Cross-device tracking through identification
of user typing behaviours
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A novel method of cross-device tracking based on user typing
behaviours is presented. Compared with existing methods, typing
behaviours can offer greater security and efficiency. When people
type on their devices, a number of different factors may be considered
to identify users, such as the angle and distance of contact point to the
centre of the target character, the time elapsed between two typing
actions and the physical force exerted on the device (which can be
measured by an accelerometer). An experiment was conducted to vali-
date the proposed model; those data are collected through an Android
App developed for the purpose of this study. By collecting a reasonable
amount of this type of data, it is shown that machine learning algor-
ithms can be employed to first classify different users and subsequently
authenticate users across devices.

Introduction: Cross-device tracking refers to technologies which enable
tracking of users across multiple devices (such as tablets, phones, and
PCs) [1]. It represents the assortment of methods used first for identify-
ing users and subsequently to determine whether different devices are
being used by the same person.

Currently, the main cross-device tracking methods are (i) username
and password login systems, which allow users to log into their accounts
from different devices through personal credentials [2]. (ii) Probabilistic
cross-device tracking, which relies on a variety of information from mul-
tiple devices (e.g. a cookie [3], IP addresses [4], hardware identifier and
device fingerprint [5]), and statistical models to infer whether those
devices are used by the same person or group of people. Furthermore,
in case the service provider is unable to directly implement cross-device
user tracking, it is possible for third-party companies to do so by partner-
ing with said providers. For example, websites could pass along identi-
fying information during login to an outside tracking agency, allowing
them to match user profiles on multiple devices [6].

Unfortunately, these cross-device tracking methods also create sub-
stantial privacy issues, as highly sensitive data is being collected on
the user and very often shared with multiple parties. These practices
are moreover extremely difficult for a consumer to control, especially
when they are carried out without their own knowledge. This Letter,
therefore, proposes a method of tracking users across different devices
based on their typing behaviour.

As shown in Fig. 1, two users’ behaviours data are collected by the
sensors in two different devices, then those data are classified and mod-
elled. After those two steps, the cross-device authentication service
would identify whether those two users are the same person. If they
are matching as the same person, then the cross-device based service
is provided.
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Fig. 1 Cross-devices tracking model framework

Experimental setup: To identify whether the proposed method produces
accurate results, an experiment was set up by collecting data from
devices which have a touchscreen and need a 6-digital personal identi-
fication number (PIN) code to unlock the device. While the users type
the PIN code to unlock their devices, three features are detected:
device movement through the accelerometer, typing time duration and
tap location accuracy. All those data are collected through an Android
App shown in Fig. 2a.

The data were collected from four different models of the Google
Nexus, which include four different screen sizes (4.95, 5.96, 8.86 and
10.05 inches). For each model of the device, the test was completed

by 50 different users (UEs), composed of 23 female and 27 male
users, with ages that range from 21 to 53 years old. The tests were
taken under normal environments and stress levels.
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Fig. 2 Experimental setups for data collection

a Android platform App developed for data collection
b Parameters of the data when typing

Typing Location Accuracy: As shown in Fig. 25, when a user is typing
a number, e.g. the number ‘1’ from a device keyboard layout, a point of
contact with the screen is created, which has a certain distance from the
centre of the target button. The parameters ¢ and 7 are used to label the
touch point. Where r is defined as a ratio R/S, R is the distance
between the centre of target button and the contact point, and S is the
screen size. Which ¢, is defined as the angle from the horizontal direction
of the contact point, shown in Fig. 2b.

Accelerometer on tap: When a tapping event takes place, the device
experiences minute physical movements which can be detected by
the accelerometer. Data is therefore collected on the device’s
movement and accelerations along a three-dimensional (3D) space
represented through the three axes (X, Y, Z) are captured by the accel-
erometer. To measure the volume of the overall movement detected,

the equation Aw, = ,/a? + a2 +a2 was used, where ay, @y, a. rep-

resents the vector containing the device’s acceleration measurements
along each of the 3D axes.

Fig. 3 illustrates a device’s movements when a tapping event occurs
while the user is sitting still, with the circled segments representing
such events. As the users are bound to make minute movements unre-
lated to tapping events, the represented accelerometer data contains a
visible amount of noise and errors. Therefore, the duration between
two tapping events is considered as well for greater classification
accuracy.
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Fig. 3 Accelerometer data when typing

Tapping duration: As shown in Fig. 3, the distance between two
circles on the x-axis represents the time spent between two screen
taps. Not only is this parameter dependent on the screen size of the
device being used, but it may also be dependent on the user’s mood.
As such, all users were requested to undergo the experiment under
normal stress levels in order to minimise its impact on the considered
parameters.
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Data analysis model: This section presents the data analysis carried out
on the information collected from the aforementioned sample of 50
different users. For the classification method, an Adaptive Boosting
(AdaBoost) algorithm was used, the output of which is determined by
the weighted sum of the outputs of many different weak classification
methods [7]. The full methodology is shown in Algorithm 1.

Algorithm 1: AdaBoost classification algorithm

1: function AdaBoost(D, f(x))

2: wix)=1/n.

3 fortr=1,2,3,..,T. do;

4 he =f(W, W); & = Pe~, (e # f(x))
5: if &, > 0.5; then;
6.
7
8
9

Break;
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if 4, = f(x) then;

i) = 5 x exp (—wx)
10: else i, # f(x);
. v ) =" expnir) )

12: H(x) = sign(ZT: w,h,(x))
=1

Being an iterative process, the AdaBoost algorithm initialises its weak
classifier’s weights to be all the same (1/n) and progressively changes
them according to how well each method is able to classify the data.
In fact, at a stage A, if a weak classifier were to correctly identify each
instance, its weights would be increased for the next iteration, thus
increasing its contribution to the overall classification. Otherwise, the
inverse process takes place, with a weak classifier being dropped from
the algorithm if its percentage of correct classifications falls below
50%. The algorithm is composed of a set amount of iterations 7.

Performance: For the purpose of this Letter, the AdaBoost algorithm
was implemented multiple times according to both the number of
weak classifiers utilised (from 1 to 16) and the type of data
(Accelerometer data, Tap Location data, Typing duration and a combi-
nation of all three). To determine the effectiveness of the considered
classification methods, Fig. 4 presents both the false acceptance ratio
(FAR), defined as the ratio of the number of false positives divided
by the overall observations and the false rejection ratio (FRR), deter-
mined by the number of false rejections divided by the sample size,
of each implementation.
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Fig. 4 FAR and FRR by different actions and a different number of classifiers
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Both FAR and FRR exhibit a decreasing trend as the number of weak
classifiers increases, with the classifier using a combination of all three
features consistently displaying the lowest rates when comparing it to
the single feature classifiers. Likewise, Fig. Sa shows that the three-
feature classifier presents higher successful classification rates on data
of same model devices than any of the one-feature classifiers, achieving
with one weak classifier an accuracy rate of 68.72%, which progress-
ively increases with each additional weak classifier included until it
reaches 92.29% at 16 weak classifiers.

Similar remarks can be made by considering data from different
device models, as shown in Fig. 5b, with the three-factor classifier
once again outperforming the other one-factor classifiers, reaching an
accuracy rate of 87.6% with 16 weak classifiers. It should be noted,
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however, that the accuracy of the classifiers used on data of different
device models is consistently lower compared to those which consider
same model data. This is most probably due to the fact that different
screen sizes produce dissimilar typing behaviour: a bigger screen, in
fact, would naturally generate larger virtual keyboards, thus affecting
both typing accuracy and time spent between typing actions, while a
difference in device weight is likely to influence the accelerometer
readings.
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Fig. 5 Success identification for cross devices tracking with the same and
different size
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Conclusion: This Letter shows that typing behaviour can be used to
implement cross-device user tracking without raising additional data
privacy concerns, as the three types of data examined are to be con-
sidered less sensitive compared to user credentials or digital fingerprints.
When a typing event happens, the tapping coordinate, device movement
accelerate and duration can be obtained from the system. The behaviours
of the same user on different devices are fairly identical. We found that
combined those data can achieve a high probability (over 97%) to
achieve cross-device tracking.

In the experiments described in this Letter, participants were asked to
perform with a constant level of stress, and the differences in device
sizes affects the accuracy. As further work, the relationship between
stress level and typing behaviours could be studied, and size could be
an extra domain of the behaviour classification model.
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