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New Sampling Strategies when Searching for
Robust Solutions

Xin Fei, Jiirgen Branke, Member, IEEE, Nalan Giilpinar

Abstract—Many real-world optimisation problems involve un-
certainties, and in such situations it is often desirable to identify
robust solutions that perform well over the possible future
scenarios. In this paper, we focus on input uncertainty, such
as in manufacturing, where the actual manufactured product
may differ from the specified design but should still function
well. Estimating a solution’s expected fitness in such a case
is challenging, especially if the fitness function is expensive to
evaluate, and its analytic form is unknown. One option is to
average over a number of scenarios, but this is computationally
expensive. The archive sample approximation method reduces
the required number of fitness evaluations by re-using previous
evaluations stored in an archive. The main challenge in the
application of this method lies in determining the locations
of additional samples drawn in each generation to enrich the
information in the archive and reduce the estimation error. In this
paper, we use the Wasserstein distance metric to approximate the
possible benefit of a potential sample location on the estimation
error, and propose new sampling strategies based on this metric.
Contrary to previous studies, we consider a sample’s contribution
for the entire population, rather than inspecting each individual
separately. This also allows us to dynamically adjust the number
of samples to be collected in each generation. An empirical
comparison with several previously proposed archive-based sam-
ple approximation methods demonstrates the superiority of our
approaches.

Index Terms—Uncertainty, Average-case Robustness, Wasser-
stein Distance, Archive Sample Approximation.

I. INTRODUCTION

IVEN its ubiquity in many real-world problems, optimi-

sation under uncertainty has gained increasing attention.
Uncertainty may originate from various sources, such as
imprecise model parameters or fluctuations in environmental
variables. In the presence of uncertainty, it is often desirable
to find a solution that is robust in the sense of performing well
under a range of possible scenarios [1]. More specifically, our
paper considers searching for robust solutions in the sense
of high expected performance, given a distribution of distur-
bances to the decision variables. This is a typical scenario for
example in manufacturing, where the actually manufactured
products may differ from the design specification due to
manufacturing tolerances.

Evolutionary algorithms (EAs) have been applied to solve
various optimisation problems that involve uncertainties, see
[2] for a survey. There are also different concepts related to
robustness, including optimising the worst-case performance
[3], robust optimisation over time [4], and active robustness
[5]. The most widely researched robustness concept however,
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and the concept we consider in this paper, is to optimise a
solution’s expected fitness (often called effective fitness in the
literature) over the possible disturbances [1].

To estimate an individual’s effective fitness, sampling has
been widely adopted in practice, and two sampling methods
can be distinguished. Implicit sampling refers to the idea that
because EAs are population-based, an over-evaluated individ-
ual due to a favourable disturbance can be counterbalanced
by an under-evaluated neighbouring individual, and so simply
increasing the population size should help guiding the EA in
the right direction [6], [7]. In fact, as shown in [8], under the
assumption of infinite population size and fitness-proportional
selection, evaluating each solution at a single disturbed sample
location instead of its actual location is equivalent to optimis-
ing the expected fitness directly. [7] proposed to increase the
population size whenever the algorithm gets stalled. Explicit
sampling, on the other hand, evaluates each individual multiple
times and estimates its fitness as the average of the sampled
evaluations. Obviously, while averaging over multiple evalu-
ations increases the estimator accuracy, it is computationally
rather expensive. A recent analytical study on the efficiency
(progress rate) of implicit as well as explicit sampling-based
evolution strategies can be found in [9].

Because of the large computational cost of sampling in
case of expensive fitness functions, numerous studies have
focused on allocating a limited sampling budget to improve
the estimation accuracy, allowing to reduce the number of
samples needed without degrading the performance of the
EA. One possible approach for estimating effective fitness
is to apply quadrature rules or variance reduction techniques
[10]-[13]. Some authors observed that allocating samples in
a manner that increases the probability of correct selection is
more important than the accuracy of estimation [14], [15].

Another approach, called archive sample approximation
(ASA), stores all past evaluations in a memory and uses this
information to improve expected fitness estimates in future
generations (for further information, refer to [10] and [16]).
ASA can also be combined with the above sampling allocation
methods to further enhance the accuracy of approximation. We
have recently proposed an improved ASA method that uses
the Wasserstein distance metric (a probability distance that
quantifies the dissimilarity between two statistical objects) to
identify the sample that is likely to provide the most valuable
additional information to complement the knowledge available
in the memory [17].

In this paper, we propose a Wasserstein-based archive sam-
ple approximation (WASA) framework. The sampling strategy
in our previous study [17] is one of many possible approaches
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in the WASA framework. Here, a new sampling strategy based
on WASA is presented, which improves the performance in
three ways:

1) A heuristic that considers what sample might provide
the most valuable information for all individuals in
the population simultaneously, thereby enhancing the
performance of the final solution and accelerating the
convergence of the EA toward a high-performance so-
lution;

2) Introducing the concept of an approximation region that
could improve the performance of the sampling strategy
when few samples exist; and

3) Proposing a sample budget mechanism to adjust the
sampling budget in the WASA framework.

The paper is structured as follows. Section II provides
a brief overview of existing archive sample approximation
methods. We then present our new approaches to allocating
samples in Section III. These approaches are evaluated em-
pirically using benchmark problems, and their performances
are compared with other approaches in Section IV. The paper
concludes with a summary and some ideas for future work.

II. ARCHIVE SAMPLE APPROXIMATION

The problem of searching for robust solutions can be defined
as follows. Consider an objective function f : z — R
with design variables z € R™. The noise is defined on the
probability space (Z,B(Z),P) where = = [["[(;,u;] is a
sample space, B(Z) is the Borel o-algebra on = and P is
the probability measure on B(Z). For a particular solution z,
location Z, is random under this noisy environment, which is
defined as:

Zy=x+¢ E€E (1)

We then define the induced probability space for Z, as
(D, B(D,), P;), where D, is the disturbance region as the
set covering all possible locations as a result of disturbing
solution = defined by:

Dy = | |lxi + 4, zi + us; )

—

and P, is the probability measure defined so that, for
¢ € B(D,),

Po(¢) = P(Z; (). 3)

Without loss of generality, for minimisation, the goal is
to minimise the effective fitness, that is, the expected perfor-
mance over the disturbance region as follows:

min  fops(x) = B[f(2)] = /D f(2dP(z). @)

As the fitness formulation is unknown in many industrial
applications, the integral cannot be computed directly. In prac-
tice, we can numerically compute this integral using sampling
techniques. Let Z, = {z,| n € N} be the realisations of
random location Z,. The empirical probability measure (i.e.

probability distribution) of these samples is a discrete proba-
bility measure, which can be defined so that, for ¢ € B(Z,),

P.(¢) = |—]1V| Y Ls(zn), (5)

neN

where 14(-) is the indicator function. If the sample size |V
is sufficiently large, the effective fitness can be well estimated
as follows:

feps(@) = Z f(Zn)Pr(Zn) (6)

neN

However, if evaluating the fitness function is computationally
expensive, this may not be possible.

The ASA approach originally proposed in [18] saves pre-
viously evaluated points in the search space and their corre-
sponding fitness values in an archive 4. Generally, the archive
A is a set of ordered pairs (z,p), where z is the sample
location and p is its fitness value. The archive information
can be reused when estimating the expected fitness of a new
solution. ASA performs three main steps during a fitness
evaluation.

1) The previously evaluated points which are in the solu-
tion’s disturbance region are retrieved from the archive.
Given the disturbance region D,, the available archive
information can be identified as

Ay ={(z,p) € Al z € Z,.}.

2) A sampling strategy is used to determine at what
additional locations samples should be collected. Let
C, denote the new sample locations. It is desirable to
select a set of sample points C, which maximise our
knowledge of the fitness landscape in the disturbance
region.

3) All samples located within the disturbance region D,
need to be assigned probabilities. Then, the estimated
effective fitness f.;; () can be calculated as

fEff(x) = Z a(Q)Qm(a(l))"’ Z f(€)Qq(c)

ac€ A, ceCy

Archive information New information

where Q,(-) is the point probability; (") and a(®
represent the first and second elements of the ordered
pair in the archive A,.

The overall procedure integrating ASA into an EA is visualised
in Fig. 1.

In the simplest ASA, the sampling strategy randomly evalu-
ates new points within the disturbance region and assigns equal
probabilities to all available samples, see, e.g., [10]. However,
if the distribution of available samples in the disturbance
region is not representative of Z,, the resulting estimation
of effective fitness may be very biased. In an attempt to fill
“holes” in the disturbance region, the authors in [16], [19]
and [20] proposed to iteratively pick a sample point that
has maximal distance from any archive sample point in the
disturbance region.
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Fig. 1. Illustration of integrating ASA into an EA.

III. THE WASSERSTEIN-BASED ARCHIVE SAMPLE
APPROXIMATION

Given the archive samples, we aim to provide an accurate
estimation of effective fitness for each individual by sampling
additional locations. The estimation error with respect to
effective fitness is defined as follows:

Cers (@) = | fesrs(x) = fers(2) (7)

In reality, estimation error cannot be computed given that the
actual effective fitness f.ss(x) is unknown. Therefore, we use
Wasserstein distance as an upper bound approximation for the
estimation error. We call this framework Wasserstein-based
archive sample approximation.

In the following subsections, we first introduce the formu-
lation of Wasserstein distance, explain the principle behind
WASA and describe the underlying sampling problem of
WASA. Then, we enhance the description of the sampling
strategy used in our previous work [17] and propose a new
population-based myopic sampling strategy.

A. The Wasserstein Distance Metric

The Wasserstein distance metric (also known as the Earth
mover’s distance) is a statistical distance between two prob-
ability measures, which can be computed by solving the
Monge-Kantorovich transportation problem [21]. The two
probability measures in the Wasserstein distance are consid-
ered as warehouses and destinations. The distance value be-
tween two probability measures is determined by the minimum
transportation cost from warehouses to destinations.

More formally, let o and v be probability measures with
samples G = {g;| j € J} and H {hx| ¥ € K}, and
corresponding probabilities {g;| j € J} and {vi| k € H},
respectively. Let ¥ denote the set of all joint measures with
marginal measures ¢ and v. The Wasserstein distance metric

between o and v can be formulated as
W(e,v) =
glelg >0 dlgs, he)i(eg, i)

kEK jeJ
s.t. Zw(gj,l/k) =, Vk
i€J

S wlosv) = 05, Vi

keK
w(Qka) 2 07 Vj7k7

®)

where the distance d(g;, hi) between locations g; and hy, is
measured by the Euclidean distance i.e.,

d(gj, hi) = Ilg; — hill2- )

Different from other divergence measures such as the
Kullback-Leibler divergence, the Wasserstein distance works
on arbitrary sets and doesn’t assume that one random set is
a subset of another. The reader is referred to [22] for further
information on the Wasserstein distance metric.

B. The Upper Bound Approximation for Estimation Error

As discussed in Section II, the effective fitness of a par-
ticular solution can be numerically computed by using a set
of samples. If the number of samples is large enough, the
corresponding empirical probability measure will converge to
the actual probability. Given that the computational cost of
evaluating a sample is expensive, we aim to approximate
this “large” empirical probability measure with a “smaller”
discrete probability measure. The challenge is how to estimate
the corresponding estimation error. Since the actual effective
fitness cannot be computed in practice, the estimation error
cannot be obtained directly.

In this paper, we provide an upper bound approximation
of the estimation error (stated in Theorem 1) that can be
calculated without requiring any fitness information.

Theorem 1: Suppose that we have two discrete probabil-
ity measures v and p. The effective fitness is numerically
computed by using the probability measure p; and v is the
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probability measure approximating p. If the fitness function
f :x — R is Lipschitzian, then the estimation error satisfies

D flai)ej = D Fhwwe| < a W(e,v) (10)

jeJ kEK

where « is a positive constant.
Proof: See Appendix A of the online supplement. [

Theorem 1 implies that the estimation error with respect
to two discrete probability measures can be upper bounded by
the Wasserstein distance. For practical applications, the fitness
function in the disturbance region might be intermittent or non-
Lipschitz. In this case, the aforementioned upper bound still
holds if two probability measures are identical.

C. The Modified Wasserstein Distance Metric

Before explaining the WASA framework, we introduce a
modified Wasserstein distance metric used in sample sets
with known and unknown probabilities. The probability v is
assumed to be unknown. This metric provides the optimal
probability measure {v;| j € J}, which results in the smallest
Wasserstein distance value. We define the modified Wasser-
stein distance metric M (G, H) between two samples G and
H as follows,

M(G,H) =min W(p,v) =
Vi

o > > dlghi)v(ej )
"k ek jed
sty vlog,v) = 05, Vi (11)
keK
ka:Ll/k 20, Vk
keK

w(@jﬂ/k) > Oa \V/jak

Note that the computational cost for solving the above optimi-
sation problem is high for a large-scale distance comparison.
However, when the strong duality property holds, the objective
values of the dual and primal problems are identical, which
can be used to solve the optimisation problem (11).

Let n; for j € J denote a vector of dual decision variables
assigned to the first set of constraints of problem (11) by
ignoring the second set of constraints. Then, the dual problem
for (11) can be derived as,

M(G,H) = max Zgjnj
ey (12)
st n; < d(gj, he), Vi k.

Due to the special structure of inequality in the constraints
of the dual problem (12), the optimal decision variables 1*
can be easily determined. The optimal dual decision is the
minimum Euclidean distance from the sample hj, to the sample
g;, and can be calculated as

*_

j 13)

min d(g;, hx), Vj.
h

Once the optimal dual decision variable 7 has been deter-
mined, the Wasserstein distance M (G, H) can be computed
as

M(G,H) = ojn;. (14)

jeJ

Additionally, the probability measure v can be computed as

ve = Y 1y, (hi)oj, Vk (15)
=
where 1, (hy) is an indicator function and defined as
1, if hy is the closest sample to g;
1, (hy) = _ Toae)
0, otherwise.

The overall procedure for efficiently computing the modified
Wasserstein distance value is described in Algorithm 1.

Algorithm 1 Efficient method for computing M (G, H)
Inputs:
o Samples G = {g;|j € J} with probabilities {o;|j € J}
o Samples H = {hi| k € K}.
Outputs:
o Modified Wasserstein distance value M (G, H).
« Optimal probabilities {v}| k € K} for samples H.
for j € J k€ K do
Compute Euclidean distance d(g;, hy) using (9).
end for
for j € J do
Find the optimal dual solution 7; using (13).
end for
Compute the distance value M (G, H) via (14).
Compute the optimal probabilities {v;| k € K} as in (15).

D. The WASA Sampling Problem

In this subsection, we introduce the sampling problem in
WASA. Let o; for | € A = {1,...,A} denote the I-th
individual from a particular population during the EA search
process. Using similar notation as in Section II, let Z; for
I € A be the random location of individual x;, which is defined
on the probability space (D;, B(D;), P;). We then generate a
large set 7, = {#n,1 € Dy| n € N} from the random location
Z; to represent the disturbed locations of each individual. The
empirical probability measure of these disturbed locations is
denoted by P,. Note that these large sample sets are used only
when computing the Wasserstein distance value and as a set
of candidates for evaluation.

Given an archive A that consists of previously evaluated
solutions, the available archive samples for individual x; can
be retrieved as follows:

A ={(z,p) € Al z € D;}. (17)

Then, the previously evaluated sample locations S; can be
identified as

Sy ={aM] a e A} (18)
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The optimal sampling problem is to minimise the total effec-
tive fitness estimation error over all individuals at the present
EA’s generation by searching:

« the best additional sample locations C; and

o the optimal probability measure @; on B(C; U S;)
We can formulate the aforementioned problem by using the
following optimisation model:

mm Zeeff (1) Z|feff(xl) — fers ()]
b leA leA
st fepp(x) Z F(zn1)Pi(zn0), VI
neN
fess(@) = 37 a® Q@) + 3 fe)Qule (19)
acA; ceCy
3 Qua®)+ Y Qo) =1, Qi() >0,
ac€A; ceC
Z|Cl| = Ba Cl C Zl7Vl'
leA

As previously discussed, some fitness information in (19) is
unavailable. Therefore, the optimal sampling problem cannot
be directly solved. By applying Theorem 1, we approximate
the optimal sampling problem by using the Wasserstein dis-
tance as follows:

min W(PZ,QZ —manM Zl,ClUSl)
CrQuiex !
€A
. (20)
sty |Ci|=B,C, C Z,VI
leA

where B is the evaluation budget. This new approximate
formulation is referred to as the WASA sampling problem.
The details of derivation of the optimisation model (20) are
provided in Appendix B of the online supplement.
Essentially, we minimise the upper bound approximation
of the estimation error in order to provide heuristic sample
locations without requiring any fitness information. Although
the WASA sampling problem is a nonlinear and non-convex
optimisation problem, it is still solvable. The optimal solution
for this approximate problem formulation can be found by

repeatedly solving the following four related steps:
1) Fixing the cardinality |C;| for { € A such that
ZleA |Ci| =B ~

2) Selecting the new samples C; from Z;.

3) Constructing the sample set Y; for each individual x; as
follows,

Y, =S5 ud, Vi 21

4) Computing the modified Wasserstein distance value
M(Z,,Y;) for I € A by applying Algorithm 1 to solve
the following optimisation model.

manZdZywlPl 2),Qu(y))

QuYu

2€2, Y€V

Z wl Pl Z)7Ql(y)) = I:)l(z)a Yz S Zl

yey; (22)
Y Qiy) =1, Quy) >0, Vy e,

yey;

Wi(z,y) >0, V2 € Z,y € V).

Generally, the optimal solution of the WASA sampling
problem cannot be obtained within a reasonable time. For
instance, there exist two individuals x; and xo at a partlcular
EA’s iteration. Consider that the cardinalities of Z 1 and Z2 are
200. Given the sampling budget B = 2, we have three ways
to allocate this sampling budget to x; and zs.

(‘Cl|a |CQ|) € {(17 1)7 (2a 0)7 (Oa 2)}

If we should take one sample from Zl and one form 22,
then we have 40,000 sample combinations. In case of taking
two samples from Z1 or two from Zg, 19,900 combinations
are found. This basically results in 79,800 repetitions for
performing the four related steps to find the optimal solution.
The small case shows that heuristic approaches to solve the
WASA sampling problem are needed.

In the next subsection, we introduce two Wasserstein-
based sampling strategies aimed at efficiently making sampling
decisions for the above WASA sampling problem.

E. Equal Fixed Sampling Strategy

A straightforward way to simplify the WASA sampling
problem is to consider each individual separately, and allocate
to each individual the same fixed number of new samples. We
call this strategy Equal Fixed Sampling (EFS). The sampling
budget in EFS must be an integral multiple of the number
of individuals. EFS is an iterative method that determines
one new sample point at each step. Algorithm 2 describes
the overall procedure of incorporating the EFS strategy into
WASA.

For individual x;, EFS first retrieves previously evaluated
information A; from the archive A and identifies the archive
sample locations .S; by using (18). Then, EFS constructs the
candidate sets Y,, ; for n € N by uniting one of the individual’s
disturbed locations z,; with archive points as follows:

Yn,l =Zp, U S;, Vn € N. (23)

EFS evaluates the modified Wasserstein distance value
VErs(#zn,) of each disturbed location z,; as

VEFS(Zn,l) = 1\4(}/”717 Zl), Vn € N. (24)
EFS next selects and evaluates the new sample point z*
resulting in the smallest value, i.e.,

2" = argmin{Vgrs(zn1)| n € N}. (25)
The fitness of this point is evaluated and the new sample
information will be added into the archive A. The process
repeats until the algorithm runs out of sampling budget for
this individual.

When this iterative process has been completed, EFS re-
trieves the archive samples A} from the updated archive. The
previously evaluated sample locations for the individual x; can
be identified as follows,

Y ={aW] a e A7} (26)
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Now we compute the optimal probabilities (); for Y;* by using
(22). Then, the estimated effective fitness of each individual
can be calculated as

fers(@) = a®Qi(a™).

a€Af

27

Algorithm 2 The procedure of including EFS into WASA
Inputs:

o Set of disturbed locations Z;, = {z,,| n € N} with
empirical probability measure P, for [ € A.
o Sampling budget B.
o Archive A.
Outputs:
« Estimated effective fitness f, pf(xy) for L € A
for [ € A do
Retrieve archive information A; using (17).
Identify sample locations .S; from A; as in (18).
for be {1,...,B/A} do
for n € N do
Construct the candidate set Y, ; using (23).
Compute the Vgpg(z,,) value via (24).
end for
Find z* = argmin{Vgps(zn1)| n € N}.
Evaluate the fitness of the best location f(z*).
Update the archive A < AU (2%, f(2%)).
end for
end for
for [ € A do
Retrieve the archive information A as in (17).
Construct the archive sample set Y;* via (26).
Calculate the probability measure 155 on Y;* using (22).
Compute the effective fitness fe £r(xr) as in (27).
end for

Fig. 2 illustrates EFS by using a 2D example. Let us
consider the solution located at (0,0), which is represented
as a grey solid hexagon, assume the sampling budget of this
solution is one, and the disturbance region is from —1 to 1
in x- and y-directions. We approximate the disturbance region
by using Latin hypercube sampling to generate 6 disturbances.
The corresponding disturbed locations of this solution are
represented by grey solid circles. In the disturbance region,
there are two archive points which are depicted as black solid
circles. We now calculate the Vg rg value of each disturbed
location. The results are shown in Fig. 2 (a). We can find that
the best sample point is the grey solid circle whose Vgpgs
value is 0.8486. Fig. 2 (b) describes how to determine the
probabilities of samples used to estimate the effective fitness.
The probability of each disturbed location is 0.1667 because
the total number of disturbed locations is six in this example.
The black solid circle located at (0.1600, 0.2000) is the point
closest to the grey solid circle (—0.1863,0.1745). According
to probability re-allocation rules (15), the new probability
for this black solid circle is 0.1667. The new sample point
marked by a triangle is the best representation of the two grey
solid circles. However, the new probability of this point is

0.5000 because this point is also the nearest to itself. The new
probabilities of the other black solid circles can be assigned
following the same procedure.

F. Population-based Myopic Sampling Strategy

EFS may spend unnecessary sampling on an individual that
already has a small Wasserstein distance value but ignores the
needs of an individual with large Wasserstein distance value.
This inefficient sampling allocation frequently appears in the
search process because of the exploration and exploitation
strategies used in the EAs. The current promising area on
the decision space is exploited repeatedly, and the archive set
already contains adequate information for approximating the
effective fitness landscape of individuals in this area. However,
the archive does not contain information on previously unex-
plored areas, and in those areas new sampling is indispensable.

To alleviate this problem, we propose here population-
based myopic sampling (PMS). The key idea is to allow
sampling, at each step, the disturbed location of any individual
that greatly minimises the average Wasserstein distance over
the entire population. This sampling strategy is particularly
effective when disturbance regions partially overlap one an-
other, because one additional sample point might contribute
to improving the fitness estimate for several individuals. PMS
furthermore introduces the concept of an approximation region
which may be chosen different from the disturbance region and
allows the use of archive samples also outside the immediate
disturbance region. Finally, since the budget in a generation
no longer needs to be a multiple of the population size, we
introduce a mechanism to adapt the sampling budget of each
generation depending on the change in the average Wasserstein
distance over the entire population. Algorithm 3 describes
the overall procedure of including PMS into WASA. In the
following, we present the core ingredients of PMS, including
approximation region, myopic sampling location selection, and
sampling budget adjustment.

1) Approximation region: Generally, ASA begins with the
search of available archive points which are located within
the individual’s disturbance region. If the archive contains
only a small number of available points, it may improve
the estimation of the effective fitness to additionally include
archive points slightly outside the disturbance region. In PMS,
we call this enlarged region approximation region. Let R,
denote the approximation region of individual z;. Given the
sample space = of noise, the size of approximation region R;
is controlled by a parameter x (k > 1), which is defined as
follows,

Ri={z+<| s € []lk*ti,nrxu}.

i=1

(28)

Obviously, the larger «, the more archive samples are used
for fitness estimation. On the other hand, if s is chosen too
large, the archive points may be located too far from the
individual’s disturbance region, thereby causing unpredictable
errors in effective fitness estimation. So, x needs to be chosen
carefully.
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Fig. 2. Description of using EFS.

Algorithm 3 The procedure of including PMS into WASA

Inputs:

o Set of disturbed locations Z; = {z,;| n € N} with
empirical probability measure P, for [ € A.

o Sampling budget B € [Biower, Bupper)-

o Archive A.

o Approximation region parameter .

o Average Wasserstein distance W1,

Outputs:
« Estimated effective fitness f.zs(x;) for [ € A.

o Average Wasserstein distance W,

Initialise b < 0.
for [ € A do
Set approximation region R; via (28).
end for
while b < B¢, do
Retrieve archive samples A; for [ € A using (17).
Identify sample locations S; from A; for [ € A via (18).
for e A,n e N do
for m € A do
Construct the candidate set Y7 ,, ,,, as in (29).
end for
Compute the Vpars(zy,) value via (30).
end for
Find z* = argmin{Vpyrs(zn1)| n € N,l € A}.
Evaluate the fitness of the best location f(z*).
Update the archive A < AU (z*, f(2*)).
Compute the TW* value using (33).
if W1 > W? and b > Bjoyer then
b = Bypper //Stop sampling.
else
Set b+ b+ 1.
end if
end while
for [ € A do
Retrieve the archive information A; as in (17).
Construct the archive sample set Y;* via (26).
Calculate the probability measure P on Y," using (22).
Compute the effective fitness fe rr(xy) as in (27).
end for
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(b) Probability assignment in EFS.

Fig. 3 illustrates the benefit of including additional archive
points. The solution is located at (0, 0), whilst its disturbance
region is from —1 to 1 in x- and y-directions. The black
solid circles denote the archive points, among which three
are located within and two outside the disturbance region.
The grey solid circles represent the disturbed locations of this
solution. If we restrict ASA to the disturbance region, the
minimum Wasserstein distance we can obtain from the two
black solid points and one grey solid point to be addition-
ally evaluated is 2.276. If we set the approximation region
parameter x as 120%, the grey squiggle in Fig. 3 denotes
the extension region with respect to the solution’s disturbance
region. Two additional archive points can be used to estimate
effective fitness. Accordingly, the best Wasserstein distance
value we can obtain from the four black and one grey points
reduces to 1.2935. This example demonstrates that an enlarged
approximation region may reduce the Wasserstein distance.
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Fig. 3. Using approximation region in WASA.

2) Myopic sampling location selection: Given the archive
samples of each individual, PMS myopically selects the best
sampling point. This myopic strategy iteratively builds candi-
date sets by combining a new sample at one disturbed location
of any individual with the archive samples of any individual,
as described in the following equation:

}/l,n,m = Zn,l U Sma (29)
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withn € N, m € A and [ € A. The myopic selection criterion
is based on the average Wasserstein distance for the entire
population. Let Vpass(z,,;) represent the average modified
Wasserstein distance value by sampling the disturbed location
Zn,1- Then, we can write the Vpars(z,,1) value as follows:

Vers(znt) = Y 1r, (2n ) MYinm, Zm) — (30)
meA
where 1x, (2y,) is an indicator function, defined as
I, (zn1) = {1’ o € R (1)
e 0, otherwise

that controls that a sample only contributes to an individual’s
Wasserstein distance calculation if it is within its approxima-
tion region.
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Fig. 4. The Vpjpss value computation in PMS.

Fig. 4 explains how to compute the Vppss value in the
PMS strategy. As shown in Fig. 4, two candidate solutions
x1 and xo are respectively located at (—0.666,—0.333) and
(0.666,0.333). The disturbance region of each solution is
represented by 6 Latin hypercube samples (grey solid circles).
The approximation region parameter x is set to be 130%.
The grey squiggle is the extension region with respect to
the disturbance region. Given the budget to sample one new
point, we need to determine which grey point is the best
sampling location for these two solutions (z; and x3) when
it is combined with the archive points (black). Note that the
grey points outside the overlapped approximation region, for
instance, (—1.5340, —0.6312), only contribute to one solution.
The Vpprs value for each grey point is shown in Fig. 4.
It can be observed that the sample location (0.3000,0.5100)
(triangle) allows for the smallest average Wasserstein distance
for these two solutions.

3) Sampling budget adjustment: PMS allows the automatic
reduction of the sampling budget used during an iteration of
the EA if the archive already provides plenty of information on
candidate individuals. The sampling budget is adaptively deter-
mined by the average Wasserstein distance over all individuals.
We attempt to decrease this average distance monotonously.
Considering a progressing evolution, we like to derive im-
proved estimates for effective fitness. Given Vpprs(zy,) for

n € N and [ € A, the best sampling location can be identified
as follows:

2" = argmin{Vppys(zn,1)| n € N,l € A} (32)

Then, we can compute the average modified Wasserstein
distance W at the current population ¢ as follows:

W=
> g, ()M(2" U S, Z)) + (1= g, (2%) M(S), Z1).

leA
(33)
PMS stops sampling for the current population when the
current average Wasserstein distance using the usable samples
is less than the recorded average Wasserstein distance of the
previous population ¢ — 1. In other words,

wt<wttL (34)

In practical use, we suggest to assign lower and upper
limits for the number of new samples evaluated in each
iteration. The lower limit ensures that a minimum additional
knowledge on the underlying fitness landscape is collected in
each iteration. It also prevents getting permanently stuck in an
artificial optimum of a false approximation model. The upper
bound prevents the spending of a large number of samples in
the current population. Given that EAs are iterative search
methods, the samples must also be allocated to the future
population rather than extensively sampling the fitness for the
current population.

IV. EMPIRICAL RESULTS

In this section, we examine the effect of varying algorithmic
parameters on the performance of the PMS strategy. Moreover,
we empirically compare the WASA strategies with several
other ASA approaches from the literature using a variety of
benchmark problems with different landscape features as well
as a real-life robust design problem. All results are averaged
over 30 independent runs with different random seeds.

A. Experimental Setup for Artificial Benchmark Problems

1) Overview of Artificial Benchmark Problems: We have
chosen six artificial benchmark problems from the literature,
their mathematical formulations can be found in Appendix C
of the online supplement. Fig. 5 provides one-dimensional
visualisations of the original and effective fitness landscapes.
The test problems have different characteristics:

e TP 1, taken from [23], has a discontinuous unimodal
original fitness landscape. The peaks of the original and
effective fitness landscapes are asymmetric and located
next to each other. This problem characteristic can test
an algorithm’s ability to precisely identify the peak of
effective fitness at the discontinuous landscape.

o TP 2, adopted from [23], can be viewed as the continuous
version of TP 1.

o TP 3, adopted from [18], has multimodal original and
effective fitness landscapes. The global optimum of the
original fitness (z = 1) is a local optimum of the effective
fitness landscape, and vice versa. Poor effective fitness
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estimates in the early phase of optimisation may misdirect
the EA towards the wrong region.

o TP 4, taken from [23], has two global minima in the
effective fitness landscape. The global minimum of the
original fitness is a local maximum of the effective fitness.

o TP 5, adapted from [23], combines the problem charac-
teristics of TP 2 and TP 3.

o« TP 6, taken from [8], has the global minima of the
effective fitness landscape as being the local minima of
the original fitness landscape.

2) Evolutionary Algorithm: Essentially, the archive-based
approximation is a part of the EA’s fitness evaluation proce-
dure. Therefore, it is straightforward to integrate our proposed
sampling strategies into any evolutionary algorithm. We have
adopted the covariance matrix adaptation evolution strategy
(CMA-ES) for the experiments. CMA-ES is implemented
based on the MATLAB toolbox [24]. We have modified the
fitness evaluation procedure in this toolbox and integrated the
various sampling strategies. The used parameter settings of the
CMA-ES toolbox are listed in Table I.

TABLE I
THE CMA-ES PARAMETER SETTINGS

CMA-ES Parameters

(ks A)

Selected Settings

(4.8)

initial standard deviation 1 search interval width

recombination equally weighted recombination

centre of search interval

1,600

initial point

total number of evaluations

3) Solution Selection & Performance Measure: We em-
ploy the best observed individual, i.e. the individual with
best estimated effective fitness, at the final generation as the
solution that would be reported to the decision-maker. The
actual effective fitness of the selected solution is evaluated by
10,000 Monte-Carlo samples generated from the underlying
noise. Moreover, we look at the algorithm’s convergence and
the average effective fitness over the whole run. Ideally, we
would expect the sampling approach to have a fast convergence
and to provide a high-quality solution at the final generation.

4) Disturbance Generation for WASA: The performance of
WASA is closely associated with the way the approximate
uncertainty set 7 is generated. We use 243 Latin hypercube
disturbances for all individuals within a generation, which
reduces the variance in comparing the effective finesses in
an uncertain environment. To avoid over-fitting to a specific
set of disturbances, we change the set of disturbances at each
iteration of the EA.

B. Performance of the PMS Strategy Depending on Approxi-
mation Region Parameter

We numerically study the effect of using various approxi-
mation region parameters (k=100%, 120% and infinity). The
lower and upper limits of the sampling budget at each iteration

are fixed at 4 and 8, respectively. Fig. 6 presents the conver-
gence of the average effective fitness of the best observed
solution.

As can be seen, the convergence towards high-performance
solutions can be accelerated by using a proper approximation
region parameter. Given the same amount of evaluations,
PMS-120% performs better than PMS-100%. The superiority
of using PMS-120% is significant before 1,000 evaluations,
because early in the run, information in the archive is sparse,
and the wider approximation region can use more archive
samples in the individual’s effective fitness estimation. At
the end of the run, the PMS-120% strategy is able to find
better solutions than all other strategies in all test problems,
indicating that a proper setting of the approximation region
prevents CMA-ES from early convergence towards local op-
tima by incorporating more archive samples in the effective
fitness estimation.

In all benchmark problems, the average effective fitness of
using PMS-infinity deteriorates during the first 100 evalua-
tions, though this value is improved quickly at later evalu-
ations. The reason is that the new sampling locations deter-
mined by PMS-infinity are always located at the centre of a
cluster of individuals when the archive is empty or contains
only few samples, which actually misleads the EA search
process. This negative effect becomes serious in test problems
TP 5 and TP 6, because the problem characteristics demand
that the robust approach is able to identify the correct search
area early on. Otherwise, the EA search process converges
towards local optima.

To support Fig. 6, Table II reports on the average effec-
tive fitness obtained over all 1,600 evaluations of the run.
Again, we can observe that PMS-120% provides the fastest
convergence pattern among these three strategies for all test
functions. PMS-infinity displays good convergence in TP 1,
2 and 4. Additionally, Table III presents the performance
of the final solution at the end of the EA search process.
These results show that PMS-120% has the best performance
in all benchmark problems, and PMS-infinity presents a per-
formance advantage over PMS-100%. However, PMS-infinity
performs worse than PMS-120% in most of the test functions.
The results confirm the theoretical ground discussed in Section
III, namely that a moderate increase of the approximation
region beyond the disturbance region is useful, but too much
may lose its benefit.

TABLE II
AVERAGE EFFECTIVE FITNESS OVER 1,600 EVALUATIONS
Mean =+ Std. err.

Test Problem | pyis 100% — PMS-120%  PMS-infinity
TP 1 0.1504+0.003 | 0.140+0.003 | 0.145+0.002
TP 2 0.674+0.014 | 0.634+0.014 | 0.651+0.014
TP 3 0.9011+0.015 | 0.848+0.025 | 0.890+0.021
TP 4 0.1924+0.001 | 0.1901+0.001 | 0.191+0.001
TP 5 0.5284+0.009 | 0.4951+0.018 | 0.527+0.022
TP 6 0.4584+0.006 | 0.45240.006 | 0.469+0.008

Best results and those statistically not different from best are highlighted in bold.
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Fig. 5. 1-D visualisation of original and effective fitness of the 5-D test problems. Solid line: original fitness landscape. Dash line: effective fitness landscape.
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Fig. 6. Convergence comparison with respect to evaluations for various approximation region parameters.

TABLE III
EFFECTIVE FITNESS OF THE SOLUTION AT 1,600 EVALUATIONS

Test Problem Mean £ Std. err. . .

PMS-100% PMS-120%  PMS-infinity
TP 1 0.1044-0.006 | 0.098+0.002 | 0.099+0.001
TP 2 0.5614+0.007 | 0.5331+0.006 | 0.548+0.005
TP 3 0.67640.031 0.569+0.022 | 0.65940.027
TP 4 0.18240.002 | 0.1774+0.002 | 0.177+0.001
TP 5 0.35840.011 0.301+0.009 | 0.33740.004
TP 6 0.4314+0.009 | 0.413+0.006 | 0.436+0.007

Best results and those statistically not different from best are highlighted in bold.

C. Performance of the PMS Strategy with Various Sampling
Budget Limits

In this experiment, we investigate the convergence pattern
with varying lower and upper sampling budget limitations. We
consider the setting where the sampling budget per generation

is allowed to change between 4 and 8 as default, which is ab-
breviated as the PMS-[4, 8] strategy. We firstly test the effect of
rising the lower limit of PMS-[4, 8]. As such, we consistently
use 8 evaluations throughout the search process and denote
this strategy as PMS-[8,8]. Secondly, we study the impact
of increasing the upper limit on the convergence behaviour.
Therefore, we include PMS-[4,10] in this experiment, whose
upper limit is set to 10. The approximation region is fixed at
120% of each direction of an individual’s perturbed region.
Fig. 7 displays the results of the various sampling strategies
for all test problems.

As shown in Fig. 7, PMS-[4, 8] and PMS-[8, 8] have sim-
ilar convergence patterns at early search iterations because
both strategies implement eight evaluations when the archive
has few usable samples. Nevertheless, the convergence of
PMS-[4, 8] becomes faster than that of PMS-[8,8] once the
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Fig. 7. Convergence comparison with the evaluations for various sampling budget limits.

archive has a sufficient number of samples, indicating that
PMS-[4, 8] saves evaluations when the average Wasserstein
distance is monotonously decreasing anyway. Moreover, we
observe that the convergence of PMS-[4, 10] is slow at early
iterations. This is because PMS-[4,10] is allowed to spend
more evaluations exploring the correct search directions at
early iterations.

TABLE IV
AVERAGE EFFECTIVE FITNESS OVER 1,600 EVALUATIONS

Test Problem Mean + Std. err.
PMS-[4, 8] PMS-[4, 10] PMS-[8, 8]
TP 1 0.1401+0.003 | 0.152+0.002 | 0.151+£0.003
TP 2 0.634+0.014 | 0.628+0.012 | 0.629+0.005
TP 3 0.848+0.025 | 0.897+0.021 | 0.876+0.027
TP 4 0.190+0.001 | 0.194+0.001 | 0.193£0.001
TP 5 0.495+0.018 | 0.540+0.029 | 0.514+0.028
TP 6 0.4521+0.006 | 0.457+0.008 | 0.453+0.008

Best results and those statistically not different from best are highlighted in bold.

TABLE V
EFFECTIVE FITNESS OF THE SOLUTION AT 1,600 EVALUATIONS

Test Problem Mean =+ Std. err.
PMS-[4, 8] PMS-[4, 10] PMS-[8, 8]
TP 1 0.0984+0.002 | 0.094+0.001 | 0.093+0.003
TP 2 0.5334+0.006 | 0.498+0.009 | 0.535+0.002
TP 3 0.56910.022 | 0.542+0.028 | 0.565+0.031
TP 4 0.17740.002 | 0.175+0.001 | 0.176+0.001
TP 5 0.301+0.009 | 0.269+0.018 | 0.294+0.016
TP 6 0.413+0.006 | 0.410+0.008 | 0.413+0.008

Best results and those statistically not different from best are highlighted in bold.

Again, Table IV and V summarise the overall performance
and the effective fitness value of the final solution, respectively.
We observe that strategies PMS-[4, 8] and PMS-[8, 8] perform
similarly at the end of EA search process, but PMS-[4, 8]
converges faster than PMS-[8, 8], indicating that our sampling
budget adjustment can save evaluations without sacrificing the
performance of the final solution. PMS-[4, 10] provides the

best final solution in all test problems, but converges more
slowly.

D. Average Performance Comparison

We verify the performance of the proposed strategies,
namely EFS and PMS, by comparing with the following
archive-based approaches from the literature:

1) SEM: The strategy randomly samples one location
within the individual’s perturbed area [8].

2) SEMAR: This is the SEM strategy integrated with the
archive sample approximation strategy [18].

3) ABRSS: This strategy is based on an archive sample
approximation approach consisting of two main steps.
For each disturbed location, the first step is to identify
the closest sample point in the archive, and the second
step is to check whether this disturbed location is also
the closest disturbed location of its selected archive
sample point [16]. If this is the case, the selected
archive sample point will be used in the effective fitness
estimation; otherwise, this disturbed location will be
considered for an additional sampling.

4) ABRSS+OP: This strategy implements ABRSS to de-
termine the additional sample points, but assigns the
optimal probabilities that are obtained from the modified
Wasserstein distance for all sample points involved in the
effective fitness estimation.

Note that all sampling strategies are inserted into the same
CMA-ES, so that all performance differences can be attributed
to the sampling strategy alone.

The PMS strategy sets the approximation region parameter
k as 120% and fixes the lower and upper limits for the number
of samples per iteration at 4 and 8, respectively. Fig. 8 displays
the computational results of using various bounds for the
sampling budget. Moreover, in Fig. 9, we report the average
estimation error over the course of the run, which is defined
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by the mean squared error between the true and estimated
effective fitness.

As shown in Fig. 8, the SEM approach provides the worst
results for all test problems, because this approach does not
use an archive and one new sample is not sufficient to estimate
the effective fitness. Compared to SEM, the archive-based
approaches show a good convergence on most test problems.
SEMAR and ABRSS exhibit similar convergence behaviour
on most test problems. Since the ABRSS+OP approach im-
plements the optimal probabilities, its convergence is faster
than ABRSS and SEMAR in the most of test problems.
Nevertheless, ABRSS+OP performs worse than the WASA-
based strategies, i.e., EFS and PMS, indicating that the Wasser-
stein distance metric provides an advantage in selecting good
sampling locations. Additionally, the results demonstrate the
good performance of PMS which converges faster than EFS
over the first 1,000 evaluations in all problems.

The effective fitness of the best observed solution obtained
from various strategies averaged over 1,600 evaluations is
reported in Table VI. The results confirm the importance
of good sampling strategy design. We find that the WASA
sampling strategies converge faster than other methods. For
strategies PMS and EFS, we observe that the convergence
of PMS is more rapid than EFS for all test problems except
TP 2 and 6. Table VII displays the performance of the final
solution obtained from various approaches. The result once
again confirms the superiority of WASA sampling strategies
and the performance advantage of PMS over EFS.

The results of average estimation error in Fig. 9 confirm
our findings from previous convergence comparisons. The
SEM approach consistently exhibits large effective fitness
estimation errors. The SEMAR and ABRSS strategies reduce
the average estimation error when the number of evaluations is
small, because they reuse past sampling information. However,
SEMAR and ABRSS lack a good mechanism to determine
the probability weights for the samples used in the effective
fitness estimation. This deficiency might lead to biases in the
estimation. In some cases, the average estimation errors of
SEMAR and ABRSS are actually increasing over the run.
By contrast, the approaches that adopt optimal probabilities,
i.e. ABRSS+OP, EFS and PMS, keep decreasing the average
estimation error throughout the run; and PMS is the fastest
approach in decreasing the average estimation error.

E. Robust Multi-point Airfoil Shape Optimisation under Un-
certain Manufacturing Errors

Finally, we test the proposed strategies on a simple real-
world problem. We consider a multi-point airfoil shape optimi-
sation problem with manufacturing errors. Although advances
in high-performance computing have reduced the CPU time
with respect to the performance evaluation of airfoil shape,
this robust optimisation problem still requires a significant
computational effort because algorithms might need thousands
of evaluations under various possible manufacturing errors.
Therefore, it is an ideal testbed for examining the performance
of various sampling approaches under the condition of limited
evaluation budget.

We consider the subsonic 2-D airfoil design problem, which
is a variant obtained from [3]. The baseline shape is NACA
0012 airfoil [25], which is illustrated in Fig. 10. We implement
10 Hicks-Henne bump functions [26] f;(z) fori=1,...,10
with the upper and lower surfaces of NACA 0012 (denoted as
y%(2) and y?(z)) to parameterise the upper surface y,(z) and
the lower surface y;(z). They are defined as follows:

6
MEEPACES SO
and
10
wi(2) =y (2) + Y 0:fi(2),
i=7

where z is a non-dimensional abscissa, and 6; is the design
variable on the i-th Hicks-Henne bump function. These Hicks-
Henne bump functions combined with design variables can be
used to tune the upper and lower surfaces. The definitions
of Hicks-Henne bump functions and the ranges of the design
variables can be found in Appendix D of the online supple-
ment.

The “fitness” of the airfoil shape is defined as the average
lift-to-drag ratio over three flow velocities (M; = 0.5 mach,
M, = 0.55 mach and M3 = 0.6 mach) when Reynolds
number (Re) and Angle of Attack (AoA) are 300,000 and
4°, respectively. Thus, the fitness function f(6) can be written
as follows:

£(0) = é(c1 + Gy +Cy)

where

C1 = Cp/p(My, Re, AoA, 01, ,610)
Cz = CL/D(M27R6,AOA,017‘ N ,910)
Cg = CL/D(Mg,Re,AOA, 91, s ,910)

where Cr,/p denotes the lift-to-drag ratio. We assume that all
design variables are affected by uniformly disturbed manufac-
turing errors. The range of manufacturing error for all design
variables is fixed as [—0.001, 0.001]. The overall robust design
problem can be formulated as

maxfogs(6) = E[(6+6)] = 5(Cy + Ca + Cy)
where

Cy = Cr/p(My, Re, AoA, 01 + &1, -+, 010 + £10)
Co = Cp/p(Mg, Re, AoA, 01 + &1, -+, 010 + 10)
C3 = Cr/p(Ms3, Re, AoA, 01 + &1, -+, 010 + £10)
& € U(—0.001,0.001), i=1,...,10.

In this experiment, the airfoil shape of lift-to-drag ratios at
various Mach numbers are evaluated by Drela’s XFOIL [27].
This software is an open-source aerodynamic analysis package
for subsonic isolated airfoils, which allows the use of relatively
lower computational effort than advanced CFD programs. For
this problem, we fix the (u,\) parameters in CMA-ES at
(5,10) and choose the total evaluations as 1,200. The lower
and upper limits of the evaluation budget at each iteration
for the PMS strategy are fixed at 5 and 10, respectively;



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

0.9

07

Logarithmic effective fitness

o
N

o.

Logarithmic effective fitness

Average approximation error

TP 1

SEM
--SEMAR
--ABRSS
.- ABRSS+OP

800
Evaluations

TP 4

SEM
SEMAR
o —>-- ABRSS
a@— ABRSS+OP
-EFS

# PMS

—-o-

2]

2

800
Evaluations

SEM

- SEMAR

- ABRSS

- ABRSS+OP
EFS

800
Evaluations
TP 4

SEM
- SEMAR
- ABRSS
- ABRSS+OP

800
Evaluations

1600

Logarithmic effective fitness

= =2 AWM
o m o

Logarithmic effective fitness
°
>

TP 2 @ TP 3
SEM 8 SEM

—&- SEMAR . —&- SEMAR

—>- ABRSS —>- ABRSS

--ABRSS+OP -- ABRSS+OP

Logarithmic effective fitness

800 400 800 1200 1600
Evaluations Evaluations
TP 5 TP 6

SEM 062 SEM

— G- SEMAR —G- SEMAR

—>-- ABRSS 0.58 —>-- ABRSS

74 ABRSS+OP 74 ABRSS-+OP
-EFS -EFS

# PMS 0:54 # PMS

Y F
"-\?"" QL oy O

BT iy .
@'\aﬂy&,}t\ﬁ:\ e

1600

800
Evaluations

800
Evaluations

1200

comparison of different sampling strategies with respect to evaluations.

TP 2 TP 3
1
06 SEM 05 SEM
5 —&- SEMAR 5 —&- SEMAR
£ 05| |—>- ABRSS £ 08 |—>- ABRSS
= —<}- ABRSS+OP = o7l |—<- ABRSstOP
E= —OF EFS 2 —= EFS
g 041 | o PMS = 06 |—&—PMS
o Z os@uPhr A
02 & %’t\‘f‘ o
z F o4 P e
@ - v v@,,h QA
£ 02 %03 N V\O-Jv\@,‘laxgq
= £ \ VXY
5 2 o Mg
i £ 02 .,\.\
= o1 = 9 4
0.1 -
B eg-_g-g

Average approximation error
o o o
Ao @ =

o
0

- SEMAR
- ABRSS
- ABRSS+

800 1600
Evaluations

TP 6

800 1200
Evaluations

TP 5

SEM
- SEMAR
--ABRSS

opP --ABRSS+OP

Average approximation error
o o
s o
8 B

°

800
Evaluations

800
Evaluations

Fig. 9. Average estimation error comparison of different sampling strategies with respect to evaluations.
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whereas the evaluation budget of other sampling approaches is
fixed at 10, that is, each solution is evaluated once. The other
experimental setup is exactly same as in previous experiments.
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Fig. 11 shows the convergence of the average effective fitness
of the currently best solution based on the estimated effective
fitness values.

As can be seen in Fig. 11, the convergence of WASA
sampling strategies is considerably faster than other sam-
pling approaches, which clearly confirms the superiority of
WASA sampling strategies in this real-world problem. The
non-WASA sampling strategies (SEM, SEMAR, ABRSS and
ABRSS+OP) exhibit similar convergence patterns. For EFS
and PMS, the solutions at 400 evaluations are even better than
the solutions obtained from the other sampling approaches
after 1,200 evaluations. In comparison to EFS, we observe
that PMS provides a good convergence rate at the first 200
evaluations due to its advanced sample selection method in
the WASA framework, which is consistent with the results of
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TABLE VI

AVERAGE EFFECTIVE FITNESS OVER 1,600 EVALUATIONS

Test Problem Mean & Sid. Err.
SEM SEMAR ABRSS ABRSS+OP EFS PMS
TP 1 0.260+0.006 | 0.171£0.007 | 0.156%0.004 | 0.1604+0.006 | 0.144+0.003 | 0.140+0.003
TP 2 1.018+0.008 | 0.728£0.017 | 0.7024+0.017 | 0.676+0.010 | 0.625+0.015 | 0.634-+£0.014
TP 3 1.304+0.024 1.12140.035 1.16440.031 1.012+0.040 | 0.902+0.035 | 0.84840.025
TP 4 0.21340.001 0.199+0.001 0.200+0.001 0.198+0.001 0.196+0.001 0.190+£0.001
TP 5 1.280+0.010 | 0.853£0.021 0.783+£0.022 | 0.75340.031 0.497+0.018 | 0.495+0.018
TP 6 0.519+0.007 | 0.485+0.008 | 0.47140.008 | 0.47440.011 0.462+0.007 | 0.452-£0.006
Best results and those statistically not different from best are highlighted in bold.
TABLE VII
EFFECTIVE FITNESS OF THE SOLUTION AT 1,600 EVALUATIONS
Test Problem Mean & Sid. Err.
SEM SEMAR ABRSS ABRSS+OP EFS PMS
TP 1 0.267£0.020 | 0.100+0.006 | 0.098+0.003 | 0.096+0.006 | 0.095+0.003 | 0.098+0.002
TP 2 1.000+£0.052 | 0.548+0.011 0.554+0.024 | 0.535+0.007 | 0.5284+0.002 | 0.533+0.006
TP 3 1.131+0.075 | 0.873£0.054 | 0.82340.071 0.769+0.042 | 0.682+0.031 0.569+£0.022
TP 4 0.205+0.004 | 0.187£0.009 | 0.18440.003 | 0.1854+0.002 | 0.181+0.003 | 0.177-+0.002
TP 5 1.005+0.076 | 0.662£0.044 | 0.47940.057 | 0.43440.053 | 0.335+0.012 | 0.301£0.009
TP 6 0.4714+0.013 | 0.455+0.011 0.429+£0.009 | 0.43040.011 0.4284+0.005 | 0.4131+0.006

Best results and those statistically not different from best are highlighted in bold.
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Fig. 11. Convergence comparison of various sampling strategies with respect
to evaluations in the robust airfoil shape optimisation problem.

artificial test functions presented in Section IV.D.

Table VIII reports both the average effective fitness over
1,200 evaluations (abbreviated as A.E.F.) and the effective
fitness of the solution at 1,200 evaluations (abbreviated as
E.F.). The results show that PMS provides the fastest con-
vergence among the six approaches. The convergence of EFS
is worse than that of PMS but still much better than those of

TABLE VIII
PERFORMANCE OF VARIOUS SAMPLING APPROACHES IN THE ROBUST
AIRFOIL SHAPE OPTIMISATION PROBLEM

Mean =+ Std. Err.

Method AEF. EF.
SEM 67.665+0.434 | 71.410+0.434
SEMAR 66.140+1.011 | 71.657+0.305
ABRSS 66.359+0.721 | 71.638+0.311
ABRSS+OP | 67.7424+0.987 | 72.035+0.277
EFS 68.453+0.239 | 72.614+0.089
PMS 69.257+0.233 | 72.780+0.068

Best results and those statistically not different from best are highlighted in bold.

the non-WASA approaches. The optimal probabilities used in
the effective fitness estimation have improved performance of
ABRSS+OP in this test problem. Compared to ABRSS and
SEMAR, ABRSS+OP has a faster convergence and provides
better final solutions, though it is still worse than the WASA
sampling strategies.

V. CONCLUSION

When using evolutionary algorithms to search for a ro-
bust solution, estimating the effective fitness is challenging.
Storing previous evaluations in an archive and using this
information to improve the fitness estimate, the so-called
archive sample approximation method, has been proposed by
several authors to improve the estimation accuracy without
increasing the sampling budget. A crucial part of ASA is the
sampling strategy, i.e., to decide what new solutions should
be evaluated. In this paper, we used the Wasserstein distance
metric to approximate an upper bound for the error and
proposed two Wasserstein-based sampling strategies to suggest
promising sampling locations. Minimizing the upper bound
cannot guarantee minimization of the actual error, however,
knowing that we have no information on the fitness function
apart from previous samples, it is a promising approach.
One sampling strategy considers the sampling contribution
from each individual’s perspective, and allocates an equal
number of evaluations to each individual. The second strategy
approximates the sampling contribution for all individuals.
The empirical results on various benchmark problems and
robust airfoil shape optimisation demonstrate the benefit of
using Wasserstein-based sampling strategies and the advantage
of considering the population contribution in the sampling
strategy design.

This study can be further developed in several possible
directions. The idea of sampling budget control could be
refined, with more sophisticated control strategies. The ap-
proximation region is only really helpful in the beginning of
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the run, so parameter x controlling the extension could be
reduced over the run. The idea should be tested also with
other distributions for the disturbances. It also would be inter-
esting to compare WASA with surrogate-based approaches.
The Wasserstein distance metric might even be helpful in
constructing better surrogate models. Finally, the development
of WASA to address more complex real-world applications
would be valuable.
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