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ABSTRACT 

 The kidney is an essential organ that maintains homeostasis, maintains water and 

mineral balance, and removes metabolic waste products from the body. In mammals, the 

kidney derives from the intermediate mesoderm (IM) and develops through a multistep 

process where undifferentiated mesenchyme is converted into a highly complex organ. 

Several transcriptional regulators, including the Pax2 gene, have been identified in the 

specification and maintenance of this multistep process. The Pax2 gene marks the IM 

shortly after gastrulation, when the mesoderm becomes compartmentalized into paraxial, 

intermediate, and lateral plate. Pax2 expression in the IM distinguishes all of the cells 

fated to become epithelia in the urogenital tract and is necessary to establish and maintain 

this phenotype. Pax2 null mutants do develop a nephric duct (Brophy et al., 2001; Soofi 

et al., 2012), but the duct is completely absent in a Pax2/8 double mutant, suggesting that 

these Pax genes function redundantly in this early IM domain; however, in Pax2 

homozygous mutant mice, the metanephric mesenchyme neither responds to inductive 

signals nor does the mutant mesenchyme aggregate into early renal vesicles resulting in a 

lack of kidneys, ureters, and genital track. We describe two new alleles of Pax2 created 

by inserting the Enhanced Green Fluorescent Protein coding region into the 5' 

untranslated leader sequence.  One allele is a hypomorph that generates less protein and 

exhibits structural defects in kidneys and ureters upon homozygosity.  A second allele is 

a true null that can be used to image Pax2 expressing cells in a mutant background.  

Organ culture and embryo analyses point to a loss of epithelial cell polarity and increased 

mobility in cells that have deleted Pax2 function.  These experiments provide new insight 

into the role of Pax2 protein levels in determining correct renal architecture and cell fate.

 The prevalence of chronic kidney disease (CKD) worldwide is reflected by the 

increasing number of people with end stage renal disease (ESRD) requiring some form of 

renal replacement therapy. The overall incidence of ESRD is increasing at an alarming 

rate and is correlated with the rise of diabetes, obesity, and hypertension. Yet, effective 

therapies for chronic fibrosis in the kidney and other tissues are still awaited. Among the 

most extensively studied signaling pathways in renal fibrotic disease are those of the 

TGFb superfamily (TGFb and BMPs). Given the critical roles for TGFb and BMP 
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proteins in enhancing or suppressing renal interstitial fibrosis, respectively, the results of 

this thesis will show how the expression of this secreted protein KCP could diminished 

renal fibrosis in mouse models of chronic and acute kidney disease.  

 In vivo, KCP-KO mice are viable and fertile but are more sensitive to tubular 

injury and exhibit significant pathology after recovery. Also, deletion of KCP sensitized 

mice to developing obesity and associated complications such as liver steatosis and 

glucose intolerance. In contrast, transgenic mice that expressed KCP in the kidney, liver, 

and brown adipose tissues were resistant to developing high fat diet induced obesity and 

had significantly reduced white adipose tissue. This data demonstrates that modulation of 

the TGFβ signaling with secreted inhibitors or enhancers can alter the profile of adipose 

tissue, which reduces obesity and impaired the progression of metabolic disease. 

 The Metabolic Syndrome is reaching epidemic proportions in the developed 

world, primarily due to the increased availability of high caloric foods and the decrease 

in daily physical activity. Energy balance is critical for maintaining normal body weight 

and homeostasis. When caloric intake chronically exceeds energy expenditure, white 

adipose tissue stores excess energy in the form of triglycerides, leading to obesity and 

related complications such as type-2 diabetes, a condition also referred to as metabolic 

syndrome which is a condition of chronic sub-clinical inflammation.  

 In mice, the TGFβ superfamily has been implicated not only in the development 

and differentiation of white and brown adipose tissues, but also in the induction of the 

pro-inflammatory state that accompanies (Tseng et al., 2008). The work outlined in this 

thesis suggests that altering the TGFβ superfamily signaling pathway by a secreted 

protein (KCP) can attenuate renal fibrosis and the negative effects of obesity-associated 

metabolic syndrome. Providing a conceptual basis for the use of small molecule 

analogues of KCP to attenuate profibrotic pathways that depend on continued TGFβ 

signaling and/or counteraction by BMPs may potentially provide a novel approach to 

translating the protective role of specific BMPs (e.g. BMP-7) into clinical benefit. 
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Chapter I. General Background 

 

Ia. Pax2 Roles and regulation in Kidney development, disease, and 
Repair/Regeneration 

 

I.a.1- Mammalian Pax Gene Family 

The PAX family is classified into four groups according to their structural 

similarity, sequence homology, the presence or absence of an octapeptide motif and also 

according to its homeodomain or partial homeodomain (Dahl et al., 1997) (Table 1).    

Pax proteins are characterized by the presence of a 128 amino acid sequence in their 

structure, which constitutes a DNA-binding domain, the paired domain (PD) (Chi and 

Epstein, 2002). Each Pax protein has a c-terminal region, rich in serine and threonine, 

that is responsible for transcriptional activation of target genes (Chi and Epstein, 2002; 

Ward et al., 1994). 

All of the Pax genes are expressed in developing structures and control the early 

specification of specific cell types or the compartmentalization of the embryo into 

specific regions. These proteins can modulate the expression of diverse genes in a 

complex pattern, as it is mediated not only by the binding of PD to DNA, but also 

through interactions with other DNA-binding domains (Dahl et al., 1997). The nine Pax 

genes, (Pax-1 to Pax-9), described in humans and mice are associated with organogenesis 

and maintenance of the pluripotency state of stem cell populations during development 

(Chi and Epstein, 2002).  
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I.a.2- Pax2 Role in Kidney Development 

In mouse embryos, Pax2 is expressed around the 9-somite stage in the nephric 

duct primordium (Bouchard et al., 2000; Bouchard et al., 2002; Torres et al., 1995). Pax2 

mutant embryos initially form a nephric duct, which degenerates by apoptosis during the 

elongation process, and fail to form normal mesonephric tubules (Dressler et al., 1990). 

As a result, Pax2-deficient embryos completely lack metanephric kidneys (Bouchard et 

al., 2002; Torres et al., 1995). Surprisingly, Pax8 null embryos show normal nephric duct 

and kidney development but die postnatally due to developmental defects in the thyroid 

gland (Mansouri et al., 1998). However, in the context of Pax2 gene deficiency, Pax8 

inactivation exacerbates urogenital defects such that the pro/mesonephros is completely 

absent and the prospective renal tissue undergoes massive apoptosis (Bouchard et al., 

2002). This finding demonstrates the functional redundancy between Pax2 and Pax8 as 

pro/mesonephros development is initiated normally with either Pax2 or Pax8 present 

(Bouchard et al., 2002). The fact that only Pax2 is required for later renal development 

 Table1.Pax proteins are characterized by the presence of a paired domain 
and are subdivided  in four groups based on other conserved domains. 
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may reflect higher expression levels in the nephric duct epithelium. Alternatively, both 

proteins may have acquired distinct features rendering Pax2 better suited to sustain the 

renal transcriptional program beyond the pro/mesonephros stage. In this system, Pax2 

could also synergize with Lhx1, but since its onset of expression occurs after pronephric 

induction, it likely plays a later role in pronephric development (Buisson et al., 2015; 

Carroll and Vize, 1999). Given the crucial role of Pax2 in renal fate specification and 

morphogenesis, it becomes essential to understand the mechanisms by which they are 

activated in the intermediate mesoderm. The induction of the prospective kidney field in 

the intermediate mesoderm is set by secretory morphogens along the mediolateral axis, 

while regulatory molecules expressed along the rostro-caudal axis seem to define a 

domain of renal competence. On the mediolateral axis, the intermediate mesoderm is 

surrounded by the paraxial mesoderm (prospective somitic field), the surface ectoderm 

and the lateral plate mesoderm. Evidence so far suggests that Bmp4 from the ectoderm 

activates itself in the lateral plate mesoderm, which in turn is necessary for Pax2 

expression in the intermediate mesoderm (James and Schultheiss, 2003, 2005; Obara-

Ishihara et al., 1999). In species such as frog and zebrafish, the intermediate mesoderm 

marker Osr1 has also been identified as a competence factor and regulator of Pax2 

expression (Tena et al., 2007). However, Osr1 mutant mice do form a pro/mesonephros, 

indicating that, by itself, this transcription factor is not a critical regulator of lineage 

induction (Mugford et al., 2008b). Instead, mouse Osr1 plays an important, but later, role 

in mesonephric tubules and metanephric kidney induction (Mugford et al., 2008b). 

Recent studies have explored the gene regulatory networks downstream of Pax genes in 

the renal system. In the nephric duct, Pax2/8 were found to regulate the transcription 

factor genes Gata-3and Lhx1, which together with Pax proteins, turn on the down-stream 

transcriptional program necessary for renal morphogenesis (Boualia et al., 2013). Gata-3 

acts as a driver of nephric duct guidance and morphogenesis in the mouse embryo (Grote 

et al., 2008), while Lhx1 plays an important role in nephric duct elongation and survival 

(Kobayashi et al., 2005; Potter et al., 2007; Shawlot and Behringer, 1995; Tsang et al., 

2000). Similarly, Pax2/8 co-operate with Hnf1 in the nephric duct and the ureteric bud 

epithelium. Gene inactivation studies have shown that Hnf1 is an important regulator of 

nephric duct differentiation and ureteric bud branching (Lokmane et al., 2010). Together, 
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these findings underline the complexity of the Pax2 regulatory network in the ductal 

epithelium and further suggest that some regulatory interactions are maintained but are 

utilized differently in different systems.  

The metanephros is the site of adult kidney development in the vertebrate embryo 

and responds to the concerted action of several genetic regulators. Metanephric 

development in mice begins at E10.5 by induction of the nephric duct to form the ureteric 

bud, which invades the metanephric mesenchyme and initiates branching morphogenesis. 

Ureteric bud formation is initiated by the action of the mesenchymal signal Gdnf that 

binds the co-receptor complex Ret/GFR 1 expressed in the nephric duct epithelium (Chi 

et al., 2009). This crucial interaction induces cell shape changes and proliferation that 

leads to the invasion of the metanephric mesenchyme by the ureteric bud (Chi et al., 

2009; Dressler, 2009). Accordingly, inactivation of Gdnf, Ret or Gfr1 prevents ureteric 

bud formation, leading to renal agenesis (Skinner et al., 2008). Pax genes act on this 

system at several distinct levels during kidney development. In the nephric duct, Ret is a 

direct regulatory target of Gata3 (Boualia et al., 2013; Grote et al., 2008; Marcotte et al., 

2014). The Pax2/8-Gata3 cascade is therefore necessary to establish the responsiveness 

of the nephric duct to kidney induction. Among the transcriptional regulators are Osr1, 

Pax2, Eya1, Hox11 and Six1/2 (Brophy et al., 2001; Wellik et al., 2002; Xu et al., 1999; 

Xu et al., 2003). Inactivation of each of these genes leads to a down regulation or loss of 

Gdnf expression in the metanephric mesenchyme which prevents normal kidney 

development.  

 

 

I.a.3- Pax2 Role in Kidney Regeneration and Repair 

The cellular hallmark of kidney repair is a rapid proliferative response ultimately 

leading to the restoration of nephron structure and function. The level of Pax gene 

expression must be finely tuned in renal cells to ensure proper tissue homeostasis. In the 

mouse urogenital system, Pax2 expression persists in the nephrogenic zone until around 

ten days after birth, but is normally switched-off as the renal epithelium differentiates 

(Dressler and Douglass, 1992). Re-activation of Pax2 expression in mature renal 
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epithelial cells is seen during kidney repair and is also associated with a number of 

diseases including cancer and polycystic kidney disease (PKD) (Dressler, 2011; Dressler 

and Douglass, 1992; Esquela and Lee, 2003; Imgrund et al., 1999; Lindoso et al., 2009; 

Winyard et al., 1996). On the other hand, loss of Pax2 is closely associated with 

congenital abnormalities of the kidneys and urogenital tract (Hwang et al., 2014). 

Dysplastic kidneys are a common cause of chronic kidney failure in young children and 

results from perturbed epithelial-mesenchymal interactions (Yang et al., 2000). In this 

study, they found that components of the TGFβ1 axis were expressed in these 

malformations: TGFβ1, mRNA, and protein were up-regulated in dysplastic epithelia and 

surrounding mesenchymal cells, whereas TGFβ receptors I and II were expressed in 

aberrant epithelia.  They further generated a dysplastic kidney epithelial-like cell line that 

expressed cytokeratin, and ZO1. They also found that exogenous TGFβ1 inhibited 

proliferation and decreased expression of Pax2 and BCL2, molecules characterizing 

dysplastic tubules in vivo. Yang Su P et al., study provided preliminary data to support 

the hypothesis that TGFβ1 is implicated in the pathogenesis of human renal dysplasia by 

regulating Pax2 expression. Despite Pax2 transient expression during embryogenesis, its 

deregulation is associated with several anomalies in mice and humans. Failure in Pax2 

expression leads to anephric kidneys, while its continued expression results in kidney 

malformations (Dressler et al., 1993; Winyard et al., 1996). Therefore, the correct up- 

and downregulation of this gene are extremely important.  It is difficult to list all the 

Pax2-regulated genes, as the Pax2 binding domain seems to be present in many different 

genes, but some of them are not related to modulation by Pax2. To date, Pax2-regulated 

genes have been reported that play a role in kidney development (Brophy et al., 2003; 

Dehbi et al., 1996; Grote et al., 2006; Sariola and Saarma, 2003; Self et al., 2006; Stark 

et al., 1994; Stuart et al., 1995; Zhang et al., 2007). However, there is very little known 

about specific Pax2-regulated genes during kidney repair. The supposition that Pax2 

might play a crucial role in renal regeneration was reinforced after Imgrund and 

coworkers demonstrated that the Pax2 gene was re-expressed in proximal tubule cells 

after injury (Imgrund et al., 1999). In healthy adult kidneys, Pax2 is detectable only in 

cells of the collecting ducts (Torban et al., 2000) and the medulla. Later, Maeshima and 

coworkers using an ischaemia/reperfusion animal model confirmed that Pax2 is 
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singularly re-expressed among other transcription factors, such as Pax8, WT1, Wnt4 and 

BF-2, which are also present during development (Maeshima et al., 2002a). These 

studies emphasize that the presence of Pax2 may potentially influence renal regeneration, 

conducting key events as it does during development, but that actions of Pax2 in renal 

recovery are still not fully understood. Thus, Pax2 expression would drive tubular kidney 

cells to proliferate. In addition, the expression of this gene has also been demonstrated to 

prevent apoptosis. Torban and coworkers (Torban et al., 2000) used different 

strategies, in vivo and in vitro, to confirm that the primary function of Pax2 is preventing 

apoptosis, but demonstrated that Pax2 does not lead to proliferation. Most of the 

literature is in agreement with the view that Pax2 protects cells from apoptosis; however, 

further studies are necessary to better clarify other features of Pax2 actions in cell 

biology. There are very few in vivo approaches to directly associate Pax2 with renal 

recovery after injury, especially showing the participation of Pax2 in key processes 

related to tissue repair in vivo. It can be considered a growing field of interest as judged 

by the increasing number of studies showing that different factors known to influence 

renal tissue regeneration are now being related to Pax-2 gene expression (Maeshima et 

al., 2002a; Zhang et al., 2004). 

 

 

I.a.4- Pax2 &TGFβ Superfamily Interaction in Kidney Development 

The many processes involved in kidney development are tightly regulated by 

complex molecular regulatory networks. Members of the TGFβ superfamily of signaling 

molecules have been shown to play important roles both in vitro (Bush et al., 2004; 

Plisov et al., 2001; Sims-Lucas et al., 2008) and in vivo to regulate key aspects of kidney 

development (Dudley et al., 1995; Esquela and Lee, 2003; Michos et al., 2007; Oxburgh 

et al., 2004; Sakurai and Nigam, 1997).  In mice at embryonic day E11.5, transcripts for 

the three TGFβ prologues (TGFβ 1, 2, 3) the type I and II TGFβ receptors as well as 

transcripts for many other members of the TGFβ superfamily are present in the mouse 

kidney (Oxburgh et al., 2004). Recent evidence suggests that the efficacy of TGFβ 
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prologues in tissue development depends on the presence or absence of specific TGFβ 

superfamily co-receptors such as the type III TGFβ receptor (TGFBR3), commonly 

referred to as betaglycan, an accessory receptor (Stenvers et al., 2003),  The betaglycan 

heterozygous kidneys exhibited accelerated ureteric branching with a transient decrease 

in BMP4 expression at E11.5 and a subsequent cascade of changes in the gene regulatory 

network that governs metanephric development, including significant increases 

in Pax2, Eya1, Gdnf, Ret, Wnt4, and WT1 expression. In contrast, betaglycan null 

kidneys exhibited renal hypoplasia (Walker et al., 2011).  

Lindoso R S et al., 2009, reported that activin A and TGFβ1 promote 

downregulation of Pax2 expression inhibiting cellular proliferation (Lindoso et al., 

2009). In kidneys, Activins are expressed during development and re-expressed after 

injury periods (Maeshima et al., 2001; Tuuri et al., 1994). These proteins act as autocrine 

factors and play different roles in the kidney, such as activation of renal interstitial 

fibroblasts (Yamashita et al., 2004). 

The putative mechanism of action of activin A is regulation of the expression of 

transcription factors like Pax2 (Nakamura et al., 1990). Data presented by Maeshima and 

coworkers showed that Pax2-positive cells present specific activin A receptors (ActR-II) 

and that administration of activin A leads to a reduction in the number of cells  therefore 

BrdU/Pax2 double positive in vivo (Maeshima et al., 2002a). Activin A leads to 

reduction of Pax2 expression in the kidney culture system during embryonic 

development as well as in tubular cell lineages (Maeshima et al., 2002a; Maeshima et al., 

2002b; Maeshima et al., 2006). The inhibition of activin A, either by follistatin or by 

superexpression of a mutant truncated receptor, leads to increases in Pax2 expression and 

cell growth promotion (Maeshima et al., 2002a). Another member of the TGFβ 

superfamily, TGFβ1 has been related to the regulation of Pax2. This growth factor is 

related to important biological processes such as apoptosis, cell growth, tissue 

regeneration and development (Grande, 1997).  Two decades ago, Liu and coworkers 

demonstrated that TGFβ1 promotes a negative regulation in the expression of the Pax2 

protein (Liu et al., 1997). However, in contrast to activin A, TGFβ1 downregulates Pax2 

gene expression through a posttranscriptional process (Liu et al., 1997). This mechanism, 
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known for modulating important growth regulatory gene products, affects the stability of 

Pax2 mRNA and consequently promotes a reduction of the Pax2 protein in the cell. 

 

I.b- Kidney Biology and function 

The kidneys are the central organs of homeostasis in our body. Filtering removes 

metabolic waste products, and kidney action adjusts water, salt, and pH to maintain the 

homeostatic balance of tissue fluids (McMahon, 2016). After gastrulation in mammals, 

the kidney develops from the intermediate mesoderm as a continuum along the 

anteroposterior axis in a distinct temporal sequence (Figure1)( (Dressler, 2006, 2009). 

Anterior kidney structures include the pro- and mesonephros, whose complexity, size, 

and duration vary greatly among vertebrate species. In the mouse, the pronephros is 

barely detectable, whereas mesonephric tubules are well developed with a proximal 

glomerulus and convoluted tubules that empty into the nephric duct (Dressler, 2009). 

Specification of the intermediate mesoderm and the epithelial derivatives that will make 

the mammalian kidney depend on the concerted action of many transcription factors and 

signaling proteins. Among the earliest genes expressed in the nephric duct and 

surrounding mesenchyme is Pax2, the function of which is essential for making and 

maintaining the epithelium (Dressler, 2011; Soofi et al., 2012). The renal collecting 

system arises from the ureteric bud, a derivative of the intermediate-mesoderm derived 

nephric duct that responds to inductive signals from adjacent tissues via a process termed 

ureteric induction. The ureteric bud subsequently undergoes a series of iterative 

branching and remodeling events in a process called renal branching morphogenesis.  

The human kidney is composed of an arborized network of collecting ducts, calyces, and 

urinary pelvis that facilitate urine excretion and regulate urine composition. The renal 

collecting system is formed in utero, completed by the 34th week of gestation in humans, 

and dictates final nephron completion (Blake and Rosenblum, 2014).    
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The kidneys consist of two essential parts: an outer part “cortex” and an inner part 

“medulla” (Figure 2). Each adult kidney contains about one million nephrons and each 

nephron contains a glomerulus surrounded by a thin-walled, bowl-shaped structure 

named Bowman capsule.  The nephron also contains a small tube that drains filtrate from 

the space in the Bowman capsule and a collecting duct that drains urine from the tubule 

and regulates urine concentration (Kim et al., 2007). Each tubule has three 

interconnected parts: the proximal convoluted tubule, the loop of Henle, and the distal 

convoluted tubule. The distal tubule connects to the collecting duct, a continuous highly 

arborized epithelial network with a quite distinct origin from the contiguous renal tubule. 

The collecting duct epithelium displays a distinct cortical-medullary axis of branching, 

and cellular organization. The medullary collecting ducts are highly water permeable in 

order to facilitate water retention which is critical for sodium retention (Al-Awqati and 

Gao, 2011; Pearce et al., 2015). 

Figure 1. The intermediate mesoderm: its origin and derivatives. A) Cross section embryo at 
E8.5B) the Wolffian duct at E9.0. C) Mesonephric tubules at E10. D) Outgrowth of the ureteric bud 
(UB). E) The UB has bifurcated and induced mesenchyme surrounds the tips. G) Live image of E115.5 
eGFP kidney of WT embryos. Images A to E are from Dressler, 2009 and G done by the author. 
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The primary function of the kidneys is to maintain the proper balance of water 

and minerals in the body.  Mineral balance is maintained by tightly controlled ion fluxes 

that are external (intestine and kidney) and internal (between bone and other organs), and 

are regulated and coordinated by many endocrine signals among these organs (Kuro and 

Moe, 2016). An additional function is filtration and excretion of waste products from the 

processing of food, drugs, and harmful substances. Blood is filtered through small pores 

in the glomerulus, leaving behind blood cells and large molecules, such as proteins. The 

Figure 2. Adult Kidney Anatomy: A) Adult Kidney image obtained from Kidney Cross Section 
Diagram – Human Anatomy System. B) Scanning Electron Microscope (SEM) of the Cortex. C) SEM of 
Glomeruli D) a see through the filtration barrier. Images B, C and D done by the author.   
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glomerular basement membrane acts as a filtration barrier, reducing entry of larger 

molecular weight serum solutes into the nephron (> 15 kDa) such as serum albumin 

(Miner, 2011; Suh and Miner, 2013). In healthy adults, about 180 liters of fluid is filtered 

into the kidney tubules each day. Nearly all of this fluid, (and the electrolytes contained 

in it), is reabsorbed by the kidney. The prevalence of chronic kidney disease substantially 

increases with increasing metabolic syndrome risk factors (Chen et al., 2004). There are a 

number of pathologic links between metabolic syndrome and chronic kidney disease 

(Abrass, 2004). Contemporary research highlights the relationship between 

hyperinsulinemia and modifications within the kidney, including glomerular 

hypertrophy, mesangial matrix proliferation, and glomerulosclerosis. These changes are 

thought to be secondary to glomerular hyperfiltration as well as inflammatory mediators 

from increased adiposity. Additionally, obesity-related kidney damage has been posited 

to be due to a series of alterations like hyperlipidemia, increased oxidative stress, 

increased salt intake, and activation of the sympathetic nervous system (Palatini, 2012). 

Also hyperglycemia, hypertension (Eckel et al., 2005; Wong et al., 2016) and protein 

damage due to glycation may contribute to kidney damage (Faria and Persaud, 2017) . 

 

 

I.c- Chronic Kidney Disease and Fibrosis   

Chronic kidney diseases (CKD) can be due to structural or functional 

abnormalities typically characterized by active inflammation and renal fibrosis. While the 

primary pathology leading to most forms of CKD differs significantly, all forms of 

progressive renal diseases, including glomerulonephritis, chronic interstitial nephritis, 

and diabetic nephropathy, exhibit interstitial fibrosis (Eddy, 1996; Fogo, 2000). Despite 

the strong correlation between tubulointerstitial fibrosis and the loss of renal function, the 

molecular mechanisms underlying fibrosis have remained elusive.  However, evidence 

pointing to the TGFβ superfamily of proteins as primary regulators of fibrosis is 

accumulating.  Indeed, TGFβ1 is generally regarded as the key mediator in the 

development of renal fibrosis (Flanders, 2004). Transgenic mice overexpressing TGFβ 

develop interstitial fibrosis, as do mice treated with recombinant TGFβ (Kopp et al., 
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1996; Ledbetter et al., 2000). Furthermore, inhibition of TGFβ by neutralizing antibodies 

can improve injury in various models of kidney disease (Ziyadeh et al., 2000). In the 

normal kidney, the expression of TGFβ is weak; however, many disease states, including 

diabetes mellitus, increase TGFβ activity (Yamamoto et al., 1996). TGFβ induces 

resident fibroblasts to produce extracellular matrix components, such as type IV collagen 

and fibronectin, leading to the formation of tubulointerstitial fibrosis (Marti et al., 1994; 

Martin et al., 1998). BMPs may play an important role in kidney development and 

kidney regeneration (Cirio et al., 2014; Tsujimura et al., 2016). Animal studies have 

shown that systemic administration of BMP7 can reverse damage induced kidney fibrosis 

(AKI), improve cartilage damage, and inhibit the formation of bone metastases resulting 

from prostate or breast cancer, and increase energy expenditure by inducing the 

formation of brown adipocyte tissue. BMP7 thus seems a very promising new therapeutic 

agent in the treatment of a variety of disease states, including obesity and obesity-related 

disorders such as type 2 diabetes mellitus and cardiovascular disease. An understanding 

of the complexities of the interplay between the TGFβ1 signaling pathway and the 

development of CVD, CKD, and obesity with insulin resistance are important (Figure 3).   

 

  

 

 

 

 

Figure 3: TGFβ1 is a common target molecule and interactive regulator of pathological 
conditions. Manipulation of the TGFβ1 signaling pathway may be a useful approach for amelioration 
of mortality and morbidity in individuals with cardiovascular risk factors, Image done by the author. 
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I.d- Obesity; Origin and Characterization of adipose tissue 

In humans, two types of adipose tissue can be distinguished both histologically 

and functionally: white adipose tissue (WAT) and brown adipose tissue (BAT). Whereas 

WAT is the main tissue for storage of triglycerides in the form of fat, BAT has evolved 

to generate heat through uncoupled mitochondrial fatty acid oxidation (Cannon and 

Nedergaard, 2004). Much progress has been made toward understanding the 

developmental origins of brown and white adipocytes, although all aspects have not been 

resolved. Lineage- tracing studies of adipose tissue and muscle are both considered  to be 

of mesodermal origin (Gesta et al., 2007). Adipocytes develop from mesenchymal 

stem/progenitor cells which derive from embryonic stem cells. When triggered by 

appropriate developmental cues, these cells become committed to adipocyte lineages, i.e. 

the preadipocytes (Figure 4).  More recently, Seale et al., used a myogenic marker, myf5, 

to perform cell fate mapping in the mouse and found that both skeletal muscle and 

interscapular brown fat, but not white fat, arise from progenitors expressing myf5 (Seale 

et al., 2008) . In addition to these discrete interscapular brown fat cells, uncoupling 

protein1 (UCP-1-positive) brown adipocytes are also found systemically distributed in 

the body, especially within white fat depots (Cousin et al., 1992) and between muscle 

bundles (Almind et al., 2007). Interestingly, these “systemic” brown adipocytes, such as 

those present in white fat and muscle, are not derived from myf5-expressing precursors 

(Seale et al., 2008), suggesting different developmental origins for these different pools 

of brown fat (beige adipose cells). We are still early in the process of understanding the 

similarities and differences between brown and beige adipose cells, and we do not yet 

have a clear picture of their relative importance in energy homeostasis.  

The understanding of adipose tissue biology has progressed rapidly recently. The 

development of successful adipose-tissue-based therapeutic strategies to treat metabolic 

syndrome is reliant on a good understanding of basic adipose-tissue biology. The recent 
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confirmation that adult humans have brown adipose tissue (BAT) has transformed our 

understanding of how adipose tissue regulates metabolism and energy balance once again. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(Cypess et al., 2009; van Marken Lichtenbelt et al., 2009; Virtanen et al., 2009). 

The relatively new finding that some adult humans have substantial amounts of heat-

dissipating brown adipose tissue has raised the prospect that in humans it may be an 

important contributor to energy balance and a possible therapeutic target for the 

treatment of metabolic disease. The primary function of BAT is to maintain core body 

temperature in response to cold stress by generating heat, a process known as non-

shivering thermogenesis (Cannon and Nedergaard, 2004). Brown adipocytes are distinct 

from white adipocytes in that their abundant mitochondria express uncoupling protein 1 

(UCP1), which uncouples substrate oxidation from ATP production so that heat is 

produced (Cannon and Nedergaard, 2004).  Consequently, activated BAT has a large 

- KCP + 

Figure 4. Representation of the origins of white, beige, and brown adipocyte tissue. KCP 
possible effects on the adipocyte biology.  KCP over expression may increase the number of beige 
cell within the white fat, and KCP deletion has the contrary effect. A modify image from the 
different shades of fat review (Peirce et al., 2014).   
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capacity for glucose and lipid uptake per gram of tissue, and may contribute towards the 

regulation of glycaemia and lipidaemia in mouse models of diabetes and dyslipidaemia 

(Arbeeny et al., 1995; Bartelt et al., 2011). In line with its remarkable capacity for 

substrate oxidation, BAT is activated in rodents in response to excess nutrient 

consumption, such as eating a high-fat diet, a process known as diet-induced 

thermogenesis (Rothwell and Stock, 1983). 

Obesity is a considerable public health problem that affects a sizeable part of the 

world population across all age and racial/ethnic groups. Obesity is a worldwide 

epidemic that predisposes individuals to cardiometabolic complications, such as type 2 

diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD). The obesity 

spreading patterns around the world are remarkably predictable, low and middle-income 

countries are presently going through the same rapid transition from normal weight to 

overweight to obesity as parts of Europe and the United States already have done.  

According to the Center for Disease Control (CDC), more than 30% of adults are obese 

in United States (Ogden et al., 2013). The obesity epidemic is multifactorial, but can be 

mostly attributed to increased consumption of high calorie foods, decreased physical 

activity, and an acceptance by individuals that being overweight or obese is simply 

normal.  In obesity, adipocytes undergo hypertrophy, which leads to an imbalanced 

secretion of adipokines. Adipose tissue secretes polypeptides hormones/factors like 

Leptin, adiponectin and resistin called “adipokines”. Collectively, adipose tissue-secreted 

factors are involved in energy homeostasis and regulation of glucose and lipid 

metabolism, immunity, and neuroendocrine systems (Ahima and Lazar, 2008, 2013). 

Intriguingly, other studies in humans show a very strong and consistent association 

between resistin and inflammation and/or inflammatory diseases (Senolt et al., 2007). 

Several developmental regulators hold crucial roles in adipocyte differentiation. 

Therefore, improved knowledge on the mechanisms underlying the formation of adipose 

tissue and its role in energy homeostasis is needed for preventing the growing prevalence 

of obesity and the inappropriate accumulation of ectopic (non-adipose) lipid. 

 This thesis focuses on the role of transforming growth factor-beta (TGFβ) 

superfamily members in adipogenesis.   TGFβ changes the adipocyte profile from anti-to 

pro-inflammatory; invading macrophages switch to a pro-inflammatory phenotype 
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(Keophiphath et al., 2009). Identification of the pathogenic molecular mechanisms 

involved, and effective therapeutic approaches are required. 

 

I.e- Obesity and liver 

The liver is a key metabolic organ which regulates a variety of processes vital for 

maintaining metabolic homeostasis. These processes include control of glucose 

production, lipid metabolism, and dysregulation of which are symptomatic of the 

metabolic syndrome. The liver is a multicellular organ that relies on two highly 

conserved mechanisms: the ability to store energy to prevent starvation and the ability to 

fight infection. White Adipose tissue has the potential to store large amounts of 

triglycerides whereas the liver stores a limited amount of glycogen for use during 

starvation or to combat stressful situations. During the course of obesity, the adipose 

tissue’s ability to store excess energy is compromised, leading to ectopic lipid 

accumulation in non-adipose tissues such as muscle and liver (van Herpen and 

Schrauwen-Hinderling, 2008). The response of the liver to damage and inflammation is a 

complex process involving parenchymal and non-parenchymal cells as well as monocyte-

derived hepatic macrophages (Gressner and Bachem, 1995; Morinaga et al., 2015). The 

failure to regulate this inflammation during the progression of obesity causes 

pathological chronic hepatic inflammation characterized by the advance of fatty liver to 

steatohepatitis, fibrosis, cirrhosis, and eventually liver failure (Buzzetti et al., 2016; 

Robinson et al., 2016).        

 In addition, both adipose tissue and liver are populated with innate and adaptive 

immune cells. The transforming growth factor beta (TGFβ) family signaling pathways 

play essential roles in the regulation of different cellular processes including proliferation, 

differentiation, migration or cell deaths, which are essential for the homeostasis of tissues 

and organs. Because of the diverse and pleiotropic TGFβ functions, deregulation of its 

pathways contributes to human disease. In the case of the liver, TGFβ signaling 

participates in all stages of disease progression, from initial liver injury through 

inflammation and fibrosis, to cirrhosis and cancer. 
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I.f- The transforming growth factor β (TGFβ) signaling pathway 

I.f.1- TGFβ Signal transduction 

Since the purification of its first ligand, TGFβ1, from human platelets in 1983 

(Assoian et al., 1983), a considerable body of research has focused on this superfamily 

and more than 30 ligands have been discovered in humans (Feng and Derynck, 2005; 

Massague, 2008). According to their sequence similarity and biological effects, the 

TGFβ superfamily can be divided into two distinct groups, the TGFβ/activin/nodal 

subfamily and bone morphogenetic proteins (BMPs)/anti-muellerian hormone 

(AMH)/growth and differentiation factors (GDFs) subfamily. The TGFβ signaling 

regulates a diverse set of cell processes. For example, TGFβs cause cell cycle arrest in 

epithelial and hematopoietic cells and control mesenchymal cell proliferation and 

differentiation, while BMPs are important for the differentiation of osteoblasts and the 

survival of renal mesenchymal cells (Massague, 1998; Patel and Dressler, 2005; Reddi, 

1998). In fact, TGFβ superfamily plays a key role throughout the whole development 

process and is involved in the formation of nearly all organs.  

 Although there are a number of ligands and several receptors, the general 

signaling transduction for TGFβ superfamily is relatively simple as illustrated in (Figure 

5). In mammals, the binding of TGFβ ligand to its receptor, TGFβ receptor type II, leads 

to the recruitment and phosphorylation of TGFβ receptor type I (TGFβRI) (Derynck and 

Zhang, 2003). The activated TGFβRI is a serine/threonine kinase that transduces the 

signal through phosphorylating receptor-activated Smad proteins (R-Smads), which are 

the main mediators for TGFβ signaling. Commonly, for TGFβs, the R-Smads are Smad2 

and 3, while for BMPs, they are Smad1, 5, and 8. The phosphorylated R-Smads usually 

form a heteromeric complex with a common partner, Smad4 (Co-Smads), and translocate 

into the nucleus. Normally, the Smad complex requires other transcriptional factors to 

activate or repress target gene expression (Itoh et al., 2000; Labbe et al., 2000; Sano et al., 
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1999). Besides R-Smads and Co-Smads, TGFβ signaling can induce the expression of a 

third group of Smad proteins, Smad 6 and 7  (Inhibitory Smads, I-Smads), which inhibits 

TGFβ signaling through competitive receptor binding and blocking the interaction 

between R-Smads and Co-Smads (Hayashi et al., 1997; Imamura et al., 1997). The TGFβ 

superfamily is widely involved in embryogenesis and subsequent organogenesis, as it 

interacts with other signaling pathways, such as Wnt and Notch signaling. Since TGFβ 

superfamily plays critical roles in a variety of biological process, it is highly regulated at 

different levels, from ligand releasing to mediator activation, and finally to 

transcriptional complex formation and target gene expression. In the following section, 

the mechanism through which TGFβ signaling is regulated and functions synergistically 

with other signaling pathways in a defined biological context is discussed.  
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Figure 5.  Diagram representing the functional and structural features of the TGFβ Superfamily 
Signaling include Ligands-Receptors- Smad pathway. TGFβ1 activation occurs with the release 
from latent TGFβ binding protein (LTBP) complex by proteases. TGFβ1 signaling is initiated upon 
binding of active TGFβ1 with TGFβ receptor type II (TβRII) and forming the TβRI-TβRII 
heteromeric complex, leading to phosphorylation of Smad2/3, oligomerization with Smad4, and 
subsequent nuclear translocation to regulate the transcription of ECM genes. The monoubiquitination 
turnover of Smad4 mediated by Ectodermin and FAM (Dupont et al., 2009; Massague, 2008, 2012; 
Soofi et al., 2013) diagram done by the author. 
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I.f.2- TGFβ Prologues (TGFβ1, 2, 3) in the Kidneys 

Studies of human kidney specimens have confirmed that three major prologues 

TGFβ1, TGFβ2, and TGFβ3 are expressed in the kidney (Ito et al., 2010). While 

functional redundancy between the TGFβ prologues has been long recognized, there is a 

growing body of evidence for the existence of nonredundant functions in inflammation 

and organ development (Ren et al., 2009). TGFβ1 is the predominant and best-

characterized member, while TGFβ2 and TGFβ3 are less well known. In the normal adult 

kidney, glomerular expression of TGFβ2 and TGFβ3 is seen mainly in podocytes, 

whereas TGFβ1 is primarily detected in the tubules but not in the glomeruli (Ito et al., 

2010). Interestingly, glomerular expression of TGFβ1, generally with TGFβ2 and 

TGFβ3, was detected in podocytes in kidney biopsy specimens from patients with 

proliferative glomerulonephritis and in mesangial cells in diabetic nephropathy and IgA 

nephropathy (Ito et al., 2010). Moreover, increased expression of TGFβ1 was associated 

with development of severe glomerulonephritis and glomerulosclerosis (Ito et al., 2010).

 Biological actions of TGFβ prologues are mediated by ligand binding to its 

receptors for the initiation of signaling. Both TGFβ1 and TGFβ3 bind directly with 

TβRII, whereas TGFβ2 requires the presence of a type III TGFβ receptor (TβRIII) for 

ligand binding to TβRII (Yu et al., 2003). Given the differences in the expression 

patterns and the mechanism of ligand binding, together with apparent non-overlapping 

phenotypes of the three TGFβ proteins knockout mice, it is not unreasonable that some 

cellular responses may differ among the TGFβ prologues. All three TGFβ prologues have 

been shown, in vitro, to induce ECM protein production in various renal cells, including 

glomerular mesangial cells, renal fibroblasts, and renal tubular epithelial cells (Wang et 

al., 2011; Yu et al., 2003). While most studies have demonstrated similar profibrotic 

effects of the TGFβ prologues, a number of studies have suggested that TGFβ2 and 

TGFβ3 can exert antifibrotic effects (Prelog et al., 2005; Ren et al., 2009; Yu et al., 

2003). Moreover, TGFβ2 stimulated the expression of ECM proteins and induced EMT 

in tubular epithelial cells, whereas neutralizing antibody to TGFβ2 or repression of 

TGFβ2 expression inhibited renal fibrogenesis (Wang et al., 2011). Further investigations 

are warranted to clarify the seemingly opposite findings regarding the antifibrotic roles of 
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TGFβ2 and TGFβ3, which carry important implications for therapeutic targeting 

strategy. One of the major tasks ahead will be to further delineate the roles and 

specificity of the TGFβ prologues to concrete targets in normal physiology and to 

aberrant targets in the altered conditions of disease states. 

 

I.f.3- Regulation of Receptor Activation 

Despite the diversity of the ligands for the TGFβ superfamily, they all share 

similar sequence and structure features (Feng and Derynck, 2005). As for TGFβ 

paralogues (TGFβ1, 2, 3), its mature form is cleaved from homodimeric proproteins (pro-

TGFβ) and remain associated with its N-terminal peptides, called the latency-associated 

proteins (LAP), to form the latent TGFβ complex. A family of large secretory 

glycoproteins known as latent-TGFβ-binding protein (LTBPs) covalently bind to LAP 

via disulfide linkages to form the TGFβ large latent complex. LTBPs are not required for 

maintenance of TGFβ latency but may instead facilitate the secretion and storage of the 

TGFβ–LAP complex, which may be covalently anchored to the extracellular matrix 

(ECM) from where it can be released in a regulated manner (Figure 5)  (Annes et al., 

2003; Hyytiainen et al., 2004; Massague, 2012). Whether the ligands from other TGFβ 

subfamily undergo the same secreting process is not clear.    

 Based on their structural and functional properties, the TGFβ receptor family is 

catalogued into two groups: type I receptors and type II receptors. There are seven type I 

and five type II receptors dedicated to TGFβ signaling in humans (Manning et al., 2002).  

Both types of the receptors are serine/threonine kinases, sharing a similar structure as an 

N-terminal extra-cellular ligand binding domain, a transmembrane region, and a C-

terminal serine/threonine kinase domain (Shi and Massague, 2003). Compared to the 

type II receptor, the type I receptors have an extra domain between the transmembrane 

region, and the kinase domain, termed GS domain (sequence as SGSGSG), which can be 

phosphorylated by type II receptors and is critical for signaling activation 

(Souchelnytskyi et al., 1996; Wrana et al., 1994). As for the interaction between the 

ligands and receptors, there are two distinct modes represented separately by 
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TGFβ/Activin subfamily and BMP subfamily. TGFβ and Activin showed a high affinity 

for type II receptors and the type I receptors were recruited only after the ligand-type II 

receptor complex was formed (Massague, 1998). In contrast, from the analysis of binding 

affinity, BMPs interacted with the type I receptors first, then the type II receptors (Liu et 

al., 1995). No matter of this sequential issue, the activation of type I receptors and its 

interaction with Smad proteins required the phosphorylation of its GS domain by type II 

receptors (Feng and Derynck, 2005; Massague, 1998; Shi and Massague, 2003). 

 The regulation of TGFβ receptor activation comprises two aspects: (1) controlling 

the access of TGFβ ligands to their receptors; (2) controlling the activation of type I 

receptors. Two classes of molecules with opposing function regulate the access of TGFβ 

ligands to their receptors. One class consists of a variety of soluble proteins that 

sequester TGFβ ligands and prevent their binding to the receptors. A separate class 

consists of membrane-anchored proteins, including betaglycan and endoglin, which may 

function as accessory receptors to enhance TGFβ signaling (Massague and Chen, 2000; 

Shi and Massague, 2003).  

   

Table 2. Representation of ligands, antagonists, receptors, coreceptors and smads proteins relationships to 
the TGFβ and BMP branches of the TGFβ superfamily signaling pathway (Lin et al., 2005; Massague, 
2008; Soofi et al., 2013). 

 

Although the length and structure vary considerably among BMP antagonists, 

such as Noggin, Chordin/Sog, and DAN family, they all share a common cysteine-rich 
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region. For example, Noggin contains a carboxy-terminal cysteine-rich (CR) domain, 

while Chordin contains four cysteine-rich repeats (Massague and Chen, 2000). The CR 

domain confers the antagonists to form a homodimer to match the structure of BMP 

ligand homodimers. The crystal structure of the Noggin-BMP7 complex directly showed 

that Noggin inhibited BMP7 by blocking the surfaces that were required to interact with 

the type I and type II BMP receptors (Groppe et al., 2002). Those antagonists are 

expressed during embryogenesis and are critical for the dosal-ventral patterning and left-

right asymmetry. Interestingly, although most of the BMP antagonist shared the CR 

domain, not all proteins containing CR domain counteract BMP. In this thesis it is shown 

that instead of blocking BMP signaling, the CR domain protein KCP (Kielin/chordin-like 

protein) enhanced BMP-receptor interactions and counteract the TGFβ interactions 

(figure 6)  (Lin et al., 2005).   

  

 

 

 

 Figure 6. The secreted protein KCP enhances BMP and suppresses TGFβ.  
KCP Interacts with TGFβ and BPMs ligands in a paracrine manner. KCP can increase the binding of 
BMP to its receptor and inhibits TGFβ binding to its receptor. Results in the increases of P-Smad1 
the BMP effectors and decreases of P-Smad2/3 the TGFβ effectors, Image done by the author. 
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I.g.- Kielin/chordin-like protein (KCP) Characterization 

I.g.1. KCP Functions and Attributions 

The original description of KCP was made in a series of publications from the 

Dressler laboratory (Lin et al 2005; Lin et al 2006). The newly-described gene, KCP, 

encodes a protein with homology to the extracellular regulators of the TGFβ superfamily 

of secreted signaling peptides. KCP is a large secreted protein with 18 repeated cysteine-

rich domains. KCP is expressed in the developing kidney at both early and late stages, 

and its expression is correlated with the formation of early epithelial structures within the 

intermediate mesoderm, and to the formation of the proximal tubules in the more 

devolved metanephric kidney. In the mammalian kidney, BMP7 plays an essential role in 

development and disease.  BMP7-null mice show arrested renal development at around 

E14.5, resulting in severe renal hypoplasia (Dudley et al., 1995; Luo et al., 1995).  BMP7 

is also an anti-fibrotic agent that can reduce interstitial fibrosis, a common pathology in a 

broad spectrum of chronic renal diseases. Administration of recombinant BMP7 has 

shown remarkable efficacy in the reduction of glomerular and interstitial fibrosis in 

mouse models of chronic renal disease (Zeisberg et al., 2003a; Zeisberg et al., 2003b).

 BMPs bind to specific type I and type II transmembrane receptors that contain 

cytoplasmic Ser/Thr kinase domains (Shi and Massague, 2003; Zwijsen et al., 2003).   

The activated receptor complex then phosphorylates the intracellular Smad proteins, 

which translocate to the nucleus and activate ligand responsive genes (Nishimura et al., 

2003). The regulation of BMP signaling by sequestering ligand availability is a 

fundamental morphogenetic mechanism during development that establishes the dorsal–

ventral pattern in both invertebrates and vertebrates (Capdevila and Belmonte, 1999; 

Christian, 2000).  Numerous proteins such as Noggin, Chordin, Short gastrulation (Sog), 

Twisted Gastrulation (Tsg), and their related factors Caronte, Cerberus, and Gremlin bind 

BMP family ligands and prevent their contact with receptors (Garcia Abreu et al., 2002; 

Shi and Massague, 2003). Chordin and Sog are secreted proteins with repeated cysteine-
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rich domains that bind BMPs to inhibit signaling (Larrain et al., 2000).  

 Unlike previously described CR domain proteins, KCP is a potent paracrine 

enhancer of BMP signaling.  KCP increases the affinity of ligand to receptor and/or 

enhances the stability of the ligand-receptor complex. Given the role of BMP7 in renal 

disease, we analyzed the phenotypes of KCP KO mice and the KCP transgenic mice in 

two independent models of renal injury. Both strains of KCP mice were used in the Diet 

Induced Obesity (DIO) study. The data point to an important role for KCP to enhance 

BMP signaling, attenuate the initiation, and progression of fibrotic disease after renal 

injury. KCP also protects mice from the DIO, fatty liver, and metabolic syndrome. These 

conditions will be discussed in more detail in Chapter II (Soofi et al., 2016; Soofi et al., 

2013). 

 

 

I.g.2- Original Description of KCP 

During the course of conducting a yeast two-hybrid screen (Lin et al., 2005; Lin 

et al., 2006) with an embryonic kidney cDNA library, several hundred partial cDNA 

clones were sequenced after primary selection. From the embryonic kidney library, a 

partial cDNA was identified containing a novel protein coding sequences with multiple 

domains homologous to Xenopus chordin, Drosophila crossveinless 2 (Cv2), and 

Drosophila Short gastrulation (Sog). Although this cDNA proved negative for specific 

protein-protein interactions upon secondary selection, the novelty of the coding region 

and its potential impact on kidney development prompted the need for further 

investigation of this gene. A mouse embryonic kidney cDNA library was screened by 

hybridization and overlapping clones was identified. Upon completion of the cDNA 

sequence, a coding region was found to be similar to Xenopus Keielin protein (Matsui et 

al., 2000). Thus, the gene was named KCP for Keilin/chordin-like protein. The KCP 

protein consists of 1254 amino acids. KCP protein (GenBank Accession AY884211) 

reveals a signal peptide, 18 cysteine-rich Chordin repeats (CR), and a carboxyl-terminal 

Von Willebrand Factor Type D domain (Figure 7A).   
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The KCP tissue-specific expression patterns were confirmed and expanded upon 

using whole mount of in situ hybridization using embryos. In mouse embryos at E9.5, the 

limb bud mesenchyme was positive for KCP RNA (Figure 7B).  Expression in the kidney 

region could be detected as early as E9 in the intermediate mesoderm (Figure 7B, arrow).  

By E10, the mesonephric tubules and nephric ducts were clearly positive for KCP 

mRNA (Figure 7C and D, arrow).  At later stages, high levels of KCP mRNA localized 

to the developing tubules (Figure 7G, arrows and H).   
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Figure 7. The Structure and Expression 
pattern of the endogenous KCP protein. 
A) KCP protein structure representation. 
B) Whole mount in situ hybridization of E9 
embryo showing staining in limb bud 
mesenchyme (arrow) and in the nephric duct 
(arrowhead). C, D) E10 whole mount embryo 
indicating kcp mRNA expression in the 
mesonephric tubules (arrow). E) A section taken 
through an E9 embryo showing kcp mRNA in 
the forelimb bud mesenchyme (arrowheads) and 
in the intermediate mesoderm (arrow). F) E10 
whole-mount embryo section indicating Kcp 
mRNA expression in the mesonephric tubules 
(arrow).  G) A bisected E16 kidney with kcp 
expression in the presumptive proximal tubules 
(arrows). H) A bisected E16 kidney stained with 
control sense strand probe.  Image A done by 
the author & B Modify image    from Lin et al., 
20015. 
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I.g.3- Generation of KCP KO mice 

Generation of The KCP-KO mice was done by homologues recombination in the 

mouse germline by replacing exons 2-21 of KCP with lacZ and a Geneticin cassete 

(Figure 8a). By inserting the lacZ gene in frame, its expression was expected to reflect 

the endogenous pattern of KCP in the embryo. Thus, lacZ was expected to serve as a 

useful marker to detect KCP expression cells (Lin J., 2005). The targeting vector deletes 

amino acids 67-774, which includes most of the CR domains. Also, as expected the 

LacZ/neo cassette inhibits the expression of coding sequences downstream of 774 aa. 

Germline chimera’s mice were obtained from the injected ES cells clones. The 

chimeras were then backcrossed with C57Bl/6J to generate the offspring containing the 

KCP heterozygote mice. Further homozygous KCP–KO mice were generated by crossing 

KCP heterozygous mice and genotyped by Southern blotting followed by PCR. KCP-KO 

mice were viable and fertile without obvious abnormalities.  

 

 
 

Figure 8. Generation KCP-KO (a) Schematic diagram of the Kcp targeting vector that was designed to 
delete exons 2–21, spanning amino acids 67–774 of the coding region. The lacZ gene was inserted in frame 
after amino acid 67 in exon 2 (Lin et al., 2005). 

 

Unlike Chordin, KCP enhances BMP mediated signaling in a paracrine manner 

by interacting with the type I receptor to facilitate the binding of BMP7 to BMP receptor 

1A (Lin et al., 2005). In contrast, mice homozygous for a mutant KCP allele showed no 

gross developmental abnormalities but exhibited enhanced susceptibility to developing 

renal interstitial fibrosis in two different animal models, a process known to be regulated 

by both BMPs and TGFβ (Lin et al., 2005).  



 
 

41 

The TGFβ pathway can directly transduce extracellular cues from the cell-surface 

transmembrane receptors to the nucleus through intracellular mediators, known as 

Smads. The Smad family is well conserved (Feng et al., 1998; Moustakas and Heldin, 

2009; Patterson and Padgett, 2000). In most vertebrates, there are eight Smads, compared 

to six in the Caenorhabditis genus and four in Drosophila species (Huminiecki et al., 

2009). Smads proteins can be divided into three functional groups: (1) Receptor-

regulated Smads (R-Smads, 1/2/3/5/8); (2) Common Smad (Co-Smad, 4); (3) Inhibitory 

Smad (I-Smad, 6/7) illustrated in figure 5, page 22. 

This thesis will also discuss how TGFβ1 may have a pivotal role in the 

pathogenesis of obesity and progressive kidney diseases that are characterized by fibrosis. 

TGFβ1signal transduction is mainly through the Smads protein system, and it is well 

known that Smad2/3 play important roles in regulating target genes transcription 

involved in progressed CKD and extracellular matrix (ECM) metabolism. The blockade 

of Smad3 attenuates development of TGFβ1-driven renal fibrosis. This was examined in 

vivo in a transgenic model of TGFβ1-induced chronic kidney disease with or without 

Smad3 expression and in vitro in mesangial cells and glomerular endothelial cells with 

Smad2/3 inhibitors or Smad3-knockdown (Kellenberger et al., 2013). In addition, 

Smad3-deficient mice are protected from diet-induced obesity and diabetes. Interestingly, 

Smad3 deletion results in white adipose tissue acquiring the bioenergetic and gene 

expression profile of brown adipocytes (‘beiging’; (Yadav et al., 2011). Together, this 

demonstrates that TGFβ signaling regulates glucose tolerance and energy homeostasis, 

and suggests that modulation of TGFβ activity by modifying the expression of Smad 

proteins might be an effective treatment strategy for obesity, diabetes, livers disease, and 

especially chronic kidney diseases.  
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CHAPTER III 

III. a. Thesis Conclusions, Reflections, and Future Directions  

 

III. a. 1- Thesis Conclusions 

In this thesis, evidence has been presented through the published articles, 

showing a that kidney development in mammals is the final product of three successive 

embryonic steps that are characterized by the transformation of intermediate mesoderm 

cells. The development of the first kidney, the transient pronephros, is initiated by signals 

from the somite and surface ectoderm that induce cells in the intermediate mesoderm to 

undergo the transition to epithelial cells forming the nephric duct (Mari and Winyard, 

2015; Mauch et al., 2000; Obara-Ishihara et al., 1999). The caudal migration of the 

nephric duct subsequently induces the adjacent nephrogenic mesoderm to aggregate and 

form the tubules of the mesonephros, the second embryonic kidney. On further 

extension, the nephric duct reaches the metanephrogenic mesenchyme at the level of the 

developing hindlimb, where the ureteric bud evaginates from the nephric duct and 

invades the surrounding mesenchyme. Both the ureter and mesenchyme subsequently 

undergo reciprocal inductive interactions to form the nephrons and collecting ducts of the 

metanephros, the third and adult kidney. In humans, new nephron formation, or 

nephrogenesis, starts during the 5th week of gestation, the first glomeruli appear at the 

9th week, and the last new nephron is formed by the 36th week of gestation. In mice, 

nephrogenesis starts at embryonic day 10.5, with the first glomeruli appearing at 

embryonic day 14 and the last new nephron approximately appearing 1 week to 10 days 

after birth (Mari and Winyard, 2015; Saxen and Sariola, 1987; Soofi et al., 2012). 

 In other parts in this thesis we described that in mammals, Pax genes control the 

specification of particular cells and tissues, and have also been linked to human 

congenital malformations (Chi and Epstein, 2002; de Miranda et al., 2014; Robson et al., 

2006). The Pax2 gene is crucial for the development of the kidney and the reproductive 

tract, both of which are derived from the intermediate mesoderm (Dressler, 2006, 2009). 

Pax2 is among the earliest markers for the intermediate mesoderm, along with the related 
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gene Pax8 (Bouchard et al., 2002) and the homeodomain protein Lhx1 (Tsang et al., 

2000). Kidney development starts when the ureteric bud (UB) invades the metanephric 

mesenchyme (MM) and transmits inductive signals, such as Wnt9b (Carroll et al., 2005), 

to promote condensation of the MM around the UB tips. These UB tip associated Cap 

mesenchyme cells (CM) continue to express Pax2 and are the stem cells of the nephron 

that generate all of the epithelial derivatives, including distal, proximal, and glomerular 

epithelium (Kobayashi et al., 2008; Mugford et al., 2008a). The CM undergoes a 

mesenchymal-to-epithelial transition to generate all the epithelial cells of the developing 

nephron. However, the Pax2 expression is down-regulated in the podocyte precursor 

cells and the mature epithelial cells of the nephron as development comes to an end 

(Ryan et al., 1995).  This Pax2 positive intermediate mesoderm generates the nephric, or 

Wolffian, duct, an outgrowth of the duct called the UB, and the surrounding MM. Pax2 

null mutant do develop a nephric duct, but the duct is completely absent in a Pax2; Pax8 

double mutants. Pax2 and Pax8 have redundant function in kidney development.  Pax8 

mutant embryos develop a normal urogenital system, but mice die shortly after birth due 

to defect in the thyroid gland development.  In contrast, a Pax2 mutant results in 

complete renal agenesis because the nephric duct is abnormal and the metanephric 

mesenchyme cannot respond to inductive signals.     

 To assess the fate of Pax2 positive cells during embryonic development, we 

inserted the enhanced green fluorescent protein (EGFP) coding region into the 5' UTR of 

the mouse Pax2 gene by homologous recombination. Two different alleles were created, 

one that carries a PGK-neo cassette and another that has PGK-neo deleted.  Surprisingly, 

the presence of PGK-neo results in a hypomorphic allele that is homozygous viable, 

whereas the deletion of PGK-neo generates a null allele.  We utilized both alleles to study 

Pax2 expression in normal and mutant embryos and to examine the phenotypes of 

embryos and adults with reduced Pax2 protein levels in the hypomorphs.  The results 

indicate a critical role for Pax2 in maintaining the epithelial integrity of the nephric duct.  

Furthermore, reduced levels of Pax2 protein generate a spectrum of structural defects 

including multiple ureters, cystic kidneys, and fewer nephrons.  Both of these novel Pax2
 

alleles are useful for cell imaging, while the new hypomorphic allele is also a good 

mouse model that mimics multiple aspects of congenital abnormalities of the kidneys and 
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urogenital track (CAKUT). Among the causes of CAKUT are heterozygous mutations in 

the Pax2 gene, which lead to Papillorenal Syndrome, and result in hypoplastic kidneys, 

vesicoureteral reflux, progressive renal failure, and optic nerve coloboma. Losing of 

Pax2 function results in complete renal and reproductive tract agenesis in mice (Soofi et 

al., 2012; Torres et al., 1995). In the absence of Pax2, the IM cells assume a pattern of 

gene expression more consistent with paraxial mesoderm and its derivatives (Ranghini 

and Dressler, 2015). Despite its central role in kidney development and renal disease, the 

biochemistry of Pax2 and its effects on gene regulation are not well characterized in a 

developing tissue. Few target genes have been identified, including many known kidney 

developmental regulators, such as Gdnf, c-Ret, Six2, Sal1, and Lhx1, but also affected 

are genes and proteins associated with glycosylation, cell membranes, cell-cell signaling, 

and cell adhesion (Ranghini and Dressler, 2015). Furthermore,  ectopic or deregulated 

expression of Pax2 is also seen in Wilms' tumor (Dressler and Douglass, 1992), renal cell 

carcinoma (Gnarra and Dressler, 1995), and polycystic kidney disease (Ostrom et al., 

2000), where it is thought to promote proliferation and/or survival. The reactivation of 

Pax2 expression is also observed in adult kidneys after acute injury, suggesting a critical 

role for Pax2 in regenerating the epithelia (Humphreys et al., 2008; Imgrund et al., 1999; 

Kusaba et al., 2014). We also discussed in Chapter I that Pax2 re-expression is regulated 

by the TGFβ superfamily singling pathway.      

 TGFβ and BMP signaling pathways are two main branches of TGFβ superfamily, 

which are essential for normal development and disease progression. TGFβ signaling is 

well characterized for its pro-fibrogenic effect in kidney diseases (Liu, 2010). In vitro, 

TGFβ promoted the transition of epithelial cells to fibroblasts-like cells by 

downregulating epithelial markers, such as E-cadherin, and activating mesenchymal 

genes, such as Snail1, Pai1, and Zeb1 (Yang and Liu, 2001). Although the existence of 

epithelial-mesenchymal transition (EMT) in vivo was challenged in recent years (Kriz et 

al., 2011), enforced expression of mesenchymal genes, such as Snail1, in epithelial cells 

induced renal fibrosis in mice (Boutet et al., 2006), suggesting the critical role of the 

upregulation of mesenchymal genes in epithelial cells in kidney diseases. Recent data 

have redefined the role of the surviving epithelial cells in fibrosis and attribute 

myofibroblast expansion to perivascular and interstitial fibroblasts. After damage, the 
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kidney has the ability to repair itself. With a mild injury, this repair can result in the 

return to a structural and functional state that is indistinguishable from normal. However, 

when the repair is more severe or superimposed on baseline kidney abnormalities, the 

repair process can lead to fibrosis, which can facilitate progression to chronic kidney 

disease. Acute kidney injury (AKI) can thus result in incomplete repair and persistent 

tubulointerstitial inflammation, with a proliferation of fibroblasts and excessive 

deposition of extracellular matrix, a common feature of many different kinds of kidney 

diseases and a primary determinant of progression to end-stage renal failure (Forbes et 

al., 2000). Whether AKI is associated with ischemia reperfusion injury, sepsis or toxins, 

there is a rapid loss of proximal tubular cell cytoskeletal integrity and cell polarity. There 

is shedding of the proximal tubule brush border, loss of polarity with mislocalization of 

adhesion molecules, and other membrane proteins such as the Na+K+ATPase and β- 

integrins (Thadhani et al., 1996; Zuk et al., 1998). Normal cell-cell interactions are 

disrupted with an injury. When the injury is severe, there is apoptosis and necrosis 

(Thadhani et al., 1996). Viable and nonviable cells are desquamated leaving regions 

where the basement membrane remains the only barrier between the filtrate and the 

peritubular interstitium.        

 In this thesis, evidence has been presented through the published articles, 

showing a consistent ability of the secreted kielin/chordin-like (KCP) protein to enhance 

BMP signaling while suppressing TGFß signaling. These observations indicate a critical 

role for KCP in modulating the responses between these anti- and pro-fibrotic roles of 

these cytokines in the initiation and progression of several diseases including liver 

disease, renal interstitial fibrosis, and obesity. KCP is a secreted, cysteine-rich (CR) 

protein, with similarity to mouse Chordin and Xenopus laevis Kielin. KCP is an enhancer 

of BMP signaling in vertebrates and interacts with BMPs and the BMP type I receptor, to 

promote receptor-ligand interactions. In contrast to the enhancing effect on BMPs, KCP 

inhibits both Activin-A and TGFβ mediated signaling through the Smad2/3 pathway. 

These inhibitory effects of KCP are mediated in a paracrine manner, suggesting that 

direct binding of KCP to TGFβ or Activin-A can block the interactions with prospective 

receptors.  The ability of KCP to sequester ligands from their receptors and the 

mechanism of TGFβ inhibition remains to be clearly defined in the future.  
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 Mice homozygous for a KCP null allele are hypersensitive to developing renal 

interstitial fibrosis, a disease stimulated by TGFβ but inhibited by BMP7. Transgenic 

mice that express KCP in adult kidneys showed significantly less expression of collagen 

IV, α-smooth muscle actin, and other markers of disease progression in the unilateral 

ureteral obstruction model of renal interstitial fibrosis. In an acute tubular necrosis 

model, mice expressing KCP were more resistant to high doses of folic acid and showed 

better recovery at lower doses. The data demonstrates that extracellular regulation of the 

TGFβ/BMP signaling axis by cysteine-rich domain proteins can reduce disease severity 

in animal models of renal injury (Soofi et al., 2013).    

 Recently, we examined the effects of KCP loss or gain of function in mice that 

were maintained on either a regular or a high-fat diet.  Loss of KCP sensitized mice to 

obesity and associated complications such as hepatic steatosis and glucose intolerance. In 

contrast, transgenic mice that expressed KCP in the kidney, liver, and brown adipose 

tissues were resistant to developing high-fat diet induced obesity and had significantly 

reduced white adipose tissue. The data demonstrate that shifting the TGFβ superfamily 

signaling with a secreted inhibitor or enhancer can alter the profile of adipose tissue to 

reduce obesity, and can inhibit the initiation, and progression of hepatic steatosis to 

significantly reduce the effects of high-fat diet induced metabolic disease (Soofi et al., 

2016).           

 The analysis of the mechanisms and the regulation of TGFβ superfamily will 

enable further insight into TGFβ signaling and may provide new strategies for the 

treatment of TGFβ associated diseases, such as renal fibrosis, non-alcoholic fatty liver 

disease, obesity, and metabolic syndrome. Future understanding of the alterations in cell-

cell and cell-matrix interactions will prove crucial to deciphering the roles of TGFβ and 

BMP7 during early and late phases of interstitial fibrosis.  An understanding of how the 

extracellular regulators of latent TGFβ and BMP7 affect the competition between these 

opposing signals will provide important insights into the progression of chronic disease 

and perhaps provide new avenues of intervention.  
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III. b. Thesis Reflection and Future Direction 

III.b.1. The ‘how I would do the experiments differently now’ question 

All work in this thesis has been peer-reviewed and published in quality Journals. 

That said, any published work is far from being 100% perfect, and we learn something 

new on a daily basis. Every day, we do and should become better at what we do. Today I 

will attempt to discuss some experiments and techniques, and how we may perform them 

differently. Some of these observations were also made by the examiners, Dr. Paul 

Winyard and Dr. Peter Hohenstein.   

First, we should ensure that all mice and ES cells that are used to inject the 

targeting vector to generate transgenic or KO mice have the same pure genetic 

background before carrying out any experiments. To guarantee this, we could make it a 

general requirement for all future experiments. Furthermore, it is important to note that 

concepts that may seem logical to us may require a thorough explanation to readers in 

order to make sense, even if the Journal Peer Reviewers pass it. Indeed, to describe in 

more details each technique and methods. 
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Paper 1- Soofi, A., Levitan, I., and Dressler, G.R. (2012). Two novel EGFP insertion 
alleles reveal unique aspects of Pax2 function in embryonic and adult kidneys. 
Developmental Biology 365, 241-250. 

Figure 1. Section B, we decided not to show a blot of a negative egfp/egfp (Pax2 

mutant), even though there is no Pax2 expression. The internal control (Tubulin) could 

indicate that they are in the blot.  

Figure 3.  We should have specified if we were comparing littermates to each other or 

gene expression independent of the phenotype. It may have been better to compare the 

diferent gene expression in the similar phenotype of the Pax2 Eneo/Eneo E11-11,5 

embryonic kidneys.  

Figure 6. Sections E-F, if we were going to talk about cell planar polarity we should 

have used better polarity markers.  

 

Paper 2- Soofi, A., Zhang, P., and Dressler, G.R. (2013). Kielin/chordin-like protein 
attenuates both acute and chronic renal injury. Journal of the American Society of 
Nephrology 24, 897-905 

Figure 2. Section A, to confirm that indeed Myc-KCP is localized to the ER 
compartment in the epithelial cells; we should have co-stained cells with ER markers and 
markers of other cell compartments as control. For example, we could use Golgi or 
mitochondrial markers as the negative compartments for the Myc-KCP expression.  

Figure 6. Section D, we should have blotted for the total protein Smad3 and Smad1 to 
normalized the p-Proteins and determine the ratio of the relative unit for each protein. 
Furthermore, we could also measure Creatinine and the blood urea nitrogen (BUN) as a 
secondary indication of kidney damage.  

 

Paper 3- Soofi, A., Wolf, K.I., Ranghini, E.J., Amin, M.A., and Dressler, G.R. (2016). 
The kielin/chordin-like protein KCP attenuates nonalcoholic fatty liver disease in mice. 
American journal of Physiology Gastrointestinal and Liver Physiology 311, G587-G598. 

Even though the 5008 Purina lab chow used in the animal facilities were the same for all 
animal groups, we and others should not utilize it as control diet to the  high-fat diet 
(HFD). The ND 5008 Purina lab chow has many different basic nutrients in comparison 
to the HFD D12451 from Research Diet Inc.  Practice must change in future experiments.  
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Paper 4- Soofi, A., Wolf, K.I., Emont, M.P., Qi, N., Martinez-Santibanez, G., Grimley, 
E., Ostwani, W., and Dressler, G.R. (2017). The kielin/chordin-like protein (KCP) 
attenuates high-fat diet-induced obesity and metabolic syndrome in mice. Journal of 
Biological Chemistry 292, 9051-9062. 

Even though intensive work was done in this project addressing the effect of normal, 
gain and loss of KCP in white and brown adipocyte tissue, very little was done about 
other fat depots, such as the subcutaneous fat tissue (Soofi et al., 2017). Experiments will 
be seriously considered for future projects in this field, yet it is difficult to cover all in 
one study. 

 

 

III. b. 2. Further experiments based on this thesis 

The Pax2 project provides new insight into the role of Pax2 in determining the correct 

renal architecture and cell fate. These new Pax2 alleles are valuable genetic reagents for 

further research on urogenital development, disease and future use of Pax2 as a 

therapeutic target. Both of these novel Pax2 alleles are useful for cell imaging, whereas 

the new Pax2 hypomorphic allele is also a good mouse model that mimics multiple 

aspects of CAKUT.  Our lab has recently (Ranghini and Dressler, 2015) used the Pax2-

egfp knock-in allele of Pax2. They identified and sorted cells of the intermediate 

mesodermal lineage, and compared gene expression patterns in egfp positive cells that 

were heterozygous (Pax2-egfp/+) or homozygous null for Pax2 (Pax2-egfp/egfp). Thus, 

we identified critical regulators of intermediate mesoderm and kidney development 

whose expression depended on Pax2 function. In cell culture models, Pax2 is thought to 

recruit epigenetic modifying complex to imprint activating histone methylation marks 

through interactions with the adaptor protein PTIP, a project we are following up with in 

vivo studies.  In Pax2 mutants, a set of genes was also identified whose expression was 

up-regulated in egfp positive cells and whose expression was consistent with a cell fate 

transformation to paraxial mesoderm and its derivatives. These data provide evidence 

that Pax2 specifies the intermediate mesoderm and renal epithelial cells through 

epigenetic mechanisms and in part by repressing paraxial mesodermal fate. We are 
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interested in continuing these studies using the combination of the Pax2-egfp alleles and 

the new made Pax2 conditoinal KO mice in kidney development as well as in adult 

kidney regeneration after injury. Another recent publication from our lab by Gerimely E 

etal., 2017 used the Pax2-egfp mice as an important model to report that Pax proteins are 

re-expressed or ectopically expressed in cancer and other diseases of abnormal 

proliferation, making them attractive targets (Grimley et al., 2017). This new data 

confirms that small molecules targeting the DNA binding paired domain can be 

identified and may be good lead compounds for developing tissue and cell-type specific 

anticancer therapies.  We will be focusing on future experiments in pursuing the role of 

Pax2 in Kidney development, kidney disease, and regeneration, as well as the role Pax2 

plays in other organs like the female and male reproductive system.   

Given the critical roles for TGFβ and BMP proteins in enhancing or suppressing renal 

interstitial fibrosis, respectively, and the recently established link of the TGFβ/Smads 

axis to NAFLD, fibrosis, and HFD-induced obesity, our works confirm that regulating 

TGFβ signaling through the extracellular proteins that inhibit or enhance receptor/ligand 

interactions is a viable strategy to attenuate both hepatic steatosis and its long-term 

effects, such as liver fibrosis and other metabolic disorders. These secreted regulatory 

proteins may prove to be valuable tools to study liver metabolism, pathology and 

obesity-related complications in animal models. Acute kidney injury (AKI) and chronic 

kidney disease (CKD) are among the most common, costly and deadly disease in the 

USA, and we are committed to keep working on new projects using the knowledge and 

models developed in this work, using mice that have different gene mutations or small 

molecules that mimic the effects of the KCP protein to attenuate both AKI and CKD. 

This work helps people get further insight into the TGFβ signaling pathway and may 

provide new clues for the medical treatment of TGFβ associated diseases, such as renal 

fibrosis, NAFLD, metabolic syndrome, and cancer.  
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Personal Statement 

The prevalence of Chronic Kidney Disease (CKD) and obesity-related conditions 
such as heart disease, stroke, type 2 diabetes and certain types of cancer, are some of the 
leading causes of preventable death. In the U.S. alone, CKD prevalence was recently 
estimated at 336 per million a year and the rate of obesity reached 34.9%. The estimated 
annual medical cost of obesity in the U.S. was $147 billion in 2008. Renal fibrosis is the 
major determinant in progression of acute and chronic kidney diseases. The transforming 
growth factor-β (TGFβ) superfamily has been shown to be an important mediator of 
progressive fibrosis and to influence the differentiation of preadipocytes to mature 
adipocytes. Thus, an understanding of interactions between chronic kidney disease and 
metabolic syndrome is an important issue and attention should be given to TGFβ 
superfamily as crucial factors for regulation and modulation of those pathological 
conditions.  

This thesis proposal will focus on demonstrating that modification of the TGFβ 
superfamily signaling pathway with a secreted inhibitor or enhancer can alter the 
metabolic profile of adipose tissue to reduce obesity and inhibit the initiation and 
progression of hepatic steatosis. This significantly reduces the effects of metabolic 
diseases induced by a high fat diet and attenuate kidney disease in animal models. This 
work will provide a new insight on how a secreted proteins or derivatives could attenuate 
profibrotic pathways, and may provide a novel approach to translating the protective role 
into clinical benefit.  

Pursuing my PhD degree at Warwick University will enable me to fulfill my 
personal achievements and career objectives and establish the ideal foundation for my 
future roles as a researcher. I am committed to improving a deeper public consciousness 
of crucial health problems like obesity and cancer.  Having completed my PhD degree, I 
would be able to continue working for patient benefit, through my research. Throughout 
my research career I have pursued the goal of improving the lives of others. During my 
undergraduate and master programs (1987-1994) I studied biomarkers of alcoholism. As 
a result of that tremendous personal effort, biomarkers of alcoholism were used for the 
first time in the diagnosis and treatment of alcoholism in several heath institutions in 
Cuba thereby improving the health and quality of life of patients and their families.  In 
Yemen, the drug called Khat and the misuse of pesticides represent another kind of 
epidemic causing health, social and economic problems and eventually leading to 
destruction of families. When I returned to Yemen from Cuba, in June 1995, I spent one 
year working diligently on a project to create the Toxicology Center which would serve 
as a basis to establishing forensic medicine in the country. In addition, I participated in 
educational programs and, through the use of local and national media, persuaded the 
public to understand the critical nature of these problems. 
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At the end of 1996, I moved to the U.S. and I decided to stay there because of the 
many opportunities for advancing my career. However, in the beginning it wasn’t very 
easy for many reasons, including getting accustomed to the language, but I dedicated 
much effort to becoming familiar quickly. Coming from a family with minimal formal 
education, I had to migrate, first within Yemen, and later to Cuba where I obtained my 
basic science training. In 1996, I moved to Detroit, Michigan (U.S.) where I noticed that 
many children of illiterate immigrant parents struggled with their school homework, so I 
volunteered to participate in after school educational programs to help them and to 
provide them with a safe environment.  

At the beginning of 1997, I started my scientific research work in the U.S. at 
Wayne State University in aging and DNA repair. Then in 2000, I moved to the 
University of Michigan where I was hired to run the renal core in the Nephrology 
Division. We generated several cell and mouse models to study glomerular structure and 
glomerular diseases. At the end of 2009, I joined Dr. Dressler’s laboratory in the 
Department of Pathology where, among other responsibilities, I have had the opportunity 
to have my own projects. Since then, I have been working on interrelated projects and 
publications of my latest works which will be used to obtain my PhD.   

Obtaining my PhD degree represents the culmination of my studies and carries 
immense personal importance. Above all, I hope to inspire my coworkers, friends and 
families, but most importantly my 17 years old daughter and 15 years old autistic son. 
Professionally, it will open new doors to new opportunities and give me the authority to 
independently pursue my scientific research. This is critical for me to be able to 
collaborate with scientists in countries facing similar health challenges to tackle these 
serious illnesses. 
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