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CLINICAL RESEARCH ARTICLE

Low Vitamin B12 in Pregnancy Is Associated With
Adipose-Derived Circulating miRs Targeting PPARYy
and Insulin Resistance

Antonysunil Adaikalakoteswari,' Manu Vatish,> Mohammad Taugeer Alam,?
Sascha Ott,®> Sudhesh Kumar,'* and Ponnusamy Saravanan'-

"Warwick Medical School, University of Warwick, Warwick CV2 2DX, United Kingdom; 2Nuffield
Department of Obstetrics & Gynaecology, University of Oxford, Oxford OX3 9DU, United Kingdom;
Department of Computer Science, University of Warwick, Warwick CV4 7AL, United Kingdom; *University
Hospital of Coventry and Warwickshire, Coventry CV2 2DX, United Kingdom; and ®>Academic Department of
Diabetes and Metabolism, George Eliot Hospital, Nuneaton CV10 7DJ, United Kingdom

Context: Low vitamin B12 during pregnancy is associated with higher maternal obesity, insulin
resistance (IR), and gestational diabetes mellitus. B12 is a key cofactor in one-carbon metabolism.

Objective: We hypothesize that B12 plays a role in epigenetic regulation by altering circulating
microRNAs (miRs) during adipocyte differentiation and results in an adverse metabolic phenotype.

Design, Settings, and Main Outcome Measure: Human preadipocyte cell line (Chub-S7) was
differentiated in various B12 concentrations: control (500 nM), low B12 (0.15 nM), and no B12
(0 nM). Maternal blood samples (n = 91) and subcutaneous adipose tissue (SAT) (n = 42) were
collected at delivery. Serum B12, folate, lipids, plasma one-carbon metabolites, miR profiling, miR
expression, and gene expression were measured.

Results: Our in vitro model demonstrated that adipocytes in B12-deficient conditions accumulated more
lipids, had higher triglyceride levels, and increased gene expression of adipogenesis and lipogenesis. MiR
array screening revealed differential expression of 133 miRs involving several metabolic pathways (adjusted
P < 0.05). Altered miR expressions were observed in 12 miRs related to adipocyte differentiation and function
in adipocytes. Validation of these data in pregnant women with low B12 confirmed increased expression of
adipogenic and lipogenic genes and altered miRs in SAT and altered levels of 11 of the 12 miRs in circulation.
After adjustment for other possible confounders, multiple regression analysis revealed an independent
association of B12 with body mass index (8: —0.264; 95% confidence interval, —0.469 to —0.058; P = 0.013)
and was mediated by four circulating miRs targeting peroxisome proliferator-activated receptor y and IR.

Conclusions: Low B12 levels in pregnancy alter adipose-derived circulating miRs, which may mediate
an adipogenic and IR phenotype, leading to obesity. (J Clin Endocrinol Metab 102: 4200-4209,
2017)

aternal obesity is a major public health concern,
Mand its prevalence has doubled in the past two
decades. In the United Kingdom (1) and the United States
(2), 27% of women of childbearing age are overweight and
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20% to 32% are obese. Maternal obesity is characterized
by the presence of an excessive amount of adipose tissue
(AT) and has adverse effects on maternal health and the
developing fetus, predisposing them to cardiometabolic

Abbreviations: ACACA, acetyl CoA carboxylase; AT, adipose tissue; BMI, body mass index;
CEBPa, CCAAT/enhancer-binding protein a; FASN, fatty acid synthase; IR, insulin re-
sistance; miR, microRNA; g-RT-PCR, quantitative real-time polymerase chain reaction;
PPARYy, peroxisome proliferator—activated receptor y; RXRe, retinoic acid X receptor «;
SAM, S-adenosyl-methionine; SAT, subcutaneous adipose tissue; T2D, type 2 diabetes.
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disease later in life (3). AT development involves two dis-
tinct processes: adipogenesis (increased adipocyte number)
and lipogenesis (increased accumulation of lipids) (4). In
humans, adipogenesis occurs predominantly in the prenatal
and postnatal periods and is set during childhood and
adolescence (5). However, during childbearing years the
rate of adipocyte generation gradually decreases. Any di-
etary or environmental changes that disturb the balance
between adipogenesis and lipogenesis can result in increase
in adipocyte size and accumulation of lipids, both known to
increase insulin resistance (IR) (6). Therefore, understand-
ing adipocyte biology during this period will elucidate the
effect of adiposity on maternal and child health.

B12 deficiency in pregnant women is increasingly
common (7) and has been shown to be associated with
higher body mass index (BMI) in many studies (8), as well
asIR (9), gestational diabetes, and type 2 diabetes (T2D) in
later life (10). An animal study demonstrated (11) that a
B12-restricted diet resulted in higher adiposity, adipocy-
tokines, dyslipidemia, and adverse gestational outcomes.
Although biochemical plausibility has been postulated, the
exact mechanisms of this link between B12 and BMI are
not known (12). B12 is needed for the synthesis of me-
thionine, the precursor of S-adenosyl-methionine (SAM), a
key methyl donor for DNA methylation (12). DNA
methylation is involved in the functioning of genes and
depends on the supply of methyl groups by methyl-donors
such as B12 from the diet (13). Evidence from two in-
dependent US cohorts demonstrated that the methylation
variant of a transcription factor HIF3A (rs3826795)
exhibited opposite effects on weight change in response to
low and high B vitamin intakes (14). We have shown that
low B12 is associated with hypomethylation of choles-
terol transcription factor SREBF1. Our experiments with
methylation inhibitors also showed that there may be other
epigenetic mechanisms involved (15). Thus, it is plausible
that deficiency in B12 might influence methylation patterns
in the DNA as well as other epigenetic modulators such as
microRNAs (miRs), which regulate gene expression (13).

Recently, much attention has been given to other
regulators of AT development, such as miRs. MiRs are
epigenetic mediators that control adipocyte differentia-
tion, which when perturbed can potentially result in an
unhealthy metabolic phenotype (16, 17), such as dysli-
pidemia, hypertension, IR, and possibly elevated risk of
developing T2D. Maternal diet-induced obesity can
program AT and modulate miRs during fat cell devel-
opment (3, 13). In addition, circulating miRs have shown
to be altered in gestational obesity (18) and in adults with
different degrees of obesity and T2D (16, 19).

Taking these observations together, we hypothesize that
low B12 levels during pregnancy may affect the AT de-
velopment due to altered adipose-derived circulating miRs
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resulting in a metabolic phenotype. In this study, we aimed
to investigate (1) the effects of B12 deficiency on adipo-
genesis and lipogenesis in human adipocyte cell line (Chub-
S7), (2) investigate the effects of B12 deficiency on the miR
profile in differentiated Chub-S7 and their secretion, and
(3) validate the miRs identified in Chub-S7 with the levels
of miRs in subcutaneous adipose tissue (SAT) and circu-
lating miRs in the serum of pregnant women with low
B12 levels.

Materials and Methods

The methods of clinical data collection and in vitro and in vivo
experiments are detailed in Supplemental Methods. They are
articulated in brief in the following paragraphs.

Differentiation of human preadipocyte cell
line (Chub-57)

The normal culture medium of adipocytes (DMEM/F12,
Cat#11039-Gibco, Waltham, MA, USA) contains 500 nM of
B12. Green et al. (20) cultured 3T3 adipocytes in B12 concen-
trations (0 to 500 nM) and showed that the accumulation of odd-
chain fatty acids and methylmalonic acid (tissue marker of B12
deficiency) occurs in B12-deficient conditions, which were pre-
vented by supplementation with 500 nM B12. Our previous study
also showed that the methylation potential was optimal at
500 nM of B12 (15, 20). Therefore, we chose similar conditions
[control (500 nM), low B12 (0.15 nM), and no B12 (0 nM)] for
our in vitro experiments.

Study population

A cross-sectional study was conducted in the University
Hospital Coventry and Warwickshire, Coventry, UK. Fasting
maternal blood samples (n=91) and SAT (n =42) were collected
at the time of cesarean section (21).

Lipid accumulation
In adipocytes, cellular lipid accumulation was determined by
oil red O staining, and triglycerides were determined in cell

lysates according to the manufacturer’s protocol (Abcam,
Cambridge, UK).

Quantitative real-time polymerase chain reaction of
messenger RNA

RNA isolation and quantitative real-time polymerase chain
reaction (q-RT-PCR) from Chub-S7 and human SAT were
performed (15).

Locked nucleic acid—-based miR array profiling
miR profiling of RNA from Chub-S7 differentiated in low

B12 were performed with locked nucleic acid miRCURY arrays
(Exigon, Vedbaek, Denmark).

Bioinformatic analysis of miRs

To examine which metabolic and signaling pathways were
affected, we used a bioinformatics prediction database: Bio-
conductor (R) package miRNAtap, which has prediction al-
gorithms, such as DIANA (22), MiRanda (23), PicTar (24), and
TargetScan (25). To further determine functional relationships
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of the miRs, we constructed an integrated regulatory network of
miR-gene—pathways by using Cytoscape software.

g-RT-PCR of miR

miRCURY locked nucleic acid miR PCR system (Exiqon)
was used to assess the miRs in Chub-S7 and SAT and the
circulating miRs in conditioned media and maternal serum.

Analytical determinations

Serum B12, folate, cholesterol, triglycerides, high-density
lipoprotein cholesterol (21), and plasma one-carbon metabo-
lites (SAM, S-adenosyl-homocysteine, methionine, homocysteine,
methylmalonic acid) were determined by methods as described
in Supplemental Methods (26).

Statistical analysis

Continuous data were reported as mean * standard deviation.
In vitro data were presented as mean = standard error of the mean
for at least six independent experiments to ensure reproducibility.
Student ¢ test was used for comparison of groups, all tests were two-
sided, and P < 0.05 was considered statistically significant. Where
appropriate, clinical data were log-transformed before correlation
and regression analyses. All analyses were performed in SPSS
Statistics version 21 (IBM Corp., Armonk, NY).

Results

In vitro study of B12 deficiency effects on human
adipocyte cell line (Chub-S7)

Effects of B12 deficiency on adipogenesis
and lipogenesis

To evaluate the effect of B12 deficiency in adipocytes
and the underlying mechanism, we differentiated Chub-S7
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in B12-deficient conditions. As shown in Fig. 1A-1E, we
demonstrated increased accumulation of lipid droplets,
and the triglyceride content in adipocytes differentiated
in B12-deficient conditions. We found that through the
process of differentiation of adipogenesis, B12-deficient
conditions increased the gene expression of key tran-
scriptional regulators of adipogenic differentiation such as
peroxisome proliferator—activated receptor y (PPARYy)
within 48 hours and CCAAT/enhancer-binding protein «
(CEBPa) after 6 days, and the levels remained significantly
higher for the rest of the differentiation time course
(14 days) (Supplemental Fig. 1), indicating that low B12
directly affects adipogenesis. Then we showed that at day
14, in addition to gene expression of PPARy and CEBPq,
the nuclear receptor retinoic acid X receptor @ (RXRa)
that heterodimerizes with PPARvy to regulate lipid meta-
bolism was upregulated. Similarly, gene expression of
lipogenic enzymes such as fatty acid synthase (FASN) and
acetyl CoA carboxylase (ACACA) and the lipid-coating
protein (perilipin) were also increased in adipocytes with
B12-deficient levels (Fig. 1F, 1G). These findings suggest
that low B12 levels in adipocytes might induce adipo-
genesis and lipogenesis.

Effects of B12 deficiency on epigenetic regulation
To assess the effect of B12 on epigenetic regulation,
we treated the adipocytes with B12 in the presence of
a methylation inhibitor (5-aza-2-deoxycytidine). Gene
expression of adipogenic regulators (PPARy, CEBPa,
RXRa), lipogenesis (FASN, ACACA), and lipid-coating
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Figure 1. (A-C) QOil red O staining of adipocytes in (A) control, (B) low B12, and (C) no B12 (lipid droplets stained as red). (D and E) B12-deficient
conditions increase (D) lipid accumulation and (E) triglycerides in human adipocytes. (F and G) Low B12 increases gene expression of (F)
adipogenic regulators and (G) lipogenesis in Chub-S7. All experiments were performed as n = 6. LB, low B12; NoB, no B12. Values are mean =+
standard error of the mean. *P = 0.05, **P =< 0.01, ***P = 0.001; P value compared with control.
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protein (perilipin) were increased, similar to low B12
(Supplemental Fig. 2). It is clear from these findings
that methylation inhibition (or hypomethylation) alone
may not be the only mechanism involved in these alter-
ations, and this led us to further explore other epigenetic
mechanisms such as miRs.

Effects of B12 deficiency on miR profiling in Chub-57

To investigate the effect of B12 on miR, we assessed
expression of >2042 human miRs annotated in miR-
Base 18.0 by using miR microarrays in adipocytes
differentiated with low B12. The miR profiling de-
tected 560 mature human miRs, of which 133 miRs
(23.8%) were differentially expressed (adjusted P <
0.05). The two-way hierarchical clustering analysis
showed 97 miRs were significantly downregulated
and 36 miRs were upregulated in adipocytes cultured
in low B12 (P < 0.01) (Fig. 2A). These findings show
that low B12 alters miR levels. We then carried out the
pathway analysis involved with these aberrant miR
expressions.

MiR targets and biological pathway prediction
To further identify and validate the biological roles
of the aberrant miRs, analyses were carried out with

https://academic.oup.com/jcem 4203

Bioconductor (R) package miRNAtap for target gene
prediction. The number of target genes for significantly
differentially expressed miR varied from 22 target genes
(miR-146a/miR-377) to 994 target genes (miR-23c),
with a median number of 344 target genes (Fig. 2B).
The union set of all predicted target genes of 133 dif-
ferentially expressed miRs was analyzed via the hyper-
geometric statistical test to significantly enrich pathways
with pathway definitions taken from the Kyoto Ency-
clopedia of Genes and Genomes database for biological
processes and Recon 2 for metabolic processes. Pathway
enrichment analysis resulted in significant (P < 0.01)
enrichment of genes that were related to the regulation of
metabolic processes such as lipid, amino acid, nucleotide,
transport, and glycan metabolism (Fig. 2C). Enrichment
of biological processes revealed that these miRs were
involved in signaling pathways particularly related to
IR, developmental biology, immunity and inflammation
(Fig. 2D). Interestingly, enrichment analysis indicated
that these miRs were involved in classic metabolic and
adipocyte differentiation pathways, such as the insu-
lin signaling, Wnt signaling, adipocytokine signaling,
peroxisome proliferator—activated receptor signaling,
phosphatidylinositol signaling, and triacylglycerol syn-
thesis (Fig. 2C).
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Figure 2. (A) Hierarchical clustering of 133 differentially expressed miRs in adipocytes differentiated in vitro with low B12 levels. Control, n = 6;
low B12, n = 6. (B) Number of predicted target genes for 133 differentially expressed miRs that varied from 22 targets (miR-146a and miR-377)
to 994 targets (miR-23c), with a median number of 344 targets. (C) Enrichment analysis for metabolic pathways via Recon 2; P < 0.01. (D)
Enrichment analysis for signaling pathways via the Kyoto Encyclopedia of Genes and Genomes database; P < 0.01. (E) Hierarchical clustering of
12 selected miRs related to adipocyte differentiation and function; adjusted P < 0.05. Red represents expression level below mean
(downregulated), and green represents expression level above mean (upregulated); adjusted P < 0.05. C, control; LB, low B12.
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Effects of B12 deficiency on miR expression in
Chub-S7 and its secretion

To confirm the differences observed in miR array
screening, miRs with significant changes in expression
level and the putative target genes associated with adi-
pocyte differentiation and function were selected (Fig. 2E)
and validated by g-RT-PCR analysis. The 12 miRs
chosen for validation were the following: 3 targeting
PPARy (miR-27b, miR-23a, miR-130b), 1 targeting
CEBPa (miR-31), 6 targeting adipocyte differentiation
(miR-143, miR-145, miR-146a, miR-221, miR-222,
miR-125b) and 2 involved in IR pathways (miR-103a,
miR-107) (Fig. 3A). ¢-RT-PCR analysis confirmed that

Low B12 in Pregnancy Alters Circulating miRs

J Clin Endocrinol Metab, November 2017, 102(11):4200-4209

these 12 miRs were significantly altered in adipocytes,
and 9 miRs were significantly altered in the condition
media (except miR-130b, miR-103a, and miR-107)
(Fig. 3B). These results show that low B12 alters
adipose-derived miRs related to adipocyte differentiation
and function. To further confirm whether altered miRs in
response to low B12 could be a putative epigenetic
mechanism, we validated these 12 miRs in adipocytes
with B12 in the presence of a methylation inhibitor. We
found that nine miRs in adipocytes and eight secreted
miRs in conditioned media were altered, similar to low
B12 (Supplemental Figs. 3 and 4). Here it is evident that
in addition to methylation inhibition, other epigenetic
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Figure 3. (A) Low B12 alters miRs related to adipocyte differentiation and function in Chub-S7. (B) Low B12 alters secreted miRs related to

adipocyte differentiation and function in conditioned media from Chub-S7. All experiments were performed as n = 6; LB, low B12; NoB, no B12.
Values are mean * standard error of the mean. *P = 0.05, **P = 0.01, ***P =< 0.001. P value compared with control.
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mechanisms such as miRs are involved in B12-deficient
conditions.

Study on pregnant women with low B12 levels

One-carbon metabolites in pregnant women

The clinical characteristics of the study population are
shown in Supplemental Table 1. Reduced methylation
potential was observed in women with low B12 status,
such as lower SAM and methionine (Supplemental Ta-
ble 1). These results indicate that low B12 disturbs one-
carbon metabolism alters the levels of SAM, the methyl
donor that may reduce the effect of methylation of DNA
and other epigenetic regulators (miRs).

Adipogenic and lipogenic gene expression in human
maternal SAT

To further evaluate the tissue-specific effect of B12
on human SAT, gene expression of adipogenesis and
lipogenesis were compared in SAT of pregnant women
with low B12 levels and with normal B12 levels. We
demonstrated that the gene expression of adipogenic
regulators (PPARy, CEBPa, RXRa), lipogenesis (FASN,
ACACA), and lipid-coating protein (perilipin) (Fig. 4)
was upregulated in maternal SAT with low B12, similar
to the observation seen in Chub-S7 (Fig. 1F and 1G).
These findings suggest that low B12 levels in pregnant
women might increase adipogenesis and lipogenesis.

Validation of miR expression in human maternal SAT

Next, we attempted to validate the differential miR
expression identified in Chub-S7 to human maternal
SAT. Expression levels of all 12 miRs were significantly
upregulated or downregulated in SAT from pregnant
women with low B12, similar to the observation seen in

Chub-S7 (Fig. SA).
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Validation of circulating miRs in serum from
pregnant women

Similarly, we validated the adipose-derived miR ex-
pression observed in conditioned media from Chub-S7 to
serum from pregnant women. We observed that 11 of the
12 miRs were significantly altered in the circulation,
except 1 (miR-31, not detected) in pregnant women with
low B12 levels (Fig. 5B). Interestingly, we also observed
that 6 of the 11 miRs from serum correlated significantly
with miRs from SAT, and 9 of the 12 miRs from the
conditioned media correlated significantly with the miRs
from the Chub-S7 (Supplemental Table 2). These results
reveal that these circulating miRs are adipose-derived and
are altered by low B12.

Association of circulating B12 and circulating miRs
with obesity

To further explore the relation between circulating B12
and miRs with obesity, we performed the following cor-
relation analyses. Circulating B12 was inversely correlated
with maternal BMI (r = —0.292; P = 0.007) and positively
with seven circulating miRs: miR-27b (r = 0.390; P =
0.001), miR-103a (r = 0.344; P = 0.004), miR-107 (r =
0.387; P = 0.001), miR-125b (r = 0.311; P = 0.010), miR-
23a (r=0.323; P =0.007), miR-221 (r = 0.274; P = 0.026)
and miR-222 (r = 0.400; P = 0.001). To further investigate
whether the circulating B12 and miRs independently
contribute to BMI, multiple regression analysis was carried
out. Circulating B12 and four circulating miRs (miR-27b,
miR-23a, miR-103a, miR-107) were independently as-
sociated with BMI after adjustment for likely confounders
(age, parity, smoking, insulin, glucose, and supplement
use) (B12, 8 = —0.264, P = 0.013; miR-27b, 8 = —0.250,
P = 0.041; miR-23a, 8 = —0.271, P = 0.026; miR-103a,
B =-0.226,P =0.049; miR-107, B = —0.228, P = 0.041).
We also confirmed that when we ex-
cluded the subjects with gestational
diabetes and low B12 on insulin or
metformin therapy (n = 2), the associ-
ation of B12 and miRs with BMI
remained the same, suggesting no effect
of associated therapy on BMI (data not
shown). However, in multiple re-
gression analysis, the association of B12
with BMI became nonsignificant after
further adjustment for these four cir-
culating miRs, thereby highlighting a
mediating role of circulating miRs be-
tween B12 and BMI (Table 1).

To further study the function of
these four circulating miRs in meta-
bolic pathways, we constructed a
miR-gene—pathway network for these
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Figure 5. (A) MiR expression in a subset of human SAT. Control, n = 17; low B12, n = 13. (B) Circulating miR expression in a subset of serum
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0.01, ***P = 0.001; P value compared with control. (C) MiR—gene—pathway

regulatory network shows the network of the five pathways related

to IR and the six validated genes regulated by at least one miR each. MiR, genes, and pathways are represented by nodes such as orange
diamonds (miRs), green squares (pathways), blue ovals (genes), and brown ovals (validated genes regulated by at least one miR each). Green
arrows represent the relationship between gene and pathway, orange arrows represent the relationship between miR and gene predicted by at

least two tools, red arrows represent the relationship between miR and gene
represent the relationship between miR and gene evidenced by literature. LB,

four miRs with their known or predicted target genes and
annotated pathways. Figure 5C shows that the network
of these four miRs shared the targets related to five
metabolic pathways related to IR (PPARYy, adipocyto-
kine, insulin, Wnt, and T2D) and the six validated genes
uniquely regulated by at least one miR each (PPARy gene
as a predicted target of miR-27b and miR-23a; CEBP« as
predicted target of miR-23a; FASN as predicted target of
miR-107, miR-27b, and miR-103a; and RXRa, ACACA,
and PLIN as predicted targets of miR-27b). Therefore,
our findings strongly indicate that these four miRs could
regulate the adipogenic and lipogenic genes and may
mediate an obesity and IR effect of low B12 status.

Discussion

Our study shows that B12 deficiency in human adipo-
cytes changes tissue-specific miRs and circulating miRs
and leads to an adverse metabolic phenotype. Here we
have demonstrated that B12 deficiency in adipocytes
caused excess accumulation of lipids, increased the ex-
pression of genes that regulate adipogenesis and lipo-
genesis, and resulted in aberrant expression of miRs
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involved in key metabolic pathways, such as PPARy and
IR. These were first demonstrated in human adipocyte
cell line and then validated in human SAT. In addition,
our clinical study findings indicate that the associa-
tion between low B12 and obesity appeared to be me-
diated by adipose-derived circulating miRs targeting
these pathways.

AT development is associated with both increasing
adipocyte cell numbers and their ability to accumulate
lipids (4, 6). We observed that low B12, both in vitro
(adipocytes) and in vivo (AT at the time of childbirth),
caused increased adipogenesis (PPARy, CEBPa, RXRa)
and lipogenesis (FASN, ACACA), indicating that low
B12 affects the two distinct processes of AT development.
Similar findings were observed in rats, where B12 de-
ficiency resulted in differential expression of peroxisome
proliferator—activated receptor signaling pathways (27)
and higher activities of hepatic FASN and ACACA (28).
We have previously shown in adipocytes that low B12
conditions caused hypomethylation of cholesterol tran-
scription factor SREBF1 (15). It is known that SREBF1
induces PPARYy and regulates genes necessary for lipo-
genesis (29).
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Table 1. Multiple Regression Analysis of Maternal
B12 With BMI
BMI
Maternal
Variable (SDS) B 95% Confidence Interval P
Model 1

B12 —0.264 (—0.469, —0.058) 0.013
miR-27b —0.250 (—0.488, —0.011) 0.041
miR-23a —-0.271 (—0.508, —0.034) 0.026
miR-103a —0.226 (—0.452, —0.001) 0.049
miR-107 —0.228 (—0.446, —0.009) 0.041
B12 Model 2

-0.219 (—0.523, —0.084) 0.153
B12 Model 3

—0.225 (—0.500, 0.049) 0.106
B12 Model 4

—-0.217 (—0.519, —0.084) 0.154
B12 Model 5

—-0.211 (—0.523, 0.101) 0.181

Maternal variables (n = 91) and circulating miRs (n = 72, measured in
a subset of pregnant women) were log transformed for statistical
comparisons. B represents SDS change in the dependent variable per SDS
change in the independent variable. Model 1: Maternal age, parity, folate
supplement use, smoking, insulin, and glucose; Model 2: Model 1 + miR-27b;
Model 3: Model 1 + miR-23a; Model 4: Model 1 + miR-103a; Model 5: Model
1 + miR-107. SDS, standard deviation score.

Our in vitro experiments showed that adipocytes in
low B12 conditions displayed increased lipid accumu-
lation. Because B12 is a key micronutrient essential for
functioning of most tissues, similar processes may also
happen in hepatocytes. If such dysregulation of lipid
occurs in hepatocytes, it is plausible that this might
contribute to higher circulating lipids, an observation
seen in women with low B12 (16), who had lower
methylation potential (Supplemental Table 1), and in
mice fed with a B12-restricted (11, 28) or methyl-deficient
diet (30). Interestingly, their pups also exhibited a dys-
lipidemic profile, an observation previously reported
by us from this clinical cohort that lower maternal B12
was associated with lower high-density lipoprotein in the
cord blood (21). Whether this effect is due to adverse
epigenetic programming requires additional longitudinal,
mechanistic, and interventional studies.

Nutrient imbalance can cause epigenetic modifications
through several mechanisms including DNA methyla-
tion, histone modification, chromatin remodeling, and
changes in the expressions of small and long noncoding
RNAs such as miRs (13). DNA methylation and his-
tone modification have been studied extensively, and a
number of recent studies have explored the mechanistic
aspects of miRs on regulation of protein-coding genes.
However, there is no study demonstrating the effects of
micronutrient deficiency on miR expression, especially in
SAT. In this study, we report a comprehensive database of
differential expression patterns of 133 miRs in adipocytes
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differentiated with low B12. Pathway enrichment analysis
of miR array data revealed that these miRs were involved
in several metabolic pathways including adipocyte biology
and IR, such as insulin signaling, Wnt, adipocytokine,
PPAR, phosphatidylinositol, and triacylglycerol synthesis
pathways. Here we report 12 miRs related to adipocyte
differentiation and function that have been associated with
obesity. Our in vitro adipocyte experiments showed that
these miRs were significantly altered in B12-deficient
conditions. These findings were replicated in SAT from
pregnant women with low B12 levels. Previous studies
have shown overexpression or knockdown of miR-27b
(31), miR-23a (32),and miR-130b (33, 34) as important
regulators of adipogenesis by targeting PPARYy, and
these miRs are downregulated in AT from obese subjects
with or without diabetes. Studies in AT from obese
women have shown that miR-31 downregulates CEBP«
expression at both the transcriptional and translational
levels (35). In addition, miR-143 (17), miR-145 (36),
miR-146a (37), miR-221 (16, 17), miR-222 (16, 17),
and miR-125b (16, 17) have been shown to exhibit a
role in adipocyte differentiation and were significantly
altered in morbidly obese patients, prepubertal children,
and the AT of obese mouse models. Furthermore, the
role of miRNA-103a and miR-107 (17) in IR has been
shown in rodent T2D models and in 3T3-L1 adipocytes.
Thus, we showed that low B12 causes aberrant miR
expression in SAT and their association with adipo-
genesis and obesity. Our findings support similar ob-
servations of altered tissue-specific miR expression in
human placenta exposed to low folate (38) and 3T3-L1
adipocytes exposed to vitamin A (39).

In addition to these tissue-level changes, we observed
that the secretion of the adipose-derived miRs was sig-
nificantly altered in adipocytes differentiated in vitro in
B12-deficient conditions and correspondingly in the
circulation in pregnant women with low B12. The tissue
expressions of the miRs and circulating miRs also cor-
related with each other (Supplemental Table 2), in-
dicating that the primary source of these miRs could be
the SAT. However, 3 of the 12 miRs (miR-143, miR-1435,
miR-146a) and the correlation of miR-145 with human
SAT were in the opposite direction. Because the effects of
low B12 status can be global, other tissues such as liver,
muscle, or placenta could also contribute to the circu-
lating levels, which may explain this observation. It is also
possible that these miRs were induced during adipo-
genesis but are downregulated in the obese state, con-
sistent with previous studies (17). Circulating miRs
provide a possible mechanism for crosstalk between
tissues. If these aberrant miRs are transferred across the
placenta, they may cause adverse epigenetic changes in
the tissues of the offspring and predispose them to
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metabolic disorders in later life (40). Future studies are
needed to prove these speculations.

Finally, multiple regression analyses revealed that the
circulating B12 and four of the circulating miRs (miR-
27b, miR-23a, miR-103a, and miR-107) were indepen-
dently associated with BMIL, after adjustment for other
possible confounders. Further regression analysis showed
that the inverse association between B12 and BMI was
reduced when adjusted for these four miRs. This suggests
that the link between B12 and BMI may be partly me-
diated through these miRs (Table 1). Other studies (8, 10,
15, 21) have shown strong inverse associations between
B12 and BMI. However, this study demonstrates that
these miRNAs regulating adipogenesis may play a causal
role. On the contrary, although our clinical data showed
the association of B12 with miRs targeting IR, it did
not show with homeostatic model assessment of IR. This
result might reflect the sample size, or it is possible that
these pregnant women will develop IR in the future,
because obesity usually precedes IR. If these findings are
replicated in longitudinal studies, these miRs may rep-
resent early pregnancy biomarkers for IR in women with
low B12 levels.

In summary, our study identified that B12 deficiency in
pregnancy is independently associated with adipose-
derived circulating miRs, which are known to affect
PPARyand IR pathways. This study provides insight that
these adipose-derived circulating miRs can act as a mode
of cell signaling molecules that may predispose metabolic
disorders to both mothers and offspring in later life. Thus
identification of B12-induced epigenetic signatures could
provide a unique opportunity to study predictive miR
biomarkers and future therapeutic targets for obesity.
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