deformation field also means that

ud ≈ x, vd ≈ −y for (x, y) close to (L/2, L/2), thereby resembling the simple defor-
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mation fields used by Stone and Williams. This is the region where frontogenesis is

expected to be observed.

Initial conditions at z = 900 m above ground are shown in Figure 6.1. The initial

linear temperature gradient in the left hand image shows warm air in the South

and cool air in the North. The right image shows the deformation field following

streamlines (depicted with contours). Figure 6.2 shows the evolution of the flow

after 30 hours. A strong concentration of temperature contours indicate that a clear

frontal zone has formed near the centre of the domain. The temperature gradients

in turn induce a geostrophic westerly wind that has caused the front to drift towards

the East.

Figure 6.3: (Left) Initial potential temperature and (Right) meridional tempera-
ture gradient with zonal velocity (contours) at x = 4176 km. Vertical temperature
variation is that of a stable atmosphere (N2 > 0).

Figure 6.4: Formation of a front at t = 30 h, vertical slice at x = 4176 km. The
temperature gradients clearly intensify with the strongest gradient occurring near
the top and bottom boundaries. A strong westerly jet develops at the top boundary
due to the strong temperature gradients. An opposing jet develops near the ground
due to the movement of air along the frontal zone.

Observing the development of the front in a vertical slice taken at x = 4176km,

one can see that the initially stable temperature profile (Figure 6.3) becomes de-
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formed with strong temperature gradients around y = 3600km as seen in Figure

6.4. The strongest temperature gradients occur near the top and bottom bound-

aries. Strong jets also form near the boundaries; at the top boundary a strong

westerly jet is induced by the strong meridional temperature gradient, whilst at the

bottom boundary an easterly jet is formed by the motion of air along the frontal

zone.

6.2 Channel Model

This section investigates a turbulent zonal jet for a geometry known to generate

fronts when simulated by McWilliams et al. [87, 89] and Holland et al. [56, 57]. The

domain is as previously assumed: [0, Lx]× [0, L]× [0, H] with periodicity in the zonal

direction and rigid top, bottom, north and south boundaries. The configuration

assumes that there is a constant forcing at the top of the domain in the form of a

stress wind representing the geostrophic wind generated by a meridional temperature

gradient. Neither heating (Ht = 0) nor vertical diffusion (KV = AV = 0) is used

since McWilliams and Chow [87] found these had a negligible effect on the dynamics

of the flow. This zonal wind blows eastward and is strongest in the centre of the

domain; this effect can be incorporated into the model by letting

τ = τ0 sin
(πy
L

)
x̂, (6.10)

where x̂ = (1, 0, 0), then the forcing term in the quasi-geostrophic equations is given

by

F =

H
−1
w (∇× τ ) · ẑ = − τ0π

LHw
cos
(πy
L

)
if z ≥ |H −Hw|

0 if z < |H −Hw|
(6.11)

where Hw is the depth of the wind and ẑ = (0, 0, 1). The energy in the system is

damped by a bottom friction

CD =

C′D if z ≤ HD

0 if z > HD

(6.12)

applied to the bottom of the domain, where HD < H is some height. Let us recall

the dimensional quasi-geostrophic equations (2.65) in this setting;

∂q

∂t
+ J(ψ, q) = F +AH∆2ψ − CD∆ψ
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Figure 6.5: Initial perturbations seen as horizontal slices taken at height of 4500 m. (Left)
Potential vorticity contours. (Right) Streamlines with flow direction indicated by arrows.
Sinusoidal perturbations make up the initial flow to provide the conditions for a growing
instability.

with potential vorticity

q = ∆ψ +
∂

∂z

(
f2

0

N2

∂ψ

∂z

)
+ βy. (6.13)

The boundary conditions are free-slip with no-flux that is

∂ψ

∂τ
= AH

∂2ψ

∂n2
= 0 on north and south boundaries, (6.14a)

w = 0 on top and bottom boundaries (6.14b)

with periodic boundaries in the zonal direction. The values of the streamfunction

at the north and south boundaries are calculated using equations (2.117).

Table 6.2 shows a summary of similar numerical experiments. McWilliams and

Chow uses a three-layer model with a higher order “triharmonic” viscosity term

−A4∆3ψ to dampen small grid level oscillations and a vertical momentum diffusion

term which was found to have insignificant effects on the flow. As stated in [56],

the reason for using this higher order viscosity term is computational. The purpose

of these horizontal diffusion terms and bottom friction is to dissipate energy with

corresponding decay rates δm = 8AHπ2/L2
e, δ4 = 32A4π

4/L4
e and δD = CD where

Le is an eddy length scale. From this it is clear that the decay times 1/δm and 1/δ4

become much longer for larger eddies, but the diffusive effects of the A4 term drop

more rapidly than the AH term at larger scales. When introducing bottom friction,

horizontal diffusion is still desired for numerical stability. It is for this reason that

the higher order diffusion is more commonly used in conjunction with bottom fric-

tion.
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Paper Scheme Or-
der

h ∆z AH (m2s−1) A4 (m4s−1) CD (s−1) Comments

McWilliams
1981 Equilib-
rium Geostrophic
Turbulence [87]

2nd Finite
Diff

38.5 km 3 layer 0 1011 10−7

McWilliams 1981
[87]

2nd Finite
Diff

19.2 km 3 layer 0 1010 10−7

McWilliams 1981
[87]

2nd Finite
Diff

9.6 km 3 layer 0 109 10−7

McWilliams
1978 Antarctic
Curcumpolar
Currents [89]

2nd Finite
Diff

19.6 km 3 layer 0 1010 10−7 Uses time varying oscillation in
wind stress. Experimented with
larger A4 but no discernible changes
in streamfunction patterns. Uses
smallest A4 possible that is consis-
tent with computational stability.

Holland 1978
Wind Driven QG
Model [56]

2nd Finite
Diff

20 km 2 layer 0, 100, 330, 2600 8× 109 10−7 Smaller AH results in more vigorous
jet meanders. AH = 0 when using
bottom friction. A4 used with bot-
tom friction term to replace AH . In-
stability completely suppressed for
AH = 2600.

Table 6.2: Channel model literature.
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Triharmonic damping is rapid at small scales and drops off rapidly at larger scales.

Although, the same effect can be achieved with the derived horizontal momentum

diffusion term AH∆2ψ using a smaller value of AH and increase in horizontal res-

olution. These parameters are chosen in the literature to be as small as possible

without allowing grid level noise to develop. Holland tests the model with AH 6= 0,

with values ranging from 100 m2s−1 to 2600 m2s−1 with a 20 km resolution and found

that the flow became more non-linear with decreasing AH . Holland introduces a

bottom friction term when replacing the AH term with the higher order diffusion. In

this section, the AH term is retained to avoid imposing greater timestep restrictions

on the explicit numerical scheme.

Parameter Oceanic Value Atmospheric Value

KV 0 m2s−1 0 m2s−1

AH 1 m2s−1 1 m2s−1

CD 10−7 s−1 4× 10−6 s−1

β 1.4× 10−11 m−1s−1 1.6× 10−11 m−1s−1

f0 1.1× 10−4 s−1 1.1× 10−4 s−1

γ 2× 10−4 ◦C−1 3.5× 10−3 ◦C−1

N 0.002 s−1 0.011 s−1

τ0 10−4 m2s−2 0.1 m2s−2

L 106 m 8× 106 m

Lx 2× 106 m 16× 106 m

H 5000 m 9000 m

Hw 500 m 900 m

HD 3250 m 5850 m

U 1 m s−1 60 m s−1

Table 6.3: Parameter values used for channel model.

Experiment Grid Resolution AH CD
1 64× 32× 5 31.25 km 175 m2s−1 10−7 s−1

2 64× 32× 5 31.25 km 4 m2s−1 10−7 s−1

3 64× 32× 5 31.25 km 0.1 m2s−1 10−7 s−1

4 64× 32× 5 31.25 km 100 m2s−1 0 s−1

5 128× 64× 7 15.625 km 1 m2s−1 10−7 s−1

6 256× 128× 5 7.8125 km 1 m2s−1 10−7 s−1

7 128× 64× 5 125 km 1 m2s−1 4× 10−6 s−1

Table 6.4: Horizontal diffusion and bottom friction parameters used in different
experiments.

115



The system is perturbed by an arbitrary arrangement of horizontal sinusoidal waves

that are uniform with height,

ψ(x, y, z, 0) =
100

UL
sin

(
5πy

L

)[
sin

(
5πx

Lx

)
+ sin

(
10πx

Lx

)]
. (6.15)

Figure 6.6: Horizontal slices taken at height of 4500 m of channel Experiment 1 at t = 1800
days. (Left) Potential vorticity contours closely packed together show the development of a
zonal jet in the centre of the domain. (Right) Streamlines with velocity direction indicated
by arrows. The oscillations with the jet represent the Rossby wave growth. The dominant,
most unstable x-wavelength is 400 km, other perturbation modes have not grown as quickly.

The parameters used for the simulations are listed in Table 6.3 and the different

diffusion parameters experimented with are detailed in Table 6.4. Experiments 1-

6 use parameters based on those used in [87] and more closely resemble an ocean

channel, however, as McWilliams and Chow argues in [87], the flow characteristics

are still applicable to the atmosphere. Experiment 7 uses the atmospheric param-

eters listed in Table 6.3 based on [111]. The first experiment used a relatively low

31.25 km horizontal resolution with a 64 × 32 × 5 grid and AH = 175 m2s−1 and

since it was found that the vertical diffusion coefficients had little effect on the av-

erage dynamics of the channel flow KV = 0 m2s−1 was chosen. Experiments 2, 3

and 4 confirm the findings of Holland [56], reducing AH results in a more turbulent

flow. Experiment 5 used a slightly increased vertical resolution, but did not reveal

any further flow dynamics. Experiment 6 uses a finer resolution than in previous

literature and produced eddies of various length scales as can be seen in Figures 6.7

and 6.8. The analysis discussed will refer to Experiment 6 unless otherwise specified.

The initial state begins almost at rest with the flow consisting only of the small sinu-

soidal perturbation (6.15). The wind stress then generates meridional streamfunc-

tion, potential vorticity and temperature gradients that propagate down through

the flow creating a zonal jet that grows in strength. For the first 1000 days the flow

remains strongly linear with no visible perturbations until a growing Rossby wave
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Figure 6.7: Horizontal slices taken at 4500 m of channel Experiment 6 (AH = 1 m2s−1) at
t = 2055 days. Contours are displayed for potential vorticity, streamfunction, temperature
and vertical velocity. Arrows on the streamlines indicate flow direction. The flow has
developed turbulent behaviour with the jet meandering in an irregular fashion and large
eddies are visible.

with wavelength approximately 400 km becomes visible in the centre of the jet, as

seen in Figure 6.6 (see Appendix A for more information on Rossby waves and jet

streams). These waves steadily grow in amplitude until around day 1700 when the

jet becomes baroclinically unstable and develops the turbulent behaviour seen in

Figure 6.7. Note that, the turbulent behaviour here is geostrophic where vortices

are primarily generated by the break up of the baroclinic jet (see Sections 1.2 and

1.3). The kinetic energy in Figure 6.11 steadily increases during the growth of the

perturbation and spikes as the flow transitions to turbulence, the potential energy

increases until day 1700 where it rapidly releases energy into eddy generation. Fig-

ure 6.8 shows strong temperature gradients along the jet with areas of large vorticity

on each side of the temperature gradient with opposing signs, this is indicative of

frontal regions.

The long time state of the flow was found to be independent of the initial state,

provided there is a large enough perturbation. This was tested using different initial
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Figure 6.8: Horizontal slices taken at 4500 m of channel Experiment 6 at t = 2055 days.
Strong temperature gradients (◦C(1000 km)−1) can be seen along the jet axis with a build
up of positive and negative vorticity (s−1) on opposing sides of the temperature gradients.
This indicates the formation of frontal regions along the jet.

Figure 6.9: Horizontal slice taken at 4500 m of channel Experiment 2 with contrasting
temperature scale to exaggerate temperature fluctuations (◦C). Arrows indicate the fluid
velocity. The meandering jet displays physically observed features; a low pressure cell forms
in the South of the channel as cold fluid is pinched off from the north side of the jet stream.

perturbations in addition to (6.15),

ψ(x, y, z, 0) =
100

UL
sin

(
5πy

L

)[
sin

(
5πx

Lx

)
+ sin

(
15πx

Lx

)]
, (6.16)

ψ(x, y, z, 0) =
100

UL
sin

(
10πy

L

)[
sin

(
10πx

Lx

)
+ sin

(
15πx

Lx

)]
, (6.17)

ψ(x, y, z, 0) =
100

UL
sin
(πy
L

)
sin

(
20πx

Lx

)
. (6.18)

Whilst the different perturbations grew at varying rates and became baroclinically

unstable at different times, all simulations eventually entered the same state of a

meandering jet in geostrophic turbulence.

The jet displays some of the physical features of atmospheric jets including the for-
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Figure 6.10: Kinetic energy (solid black) and potential energy (dashed blue) per unit mass
of Experiment 1 sampled at 1 day intervals. The kinetic and potential energies steadily
increase until a surge of potential to kinetic energy occurs as the flow becomes baroclinically
unstable. The energies then level out as the flow reaches a statistical equilibrium, with
occasional small dips in PE and spikes in KE coincide with periods of strong frontal regions
forming in the jet meanders. The coarseness of this experiment (64 × 32 × 5) allowed for
long time integration.

mation of cyclones which become more frequent as AH is decreased. Figure 6.9

displays a region of cold air separating from the north side of the jet stream and

becoming surrounded by the warmer air in the South. The low pressure cell then

generates a cyclone as motions are deflected anti-clockwise around the cell by the

Coriolis effect [82].

As detailed in Section 2.3.1, the kinetic energy is calculated as

KE =

ˆ
Ω

1

2
|∇ψ|2 dx, (6.19)

the potential energy as

PE =

ˆ
Ω

1

2

f2
0

N2

(
∂ψ

∂z

)2

dx, (6.20)

and transfer from potential to kinetic energy as given in equations (2.86) and (2.87)

PE → KE = f0

ˆ
Ω
w
∂ψ

∂z
. (6.21)
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Figure 6.11: (Left) Kinetic energy (solid black) and potential energy (dashed blue) per
unit mass of Experiment 6 sampled at 5 day intervals. (Right) Potential energy to kinetic
energy transfer rate. Bottom figures are restricted to after the flow transitions to turbulence.
Potential and kinetic energy increase with a small but gradually increasing transfer from
KE to PE, until around day 1700 when the jet becomes unstable and turbulent where KE
spikes and there are large fluctuations in energy transfer.
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Figure 6.12: Mean fields as a function of the meridional coordinate y taken at z = 4500 m
for Experiment 6. Average over 405 days taken at 5 day intervals from t = 1950 − 2355
days. The zonal velocity peaks in the center of the domain where the jet develops, and there
is warm fluid to the south and cool fluid to the north of the jet. Temperature gradients
spike around the jet where frontal regions form. There are also spikes at the boundaries
caused by the large vortices that break off from the jet and travel along the north and south
boundaries of the channel.
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The kinetic and potential energy are plotted over time in Figure 6.11. There is an

increase in both kinetic and potential energy until the baroclinic instability sets in

and there is a transfer from potential to kinetic energy as the flow becomes strongly

turbulent. Energy transfers then continue to fluctuate within the turbulent flow. A

longer time integration, as done for Experiment 1, reveals the energies then level out

to enter a statistical equilibrium state (Figure 6.10) as described in [87], where the

flow is still turbulent with a strong meandering zonal jet and the energy injection

from the wind stress at the top of the domain is balanced by dissipation.

Figure 6.12 shows various mean fields of the turbulent flow. There is a strong zonal

velocity in the centre of the domain where the jet is strongest and sharp vorticity

and temperature gradients across the jet.

Figure 6.13 shows the temperature profile across a front at different times as it

forms within the jet. The temperature profiles collapse over the 10 days that it was

observed. Clearly, the zonal jet is a prominent feature of the flow, characterised

by strong fronts that develop and break up as the jet meanders. At times, the jet

consists of a continuous front with warm fluid in the South and cooler fluid in the

North. At other times, the jet can break up generating large eddies around the re-

sulting cooler/warmer fluid. The meanders in the jet cause frontal regions to bend

up against each other. Uplifting and strong vertical stretching are observed in these

regions as seen in Figure 6.14.

The one-dimensional energy spectrum can be calculated by taking the Fourier trans-

form of the kinetic energy, for wavevector magnitude k = |kx|, [40]

E(k) =
1

4π

ˆ
〈ug(x, y, z) · ug(x+ r, y, z)〉e−ikr dr =

1

2
|ûg(kx, y, z)|2 , (6.22)

where 〈·〉 denotes an ensemble average and

ûg(kx, y, z) =
1

2π

ˆ
ug(x, y, z)e

−ikxx dx. (6.23)

McWilliams and Chow observed a k−3 regime in the time averaged kinetic energy

spectra at y = L/2, however, higher resolution quasi-geostrophic channel calcula-

tions have shown a shallower −2.3 slope at the top of the domain [93, 111].

Figure 6.16 shows time averaged spectra of the zonal and meridional velocities. The
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Figure 6.13: Temperature profiles across a forming front traced over 10 days (highlighted
above in the temperature gradient magnitude slice at t = 2020 days). The profiles are taken
along a 300 km long one-dimensional line perpendicular to the front (white line in (a)). The
bottom axis represents the distance d along these cross-front lines which begin on the warm
side of the front and end on the cold side. The temperature profiles show that the front is
collapsing.
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(a) Vertical velocity w (ms−1), shows uplifting around fronts.

(b) Temperature gradient magnitude.

(c) Strong vertical stretching ∂w/∂z > 0 (yellow contours) and subsidence
∂w/∂z < 0 (blue contours) located around jet meanders where frontal
regions bend up. Velocity indicated with arrows.

Figure 6.14: Horizontal slices taken at a height of z = 4500 m at t = 2583 days of Experi-
ment 6 with resolution increased to 512× 256.
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spectra are taken from one-dimensional zonal lines and averaged over the meridional

coordinate and in time over a period of 405 days at 5 day intervals. The compensated

spectra indicate a short k−5/3 regime at the larger scales. Figures 6.17 and 6.18 show

that this short k−5/3 regime (or at least something less steep than k−3) at large

scales appears to be more prominent away from the central jet axis. In this region,

baroclinic instability forms meanders in the jet that can cause the jet to bend up on

itself creating closely packed frontal regions with strong vertical stretching as seen

in Figure 6.14. This concentration and stretching of sharp interfaces is known to

cascade energy to small scales and produce a k−5/3 regime in spiral vortex stretching

models [81]. Greater computational resources or a more efficient implementation of

the numerical scheme, would allow a higher resolution simulation which may reveal

a longer k−5/3 regime to confirm this.

6.2.1 Atmospheric Channel Model

As shown in Tables 6.3 and 6.4, Experiment 7 was run with atmospheric valued

parameters. The flow has very similar characteristic to the oceanic simulations

with the instability developing at t = 150 days, much quicker than the oceanic

simulations. The jet displays large meanders with wavelengths around 4000 km as

seen in Figure 6.15.

Figure 6.15: Horizontal slices taken at 8100 m of atmospheric channel Experiment 7 at
t = 225 days. Simulation run on a 128×64×5 grid. Strong temperature gradients (◦Ckm−1)
can be seen along the jet axis with a build up of positive and negative vorticity (s−1) on
opposing sides of the temperature gradients. Meandering jet has similar characteristics to
the ocean jet with large amplitude waves of wavelength around 4000 km.
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Figure 6.16: Average channel spectra. Instantaneous one-dimensional energy spectra
of the zonal velocity ug and meridional velocity vg averaged over t = 1950 − 2355 days
of Experiment 6. The spectra were taken in the zonal x direction and averaged over the
meridional y coordinate and z = 4400 m to 5000 m. (Top) Energy spectra E(k) (Bottom)
Compensated energy spectra E(k)k5/3. The red and yellow dashed lines are k−5/3 and k−3

slopes respectively. There are signs of a short k−5/3 regime at large scales.
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Figure 6.17: Average jet spectra. Instantaneous one-dimensional energy spectra of
the zonal velocity ug and meridional velocity vg averaged over t = 1950 − 2355 days of
Experiment 6. The spectra were taken in the zonal x direction along the zonal jet at
y = 500 km and averaged over z = 4400 m to 5000 m. (Top) Energy spectra E(k) (Bottom)
Compensated energy spectra E(k)k5/3. The red and yellow dashed lines are k−5/3 and k−3

slopes respectively. There are signs of something less steep than k−3 at large scales.
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Figure 6.18: Average outer flow spectra. Instantaneous one-dimensional energy spectra
of the zonal velocity ug and meridional velocity vg averaged over t = 1950 − 2355 days of
Experiment 6. The spectra were taken in the zonal x direction away from the central zonal
jet at y = 750 km and averaged over z = 4400 m to 5000 m. (Top) Energy spectra E(k)
(Bottom) Compensated energy spectra E(k)k5/3. The red and yellow dashed lines are k−5/3

and k−3 slopes respectively. There are signs of a short k−5/3 regime at large scales.
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Chapter 7

Conclusion

There is strong evidence for a ubiquitous k−5/3 energy spectrum regime in the at-

mosphere for mesoscales. Despite the advances in weather forecast modelling and

computing, some current models fail to display this energy spectrum [9]. The at-

mosphere displays strong stratification suggesting that two-dimensional dynamics

may play a role in the transfer of energy to small scales. Strongly stratified horizon-

tally homogeneous turbulence is one possible mechanism for generating this k−5/3

energy spectrum at small scales. Whilst this mechanism maybe valid high up in the

stratosphere, in the troposphere (boundary layer) vertical motions are important.

Therefore, this thesis investigates frontogenesis as another other possible mechanism.

A numerical code was developed for the three-dimensional quasi-geostrophic equa-

tions using a mixed (dis)continuous Galerkin finite element and finite difference

method. The finite element discretisation places the streamfunction in a continu-

ous space allowing the velocity to be single valued in the normal direction along

element edges. The potential vorticity was discretised using a discontinuous finite

element space and the vertical direction using a fourth order finite difference method

allowing for a simplified finite element discretisation in the directions of primary in-

terest. Time advancement was facilitated by a forward Euler method which reduced

computational costs for each timestep, however, placed strong restrictions on the

timestep size. A third order explicit Runge-Kutta time discretisation may reduce

restrictions on the timestep.

The code was tested with a travelling wave solution in two and three-dimensional

versions of the code to verify the numerical method and show convergence of the so-

lution with increasing grid resolution. The method displayed expected convergence
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results for fixed boundary conditions. Solutions calculated using free-slip boundary

conditions did not display optimal convergence of the finite element discretisation,

which is likely due the dependence on accurate calculation of the boundary values

via the integrals in (2.117). Further testing included a vortex propagating along a

boundary with no rotation, making this a test of the Euler equations. The vortex

propagated much like a vortex pair of opposite signs, which was also tested to verify

correct reproduction of vortex dynamics. The following tests introduced rotation on

a vortex. For an anti-clockwise rotating vortex, there was an overall motion towards

the Northwest, whilst a clockwise vortex moved towards the Southwest, with Rossby

waves appearing in the wakes.

Frontogenesis was observed by imposing a horizontal deformation field upon a north-

south temperature gradient. The temperature gradient increased along the axis of

contraction with steeper gradients observed near ground level. Frontal dynamics

generated an easterly jet near the surface whilst geostrophic winds balancing the

north-south temperature gradient developed a westerly jet high in the atmosphere.

A channel model was investigated using a zonal wind stress at the top of the do-

main blowing eastward with energy dissipated through lateral friction as well as

bottom friction. A small sinusoidal perturbation was used to disturb the strong

zonal flow which grew until the flow became baroclinically unstable and transitioned

into geostrophic turbulence with a strong meandering zonal jet in the centre of the

domain. Strong temperature gradients formed along the jet axis accompanied by a

build up of positive and negative vorticity on opposing sides of the temperature gra-

dients indicating frontal regions. The energy spectrum of the zonal and meridional

velocities show a short k−5/3 regime at large scales for the 256×128 grid calculation,

suggesting that the numerical model has captured a mechanism responsible for this

regime. This regime appeared to be more prominent on the outer regions of the

jet where large meanders cause the sharp fronts to bend up against each other and

experience vertical stretching. This behaviour is known to produce a k−5/3 regime

in spiral vortex stretching [81], perhaps a similar mechanism can be generated in

the bends of a jet.

7.1 Further Work

Further investigation into vertical stretching of folded fronts, generated in the me-

anders of a zonal jet with higher resolution simulations is necessary to determine
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whether this is a valid mechanism for a downscale energy cascade in the atmosphere.

Extensions to the work presented here could include introduction of a bottom to-

pography simulating mountains and other geographical features. Observing what

effects these features have on the dynamics could provide further understanding of

what role the shape of the Earth’s surface plays in the development of weather for-

mations. Whilst the use of a finite difference approximation in the vertical simplified

the horizontal finite element discretisation and allowed for easy control of vertical

resolution, the inclusion of topographical features would be more naturally suited

to a full three-dimensional finite element method.

The quasi-geostrophic equations provide a simple model of mid-latitude atmospheric

motions, however, this means that the relevance of the results is also limited. Imple-

menting a finite element method for the primitive equations or Boussinesq equations

to remove the restriction to mid-latitudes and including more ageostrophic motions

would allow the observation of more realistic frontal characteristics [129]. This could

provide further insight into the transfer of kinetic energy to small scales by observ-

ing the energy spectra when these more realistic fronts bend up against each other.

Taking this further, one could implement the primitive equations on a sphere to bet-

ter approximate the effects of the curvature of the Earth and remove the restrictive

north-south boundaries. Other processes such as latent heat release and radiation

could also be included for a more complete model.
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Appendix A

Further Background

The information presented here is taken from standard geophysical fluid dynamics

texts [39, 86].

A.1 Rossby Waves

Atmospheric Rossby waves are responsible for the meandering of the jet stream in

Earth’s atmosphere. Rossby waves emerge due to shear in rotating fluids so that

the Coriolis force changes along the sheared coordinate. Barotropic Rossby waves

can be derived from the non-dimensionalised two-dimensional QGE

∂tq + J(ψ, q) = 0 (A.1)

q = ∆ψ −Bu−1ψ + βy, (A.2)

which can be linearised as

∂∆ψ

∂t
−Bu−1∂ψ

∂t
+ β

∂ψ

∂x
= 0. (A.3)

To find the dispersion relation put ψ = ψ̂ei(kxx+kyy−ωdt) into the linearised equation

to get

ωd = − βkx
k2
x + k2

y +Bu−1
. (A.4)

The phase speed with k = |k| is then,

cph =
ωd
k2
k = −β

(
k2
x

k(k +Bu−1)
,

kxky
k(k +Bu−1)

)
, (A.5)

notice that the x-component is negative, therefore, waves propagate only to the
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Figure A.1: Jet stream in the Northern Hemisphere. Cold air filled troughs can
pinch off and form low pressure cyclones. The jet stream transports weather systems
around. [Figure in [82], © 2013. Reprinted by permission of Pearson Education,
Inc., New York, New York.]

west. The group speed is

cg = (∂k, ∂l)ωd = β

(
k2
x − k2

y −Bu−1

(k2 +Bu−1)2
,

2kxky
(k2 +Bu−1)2

)
. (A.6)

This group speed may be in either direction, consider long waves with the x-direction

wavelength λx larger than the y-direction wavelength λy, ie. 1/kx > 1/ky or ky > kx.

Then, the x-component of the group velocity cg,x < 0, so long waves move west.

However, for short waves with λy > λx or ky < kx then cg,x > 0 and so short waves

move east. The jet stream blows east and carries weather fronts with it.

Baroclinic Rossby waves can be derived from the non-dimensional three-dimensional

QGE and have dispersion relation [39]

ω = − βkx
k2
x + k2

y + k2
zBu

−1/N2
, (A.7)

hence the phase speed is

cph = − β

k2(k2
x + k2

y + k2
zBu

−1/N2)
(k2
x, kxky) (A.8)

indicating westward propagation.
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A.2 Two-Layer QGE and Baroclinic Instability

Baroclinic instabilities are caused by the presence of a horizontal temperature gradi-

ent in a rapidly rotating, strongly stratified fluid like the atmosphere. This instabil-

ity can be studied using a two-layer quasi-geostrophic model with layer thicknesses

H1 = H2 = H/2 and density ρ1 and ρ2 as in Figure A.2 [39, 86],

∂q1

∂t
+ J(ψ1, q1) = 0, (A.9)

∂q2

∂t
+ J(ψ2, q2) = 0, (A.10)

where for reduced gravity g′ = g(ρ2 − ρ1)/ρ0, the potential vorticities in the layers

are

q1 = ∆ψ1 + βy − f2
0

g′H1
(ψ1 − ψ2), (A.11)

q2 = ∆ψ2 + βy +
f2

0

g′H2
(ψ1 − ψ2). (A.12)

a

ρ1

ρ2

ψ1(x, y, t)

ψ2(x, y, t)

w = 0

w = 0

z = H

z = 0

H2 = H
2

H1 = H
2

Figure A.2: Representation of the vertical stratification by two layers of uniform
density in a quasi-geostrophic model. The vertical displacement a = (f0/g

′)(ψ2−ψ1).

Note that, the last terms in potential vorticity equations are equivalent to a finite

difference approximation of the term ∂
∂z

(
f20
N2

∂ψ
∂z

)
in the full three-dimensional quasi-

geostrophic equations. Linearising these equations with an average flow ψ1 = −Uy
and ψ2 = Uy gives

∂q′1
∂t

+ U
∂q′1
∂x

+ v′1

[
β +

U

R2

]
= 0, (A.13)

∂q′2
∂t
− U ∂q

′
2

∂x
+ v′2

[
β − U

R2

]
= 0 (A.14)
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where R =
√
g′H/2f0 is the baroclinic radius of deformation and

q′1 = ∆ψ′1 −
f2

0

g′H1
(ψ′1 − ψ′2), (A.15)

q′2 = ∆ψ′2 +
f2

0

g′H2
(ψ′1 − ψ′2). (A.16)

Now, assume the fluctuating component to be a wave solution of the form ψ′j =

ψ̂j exp (i(kxx+ kyy − ωt)) for layers j = 1, 2. Using this in the above equations

gives

(ω − kxU)

[
k2ψ̂1 +

1

2R2
(ψ̂1 − ψ̂2)

]
+ kx

[
β +

U

R2

]
ψ̂1 = 0, (A.17)

(ω + kxU)

[
k2ψ̂2 −

1

2R2
(ψ̂1 − ψ̂2)

]
+ kx

[
β − U

R2

]
ψ̂2 = 0. (A.18)

Using Cx = ω/kx and defining the barotropic and baroclinic components of the

Fourier coefficients,

ψ̂tr =
1

2
(ψ̂1 + ψ̂2) and ψ̂cl =

1

2
(ψ̂1 − ψ̂2), (A.19)

the equations now become

[Cxk
2 + β]ψ̂tr−Uk2ψ̂cl = 0 (A.20)

−U(k2 −R−2)ψ̂tr + [Cx(k2 +R−2) + β]ψ̂cl = 0. (A.21)

A pure barotropic wave occurs when U = 0 and ψ̂cl = 0 then Cx = −β/k2, which is

the same wavespeed derived for planetary Rossby waves using the Charney equation.

A pure baroclinic wave occurs when U = 0 and ψ̂tr = 0 then Cx = −β/(k2 +R−2),

which is the same wavespeed derived for planetary Rossby waves using the single-

layer two-dimensional quasi-geostrophic equations.

When U 6= 0, the barotropic and baroclinic components are coupled. Note that,

(A.20) and (A.21) form a system of line equations in ψ̂tr and ψ̂cl and can be written

in matrix form [
[Cxk

2 + β] −Uk2

−U(k2 −R−2) [Cx(k2 +R−2) + β]

]
︸ ︷︷ ︸

A

[
ψ̂tr

ψ̂cl

]
=

[
0

0

]
. (A.22)
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If the matrix A is invertible then the solutions are trivial, ψ̂tr = 0 and ψ̂cl = 0.

Therefore, the non-trivial solutions are when the matrix A is not invertible and so

the determinant |A| = 0. That is

[Cxk
2 + β][Cx(k2 +R−2) + β]− U2k2(k2 −R−2) = 0. (A.23)

To get the wavespeed Cx, calculate the discriminant P of the quadratic equation

(A.23) for Cx. Doing this gives

Cx = −β(2k2 +R−2)±
√
P

2k2(k2 +R−2)
(A.24)

where

P = β2R−4 + 4U2k4(k−4 −R−4). (A.25)

The solution is stable when P > 0. Otherwise, P < 0 and the wavespeed has an

imaginary, growing component, ie unstable. It can be shown that the wave is stable

for

U ≤ βR2. (A.26)

Recall that the layers had average flows of speed U in opposite directions, therefore,

the greater the vertical shear, the more likely that it will breach the threshold of

instability.

A.3 Jet Stream

The motion of vortices in the jet stream develop planetary Rossby waves which can

be explained in terms of baroclinic instability [113]. Figures A.3 and A.4 show how

a vertical vortex column can be subjected to baroclinic instability, causing it to

oscillate in the north-south direction.

The atmosphere is thinner near the poles since the air is cooler and heavier, so the

thickness H = h0 − h′y decreases towards the poles. This can also be represented

by two fluid layers using a sloping density surface as shown in Figure A.4 with the

stratosphere acting like a rigid lid to the troposphere since it is so strongly stratified

and stable. The Coriolis parameter f = f0 + βy increases towards the poles. Given

that the relative vorticity ω = 0 at point 1, it is required that the potential vorticity

q =
f + ω

H
=

f

H
(A.27)
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Figure A.3: Initially zonal flow at point 1, if disturbed at point 2, will develop
north-south meanders called Rossby waves. Figure in [113].

be conserved. Suppose at point 2 the flow is perturbed towards the north, the air is

now moving to greater latitudes where f increases and H decreases. Therefore, to

conserve potential vorticity q, the relative vorticity ω must decrease to the point of

becoming negative at point 3 and turning anti-cyclonic (clockwise), causing the jet

to point southeast.

Now moving south, the jet experiences a decrease in f and an increase in H, there-

fore, to conserve q the vorticity ω increases. At point 4 the vorticity has increased

so much that it is now positive and the jet turns cyclonic (anti-clockwise) heading

back northeast. The initially stable jet at point 1 has become unstable. One can

see this Rossby wave requires variation of the Coriolis parameter f and thickness H

(due to stratification) with latitude to create the baroclinic instability.

Figure A.4: Dark grey ribbon represents jet stream axis, white columns indicate
absolute vorticity. Figure in [113].
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Appendix B

Alternative Methods

The following includes several alternative approaches to discretising the QGE that

were considered or proved unsuccessful.

B.1 Vertical Spectral Discretisation

A spectral discretisation for the vertical direction was considered. The basic idea

behind a spectral approximation is to decompose the solution into a combination of

sinusoidal functions. The difference between spectral methods and finite differences

is that a finite difference is a local approximation only taking into account neigh-

bouring points, whereas spectral methods are global approximations using the whole

domain. The advantage of spectral methods is the exponential accuracy achieved

and the simplicity with which derivatives are calculated. For zero Dirichlet boundary

conditions, use a sine basis,

q(x, y, z, t) =
K∑

kz=−K
q̂k sin(kzz), ψ(x, y, z, t) =

∑
kz

ψ̂k sin(kzz),

u(x, y, z, t) =
∑
k

ûk sin(kzz) (B.1)

where the Fourier coefficients are calculated using the Discrete Sine Transforms

q̂(x, y, k, t) =
1

N
N∑
n=0

qn sin(kzz), ψ̂(x, y, k, t) =
1

N
N∑
n=0

ψn sin(kzz),

û(x, y, k, t) =
1

N
N∑
n=0

un sin(kz). (B.2)
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Then derivatives can be easily calculated as

∂2ψj
∂z2

=
∂̂2ψ̂j
∂z2

= −k̂2
z ψ̂j =

∑
r

 1

N
∑
kz

−k2
z sin(kzzj) sin(−kzzr)

ψr. (B.3)

The disadvantage of this method, however, is that this results in a dense matrix

problem as well as limitation on the boundary conditions. Therefore, a finite differ-

ence approach was better suited for the purpose of this thesis.

B.2 Discontinuous Galerkin Streamfunction Spatial Dis-

cretisation

Presented here is an alternative discretisation method that uses a discontinuous

Galerkin finite element method to solve for the streamfunction ψ and calculate

the potential vorticity by recovering the divergence properties of the velocity field

using a Raviart-Thomas projection [47]. The results produced unstable solutions

and therefore this method was not used to produce the results presented in this

thesis. However, the method is discussed as it demonstrates the difficulties that

arise from a discontinuous velocity field. The equations are the non-dimensionalised

quasi-geostrophic equations,

∂q

∂t
+ J(ψ, q) = AV

∂2∆ψ

∂z2
(B.4)

where the potential vorticity is

q = ∆ψ +Bu−1 ∂

∂z

(
1

N2

∂ψ

∂z

)
+ βy. (B.5)

The only diffusion term included here is the vertical momentum diffusion to demon-

strate how the finite element and finite difference methods are combined. The use of

finite difference methods in the vertical simplifies the finite element discretisation in

the horizontal. For simplicity, also fix the boundary conditions to ψ = 0 on horizon-

tal boundaries and ∂ψ/∂z = 0 on vertical boundaries. Approximate all z derivatives

with a finite difference approximation, with the vertical direction being discretised

into N + 1 sheets. Then ψj : Ωj → R with j ∈ {0, ...,N} denotes the function

ψ|Ωj = ψ(x, y, j∆z) on the jth vertical level, that is with z = j∆z. The term on

the right hand side of (B.4) will be approximated with such a finite difference, for
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example, a second order approximation is given by

∂2ψ

∂z2
≈ ψj+1 − 2ψj + ψj−1

∆z2
. (B.6)

The second term in the potential vorticity equation (B.5) will also be approximated

with finite differences, for example,

Bu−1 ∂

∂z

(
1

N2

)
∂ψ

∂z
+
Bu−1

N2

∂2ψ

∂z2
≈ Lz(ψ) := (B.7)

Bu−1

2∆z

[(
1

N2

)
j+1

−
(

1

N2

)
j−1

](
ψj+1 − ψj−1

2∆z

)
+

(
Bu−1

N2

)
j

ψj+1 − 2ψj + ψj−1

∆z2
.

To simplify notation let us define the following,

κ := AV
τ

∆z2
, (B.8)

λj :=
Bu−1

4∆z2

[(
1

N2

)
j+1

−
(

1

N2

)
j−1

]
, (B.9)

µj :=

(
1

N2

)
j

Bu−1

∆z2
. (B.10)

Combining the finite difference approximations with a theta-method in time with

timestep τ , equation (B.4) becomes

qn+1
j − θmκ(∆ψn+1

j+1 − 2∆ψn+1
j + ∆ψn+1

j−1 )

= qnj − τJ(ψnj , q
n
j ) + (1− θm)κ(∆ψnj+1 − 2∆ψnj + ∆ψnj−1). (B.11)

with equation (B.5) yielding

qn+1
j = ∆ψn+1

j + λj

(
ψn+1
j+1 − ψn+1

j−1

)
+ µj

(
ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

)
+ βy. (B.12)

Define the elliptic operator

L
(
ψn+1
j

)
:=∆ψn+1

j + λj

(
ψn+1
j+1 − ψn+1

j−1

)
+ µj

(
ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

)
+ βy

− θmκ
(

∆ψn+1
j+1 − 2∆ψn+1

j + ∆ψn+1
j−1

)
(B.13)

Then

L
(
ψn+1
j

)
= qnj − τJ(ψnj , q

n
j ) + (1− θm)κ(∆ψnj+1 − 2∆ψnj + ∆ψnj−1)︸ ︷︷ ︸

Fn
j

. (B.14)
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Writing in matrix form,

L0
0 L+

1 0 0 · · · 0

L−0 L0
1 L+

2 0 · · · 0

0
. . .

. . .
. . .

...
...

... · · · 0 L−N−2 L0
N−1 L+

N
0 · · · 0 0 L−N−1 L0

N





ψn+1
0

ψn+1
1
...

ψn+1
N−1

ψn+1
N


=



Fn+1
0

Fn+1
1
...

Fn+1
N−1

Fn+1
N


(B.15)

where the linear operators

L+
j = µj + λj − θmκ∆ (B.16)

L0
j = −2µj + (1 + 2θmκ)∆ (B.17)

L−j = µj − λj − θmκ∆. (B.18)

Now, apply a finite element scheme to each layer. Consider a tessellation Th on a

horizontal domain Ω, and assume that the tessellation is identical on each layer.

Considering (B.14), multiply by a test function φ in the discontinuous Galerkin

(DG) space Vqh ⊂ Vq to get

∑
T∈Th

ˆ
T

∆ψn+1
j φ+

∑
T∈Th

ˆ
T
λj

(
ψn+1
j+1 − ψn+1

j−1

)
φ+

∑
T∈Th

ˆ
T
µj

(
ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

)
φ

−
∑
T∈Th

ˆ
T
θmκ

(
∆ψn+1

j+1 − 2∆ψn+1
j + ∆ψn+1

j−1

)
φ+

∑
T∈Th

ˆ
T
βyφ = +

∑
T∈Th

ˆ
T
Fnj φ.

(B.19)

Apply the DG version of integration by parts (Theorem (3.10)) on the Laplacian

terms,

∑
T∈Th

ˆ
T

∆ψn+1
j φ =−

∑
T∈Th

ˆ
T
∇ψn+1

j · ∇φ+
∑
e∈Ih

ˆ
e
{∇ψn+1

j } · [φ] +
���

���
���

�:0∑
e∈Ih

ˆ
e
[∇ψn+1

j ]{φ}

+
∑
e∈I∂h

ˆ
e
∇ψn+1

j · n+
e φ, (B.20)

where the third term is dropped due to the fact that the true solution ψ is continuous

so [∇ψ] = 0. One can add in a penalty term [105]

P σ,α(ψ, φ) =
∑

e∈Ih∪I∂h

βe

ˆ
e
[ψ][φ], (B.21)
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and a symmetry term

Sε(ψ, φ) = ε
∑

e∈Ih∪I∂h

ˆ
e
{∇φ}[ψ], (B.22)

without effecting consistency since [ψ] = 0. Here, βe is a penalty parameter and

ε is a symmetry parameter. The method is symmetric if ε = −1. Now, turning

attention to the Jacobian term, notice that

J(ψ, q) = ug · ∇q = ∇ · (ugq), (B.23)

due to incompressibility. Multiplying by a test function φ ∈ Vqh , integrating over

an element T , summing over all elements and applying integration by parts,

∑
T∈Th

ˆ
T
∇ · (ugq)φ =

∑
e∈Ih∪I∂h

ˆ
e
[ugqφ]−

∑
T∈Th

ˆ
T
qug · ∇φ

=
∑

e∈Ih∪I∂h

ˆ
e
{ugq} · [φ] +

∑
e∈Ih

ˆ
e
[ugq]{φ}+

∑
e∈I∂h

ˆ
e
ug · ne︸ ︷︷ ︸

0

qφ

−
∑
T∈Th

ˆ
T
qug · ∇φ

=
∑
e∈Ih

ˆ
e
ûe(q) · [φ]−

∑
T∈Th

ˆ
T
qug · ∇φ =: b(ψ, q, φ), (B.24)

where

ûe =

{
q|Te+ug if ug · n+

e ≥ 0

q|Te−ug if ug · n+
e < 0

. (B.25)

To deal with the discontinuous velocity, perform averaging over the intersections

and use a Raviart-Thomas projection [47] so that ∇ · ug exists, this is to combat

stability issues due to the discontinuity of the velocity. Define the bilinear forms

a1(ψ, φ) =
∑
T∈Th

ˆ
T
∇ψ · ∇φ−

∑
e∈Ih∪I∂h

ˆ
e
[φ] · {∇ψ} −

∑
e∈Ih

ˆ
e
[∇ψ]{φ}

−
∑
e∈I∂h

ˆ
e
∇ψ · neφ+ P σ,α(ψ, φ) + Sε(ψ, φ), (B.26)

a2(ψ, φ) =
∑
T∈Th

ˆ
T
ψφ. (B.27)
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Now, the problem can be written as; given ψnj for each j ∈ {0, ...,N} find ψn+1
j ∈

Vqh ⊂ Vq such that

−a1(ψn+1
j , φ) + λja2(ψn+1

j+1 − ψn+1
j−1 , φ) + µja2(ψn+1

j+1 − 2ψn+1
j + ψn+1

j−1 , φ)

+θmκa1(ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1 , φ) = lnj (φ) for all φ ∈ Vqh , (B.28)

where the right hand side is given by the linear form

lnj (φ) =− a1(ψnj , φ) + λja2(ψnj+1 − ψnj−1, φ) + µja2(ψnj+1 − 2ψnj + ψnj−1, φ)

− τb(ψnj , qnj , φ)− (1− θm)κa1(ψnj+1 − 2ψnj + ψnj−1, φ). (B.29)

The potential vorticity can be recovered each timestep by solving

a2(qn+1
j , φ) = −a1(ψn+1

j , φ) + λja2(ψn+1
j+1 − ψn+1

j−1 , φ) + µja2(ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1 , φ)

+θmκa1(ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1 , φ) for all φ ∈ Vqh .

(B.30)

The finite element decomposition into basis functions {ϕi}i is demonstrated using

a Lagrange element with nodal variables

B =

{
N1(p) = p(0, 0), N2(p) = p(1, 0), N3(p) = p(0, 1) : p ∈ P 1

}
, (B.31)

that is point evaluations at the vertices. The monomial basis for P 1 is {1, x, y}, so

any function u on the triangular element can be approximated by a linear function

u(x, y) = α1 + α2x+ α3y. (B.32)

In particular, the ith basis function for the Lagrange triangle can be written as

ϕi(x, y) = αi1 + αi2x+ αi3y. (B.33)

Considering the reference triangle K̂ as in Figure (B.1) with vertices labeled anti-

clockwise as in basis B, write the values of a function u at each vertex

u1 = u(0, 0) = α1

u2 = u(1, 0) = α1 + α2 (B.34)

u3 = u(0, 1) = α1 + α3
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Figure B.1: Lagrange Element

which in matrix form is

u = Mα (B.35)

where u = (u1, u2, u3) and α = (α1, α2, α3) and

M =

1 0 0

1 1 0

1 0 1

 . (B.36)

Inverting the matrix M ,

M−1 =

 1 0 0

−1 1 0

−1 0 1

 . (B.37)

Then,

α = M−1u (B.38)

and from this,

u(x, y) = u1(1− x− y) + u2x+ u3y, (B.39)

so the nodal basis Φ = {ϕ1, ϕ2, ϕ3} is given by

ϕ1(x, y) = 1− x− y
ϕ2(x, y) = x (B.40)

ϕ3(x, y) = y.

Observe that, this nodal basis Φ of P 1 is the dual basis to the Ni and satisfies the
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desired condition

Ni(ϕj) = δi,j =

{
1 if i = j

0 otherwise.
(B.41)

In order to work on the reference element, introduce the mapping from the reference

element T̂ to an element T ∈ Th given by

F (x̂) =

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

][
x̂

ŷ

]
+

[
x1

y1

]
, (B.42)

where {(x1, y1), (x2, y2), (x3, y3)} are the coordinates of the vertices of the element

T . One can express any function v ∈ Vqh as a linear combination of basis functions,

in particular for a solution ψnj of (B.28),

ψnj =

P∑
k=1

ck(j, n)ϕk (B.43)

where the vector (c1, c2, c3, ..., cP ) ∈ RP is unique and P = dim(Vqh). Then the

problem is equivalent to

P∑
k=1

−ck(j, n+ 1)a1(ϕk, ϕl)

+λj(ck(j + 1, n+ 1)− ck(j − 1, n+ 1))a2(ϕk, ϕl)

+µj(ck(j + 1, n+ 1)− 2ck(j, n+ 1) + ck(j − 1, n+ 1))a2(ϕk, ϕl) (B.44)

+θmκ(ck(j + 1, n+ 1)− 2ck(j, n+ 1) + ck(j − 1, n+ 1))a1(ϕk, ϕl)

= lnj (ϕl).

Writing the degrees of freedom in a vector

cnj =



c1(j, n)

c2(j, n)

c3(j, n)
...

cP (j, n)


, (B.45)
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defining the finite element matrix

Ai =


ai(ϕ1, ϕ1) . . . ai(ϕP , ϕ1)

...
. . .

...

ai(ϕ1, ϕP ) . . . ai(ϕP , ϕP )

 , Fnj =


lnj (ϕ1)

...

lnj (ϕP )

 (B.46)

and rearranging to get,

(θmκA1 + (λj + µj)A2)cn+1
j+1 − ((1 + 2θmκ)A1 + 2µjA2)cn+1

j

+ (θmκA1 + (µj − λj)A2)cn+1
j−1 = Fnj . (B.47)

Finally, the problem is given in matrix form as

L0
0 L+

1 0 0 · · · 0

L−0 L0
1 L+

2 0 · · · 0

0
. . .

. . .
. . .

...
...

... · · · 0 L−N−2 L0
N−1 L+

N
0 · · · 0 0 L−N−1 L0

N





cn+1
0

cn+1
1
...

cn+1
N−1

cn+1
N


=



Fn+1
0

Fn+1
1
...

Fn+1
N−1

Fn+1
N


(B.48)

with

L+
j = (θmκA1 + (λj + µj)A2)

L0
j = −((1 + 2θmκ)A1 + 2µjA2) (B.49)

L−j = (θmκA1 + (µj − λj)A2).

A Krylov space iterative solver method is used to solve this matrix. As it is

non-symmetric, one cannot guarantee convergence of a conjugate-gradient method,

therefore, a bi-conjugate-gradient stabilised method, GMRES or direct method will

be needed.

B.3 Third Order Runge-Kutta

A popular high order time discretisation is the third order Runge-Kutta explicit

method, suppose

∂q

∂t
= F (t, q) (B.50)
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then the method is applied as follows,

qn+1 = qn +
1

6
(k1 + 4k2 + k3) , (B.51)

where

k1 = ∆tF (tn, qn), (B.52)

k2 = ∆tF (tn + ∆t/2, qn + k1/2) , (B.53)

k3 = ∆tF (tn + ∆t, qn − k1 + 2k2) , (B.54)

and tn = t0 + n∆t. This is often used in fluid dynamics codes due to its stability

and conservation properties and would be a good improvement on forward Euler.

147



Bibliography

[1] Acheson, D. Elementary Fluid Dynamics. Oxford University Press, 2009.

[2] Ahrens, J., Geveci, B., and Law, C. ParaView: An End-User Tool for

Large Data Visualization, Visualization Handbook. Elsevier, 2005.

[3] Arnold, D. N. An interior penalty finite element method with discontinuous

elements. SIAM Journal on Numerical Analysis 19 (1982), 742–760.

[4] Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D. Unified

analysis of discontinuous galerkin methods for elliptic problems. SIAM Journal

on Numerical Analysis 39, 5 (2002), 1749–1779.

[5] Aubin, J. P. Approximation des problèmes aux limites non homogènes pour
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