
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/103089/

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk



  

 

 

 

Carbon Black Dispersion using Polymeric 

Dispersants Prepared via RAFT Polymerisation 

 

 

Majda Akrach 

 

A thesis submitted in partial fulfilment of the requirements for the 

degree of 

 

Doctor of Philosophy in Chemistry 

 

 

 

 

 

 

Department of Chemistry 

University of Warwick 

 

April 2018 



  

 

 

 

“It’s lack of faith that makes people afraid of meeting challenges. 

I hated every minute of training but I said, don’t quit. Suffer now and live the 

rest of your life as a champion. 

Impossible is potential. Impossible is temporary. Impossible is nothing” 

 

Mohammed Ali. 

 

 

 

 

“A winner is a  dreamer who never gives up. 

I never lose. I either win or learn.” 

Nelson Mandela 

 

 

 

 

 

Scars show us where we’ve been, they did not dictate where we are going.



  

iii | P a g e  

 

 

Contents 
 

List of Figures ................................................................................................................ vii 

List of Tables ................................................................................................................. xii 

List of Schemes ............................................................................................................. xiv 

Abbreviations ............................................................................................................... xvi 

Acknowledgements ....................................................................................................... xix 

Declaration ................................................................................................................... xxii 

Abstract ....................................................................................................................... xxiii 

 

Chapter 1: Introduction ................................................................................................. 1 

1.1. Free Radical Polymerisation .............................................................................. 2 

1.2. Living radical polymerisation ............................................................................ 4 

1.2.1. Reversible-addition Fragmentation Chain Transfer .................................... 6 

1.2.2. RAFT polymerisation mechanism .............................................................. 7 

1.2.3. The chain transfer agent .............................................................................. 9 

1.2.4. Choice and design of the RAFT agent ...................................................... 10 

1.3. Synthesis of block and multiblock copolymers by RAFT process .................. 13 

1.3.1. Block copolymer synthesis ....................................................................... 13 

1.3.2. Multiblock copolymer synthesis ............................................................... 18 

1.4. Pigment dispersion ........................................................................................... 19 

1.4.1. Pigment dispersant methods ...................................................................... 20 

1.5. Dispersion of pigment using polymeric surfactant ........................................... 22 

1.5.1. Electrostatic stabilization .......................................................................... 23 

1.5.2. Steric stabilization ..................................................................................... 27 

1.6. References ........................................................................................................ 31 

 

 

 



   
   

iv | P a g e  

Majda Akrach 

Chapter 2: Synthesis of amphiphilic acrylate and methacrylate diblock copolymers 

via RAFT polymerisation in acetate solvents ............................................................. 41 

2.1. Introduction ...................................................................................................... 43 

2.2. Results and Discussion ..................................................................................... 44 

2.2.1. nButyl acrylate polymerisation ................................................................. 44 

2.2.2. Synthesis of statistical acrylate copolymers ..................................................... 55 

2.2.3. Synthesis of acrylate diblock copolymers ........................................................ 59 

2.2.3.1. Poly(DMAEA)-block- poly(nBA) ............................................................ 59 

2.2.3.2. poly(nBA)-block-poly(DMAEA) .............................................................. 62 

2.2.3.3. Poly(n-BA)-block-poly(DMAEMA) with BMDPT RAFT agent ............. 65 

2.2.3.4. Poly(DMAEMA)-block-poly(nBA)with BMDPT RAFT agent ............... 67 

2.2.3.5. Poly(DMAEMA)-block-poly(nBA) using MCTP RAFT agent ............... 71 

2.3. Conclusion ........................................................................................................ 76 

2.4. Experimental .................................................................................................... 76 

2.4.1. Materials .................................................................................................... 76 

2.4.2. Methods ..................................................................................................... 77 

2.4.3. General synthetic procedures .................................................................... 80 

2.5. References ........................................................................................................ 89 

 

Chapter 3: Polymerisation of sequential addition of methacrylate monomer via a 

semi-batch process ........................................................................................................ 93 

3.1. Introduction ...................................................................................................... 94 

3.2. Results and Discussion ..................................................................................... 96 

3.2.1. DMAEMA polymerisation in batch process ............................................. 96 

3.2.1.1. Effect of temperature and initiator concentration ..................................... 97 

3.2.1.2. Effect of monomer concentration and solvent .......................................... 98 

3.2.1.3. Kinetics of DMAEMA and BMA in batch polymerisation .................... 100 

3.2.1.4. Influence of the chain transfer agents ..................................................... 102 

3.2.1.5. Chain transfer constant determination .................................................... 105 

3.2.2. DMAEME polymerisation in a semi-batch process ....................................... 107 

3.2.2.1. Rate of feeding determination ................................................................. 107 

3.2.2.1. Kinetic study in semi-batch process ........................................................ 109 

3.2.3. Polymerisation of a range of methacrylate monomers in semi-batch process 111 



   
   

v | P a g e  

Majda Akrach 

3.2.4. Synthesis of statistical and block copolymer in semi-batch process .............. 113 

3.2.4.1. Statistical copolymer synthesis ............................................................... 114 

3.2.4.2. Diblock copolymer synthesis .................................................................. 115 

3.2.4.3. Scaling up the synthesis of diblock copolymers ..................................... 117 

3.2.4.4. Sequential addition of BMA monomer in semi-batch mode .................. 119 

3.3. Conclusions .................................................................................................... 122 

3.4. Experimental .................................................................................................. 123 

3.4.1. Materials .................................................................................................. 123 

3.4.2. Methods ................................................................................................... 123 

3.4.3. General synthetic procedures .................................................................. 126 

3.5. References ...................................................................................................... 130 

 

Chapter 4: Synthesis of SMA and subsequent modification of the polymer 

backbone ...................................................................................................................... 135 

4.1. Introduction .................................................................................................... 137 

4.2. Results and Discussion ................................................................................... 140 

4.2.1. Synthesis of p(SMA) copolymer via RAFT polymerisation .................. 140 

4.2.2. Synthesis of SMA and n-butyl acrylate block copolymer via RAFT 

polymerisation ....................................................................................................... 146 

4.2.3. Synthesis of p(SMA) and p(nBA) multiblock copolymer ...................... 149 

4.2.4. Modification of poly(SMA) into poly (SMAD) in polymer backbone ... 152 

4.2.5. Modification of poly(SMAD) into poly (SMI) in polymer backbone .... 157 

4.2.5 Modification of p(nBA)-b-pSMA backbone copolymer ............................. 161 

4.2.6. Characterisations of homopolymer, diblock and multiblock copolymer 163 

4.3. Conclusion ...................................................................................................... 170 

4.4. Experimental .................................................................................................. 171 

4.4.1. Materials. ................................................................................................. 171 

4.4.2. Method .................................................................................................... 171 

4.5 References ........................................................................................................... 178 

 

 

 



   
   

vi | P a g e  

Majda Akrach 

Chapter 5: Carbon Black dispersion using amphiphilic block copolymers .......... 183 

5.1. Introduction .................................................................................................... 185 

5.2. Results and Discussion ................................................................................... 190 

5.2.1. Carbon Black characterisation ................................................................ 190 

5.2.2. Dispersion of Carbon Black using block copolymer .............................. 200 

5.2.2.1. Dispersion using p(DMAEMA)x-b-p(nBA)y block copolymers ............. 201 

5.2.2.2. Dispersion using acrylate block copolymer ............................................ 204 

5.2.2.3. Dispersion using methacrylate block copolymer .................................... 210 

5.2.2.4. Dispersion using p(SMAD) block copolymer......................................... 213 

5.2.2.5. Dispersion using p(SMI) block copolymer ............................................. 218 

5.3. Conclusion ...................................................................................................... 221 

5.4. Experimental section ...................................................................................... 222 

5.4.1. Materials and methods ............................................................................ 222 

5.4.2. Characterisations ..................................................................................... 223 

5.5. References ...................................................................................................... 226 

Chapter 6: Conclusions and Outlook ........................................................................ 229 

Appendix: Chapter 2 .................................................................................................. 233 

 

  



   
   

vii | P a g e  

Majda Akrach 

List of Figures 
 

 

Figure 1.1: Evolution of molecular weight with conversion using different 

polymerisation techniques ................................................................................................. 5 

Figure 1.2: Molecular-weight distributions for a conventional and RAFT polymerisation 

of styrene under similar experimental conditions. The SEC chromatograms show a 

polystyrene prepared by thermal polymerisation of styrene at 100 ˚C for 16 h (Mn = 324 

000 g/mol), Ɖ = 1.74 and 72 % of conversion) and a similar polymerisation in a presence 

of cumyl dithiobenzoate (Mn = 14 400 g/mol, Ɖ = 1.04, 55 % of conversion).11 ............. 7 

Figure 1.3: Selection of the R group for a RAFT agent with a decrease of fragmentation 

rates from left to right for methyl methacrylate (MMA), styrene (S), methyl acrylate 

(MA), acrylamide (AM), acrylonitrile (AN) and vinyl acetate (VAc).32 ........................ 12 

Figure 1.4: Selection of the Z group for a RAFT agent with a decrease of fragmentation 

rates from left to right for methyl methacrylate (MMA), styrene (S), methyl acrylate 

(MA), acrylamide (AM), acrylonitrile (AN) and vinyl acetate (VAc).34 ........................ 12 

Figure 1.5: Representative architecture of linear block copolymer terpolymers, “comb” 

graft polymers, miktoarm star terpolymers and cyclic block terpolymers.36 .................. 13 

Figure 1.6: General scheme of block copolymer synthesis via RAFT polymerisation 

process ............................................................................................................................. 16 

Figure 1.7: Pigment dispersion process.94 ...................................................................... 22 

Figure 1.8: Schematic representation of the charged double from DLVO theory.99 ..... 24 

Figure 1.9: Evolution of potential energy for charged particles of potential energy for 

charged particles.100......................................................................................................... 25 

Figure 1.10: Electrostatic repulsion and attractive forces in water media101 ................. 26 

Figure 1.11: Steric repulsion of pigment particles coated by polymer.103 ..................... 28 

Figure 1.12: Representation of adsorbed layers overlapping by three approaches. (a) non-

interactional domain; (b) interpenetrational domain; (c) compression mechanism ........ 28 

file:///F:/Thesis%20version%200104.docx%23_Toc510358833
file:///F:/Thesis%20version%200104.docx%23_Toc510358833
file:///F:/Thesis%20version%200104.docx%23_Toc510358834
file:///F:/Thesis%20version%200104.docx%23_Toc510358834
file:///F:/Thesis%20version%200104.docx%23_Toc510358834
file:///F:/Thesis%20version%200104.docx%23_Toc510358834
file:///F:/Thesis%20version%200104.docx%23_Toc510358834
file:///F:/Thesis%20version%200104.docx%23_Toc510358835
file:///F:/Thesis%20version%200104.docx%23_Toc510358835
file:///F:/Thesis%20version%200104.docx%23_Toc510358835
file:///F:/Thesis%20version%200104.docx%23_Toc510358836
file:///F:/Thesis%20version%200104.docx%23_Toc510358836
file:///F:/Thesis%20version%200104.docx%23_Toc510358836
file:///F:/Thesis%20version%200104.docx%23_Toc510358837
file:///F:/Thesis%20version%200104.docx%23_Toc510358837
file:///F:/Thesis%20version%200104.docx%23_Toc510358838
file:///F:/Thesis%20version%200104.docx%23_Toc510358838
file:///F:/Thesis%20version%200104.docx%23_Toc510358839
file:///F:/Thesis%20version%200104.docx%23_Toc510358840
file:///F:/Thesis%20version%200104.docx%23_Toc510358841
file:///F:/Thesis%20version%200104.docx%23_Toc510358841
file:///F:/Thesis%20version%200104.docx%23_Toc510358842
file:///F:/Thesis%20version%200104.docx%23_Toc510358843
file:///F:/Thesis%20version%200104.docx%23_Toc510358844
file:///F:/Thesis%20version%200104.docx%23_Toc510358844


   
   

viii | P a g e  

Majda Akrach 

Figure 2.1: Comparison of THF- SEC chromatograms of p(nBA)55 prepared at 70 ˚C 

with BMDPT (black), MCTP (pink) and PABTC (green) RAFT agents in butyl acetate 

solvent with [nBA]0 = 3M, [CTA]0/[V601]0 = 10 .......................................................... 47 

Figure 2.2: Comparison of THF- SEC chromatograms of p(n-BA)55 at 2 M, 3M and 4M  

in butyl acetate (left) and MPA solvents (right) using BMDPT RAFT agent ............... 49 

Figure 2.3: Comparison of THF- SEC chromatograms of n-butyl acrylate polymerisation 

using BMDPT RAFT agent at 60 ˚C (blue), 70 ˚C (red) and 90 ˚C(green) with [nBA]0 = 

3 M in butyl acetate solvent ............................................................................................ 52 

Figure 2.4: (A) Molar mass and molar mass distribution evolution versus time, (B) 

Kinetic first-order plot and monomer conversion versus time; (C) SEC-THF 

chromatograms of nBA kinetic performed in butyl acetate solvent at 70 ˚C .................. 53 

Figure 2.5: (A) Molar mass and molar mass distribution evolution versus time, (B) 

Kinetic first-order plot and monomer conversion versus time; (C) SEC-THF 

chromatograms of p(nBA) kinetic performed in MPA solvent at 70 ˚C ......................... 54 

Figure 2.6: Kinetic studies of p(DMAEA)50 and p(nBA)50 evolution versus time 

performed in butyl acetate solvent and mediated by BMDPT RAFT agent. Initial 

conditions:  [monomer]0 =3 M, [BMDPT]0 / [V601]0 = 10, T = 70 ˚C .......................... 56 

Figure 2.7: Comparison of SEC-THF chromatograms of statistical n-BA/DMAEA 

copolymers with DP of 55/19 (green); 70/35 (black) and 100/50 (purple) respectively 

synthesised in presence of BMDPT RAFT agent with [monomer]0 = 3 M, [BMDPT]0 / 

[V601]0 = 10 at 70 ˚C in methoxypropyl acetate solvent................................................ 57 

Figure 2.8: 13C NMR analysis of p(nBA)19-stat-p(DMAEA)55 synthesised in MPA 

solvent and run in CDCl3 ................................................................................................ 58 

Figure 2.9: Comparison of THF-SEC chromatograms of p(DMAEA)19 prepared at 70 ˚C   

and polymerised to 92% conversion, and subsequent chain extension with p(n-BA)55 in 

MPA solvent ................................................................................................................... 60 

Figure 3.1: Comparison of SEC-THF chromatograms of DMAEMA 

homopolymerisation at 70 ˚C and 90 ˚C with [DMAEMA]0 = 3 M,  a ratio of [BMDPT]0 

/ [Initiator]0 5 and 10 in butyl acetate solvent ................................................................. 98 

file:///F:/Thesis%20version%200104.docx%23_Toc510358845
file:///F:/Thesis%20version%200104.docx%23_Toc510358845
file:///F:/Thesis%20version%200104.docx%23_Toc510358845
file:///F:/Thesis%20version%200104.docx%23_Toc510358846
file:///F:/Thesis%20version%200104.docx%23_Toc510358846
file:///F:/Thesis%20version%200104.docx%23_Toc510358847
file:///F:/Thesis%20version%200104.docx%23_Toc510358847
file:///F:/Thesis%20version%200104.docx%23_Toc510358847
file:///F:/Thesis%20version%200104.docx%23_Toc510358850
file:///F:/Thesis%20version%200104.docx%23_Toc510358850
file:///F:/Thesis%20version%200104.docx%23_Toc510358850
file:///F:/Thesis%20version%200104.docx%23_Toc510358851
file:///F:/Thesis%20version%200104.docx%23_Toc510358851
file:///F:/Thesis%20version%200104.docx%23_Toc510358851
file:///F:/Thesis%20version%200104.docx%23_Toc510358851
file:///F:/Thesis%20version%200104.docx%23_Toc510358852
file:///F:/Thesis%20version%200104.docx%23_Toc510358852
file:///F:/Thesis%20version%200104.docx%23_Toc510358853
file:///F:/Thesis%20version%200104.docx%23_Toc510358853
file:///F:/Thesis%20version%200104.docx%23_Toc510358853
file:///F:/Thesis%20version%200104.docx%23_Toc510358854
file:///F:/Thesis%20version%200104.docx%23_Toc510358854
file:///F:/Thesis%20version%200104.docx%23_Toc510358854


   
   

ix | P a g e  

Majda Akrach 

Figure 3.2: Comparison of SEC-THF chromatograms of p(DMAEMA)19 at 90 ˚C with 

[DMAEMA]0 = 2 M, 3 M and 4 M, a ratio of [BMDPT]0 / [Vazo-88]0 =  10 in butyl 

acetate and MPA solvents ............................................................................................... 99 

Figure 4.1: Polymerisation kinetics for SMA using BMDPT RAFT agent in MPA solvent 

at 70 ˚C. Pseudo-first order kinetics (A) and evolution of molar mass and molar mass 

distribution monomer (Ɖ) versus time (B). ................................................................... 142 

Figure 4.2: Comparison of 1H NMR analysis in DMSO-d6 for p(SMA)20 

copolymerisation obtained in MPA solvent using trioxane as internal reference before and 

after polymerisation ...................................................................................................... 143 

Figure 4.3: 13C NMR analysis of p(SMA)20 copolymer in DMSO-d6 recorded on a 

Brucker Avance (400 MHz) .......................................................................................... 144 

Figure 4.4: MALDI-ToF spectrum of poly (SMA)20 is performed using Bruker Daltonic 

Autoflex Speed with PEG1,500 and PEG5000  as external calibration .............................. 145 

Figure 4.5: MALDI-ToF spectrum of poly (SMA)20  between m/z = 2000 and 2750 . 146 

Figure 4.6: Comparison of SEC-THF chromatograms of diblock p(nBA)25-block-

p(SMA)20. Initial conditions: [nBA] : [BMDPT] : [V601] = [25] : [1] : [10] in MPA 

solvent  at 70 ˚C ............................................................................................................ 148 

Figure 4.7: SEC-THF chromatograms analysis for p(SMA)20 macroinitiator and 

sequential addition of nBA25 and SMA20 prepared via RAFT polymerisation in presence 

of BMDPT RAFT agent in MPA solvent ..................................................................... 150 

Figure 4.8: THF-SEC data for synthesis of sequential addition of nBA25 and SMA20 

monomers. Evolution of experimental molar mass (Mn,SEC) and dispersity (Ɖ) versus the 

number of blocks for each successive block addition ................................................... 151 

Figure 4.9: 1H NMR analysis of poly(SMA)20 before and after ring opening using 

dimethylaminopropyl amine (3-5 eq equiv.) run in a Brucker Avance (400 MHz) in 

DMSO-d6 ...................................................................................................................... 153 

Figure 4.10: Comparison of 13C NMR spectra analysis of p(SMA)20 (purple trace) and 

p(SMAD)20 (blue trace) obtained after a slow addition of DMAPA (3-5 equiv.) at 70 ˚C 

in butylacetate and precipitated in cold Et2O Spectrum recorded on a Brucker Avance 

(400 MHz) in DMSO-d6 ............................................................................................... 155 

file:///F:/Thesis%20version%200104.docx%23_Toc510358855
file:///F:/Thesis%20version%200104.docx%23_Toc510358855
file:///F:/Thesis%20version%200104.docx%23_Toc510358855
file:///F:/Thesis%20version%200104.docx%23_Toc510358856
file:///F:/Thesis%20version%200104.docx%23_Toc510358856
file:///F:/Thesis%20version%200104.docx%23_Toc510358856
file:///F:/Thesis%20version%200104.docx%23_Toc510358857
file:///F:/Thesis%20version%200104.docx%23_Toc510358857
file:///F:/Thesis%20version%200104.docx%23_Toc510358857
file:///F:/Thesis%20version%200104.docx%23_Toc510358858
file:///F:/Thesis%20version%200104.docx%23_Toc510358858
file:///F:/Thesis%20version%200104.docx%23_Toc510358859
file:///F:/Thesis%20version%200104.docx%23_Toc510358859
file:///F:/Thesis%20version%200104.docx%23_Toc510358860
file:///F:/Thesis%20version%200104.docx%23_Toc510358861
file:///F:/Thesis%20version%200104.docx%23_Toc510358861
file:///F:/Thesis%20version%200104.docx%23_Toc510358861
file:///F:/Thesis%20version%200104.docx%23_Toc510358862
file:///F:/Thesis%20version%200104.docx%23_Toc510358862
file:///F:/Thesis%20version%200104.docx%23_Toc510358862
file:///F:/Thesis%20version%200104.docx%23_Toc510358863
file:///F:/Thesis%20version%200104.docx%23_Toc510358863
file:///F:/Thesis%20version%200104.docx%23_Toc510358863
file:///F:/Thesis%20version%200104.docx%23_Toc510358864
file:///F:/Thesis%20version%200104.docx%23_Toc510358864
file:///F:/Thesis%20version%200104.docx%23_Toc510358864
file:///F:/Thesis%20version%200104.docx%23_Toc510358865
file:///F:/Thesis%20version%200104.docx%23_Toc510358865
file:///F:/Thesis%20version%200104.docx%23_Toc510358865
file:///F:/Thesis%20version%200104.docx%23_Toc510358865


   
   

x | P a g e  

Majda Akrach 

Figure 4.11: FT-IR spectrum of p(SMA)20 recorded after precipitation in cold hexane 

using Bruker Vector instrument .................................................................................... 156 

Figure 4.12: FT-IR spectrum of p(SMAD)20 recorded after precipitation in cold Et2O 

using Bruker Vector instrument .................................................................................... 157 

Figure 4.13: Comparison of 13C NMR spectra analysis of p(SMAD)20 (blue trace) and 

p(SMI)20 (green trace) obtained after water removal at 125 ˚C in MPA and precipitated 

in cold hexane recorded on a Brucker Avance (400 MHz) in DMSO-d6 ..................... 158 

Figure 4.14: FT-IR spectrum of p(SMI)20 recorded after precipitation in cold hexane 

using Bruker Vector instrument .................................................................................... 159 

Figure 4.15: Pictures of p(SMA)20 (A), p(SMAD)20 (B) and p(SMI)20 (C) showing the 

color modification after each steps. .............................................................................. 160 

Figure 4.16: FT-IR spectrum of p(nBA)25-b-p(SMAD)20 in blue trace and p(nBA)25-b-

p(SMI)20 in green trace are recorded after precipitation in cold hexane using Bruker 

Vector instrument .......................................................................................................... 162 

Figure 4.17: TGA chromatograms of pSMA, pSMAD and pSMI homopolymers 

degradation submitted under nitrogen with a heating rate of 10 ˚C/min from 25 ˚C to 600 

˚C recorded with Mettler Toledo instrument ................................................................ 167 

Figure 4.18: TGA chromatograms of p(nBA)25-b-p(SMA)20, p(nBA)25-b-p(SMAD)20, 

and p(nBA)25-b-p(SMI)20, diblock copolymers degradation submitted under nitrogen with 

a heating rate of 10 ˚C/min from 25 ˚C to 600 ˚C recorded with Mettler Toledo instrument

 ....................................................................................................................................... 168 

Figure 4.19: TGA chromatograms of p(nBA)25-b-p(SMA)20-b-p(nBA)25-b-p(SMA)20-, 

p(nBA)25-b-p(SMAD)20-b-p(nBA)25-b-p(SMAD)20 and p(nBA)25-b-p(SMI)20-b-

p(nBA)25-b-p(SMI)20, tetablock copolymers degradation submitted under nitrogen with a 

heating rate of 10 ˚C/min from 25 ˚C to 600 ˚C recorded with Mettler Toledo instrument.

 ....................................................................................................................................... 169 

Figure 5.1: Structure and surface characteristics of CB13 ............................................ 188 

Figure 5.2: Langmuir model (a) and BET (Stephen Brunauer, Paul Hugh Emmet and 

Edward Teller) measurement mechanism (b) ............................................................... 191 

Figure 5.3: Adsorption and desorption measurement of CB FW200 .......................... 191 

Figure 5.4: Raman spectrum of CB FW200 ................................................................ 193 

file:///F:/Thesis%20version%200104.docx%23_Toc510358866
file:///F:/Thesis%20version%200104.docx%23_Toc510358866
file:///F:/Thesis%20version%200104.docx%23_Toc510358867
file:///F:/Thesis%20version%200104.docx%23_Toc510358867
file:///F:/Thesis%20version%200104.docx%23_Toc510358868
file:///F:/Thesis%20version%200104.docx%23_Toc510358868
file:///F:/Thesis%20version%200104.docx%23_Toc510358868
file:///F:/Thesis%20version%200104.docx%23_Toc510358871
file:///F:/Thesis%20version%200104.docx%23_Toc510358871
file:///F:/Thesis%20version%200104.docx%23_Toc510358871
file:///F:/Thesis%20version%200104.docx%23_Toc510358872
file:///F:/Thesis%20version%200104.docx%23_Toc510358872
file:///F:/Thesis%20version%200104.docx%23_Toc510358872
file:///F:/Thesis%20version%200104.docx%23_Toc510358873
file:///F:/Thesis%20version%200104.docx%23_Toc510358873
file:///F:/Thesis%20version%200104.docx%23_Toc510358873
file:///F:/Thesis%20version%200104.docx%23_Toc510358873
file:///F:/Thesis%20version%200104.docx%23_Toc510358874
file:///F:/Thesis%20version%200104.docx%23_Toc510358874
file:///F:/Thesis%20version%200104.docx%23_Toc510358874
file:///F:/Thesis%20version%200104.docx%23_Toc510358874
file:///F:/Thesis%20version%200104.docx%23_Toc510358874
file:///F:/Thesis%20version%200104.docx%23_Toc510358875
file:///F:/Thesis%20version%200104.docx%23_Toc510358876
file:///F:/Thesis%20version%200104.docx%23_Toc510358876
file:///F:/Thesis%20version%200104.docx%23_Toc510358877
file:///F:/Thesis%20version%200104.docx%23_Toc510358878


   
   

xi | P a g e  

Majda Akrach 

Figure 5.5: Infra-red of Carbon black FW200 ............................................................. 194 

Figure A.1: 1H NMR spectrum of BMDPT industrial grade before and after purification 

in ethanol ....................................................................................................................... 235 

Figure A.2: MALDI-ToF-MS analysis of the industrial BMDPT RAFT agent .......... 236 

Figure A.3: Stuctures of impurities present in industrial BMDPT RAFT agent based on 

the MALDI-ToF spectrum ............................................................................................ 237 

Figure A.4: TGA chromatogram of BMDPT RAFT degradation submitted under 

nitrogen with a heating rate of 10 oC/min from 25 °C to 1000 °C ................................ 237 

  

file:///F:/Thesis%20version%200104.docx%23_Toc510358879
file:///F:/Thesis%20version%200104.docx%23_Toc510358880
file:///F:/Thesis%20version%200104.docx%23_Toc510358880
file:///F:/Thesis%20version%200104.docx%23_Toc510358881
file:///F:/Thesis%20version%200104.docx%23_Toc510358882
file:///F:/Thesis%20version%200104.docx%23_Toc510358882
file:///F:/Thesis%20version%200104.docx%23_Toc510358883
file:///F:/Thesis%20version%200104.docx%23_Toc510358883


   
   

xii | P a g e  

Majda Akrach 

List of Tables 
 

Table 2.1: Characterisation data for the homopolymerisatrion of of nBA (targeted DPn of 

55). RAFT polymerisations were conducted over 10 h in butyl acetate (or MPA) at 70 ˚C 

using MCTP, PABTC and BMDPT RAFT agents with [nBA]0 = 3 M and [CTA]0 / 

[V601]0 = 10 .................................................................................................................... 85 

Table 2.2: Characterisation data for the homopolymerisatrion of of nBA (targeted DPn of 

50). RAFT polymerisations were conducted over 10 h in acetate solvent at 70 ˚C with 

[BMDPT]0 / [V601]0 = 10 ............................................................................................... 85 

Table 2.3: Characterisation for the homopolymerisatrion of nBA (targeted DPn of 55). 

RAFT polymerisations in butyl acetate solvent performed at 60 ˚C, 70 ˚C and 90 ˚C using 

[BMDPT]0 / [Initiatior]0 = 10. V601 and Vazo-88 were used at initiator at 60 - 70 ˚C and 

90 ˚C respectively. .......................................................................................................... 86 

Table 3.1: Characterisation data for the homopolymerisation of DMAEMA (targeted DPn 

of 19). RAFT polymerisations were conducted over 10 -12 h in acetate solvent in batch 

mode at 90 ˚C using [BMDPT]0 / [Vazo-88]0 = 10 ....................................................... 100 

Table 3.2: Conditions used for the methacrylates (DPn targeted 50 and 150) 

homopolymerisation. RAFT polymerisations were conducted with [monomer]0 = 3 M at 

90 ˚C in butyl acetate solvent in semi-batch process .................................................... 113 

Table 3.3: Conditions used for the BMA homopolymerisation (targeted DPn of 55,70 and 

100) and chain extension with DMAEMA (targeted DPn of 19,35 and 50) to make diblock 

copolymer. RAFT polymerisations were conducted in semi-batch process with 4 h of 

monomer feeding and 20 h of polymerisation at 90 ˚C with [BMDPT]0 / [Vazo88]0 = 10 

in butyl acetate solvent .................................................................................................. 116 

Table 3.4: Conditions used to scale up p(BMA)100-block-p(DMAEMA)50 copolymer in 

30 and 300 g using RAFT polymerisation in semi-batch process ................................ 118 

Table 3.5: Characterisation data for the symthesis of the sequential addition of BMA 

(DPn = 50 per chain extension) obtained in semi-batch processvia RAFT polymerisation: 

[BMA] : [BMDPT] : [Vazo-88] = [50] : [1] : [10] in butyl acetate solvent  at 90 ˚C... 121 



   
   

xiii | P a g e  

Majda Akrach 

Table 4.1: Characterisation data for the poly(nBA)-block-poly(SMA) copolymer 

obtained via RAFT polymerisation in butyl acetate at 70 ˚C with [BMDPT]0 / [V601]0 = 

10 ................................................................................................................................... 149 

Table 4.2: Elemental analysis of p(SMA)20, p(SMAD)20 and p(SMI)20 of theoretical and 

experimental carbon (% C), nitrogen (% N), and hydrogen (% H) after purification .. 161 

Table 4.3 Elemental analysis of p(nBA)20-b-p(SMA)25, p(nBA)20-b-p(SMAD)25....... 163 

Table 4.4: Molar mass distribution of diblock copolymer of p(n-BA)-b-p(SMA) after 

modification determined by RI and triple detection (UV : λ = 309 nm) by SEC-DMF 165 

Table 5.1: Size of Carbon Black particles, aggregates and agglomerates.................... 185 

Table 5.2: Carbon content, surface area and particle diameter of CB FW200 ............ 192 

Table 5.3:  XPS data of Carbon Black FW200 ............................................................ 195 

Table A.1: Experimental and theoretical monoisotopic mass of industrial BMDPT RAFT 

agent obtained by MALDI-ToF .................................................................................... 236 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
   

xiv | P a g e  

Majda Akrach 

List of Schemes 
 

 

Scheme 1.1: General scheme of free radical polymerisation2 .......................................... 3 

Scheme 2.1: Comparison of n-butyl acrylate polymerisation using BMDPT, MCTP and 

PABTC RAFT agents in butyl acetate solvent with a [nBA]0 = 3 M and V601 as 

azoinitator at 70 ˚C .......................................................................................................... 44 

Scheme 2.2: General scheme of backbiting mechanism ................................................ 50 

Scheme 2.3: General scheme of poly(nBA)-statistical-poly(DMAEA) synthesised in 

MPA solvent at 70 ˚C using BMDPT RAFT agent and V601 as azoinitator ................. 55 

Scheme 2.4: General scheme of poly(DMAEA)-block- poly(nBA) copolymer 

synthesised at 70 ˚C using BMDPT RAFT agent and V601 as azoinitator in MPA solvent

 ......................................................................................................................................... 59 

Scheme 2.5: General scheme of poly(nBA)-block-poly(DMAEA) copolymer synthesised 

at 70 ˚C using BMDPT RAFT agent and V601 as azoinitator in MPA solvent ............. 62 

Scheme 2.6: General scheme of poly (nBA)-block-poly(DMAEMA) copolymer using 

BMDPT RAFT agent and V601 as azoinitator in MPA solvent at 70 ˚C for poly(nBA) 

macroCTA and 90 ˚C for the chain extension with DMAEMA using Vazo-88 initiator65 

Scheme 2.7: General scheme of poly(DMAEMA)-block-poly(nBA) copolymer in MPA 

solvent using BMDPT RAFT agent and Vazo-88/V601 as azoinitators at 90 ˚C and 70 ˚C 

respectively ..................................................................................................................... 67 

Scheme 2.8: General scheme of poly(DMAEMA)-block-poly(nBA) copolymer 

synthesised using MCTP RAFT agent and Vazo-88/V601 as azoinitators in MPA solvent

 ......................................................................................................................................... 71 

Scheme 2.9: Synthetic route of (propanoic acid)yl butyl trithiocarbonate PABTC RAFT 

agent ................................................................................................................................ 80 

Scheme 3.1: General scheme of DMAEMA polymerisation in butyl acetate/MPA solvent 

using BMDPT RAFT agent with V601/Vazo-88 azoinitators at 70 ˚C and 90 ˚C in butyl 

acetate solvent ................................................................................................................. 96 

file:///F:/Thesis%20version%200104.docx%23_Toc510358946
file:///F:/Thesis%20version%200104.docx%23_Toc510358947
file:///F:/Thesis%20version%200104.docx%23_Toc510358947
file:///F:/Thesis%20version%200104.docx%23_Toc510358947
file:///F:/Thesis%20version%200104.docx%23_Toc510358948
file:///F:/Thesis%20version%200104.docx%23_Toc510358949
file:///F:/Thesis%20version%200104.docx%23_Toc510358949
file:///F:/Thesis%20version%200104.docx%23_Toc510358950
file:///F:/Thesis%20version%200104.docx%23_Toc510358950
file:///F:/Thesis%20version%200104.docx%23_Toc510358950
file:///F:/Thesis%20version%200104.docx%23_Toc510358951
file:///F:/Thesis%20version%200104.docx%23_Toc510358951
file:///F:/Thesis%20version%200104.docx%23_Toc510358952
file:///F:/Thesis%20version%200104.docx%23_Toc510358952
file:///F:/Thesis%20version%200104.docx%23_Toc510358952
file:///F:/Thesis%20version%200104.docx%23_Toc510358953
file:///F:/Thesis%20version%200104.docx%23_Toc510358953
file:///F:/Thesis%20version%200104.docx%23_Toc510358953
file:///F:/Thesis%20version%200104.docx%23_Toc510358954
file:///F:/Thesis%20version%200104.docx%23_Toc510358954
file:///F:/Thesis%20version%200104.docx%23_Toc510358954
file:///F:/Thesis%20version%200104.docx%23_Toc510358955
file:///F:/Thesis%20version%200104.docx%23_Toc510358955
file:///F:/Thesis%20version%200104.docx%23_Toc510358956
file:///F:/Thesis%20version%200104.docx%23_Toc510358956
file:///F:/Thesis%20version%200104.docx%23_Toc510358956


   
   

xv | P a g e  

Majda Akrach 

Scheme 3.2: General scheme of DMAEMA polymerisation using MCTP and BMDPT 

RAFT agents with V601 or Vazo-88 azoinitators at 70 ˚C and 90 ˚C in butyl acetate / 

MPA solvents ................................................................................................................ 102 

Scheme 3.3: Pre-equilibrium step of the RAFT polymerisation .................................. 104 

Scheme 3.4: General scheme of p(BMA)-block-p(DMAEMA) methacrylates copolymer 

synthesised by feeding process with BMDPT RAFT agent, [BMDPT]0 / [Vazo88]0 =10 

at 90 ˚C in butyl acetate solvent. ................................................................................... 115 

Scheme 3.5: General scheme of the sequential addition of BMA monomer using BMDPT 

RAFT agent with [BMDPT]0 / [Vazo-88]0 = 10 at 90 ˚C in MPA solvent ................... 119 

Scheme 4.1: Mechanism of maleic anhydride ring opening using a primary amine to form 

an maleimide ................................................................................................................. 139 

Scheme 4.2: Several processes of RAFT end-group removal using nucleophiles 

compound, temperature, reducing agent or radical.26 ................................................... 139 

Scheme 4.3: General scheme of styrene and maleic anhydride homopolymerisation using 

BMDPT RAFT agent in presence of V601 as azoinitiator at 70 ˚C in acetate solvent . 141 

Scheme 4.4: General scheme of p(nBA) macroinitiator synthesis and chain extension 

with SMA mixture in presence of BMDPT RAFT agent using V601 as azoinitiator at 70 

˚C in MPA solvent ........................................................................................................ 147 

Scheme 4.5: Generalised approaches for preparing multiblock copolymers via a 

sequential addition of nBA and SMA in presence of V601 at 70 ˚C in butyl acetate or 

methoxypropyl acetate. ................................................................................................. 149 

Scheme 4.6: First step of pSMA backbone using 3-5 eq of (dimethyl)aminopropylamine 

at 70 ˚C. ......................................................................................................................... 152 

Scheme 5.1: Ring-opening of maleic anhydride with DMAPAA to form poly(styrene-

alternating maleic acid) ................................................................................................. 213 

Scheme 5.2: Ring-closing of poly(styrene-alternating maleic acid) to form poly(styrene-

alternating maleimide) .................................................................................................. 218 

Scheme A.1: General scheme of Lubrizol RAFT agent synthesis ............................... 234 

 

 

file:///F:/Thesis%20version%200104.docx%23_Toc510358957
file:///F:/Thesis%20version%200104.docx%23_Toc510358957
file:///F:/Thesis%20version%200104.docx%23_Toc510358957
file:///F:/Thesis%20version%200104.docx%23_Toc510358958
file:///F:/Thesis%20version%200104.docx%23_Toc510358959
file:///F:/Thesis%20version%200104.docx%23_Toc510358959
file:///F:/Thesis%20version%200104.docx%23_Toc510358959
file:///F:/Thesis%20version%200104.docx%23_Toc510358960
file:///F:/Thesis%20version%200104.docx%23_Toc510358960
file:///F:/Thesis%20version%200104.docx%23_Toc510358961
file:///F:/Thesis%20version%200104.docx%23_Toc510358961
file:///F:/Thesis%20version%200104.docx%23_Toc510358962
file:///F:/Thesis%20version%200104.docx%23_Toc510358962
file:///F:/Thesis%20version%200104.docx%23_Toc510358963
file:///F:/Thesis%20version%200104.docx%23_Toc510358963
file:///F:/Thesis%20version%200104.docx%23_Toc510358964
file:///F:/Thesis%20version%200104.docx%23_Toc510358964
file:///F:/Thesis%20version%200104.docx%23_Toc510358964
file:///F:/Thesis%20version%200104.docx%23_Toc510358966
file:///F:/Thesis%20version%200104.docx%23_Toc510358966
file:///F:/Thesis%20version%200104.docx%23_Toc510358967
file:///F:/Thesis%20version%200104.docx%23_Toc510358967
file:///F:/Thesis%20version%200104.docx%23_Toc510358968
file:///F:/Thesis%20version%200104.docx%23_Toc510358968
file:///F:/Thesis%20version%200104.docx%23_Toc510358969


   
   

xvi | P a g e  

Majda Akrach 

Abbreviations 
 

Abbreviation Name 

AIBN 2,2'-Azobis(2-methylpropionitrile) 

AM Acrylamide 

ATRP Atom Transfer Radical Polymerisation 

AVE Alkyl Vinyl Ether 

BET Brunauer Emmet and Teller 

BHT Butylated hydroxytoluene 

BMA Butyl methacrylate 

BMDPT Butyl-2-methyl-2-[(dodecylsulfanylthiocarbonyl) sulfanyl] propionate 

BuAc Butyl acetate 

13C NMR Carbon Nuclear Magnetic Resonance 

˚C Degree 

CB Carbon Black 

CHCl3 Chloroform 

CTA Chain Transfer Agent 

Ctr Chain transfer constant 

DEGMA Diethylene glycol methacrylate 

DLS Dynamic Light Scattering 

DMAc Dimethyl acetamide 

DMAEA 2-(Dimethylamino)propyl acrylate 

DMAEMA 2-(Dimethylamino)propyl methacrylate 

DMAPAA 3-(Dimethylamino)-1-propyl amine 

DMF N-N-Dimethylformamide 

DMSO Dimethylamino sulfoxide 

DOSY Diffusion-Ordered Spectroscopy 

DP Degree of Polymerisation 

Ɖ Dispersity  

Eq Equation 



   
   

xvii | P a g e  

Majda Akrach 

FRP Free Radical Polymerisation 

FT-IR Fourier transform InfraRed 

HRTEM High Resolution Transmission Electronic Microscopy 

I Initiator 

IGC Inverse Gas Chromatography 

IV Intrinsic Viscosity 

kDa Kilo Dalton 

L Livingness 

LRP Living Radical Polymerisation 

LS Light Scattering 

M Molar 

MA Maleic anhydride 

MADIX Macromolecular Design via the Interchange of Xanthates 

MALDI Matrix Assisted Laser Desorption/Ionization 

MCTP 1,1’-Methyl-4-cyano-4-(dodecylthiocarbonothioylthio)pentanoate 

MMA Methyl Methacrylate 

Mn.SEC Molar mass determined by SEC 

Mn.TH Molar mass theoretical 

MPA Methoxypropyl acetate 

MS Mass spectroscopy 

NaOH Sodium hydroxide 

nBA nButyl acrylate 

NMP Nitroxide mediated Polymerisation 

NMR Nuclear Magnetic Resonance 

PABTC 2-((butylthio)-carbonothioyl)propanoic acid 

PAN Poly Acrylonitrile 

PE Poly Ethylene 

PMMA Poly Methyl Methacrylate 

PP Poly Propylene 

PS Poly Styrene 

PVDF Polyvinylidene fluoride 



   
   

xviii | P a g e  

Majda Akrach 

RAFT Reversible Addition-Fragmentation chain Transfer 

RI Refractive Index 

S Styrene 

SEC Size Exclusion Chromatography 

SMA Styrene Maleic Anhydride 

SMAD Styrene Maleic acid 

SMI Styrene Maleimide 

stat Statistical 

TEM Transmission Electronic Microscopy 

Tg Glass transition temperature 

TGA Thermogravimetric analysis 

THF Tetrahydrofurane 

UV Ultraviolet 

Vazo-88 Azobis(cyclohexanecarbonitrile) 

V-601 Dimethyl 2,2’-azobis(2-methylpropionate) 

VAc Vinyl acetate 

XPS X-ray Photoelectron Spectroscopy 

XRD X-ray Diffraction 

 

 

 

 

 

 

 

 

 

 



   
   

xix | P a g e  

Majda Akrach 

Acknowledgements 
 

I would like to take this opportunity to thank all the people who supported me during 

my PhD at Warwick University. 

 Firstly, I would like to thank my academic supervisor Professor Sébastien Perrier 

for giving me the opportunity to carry out my work in his team and also for his support 

throughout these last 3 years. Many thanks for your patience, the (very) long discussions 

in your office and all the useful advice you have given for my career.  

  Secondly, I could not have completed this thesis without the support of Lubrizol. 

It was a great pleasure to be supervised by Dr. Andrew Shooter and Dr. Stuart Richards, 

and I really appreciate the opportunity to learn about coating scale up in Blackley 

(Manchester), and also to interact with all the wonderful workers there, including Robert 

Jennings, Shabana, Elliot, Sasa and everyone else who kindly took care of me. 

 A specific and enormous thanks to Dr. Edward Mansfield and Dr. Daniel Lester 

for correcting my manuscripts during these last few weeks and over the Christmas 

holidays, and also for your patience and help. 

The research and life at Warwick University would not have been easy without 

all the scientists; Ivan (NMR), Dan (GPC), Marc Walker (XPS), Houari (TEM), Jason 

Noone (IT) Nishi, Monika, Sukhi, Olvi and Sukhjit. I cannot forget to mention Nick 

Barker, one of the most wonderful, amazing and comprehensive human that I have ever 

met in my life. Thank you very much for all your support, your positive vibes and your 

humanity!! 



   
   

xx | P a g e  

Majda Akrach 

I cannot skip my colleagues, for those of you who have supported me during the hard 

times of my PhD. The French team: Caroline Bray, with whom I spent many hours 

complaining about life Guillaume Moriceau for his help, advice and for being the best 

driver!, Agnes Kuroki for her 24/7 smile (I am pretty sure you smile when you sleep) and 

Dr. Sophie Larnaudie for her amazing cakes. To my friend, Dr. Junliang Zhang, with 

whom I spent all my weekends in the lab and staying late in the office. Thank you so 

much for your support, your smile, positivity and vegetarian dumplings! To my (best and 

favourite) enemy, Dr. Liam Martin with whom I had daily arguments Finally, the rest of 

the (massive) crew, Dr. Carlos Sanchez-Cano, Pratik Gurnani, Fannie Burgevin, Andy 

Lunn, Joji Tanaka, Thomas Floyd, Dr. Jie Yang, Dr. Qiao Song, and Dr. Ming; thank you 

very much for your advice, help and support these last few years. I was also pleased to 

meet students in Dave Haddleton’s group such as Rachel, George, Attau, Evelina, Glen, 

Vasiliki, Sam, and Richard, who created a nice ambiance in the corridor. I have also to 

mention my sisters Nurul’ain, Nursakinah, Faeza and Amina who make my life at 

Warwick University so peaceful and bright! God bless you. 

The best part for me is to mention my best friend Guillaume Magigue who was there for 

me literally every single day for the last 4 years. All my pain, stress, success and happiness 

was with you. I do not have words strong enough to describe how much I value and 

appreciate your help and presence. My others best friends Nelly De Oliveira (little sister), 

Bewinda Taurand and the amazing Dr. Alice Gimat for being the same person after 14 

years now!! Bethan Davies (future Doctor in life sciences), a wonderful woman, an angel 

who supported and believed in me since day one, when I met her at a Warwick open day 

in 2014! 



   
   

xxi | P a g e  

Majda Akrach 

Finally, to my family, Hamza, Samira, Khadija, and my mum, who drive me crazy 

but also reminds me why I am going through all of these sacrifices. I will conclude my 

acknowledgements with my host family in Barry (Wales): Elisabeth, Russel, Robert and 

of course Ruby (my love)!! Elisabeth, you are such an inspiring, strong and lovely 

woman. The 3 months spent in your house have been the best part of my life so far. 

Without this experience, I would not have had the power to carry out my PhD!! A 

thousand thanks for everything you have done for me. I wish, one day, that I reward you 

in the same way. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
   

xxii | P a g e  

Majda Akrach 

Declaration 
 

 

Experimental work contained in this thesis is original research carried out by the 

author, unless otherwise stated, in the Department of Chemistry at the University of 

Warwick, January 2015 and January 2018. No material contained herein has been 

submitted for any other degree, or at any other institution. 

 

 

 

 Results from other authors are referenced in the usual manner throughout the 

text. 

 

 

 

 

Date: 

 

 

 

Majda Akrach 

 

 

 

 

 



   
   

xxiii | P a g e  

Majda Akrach 

Abstract 
 

The aim of this thesis is the investigation of the use of a RAFT agent developed by the 

company Lubrizol, BMDPT (Butyl-2-methyl-2-[(dodecylsulfanylthiocarbonyl) sulfanyl] 

propionate) produced in tonnes scale to make amphiphilic block copolymers in ester 

solvent (butyl acetate and methoxypropyl acetate). For this purpose, a broad range of 

monomers including acrylate, methacrylate and styrenic containing tertiary amine were 

polymerised and used as pigment dispersants. 

As the starting point, the reactivity of n-butyl acrylate (n-BA) and di(methyl)aminopropyl 

acrylate (DMAEA) monomer followed by the synthesis of acrylate diblock copolymers 

in acetate solvents (butyl acetate and methoxypropyl acetate) are investigated. 

The second chapter is focused on the methacrylate polymerisation which is a large body 

of work of this thesis. The poor reactivity of the trithiocarbonate RAFT agent towards 

methacrylate monomer was already published few times. Consequently, the kinetic 

studies of butyl methacrylate (BMA) and di(methyl)amino ethyl methacrylate 

(DMAEMA) was investigated in batch mode. Subsequently, a new synthetic route is 

explored to reach a well-controlled diblock copolymers. 

In the third chapter, a novel class of amphiphilic diblock copolymer containing acrylate 

and a mixture of styrene and maleic anhydride is explored. Then, the functionalisation of 

polymer backbone is carried out by using an amine in order to insert an anchoring group 

for pigment affinity. 
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Finally, the efficiency of all the diblock copolymers on carbon black pigment dispersion 

is reported. A combination of different techniques such as dynamic light scattering (DLS), 

transmission electronic microscopy (TEM) and thermogravimetric analysis (TGA) are 

used to investigate the interaction between the polymer and the pigment 
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1.1. Free Radical Polymerisation 

 

One of the most popular methods to synthesise commercial polymers is free radical 

polymerisation (FRP), first reported in the literature by Flory in the 1930’s.1 This process 

is insensitive to impurities and less demanding in terms of reaction conditions, which is 

the main criteria from an industrial point of view. Polymerisations can be carried out in 

presence of stabilizers (such as hydroquinone) which are commonly present in 

commercial monomers or in purified solvents. Nowadays, the production of commercial 

polymers in bulk uses free radical polymerisation. The polymerisation mechanism 

involves initiation, propagation and termination steps.2 Initiation involves the 

decomposition of an initiator (I) in which the primary radicals (I•) are formed by 

thermolysis, redox reactions, or photolysis. Then, the free radicals react with the vinyl 

monomer (M) in order to initiate the propagation step and allowing the polymer to grow 

(I-M•) (Scheme 1.1). The primary radical can also react with another free radical by 

combination or disproportionation, reducing the initiation step efficiency. The 

propagation step consists of the growing polymeric chain by sequential addition of 

monomer molecules to the polymeric radical (Pn
•), leading the formation of a new 

polymeric radical (Pn+1). The “head-to-tail” addition is the main propagation mechanism, 

in which the radical reacts to the least-substituted-end of the monomer double bond. This 

step is characterised by a propagation constant (kp) of 102-104 L.mol-1.s-1 for most 

monomers. Finally, the irreversible destruction of the radicals leads the formation of 

“dead” polymers (inactive chains) either by a combination or disproportionation process. 
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Consequently, the radical concentration is reduced leading chain end termination. The 

combination of two radicals will provide a polymer chain with a specific length, 

depending on the sum of the two radicals. In a disproportionation mechanism, a transfer 

of the hydrogen atom from one radical to another will form an unsaturated end-group on 

the polymer chain. 

 

 

 

 

 

 

 

 

All the steps of conventional radical polymerisation described here occur in a few 

seconds, while the rate of monomer consumption can be relatively slow (from minutes to 

days).  

Thus, the formation of high molecular weight polymers is obtained in the early 

stages of the reaction, giving a chains with different degrees of polymerisation (Ɖ > 1.2) 

and high dispersity as a result.  

 

 

 

 Scheme 1.1: General scheme of free radical polymerisation2 
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Flory was the first to introduce the chain transfer term in 1936 Scheme 1.2 shows 

the reaction between the propagating radical with a chain transfer agent (CTA), which 

terminates one chain and leaves a free radical, CT•, available to reinitiate a new monomer 

in order to produce another propagating radical (Pm
•).3 Nowadays, transfer agents are 

widely used to control a polymerisation by decreasing the molecular weight. 

 

 

Here, the Scheme 1.2 shows a transfer mechanism involving the transfer of an atom 

to the monomer but the chain-transfer can also occurs with another component such a 

solvent, intiator, a polymer chain or a chain transfer agent.  

1.2. Living radical polymerisation 

 

Szwarc was the first to report living polymerisations in 1956, where the presence of 

carbanion decreased significantly the amount of termination.4 However, the presence of 

unavoidable chain termination affects the control over the polymerisation, giving a high 

dispersity values. The disadvantages of the FRP are overcome with the appearance of the 

living radical polymerisation which is less sensitive towards the reagent purity and can 

provides a similar control as the anionic polymerisations.5  

The introduction of the dynamic equilibrium in radical polymerisation is the key to 

give a predictable molecular weight polymer with a narrow dispersity and high end-chain 

functionality (Figure 1.1).  

 

   

Scheme 1.2: Chain transfer of radical from propagating radical chain to another monomer.3 
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Controlled living radical polymerisation (CLRP) is based on the 

activation/deactivation of the propagating macro-radicals which allows the polymeric 

chains grow simultaneously as the monomer is consumed. Similarly to free radical 

polymerisation, the termination step cannot be avoided, meaning that the CLRP is not a 

“pure” living system. However having similar conditions to LRP, as reported by Quirk 

and Lee, use of the term “living” for the nitroxide mediated polymerisation (NMP)6,7 atom 

transfer radical polymerisation (ATRP)8,9 or reversible addition-fragmentation chain 

transfer polymerisation (RAFT)10,11 can be justified.  

Since the aim of this thesis is to focus on the synthesis of block and multiblock 

copolymers using RAFT polymerisation, a study of the kinetic for polymerisations of a 

wide range of monomers in organic solvents using an industrial specific RAFT agent is 

reported. 

 

 

 

 

 

 Figure 1.1: Evolution of molecular weight with conversion using different 

polymerisation techniques 
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1.2.1. Reversible-addition Fragmentation Chain Transfer 

 

RAFT polymerisation was first reported in 1998 by the Commonwealth Scientific 

and Industrial Research Organisation (CSIRO), and at the same time by Rhodia in France 

(called MADIX for Macromolecular Design via the Interchange of Xanthates). The RAFT 

process is based on a degenerative mechanism corresponding to the transfer of a radical 

from one polymeric chain to another keeping the radical concentration constant.12,13 The 

polymerisation involves the use of monomers, conventional radical initiators (e.g. AIBN, 

V601 or Vazo-88), a chain transfer agent (CTA or RAFT agent) and can be performed in 

suspension, emulsion, solution or bulk. Trithiocarbonylthio compounds (RSC(Z)=S) are 

the main CTA used in RAFT polymerisation. The design and the choice of RAFT agent 

must be appropriate for the monomer and reaction conditions in order to achieve good 

control over the molecular weight distribution.  

The efficiency of the chain transfer agent leading a narrow molecular weight 

distributions is illustrated by Moad et al. which compard the polymerisation of styrene in 

free radical polymerisation and in presence of the cumyl dithiobenzoate chain transfert 

agent (Figure 1.2).11 
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1.2.2. RAFT polymerisation mechanism 

 

The mechanism of RAFT polymerisation is relatively similar to the that of free 

radical polymerisation, with the presence of an additional step involving the CTA, as 

depicted in a scheme 1.3.11, 14,15 The initiation and termination steps are similar to 

conventional free radical polymerisation. The second step is the addition of the 

propagating radical (Pn
•) to the initial RAFT agent (1) to form an intermediate species (2) 

which can undergo fragmentation towards either the starting species (k-add) or release the 

radical R• and form a new propagating radical (kβ) (3). The reinitation step then occurs 

where the R
• 
species will add another monomer to produce a new propagating polymeric 

chain (Pm
•).  

Figure 1.2: Molecular-weight distributions for a conventional and RAFT polymerisation of 

styrene under similar experimental conditions. The SEC chromatograms show a polystyrene 

prepared by thermal polymerisation of styrene at 100 ˚C for 16 h (Mn = 324 000 g/mol), Ɖ = 1.74 

and 72 % of conversion) and a similar polymerisation in a presence of cumyl dithiobenzoate (Mn 

= 14 400 g/mol, Ɖ = 1.04, 55 % of conversion).11 
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Upon consumption of the chain transfer agent, an equilibrium is established 

allowing all chains to grow at a uniform rate. When the polymerisation is complete or 

stopped a number of polymeric chain retain the thiocarbonyl-thio end group. Finally, 

termination will occur leading the formation of dead chains by bimolecular reactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.3: Reversible Addition chain transfer polymerisation mechanism14 
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The high tolerance to impurities in the reaction mixture and the possibility to use 

a wide range of monomers and solvents confirms the robust and versatile nature of the 

RAFT process.16 Different classes of monomers from more activated monomers (styrene, 

acrylic and methacrylic) to the less activated monomers (N-vinyl pyrrolidone, vinyl 

acetate) have been established and reported in the literature.17,18 Also, the effect of the 

temperature19 and solvents (organic20 and aqueous21) have been widely studied. 

1.2.3. The chain transfer agent  

 

Control of the molecular weight and the dispersity (Ɖ) is controlled mainly by the 

choice of the chain transfer agent. The efficiency of the chain transfer constant (Ctr) 

can be evaluated by using different methods as described by Destarac.22,23 The Ctr 

value for a given CTA is calculated according to Equation 1: 

Ctr = 
𝑘𝑡

𝑘𝑝
   Equation 1 

The chain transfer constant is directly linked to the transfer and propagation 

constants (ktr and kp respectively). A higher value of Ctr (> 1) means that the transfer 

rate constant (ktr) is significantly higher than the propagation constant (kp). In contrary, 

a low value of a chain transfer constant suggests a slow consumption of the CTA, 

inducing a higher experimental Mn than the calculated, and a broad dispersity. 

Different methods can be used to measure Ctr. The conventional approach is to 

use a Mayo plot method which can be determined by size-exclusion chromatography 

and Equation 2.12,24  
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1

𝐷𝑃
=

1

𝐷𝑃0 + 𝐶𝑡𝑟
[𝐶𝑇𝐴]

[𝑀𝑜𝑛𝑜𝑚𝑒𝑟]
   Equation 2 

DP is the number average degree of polymerization obtained in the presence of 

the CTA. DP0 is the number averaged degree of polymerization obtained in the 

absence of chain transfer agent. [CTA] and [M] are the concentration of chain 

transfer agent and monomer respectively.  

1.2.4. Choice and design of the RAFT agent 

 

A wide range of RAFT agents have been designed over last decade, allowing for 

a wide range of compatibility for different monomers and polymerisation conditions. For 

thiocarbonylthio RAFT agents, dithioesters25 were initially developed followed by  

dithiocarbonates, dithiocarbamates26 and trithiocarbonates27,28. Design of the RAFT agent 

influences the effectiveness of the polymerisation and also the thermal stability. A typical 

RAFT agent composed of R and Z groups which will directly affect the value of the chain 

transfer constant is depicted in Scheme 1.4.  

 

 

 

 

 

 Scheme 1.4: Structural features required for an optimal RAFT agent 
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The presence of the highly reactive C=S bond allows for fast radical attack and 

release of the radical leaving group (R•) in order to reinitiate the polymerisation to 

generate a new polymeric chain. The intermediate radical (2 and 5 in Scheme 1.3) should 

fragment rapidly and must partition in favour of the products (3 and 6 in Scheme 1.3). As 

such, choice of R and Z group can have drastic impacts on the efficiency of the reaction. 

 Effect of the R group 

 

Different substituents have been designed to understand their impact on the control over 

the polymerisation. The main role of the R group is to be a good radical leaving group 

but also to efficiently reinitiate the reaction in order to start the formation of a new 

polymeric chain. Consequently, an efficient homolytic group is required to release the 

radical (R•), and the stability of the expelled radical (R•), based on the polarity or steric 

hindrance of the substituent, for each class of RAFT agent has been broadly reported in 

the literature.20,29,30,31 

For instance, a sterically bulky R group (styrene) or those containing an electron 

withdrawing groups (-CN, -COOR…) increase the rate of fragmentation, which form 

excellent leaving groups. Chong et al. have explored the effect of different substituents 

on several monomers and they established good guidelines for the choice of CTA (Figure 

1.3).32 
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 Effect of the Z group 

 

The Z group relates the relative stability and reactivity of the C = S bond throughout 

the activation/deactivation process. The Z substituents will directly influence the rate of 

radical addition onto the double bond. Similarly to the R group, studies have been 

reported on how the electron withdrawing groups enhance the reactivity of the RAFT 

group, and how the presence of substituents bearing an oxygen or nitrogen with a lone 

pair deactivate the radical leading to poor control of the polymerisation.33 Similarly to the 

previous R group study, guidelines for the choice of Z group substituents have also been 

reported (Figure 1.4).34 

 

 

 

 

Figure 1.3: Selection of the R group for a RAFT agent with a decrease of fragmentation rates from 

left to right for methyl methacrylate (MMA), styrene (S), methyl acrylate (MA), acrylamide (AM), 

acrylonitrile (AN) and vinyl acetate (VAc).32 

Figure 1.4: Selection of the Z group for a RAFT agent with a decrease of fragmentation rates from left 

to right for methyl methacrylate (MMA), styrene (S), methyl acrylate (MA), acrylamide (AM), 

acrylonitrile (AN) and vinyl acetate (VAc).34 
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As discussed, RAFT is a highly versatile method to polymerise a wide range of materials.  

As such it can be easily manipulated to synthesise a wide range of polymer architectures 

such as linear, star, brush and multiblock. The design of amphiphilic diblock copolymers 

is the main purpose of this thesis project.  

 

1.3. Synthesis of block and multiblock copolymers by RAFT process 

 

1.3.1. Block copolymer synthesis 

 

Block copolymers include a range of architectures such as linear, comb, star copolymers 

(Figure 1.5), leading to specific properties and allowing to target a diverse range of 

applications.35 It is well established that block copolymer composed of a hydrophobic and 

hydrophilic segments can self-assemble based on hydrophobic inetractions. Typically, the 

morphology of the nano-scale structure is directly dependent of the ratio between the two 

blocks, but also the composition, the block chain length and the dispersity.36,37 

 

For many years, the synthesis of block copolymer was performed via anionic 

polymerisation, providing polymers with narrow molecular weight distribution.38 

Figure 1.5: Representative architecture of linear block copolymer terpolymers, “comb” 

graft polymers, miktoarm star terpolymers and cyclic block terpolymers.36 
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However this technique suffers from a few disadvantages such as  monomer purity and 

stringent requirements on reaction conditions. To address some of these shortcomings, 

group transfer polymerisation (GTP) was developed, and provide a good control of 

methacrylates polymerisation over a wide range of temperatures and initiators (cyanide, 

azide, fluoride) is reported.  

For instance, Sogah and Owen W.Webster have reported the synthesis of a broad 

range of methacrylates (MMA, LMA, BMA, HEMA…) but also acrylates and 

acrylonitrile monomers using nucleophilic anions (KHF2, Bu4NF...) or Lewis acids 

(ZnBr2, ZnI2, ZnCl2…) leading a well-defined homopolymers and copolymers (Ɖ ≤ 

1.2).39,40 However, the technique si still limited by the need to remove water and is still 

sensitive to certain functionalities. 

Free radical polymerisation (FRP) on the other hand is a versatile polymerisation 

technique that require simple setup, non stringent conditions and is tolertant to a wide 

variety of functional groups. On the othe hand, it is prone to many side rerecatiosn such 

as termination and irreversible chain transfer and therefore give poor control over 

molecular weight, thus making the synthesis of block copolymers impossible. However, 

Solomon et al. have patented in 1985 the synthesis of block and graft copolymers with 

short chein legth in free radical polymerisation.41 This concept has also been used by 

Krstina and co-workers to show the possibility to achieve a high-purity block copolymers 

by FRP using a macromonomers as chain transfer agent. A successful p(butyl 

methacrylate-block-phenyl methacrylate) is synthesised via an addition-fragmentation 

chain-transfer where BMA propagating species reacts with the phenyl methacrylate 

macromonomer (Ɖ ≈ 1.3).42,43  
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More recently, Haddleton and coworkers have further developed this approach to 

synthesise sequence-controlled methacrylic multiblock copolymers using macrochain 

transfer agents in dispersed media.44,45 Thus, the RDRP (Reversible Deactivation Radical 

Polymerisation) is more attractive than ionic polymerisation for its tolerance to reactive 

groups and reaction conditions.  

To date, the most common RDRP techniques are NMP, ATRP and RAFT 

polymerisations. The process relies on the formation of dormant dormant (“living”) 

chains, end-capped with a dithioester, allowing chain extension to generate well-defined 

block copolymers. One of the main parameter to consider is the proportion of the “living” 

chains (ω-chain ends) which must be as high as possible for a successful block synthesis. 

As already discussed, this system is not fully living due to the presence of dead chains (α-

chain end derived from initiator) generated by the radical termination. Nevertheless, a 

high fraction of dormant chains can be achieved by optimising the ratio [monomer]0 / 

[RAFT agent]0, which determine the theroretical degree of polymerisation and the 

number average molar mass (Mn). The ratio [RAFT agent]0 / [Initiator]0 determine the 

number of α and ω chain-end, and must be kept as high as possible in order to form a 

maximum of “living” chains. Considering kinetic parameters, the proportion of living 

chains is linked to the amount of radicals present in the reaction, and the fraction of living 

chains (L) can be quantified as shown in Equation 3:  

L (%) = 
[CTA]0

[CTA]0+2.𝑓.[I]0.(1−𝑒−𝑘𝑑𝑡).(1−
𝑓𝑐

2
)
   Equation 3 
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The initial concentrations of chain transfer agent (CTA) and initiator are 

represented by [CTA]0 and [I]0 respectively, while the number “2” is attributed to the 

formation of two primary radicals after thermal decomposition of the azo initiator. The 

value “f” is set at 0.5 for the calculation of livingness in this thesis and kd is the rate 

coefficient of initiator decomposition. Finally, the term (1-fc/2) describes the production 

of radical-radical termination by combination or disproportionation.  

In RAFT polymerisation, the most common method for block copolymer 

synthesis is sequential addition of two or more monomers (Figure 1.6).  

 

 

 

The composition and the control of the block copolymer structure is achieved by selecting 

compatible monomers and RAFT agent. As stated in part 1.2.4, the RAFT agent must 

possess a Z and R group functionality suitable to the monomer selected. The Z-group of 

the RAFT agent must give a good control for the both monomers as it is affect the 

efficiency of the thiocarbonyl group reactivity towards the rate of addition and 

fragmentation of the RAFT intermediate radical. For instance, if the polymerisation of 

the first monomer (A) is not controlled the addition of the second monomer (B) will leads 

a broader dispersity.  

Figure 1.6: General scheme of block copolymer synthesis via RAFT polymerisation process 
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In another case, if the chain transfer constant of the RAFT agent is high (Ctr  > 1) towards 

the monomer (A) and not the monomer (B), the macro-RAFT agent (A) will be well-

controlled, but will generate a block copolymer (AB) with a high dispersity and some 

residual homopolymer (B). It is also important to consider the order of monomer addition. 

The first block being used as macroCTA, the propagating radical must be highly stable 

to reinitiate efficiently the polymerisation of the second monomer.  

As such, monomers inducing a tertiary radicals (methacrylates or methacrylamides) are 

polymerised in a first step. General guidelines for the requirements to synthesis block 

copolymers by RAFT have been described by Keddie.17  

In the sequential monomer addition approach, the monomers must have the same 

chemical and physical properties (i.e. radical reactivity). This approached using a 

commercially available monomer is broadly reported in the literature, especially to design 

amphiphilic block copolymers by RAFT polymerisation46,47, NMP48 and ATRP49,50 

Alternatively, the post-polymerisatiom coupling combining two polymerisations 

techniques is investigated in order to overcome the disavantages of the LRP and to allow 

the insertion of the desire functionalities.51,52 For instance Nasrullah et al. have combined 

ATRP and RAFT polymerisations by using a RAFT agent terminated with a propargyl 

group to make p(tBA)ATRP-b-p(BA)RAFT. The homopolymer (tBA) is prepared in presence 

of CuBr/PMDETA, then the bromine group is substituted by NaN3. Separetly, the second 

homopolymer is prepared using a PTTC bearing a propargyl group which then is reacted 

with the azide group via a ‘click’ reaction. Each homopolymers being well-controlled (Ɖ 

≤ 1.2), the combination of both blocks leads the formation of well-defined block 

copolymer.53  



Chapter 1: Introduction 

  
   

18 | P a g e  

 Majda Akrach   

This orthogonal approach has also been reported by Stenzel and coworkers who have 

used a “clickable” RAFT agent to polymerise vinyl acetate and styrene in presence of 

xanthate (bearing an azide) and dithiobenzoate RAFT agent, respectively. A ‘click’ 

reaction between both controlled homopolymers provides a range of PS-b-PVAc with a 

narrow molecular weight distribution.54 

1.3.2. Multiblock copolymer synthesis 

 

Similar to block copolymers, the preparation of multiblock copolymers can be 

performed by combining different techniques of polymerisations.55 Nevertheless, the 

difficulties cited previously for block copolymer synthesis are enhanced for multiblock 

architectures.  

As seen above, an external source of radical is required in order to chain extend the 

previous block by another. Consequently, few parameters such as the concentration of 

radicals and the final concentration of polymerisation mixture need to be considered to 

prevent a large accumulation of dead chains and to avoid a gel effect (Trommsdorff-

Norrish) which may lead a broad molar mass and higher molar mass distribution (Ɖ > 

1.2). By using multiblock copolymers (rather than di or triblock copolymers), it is 

possible to tune the polymers physicochemical properties and thus expand the number of 

potential applications. The first example of multiblock copolymer synthesis using a one-

pot RAFT polymerisation technique was reported by Gody et al.56. Recently, a few 

examples of sulfonated multiblock copolymers for coating applications have also been 

published showing the advantage of this architecture through tuning the nature of each 

block to modify the chemical and physical properties.57,58,59 
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1.4. Pigment dispersion 

 

Pigments are dry, insoluble chemical substances which can be used in applications 

such as: paints60,61, inks62, printing63, coatings64, and cosmetics65. As such, upon 

dispersion in liquid media, they have a tendency to form aggregates or agglomerates, and 

therefore methods to improve the dispersion of pigment particles are necessary to enhance 

their performance for a given application. Several ways to disperse a powder pigment 

(dry-blend, electrostatic or steric process) have been reported in the literature. Dry-blend 

processing is typically used in industry to modify the product formulation in a blend 

without solvent.66,67. A compound, such as polymer, is mixed with the pigment in a blend 

chamber at high speed and a given temperature, followed by addition of a lubricant or 

other modifier to improve the batch-to-batch consistency and reduce the presence of 

electrostatic charges. However, this process is inefficient and poorly developed, as 

opposed to the melt shear process or liquid dispersion. In the polymer melts method, 

polymers are used as compatibilisers to disperse fillers or pigments; however, the choice 

of polymer used must be a low molecular weight (typically less than 10 kDa).68,69,70 The 

last and most developed process is the pigment dispersion process. Here, block 

copolymers are used as dispersants in a given solvent system by adsorption onto the 

pigment surface. As this is the most commonly used method, it will be used in this thesis. 

Chemisorption and physisorption are the two main adsorption methods, and show 

efficient adhesion between the polymer and the pigment surface.  

The process of coating is widely used in industry. It is defined as the addition of an 

organic, inorganic or hybrid continuous layer, typically based on polymeric materials, 

onto a specific surface, forming a 3-dimentional structure.71  
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Coating additives such as thickening agents, surface active agents or surface 

modifiers, to name few, are substances added in small quantity to a material, to improving 

their physicochemical properties. Different types of coatings have been established, and 

depending on the dispersant media, can be either waterborne, organic solvent-based or 

dry (solventless, in bulk).  

1.4.1. Pigment dispersant methods 

 

1.4.1.1. Chemisorption method 

 

The first method to be investigated was the chemisorption method, in which the 

pigment surface is modified prior to the in situ synthesis of a polymer via the emulsion 

polymerisation process, forming a shell.72,73,74,75  

Alternatively, the polymer chain can be grafted by direct polymerisation from the 

pigment surface if the functional group present can be initiated. Papirer and Donnet have 

combined both techniques to study the reactivity of five different carbon black 

pigments.76 Treatment of the surface of the carbon black was performed by halogenation 

(bromination and chlorination) and oxidation followed by evaluation of the surface 

properties by inverse gas chromatography (IGC). Reactivity of the surface after 

modification was also studied, after grafting short alkyne chains via an anionic method 

and long alkyne chains using a free radical process.  

Chemisorption has expanded on the use of polymers as dispersing agents, and makes 

it possible to use carbon black pigments in waterborne applications.  
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However, the difficulty and complexity of these processes, requiring many steps, can 

reduce the potential applications and increase the cost of production, which may be 

inappropriate for an industrial perspective.  

 

1.4.1.2. Physisorption method 

 

Alternatively, physisorption was developed and is now a well-known technique used 

to improve the interactions between a pigment surface and the polymer used as a 

dispersing agent. Adsorption of a surfactant onto a solid surface influences the quality of 

the dispersion, and has led to a new range of dispersants being developed over the last 

few years. Indeed, complex oligomers/polymers, which are typically block copolymers 

or branched polymers, have been synthesised to achieve a fine dispersion, allowing for 

high pigment loading whilst maintaining a low viscosity.  

Many complex polymeric architectures such as star77,78, graft79,80,81 , hyperbranched82 

or dendritic83 have been widely described. However, amphiphilic diblock copolymers 

show a similar or even better efficiency as a stabiliser for various colloidal dispersions in 

aqueous and organic84 media.85,86,87,88 Two types of pigment dispersion techniques are 

used; electrostatic stabilisation, mainly used in waterborne systems, and steric 

stabilisation, suitable for solventborne media.  

By the 1990s, automotive industries began to look at new polymeric dispersants to 

increase the colour quality of aqueous pigment dispersions. They investigated acrylic and 

methacrylic acid moieties, which bear a strong polar anchoring group that can be readily 

synthesised by free radical polymerisation, and easily combined with a conventional 
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surfactants. A few years later, the synthesis of copolymers was optimised using controlled 

free radical polymerisation techniques and were shown to exhibit a better efficiency.89, 90 

In the new method, design of the polymer is crucial to prevent flocculation and 

bridging between polymer chains. Auschra et al. investigated the synthesis of acrylic 

diblock copolymers via ATRP methods and studied the effect of chemical composition, 

molecular weight, and block length on the dispersant performance.91 A similar 

composition of triblock copolymer was reported, showing the presence of bridging 

flocculation due to the interpenetration of long polymer chains.92,93 

Although electrostatic stabilisation plays a key role in the development of novel 

dispersing agents, this project focuses mainly on the use of steric stabilisation as it is the 

most suitable technique to disperse organic pigment in organic media.  

1.5. Dispersion of pigment using polymeric surfactant 

 

The dispersion process can be described by a sequence of processes; wetting, 

separation and stabilisation (Figure 1.7).94 

 

 

 

 

 

 

 

 

 

Figure 1.7: Pigment dispersion process.94 
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The wetting step is characterised by a displacement of any air present on the 

surface of a pigment (or between the agglomerates) by the coating vehicle (solvent or 

resin).  

The main parameter to consider here is the surface tension of the media, which 

must be lower than the surface tension of the pigment to allow for fast penetration of the 

solvent through the clusters. Optimal wetting leads to a low viscosity mixture.  

The separation process is achieved by using a suitable mechanical process (such as 

grinding or milling) to separate pigment aggregates into smaller particles. The choice of 

equipment is pivotal to reach a fast rate of separation, which is directly driven by the 

magnitude of the shear stress and the particle-particle interaction. 

The last step is stabilization and is highly important to ensure the long term 

stability of the pigment.  

Inefficient stabilization will lead to reversible flocculation, leading to a decrease 

in colour intensity by reduction of light absorption caused by the presence of large 

particles. To avoid or minimize the pigment flocculation, a surfactant is usually added 

during the stabilisation process. The two main mechanisms for stabilisation are 

electrostatic stabilisation and steric stabilisation. 

 

1.5.1. Electrostatic stabilization 

 

Electrostatic stabilization (or charge repulsion) is based on charge repulsion and 

is widely used in aqueous media.  
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Here, additive molecules must bear functional groups able to strongly adsorb onto 

the pigment surface by hydrogen bonding, dipole interactions or ionic bonding.  

As mentioned previously, the surface tension must be low to reach a good 

wettability, however, water has a high surface tension (72.6 mN/m at 20 ˚C) meaning that 

the additive moieties must have an extremely strong affinity for the pigment in order to 

overcome this.95,96 

Derjaguin, Landau, Verwey and Overbeek developed a theory which states that 

the stabilization of colloid is defined by strong coulombic (repulsive) forces that occur 

when two charged particles approach each other.97,98  As such, a stable colloidal system 

is governed by two major forces; electrostatic repulsion and van der Waal’s attractive 

forces where the combination of both forces form a double layer of counterions (Figure 

1.8).99 

 

 

 

 

 

 

 

 

Figure 1.8: Schematic representation of the charged double from DLVO theory.99 
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Figure 1.9 summarises the interaction energies involved between two particles as a 

function of their distance. A short distance between the particles increases the magnitude 

of repulsive electrostatic and attractive Van der Waals forces. Consequently, the repulsive 

barrier named “Vmax” defines the stability of the dispersed colloids and must be large in 

order to prevent flocculation. In the other words, electrostatic repulsion must overcome 

the attraction forces in order to achieve a stable dispersion.100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In media with high dielectric constants only the electrostatic stabilisation will 

dominate, leading to a strong attraction between the positive counter-ions and a negative 

surface via the electric field, forming an electrical double layer.  

Figure 1.9: Evolution of potential energy for charged particles of potential energy for charged 

particles.100 
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However, this method is very sensitive to multivalent ion contamination and ion 

concentration, which can drastically alter the attractive forces between the two species 

(Figure 1.10).101,102 

 

 

 

 

 

 

 

 

 

 

 

Several factors, such as ion concentration, ionic strength and pH of the solution 

can alter or disrupt the double layer. The Schulze-Hardy law explains the influence of the 

salts on the electrical layer by studying the effect of electrolyte addition on the 

electrostatic potential around the particle. The increased ionic strength caused by the 

presence of electrolytes decreases the electrostatic potential. As such, flocculation will 

increase in the presence of the following cationic charges in negatively charged media; 

Na+ < Ca2+ < Al3+ or Fe3+. In positively charged media, the flocculation increase with the 

power of anions: Cl- < SO4
2- < PO4

3-. A study of colloidal stabilisation with an excess of 

four polyelectrolytes (amidine latex, poly(styrene sulfonate), sulfate latex and 

poly(ethylene imine) at different pH values to confirm the DLVO theory was investigated 

by Hierrezuelo.  

Figure 1.10: Electrostatic repulsion and attractive forces in water media101 
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The charged colloidal particle stabilization mechanism was studied by using 

electrophoretic mobility and dynamic light scattering techniques which highlighted the 

link between the ionic strength and the repulsive electrostatic double-layer forces. 

 

1.5.2. Steric stabilization 

 

Steric stabilisation (or entropic repulsion) is defined as a repulsion of layers 

adsorbed onto a material’s surface present in solution. This process requires the use of a 

functional surfactant with a low molecular weight (up to 10 kDa). This surfactant can be 

a polymeric compound with two segments; a buoy block that will be miscible in the 

solvent and an anchor block which will interact with the pigment surface via a chemical 

covalent or physical bond. The anchor group must bear one or more adsorbing groups 

which are commonly amines, hydroxyls, carboxylic acids or esters depending on the 

pigment surface. Oppositely, the buoy block is usually a long alkyne chain, which takes 

a loop or tails conformation in solution, and forms a thick layer around the pigment. 

Figure 1.11 shows the role of the buoy and anchor chains in the steric stabilisation 

mechanism. The circular red spots on the surface represents the anchor groups, and the 

long orange segments correspond to the hydrophobic segments, providing the steric 

stabilization.103  
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The repulsion mechanism occurs owing to the particles mobility under Brownian 

motion. The interaction between two particles is related to the thickness of the layers 

coated at the surface pigment. Several theories describing steric stabilisation have been 

described, and the ideas presented by Napper are generally accepted.104 In Napper’s 

theory, the schematic of which can be found in Figure 1.12, the potential configuration 

of a polymer layer in solution, where, “L” is the layer thickness and “D” the distance 

between two particles is described. The configuration (a) named “non-interactional 

domain” corresponds to the distance between two particles when they are far away from 

each other (D > 2L).  

 

 

 

 

 

 

Figure 1.11: Steric repulsion of pigment particles coated by polymer.103 

Figure 1.12: Representation of adsorbed layers overlapping by three approaches. (a) non-

interactional domain; (b) interpenetrational domain; (c) compression mechanism 
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In solution, the particles get close to each other due to Brownian motion. Consequently, 

the “interpenetrational domain “is reducing the distance between two particles (D = 2L) 

leading to an overlapping of polymeric layers (b). At this stage, the enthalpy (ΔH) 

increases while the entropy (ΔS) decreases, suggesting a change in the configuration of 

the initial polymer chain. The last state (c) is total interpenetration of the polymers chains 

leading to a compression effect.  

This phenomenon can occur depending on the elastic modulus of the adsorbed layer. The 

energy change occurring due to these interactions can be quantified, making it possible 

to determine the degree of stabilization. The overlapping layers is expressed by the 

change of Gibbs free energy. Given that ΔG = ΔH-TΔS, a positive ΔG corresponds to a 

stable system while a negative ΔG suggests flocculation or coagulation. By being aware 

of the mechanism, it is possible to design a polymer with the specific properties to 

overcome these disadvantages. Factors such as the molecular weight of the polymer (1), 

the thickness of the layers coated (2), the surface nature (neutral, acidic or basic) of the 

particle (3), and the solvent used (4) are the main targets to consider for optimal 

dispersion.  

In the first case, the size of the polymer is crucial regarding the possibility of 

bridging flocculation to occur in solution. When two particles approach each other, the 

long buoy chains can interpenetrate leading to the formation of aggregates, while an 

optimal size will only have a steric effect, as was already discussed. Furthermore, the 

choice of anchor group needs be designed based on the pigment surface properties. For 

instance, carbon black FW200, as was used for this project, has a strongly acidic surface 

composed mainly of lactone, carbonyl and ester moieties.  
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Consequently, as the physical interaction process was chosen to disperse this 

pigment, a specific anchor block bearing a tertiary amine was selected to form strong 

hydrogen bonds with the pigment surface. Finally, the conformation of the polymer in 

solution is important, as it can affect how stabilization takes place. Depending on the 

polymer solvability, the non-adsorbing segment (buoy) will either form a tail or a loop, 

impacting the repulsion effect. 

 Hence, whatever the adsorption method (coulombic, hydrogen bond, dipole 

interaction, or Van der Waals forces), the size of the polymer will define how strongly 

the segments interact with the particle surface, resulting in a polymer that is adsorbed 

more at one point than another. The first representation of interactions between soluble 

polymers and colloidal particles was reported by Jenckel and Rumbach in 1951. They 

found that the adsorption of a single point can be easily desorbed under shear stress, 

whereas multipoint attachment makes the desorption mechanism much more difficult, or 

even irreversible. 

  The main advantage of steric stabilisation over charge stabilisation is the 

decreased sensitivity to the presence of ions in solution, or changes in the dielectric 

constant of solvents. Also, the thickness of the layer is less sensitive in steric stabilisation 

mechanism, however, in aqueous media an excess of charge at the pigment surface can 

lead to the formation of a gel, induced by interactions between the layers.  

Finally, the addition of an electrolyte in waterborne media causes irreversible 

coagulation, while flocculated particles formed in organic media can be disrupted under 

dilute conditions. These advantages give steric stabilization more attention and, as such, 

is widely used in solvent-based or waterborne coatings.  
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In this chapter, the polymerisation acrylate and methacrylate monomers using RAFT 

polymerisation is reported. Optimisation of n-butyl acrylate and DMAEA monomers 

using BMDPT RAFT agent (scaled up by Lubrizol) is reported and compared with other 

RAFT agents (PABTC and MCTP) well-known to control acrylate polymerisation. Under 

carefully optimised conditions, a well-defined amphiphilic diblock copolymer was 

obtained (Ɖ = 1.12) with a high monomer conversion (> 95 %). Moreover, a hybrid 

amphiphilic diblock copolymer composed of methacrylate and acrylate monomers was 

also attempted with BMDPT RAFT agent. A poor control is obtained with an increase of 

dispersity (Ɖ = 2.3) with a bimodal molar mass distribution. A UV trace recorded by 

SEC-THF triple detection shown the presence of some unconsumed RAFT agent. 

Alternatively, the use of MCTP RAFT agent was investigated in methoxypropyl acetate 

and dioxane solvent to understand and optimised the synthesis of diblock copolymer.  
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2.1. Introduction 

 

Acrylic and methacrylic polymers are obtained from the polymerisation of acrylic 

esters or methacrylic acid monomers to yield materials with, for example, strong 

mechanical properties, adhesion, optical clarity and chemical stability, allowing for their 

use in a wide range of applications.1,2 Poly (n-butyl acrylate) has a huge importance in 

industry due to specific properties such as its low glass transition temperature (Tg). As 

such, it is widely used in thermoplastic elastomers and latex paint formulations, providing 

water, sunlight and weathering resistance. Acrylates or acrylic acid polymers can be 

obtained by free radical polymerisation at high temperatures (120 ˚C - 200 ˚C)3,4, which 

can lead to many side reactions such as branching, chain transfer or high chain 

termination; impacting the overall control of the reaction, and resulting polymer 

properties. The polymerisation can be improved by using anionic and group transfer  

polymerisation techniques leading the formation of well-defined polymers, however, a 

large amount of side reactions can occur.5,6,7 To overcome this problem, several 

controlled radical polymerisation techniques, such as NMP8,9 ATRP10 or RAFT have been 

developed.11,12 Reversible Addition-Fragmentation chain Transfer (RAFT) 

polymerisation relies on a fast equilibrium between the active and dormant growing 

polymeric chains, and results in the formation of well-defined polymers with a low 

dispersity. This technique also allows for further polymerisation reactions to occur by 

chain extending the polymer with a different monomer, resulting in precise block 

polymers. 
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The interest in block copolymers has increased significantly over the last few 

decades, in part due to their potential aggregation in solution and their phase separation 

behaviour. However, the synthesis of block, or other complex architectures, is 

challenging and limited by the compatibility of the monomer and reaction conditions. 

These monomers easily facilitate the propagating radical species to react with the C=S 

bond, leading to well-defined block co-polymers with a narrow distribution and low 

dispersity (Ɖ ≤ 1.2), at low temperatures using the RAFT agent BMDPT. As discussed, 

BMDPT RAFT agent is produced in tonne scale by Lubrizol and is used in this thesis to 

synthesise a range of amphiphilic diblock copolymers composed of nbutyl acrylate and 

DMAEA. The application of these polymers will be discussed in Chapter 5.  

2.2. Results and Discussion 

 

2.2.1. nButyl acrylate polymerisation 

 

 Study of nBA polymerisation 

 

 

 

 

 

 
 

  
Scheme 2.1: Comparison of n-butyl acrylate polymerisation using BMDPT, MCTP and PABTC RAFT 

agents in butyl acetate solvent with a [nBA]0 = 3 M and V601 as azoinitator at 70 ˚C 
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In RAFT polymerisation, design of the RAFT agent is crucial to obtain good control over 

the polymerisation. As previously discussed, both the R and Z groups play important roles 

in determining the outcome of polymerisation.13 The polymerisation of nBA is performed 

in solution which present two main disadvantages in comparison to the bulk 

polymerisation. The fraction of the dead chains can increased if a chain transfer to the solvent 

occurs. Additionally, a low monomer concentration favour the mechanism of the 

intramolecular (backbiting) transfer leading to the formation of tertiary radical which can 

either undergo a β-scission or from a branch points. To this end, control over the 

polymerisation of n-butyl acrylate was compared by using three RAFT agents: the industrially 

relevant BMDPT, MCTP, which bears a similar “Z” group to BMDPT, and PABTC, well-

known to give good control over acrylate polymerisations (Scheme 2.1).14,15  

The rational of using these CTAs was to investigate the impact of radical stability on the 

molecular weight control of the resulting polymers. Polymerisation of n-butyl acrylate 

were performed under the same conditions ([nBA]0 = 3 M, [CTA]0/[V601]0 = 10 and T = 

70 ˚C) for all the RAFT agents. The Figure 2.1 shows the overlapping of a symmetrical 

and narrow THF-SEC chromatograms of p(nBA). A high monomer conversion (> 95 %) 

is reached for each homopolymers. The difference between the experimental and 

theoretical molar mass can be attributed to the difference of the hydrodynamic volume 

between the p(nBA) and PMMA used for SEC calibration. It is worth nothing that a small 

shoulder at high molar mass is observed for each polymerisations which correlates to the 

formation of backbiting as reported in several studies of acrylate polymerisation.  
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These data correlate with the results published by Lai et al. regarding the polymerisation 

of acrylate and methacrylate using trithiocarbonate (“2-(dodecylthiocarbonothioylthio)-

2-methylpropionic acid” similar to BMDPT) as a RAFT agent.16 However, the shoulder 

is more significant for p(nBA) mediated by BMDPT RAFT agent which can be explained 

either by the reactivity of the impurities present ( 30 %)  in the crude Lubrizol RAFT 

agent or to the underestimated amount of RAFT agent used. In the appendix of this thesis, 

the MALDI-ToF of the industrial BMDPT RAFT agent is reporter is Figure A.2, the 

experimental and theoretical monoisotopic mass are recorded in Table A.1 and the 

structures of the potential impurities in Figure A.3. The highest ionization efficiency 

correspond to the impurities species such as trithiocarbonates or disulphide compounds 

bearing a “C12H25” group (structures 1, 6, 5, 7). The small peaks have been attributed to 

species composed by two trithiocarbonates (structures 8, 9, 10). These species can 

potentially be involved in the polymerisation and compete with the pure RAFT agent. 

Only few studies have been reported regarding the impact of the RAFT impurities 

impacting the kinetics of the polymerisation. Plummer and co-workers have studied the 

effect of the impurities in the cumyl dithiobenzoate (CDB) on RAFT polymerisation. 

They compared the polymerisation of HEMA (2-hydroxylethyl methacrylate), styrene 

and methyl acrylate in presence of CDB purified by silica column and CDB-HPLC 

(purified by HPLC and stored at -20 ˚C for a 1 week). They observed a presence of an 

inhibition period and retardation effect. Another set of polymerisation was performed by 

increasing the concentration of CDB showing an increase of the retardation. Based on 

their kinetic they conclude that the rate of the polymerisation depends on the RAFT agent 

purity.17 
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The SEC molecular weight distributions show a small shoulder at high molar mass, 

corresponding to backbiting, which is observed for each RAFT agent. A slightly higher 

molar mass is observed for BMDPT, as the amount of CTA added in the reaction mixture 

is underestimated, due to the presence of impurities (see Appendix) in the crude Lubrizol 

RAFT agent (Figure 2.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The similarity of the data obtained in this preliminary study confirm the good control over 

molecular weight for acrylate monomers. Hence, several parameters such as monomer 

Figure 2.1: Comparison of THF- SEC chromatograms of p(nBA)55 prepared at 70 ˚C with 
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concentration and temperature effect were investigated followed by the full kinetics study 

of acrylate monomers (nBA and DMAEA). 

 Monomer concentration study 

 

Following on from this, changes in the parameters related to the kinetics and the 

control over the polymerisation, such as monomer concentration and temperature, were 

varied for n-butyl acrylate homopolymerisation, using an acetate solvent and the BMDPT 

RAFT agent.  

Initially, the effect of monomer concentration on n-butyl acrylate 

homopolymerisation at 70 ˚C was carried out. A degree of polymerisation of 55 was 

targeted at 2 M, 3 M and 4 M concentrations, whilst keeping the ratio [BMDPT]0 / 

[V601]0 constant at 10 :1.  

All reactions were performed in both butyl acetate and methoxy propyl acetate 

solvents in order to optimise the conditions. The first observation is that the control of n-

butyl acrylate polymerisation is independent of monomer concentration, however, 

changes in the concentration impacted the rate of propagation, which was reduced at low 

monomer volumes, and consequently decreased the overall molecular weight of the 

polymer. The near quantitative monomer conversion, obtained after 12 hours of 

polymerisation was determined by 1H NMR analysis in CDCl3 (experimental section:). 

Additionally, the SEC molecular weight distributions show a monomodal molar mass 

distribution and narrow dispersity (Ɖ 1.10) for each monomer concentration, indicating 

good control (Figure 2.2). Determination of the molecular weight, relative to the 
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hydrodynamic volume of PMMA, gives an experimental value for molecular weights 

lower than the theoretical molecular weight.  

Despite good control over the polymerisation, a small shoulder at high molar mass 

is observed for each monomer concentration. A dilute polymerisation media and a higher 

monomer conversion increase the probability of mid-chain branching but not a significant 

difference is observed in these experiments. 

 

 

 

 

 

 

 

Based on this study, a monomer concentration of 3 M was chosen for this investigation 

as a high monomer conversion is reached in a shorter time period. Whilst, a high monomer 

concentration (i.e 4 M) allows for greater monomer conversion it also induces a highly 

viscous solution. The side reaction of mono-substituted n-butyl acrylate sub-units 

involves the formation of macromonomer chain ends via a β-scission (or backbiting) 

 

Figure 2.2: Comparison of THF- SEC chromatograms of p(n-BA)55 at 2 M, 3M and 4M  in butyl 

acetate (left) and MPA solvents (right) using BMDPT RAFT agent   
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mechanism, and is widely reported in the literature, and some mechanisms have been 

proposed for acrylate monomers (Scheme 2.2).18,19, 20,21 Chiefari et al. have reported two 

possible paths for the macromonomer formation.22  

They performed the polymerisation by feeding the azo initiator with a mixture of 10 % 

w/v n-butyl acrylate in butyl acetate solvent at 150 ˚C, yielding a polymer with a narrow 

dispersity (Mn ~ 100 000 g/mol,  Ɖ ~ 1.1), where no formation of macromonomer was 

observed. In a second experiment, 10 % w/v of the same polymer was synthesised under 

the same conditions, however, the monomer was not fed into the reaction. Under these 

conditions, the homopolymer was unchanged but the formation of macromonomer (Mn ~ 

1960 g/mol, Ɖ ~ 1.75) was observed. A polymerisation performed at high monomer 

concentrations leads to intermolecular hydrogen abstraction, minimising the formation of 

the macromonomer.23 Inversely, a higher rate of propagation occurs at high monomer 

concentration leading to the formation of branched macromonomers. In the same 

publication, the authors reported a considerable decrease in macromonomer molecular 

weight when the polymerisation was performed at either 150 ˚C (Mn ~ 2000 g/mol) or 

240 ̊ C (Mn ~ 1300 g/mol). Such high temperatures cannot be used here as the degradation 

of the BMDPT RAFT agent occurs at 200 ˚C (see Appendix A4). 

 

 

Scheme 2.2: General scheme of backbiting mechanism 
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 Effect of temperature study 

In addition to monomer concentration, the effect of the temperature on acrylate 

polymerisation was also investigated in both butyl acetate and MPA solvents, in order to 

assess the optimal conditions for n-butyl acrylate polymerisation. Based on the previous 

study, a monomer concentration of 3 M, with a ratio of [BMDPT]0 / [V601]0 = 10, was 

used to prevent gel formation and to reach a high monomer conversion in a short time. 

To study temperature effects, a suitable azo-initiator must be chosen based on the desired 

polymerisation temperature. The temperature effect on acrylate polymerisation was 

investigated by using two different azoinitators, V601 and Vazo-88, for a polymerisation 

below 70 ˚C and 90 ˚C respectively. In these conditions, the rate of radicals formed is 

similar throughout the polymerisation, allowing the comparison between each 

polymerisation where the theoretical fraction of living chains should be the same. The 

SEC molecular weight distributions show better polymerisation control at low 

temperatures. However, full monomer conversion was reached after 20 hours at 60 ˚C, 

while only 10 hours are required at 70 and 90 ̊ C. Poor control of the reaction was obtained 

at 90 ˚C due to increased chain termination at high temperatures (Figure 2.3). Moreover, 

higher reaction temperatures will favour the abstraction of hydrogen from the polymer 

backbone and also increase the rate of fragmentation, decreasing the molecular weight of 

the polymer.24 As mentioned previously, the presence of the shoulder at high molar mass 

corresponds to the formation of mid-chain branching which occurs at high monomer 

conversion.  
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Finally, the suitable temperature chosen for further polymerisations is 70 ˚C in 

order retain good control over the molecular weight with a high monomer conversion and 

livingness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Kinetic study on n-butyl acrylate in butyl acetate solvent 

 

Based on the above investigations, a kinetic study was performed with a ratio of 

[BMDPT]0 / [V601]0 of 10 at 70 ˚C in butyl acetate. The similarity of the theoretical 

Figure 2.3: Comparison of THF- SEC chromatograms of n-butyl acrylate polymerisation 

using BMDPT RAFT agent at 60 ˚C (blue), 70 ˚C (red) and 90 ˚C(green) with [nBA]0 = 3 

M in butyl acetate solvent 
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molecular weight and the experimental values confirms the controlled nature of the 

polymerisation (Figure 2.4 A).  

The dispersity remains low over time. Figure 2.4 B shows a linear relationship of 

the first order between ln([M]0 /[M]t) and time suggesting a constant radical concentration 

throughout the reaction.  

 

 

 

 

 

 

Figure 2.4: (A) Molar mass and molar mass distribution evolution versus time, (B) Kinetic first-

order plot and monomer conversion versus time; (C) SEC-THF chromatograms of nBA kinetic 

performed in butyl acetate solvent at 70 ˚C 
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 Kinetic study on n-butyl acrylate in methoxypropyl acetate solvent 

 

In addition, a kinetic study was also performed in methoxypropyl acetate and 

revealed that the reaction fulfils the criteria of living radical polymerisation with the 

linearity of the first order plot. 

 In the Figure 2.5 B, a quantitative monomer conversion is reached in 8 hours and 

no inhibition period is observed. Any significant difference between the polymerisation 

in butyl acetate and MPA is noticed. 

 

 

 

 

 

Figure 2.5: (A) Molar mass and molar mass distribution evolution versus time, (B) Kinetic first-

order plot and monomer conversion versus time; (C) SEC-THF chromatograms of p(nBA) kinetic 

performed in MPA solvent at 70 ˚C 

The main key parameters such as the monomer concentration, temperature and the 

structure of the RAFT agent have been investigated for nBA polymerisation.  
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Based on these studies, a monomer concentration of 3 M , a ratio [CTA]0 / [Initiator]0 of 

10, a polymerisation temperature of 70 ˚C in methoxypropyl acetate solvent were chosen 

as optimal conditions for the synthesis of the following diblock copolymer, and for the 

studies of Chapter 4. 

2.2.2. Synthesis of statistical acrylate copolymers 

 

 

 

 

 

In copolymerisation process, the reactivity of the monomers is guided by the 

electronic and steric properties of the reactants. The fact that in RAFT polymerisation all 

chains grow simultaneously throughout the polymerisation leads to the formation of the 

homogeneous gradient copolymers. One of the common method to determine the 

monomer sequence distribution of the copolymer is the determination of the reactivity 

ratio of both monomers. Here, the determination of the nBA and DMAEA incorporation 

is difficult by 1H NMR spectroscopy since the resonance peaks of the protons of the two 

monomers units overlap.  

The kinetic studies of nBA and DMAEA polymerisations show a fast polymerisation 

of nBA in comparison to DMAEA which also shows an inhibition period of 30 min. 

 Scheme 2.3: General scheme of poly(nBA)-statistical-poly(DMAEA) synthesised in MPA 

solvent at 70 ˚C using BMDPT RAFT agent and V601 as azoinitator 
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Additionally, the ratio between nBA and DMAEA being 2/3 – 1/3 respectively, nBA will 

be predominant in the final copolymer composition (Figure 2.6).  

 

 

 

 

 

 

 

 

 

A series of statistical copolymers of nBA and DMAEA with a different range of 

molecular weights were prepared in batch polymerisation. The SEC-THF chromatograms 

of the statistical copolymers with the monomers conversion, the experimental and 

theoretical molar mass distribution are represented in the Figure 2.7. A decent monomer 

conversion is obtained for both blocks, even if the highest monomer conversion for 

DMAEA seems to be 80 %. That can be explained by the fast hydrolysis of DMAEA 

which can potentially slow down the polymerisation.25  

The discrepancy between the Mn,SEC and Mn,TH  is due to the inadequacy of the PMMA 

standard used to calibrate the SEC column. 
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Figure 2.6: Kinetic studies of p(DMAEA)50 and p(nBA)50 evolution versus time 

performed in butyl acetate solvent and mediated by BMDPT RAFT agent. Initial 

conditions:  [monomer]0 =3 M, [BMDPT]0 / [V601]0 = 10, T = 70 ˚C 
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The 13C NMR analysis represented in Figure 2.8 is used to characterise the incorporation 

of both monomer. The resonance peak at δ = 174.43 ppm correspond to the carbonyl 

groups. The CH2 of (CH2-N(CH3)2) at δ = 62.34 ppm and the CH3 in (CH2-N(CH3)2) at δ 

= 42 ppm prove the incorporation of DMAEA monomer in the copolymer. 13C NMR 

(CDCl3, 400 MHz, δ/ppm): δ = 170 (C=O), 64.41 (C=O-CH2-), 

Figure 2.7: Comparison of SEC-THF chromatograms of statistical n-BA/DMAEA 

copolymers with DP of 55/19 (green); 70/35 (black) and 100/50 (purple) respectively 

synthesised in presence of BMDPT RAFT agent with [monomer]0 = 3 M, [BMDPT]0 / [V601]0 

= 10 at 70 ˚C in methoxypropyl acetate solvent 
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 62.34 (C=O-CH2-CH2-N(CH3)2), 43.25 (-CH2-N(CH3)2) 35.20 (-CH2-CH-C=O), 30.61 

(-CH2-CH-C=O), 29.61 (C=O-CH2- CH2- CH2-) 19.1 (C=O-CH2- CH2- CH2), 13.73 (-

CH2-N(CH3)2). 

 

 

 

 

 

 

 

Based on the previous results, the formation of block copolymers composed by n-BA as 

hydrophobic segment and DMAEA (and DMAEMA) as hydrophilic segment were 

further investigated, to demonstrate the presence of the ω-chain end in the polymeric 

chain. 
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Figure 2.8: 13C NMR analysis of p(nBA)19-stat-p(DMAEA)55 synthesised in MPA solvent and 
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2.2.3. Synthesis of acrylate diblock copolymers 

 

Using the above information, the synthesis of amphiphilic block copolymers 

composed by a hydrophobic block and hydrophilic block bearing a tertiary amine was 

investigated to use as dispersants for a carbon black pigment (Scheme 2.4). 

2.2.3.1. Poly(DMAEA)-block- poly(nBA) 

 

 

 

 

 

 

Synthesis of amphiphilic block copolymers was performed using the conditions 

previously established for poly(n-butyl acrylate) a sequential monomer addition. Given 

that the scope of this thesis is pigment stabilisation, controlling the size of each block is 

of great importance. It was previously established that the average molecular weight for 

an optimal polymeric stabiliser is around 10 kDa, and the amphiphilic block copolymer 

must be composed of 70 % hydrophobic (or solvophobic) block for steric stabilisation 

and 30 % of hydrophilic (solvophilic) block for pigment affinity. As such, a range of 

diblock copolymers were prepared in order to assess the effect of polymeric chain size on 

Scheme 2.4: General scheme of poly(DMAEA)-block- poly(nBA) copolymer synthesised at 

70 ˚C using BMDPT RAFT agent and V601 as azoinitator in MPA solvent 
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pigment dispersion efficiency using pBA and pDMAEA. Poly [2-(dimethylamino)ethyl 

acrylate] is a well-known pH-sensitive polymer in aqueous solutions, due to the presence 

of a tertiary amine which can easily be quaternized at low pH.  

The first attempt to synthesise the diblock copolymer poly(DMAEA)-block-poly(n-

BA) using the previously established conditions yielded poor control over the reaction, 

as shown in Figure 2.9. The homopolymerisation of DMAEA was found to be controlled 

with a narrow molar mass distribution with a monomer conversion of 84%. After 

purification of p(DMAEA)19 via precipitation, however, the chain extension using n-BA 

leads a bimodal distribution suggesting a presence of unconsumed macroCTA or a 

possible degration of the trithiocarbonate in presence of tertiary amine. 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Comparison of THF-SEC chromatograms of p(DMAEA)19 prepared at 70 ˚C   and 

polymerised to 92% conversion, and subsequent chain extension with p(n-BA)55 in MPA solvent 
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Zheng Li and al. studied the possible degradation of a trithiocarbonate RAFT 

agent in DMF using a DMAEA monomer.26 Degradation of the RAFT agent during the 

polymerisation was monitored by UV absorbance at 305 nm. Two mechanisms were 

proposed to explain the decomposition process of the RAFT agent. The first was 

attributed to direct nucleophilic attack of the amine to the C=S bond, leading to cleavage 

of the RAFT agent.  

In the second mechanism, the amine acts as a base to remove the proton present 

on the terminal carbon of the ester carbonyl and fragments the RAFT agent. To this end, 

the synthesis of the diblock was performed in reverse, starting with poly (nBA) followed 

by the chain extension with dimethylaminopropyl acrylate (DMAEA).  

An important factor to consider in RAFT polymerisations is the livingness, which 

is used to quantify the number of living chains (bearing a trithiocarbonate) at the end of 

the polymerisation. A high livingness is required to target a diblock or other complex 

architectures in controlled radical polymerisation reactions.  

The determination of the number of living chains is given by Equation 2.127:  

L (%) = 
[CTA]0

[CTA]0+2.𝑓.[𝐼]0.(1−𝑒−𝑘𝑑𝑡).(1−
𝑓𝑐

2
)
  (Equation 2.1) 

 

Where the initial concentrations of chain transfer agent (CTA) and initiator are 

represented by [CTA]0 and [I]0 respectively, while the number “2” is attributed to the 

formation of two primary radicals after thermal decomposition of the azo initiator.  
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The value “f” is set at 0.5 for the calculation of livingness in this thesis and kd is 

the rate coefficient of initiator decomposition. Finally, the term (1-fc/2) describes the 

production of radical-radical termination by combination or disproportionation (fc = 1 

means 100 % bimolecular termination by combination, fc = 0 means 100 % bimolecular 

termination by disproportionation). Using this equation, livingness can be related to the 

reaction temperature, initiator concentration, and reaction time. 

2.2.3.2. poly(nBA)-block-poly(DMAEA) 

 

 

 

 

The SEC molecular weight distributions reveal a monomodal molecular weight 

distribution for poly (nBA) with a quantitative monomer conversion and a shift to higher 

molecular weights for all the diblock copolymers, suggesting full consumption of the 

macroCTA (Figure 2.10). The backbiting is only present for the n-butyl acrylate 

homopolymer, noted by the shoulder at higher molecular weight values.  

 

Scheme 2.5: General scheme of poly(nBA)-block-poly(DMAEA) copolymer synthesised 

at 70 ˚C using BMDPT RAFT agent and V601 as azoinitator in MPA solvent  
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Given the broader chromatogram of the second block, it is possible that this 

shoulder is still present after chain extension, so it is not possible to conclude if backbiting 

is occurring after chain extension. Regardless, the dispersity remains low throughout all 

the polymerisations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Comparison of SEC-THF chromatograms of block n-BA/DMAEA copolymers 

with DP of 55/19 (A); 70/35 (B) and 100/50 (C) respectively synthesised in presence of BMDPT 

RAFT agent with [monomer]0 = 3 M, [BMDPT]0 / [V601]0 = 10 at 70 ˚C 
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All these amphiphilic acrylate diblock copolymers were used to disperse a carbon 

black pigment and to study the effect of polymer chain length on the dispersion process. 

DMAEA monomer is used in several applications due to the presence of the tertiary amine 

which can be easily quaternized, however, in the presence of water or more polar solvents, 

(poly)DMAEA can rapidly hydrolyse forming a carboxylic acid by-product.25,28,25  

Therefore, in order prevent any side product formation, a methacrylate monomer 

bearing a tertiary amine, ensuring similar pigment surface affinity, was used.  

Figure 2.11: 1H NMR analysis for block copolymer of poly(nBA)55 macroinitiator and 

addition of DMAEA (19 equiv.) using BMDPT RAFT agent in MPA solvent. Initial 

conditions: [nBA] : [BMDPT]: [V601] = [55]: [1] : [10] in CHCl3 and 1,3,5-trioxane as 

internal reference 
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Consequently, DMAEMA monomer was used to substitute DMAEA in the design 

of the amphiphilic diblock copolymer. All the details regarding methacrylate 

polymerisation with BMDPT are described in Chapter 3. 

2.2.3.3. Poly(n-BA)-block-poly(DMAEMA) with BMDPT RAFT agent 

 

 

 

 

 

  

Synthesis of the diblock copolymer was performed in MPA solvent at 70 ̊ C, then chain 

extended by the DMAEMA monomer in a mixture with Vazo-88 as the initiator and 

heated to 90 ˚C (Scheme 2.6). The poly(DMAEMA) propagating radical generated 

will add to poly(nbutyl acrylate) macroRAFT agent. An intermediate radical is created 

and will fragment either towards the starting material or form a new propagating 

radical depending on the stability of the radical it will generate.  

 The presence of poly(nbutyl acrylate) in a SEC chromatogram after the chain 

extension suggests that the macroCTA is not fully reinitiate. The small shift at high 

molar and the presence of the shoulder can be attributed to the formation of 

 

Scheme 2.6: General scheme of poly (nBA)-block-poly(DMAEMA) copolymer using 

BMDPT RAFT agent and V601 as azoinitator in MPA solvent at 70 ˚C for poly(nBA) 

macroCTA and 90 ˚C for the chain extension with DMAEMA using Vazo-88 initiator 
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poly(DMAEMA) homopolymer and poly(nBA)55-b-poly(DMAEMA)19 respectively 

(Figure 2.12).  

Based on RAFT theory, the fragmentation would happen predominantly on the side 

that would leave a more stable radical. Under these conditions, predominantly a 

homopolymer of DMAEMA would be created and not the diblock copolymer 

expected. 

  

 

 

 

 

 

 

 

 

 

 

 In controlled radical polymerisation, the monomer bearing the most stable radical must 

be polymerised in the first step in order to prepare a well-defined diblock copolymer. 

Consequently based on this theory, the synthesis of the diblock was undertaken by 

polymerising DMAEMA first followed by the addition of nBA. 

Figure 2.12: Comparison of SEC-THF chromatograms of block nBA/DMAEMA 

copolymers with DP of 55/19 synthesised in presence of BMDPT RAFT agent with 

[monomer]0 = 3 M, [BMDPT]0 / [V601]0 = 10 at 70 ˚C and chain extension at 90 ˚C 
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2.2.3.4. Poly(DMAEMA)-block-poly(nBA)with BMDPT RAFT agent 

 

 

 

 

The design of the new amphiphilic block copolymer was performed in the exact 

same conditions as those previously established for DMAEMA and nBA polymerisation. 

The same degree of polymerisation was targeted for the acrylate block copolymer (see 

2.2.4.2). As a starting point, the homopolymer DMAEMA  was synthesised by targeting 

a DP of 19 and followed by the addition of nBA with a DP of 35. Figure 2.13 A shows 

the molecular weight distribution obtained by the refractive index (RI) and the ultraviolet-

visible (UV/Vis, set up at λ = 309 nm since it is the trithiocarbonate wavelenght 

absorption) detectors (dashed line for the homopolymer and diblock copolymer).  

The RI trace of p(DMAEMA)19 shows a monomodal and symmetrical peak at 14 

minutes and a presence of two small peaks at 18 and 19 minutes, respectively. 

Interestingly, the UV trace exhibit a broad peak with a presence of a tail for 

p(DMAEMA)19, meaning that the first block is not well-defined, and lead to a poor control 

over polymerisation, which correlates with the significant difference between the 

theoretical and experimental molar mass.  

Scheme 2.7: General scheme of poly(DMAEMA)-block-poly(nBA) copolymer in MPA solvent 

using BMDPT RAFT agent and Vazo-88/V601 as azoinitators at 90 ˚C and 70 ˚C respectively 
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It is worth noticing that the similar two small peaks observed at low molar masses 

by RI are also detected by UV/Vis suggesting that the BMDPT RAFT agent is not fully 

consumed despite the fact that a quantitative monomer conversion is reached (98 %). The 

chain extension with nBA was also attempted to prepare the block copolymer. A bimodal 

distribution is obtained for the diblock copolymer with one shoulder at 13 minutes 

suggesting the formation of the diblock copolymer and a second peak observed at 15 

minutes corresponding to the formation of p(nBA) homopolymer after reaction of nBA 

with the free CTA. The small proportion of diblock copolymer suggests a poor reinition 

of the first block. At the end of the polymerisation the presence of unconsumed CTA is 

significant which indicates a weak addition of the propagating radical to the chain transfer 

agent (Ctr < 1). Finally, the values of theoretical, experimental molar mass and the large 

molar mass distribution (Ɖ ≈ 1.48) confirm the poor control of methacrylate 

polymerisation in presence of BMDPT RAFT agent.    

To remain consistent with the previous study and in order to compare these 

methacrylate/acrylate diblock copolymers with acrylate block copolymers for pigment 

dispersion, diblock copolymers of DMAEMA/BA (35/70 and 50/100) were also 

synthesised. Since the degree of polymerisation is related to the monomer and CTA 

concentration (DP = [M]0 / [CTA]0), it is interesting to investigate the effect of the CTA 

consumption when a high DP is targeted.   

Figure 2.13 B and Figure 2.13 C show the SEC DRI and UV detector signals of  

p(DMAEMA)35-block-p(nBA)70 and p(DMAEMA)50-block-p(nBA)100, respectively. 

Increasing the DP of pDMAEMA does not seems to improve the consumption of the CTA 
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as the presence of the RAFT agent is clearly abservable in both SEC chromatograms.  In 

Figure 2.13 B the chromatogram of p(DMAEMA)35 exhibits the same response with a 

broad signal around 14 minutes corresponding to the polymer bearing a trithiocarbonate 

and a sharp signal at 18 minutes belonging to non-consumed RAFT agent. No chain 

extension is observed after addition of nBA, but a peak corresponding to the formation of 

nBA homopolymer is observed eluting at 15 minutes. 

Figure 2.13 C shows the exact results even if the CTA concentration is lower, the low 

consumption of this latter leads a poor control of the polymerisation over the molar mass 

distribution, a high dispersity (Ɖ > 1.2) and only a few proportion of diblock copolymer 

formed.  
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As previously discussed, the reactivity of the RAFT agent, being strongly linked 

to the effect of the R and Z substituents, has been heavily studied in the literature.29,30,31 

This study shows that the methacrylate monomers are not compatible with BMDPT, as 

the trithiocarbonate is not activated enough to trigger methacrylic radical addition, and 

the R group (dimethyl) is not a good leaving group, leading to a poor control over the 

molecular weight. 

An extensive investigation of methacrylate polymerisation with the Lubrizol 

RAFT agent (BMDPT) is reported in Chapter 3. As such, a second attempt to synthesis 

methacrylate and acrylate diblock copolymers was explored by using the RAFT agent 

MCTP bearing a –CN group, a better leaving group R, thus offering a better control over 

methacrylate polymerisation. Note that the Z group of MCTP (C12H25) is kept the same 

as that of BMDPT, thsu enabling to investigate the effect of the R group only. 

 

Figure 2.13: Comparison of RI (plain) and UV (λ = 309 nm in dash) SEC-THF 

chromatograms of block DMAEMA/nBA copolymers with DP of 55/19 (A); 70/35 (B) and 

100/50 (C) respectively synthesised in presence of BMDPT RAFT agent with [monomer]0 = 

3 M, [BMDPT]0 / [V601]0 = 10 at 90 ̊ C for the macroinitiator and 70 ̊ C for the chain extension 
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2.2.3.5. Poly(DMAEMA)-block-poly(nBA) using MCTP RAFT agent 

 

 

 

 

 Methacrylates are a challenging family of monomers to polymerise via RAFT due 

to the steric hindrance of the tertiary propagating radicals. A relatively high transfer 

constant, dependant on the R group, is required to achieve a successful polymerisation. 

In an attempt to optimise the conditions, MCTP was used as RAFT agent for DMAEMA 

polymerisation. As described in the literature, the most efficient R groups for 

methacrylate polymerisations contain nitrile (-CN) and phenyl (-Ph) moieties, due to their 

bulkiness and capability to stabilize the radical.32,33,34 Consequently, the synthesis of the 

diblock poly(DMAEMA) - block- poly(nBA) mediated by MCTP was performed under 

similar conditions as those used for BMDPT mediated polymerisations (Scheme 2.8) and 

the same DPs were targeted for each block. A SEC triple detection with a UV/Vis set at 

309 nm was also used to study the polymerisation. In the Figure 2.14 A, a monomodale 

and symmetrical molar mass distribution with Mn,SEC close to Mn,TH and narrow MWD (Ɖ 

≈ 1.12) are obtained at high monomer conversion for p(DMAEMA)19.  

Scheme 2.8: General scheme of poly(DMAEMA)-block-poly(nBA) copolymer synthesised using 

MCTP RAFT agent and Vazo-88/V601 as azoinitators in MPA solvent 
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Despite the well-defined homopolymer, also confirmed by the UV/Vis trace, suggesting 

that a high percentage of polymeric chains are living, some unconsumed CTA remains. 

Subsequently, a chain extension was performed by adding nBA monomer to the 

polymeric mixture. The success of the chain extension was confirmed by the SEC trace 

which clearly shows a shift at low retention time for the diblock copolymer. However, a 

tail and small shoulder overlapping with p(DMAEMA)19 were observed, and could be 

attributed the poor reinitiation of pDMAEMA.. The relative value obtained for the 

experimental and theoretical molar mass is overestimated for the second block as PMMA 

is used as calibration standard.  

Two other diblock p(DMAEMA) - block- p(nBA) copolymers with DPs of 35/70 and 

50/100 were synthesised following the same protocol. Figure 2.14 B and Figure 2.14 C 

exhibit a similarly shaped chromatogram with a well-controlled homopolymer 

DMAEMA with a narrow molar mass distribution but also an increase of the shoulder 

when the DP of nBA increased after the chain extension suggesting that pDMAEMA is 

not entirely chain extended. 
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One of the parameter which can affect polymerisation is the choice of solvent. The nature 

of the solvent in RAFT polymerisation has been discussed in several studies.35,36,37 

Benaglia et al. have investigated the polymerisation of MMA in benzene, DMF and 

acetonitrile using 2-cyanopropyl-2-yl 4-pyridiniumdithiocarboxate 4-toluenesulfonate 

salt with AIBN as azoinitiator.33 A good control is obtained in acetonitrile and DMF after 

2 and 4 h of polymerisation. The SEC chromatograms are broad after 16 h suggesting that 

a potential transfer between the polymeric chain and the solvent occurs.  

Figure 2.14: Comparison of SEC-THF chromatograms of block DMAEMA/nBA 

copolymers with DP of 55/19 (A); 70/35 (B) and 100/50 (C) respectively synthesised in 

presence of MCTP RAFT agent with [monomer]0 = 3 M, [MCTP]0 / [I]0 = 10 at 90 ˚C for the 

macroinitiator and 70 ˚C for the chain extension prepared in MPA solvent 
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A poor control is obtained in benzene solvent explained by a low solubility of this CTA 

in the solvent and a low propagation rate constant (kp). As such, the same diblock 

copolymer was synthesised using dioxane in order to prevent any chain transfer reaction 

between the solvent and polymer backbone. Figure 2.15 shows the RI and UV SEC 

chromatograms of p(DMAEMA)-block-p(nBA) with DPs targeted of 19/55; 35/70; 

50/100 respectively. Figure 2.15 A, a good control of p(DMAEMA)19 in dioxane solvent 

is achieved with a narrow molar mass distribution (Ɖ = 1.17) in a quantitative monomer 

conversion. The chain extension with nBA give a shift at a low retention time and a 

similar shoulder is present possibly corresponding to the poor reinitiation of pDMAEMA. 

In Figure 2.15 B, a comparable SEC traces are obtained with a good control over the 

molar mass for the homopolymer (Ɖ < 1.2) and an increase of the dispersity after the 

chain extension with p(nBA)70 is obtained due to the bimodality. Figure 2.15 C exhibit a 

similar control for the first block but a poor control for the second block as shown the RI 

and UV traces of the diblock copolymer. As noticed in Figures 2.13 and 2.14, some 

uncomsumed CTA remains after each block polymerisation.  

Similarly to this work, Pietsch et al.38 have polymerised a library of poly(DMAEMA)-

block-poly(DEGMA) copolymers with the MCTP RAFT agent in DMF, using an 

automated parallel synthesizer. All the polymerisations were stopped at 10 hours to retain 

high RAFT end-group functionality, and the diblock copolymers were analysed in 

different SEC solvents, including DMF, DMAc (dimethyl acetamide) and CHCl3 

(chloroform). Interestingly, good control for most block copolymers was reported (Ɖ < 

1.23), however, a tail and shoulder can be observed in CHCl3.  
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Figure 2.15: Comparison of SEC-THF chromatograms of block DMAEMA/nBA copolymers 

with DPs of 55/19 (A); 70/35 (B) and 100/50 (C) respectively synthesised in presence of MCTP 

RAFT agent with [monomer]0 = 3 M, [MCTP]0 / [I]0 = 10 at 90 ˚C for the macroinitiator and 70 

˚C for the chain extension prepared dioxane solvent 
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2.3. Conclusion 

 

 In this chapter, the synthesis of acrylate poly(n-butyl acrylate)-block-

poly(DMAEA) diblock copolymers via RAFT using the BMDPT RAFT agent is 

presented. Various polymer chain lengths (DP ~ 19/35; 35/70; 50/100) were successfully 

synthesised with a quantitative monomer conversion (> 90 %) and narrow molar 

distribution (Ɖ < 1.25). The high probability of DMAEA to hydrolyse the polymer 

releasing a carboxylic acid can potentially affect carbon black dispersion. Consequently, 

DMAEMA was used as a substitute for DMAEA. Under the optimised conditions, a range 

of poly(DMAEMA)-block-poly(nBA) copolymers were synthesised, leading to a bimodal 

distribution after chain extension, explained by the poor leaving R group of the BMDPT 

RAFT agent. Alternatively, MCTP, bearing a better leaving R group, was used to obtain 

a well-defined diblock copolymers. As expected, a shift to high molar mass was recorded 

after the chain extension with nBA, however, some poly(DMAEMA) homopolymer was 

not chain extended. Finally, a potential interaction between the solvent and the polymer 

backbone was investigated by performing the same polymerisation in dioxane. However, 

no improvement was noticed suggesting that polymerisation in methoxypropyl acetate 

did not affect the RAFT mechanism. 

2.4. Experimental 

 

2.4.1. Materials 

 

Butyl acrylate (BA, 99 %), 2-(Dimethylamino)ethyl acrylate (DMAEA, 98 %), 

and 2-(Dimethylamino)ethyl methacrylate (DMAEMA, 98 %) were purchased from 
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Sigma Aldrich. Butyl acetate (Chromasolv plus, 99.7 %), propylene glycol monoethyl 

ether acetate (Sigma-Aldrich, 99.5 %), Dimethyl2,2’-azobis(2-methylpropionate) (V601, 

Wako) Azobis(cyclohexanecarbonitrile) (Vazo-88, 98 %, Aldrich) were used as 

purchased. Butyl-2-methyl-2-[(dodecylsulfanylthiocarbonyl) sulfanyl] propionate 

(BMDPT, Lubrizol, 70 %) was provided by Lubrizol. 1,1’-Methyl-4-cyano-4-

(dodecylthiocarbonothioylthio)pentanoate (MCTP, Boron molecular, > 99 %) was 

obtained from CSIRO and 2-(((butylthio)-carbonothioyl)propanoic acid (PABTC) as 

synthesised in the laboratory based on the Ferguson paper.39 Bromo-propionic acid (> 99 

%), 1-butanediol (99 %) and carbon disulfide (> 99%) were purchased from Sigma 

Aldrich . 

 

2.4.2. Methods 

 

 Nuclear Magnetic Resonance 

 

 NMR (1H and 13C) were recorded on a Bruker AV-300 and DPX-500 in deuterated 

chloroform (CDCl3) or DMSO-d6. Chemical shift values (δ) are reported in ppm.  

The residual proton signal of the solvent is used as internal standard (CDCl3, δ = 7.26 

or δ = 2.5 for DMSO-d6 ). The use of 1,3,5-trioxane is also used in a few 1H NMR 

characterisation and mentioned in the spectra.  
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 Determination of DPn,targeted and monomer conversion 

Monomer conversion (p) were calculated from 1H NMR data using equation 2.2: 

p = 
[M]0−[M]𝑡

[M]0
 = 1- 

[𝑀]𝑡

[𝑀]0
 = 1- 

∫ I5.5−6.75 ppm

∫ 𝐼𝑎

𝐷𝑃𝑛,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑
 

Where [M]0 and [M]t are the concentrations of the monomer at time 0 and at time t, 

respectively, 
∫ 𝐼5.5−6.75 ppm

∫ 𝐼𝑎
 is the integral for the vinyl protons of the monomer, 

DPn,targeted is the number average degree of polymerisation targeted and ∫ 𝐼𝑎 is the 

integral of the two protons belonging to the CH2 of the acrylate (-O-CH2-CH2). 

 

 Determination of Mn,TH  

The theoretical number-average molar mass (Mn,TH) is calculated using equation 2.3:  

 Mn,TH = 
[M]0𝑝[M]𝑀

[CTA]0
 + 𝑀𝐶𝑇𝐴 

Where [M]0 and [CTA]0 correspond to the initial concentrations (in mol/L) of monomer 

and chain transfer agent respectively; p is the monomer conversion as determined by 

equation 1, MM and MCTA are the molar masses (g/mol) of the monomer and chain transfer 

agent. 

 Example of determination of livingness (eq 2.1) 

Polymerisation of p(nBA)55 : 

 -DP = 55, [nBA]0 = 3M, [CTA]0 / [Initiator]0 = 10, time = 8 h, T = 70 ˚C. 
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-mBA = 0.5 g, [Initiator]0 = 0.005 M, [CTA]0 = 0.055 M, f = 0.5, kd(V601 at 70 ˚C) = 3.30 x 

10^-5 s-1, fc = 1  

𝐿 =
[CTA]0

[CTA]0+2.𝑓.[𝐼]0.(1−𝑒−𝑘𝑑𝑡).(1−
𝑓𝑐

2
)
   

L = 
0.055

0.055+2∗0.5∗0.005.(1−𝑒−(3.30 x 10−5)∗(8∗60∗60).(1−
1

2
)
  = 97.2 % 

 

 Size Exclusion Chromatography (SEC) 

 

 Number-average molar masses (Mn,SEC) and dispersity values (Ɖ) distributions 

were measured using size exclusion chromatography with THF as an eluent. The THF 

Agilent 390-LC MDS instrument was equipped with differential refractive index 

(DRI), viscometry (VS), dual angle light scatter (LS) and two wavelength UV 

detectors. The system was equipped with 2 x PolarGel Mixed C columns (300 x 7.5 

mm) and a PLgel 5 µm guard column. The eluent is THF with 2 % TEA(triethyl 

amine) and 0.01 wt./ V% BHT (butylated hydroxytoluene) additives. Samples were 

run at 1 mL/min at 30 °C. Poly(methyl methacrylate) standards in rang of 2.0 x 102 

g/mol to 2.0 x 106 g/mol was used to calibrate SEC system.. Analyte samples were 

filtered through a polytetrafluoethylene (PTFE) membrane with 0.22 μm pore size 

before injection. The calibration is setup by using a flow rate marker with a 

polynomial order of 3.  
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Respectively, experimental molar mass (Mn,SEC) and dispersity (Đ) values of 

synthesized polymers were determined by conventional calibration using Agilent 

GPC/SEC software.  

2.4.3. General synthetic procedures 

 

 Synthesis of (propanoic acid)yl butyl trithiocarbonate (PABTC) 

 

 

 

 

  

A solution of 50 w/w % of sodium hydroxide (3.9 g, 1.1 eq, 97.5 mmol) is mixed with 

butanethiol (8 g, 1.0 eq, 88.7 mmol) and water. Then, acetone (3.2 mL) is added and the 

clear solution is stirred for 30 minutes at room temperature. An orange solution is 

obtained after addition of carbon disulfide (6.92 g, 1.025 eq, 90.92 mmol). The mixture 

is stirred for 30 minutes and cooled by using dry ice bath. The following step is the slow 

addition of 2-bromopropionic acid (13.90 g, 1.025 eq, 90.92 mmol), keeping the 

temperature below 10 ˚C and a solution of NaOH (4.5 g of water, 2.25 g NaOH, and 57 

mmol) is slowly added. A certain volume of water (23 mL) is mixed with the solution and 

the reaction is left to stir at room temperature for 20 hours.  

Scheme 2.9: Synthetic route of (propanoic acid)yl butyl trithiocarbonate PABTC 

RAFT agent 
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Finally, cooled water is added and a solution of HCl (10 M) is added dropwise until a pH 

of 3 is reached. 1H NMR(CDCl3, 300 MHz, pm): δ = 4.88 (q, 1H, CH(CH3)), 3.39 (t, 

2H , S-CH2-CH2), 1.70 (m, 2H, S-CH2-CH2-CH2), 1.64 (d, 3H, CH(CH3)), 1.44 (m, 2H, 

CH2-CH2-CH3), 0.94 (t, 3H, CH2-CH3). 13C-NMR (CDCl3, 125 MHz, ppm): δ =221.5, 

177.5, 47.5, 37.0, 29.8, 22.0, 16.5, 13.5. MS (ESI): [M+H]+ calculated: 261.0, found: 

260.9. IR: 2951, 2926, 28, 1701,1450,1420,1309 cm-1. 

 The orange solid is collected and purified via recrystallization in hexane. 

Shiny yellow crystals are obtained with a yield of 49.1 % (11.2 g, 45.1 mmol). Melting 

point found: 52.4 ˚C 
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Figure 2.16: 1H NMR analysis of PABTC after purification in hexane recorded on a 

Bruker DPX-300 in CDCl3 
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Figure 2.17: 13C NMR analysis of PABTC after purification recorded on a Bruker DPX-

400 in CDCl3 
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IR spectra shows some main characteristics peaks of PABTC RAFT agent. The 

finger print region (500 -1500 cm-1) contains a series of absorptions which can makes the 

determination of the present peaks complicated. All the bands observed at 1420 – 1450 

cm-1 and between 700 – 1000 cm -1 are attributed to the C-H of the methyl group. The 

stretched bond present at 1701 cm-1 belongs to the carbonyl group of the carboxylic group. 

The weak broad band observed between 2700 – 3200 cm-1 frequency region the O-H 

bond. The presence of the weak band in 2550 – 2620 cm-1 correspond to thiol (S-H) used 

as reactant to synthesised PABTC RAFT agent. 

 General procedure for preparation of n-butyl acrylate homopolymer 

 

 Synthesis of nbutyl acrylate: p(nBA) 

 For a typical polymerisation in which [nBA]: [BMDPT] : [I] = 55: 1: 0.1, n-

BA (55 eq, 0.5 g, 3.9 mmol), BMDPT (1.0 eq, 0.0327 g, 7.8 x 10-2 mmol), V601 (3.9 x 

10-3 mmol, 45 µL (stock solution of 20 mg/ml)) and methoxypropyl acetate ( 0.800 ml) 

are introduced into a vial equipped with a magnetic stirrer and sealed with a septum The 

reaction mixture is degassed using nitrogen for 10 min and then left in an oil bath at 70 

˚C (90 ˚C). The percentage of the impurities of BMDPT RAFT agent is not taking into 

account for the mass of CTA used. Mn,SEC = 8430 g/mol , Ɖ = 1.16 (THF-SEC, triple 

detection).  

1H NMR spectrum (300 MHz,DMSO-d6, δ ppm): 4,21 (m, 2H,-C(O)O-CH2-CH2-CH2- 

CH3), 2.55 (m, 2H, -C(O)O-CH2-CH2-CH2- CH3), 1.92 (m, 2H, -C(O)O-CH2-CH2-CH2- 

CH3), 1.1 (m, 3H, -C(O)O-CH2-CH2-CH2- CH3), 2.0 - 0.95 (m, backbone). 
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 Synthesis of homopolymer DMAEA : pDMAEA 

 For a typical polymerisation in which [DMAEA]: [BMDPT] : [I] = 19: 1: 0.1, 

DMAEMA (19 eq, 0.5 g, 3.3 mmol), BMDPT (1.0 eq, 0.070 g, 0.17  mmol), V601 (1.77 

x 10-3 mmol, 203 µL (stock solution of 20 mg/ml)) and methoxypropyl acetate ( 0.360 

ml) are introduced into a vial equipped with a magnetic stirrer and sealed with a septum 

The reaction mixture is degassed using nitrogen for 10 min and then left in an oil bath 

at 90 ̊ C. Mn,SEC = 4700 g/mol , Ɖ = 1.23 (THF-SEC, triple detection). 1H NMR spectrum 

(300 MHz,DMSO-d6, δ ppm): 4,17 (m, 2H,-C(O)O-CH2-CH2-NMe2), 2.60 (m, 2H, -

C(O)O-CH2-CH2-NMe2), 2.27 (-CH2-NMe2). 

 Synthesis of homopolymer methacrylate pDMAEMA 

 For a typical polymerisation in which [DMAEMA]: [BMDPT] : [I] = 19: 1: 0.1, 

DMAEMA (19 eq, 0.5 g, 3.1 mmol), BMDPT (1.0 eq, 0.070 g, 0.16  mmol), Vazo-88 

(1.67 x 10-3 mmol, 204 µL (stock solution of 20 mg/ml)) and methoxypropyl acetate ( 

0.300 ml) are introduced into a vial equipped with a magnetic stirrer and sealed with a 

septum The reaction mixture is degassed using nitrogen for 10 min and then left in an oil 

bath at 90 ˚C. Mn,SEC = 7000 g/mol , Ɖ = 1.25 (THF-SEC, triple detection). 1H NMR 

spectrum (300 MHz,DMSO-d6, δ/ppm): 4,07 (m, 2H,-C(O)O-CH2-CH2-NMe2), 2.57 (m, 

2H, -C(O)O-CH2-CH2-NMe2), 2.29 (s, 6H,-CH2-N(Me)2) 
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Table 2.1: Characterisation data for the homopolymerisatrion of of nBA (targeted DPn of 55). 

RAFT polymerisations were conducted over 10 h in butyl acetate (or MPA) at 70 ̊ C using MCTP, 

PABTC and BMDPT RAFT agents with [nBA]0 = 3 M and [CTA]0 / [V601]0 = 10 

Entry RAFT agent 
Conv 

 (%) 
Mn,TH

[a]
 

(g/mol) 
Mn,SEC

[b]
 

(g/mol) 
Ɖ 

1 MCTP 96 5770 8300 1.14 

2 PABTC 97 6000 8400 1.22 

3 BMDPT 93 7000 10000 1.16 
[a] Determined using equation 2.3 (experimental section) 

[b] Determined using THF-SEC with PMMA narrow standards 

 

Table 2.2: Characterisation data for the homopolymerisatrion of of nBA (targeted DPn of 50). 

RAFT polymerisations were conducted over 10 h in acetate solvent at 70 ˚C with [BMDPT]0 / 

[V601]0 = 10 

nBA  Conv (%) 
Mn,SEC

[a]
  

(g/mol) 
Ɖ Solvent 

2 83 7800 1.19 Butyl acetate 

3 96 8300 1.1 Butyl acetate 

4 98 8700 1.13 Butyl acetate 

2 92 9000 1.19 MPA 

3 96 8700 1.1 MPA 

4 95 8300 1.1 MPA 

[a] Determined using THF-SEC with PMMA narrow standards 
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Table 2.3: Characterisation for the homopolymerisatrion of nBA (targeted DPn of 55). RAFT 

polymerisations in butyl acetate solvent performed at 60 ˚C, 70 ˚C and 90 ˚C using [BMDPT]0 / 

[Initiatior]0 = 10. V601 and Vazo-88 were used at initiator at 60 - 70 ˚C and 90 ˚C respectively. 

Entry T ( ˚C) 
Time 

(hour) 
 Conv 

(%) 
Mn,TH

[a]
  

(g/mol) 
Mn,SEC

[b]
  

(g/mol) 
Ɖ 

1 60 20 83 7300 5800 1.05 

2 70 10 95 7300 6700 1.06 

3 90 10 97 7300 7000 1.31 

[a] Determined using equation 2.3 (experimental section) 

[b] Determined using THF-SEC with PMMA narrow standards 

 

 General procedure for preparation of statistical copolymer 

 

 Synthesis of statistical copolymer p(nBA55 – stat- DMAEA)19 

 

 For a typical synthesis of statistical copolymer in which [nBA]: [DMAEA]: 

[BMDPT]: [I] = 55: 19: 1: 0.1, nBA (55 eq, 0.5 g, 3.9 mmol),  DMAEA (19 eq, 0.22 g, 

14.8 mmol) was added to vial in presence of MPA (0.5 ml). Then, the vial is sealed with 

a septum and the reaction mixture was purged under nitrogen for 10 min and placed in 

thermostated an oil bath set at 70 ˚C. The quantitative monomer conversion is reached (> 

99 %) was confirmed by 1H NMR and the value of the experimental molecular weight 

was obtained by THF-SEC: Mn,SEC = 11 750 g.mol-1 , Ɖ = 1.23 (THF-SEC, triple 

detection). 1H NMR spectrum (300 MHz,DMSO-d6, δ/ppm): 4.49 (m, 2H,-C(O)O-CH2-

CH2-NMe2), 4.15 (m, 2H,-C(O)O-CH2-CH2-CH2- CH3), 2.57 (m, 2H, -C(O)O-CH2-CH2-

NMe2),  2.29 (s, 6H,-CH2-NMe2) 
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Due to the overlapping of the monomers peak and MPA solvent, the 1,3,5-trioxane is 

used at internal reference. After degassing the polymerisation, a sample is ran before and 

after the polymerisation. The monomer conversion is determined by using the integration 

of the vinyl peaks. For instance: % monomer : (T0 –T10) / (T0) = (5.50 – 0.67) / (5.50) = 

0.87 (87 %) 
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Figure 2.19: 1H NMR analysis of p(DMAEMA)19-b-p(nBA)55 recorded on a Bruker DPX-300 in 

CDCl3 
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 General procedure for preparation of subsequent block copolymers 

 

 Synthesis of diblock copolymer p(DMAEMA)19-b-p(nBA)55 

For a typical synthesis of statistical copolymer in which [nBA]: [BMDPT]: [I] = 55: 19: 

1: 0.1, nBA (55 eq, 0.5 g, 3.9 mmol), to vial in presence of MPA (0.5 ml). Then, the vial 

is sealed with a septum and the reaction mixture was purged under nitrogen for 10 min 

and placed in thermostated an oil bath set at 70 ˚C. After determination of the monomer 

conversion, DMAEA (19 eq, 0.22 g, 14.8 mmol) and 0.5 mL of MPA solvent are added 

to the macro-chain transfer agent (macro-CTA) into the polymerisation mixture. The 

quantitative monomer conversion is reached (> 99 %) was confirmed by 1H NMR and the 

value of the experimental molecular weight was obtained by THF-SEC: Mn,SEC = 10500 

g.mol-1 , Ɖ = 1.48  (THF-SEC, triple detection). 1H NMR spectrum (300 MHz,DMSO-

d6, δ ppm): 4.49 (m, 2H,-C(O)O-CH2-CH2-NMe2), 4.15 (m, 2H,-C(O)O-CH2-CH2-CH2- 

CH3), 2.57 (m, 2H, -C(O)O-CH2-CH2-NMe2),  2.29 (s, 6H,-CH2-NMe2), 1.92 (m, 2H, -

C(O)O-CH2-CH2-CH2- CH3) 
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Chapter 3: Polymerisation of sequential addition of 

methacrylate monomer via a semi-batch process 

 
 

 

This Chapter reports the use of semi-batch reactors to optimise the control of 

methacrylate polymerisations using BMDPT, a RAFT agent bearing a poor leaving 

group. BMDPT is shown to exhibit a low chain transfer constant (0.23) via the Mayo plot 

method, and is not fully consumed during polymerisation. Higher consumption of RAFT 

agent was obtained by varying monomer-to-RAFT agent ratio and feeding monomers into 

the reaction. This approach was used to synthesise methacrylate diblock and multiblock 

copolymers by sequential monomer addition using a feeding approach, with a near 

quantitative monomer conversion targeted for each block and high ω- end chain 

retention. These amphiphlic block copolymers will be used as a polymeric surfactant to 

disperse carbon black pigment.  
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3.1. Introduction 

 

Over the last decade new methods of living radical polymerisation (LRP) have been 

developed to overcome the poor control over molecular weight distribution obtained in 

conventional radical polymerisation methods. LRP techniques include NMP (nitroxide 

mediated polymerisation), ATRP (atom transfer radical polymerisation) and RAFT 

(Reversible Addition-Fragmentation chain Transfer) polymerisation techniques and are 

widely described in the literature.1,2,3,4 A living polymerisation system is defined by the 

presence of a specific moiety, such as alkoxyamine in NMP, alkyl bromide in ATRP or 

thiocarbonylthio in RAFT, that permits a polymeric chain to be extended, thus leading to 

the preparation of more complex and controlled polymeric architectures such as diblock, 

star, comb or multiblock copolymers, insofar as the fraction of living chains remains high. 

Several options can be used to target a high number of living chains; for instance stopping 

the polymerisation at low monomer conversion, however this presents certain limitations 

in the range of structures that can be designed. Hence RAFT mediated polymerisation, 

being one of the most powerful and versatile Reversible-Deactivation Radical 

Polymerisation (RDRP) techniques suitable to polymerise a large range of monomers, 

was used to synthesis methacrylate multiblock copolymers. In a RAFT polymerisation, 

the choice of thiocarbonyl-thio moiety is crucial and is based on its reactivity to the 

monomer being polymerized.5,6 
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Control of the polymerisation is directly dependant on the choice of RAFT agent, which 

must have a high chain transfer constant (Ctr >1 based on the Mayo method). However, it 

is possible to circumvent this problem by using a low ratio of monomer to CTA 

concentration, thus increasing the chain transfer constant. Interestingly, the 

polymerisation of methacrylate monomers has received a lot of attraction due to their low 

cost and broad range in properties (good thermostability and high glass transition). For 

instance Moad et al. published a comparison of starve-feed and batch polymerisation 

methods for methacrylic monomers using a poor chain transfer agent.7,8,9 Monteiro et al. 

also reported on the slow monomer addition in emulsion polymerisation using xanthate 

as RAFT agent.10 The automatic sequence of DMAEMA and DEGMA monomer 

synthesis, with a RAFT agent using a trithiocarbonate leaving group, was first described 

by Krasia.11 Following these previous studies, Klumperman et al. showed improvement 

over control of the polymerisation using semi-batch processing and a dithiobenzoate, 

dithiocarbamates or xanthate RAFT agents.12, 13 The scalability of the semi-batch process 

was demonstrated by Wei-kang Yuan et al, by showing the kinetics of butyl acrylate in a 

starved feed reactor. Surprisingly, although the use of semi-batch processing has been 

investigated using a wide range of RAFT agents to improve the polymerisation control of 

the homopolymer by stopping the reaction at low monomer conversion ( below 50 %), 

architectures such as diblock or multiblock copolymers have not been investigated.14,15 

In this chapter, a study of methacrylate monomers using the BMDPT RAFT agent is 

reported along with the determination of chain transfer constants. Optimisation of the 

methacrylate polymerisation is demonstrated using a feeding approach in order to 

synthesise multiblock copolymers.  
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The hydrophobic nature of the carbon black pigment required the use of functional (ionic 

or non-ionic) surfactant to let the adsorption between the pigment surface and the polymer 

occurs. Hence, the use of DMAEMA as hydrophilic segmemt will involves the interaction 

between the tertiary amine and the functional groups present on the carbon black surface. 

The steric repulsion preventing the formation of agglomerates will be induced by the long 

polymeric chain of BMA.  

3.2. Results and Discussion 

 

3.2.1. DMAEMA polymerisation in batch process 

 

  

 

 

 

 

To identify the optimised conditions for the synthesis of well-defined methacrylate 

polymers, such as dimethylaminoethyl methacrylate (DMAEMA), in presence of the 

BMDPT RAFT agent, several factors were varied such as temperature, the initiator and 

monomer concentration and the nature of the solvent (Scheme 3.1). 

 

 

 

Scheme 3.1: General scheme of DMAEMA polymerisation in butyl acetate/MPA solvent using 

BMDPT RAFT agent with V601/Vazo-88 azoinitators at 70 ˚C and 90 ˚C in butyl acetate solvent 
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3.2.1.1. Effect of temperature and initiator concentration 

 

Initially, the polymerisation conditions were set-up based on previous studies 

demonstrating a good control over a wide range of methacrylate polymerisations using 

dithiobenzoate RAFT agents.16,17 The temperature was set to 70 or 90 ˚C, optimal 

conditions for quantitative monomer conversion in a short period of time. Figure 3.1 

shows the influence of the [BMDPT]0 / [Initiator]0 ratio on DMAEMA polymerisation. 

In order to keep the amount of the initiator generated through the polymerisation constant, 

V601 and Vazo-88 are used at 70 and 90 ˚C, respectively. The initial set of DMAEMA 

polymerisation with a ratio of [BMDPT]0 / [Initiator]0 of 5 is attempted. The SEC 

chromatograms show a monomodal and broad molar mass distribution at 90 ˚C 

suggesting poor control over the polymerisation at low temperature. The SEC 

chromatogram in Figure 3.1 (left) exhibits a narrow and symmetrical molar mass 

distribution at high monomer conversion (93 %). Nevertheless, the values of the 

experimental and theoretical molar masses differ vastly, suggesting that the 

polymerisation is not well-controlled. The same polymerisation is performed at 70 ˚C 

giving a broader molar mass distribution with a dispersity of 1.4 and lower monomer 

conversion (83 %), sugesting a poor control of methacrylate polymerisation at low 

temperature, due to the low constant of propagation (kp) of methacrylate monomer.18,19 In 

order to improve the control of the polymerisation, the [BMDPT]0 / [Initiator]0 ratio is 

increased to 10 which decreased the the number of initiator-derived chains. However, 

increasing the ratio to 10 involves a slower polymerisation rate (due to a lower number 

of propgating chains) which consequently induces a lower monomer conversion. 



Chapter 3: Polymerisation of sequential addition of methacrylate monomer via a semi-

batch process 

    

98 | P a g e  

 Majda Akrach   

 In the Figure 3.1 (right), a low monomer conversion and high dispersity are obtained for 

both temperatures with a narrower molar mass distribution at 90 ̊ C suggesting an increase 

of the propagation rate constant and the chain-transfer constant. Based on this preliminary 

studies, the polymerisation of methacrylate monomers will be performed with a ratio of 

[BMDPT]0 / [Initiator]0  of 10 at 90 ˚C. 

 

 

 

 

 

 

 

 

3.2.1.2. Effect of monomer concentration and solvent 

 

The dispersion of carbon black pigment being performed either in butyl acetate or 

methoxypropyl acetate solvent, the polymerisation of DMAEMA is compared in both 

solvents. In addition, the monomer concentration, which can potentially affect the rate of 

polymerisation, is also investigated to determined the optimal conditions for methacrylate 

polymerisation using BMDPT RAFT agent.  

Figure 3.1: Comparison of SEC-THF chromatograms of DMAEMA homopolymerisation at 70 ˚C 

and 90 ˚C with [DMAEMA]0 = 3 M,  a ratio of [BMDPT]0 / [Initiator]0 5 and 10 in butyl acetate 

solvent 
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Figure 3.2 shows a SEC chromatograms of pDMAEMA (DP = 19) synthesised in butyl 

acetate (left) at different monomer concentration. A high monomer conversion and 

dispersity (Ɖ > 1.2) are reached for each polymerisation.The solvent does not affect the 

reactivity of the macroradical has demonstrated by Haehnel.19,20 Regarding the 

polymerisation performed in MPA, a small shoulder at low molar mass is observed, as 

well as, an increase of the Mn,SEC implying a possible transfer between the polymer chain 

and the solvent is occurring. From a general point of view, there is not a significant impact 

of the monomer concentration, even though, it should be noted that an increase of 

monomer concentration often leads to an increase in viscosity which can potentially affect 

the control of the polymerisation. The difference of the theoretical molar mass (Mn,TH = 

3400 g/mol) and experimental molar mass (Mn,SEC) obtained with the SEC-THF  can be 

explained by the difference in hydrodynamic volume of the standard (calibration with 

PMMA) but also a poor control of the polymerisation. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Comparison of SEC-THF chromatograms of p(DMAEMA)19 at 90 ˚C with 

[DMAEMA]0 = 2 M, 3 M and 4 M, a ratio of [BMDPT]0 / [Vazo-88]0 =  10 in butyl acetate and 

MPA solvents 
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The data of DMAEMA polymerisation at different concentrations and solvents obtained 

at 90 ˚C with a ratio [BMDPT]0 / [initiator]0 10 are  reported in Table 3.1.  

Table 3.1: Characterisation data for the homopolymerisation of DMAEMA (targeted DPn of 19). 

RAFT polymerisations were conducted over 10 -12 h in acetate solvent in batch mode at 90 ˚C 

using [BMDPT]0 / [Vazo-88]0 = 10 

 

 

 

 

 

 

 

[a] Determined using equation 3.5 (experimental section) 

 

3.2.1.3. Kinetics of DMAEMA and BMA in batch polymerisation 

 

A kinetic studies of DMAEMA and BMA polymerisation are performed using the optimal 

conditions established from the previous studies; 3 M monomer concentration, a 

[BMDPT]0 / [initiator]0 ratio of 10 at 90 ˚C in butyl acetate solvent. Figure 3.3 A and C, 

the plot of molecular weight versus conversion for DMAEMA and BMA polymerisation 

are linear but Mn,SEC is not in good agreement with the theoretical molar mass, and the 

dispersity remains high throughout the polymerisation, suggesting that the polymerisation 

is not well-controlled.  

Entry [DMAEMA]0 

(mol.L-1) 

Solvent Conv 

( %) 

Mn,SEC
[a]

 

(g.mol-1) 

Mn,TH
[b]

 

(g.mol-1) 

Ɖ 

1 2 Butyl acetate >99 8500 3400 1.35 

2 3 Butyl acetate 97 9000 3300 1.37 

3 4 Butyl acetate >99 9100 3400 1.38 

4 2 MPA 96 9400 3290 1.39 

5 3 MPA 98 9700 3356 1.37 

6 4 MPA 90 8800 3110 1.41 
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However, the kinetic plot revealed that the polymerisation fulfils some criteria of a 

controlled radical polymerisation (CRP) with a first order dependence on both monomer 

with a linear increase of ln([M]0/[M]t), indicating a constant radical concentration during 

polymerisation (Figure 3.3 B and D).  

 

 

 

The poor control of the methacrylates polymerisation mediated by BMDPT RAFT agent 

shows clearly the incompatibility of the CTA with the monomer. As described in the 

literature, the reactivity of the CTA is directly affected by both the Z and R groups which 

will governs the reactivity of the C=S bond toward the radical addition and the efficiency 

of the reinitiate radical (R•).  

Figure 3.3: Molecular weight and dispersity evolution versus monomer conversion (A) and first order 

plot evolution versus time (B) of DMAEMA polymerisation in batch process. Molecular weight and 

dispersity evolution versus monomer conversion (C) and first order plot evolution versus time (D) of 

BMA polymerisation in batch process mediated by BMDPT RAFT agent in butyl acetate at 90 ˚C. 
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In this study, only the influence of the leaving group R is investigated by comparing R = 

-C-(CH3)2-C(O)O-C4H9 of BMDPT versus R = -(CH3)-C-CN-(CH2)2-COOH of MCTP. 

3.2.1.4. Influence of the chain transfer agents 

 

 

 

 

 

As shown previously, DMAEMA polymerisation using BMDPT RAFT agent leads to a 

broad dispersity and does not entirely fulfill the CRP requirement. Favier and Charreyre 

have published a review summarising the key parameters in a RAFT polymerisation 

reaction in order to generate efficient control over molecular weight distribution.21 Of all 

these factors, the structure of the CTA is one of the most important as it strongly 

influences the addition fragmentation during the pre-equilibrium step.6,22,23 

The main role of the “R” group is to increase the fragmentation and the re-initiation step, 

therefore a good leaving group is required to produce a radical R• fragment that allows 

the CTA to add another monomer unit as fast as possible.24 Klumperman and coworkers 

have clearly shown the effect of semi-batch mode, comparing three dithiobenzoate CTAs 

bearing a poor leaving group to polymerise N-vinylpyrrolidone, styrene and methyl 

methacrylate at different temperatures.25,12  

Scheme 3.2: General scheme of DMAEMA polymerisation using MCTP and BMDPT RAFT 

agents with V601 or Vazo-88 azoinitators at 70 ˚C and 90 ˚C in butyl acetate / MPA solvents 
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Indeed, the initialization process can be monitored by the nature of the leaving group 

radical (R•). In the present study the effect of the “R” group was investigated by 

comparing the polymerisation of DMAEMA using either MCTP or BMDPT as CTAs 

under similar conditions (Scheme 3.2). Figure 3.4 shows the SEC chromatograms of 

p(DMAEMA)19 using MCTP (green) and BMDPT (blue) RAFT agents. After 12 hours, 

a near quantitative monomer conversion is reached for both polymerisations with a 

narrow molar mass distribution  and a lower dispersity (Ɖ < 1.2) using MCTP RAFT 

agent while a broader molar mass distribution (Ɖ ≥ 1.3) is obtained with BMDPT, 

suggesting a relatively low chain transfer constant due to a slow equilibration between 

active and dormant chains.26,27,28  

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Comparison of SEC-THF chromatograms of DMAEMA polymerisation with BMDPT 

and MCTP RAFT agents with [DMAEMA]0 = 3 M, ratio of [RAFT agent]0 / [Vazo-88]0 =  10 at 

90 ˚C in butyl acetate solvent 
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This experiment illustrates clearly the influence of the nature of the leaving group on the 

polymerisation process, and is widely described in the literature.6,22,29,30,31,31 The low 

control over the reaction efficiency can be explained by two main events. 

First of all, the combination of a poor leaving group with a good “Z” group, allowing for 

efficient activation of the C=S double bond towards the reactivity of the propagating 

radical P•
n, leads to poor control over the polymerisation. Inversely, association between 

a good leaving group with an inefficient “Z” group gives  poor control.22 In the RAFT 

process, control of the polymerisation is based on the rapid fragmentation of the “R” 

group in the pre-equilibrium step.  

 

 

 

The formation of the macroRAFT radical (Scheme 3.3 species 2) can either fragment 

towards the starting species (Scheme 3.3 species 1) if the R group substituent is not a 

good leaving group, or generate a polymeric RAFT agent (Scheme 3.3 species 3) and 

release the R
•
 species. Concerning the macroinitiator MCTP, the presence of the cyano 

group which an electron withdrawing group, will destabilise the C-S bond (species 2) via 

an inductive effect, and make the R side chain a better leaving group, thus allowing for 

the propagation of a new polymeric chain.  

Scheme 3.3: Pre-equilibrium step of the RAFT polymerisation 
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However, the R group of BMDPT RAFT agent yields a secondary radical while the 

[PDMAEMA•] forms a tertiary radical so the fragmentation pathway will be favoured 

toward the more stable leaving group, although a block copolymer can still be formed. 

Morover, the methyl group, being an electron donating group, will stabilise the radical of 

the BMDPT macroCTA intermediate, thus only a small amount of species 3 will be 

produced. 

3.2.1.5. Chain transfer constant determination 

 

The evaluation of the chain transfer constant (Ctr) allows quantification of the reactivity 

of the R group towards the monomer. This value must be equal to or greater than that of 

the rate of propagation (kp). All the parameters, such as the polarity/steric hindrance 

around the carbon-carbon bonds, have been reported by Fisher and Radom, and are used 

as a guide to select a suitable R group for a given monomer.32 Similarly, the chain transfer 

constant can be determined for the “Z” substituent for a class of monomers in specific 

conditions.33 Few methods have been developed for Ctr determination, including the 

Mayo method and chain length distribution (CLD).34,35,36  

The rate constant for chain transfer can be evaluated based on equation 3. 1, where kadd 

is the rate constant for addition and ϕ the partition coefficient which determines the rate 

of partition from the adduct between products and starting materials; ktr and kβ are the 

rate constant for chain transfer and rate of fragmentation respectively.37 

ktr = kadd
𝑘𝛽

𝑘𝛽+𝑘−𝑎𝑑𝑑
 = kaddϕ    (Equation 3.1 ) 

The rate of consumption of the CTA yields the molecular weight and molecular weight 

distribution, and also describes the reactivity of the expelled radical (R) and the 



Chapter 3: Polymerisation of sequential addition of methacrylate monomer via a semi-

batch process 

    

106 | P a g e  

 Majda Akrach   

propagating radical towards the thiocarbonyl thio moieties, which can be defined by two 

transfer coefficients: Ctr (=ktr/kp) and C-tr (=k-tr/ki). Several methods have been reported in 

the literature to determine the value of the transfer constants. For a high transfer constant, 

a kinetic model was developed by Walling-Müller.38  

In parallel, another method suitable for a low chain transfer (Ctr < 5), determined by size-

exclusion chromatography, is based on the Mayo plot method, in which DP is the number 

average degree of polymerization obtained in the presence of chain transfer agent. DP0 is 

the number average degrees of polymerization obtained in absence of chain transfer agent 

(Equation 3.2).22,39 

1

𝐷𝑃
=

1

𝐷𝑃0 
+ 𝐶𝑡𝑟

[𝐶𝑇𝐴]

[𝑀𝑜𝑛𝑜𝑚𝑒𝑟]
   (Equation 3.2) 

From equation 2, the Ctr can be defined as: 

 

Ctr = 
𝐾𝑡𝑟

𝐾𝑝
     (Equation 3.3) 

 

Where ktr is the chain transfer coefficient and kp is the rate of propagation coefficient. 

Hence, the value of Ctr is obtained by plotting the inverse of the number average degree 

of polymerisation, DPn, against the ratio of BMDPT (or MCTP) to DMAEMA at the 

beginning of the polymerisation.40 In the current reaction, the value of chain transfer 

constant (Ctr) has been determined for both BMDPT and MCTP for DMAEMA 

polymerisations in acetate solvents using a Mayo plot (Figure 3.5). Each polymerisation 

must be stopped at low monomer conversion in order to measure the exchange between 

the CTA and the growing chain in the pre-equilibrium step.  
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A range of degrees of polymerisation were targeted to polymerise DMAEMA with MCTP 

and BMDPT. The value of Ctr, obtained from the slope of the linear regression, shows a 

high chain transfer constant for MCTP (Ctr = 4.5) and a lower value for BMDPT (Ctr = 

0.35). These data illustrate the previous hypothesis concerning the poor control of 

methacrylate monomers with BMDPT. 

 

 

 

3.2.2. DMAEME polymerisation in a semi-batch process 

 

3.2.2.1. Rate of feeding determination 

 

The preliminary study of DMAEMA in batch polymerisation revealed a hybrid 

mechanism during the RAFT pre-equilibrium where the RAFT agent remains (partially) 

intact instead of being converted into macroCTA. Davis et al. have reported the kinetic 

studies of the polymerisation of styrene and MMA using the cumyl phenyldithioacetate. 

The value of the chain transfer constant using Mayo plots increased at different 

temperatures (25 to 60 ˚C) and the kinetic information is similar to the conventional 

Figure 3.5: Determination of the chain transfer constant of DMAEMA (DPn = 20, 30, 50, 

100, 200, 300, 500, 800) polymerisation  using BMDPT (blue) and MCTP (green) RAFT 

agents in butyl acetate solvent at 90 ˚C 
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radical polymerisation with and onset of the RAFT polymerisation.41 For the less active 

RAFT agents (i.e. RAFT agents with low Ctr values), Moad et al. suggested the use of a 

semi-batch approach to improve the control of the polymerisation, which has been 

highlighted by Klumpermann.12 As such, a starve-feed (semi-batch/feeding) system is set 

up to control the amount of monomer present in the system.  

The monomer is degassed under nitrogen while the mixture of  the  RAFT agent, the 

initiatior and solvent are also degassed in a separat vessel. The concentration of RAFT 

agent being constant, the value of the propagation and chain transfer rates changed under 

monomer concentration. Hence, different rates of feeding of the DMAEMA are 

attempted. The reaction mixture was left for 4 hours until high monomer conversion was 

reached. An optimal rate of feeding of 4 hours with high monomer conversion and narrow 

dispersity (Ɖ ≤ 1.25) was determined for DMAEMA with a degree of polymerisation of 

19. In batch mode, the rate of propagation is higher than a chain transfer leading a high 

molecular weight polymer at the start of the polymerisation. At the beginning of the 

feeding process, any monomer is present in the vessel flask containing the CTA and 

initior. Assuming a constant concentration of the RAFT agent and a slow monomer 

addition in a polymerisation mixture, the control of the propagation rate over the chain 

transfer can be tune by increasing the consumption of the CTA in the pre-equilibrium 

step. Consequently, the dispersity decreased from 1.44 to 1.25 from the batch mode to the 

semi-batch, respectively illustrated by the THF-SEC chromatograms in the Figure 3.6. 
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3.2.2.1. Kinetic study in semi-batch process 

 

To establish the “living” characteristic of the DMAEMA (and BMA) polymerisation 

using the BMDPT RAFT agent in a semi-batch process, a kinetic study was undertaken 

with a targeted DP of 150. Monomer conversion was determined by 1H NMR in CDCl3 

and the molar mass distribution by SEC in THF calibrated with PMMA. Figure 3.7 A 

and 3.7 C show a good agreement between the evolution of the Mn,SEC  and Mn,TH  of the 

DMAEMA/BMA homopolymers with the monomer conversion. The dispersity increase 

linearly (Ɖ = 1.32) with the monomer conversion and remains lower than the dispersity 

value obtained in batch mode (Ɖ = 1.5).  

Figure 3.6: Comparison of SEC-THF chromatograms of DMAEMA polymerisation with 

BMDPT RAFT agent in batch mode (black) and rate of feeding of 2 h (red) and 4 h 

(green) with a ratio of [BMDPT]0 / [Vazo-88]0 =  10 at 90 ˚C in butyl acetate solvent 
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Figure 3.7 B and 3.7 D exhibit a linear plot of  ln([DMAEMA]0 / [DMAEMA]t) versus 

time indicates that the system is in a stationary state with respect to the ratio Rp / [M] = 

kp[P
•] proving the “living” nature of this polymerisation.  

 

 

 

 

 

 

 

Figure 3.7: Molecular weight and dispersity evolution versus monomer conversion (A) 

and first order plot evolution versus time (B) of DMEAMA polymerisation in semi-batch 

process. Molecular weight and dispersity evolution versus monomer conversion (C) and 

first order plot evolution versus time (D) of BMA polymerisation in semi-batch process 
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3.2.3. Polymerisation of a range of methacrylate monomers in semi-batch 

process 

 

Haehnel et al.have reported a study on the effect of the alkyl ester groups of acrylates and 

methacrylates monomers family by determining the rate of propagation coefficient (kp) 

using the pulsed laser polymerisation technique (PLP). It has been observed that the kp 

increases when the ester side chain length of methacrylate monomer increases going from 

MMA to Behenyl methacrylate (BeMA).19 Similarly, a study on the ester chain length on 

methacrylate monomers (MMA, EMA, BMA and 2-EHMA) using CCTP (Catalytic 

Chain Transfer Polymerisation) technique in semi-batch process was studied by 

Haddleton.42 A significant reduction of the chain transfer constant is observed (Ctr(MMA) 

= 1130 and Ctr(BMA) = 524). Here, the effect of the ester side and the presence of an 

aromatic group of methacrylate is investigated in RAFT polymerisation in presence of 

BMDPT RAFT agent. Figure 3.8 (left) shows the SEC chromatograms of homopolymer 

targeted with a degree of polymerisation of 50. A monomodale and symetrical molar 

distribution for each homopolymer is observed with the presence of tail at low molar mass 

due to the low reinitiation step.The right picture shows the SEC chromatograms for a 

targeted degree of polymerisation of 150. A comparable molar mass distribution was 

observed for each homopolymer, with a shift at high molar mass for the bulky lauryl 

methacrylate monomer which can be attributed to the increase of the viscosity due to the 

long polymeric chains. Any significant effect of the ester chain length or molecular 

weight is noticed. 
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Table 3.2 records a high monomer conversion for most of the homopolymers, with a 

constant dispersity (Ɖ ≈ 1.3) indicating the versatility of the semi-batch mode for the 

methacrylate monomer using a RAFT agent bearing a poor leaving group. 
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Figure 3.8: Comparison of SEC-THF chromatograms of methyl methacrylate (MMA), butyl 

methacrylate (BMA), benzyl methacrylate (BenzylMA), lauryl methacrylate (LaurylMA) 

polymerisation with BMDPT RAFT with a degree of polymerisation of 50 (left) and 150 (right)  

in semi-batch process 4 hours of feeding with a ratio of [BMDPT]0 / [Vazo-88]0 =  10 at 90 ˚C in 

butyl acetate solvent 
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Table 3.2: Conditions used for the methacrylates (DPn targeted 50 and 150) 

homopolymerisation. RAFT polymerisations were conducted with [monomer]0 = 3 M at 90 ˚C in 

butyl acetate solvent in semi-batch process  

Entry Monomer Overall 

[M]:[CTA]:[Vazo88] 

Monomer 

% 

Mn,TH
[a]

 

g.mol-1 

Mn,SEC
[b]

 

 g.mol-1 

Đ 

1 BMA  50 : 1 : 0.1 >99 7500 10300 1.32 

2 BMA 150 : 1 : 0.1 98 20900 21900 1.30 

5 MMA    50 : 1 : 0.1 83 4600 7600 1.35 

6 MMA  150 : 1 : 0.1 70 10900 14820 1.18 

7 LaurylMA    50 : 1 : 0.1 98 12900 15200 1.29 

8 LaurylMA  150 : 1 : 0.1 91 35150 38770 1.29 

9 BenzylMA    50 : 1 : 0.1 96 8900 12800 1.32 

10 BenzylMA   150 :1 : 0.1 97 26850 20300 1.35 

[a] Determined using equation 3.5 (experimental section) 

[b] Determined using THF-SEC with PMMA narrow standards 

 

 

3.2.4. Synthesis of statistical and block copolymer in semi-batch process 

 

The efficient dispersity of carbon black in organic solvents depends strongly on several 

parameters; such as the composition of the anchoring block, the molecular weight of the 

polymer and finally the polymeric architecture. Having optimised the synthesis of the 

methacrylate monomers by a feeding approach, a range of statistical and diblock 

copolymers were designed in order to assess their impact on pigment dispersion.  
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The synthesis of methacrylate multiblock copolymers was performed as proof of the 

feeding concept. Their effectiveness as dispersing agents will be discussed in a later 

chapter (Chapter 5). 

3.2.4.1. Statistical copolymer synthesis 

 

The synthesis of homopolymer in starve-feeding approach being a success, the similar 

process is used to make statistical copolymers targeting several degrees of polymerisation 

(DP) for methacrylate block copolymers by keeping the ratio of the hydrophilic to 

hydrophobic block constant (1/3 and 2/3 respectively). Both monomers are mixed 

together in a same vial, degassed under nitrogen and fed into the second vial containg the 

CTA, Vazo-88 and butyl acetate. The monomer conversion is determined by 1H NMR in 

CDCl3 using 1,3,5-trioxane as internal reference and the dispersity was assessed by THF-

SEC using PMMA as calibration. Figure 3.9 shows the SEC chromatograms of each 

statistical copolymers. A monomodale molar mass distribution is obtained with a high 

monomer conversion for DMAEMA and BMA monomers. The dispersity remains low 

(in comparison to the batch mode), despite the fact that the difference of Mn,SEC  and Mn,TH 

which firstly, can be attributed to the difference of the hydrodynamic volume of PMMA 

and secondly, suggesting that the polymerisations are not well-controlled, due to the fact 

that the RAFT agent is not fully consumed. 
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3.2.4.2. Diblock copolymer synthesis 

 

 

 

 

 

 

Figure 3.9: Comparison of SEC-THF chromatograms of p(BMA)-statistical-p(DMAEMA) 

performed in semi-batch process with a with a ratio of [BMDPT]0 / [Vazo-88]0 =  10 at 90 ˚C 

in butyl acetate solvent with a degree of polymerisation of 55/19 (green), 70/35 (red) and 

100/50 (blue), respectively. 

Scheme 3.4: General scheme of p(BMA)-block-p(DMAEMA) methacrylates copolymer 

synthesised by feeding process with BMDPT RAFT agent, [BMDPT]0 / [Vazo88]0 =10 at 90 ˚C 

in butyl acetate solvent. 
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With this synthetic approach, three diblock copolymers were synthesised by a sequential 

feeding of each monomer. A narrow molar mass distribution was obtained for each DP 

with a consistent dispersity (Ɖ ≤ 1.3) for butyl methacrylate (BMA) homopolymers 

(Table 3.3). A shift to high molar mass was observed in all the SEC chromatograms after 

addition of DMAEMA monomer, demonstrating full consumption of the macroRAFT 

agent. The presence of a small shoulder can be attributed to the presence of non-reinitiated 

polymer chains and the tail suggests some dead chains (Figure 3.10). To reach full 

monomer conversion 24 hours was required, thus avoiding the precipitation step. 

Table 3.3: Conditions used for the BMA homopolymerisation (targeted DPn of 55,70 and 100) 

and chain extension with DMAEMA (targeted DPn of 19,35 and 50) to make diblock copolymer. 

RAFT polymerisations were conducted in semi-batch process with 4 h of monomer feeding and 

20 h of polymerisation at 90 ˚C with [BMDPT]0 / [Vazo88]0 = 10 in butyl acetate solvent 

BMA 

(DP) 
Conv. 

(%) 
Mn,TH

[a]
 

(g/mol) 
Mn,SEC

[b]
 

(g/mol) 
Ɖ 

DMAEMA 
(DP) 

Conv. 

(%) 
Mn,TH

[a]
  

(g/mol) 
Mn,SEC

[b]
 

(g/mol) 
Ɖ 

55 95 7700 12400 1.24 19 98 10630 16000 1.38 

70 94 9680 10500 1.25 35 93 14800 17500 1.34 

100 96 13650 14600 1.29 50 90 20725 22100 1.38 

[a] Determined using equation 3.5 (experimental section) 

[b] Determined using THF-SEC with PMMA narrow standards 
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3.2.4.3. Scaling up the synthesis of diblock copolymers  

 

To demonstrate the scalability of this process the reaction was performed using the exact 

same conditions as those used for the diblock copolymer to prepare one kilogram of 

polymer. A mass of 250 g of BMA was charged to a round bottom flask, sealed with a 

septum, and degassed with a nitrogen for 30 minutes. Separately, 14 g of BMDPT RAFT 

agent was mixed with 0.780 g of AIBN and 270 g of butyl acetate and degassed for 30 

minutes under nitrogen. Then, the mixture containing the CTA and azoinitator was placed 

in oil bath thermostated at 90 ˚C and mechanically stirred, while the BMA monomer was 

slowly fed over 4 hours using an automatic syringe pump. The reaction was left for 20 h 

to allow the polymerisation to reach full monomer conversion. Finally, a mass of 96 g of 

DMAEMA was prepared in a similar manner to BMA, and added into the mixture 

containing the first block.  

Figure 3.10: Comparison of SEC-THF chromatograms of p(BMA)-block-p(DMAEMA) 

copolymers performed in semi-batch process with a with a ratio of [BMDPT]0 / [Vazo-88]0 =  10 

at  90 ˚C in butyl acetate solvent with a degree of polymerisation of 55/19, 70/35 and 100/50, 

respectively (left to right) 
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The quantities of each reactant used in small and large scale are reported in Table 3.4 and 

the success of the scale up is illustrated by the SEC chromatogramwith the shift at high 

molar mass after the chain extension Figure 3.11. 

Table 3.4: Conditions used to scale up p(BMA)100-block-p(DMAEMA)50 copolymer in 30 and 

300 g using RAFT polymerisation in semi-batch process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BMA 

(L) 

Vazo-88 

(g) 

BMDPT 

(g) 

MPA 

(L) 

Rate of 

feeding 

(mL.h-1) 

DMAEMA 

(L) 

Vazo-88 

(g) 

Rate of 

feeding 

(mL.h-1) 

5.6 

x10-3 

0.012 0.210 6 x10-3 1.4 x10-3 3 x10-3 0.012 7.4 x10-4 

0.280 0.780 13.5 0.306 70 0.095 0.480 0.102 

Figure 3.11: Pictures of 30 g and 300 g scale of diblock p(BMA)100-block-p(DMAEMA)50 and THF-

SEC chromatogram of the 300 g diblock methacrylate copolymer synthesised in butyl acetate solvent 

at 90 ˚C in semi-batch process 
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3.2.4.4. Sequential addition of BMA monomer in semi-batch mode 

 

 

 

 

Several techniques allowing a precise control of the monomers sequence controlled were 

reported.43,44,45,46,47 It is well-known that the methacrylates monomers exhibit a low rates 

of propagation (kp) and chain transfer events which make the synthesis of BMA (or other 

methacrylate monomer) more challenging. In this attempts, the conditions previously 

established for the diblock copolymer are used to synthesise the sequential addition of 

BMA monomer using semi-batch processing without any purification steps by targeting 

a high monomer conversion. (Scheme 3.5). The SEC traces of the sequential addition 

reported in the Figure 3.12 show the molecular weight distributions of the iterative in situ 

chain extension cycles of BMA. A high initiator concentration ([BMDPT]0 / [Vazo-88]0 

=  10) is needed to achieved high monomer conversion in a shorter time which, 

consequently will increased the number of dead chains. In order to keep the livingness as 

high as possible a small amount of initiator is added for the following blocks. This 

decreases of livingness is usually represented by the presence of the a shoulder at low 

molar mass which does not appaear in these chromatograms.  

 

Scheme 3.5: General scheme of the sequential addition of BMA monomer using BMDPT RAFT 

agent with [BMDPT]0 / [Vazo-88]0 = 10 at 90 ˚C in MPA solvent  
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Additionally, the success of the chain extension is proved by the shift at high molar mass 

after each monomer addition. 

 

 

 

 

 

 

 

 

  

A well-defined tetrablock copolymer was attained, as shown by the SEC molecular 

weight distributions (Figure 3.12). A small amount of initiator is added after each chain 

extension in order to maintain a high fraction of living chains (L > 90 %) and limit the 

accumulation of termination, however, the dispersity increased for the tetrablock 

copolymer due to a high viscosity of the polymerisation mixture (Table 3.5). 

In the Table 3.5, the monomer conversion and the values of the experimental and 

theoretical molar mass and dispersity are reported. Mn,SEC agrees with Mn,TH in comparison 

to p(DMAEMA)19. The structure of BMA and MMA being quite similar, the 

hydrodynamic volume of PMMA standard might not affect the Mn,SEC value. 

Figure 3.12: Comparison of SEC-THF chromatograms of sequential addition of BMA to 

synthesise p(BMA)50-b-p(BMA)50-b-p(BMA)50-b-p(BMA)50 with DPn targeted 50 in semi-

batch process. Initial conditions: [BMA]0 = 3 M, [BMDPT]0 / [Vazo-88]0 =  10 at  90 ̊ C in butyl 

acetate solvent.  
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Table 3.5: Characterisation data for the symthesis of the sequential addition of BMA (DPn = 50 

per chain extension) obtained in semi-batch processvia RAFT polymerisation: [BMA] : 

[BMDPT] : [Vazo-88] = [50] : [1] : [10] in butyl acetate solvent  at 90 ˚C 

 

 

 

 

 

[a] Determined using equation 2.5 (experimental section) 

[b] Determined using THF-SEC with PMMA narrow standards 

 

The Figure 3.15 shows the relation between the evolution of the experimental molecular 

weights and the dispersity in each sequential RAFT polymerisation. The ability of the 

chain extension indicates the presence of the ω-chain ends confirming the living character 

of this process.  

Entry Monomer 

% conv  

Mn,TH 
[a]

   

g.mol-1 

Mn,SEC [b]
   

g.mol-1 

Ɖ L 

% 

1 94 7100 10300 1.30 98.5 

2 92 13700 15400 1.26 97.9 

3 93 20200 19350 1.28 95.5 

4 97 27100 25200 1.40 94.2 
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3.3. Conclusions 

 

A full kinetic study of methacrylate polymerisation via RAFT with BMDPT as 

chain transfer agent (CTA) is reported. Poor control of the methacrylate polymerisation 

(Ɖ ≥1.2) using this CTA was supported by the determination of the chain transfer constant 

using a Mayo plot, obtaining a value of chain transfer constant below 1. Optimal control 

of the polymerisation was reached by employing a semi-batch process to yield well-

defined multiblock copolymers, exhibiting narrow molecular weight distributions (Ɖ ≈ 

1.28) with different chain lengths and different methacrylate monomers. Subsequently, a 

tetrablock copolymer of BMA was easily synthesised maintaining excellent molar mass 

Figure 3.15: THF-SEC data for synthesis of sequential addition of BMA monomer. Evolution 

of experimental molar mass (Mn,SEC) and dispersity (Ɖ) versus the number of blocks for each 

successive block in the preparation p(BMA)50-b-p(BMA)50-b-p(BMA)50-b-p(BMA)50 

mediated by BMDPT RAFT agent 
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control and narrow distributions. Proof of the feeding concept was finally established by 

scaling the methacrylate diblock copolymer to large scale, whereby 300 g in 50 % w/w 

of polymer was produced.  

3.4. Experimental 

 

3.4.1. Materials 

 

DMAEMA (hydroquinone stabilizer, ≥ 99.0%, Merck), lauryl methacrylate (Sigma-

Aldrich, ≥ 98%), benzyl methacrylate (Sigma-Aldrich, ≥ 96%), methyl methacrylate 

(Sigma-Aldrich, ≥ 98%), 2-(Dimethylamino) ethyl methacrylate (Sigma-Aldrich, ≥ 98%), 

Butyl acetate (Chromasolv plus, 99.7 %), propylene glycol monoethyl ether acetate 

(Sigma-Aldrich, 99.5%), Dimethyl2,2’-azobis(2-methylpropionate) (V601,Wako) 

Azobis(cyclohexanecarbonitrile) (Vazo-88, 98%, Aldrich) were used as purchased. 

Butyl-2-methyl-2-[(dodecylsulfanylthiocarbonyl) sulfanyl] propionate (BMDPT, 

Lubrizol, 70 %). 1,1’-Methyl-4-cyano-4-(dodecylthiocarbonothioylthio)pentanoate 

(MCTP, Boron molecular, > 99%) were used as received. 

3.4.2. Methods 

 

 Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy 

 

 NMR (1H and 13C) were recorded on a Bruker AV-300 and DPX-500 in deuterated 

chloroform (CDCl3) or DMSO-d6. Chemical shift values (δ) are reported in ppm. The 

residual proton signal of the solvent is used as internal standard (CDCl3, δ = 7.26 or δ 

= 2.5 for DMSO-d6 ).  
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 Determination of DPn,targeted and monomer conversion 

Monomer conversion (p) were calculated from 1H NMR data using equation 3.4: 

p = 
[M]0−[M]𝑡

[M]0
 = 1- 

[𝑀]𝑡

[𝑀]0
 = 1- 

∫ I5.5−6.75 ppm

∫ 𝐼𝑎

𝐷𝑃𝑛,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑
 

Where [M]0 and [M]t are the concentrations of the monomer at time 0 and at time t, 

respectively, 
∫ 𝐼5.5−6.75 ppm

∫ 𝐼𝑎
 is the integral for the vinyl protons of the monomer, 

DPn,targeted is the number average degree of polymerisation targeted and ∫ 𝐼𝑎 is the 

integral of the two protons belonging to the CH2 of the acrylate (-O-CH2-CH2). 

 Determination of Mn,TH  

The theoretical number-average molar mass (Mn,TH) is calculated using equation 3.5:  

 Mn,TH = 
[M]0𝑝[M]𝑀

[CTA]0
 + 𝑀𝐶𝑇𝐴 

Where [M]0 and [CTA]0 correspond to the initial concentrations (in mol/L) of monomer 

and chain transfer agent respectively; p is the monomer conversion as determined by 

equation 1, MM and MCTA are the molar masses (g/mol) of the monomer and chain transfer 

agent. 
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 Size Exclusion Chromatography (SEC) 

 

 Number-average molar masses (Mn,SEC) and dispersity values (Ɖ) distributions 

were measured using size exclusion chromatography with THF as an eluent. The THF 

Agilent 390-LC MDS instrument was equipped with differential refractive index 

(DRI), viscometry (VS), dual angle light scatter (LS) and two wavelength UV 

detectors. The system was equipped with 2 x PolarGel Mixed C columns (300 x 7.5 

mm) and a PLgel 5 µm guard column. The eluent is THF with 2 % TEA(triethyl 

amine) and 0.01 wt./ V% BHT (butylated hydroxytoluene) additives. Samples were 

run at 1 mL/min at 30 °C. Poly(methyl methacrylate) standards in rang of 2.0 x 102 

g/mol to 2.0 x 106 g/mol was used to calibrate SEC system.. Analyte samples were 

filtered through a polytetrafluoethylene (PTFE) membrane with 0.22 μm pore size 

before injection. The calibration is setup by using a flow rate marker with a third-

order polynomial in the elution volume. Respectively, experimental molar mass 

(Mn,SEC) and dispersity (Đ) values of synthesized polymers were determined by 

conventional calibration using Agilent GPC/SEC software.  

 Calculation of the Theoretical Number Fraction of Living Chains (L) 

 

The number fraction of living chains was determined by the following 

Equation 6: 

 

𝐿 (%) =
[CTA]0

[CTA]0+2.𝑓.[I]0.(1−𝑒−𝑘𝑑𝑡).(1−𝑓𝑐
2

)
     (3.6) 
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For the system butyl acetate/Vazo-88 / 90 ˚C, we considered:  kd(Vazo-88,90 ˚C) = 1.9254 x 

10-5s-1 with Ea = 154.1 KJ/mol.K. For the system butyl acetate/ V-601 / 70 ̊ C the constant 

of dissociation (kd) is similar to Vazo-88 at 90 ˚C with Ea = 131.2 KJ/mol.K. 

3.4.3. General synthetic procedures 

 

 Diblock copolymer synthesis 

 

Batch polymerisation of pDMAEMA50: For a typical polymerisation in which 

[DMAEMA]: [BMDPT]: [I] = 50: 1: 0.1 , DMAEMA (50 eq, 1g, 6.3 mmol), BMDPT 

(1.0 eq, 0.054 g, 0.12 mmol), Vazo-88 (0.00311 g, 0.013 mmol, 63 µL (50 mg/mL)) and 

1 mL of butyl acetate solvent are charged with a magnetic stirring bar into a vial and 

degassed for 10 min under nitrogen. Then, the vial is placed in oil bath at 90 ˚C and stirred 

overnight. Mn,SEC = 8200 g/mol , Ɖ = 1.31 (THF-SEC, triple detection). 1H-NMR (CDCl3, 

400 MHz, ppm): 4,21 (m, 2H,-C(O)O-CH2-CH2-NMe2), 2.65 (m, 2H, ,-C(O)O-CH2-

CH2-NMe2), 2.3 (s, 6H, -C(O)O-CH2-CH2-NMe2), 2.1 – 0.9 (m, backbone). 
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 Semi-batch polymerisation of poly(BMA100)-block-poly(DMAEMA50):  

For a typical polymerisation in which [BMA]: [DMAEMA]: [BMDPT]: [I] = 100: 50: 1: 

0.1, BMA (100 eq, 0.5 g, 3.4 mmol), BMDPT RAFT agent (1.0 eq, 0.015 g, and 0.035 

mmol), Vazo-88 (0.0008 g, 0.0035 mmol, 57 µL (20 mg/mL) and 0.580 mL of butyl 

acetate are charged into a flask with a magnetic stirring bar and degassed for 10 min. In 

parallel, BMA (50 eq, 0.275 g) is added in a separate vial, sealed with a septum and 

bubbled under nitrogen for 10 min. Then, BMA is introduced via an automatic syringe 

pump for 4 hours using a Hamilton gas-tight glass syringe with a rate of 0.25 ml/h. The 

reaction mixture is placed in a thermostated oil bath set at the desired temperature for 24 

hours. Mn,SEC = 22100 g/mol , Ɖ = 1.38 (THF-SEC, triple detection).  
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Figure 3.16:  1H NMR of p(DMAEMA)50 synthesised with BMDPT RAFT agent in 

butyl acetate solvent at 90˚C with [DMAEMA]0 = 3 M and [BMDPT]0 / [Vazo88]0 = 

10.Spectrum run in CDCl3. 
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1H-NMR (CDCl3, 400 MHz, δ/ppm): δ = 4.3 (m, 2H,-C(O)O-CH2-CH2-NMe2), 4.1 (m, 

2H,-C(O)O-CH2-CH2-CH2-CH3), 2.53 (m, 2H, ,-C(O)O-CH2-CH2-NMe2), 2.3 (s, 6H, -

C(O)O-CH2-CH2-NMe2), 1.9 – 0.9 ppm (m, backbone) 

 

 

 

 

 

 

 

 Synthesis of a sequential methacrylate addition  

 

The synthesis of sequential addition of BMA block copolymer in a semi-batch mode is 

performed in the similar condition previously established. BMA (50 eq, 1.0 g, 7.0 mmol) 

is added in a vial and degassed under nitrogen. BMDPT RAFT agent (1.0 eq, 0.059 g, 

and 0.140 mmol), Vazo-88 (0.0034 g, 0.0140 mmol, 69 µL (50 mg/mL) and 1.2 mL of 

butyl acetate are charged into a flask with a magnetic stirring bar and degassed for 10 

min.  
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Figure 3.17: 1H NMR of p(BMA)100-b-p(DMAEMA)50 synthesised with BMDPT RAFT 

agent in butyl acetate solvent at 90˚C with [DMAEMA]0 = 3 M and [BMDPT]0 / [Vazo88]0 = 

10. Spectrum run in CDCl3. 
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Then, the vial is placed in an oil bath set up at 90 ˚C while BMA is added to the vial by 

using the automatic syringe pump. The vial is removed from the oil bath and cooled to 

room temperature. A high monomer conversion (> 95 %) is confirmed by 1H NMR in 

CDCl3 and dispersity (Ɖ = 1.21) are determined by SEC in THF. The chain extension of 

the homopolymer is immediately conducted with an addition by feeding of BMA (50 eq, 

1.0 g, 7.0 mmol) prior degassed. A constant volume of 2 ml of butyl acetate and a volume 

of 35 µL (50 mg/mL) of Vazo-88 are added between each block. Mn,SEC = 25200 g/mol , 

Ɖ = 1.40 (THF-SEC, triple detection). 1H-NMR (CDCl3, 400 MHz, δ/ppm): δ = 4.1 (m, 

2H,-C(O)O-CH2-CH2-CH2-CH3), 2.05 (m, 2H,-C(O)O-CH2-CH2- CH2-CH3), 1.8 (m, 2H, 

C(O)O-CH2-CH2- CH2-CH3), 1.85 – 0.9 ppm (m, backbone) 
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In this chapter, Reversible Addition-Fragmentation Chain transfer (RAFT) 

polymerisation has been employed to synthesise amphiphilic diblock and multiblock 

copolymers using poly(nbutyl acrylate) as the hydrophobic block and styrene-

alternating-maleic anhydride (SMA) as the hydrophilic block in acetate solvent. Under 

optimised conditions, a well-defined diblock and tetrablock copolymer were obtained (Ɖ 

= 1.23) with a high monomer conversion (> 95 %) achieved throughout all the iterative 

monomer additions. The hydrophilic character of the diblock copolymer is brought after 

modification of SMA copolymer into SMI (styrene-alternating-maleimide) using the small 

organic molecule di(methylaminopropyl)amine. The use of a primary amine leads the 

formation of an amide compound (poly(nBA)-block-poly(SMAD)) followed by an imide 

product (poly(nBA)-block-poly(SMI)) after dehydration. The alternating character of 

maleic anhydride (MA) copolymerised with styrene is determined by 1H and 13C NMR, 

and the further modification of the polymer backbone using amines is characterised by 

infra-red (IR), proton NMR (1H NMR) and elemental analysis (EI). The data of efficiency 

of both amphiphilic diblock copolymers on carbon black dispersion are reported in 

Chapter 5.  
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4.1. Introduction 

 

The copolymer styrene-maleic anhydride (SMA) is produced on an industrial 

scale since many years for diverse applications.1 Homopolymerisation of maleic 

anhydride (MA) is not possible due to the high steric hindrance of the radical.2,3 The 

copolymerisation of styrene (S) and maleic anhydride (MA) has been established since 

1940, however, the mechanism concerning the alternating behaviour between these two 

monomers is relatively unknown, and many theories have been explored.4 Several 

controlled radical polymerisation techniques (such as ATRP, nitroxide-mediated 

polymerisation, and RAFT) have emerged in the past decade, allowing for better control 

and more sophisticated polymer architectures. The copolymerisation of styrene-

alternating-maleic anhydride (SMA) using Atom Transfer Radical Polymerisation 

(ATRP) is not straightforward due to highly reactive monomers which preferentially 

interact with the copper complex, however, using nitroxide-mediated polymerisation at 

high temperature, the synthesis can be successfully achieved.5, However, the final 

composition of SMA is directly depend on the temperature of the polymersisation. NMP 

technique required a high temperature reaction (80 – 120 ˚C) which leads a formation of 

mixture of poly(SMA) and poly(styrene).6 A lower temperature can be used in  Reversible 

Addition-Fragmentation chain Transfer (RAFT) polymerisation which makes this 

polymerisation technique more appropriate choice to polymerise SMA in different 

solvents under mild conditions.7,6,8,9 The process of RAFT polymerisation involves 

insertion of the monomer into the C-S bond of a tri-thiocarbonyl moiety (known as the 

Chain Transfer Agent). This gives a yellow-red colour to the polymer and allows it to 

behave as a chromophore with a wavelength maxima at 309 nm.  
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The presence of this tri-thiocarbonyl in the polymer chain at the end of the 

polymerisation means the reaction can be halted or restarted readily, and gives the living 

characteristic to this technique. This allows for the synthesis of complex architectures (for 

example multiblock, star and comb). Alternating copolymers provide a wide range of 

applications and are used in industry for their diverse range of properties.  

Indeed, the high thermal stability of maleic anhydride (MA) copolymerised with 

alkyl vinyl ether (AVE)10 or styrenic polymers allows them to find application  as polymer 

blend compatibilisers and adhesion promoters.11,12,13,14 The high sensitivity of maleic 

anhydride towards nucleophilic reagents (amines, thiol, alcohols, and water) allows for 

the synthesis of functional SMA. This modification process has been reported in the 

literature15,16,17 and expands applications towards anti-viral agents and drug 

nanocarriers.18,19,20,21,22 As a pigment stabiliser, the polymer backbone is required to have 

a specific functional moiety for good surface affinity, such as a tertiary amine. Maleic 

anhydride can be easily reacted with an amine compound, yielding the required tertiary 

amine in the ring as described in Scheme 4.1. This method was first developed by 

Dupont23 in the 1950’s and is currently the main route used to prepare polyimides in polar 

aprotic solvents.  

Scheme 4.1 illustrates the general mechanism of the reversible ring opening and 

closing using an amine for maleimide formation. Maleimide formation requires a two step 

procedure involving the use of an amine or alcohol (Mitsunobu reaction). The poly(maleic 

amido acid) is formed via nucleophilic attack by the amine group on the carbon of the 

anhydride group. This step is exothermic and is carried out at low temperature.24, 25  
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The process of maleic anhydride modification was used after polymerisation of 

poly(SMA). It is necessary to point out the high sensitivity of the trithiocarbonate. Indeed, 

the C–S bond can be cleaved in the presence of nucleophilic compounds, ionic reducing 

agents and UV radiation/thermolysis, causing it to degrade. Consequently, the primary 

and secondary amines, being good nucleophiles, can react by aminolysis with the CTA, 

halting the polymerisation. Few methods regarding the cleavage of the thiocarbonylthio 

group were developed (Scheme 4.2).26, 27, 28 

 

 

 

 

 

 

Scheme 4.2: Several processes of RAFT end-group removal using nucleophiles 

compound, temperature, reducing agent or radical.26 

Scheme 4.1: Mechanism of maleic anhydride ring opening using a primary amine to form an 

maleimide 

 

Δ
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This chapter describes the use of RAFT polymerisation to polymerise a range of 

well-defined diblock and multiblock copolymers of poly(styrene-alternating-maleic 

anhydride) block n-butyl acrylate in a one pot synthesis. For the Carbon black 

dispersion, the acrylate block will dissolve in organic media, while the pSMA, after 

functionalisation, will interact with the pigment surface. Different molecular weights of 

acrylate were synthesised to study the effect of polymer chain length on pigment 

interaction. The thermal properties of the homopolymer and multiblock copolymers 

before and after modification are also reported.  

4.2. Results and Discussion 
 

4.2.1. Synthesis of p(SMA) copolymer via RAFT polymerisation 

   

An alternating sequence of styrene and maleic anhydride is observed when a 1:1 

monomer ratio is used. The reaction is fast and exothermic (ΔH = -81 KJ/mol) and 

therefore does not require high temperatures, however, it should be noted that a high 

concentration of maleic anhydride (MA) induces the formation of a gel, explained by a 

high rate of polymerisation of styrene/maleic anhydride. Belkhira et al.29 determined the 

kinetics of this copolymerisation by DSC, and established that a molar fraction of MA 

(f2,0 = 0.3) was required to prevent the gel effect. To overcome the viscosity challenges, 

in industry this reaction is performed above 160 ˚C in a reactor. The kinetics studies of 

SMA copolymerisation using RAFT polymerisation was reported by Chernikova.30 It has 

been shown that the rate of the polymerisation decreased dramatically when the 

proportion of styrene is increased.  
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For instance, 1.5 hours are required to achieved 40 % of monomer conversion in 

presence of 50 mol% of styrene while 9 h are needed with 90 mol%  of styrene in the 

initial composition. Thus, the propagation rate is strongly affected by the monomer 

composition but also by the self-initiation of the styrene monomer.31 

In the current study, polymerisations were initially carried out in an acetate 

solvent to determine the optimal conditions. Given that a concentration of MA above 1.75 

M induces gel formation, all the following polymerisations were performed at 1 M 

(Scheme 4.3). The kinetic study and the alternating behaviour of SMA were studied in 

MPA solvent and reported.  

 

The kinetic studies displayed in a Figure 4.1 A revealed a linear behaviour of the 

ln([M]0/[M]t) versus time plot, indicating a first order reaction with respect to monomer 

concentration. Moreover, a good agreement between the theoretical and experimental 

molar mass distribution with a low dispersity (Ɖ < 1.2) throughout the polymerisation 

(Figure 4.1 B).  

 Scheme 4.3: General scheme of styrene and maleic anhydride homopolymerisation using 

BMDPT RAFT agent in presence of V601 as azoinitiator at 70 ˚C in acetate solvent 
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The conversion of styrene and maleic anhydride polymerised is determined by 1H NMR 

in DMSO-d6 using 1,3,5-trioxane as internal reference due to the overlapping of the 

styrenenic aromatic protons (δ = 7.25 -7.3 ppm) and the single peak of maleic anhydride 

(δ = 7.5 ppm) as shown in Figure 4.2.  

 

 

 

Figure 4.1: Polymerisation kinetics for SMA using BMDPT RAFT agent in MPA solvent at 70 

˚C. Pseudo-first order kinetics (A) and evolution of molar mass and molar mass distribution 

monomer (Ɖ) versus time (B). 
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In addition to 1H NMR, 13C NMR can also be used to characterise the structure of the 

polymer. Characterising alternating blocks of SMA by using 13C NMR has been 

demonstrated several times in the literature.6,32,33,34 The determination of the triad 

sequence distribution between the maleic anhydride and its donor monomers derivatives 

(styrene, trans-stilbene, α-methylstyrene) using 13C NMR spectroscopy has been 

investigated by Ha.32 In this work, the author compared the position of the chemical shifts 

of the poly(styrene) homopolymer with diverse copolymer bearing functionalities. The 

presence of the bulky group (-CH3) or the high electronegativity of the halogens groups 

have a deshielding effect on the quarternary carbon of the styrene (C7). Different triads 

have been determined as a marker to characterise the non-alternating (SSS), semi-

alternating (SSM) and alternating (SMS) behaviour.  

Figure 4.2: Comparison of 1H NMR analysis in DMSO-d6 for p(SMA)20 

copolymerisation obtained in MPA solvent using trioxane as internal reference before 

and after polymerisation 
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For an alternating sequence, the CH2 group (Figure 4.3, C1) on the styrene backbone is 

expected at δ = 33 - 37 ppm and the aromatic group (Figure 4.3, C7) peak at δ = 137 - 

140 ppm, while for SSM and SSM sequences they appear at δ = 42 - 47 ppm and δ = 145 

- 148 ppm respectively. Moreover, the alternating behaviour of the maleic anhydride is 

demonstrated by the determination of the reactivity ratio.6 

 

 

 

 

 

 

 

Furthermore, MALDI- ToF MS has been used to confirm ther alternating behaviour of 

SMA copolymers. Matrix-assisted laser desorption ionization (MALDI) is a soft 

ionization technique producing intact molecular ions. The process of the ionization starts 

when the matrix in the analyte absorbs a pulsed laser beam. Then, when the matrix is 

entirely dried, the plate is inserted into a high vaccum which will prevent collision 

between ions. The energy of the laser absorbed by the matrix is transferred to the analyte 

molecules which ionized the molecules.  

Figure 4.3: 13C NMR analysis of p(SMA)20 copolymer in DMSO-d6 recorded on a 

Brucker Avance (400 MHz) 
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Finally, the ions are accelerated when reached the mass analyser (Time-of-Flight : ToF) 

via an electric field. An overview of the spectrum of p(SMA)20 synthesised via RAFT 

polymerisation using BMDPT trithiocarbonate in methoxypropyl acetate solvent is given 

in Figure 4.4. The m/z region between 2000 and 4000 shows a perfect interval of m/z 

values of 98.06 and 104.14, corresponding to mass units of monomeric styrene and maleic 

anhydride respectively, thus confirming the alternating composition of p(SMA)20 

homopolymer. The alternating mass units confirm the alternating structure of SMA. 

However, a zoom of the m/z region between 2000 and 2750 indicates the presence of 

three type of populations including a majority of of p(SMA)20 at 2464.94 g/mol but also, 

some defects such as p(SMA)9-b-p(Styrene)3 at 2579.9 g/mol or with two styrene on a 

row like p(SMA)18-b-p(Styrene)2 at 2469.01 g/mol. 

 

Figure 4.4: MALDI-ToF spectrum of poly (SMA)20 is performed using Bruker Daltonic 

Autoflex Speed with PEG1,500 and PEG5000  as external calibration 
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4.2.2. Synthesis of SMA and n-butyl acrylate block copolymer via RAFT 

polymerisation 

 

Sequence controlled multiblock copolymer synthesis in one pot with high 

conversions and using a wide range of monomers has recently been developed.35,36,37,33, 

38,39 Here, this technique was used to prepare diblock and multiblock copolymers of poly 

(n-butyl acrylate)-block-poly(SMA).40,41,42 Interestingly, this work is the first report of a 

multiblock structure of SMA. The living characteristic of the RAFT process makes it easy 

to chain extend one block with another. Here, the poly (n-butyl acrylate) block was 

synthesised first and, after reaching full conversion, a mixture of 1:1 SMA was added.  

The insertion of a hydrophobic block is directly linked to the dispersion of 

pigment in organic media.  

Figure 4.5: MALDI-ToF spectrum of poly (SMA)20  between m/z = 2000 and 2750 
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Indeed, the acrylate block is fully soluble in acetate, thus allowing the styrene-

alternating-maleic anhydride block to interact with the pigment surface. 

 

 

  

 

The block copolymer synthesis was performed using conditions established 

previously for acrylate copolymerisation (Chapter 2).  

A poly (n-butyl acrylate) macroCTA was synthesised in the first step, then chain 

extended with a mixture of styrene and maleic anhydride monomers. The monomer 

conversion was determined by 1H NMR in CDCl3 for the first block and DMSO-d6 for 

the second block. Trioxane was used as an internal reference to determine the conversion 

for the last block. A near quantitative conversion was reach for each block, with a narrow 

dispersity and molar mass distribution, as determined by THF-SEC (Scheme 4.5). 

Scheme 4.4: General scheme of p(nBA) macroinitiator synthesis and chain extension with SMA 

mixture in presence of BMDPT RAFT agent using V601 as azoinitiator at 70 ˚C in MPA solvent 
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A monomodal molar mass distribution was observed for both blocks, however, 

the presence of a small shoulder at high molecular weight suggests the presence of mid-

chain branching for butyl acrylate.  

The SEC trace shows the success of the chain extension of poly (SMA), 

suggesting full macroCTA consumption, and displays narrow dispersity (Ɖ < 1.2). 

 In order to study the effect of the molecular weight of poly (nBA) - block - poly 

(SMA) in a carbon black dispersion, a range of diblock copolymers were synthesised 

under similar conditions (Table 4.1). 
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Figure 4.6: Comparison of SEC-THF chromatograms of diblock p(nBA)25-block-

p(SMA)20. Initial conditions: [nBA] : [BMDPT] : [V601] = [25] : [1] : [10] in MPA solvent  

at 70 ˚C 
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Table 4.1: Characterisation data for the poly(nBA)-block-poly(SMA) copolymer obtained via 

RAFT polymerisation in butyl acetate at 70 ˚C with [BMDPT]0 / [V601]0 = 10   

p(SMA)x-b-p(nBA)y 
Mn,TH

[a] 

(g/mol) 
Mn,SEC 

[b] 

(g/mol) 
Ɖ 

40-50 10800 13900 1.15 

40-80 14640 17700 1.14 

40-100 17200 19500 1.2 

[a] Determined using equation 4.4 (experimental section) 

[b] Determined using THF-SEC with PMMA narrow standards 

 

After, the success of the diblock copolymer synthesis, we investigated the one pot 

synthesis of a multiblock copolymer, without purification steps.  

4.2.3. Synthesis of p(SMA) and p(nBA) multiblock copolymer  

 

Applying the conditions established previously (Chapter 2) for butyl acrylate 

([BA]0 = 3 M, DP = 20, [BMDPT]0 / [V601]0 = 20) and styrene maleic anhydride ([SMA]0 

= 1.3 M, DP = 20) in acetate (40 % v/v), a multiblock copolymer of pBA-block-pSMA 

was prepared, achieving high monomer conversion ( ≥ 95 % ) within 14 hours (Scheme 

4.6). 

 

 

 

Scheme 4.5: Generalised approaches for preparing multiblock copolymers via a sequential 

addition of nBA and SMA in presence of V601 at 70 ̊ C in butyl acetate or methoxypropyl acetate. 
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The SEC molecular weight distribution (Figure 4.6) shows successful chain 

extension for each block, with a low dispersity, however, a small shoulder appears after 

the chain extension with n-butyl acrylate. As explained previously (Chapter 2), it is 

common to observe this shoulder for an acrylate monomer, possibly due to chain transfer 

to polymer or termination reactions, however, it could also be due to poor reinitation of 

pSMA with an acrylate. 

 

 

 

 

 

 

 

 

The Figure 4.7 shows a linear evolution of Mn,SEC  with the number of blocks and 

a low dispersity (Ɖ ≈ 1.25 for the tetrablock) after each chain extension confirming the 

controlled/living characteristic of the multiblock copolymer polymerisation. 

Figure 4.7: SEC-THF chromatograms analysis for p(SMA)20 macroinitiator and sequential 

addition of nBA25 and SMA20 prepared via RAFT polymerisation in presence of BMDPT 

RAFT agent in MPA solvent 

pSMA20
1H NMR : > 99 %

Mn,SEC = 2500 g/mol

Mn,TH = 2440 g/mol

Ɖ = 1.09

pSMA20-b-pBA25
1H NMR : > 99 %

Mn,SEC = 6250 g/mol

Mn,TH = 5640 g/mol

Ɖ = 1.22

pSMA20-b-pBA25-b-pSMA20-b-pBA20
1H NMR : > 95 %

Mn,SEC = 12850 g/mol

Mn,TH = 10230 g/mol

Ɖ = 1.25

pSMA20-b-pBA25-b-pSMA20
1H NMR : > 96 %

Mn,SEC = 10500 g/mol

Mn,TH = 7660 g/mol

Ɖ = 1.25

0

0.2

0.4

0.6

0.8

1

200 2000 20000 200000

w
 l

o
g

M

Molar mass (g/mol)



Chapter 4: Synthesis of SMA and subsequent modification of the polymer backbone 

151 | P a g e  

 Majda Akrach   

 

 

 

 

 

 

 

The low Ɖ values during each chain extension confirm the polymerisation control 

(Figure 4.7). By using a non-covalent process to coat the surface of a pigment, it is 

compulsory to have a specific functionality in the polymer, allowing for interaction 

between the CB surface and the polymer, hence the modification of maleic anhydride in 

the polymer backbone was performed using a highly reactive amine. 

 

Figure 4.8: THF-SEC data for synthesis of sequential addition of nBA25 and SMA20 

monomers. Evolution of experimental molar mass (Mn,SEC) and dispersity (Ɖ) versus 

the number of blocks for each successive block addition 
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4.2.4. Modification of poly(SMA) into poly (SMAD) in polymer backbone 

 

 

 

 

 

 

He-Yang Liu et al. have studied the mechanism and kinetics of pSMA in presence 

of aniline in order to prepare a maleimide derivative. They showed the two steps 

procedures with formation of an acido-amide group after ring opening, and the formation 

of the corresponding imide after ring closing.43 The analytical composition of each 

products is obtained by titration and confirmed by FT-IR measurements. In another paper 

published by He and coworkers, the equilibrium constant of the ring opening of the MA 

in presence of the amine in THF is determined at different temperatures (0-200 ˚C) and 

proved the potential reverse reaction can occurs at high temperature (k(200 ˚C) = 11 

L/mol/s). Also, increasing the temperature increased the ring-opening reaction rate.44 In 

this chapter, ring opening is performed at mild-temperature reaction (70 ˚C) in MPA 

solvent to allow the stirring of the polymerisation mixture as a strong gel is formed as 

soon as the amine is added. Performing this reaction as such low temperature, the 

reversible reaction can be neglected (Scheme 4.7). 

The poly(imide) is obtained by heating the reaction mixture at a high temperature, 

after water removal by Dean Stark apparatus, to yield a yellow powder.  

Scheme 4.6: First step of pSMA backbone using 3-5 eq of (dimethyl)aminopropylamine 

at 70 ˚C.  
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The starting material (pSMA) is slightly yellow due to the presence of the 

trithiocarbonate. The use of a primary amine induced the cleavage of the end group in the 

polymer chain yields a white compound. The 1H NMR in DMSO-d6 in the Figure 4.9 

shows clearly the disappearance of the alkyne chain (C12H25) from the RAFT agent 

present between δ = 1.0 - 2.5 ppm (blue trace) disappears after addition of DMAPAA to 

form the pSMAD homopolymer, however, the formation of the maleimide after the ring 

closure exhibits a strong yellow colour which is also observed for the diblock copolymer.  

  

 

 

 

 

 

 

 

Additionally, a concentrated samples (60 mg of purified polymer in 0.7 mL of DMSO-d6 

solvent) are run in 13C NMR to confirm the ring opening of maleic anhydride.  

Figure 4.9: 1H NMR analysis of p(SMA)20 before and after ring opening using 

dimethylaminopropyl amine (3-5 eq equiv.) run in a Brucker Avance (400 MHz) in DMSO-d6 
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Figure 4.10, both 13C NMR spectra of p(SMA)20 (purple trace) and p(SMAD)20 (blue 

trace) are overlapped. The success of the modification of the polymer backbone is proved 

by the disappearance of the peak characteristic of the maleic anhydride between 170 – 

180 ppm. However, a small shoulder seems to be present and can be attributed to a few 

units of unreacted maleic anhydride. Interestingly, the peak of the quarternary carbon of 

the styrene (δ = 140 ppm) is not anymore visible after addition of the amine. In Ha’s paper, 

the 13C NMR of pSMA (synthesised via free radical polymerisation in DMF with [SMA]0 

= 4 M) shows two broad peaks. One peak between 141.5 – 147.5 ppm (styrene) and the 

second peak between 136.5 -140.5 ppm (maleic anhydride). The author  compared several 

13C NMR and showed that using a small bulky group such as CH3 (present on a citraconic 

(α-methylmaleic) deshield or overlaped with the C7 of the styrene. A similar hypothesis 

can be used by considering a potential affect from the carboxylic acid group, the amine 

or  the amide present in the homopolymer.32 



Chapter 4: Synthesis of SMA and subsequent modification of the polymer backbone 

155 | P a g e  

 Majda Akrach   

 

 

  

 

 

 

 

 

 

 

 

Figure 4.10: Comparison of 13C NMR spectra analysis of p(SMA)20 (purple trace) and 

p(SMAD)20 (blue trace) obtained after a slow addition of DMAPA (3-5 equiv.) at 70 ˚C in MPA 

and precipitated in cold Et2O Spectrum recorded on a Brucker Avance (400 MHz) in DMSO-d6 
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The FT-IR spectrum of p(Styrene-alternating-MA) is given in Figure 4.11 the sharp 

peaks at 1770 and 1850 cm-1 are attributed to the symmetric and antisymmetric stretching 

vibration absorption peak of the carbonyl group (C=O) present in a maleic anhydride 

units, respectively. 

 

 

 

 

 

 

The modified pSMAD homopolymer FT-IR spectrum in the Figure 4.12 is also 

reported in order to assess the presence or absence of functional groups. The emergence 

of the asymmetric carbonyl group (C=O) at 1780 cm-1 and the disappearance of the 

symmetric carbonyl group (-C-O-C) peak at 1860 cm-1 confirm the success of the maleic 

anhydride ring opening. Additionally, the presence of the 3100 cm-1 (C-NH-) band attests 

the successful completion of the reaction.  

Figure 4.11: FT-IR spectrum of p(SMA)20 recorded after precipitation in cold 

hexane using Bruker Vector instrument 

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

600110016002100260031003600

T
ra

n
sm

it
ta

n
ce

 (
%

 T
)

Frequency (cm-1)

1850

1770

2920



Chapter 4: Synthesis of SMA and subsequent modification of the polymer backbone 

157 | P a g e  

 Majda Akrach   

 

 

 

 

4.2.5. Modification of poly(SMAD) into poly (SMI) in polymer backbone 

 

 

 

 

 

 

 

Figure 4.12: FT-IR spectrum of p(SMAD)20 recorded after precipitation in cold Et2O 

using Bruker Vector instrument 

 

Scheme 4.8: Formation of maleimide formation after dehydration of p(SMAD) intermediate 

at 125 ˚C. 
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The imide formation occurs via a cyclization process which increased according to the 

SMA concentration or reaction temperature.43 Due to the gel formation on the previous 

step, an excess of solvent is added to the transparent viscous-gel solution and heated up 

at 125 ˚C to remove the water. After 2 hours, the excess of solvent is removed and the 

polymer is purified by precipitation in cold hexane. The ring closing of p(SMAD) leading 

the p(styrene-alternating-maleimide) product is confirmed by 13C NMR analysis with the 

presence of the both symmetrical and asymmetrical bonds at 180 ppm. Surprinsingly, the 

peak at 140 ppm corresponding to the quartenary carbon of the styrene (C7) appears 

confirming the hypothesis of the potential overlapping peaks induced by a steric hindred 

intermediate pSMAD (Figure 4.13). 
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Figure 4.13: Comparison of 13C NMR spectra analysis of p(SMAD)20 (blue trace) 

and p(SMI)20 (green trace) obtained after water removal at 125 ˚C in MPA and 

precipitated in cold hexane recorded on a Brucker Avance (400 MHz) in DMSO-d6 
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Figure 4.14 of the FT-IR spectrum of the p(SMI)20 shows a strong imide peak appeared 

at 1683 and 1770 cm-1. No peaks characteristics of maleic anhydride (1780 -1850 cm-1) 

are observed and consequently, confirmed the full conversion of p(SMA) into p(SMI).45 

 

 

Figure 4.14: FT-IR spectrum of p(SMI)20 recorded after precipitation in cold hexane using Bruker 

Vector instrument 

The modification of the polymer backbone can also be assessed visually with the 

white color of the polymer after the cleavage of the RAFT agent in Figure 4.15 B and the 

strong yellow color suggesting the formation of the maleimide Figure 4.15 C. Several 

authors report the colouration of systems involving a maleimide homopolymer. Coleman 

et al. suggest the colouration is due to unsaturation of the maleimide.46 Tawney47 reported 

the anionic homopolymerisation of maleimide which yielded a red polymer. Finally, 

Kojima et al.48 have demonstrated a potential hydrogen transfer polymerisation procedure 

when a base-catalyst is used to polymerise maleimide. 
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 Different organic bases have been tested to form a maleimide, where it was found 

that the intensity of the colour increases significantly with increasing organic base 

strength.49,50 

Figure 4.15: Pictures of p(SMA)20 (A), p(SMAD)20 (B) and p(SMI)20 (C) showing the color 

modification after each steps. 

 

A complementary quantitative analysis method is used to compare the theoretical 

and experimental percentage of carbon, nitrogen and hydrogen before and after each 

modification step of the polymer backbone. In Table 4.2, a good agreement between the 

experimental and theoretical percentage of C,H,N for p(SMA)20. The increase in 

composition of nitrogen and oxygen confirms the successful functionalisation with 

DMAPAA in the polymer backbone, however, a difference of 10 and 2 % of carbon and 

nitrogen is noticed for p(SMAD)20 homopolymer indicating that some 

(dimethyl)aminopropyl amine is remaining after precipitation step. The C12H25 removal 

from the RAFT agent is also evidenced by the decreased carbon percentage (% C) of 

pSMA compared to pSMAD. An increase of % C from pSMAD into pSMI is observed 

and may be attributed to the presence of hexane used for polymer precipitation or one of 

the combustion products releasing either the nitric oxide, carbon dioxide or water. 

 

 

A B C
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Table 4.2: Elemental analysis of p(SMA)20, p(SMAD)20 and p(SMI)20 of theoretical and 

experimental carbon (% C), nitrogen (% N), and hydrogen (% H) after purification 

Sample %Cexp %CTH % Hexp %HTH %Nexp %NTH 

p(SMA)20 

 

68.8 69.3 5.6 5.8 0.06 - 

p(SMAD)20 

 

59.3 66.6 8.03 8.8 8.1 6.2 

p(SMI)20 

 

69.09 70.3 9.03 7.8 7.80 9.2 

  

 

4.2.5 Modification of p(nBA)-b-pSMA backbone copolymer 

 

Similar maleic anhydride modifications and analyses were conducted for the 

diblock and multiblock copolymers. Here, FT-IR and elemental analysis techniques are 

the most efficient methods.  

In the Figure 4.16 the FT-IR spectra of p(nBA)25-b-p(SMAD)20 and p(nBA)25-b-

p(SMI)20 are compared. The peak at 1560 cm-1 (C-NH-) and the disappearance of the MA 

peaks (1780 -1850 cm-1) confirmed the ring-opening of the MA present in the diblock 

copolymers. Moreover, the peaks at 1729 and 1769 cm-1 proved the maleimide formation. 
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 Table 4.3 records the theoretical and experimental percentage of C,H,N before 

and after starting modification of the MA. There is a good aggrement for the hydrogen 

percentage (% H) while the experimental percentage of carbon and nitrogen is slightly 

higher suggesting a presence of some residual reactant (DMAPAA) or the production of 

gas during the compound combustion. 

 

Figure 4.16: FT-IR spectrum of p(nBA)25-b-p(SMAD)20 in blue trace and p(nBA)25-b-

p(SMI)20 in green trace are recorded after precipitation in cold hexane using Bruker Vector 

instrument 
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Table 4.3 Elemental analysis of p(nBA)20-b-p(SMA)25, p(nBA)20-b-p(SMAD)25 

and p(nBA)20-b-p(SMI)25  after purification in cold hexane 

Sample %Cexp %CTH %Hexp %HTH %Nexp %NTH 

p(nBA)20-b-p(SMA)25 

 

69.8 67.2 6.8 7.9 - - 

p(nBA)20-b-p(SMAD)25 

 

67.1 66.0 8.5 8.7 6.5 4.4 

p(nBA)20-b-p(SMI)25 

 

70.08 67.9 8.42 8.7 6.83 4.5 

 

The Infra-red and elemental analysis data are similar for all the diblock co-polymer 

(8 kDa, 10 kDa, and 15 kDa) synthesised, as well as the multiblock copolymer. 

Interestingly, we observe poly(nBA)20-b-poly(SMAD)25 to be a sticky, white powder 

while the diblock p(nBA)20-b-p(SMI)25 is a yellow, viscous solution. 

 

4.2.6. Characterisations of homopolymer, diblock and multiblock copolymer 

 

 Size Exclusion Chromatography & Viscosity by Mark-Houwink-

Sakurada 

  

The physical, rheological and mechanical properties of a polymer depend strongly 

on the molecular weight distribution. Several techniques can be used to determine this 

information, such as 1H NMR, DOSY NMR, static light scattering (SLS) or size exclusion 

chromatography (SEC).  

Conventional SEC, whereby the refractive index (RI) is used to measure the molar 

mass distribution based on the elution time of the polymer, is usually not accurate as the 

elution time is related to the calibration of the column using polymers (such as 

poly(methyl methacrylate) or poly(styrene) with a narrow dispersity.  
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Hence, the molar mass obtained can be underestimated or overestimated, 

depending on the relative hydrodynamic volume compared to the standards used and also 

on the solubility of the polymer in the eluent. However, by combining a refractometer 

with a light scattering (LS) detector in the size exclusion chromatography (SEC) 

instrument it is possible to determine a more accurate molar mass distributions, Mn, and 

weight average molar masses, Mw. Another method to calculate the molar mass 

distribution is to use the intrinsic viscosity (IV), which is related to the hydrodynamic 

volume using Equation 1, where η is the intrinsic viscosity, V is the hydrodynamic 

volume, M is the molecular weight, and K is the constant.  

[η] = K 
𝑉

𝑀
 Equation 4.1 

The presence of a viscosity detector allows for the determination of the IV and the 

molecular weight distribution of the polymer based on the Mark-Houwink equation 

(Equation 4.2). 

M = K [η]α 

Equation 4.2: M is the molecular weight, [η] is intrinsic viscosity, K and α are constants 

Few studies have been undertaken to understand the effect of short chain of maleic 

anhydride on a molar mass distribution using size exclusion chromatography and dilute 

solution viscosity.51,52  

Here, triple detection SEC (a combination of DRi, LS and VS detectors) was used 

to determine an accurate molecular weight distribution of all the poly(nBA)-block-

poly(SMA) diblock copolymers before and after maleic anhydride modification, using 
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SEC in DMF eluent, with a UV detector set to 309 nm (absorbance of the RAFT agent). 

This was then compared with the molar mass defined by conventional size exclusion 

chromatography (Table 4.4).  

Table 4.4: Molar mass distribution of diblock copolymer of p(nBA)-b-p(SMA) after modification 

determined by RI and triple detection (UV : λ = 309 nm) by SEC-DMF 

Sample Solubility Mn.RI Mw,RI Mn.TRI MwTRI 

pBA50-b-pSMAD40  - - - - 

pBA80-b-pSMAD40 partially 21700 25000 72690 78500 

pBA100-b-pSMAD40   28800 34600 73700 74300 

pBA50-b-pSMI40   28650 33700 63570 70000 

pBA80-b-pSMI40   32800 36650 27502 31500 

pBA100-b-pSMI40   32720 39400 18500 21900 

  

The molar mass distribution, Mn, and the weight average molar mass, Mw, 

obtained by triple detection was three time higher than the result obtain using the 

refractive index (RI), suggesting a self-assembly behaviour of the amphiphilic block 

copolymer in DMF. The Mark-Houwink exponent, α, which assesses the conformation 

of the polymer in solution, was also defined by viscometry. For the intermediate polymer, 

α was close to 0.20 suggesting the formation of a branched polymer, while for the 

maleimide equivalent, the exponent α is close 0.55 indicating a more linear conformation. 

The triple detection analysis highlights the formation of branching or aggregate formation 

of the poly(maleic amido acid) in solution. 
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 Thermogravimetric analysis 

 

Thermogravimetric analysis (TGA) was used to study the thermal stability of the 

homopolymers and diblock copolymers before and after polymer backbone 

modifications. This analysis records the weight loss or gain throughout the heating profile 

(from 25 ̊ C to 600 ̊ C in this investigation) under nitrogen, or other, gaseous environment, 

at a given rate. Increasing the temperature causes the covalent bonds to break, and the 

polymer begins combusting. Therefore, changing in the chemical structure of the polymer 

backbone will likely influence the profile of decomposition. In order to maintain 

consistence of results, a similar sample weight (from 5 mg to 8 mg) was required. The 

normalized thermal degradation was analysed to determine the percentage of mass 

remaining (Figure 4.17). The three traces reveal a considerable difference between the 

precursor polymer and the two amine derivatives. A single decomposition temperature 

(Td) for pSMI and pSMA at 375 ˚C and 230 ˚C, respectively, can be observed, while 

pSMAD exhibits three distinct decomposition temperatures at 100, 150 and 350 ˚C. The 

decomposition temperature at 100 ˚C is attributed to the water evaporation then, the 

degradation at 150 ˚C can be related to the elimination of the carboxylic acid side chain, 

and the main decomposition at 350 ˚C results from polymer backbone degradation.  
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Overall, the thermal stability increases in the following order pSMAD > pSMA > 

pSMI. 

Following on, the diblock copolymer and its derivatives were analysed by TGA 

under similar conditions. The presence of the poly (n-butyl acrylate) with different 

degrees of polymerisation did not seem to affect significantly the profile of decomposition 

in comparison to the homopolymers previously described (Figure 4.18).  

 

 

Figure 4.17: TGA chromatograms of pSMA, pSMAD and pSMI homopolymers degradation 

submitted under nitrogen with a heating rate of 10 ˚C/min from 25 ˚C to 600 ˚C recorded with 

Mettler Toledo instrument  
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Here degradation temperatures at 100, 150 and 350 oC were found for poly(n-

BA)-block-poly(SMAD). An additional degradation is observed at 280 oC for poly(n-

BA)-block-poly(SMA) while only the degradation at 350 oC is present for the 

homopolymer.  

 

 

 

 

 

 

 

 

Similar data were obtained for the tetrablock copolymer poly(BA)25-block-poly 

(SMA)20-block-poly(BA)25-block-poly(SMA)20, and its derivatives (Figure 4.19). The 

molar mass of the multiblock, being similar to the diblock copolymer, would suggest the 

same rate of degradation would be expected.  

Figure 4.18: TGA chromatograms of p(nBA)25-b-p(SMA)20, p(nBA)25-b-p(SMAD)20, and 

p(nBA)25-b-p(SMI)20, diblock copolymers degradation submitted under nitrogen with a 

heating rate of 10 ˚C/min from 25 ˚C to 600 ˚C recorded with Mettler Toledo instrument 
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Moreover, the polymer architecture does not affect the profile of degradation as 

the polymer backbone and the side chain are similar to the homopolymers and diblock 

copolymers. 

 

 

  

 

 

 

 

Thermogravimetric analysis allows the study of the degradation of polymer structures 

over a wide range of temperatures. The presence of some functionalities gives rise to an 

earlier degradation of the polymer backbone. Moreover, a symmetrical architecture does 

not impact the profile of degradation as shown the TGA mass loss curves of the 

homopolymer (Figure 4.17), diblock copolymer (Figure 4.18) and tetrablock copolymer 

Figure 4.19: TGA chromatograms of p(nBA)25-b-p(SMA)20-b-p(nBA)25-b-p(SMA)20-, p(nBA)25-

b-p(SMAD)20-b-p(nBA)25-b-p(SMAD)20 and p(nBA)25-b-p(SMI)20-b-p(nBA)25-b-p(SMI)20, 

tetablock copolymers degradation submitted under nitrogen with a heating rate of 10 ˚C/min from 

25 ˚C to 600 ˚C recorded with Mettler Toledo instrument. 
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(Figure 4.19). This powerful technique is also used in a Chapter 5 to quantify the 

percentage of carbon black pigment coated onto the polymer. 

 

4.3. Conclusion 

 

 

In summary, a series of diblock copolymers with varied molecular weights (10 - 17 kDa) 

containing n-butyl acrylate and styrene-maleic anhydride with an overall dispersity of 

1.24, without purification steps, was synthesised using BMDPT RAFT agent. The 

versatility of SMA in nucleophilic substitutions allowing the establishment of a diverse 

library of functional polymers is reported. Then, the functionalisation of the polymer 

backbone was undertaken via a multistep process by using a functional primary amine. 

Spectroscopic techniques such as 1H NMR and FT-IR were used to confirm the presence 

of the functional moieties. In addition, the effect of these moieties on the polymer 

degradation is recorded by TGA for each polymeric architecture. Interestingly, the 

presence of the carboxylic acid impacts the behaviour of the polymer in the solvent and 

the rate of degradation of the polymer.  

The synthesis and modification of diblock poly(n-BA)-block-poly(SMA) via RAFT 

polymerisation was reported, for the first time in literature, and the materials were used 

as dispersant for carbon in a solvent born system. 
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4.4. Experimental 

 

4.4.1. Materials.  

 

Styrene (Aldrich, 99 %), maleic anhydride (Aldrich, 99%), 3-dimethylamino-1-

propylamine( DMAPAA) (Aldrich, 98%), n-butyl acrylate (Sigma, 98%), butyl acetate 

(Chromasolv plus, 99.7 %), propylene glycol monoethyl ether acetate (Sigma-Aldrich, 

99.5%), dimethyl2,2’-azobis(2-methylpropionate) (V601,Wako) 

azobis(cyclohexanecarbonitrile), butyl-2-methyl-2-[(dodecylsulfanylthiocarbonyl) 

sulfanyl] propionate (BMDPT, Lubrizol, 70 %). All chemicals were used without further 

purification.  

4.4.2. Method 

 

 Synthesis of poly(styrene-alternating-maleic anhydride) copolymer 

 

For a synthesis of SMA20 an equimolar amounts of styrene (10 eq, 0.5 g, 4.8 

mmol)  and maleic anhydride (10 eq, 0.47 g, 4.8 mmol) are mixed in a round-bottom flask 

with the initiator, BMDPT (1 eq, 0.20 g, 0.48 mmol) and 3 mL of MPA solvent. After 10 

min of degassing with nitrogen, the reaction mixture is placed in an oil bath at 70 ˚C for 

12 h. It has been extensively described in the literature that the copolymerisation of 

styrene and maleic anhydride are perfectly alternating, so we predict that the conversion 

of the maleic anhydride is similar to that of styrene. Mn,SEC = 7850 g/mol , Ɖ = 1.14 (THF-

SEC, triple detection). 1H-NMR (400 MHz, DMSO-d6, δ /ppm): 7.5 (s, 2H, -C(O)-

HC=HC-C(O)-O-), 7.25- 7.3 (m, 2H, Ar-CH=CH-), 5(s, 6H, trioxane),  
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1.9 – 0.9 (m, backbone). The vinyl peaks are compared at t = 0 and t =12 h. 13C-NMR:  

(400 MHz, DMSO-d6, δ /ppm): 19.1 (s), 22.5 (s), 28.5 (m), 30.2 (m), 65 – 63 (m), 67.5 

(s), 140 (m), 180- 170 (m). FT-IR: (cm-1) 2920 (m), 1850 (w), 1770 (s), 1454 (s), 1275 

(s), 1077 (s), 950 (s),916 (m), 700 (s). 

 Ring-opening of maleic-anhydride in p(SMA)20 

 

For a typical amidation process: p(SMA)20 (1 eq, 0.5g, 2442 g/mol, 2.0 x 10^-4 mol) is 

placed into a two neck round-bottom flask with a magnetic stirrer with 3 mL of MPA. 

The solvent was added in excess to avoid any gelation during the amidisation. Then, 

(dimethyl)aminopropyl amine reagent (3 eq, 0.613g, 6.0 x 10^-3 mol) is added slowly for 

30 min under strong mechanical stirring at 70 ˚C. The mixture was left to stir for 2 hours 

to form the poly(styrene-alternating-maleic acid) (pSMAD). The yellow viscous solution 

of pSMA became a white viscous mixture. The colourless nature of the system arises 

from the cleavage of the trithiocarbonate RAFT agent, and was confirmed by 1H NMR. 

Then, the solvent is removed and the polymer is precipitated in cold ether, and then dried 

overnight in vacuum oven. 1H-NMR (400 MHz, DMSO-d6, δ /ppm): 7.3 (m, 6H, Ar-CH2-

), 6.9 (broad, 1H, R-C(O)NH-(CH2)2-N(CH3)2 ), 4.0 (m, 2H, R-C(O)O-(CH2)4-), 2.3 – 

2.0 (m, 4H, R-C(O)NH-(CH2)2-N(CH3)2), 2.07 (s, 6H, R-C(O)NH-(CH2)2-N(CH3)2), 1.9 

– 0.9 (m,backbone). 13C-NMR: (400 MHz, DMSO-d6, δ /ppm): 19.07 (s), 20.54 (s), 22.57 

(s), 24.90 (m), 29.41 (m), 30.92 (m), 37.90 (s), 44.86 (s), 45.17 (s), 56.22 (br,m), 60.86 

(s), 63.50 (s), 77.68 (s), 143.13 (m), 179.0 (m). FT-IR: (cm-1) 3300 (br,w), 2934 (w), 1694 

(w), 1640 (m),1562 (s), 1390 (m). 
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 Synthesis of maleimide p(SMI)20 

 

The imidisation process was performed using Dean-Stark apparatus. An excess of 

solvent was added in order to dissolve the gel. Then the mixture was heated-up at 125 ˚C 

for 2 hours in order to get rid off of the water and form the poly(styrene-alternating-

maleimide). The amide intermediate product was solubilised in methanol and precipitated 

in hexane. 1H-NMR (400 MHz, DMSO-d6, δ /ppm): 7.2 (m, 6H, Ar-CH2-), 3.9 – 3.2 (4.0 

(m, 2H, R-C(O)O-(CH2)4- & R-CO-CH-CH-CO-N(CH2)3-N(CH3)2), 2.0 (s, 6H, R-

C(O)NH-(CH2)2-N(CH3)2), 1.9 – 0.9 (m,backbone). 13C-NMR: (400 MHz, DMSO-d6, δ 

/ppm): 19.10 (s), 23.09 (s), 25.15 (s), 27.55 (s), 30.09 (s), 36.54 (s), 38.29 (s), 45.38 (s), 

56.60 (s), 57.07 (s), 60.72 (s), 63.83 (s), 72.74 (s), 129.09 (m), 138.68 (m), 177.70 (m). 

FT-IR: (cm-1) 2930 (w), 2760 (w), 1770 (w), 1683 (s), 1440 (w), 1400 (m), 1346 (m), 

1150 (m), 1030 (w), 704 (s). 

 Synthesis of poly(SMA)-block-poly(nBA) copolymer 

 

For a typical synthesis of p(SMA)20-b-p(BA)25:  In the same flask set-up for the 

synthesis of pSMA20 as mentioned in 4.4.2.1, n-butyl acrylate (25 eq, 1.54 g, 12 mmol) 

and 2 mL of MPA are added to the macroinitiator. The mixture is bubbled with nitrogen 

for 10 min before being heated to 70 ˚C. To synthesise a multiblock copolymer, the 

sequential addition of SMA and butyl acrylate are added alternatively. 1H-NMR (400 

MHz, DMSO-d6, δ /ppm): 7.2 (m, 6H, Ar-CH2-), 4,21 (m, 2H,-C(O)O-CH2-CH2-CH2- 

CH3), 2.55 (m, 2H, -C(O)O-CH2-CH2-CH2-CH3), 1.9 – 0.91 (m,backbone, C12H25). FT-
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IR: (cm-1) 2930 (w), 2760 (w), 1850 (w), 1770 (w), 1683 (s), 1440 (w), 1400 (m), 1346 

(m), 1150 (s), 1030 (w), 750 (s). 

 

 Nuclear Magnetic Resonance (NMR) spectroscopy 

 

NMR (1H and 13C) were recorded on a Bruker AV-300 and DPX-500 in deuterated 

chloroform (CDCl3) or DMSO-d6. Chemical shift values (δ) are reported in ppm. The 

residual proton signal of the solvent is used as internal standard (CDCl3, δ = 7.26 or δ 

= 2.5 for DMSO-d6 ). The use of 1,3,5-trioxane is also used in a 1H NMR 

characterisation and mentioned in the spectra.  

 Determination of DPn,targeted and monomer conversion 

Monomer conversion (p) were calculated from 1H NMR data using equation 4.3: 

p = 
[M]0−[M]𝑡

[M]0
 = 1- 

[𝑀]𝑡

[𝑀]0
 = 1- 

∫ I5.5−6.75 ppm

∫ 𝐼𝑎

𝐷𝑃𝑛,𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑
 

Where [M]0 and [M]t are the concentrations of the monomer at time 0 and at time t, 

respectively, 
∫ 𝐼5.5−6.75 ppm

∫ 𝐼𝑎
 is the integral for the vinyl protons of the monomer, 

DPn,targeted is the number average degree of polymerisation targeted and ∫ 𝐼𝑎 is the 

integral of the two protons belonging to the CH2 of the acrylate (-O-CH2-CH2). 
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 Determination of Mn,TH  

The theoretical number-average molar mass (Mn,TH) is calculated using equation 4.4:  

 Mn,TH = 
[M]0𝑝[M]𝑀

[CTA]0
 + 𝑀𝐶𝑇𝐴 

Where [M]0 and [CTA]0 correspond to the initial concentrations (in mol/L) of monomer 

and chain transfer agent respectively; p is the monomer conversion as determined by 

equation 1, MM and MCTA are the molar masses (g/mol) of the monomer and chain transfer 

agent. 

 Size exclusion chromatography (SEC) 

 Number-average molar masses (Mn,SEC) and dispersity values (Ɖ) distributions 

were measured using size exclusion chromatography with THF as an eluent. The THF 

Agilent 390-LC MDS instrument was equipped with differential refractive index (DRI), 

viscometry (VS), dual angle light scatter (LS) and two wavelength UV detectors. The 

system was equipped with 2 x PolarGel Mixed C columns (300 x 7.5 mm) and a PLgel 5 

µm guard column. The eluent is THF with 2 % TEA(triethyl amine) and 0.01 wt./ V% 

BHT (butylated hydroxytoluene) additives. Samples were run at 1 mL/min at 30 °C. 

Poly(styrene) standards in rang of 2.0 x 102 g/mol to 2.0 x 106 g/mol was used to calibrate 

SEC system.. Analyte samples were filtered through a polytetrafluoethylene (PTFE) 

membrane with 0.22 μm pore size before injection. The calibration is setup by using a 

flow rate marker with a polynomial order of 3. Respectively, experimental molar mass 

(Mn,SEC) and dispersity (Đ) values of synthesized polymers were determined by 

conventional calibration using Agilent GPC/SEC software. DMF-SEC -Agilent 390-LC 
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MDS instrument equipped with differential refractive index (DRI), viscometry (VS), dual 

angle light scatter (LS) and UV detectors. The system was equipped with 2 x PLgel Mixed 

D columns (300 x 7.5 mm) and a PLgel 5 µm guard column. The eluent is DMF with 5 

mmol NH4BF4 additive. Samples were run at 1ml/min at 50 ˚C. Poly(methyl 

methacrylate) standards (Agilent EasyVials) were used for calibration between 500 – 

955,00 gmol-1. Analyte samples were filtered through a nylon membrane with 0.22 μm 

pore size before injection. Respectively, experimental molar mass (Mn,SEC) and dispersity 

(Đ) values of synthesized polymers were determined by conventional calibration and 

universal calibration using Agilent GPC/SEC software. The Kuhn-Mark-Houwink-

Sakurada parameter α, relating to polymer conformation in solution is determined from 

the plot of intrinsic viscosity as a function of the molecular weight, using Agilent 

software. 

 MALDI-ToF-MS analysis 

Matrix assisted laser desorption-ionization time of flight mass spectrometry is performed 

on a Brucker Daltonics Ultraflex in the positive ion and reflection mode using external 

calibration (PEG1500 and PEG5000). DCTB (trans-2-[3-(4-tert-Butylphenyl)-2-methyl-

2-propenylidene]malonitrile is used as a matrix (300 mg/mL in THF) and used as 

purchased (Sigma-Aldrich). NaTFA salt is used as ionization agents (10 mg/mL in THF). 

Matric, salt and polymer solution (10 mg/mL in THF) are mixed in a 1:1:1 ratio and then, 

2 µL of the mixture is applied to the target plate. 
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 Thermogravimetric analysis (TGA) 

Experiments were performed to determine the thermal degradation of the 

copolymers and to quantify the amount coated on the carbon black surface. TGA 

measurements used a Mettler Toledo StareE TGA which was run in aluminium pan (40 

µL) with a sample mass between 4 and 12 mg. All the samples were submitted under 

nitrogen with a heating rate of 10 oC/min from 25 °C to 600 °C for the polymer and from 

25 °C to 1000 °C for the carbon black.  

 Fourier transform infrared (FTIR) 

FTIR analysis was used to monitor the reaction and find the optimum condition 

for imidisation of the maleic anhydride. Data were recorded on a Bruker Vector 

instrument using ATR mode (attenuated total reflection). The pSMAD and pSMI were 

precipitated and dried overnight in the vacuum oven before analysis. Each spectrum was 

obtained from 50 scans at room temperature with a resolution of 1 cm-1 in absorption 

mode.  

 Determination of the number fraction of living chains L 

 

The number fraction of living chains is determined by the following equation 4.5: 

𝐿 (%) =
[CTA]0

[CTA]0+2.𝑓.[𝐼]0.(1−𝑒−𝑘𝑑𝑡).(1−𝑓𝑐
2

)
     (Eq 4.5) 
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For the butyl acetate/Vazo-88/90 ˚C system, we considered:  kd(Vazo-89,90 ˚C) = 

1.9254 x 10-5s-1 with Ea = 154.1 KJ/mol.K. For the butyl acetate/V601/70 ˚C system, the 

constant of dissociation (kd) is similar to V-40 at 90 ˚C with Ea = 131.2 KJ/mol.K. 
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This chapter compares the properties of a range of dispersing agents. In addition, the 

specific physico-chemical properties required for block copolymers to act as dispersants 

are discussed. The block copolymer contained a binding moiety compatible block, 

providing steric stabilisation and allowing an anchor point, allowing for enhanced 

pigment surface affinity increasing the adsorption mechanism on the pigment surface. 

Based on this, the block copolymers described in Chapters 2, 3 and 4 were tested in their 

ability to enhance dispersion of carbon black FW200 (CB FW200) in solvent borne 

media. Dynamic light scattering (DLS) and Nanotrac Analysis were used to study the 

potential self-assembly of the amphiphilic block copolymer in organic media and to 

characterise the particle size distribution of the carbon black coated by the polymer, 

which is supported by TEM images. Also, the quantification of the polymer coated was 

determined by thermogravimetric analysis to determine the polymer architecture most 

suited to dispersing carbon black effectively.  
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5.1. Introduction 

 

 

 Carbon Black pigment 

 

Carbon black (CB) manufacturing leads to small and fine porous carbon particles 

obtained after pyrolysis of hydrocarbons from a petroleum-based feedstock. Most of the 

carbon pigments are supplied either as powders, which can be easily dispersed, or as 

granules, which are more challenging to disperse as the dense and compact granules 

require the use of a source of shear stress, such as grinding or milling, to break the 

agglomerates. There are numerous different forms of carbon black well suited to different 

applications. A summary of CB have been reported in this following table (Table 5.1): 

Table 5.1: Size of Carbon Black particles, aggregates and agglomerates 

Carbon black Primary particle 

(nm) 

Aggregate 

(nm) 

Chemical 

process 

Thermal 120-500 400-600 Thermal-

oxidative 

Oil-furnace 10-400 50-400 Thermal-

oxidative 

Channel 10-30 50-200 Thermal-

oxidative 

Lampblack 60-200 300-600 Thermal 

Acetylene Black 30-50 350-400 Thermal 
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 Manufacturing processes 

 

The thermal black pigment is predominantly used as filler elastomer and is obtained by 

the decomposition of hydrocarbon gases in the absence of oxygen, producing a very 

coarse particle. 

Furnace black is the most commonly used carbon black pigment, and corresponds to 

roughly 90 % of the world production. It is obtained from aromatic hydrocarbons (oil or 

gas), and has a heterogeneous particle size distribution with a neutral pH surface. The oil 

is injected into a heated chamber and decomposed to form carbon black particles. The 

reaction is quenched with water which allows the separation of the gas and product. 

Channel type carbon black has the smallest particle size. The manufacturing process 

involves the contact of a natural gas flame with a steel channel in the presence of 

atmospheric oxygen, resulting in a particle with a high concentration of oxygen on the 

surface and low pH. This process is not environmentally friendly and gives a low yield. 

Moreover, other types of carbon black can be easily oxidised to give similar surface 

properties as channel black; a process which is more cost effective. 

Lampblack pigment is the result of burned petroleum products and is composed of large 

particle sizes. This technique is not suitable for a mass production. 

Acetylene black is obtained from the thermal decomposition of acetylene gas forming a 

carbon black pigment with a high crystallinity and is widely used for electric devices.1 

All these manufacturing processes directly impact the physical and chemical properties, 

allowing targeting towards a wide range of applications, such as a reinforcing filler, for 

the long-term weathering performance, UV stability and coating.2,3  
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Properties such as structure, surface chemistry4,5 porosity6,7 and particle size of carbon 

black can directly influence its performance for different applications. Some carbon black 

pigments have thermal and conductivity properties8 and therefore can be used in thermal 

pastes.9,10,11 Alternatively, adding dispersing additives to the pigment in solution can 

improve the conductivity, and thus expand the potential applications.12  

 Fundamental properties 

 

As previously discussed, the manufacturing process can result in very different physico-

chemical properties, which can ultimately affect their desired application. The structure 

and morphology (shape, size and distribution) are other criteria which strongly influence 

the colour and resulting application properties. The most important parameters to consider 

when coating carbon black is the jetness (or opacity of the colour), (consequently the 

optical density, viscosity and the tinting strength), which is related to the particle size. 

The term “structure” is usually referred to as the formation of particles such as 

agglomerates or aggregates, which vary from an individual particle to cluster (Figure 

5.1).13 
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Porosity and surface area are also considered in industrial application. Indeed, the surface 

activity highlights all the potential interactions with the material surface. Many chemical 

and physical reactions can been performed to modify the surface activity. For instance,  

an oxidation processes will increase the ratio of oxygen on the surface, while induction 

at high temperature in an inert atmosphere will cap all the functional groups present on 

the pigment, resulting in an inert particle.8,14,15,16 The oxidised carbon black having the 

capability to alter the pH of carbon pigment is by far the most abundant and can be the 

result of one of the three types of surfaces; neutral, basic or acidic. A neutral surface is 

obtained by the irreversible adsorption of oxygen at the unsaturated sites present at the 

surface. Treatment of the carbon surface above 1000 ˚C in the presence of oxygen forms 

some heterocyclic oxygen-containing rings, leading to basic conditions.  

 

 

Figure 5.1: Structure and surface characteristics of CB13 
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Lastly, the formation of phenolic, quinone, or carboxylic groups, provides a polar 

character to the carbon black and is obtained either at a high temperature (up to 400 ˚C) 

in presence of oxygen or by using an oxidising solution at room temperature. Some other 

heteroatoms can be utilised, such as nitrogen, sulphur and chlorine, to modify the CB 

surface.17 Other bonds are also present at the surface, such as carbon-hydrogen bonds, 

located at the edges and corners of the graphitic crystallites due to the chemisorption of 

water, allowing the formation of hydroxyl, hydroquinone or phenolic groups. A complex 

of carbon-nitrogen bonds, at a concentration below 1 % depending on the manufacturing 

conditions, can also be found and are formed at a temperatures above 900 ˚C. Different 

structures of carbon-sulphur moieties (such as organo-sulphur and inorganic sulphate) 

can be detected in some black pigments. The presence of hydrogen at high temperature 

will release hydrogen sulphide, which is a very poisonous and corrosive gas, which is an 

important safety consideration during surface modification. Finally carbon-halogen 

bonds can be present on the surface depending on the chemical process used during 

manufacture and the nature of the carbon surface. 

As mentioned previously, the high specific area requiring a high dispersant loading, the 

poor polarity and the good affinity for oil absorption, highlight the challenges in 

dispersing the carbon black pigment in water or organic media. Also, due to the fine 

nature of the material, it can be difficult to obtain a stable dispersion after the grinding 

process. To face this problem and to reduce the production cost, industrial processes use 

additives18,19 including amine20 and imide.21 
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As such, this chapter describes the efficiency of different classes of polymers (statistical 

and diblock), polymerised via reversible addition-fragmentation chain transfer, used as 

dispersants. One specific grade of carbon black pigment (CB FW200) is characterised by; 

BET, TGA, Raman spectroscopy, infra-red, pH, TEM and dynamic light scattering (DLS) 

to evaluate the structure and functionalities present on the pigment surface and to 

determine the interactions with the dispersant. Then, the polymeric dispersants were 

milled in presence of CB FW200 and the particle size distribution analysed using 

Nanotrac analysis and TEM. The quantitative study of the polymer coated on the carbon 

black surface was performed by thermogravimetric analysis. 

 

5.2. Results and Discussion 

 

5.2.1. Carbon Black characterisation 

 

 BET 

One of the most important criteria for a good pigment wetting is the shape and the surface 

of the pigment. The Langmuir model was developed by Irvin Langmuir in 1916, it 

describes the surface coverage of an adsorbed gas above a single layer surface and is 

commonly used to determine the surface area.22 An extension of this model was 

developed by Stephen Brunauer, Paul Hugh Emmet and Edward Teller, known as the 

“BET” model.23 Contrary to the Langmuir model, they consider the formation of multiple 

layers of gas molecules adsorbed physically onto the solid surface (Figure 5.2). 
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To determine the adsorption mechanism and properties of carbon black used in this study, 

the BET model was considered. The amount of adsorbed nitrogen is used to evaluate the 

total and external surface areas at several pressures of nitrogen. The adsorption and 

desorption isotherms for CB FW200 under nitrogen are shown in Figure 5.3. A hysteresis 

loop is observed indicating Type IV isotherms, which suggests that the surface of the 

carbon black particles are mesoporous i.e. there is multilayer formation occurring, 

suggesting a weak interaction between the adsorbate molecules. 
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Figure 5.2: Langmuir model (a) and BET (Stephen Brunauer, Paul Hugh Emmet and 

Edward Teller) measurement mechanism (b) 

Figure 5.3: Adsorption and desorption measurement of CB FW200 
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The BET equation was then used to determine the surface area of CB FW200 and the 

particle diameter (Table 5.2), which correlate with the data reporter by Pawlyta.24 

 

Table 5.2: Carbon content, surface area and particle diameter of CB FW200 

 Carbon Black FW200 

Carbon content (%) 99.1 

Particle surface area (m2/g) 539.1 

Particle diameter (nm) 18 

 

This preliminary data is required in order to optimise the subsequent milling steps. A 

higher surface area will improve the penetration of the solvent into the pigment particle 

(wetting step) and so reduce the viscosity of the polymer and carbon black mixture 

(milling). 

 

 Determination of functional group by Raman and Infra-Red spectroscopy  

 

Carbon black is well-known to be a mixture of graphitic and amorphous like 

particles, giving specific properties. Here, the structure was analysed by different 

techniques such as Raman spectroscopy and microscopy (HRTEM). HRTEM images 

provide few options for quantitative analysis and need to be combined with powder X-

ray diffraction (XRD) and Raman spectroscopy.25,26 Raman, XPS and Infra-Red (IR) are 

a complementary techniques giving different information about the carbon composition 

and functional groups present within a system.  
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Pawlyta et al. have described the carbonisation and graphitisation of five grades 

of carbon black including the CB FW200 used here.24 Raman spectra were collected in 

the 500 – 3000 cm-1 range using a 20 mW laser at 532 nm and spectral resolution at 4.5 

cm-1. A video microscope system coupled to the spectrometer was used to facilitate the 

laser on the sample surface. Using the microscope objective, non-uniform spherical 

particles were observed. The spectra were collected at different places with objectives at 

x20, 50 and 100, at room temperature in 120 seconds to avoid any sample degradation. 

The decomposition of the spectra was carried out using instrument specific software 

following Sadezky’s method.27 The spectrum reveals the presence distinctive Raman 

peaks suggesting different structure of carbon materials (Figure 5.4). The D-band peak 

at 1340 cm-1 represents the level of disorder of the crystal structure while the G-band peak 

at 1580 cm-1 is associated with the graphite structure. 
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Figure 5.4: Raman spectrum of CB FW200 
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The infra-red (IR) spectrum of carbon black pigment was also recorded but it was not 

possible to assess the different functional groups due to poor resolution due to the strong 

opacity (Figure 5.5). Despite this, carbonyl groups are observed which can suggest the 

presence of carboxylic acid and ester moieties on the surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 X-ray Photoelectron Spectroscopy analysis 

 

Deconvolution of XPS signals gives the energy of the (C1 s) peak for CB FW200, 

presented in Table 5.3. The percentage of carbon (85.73 %), oxygen (14.0 %) and sulphur 

(0.27 %) is obtained by XPS analysis and performed with a monochromatic Al kα x-ray 

source (hν 1486.6 eV).   
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Figure 5.5: Infra-red of Carbon black FW200 
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Table 5.3:  XPS data of Carbon Black FW200 

Binding energy 

(eV) 

Bonding 

environment 

% of region 

284.48 Carbon Sp2 82.45 

286.42 C-O 5.06 

288.52 C = O 7.8 

290.5 π-π* 4.70 

 

 

 TEM analysis  

 

The carbonisation and partial graphitization of carbon black pigment (CB FW200) 

predominantly used for this thesis was also analysed by HRTEM as a raw sample 

(untreated) at 2600 ˚C by Pawlyta et al.24 (Figure 5.6). 

 

 

 

 

 

 

 

The formation of distorted and disoriented concentric layers are clearly detected. The 

temperature appears to affect the shape of the layer, giving polyhedral planar forms also 

observed in previous studies.28  

 Figure 5.6: HRTEM of Carbon black FW200 24 
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Only small stacks of planar layers are present in CB FW200 via HRTEM which is typical 

for a nongraphic carbon. The diameter and morphology of the materials were recorded 

by transmission electron microscopy (TEM) at different magnifications. This is a 

powerful technique to measure the particle size distribution using imaging software 

(ImageJ). The images (Figure 5.7) reveal that carbon black is partially dispersed, 

however, the majority of the sample is composed of aggregates.  

 

 

 

 

 

 

 

 

 

 

 

 

These primary aggregates (clusters) are usually formed by a fusion of primary particles, 

while the agglomerates contained a large number of aggregates physically linked 

together. 

 

 

 

 

 

Figure 5.7: TEM images of Carbon black FW200 pigment dispersed in acetate solvent 

(0.1 % w/w). Scale: 500 nm (left) and 0.1 nm (right) 
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 Thermogravimetric Analyses of Carbon Black FW200 

 

The thermal decomposition of the carbon black (FW200) was fully studied by 

Jakab et al.29 They studied the effect of the thermal decomposition of carbon black in 

presence of broad range of polymers, such as polypropylene (PP), polyethylene (PE), 

polystyrene (PS), polyacrylonitrile (PAN) and polymethyl methacrylate (PMMA), using 

thermogravimetric analysis coupled with mass spectrometry (TGA/MS) and pyrolysis-

gas chromatography coupled with mass spectrometry (Py-GC/MS). The presence of the 

carbon in the polymerisation mixture modified the decomposition rate of PAN, PE, PS 

and PP due to the interactions (hydrogenation, intermolecular reactions or steric 

hindrance) between the polymer backbone and the pigment. 

Here, the thermal degradation of the carbon black pigment was studied by 

thermogravimetric analysis from 25 - 800 ˚C. A first rate of degradation is observed 

before 150 ˚C, which may be attributed is related to the degradation of small molecules 

such as solvents (including water an carbon dioxide) or residual reactants (Figure 5.8). 

The mass spectrometry data reported by Jakab confirm the release of carbon dioxide and 

water.29 They also found 93 % of residual carbon between 200 – 550 ˚C, which is in good 

agreement with our data, in which the full degradation of the pigment begins above 550 

˚C. 
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 Solution acidity 

 

  For the carbon material, Boehm titration has been used in order to determine the 

different functional groups present in three different carbon surfaces.30 Jakab et al. found 

that for CB FW200, any basic group could be present, but predominantly carbonyl, 

phenolic, carboxyl and lactone groups were found, which suggests that the pigment is 

highly acidic.  

To confirm this, 700 mg of pigment was mixed in 10 mL of water and sonicated for 10 

min. The mixture was left for 10 more minutes to allow the carbon to settle. A pH-meter 

was used to determine the pH of this slurry. After calibration, a pH of 1.95 was recorded 

which confirms the acidic nature of this sample. 

 

 

 
Figure 5.8: TGA chromatogram of Carbon black FW200 heated to 1000 ˚C with an 

heating rate of 10 ˚C /min in nitrogen. 
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 Measure of particle size of Carbon black pigment in organic solvent by DLS 

 

Several grades (furnace, channel, lamp, acetylene or thermal blacks) of carbon black are 

commercially available and are different in their aggregate shapes, sizes and distributions. 

Moreover, some chemical or thermal treatments can also potentially change their 

properties. The formation of spherical primary particles of carbon black are due to the 

rearrangement of carbon radicals and fragments. The average surface area is around 1500 

m2 for fine particles and 25 m2 for coarse (aggregates). It is crucial to consider the particle 

size distribution as it is related to the pigment properties, such as wetting, rheology and 

thermal degradation caused by temperature. The size of the particles is generally 

determined by using dynamic light scattering in aqueous or organic solutions. In a solvent, 

the particles move randomly due to Brownian motion. As the laser is fired through the 

suspension, it interacts with and scatters from the moving particles. By measuring the 

change in scattering over time (due to particle movement), it is possible to calculate a 

diffusion coefficient, from which a particle size distribution can be determined. For 

reliable data, the solution must be non-turbid and the component should not absorb the 

light, as is the case for some forms of carbon black. Additionally, the refractive index of 

both solvent and sample must be known for reliable DLS data. In the present study, a 

solution of 1 mg/mL carbon black in butyl acetate was sonicated for 10 mins to break any 

agglomerates, and then filtrated. The particle size was determined by DLS using Malvern 

Zetasizer NanoZS instrument in a quartz cuvette. The intensity of scattered light from the 

suspension gives an overview of different sized particles present in suspension.  
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It is important to note that DLS gives preference to larger particles due to an increased 

intensity of scattered light from larger particles.  

The broad and bimodal distribution recorded in methoxypropyl acetate (refractive index 

1.402) indicates the presence of the large aggregates with an average size of 190 nm and 

a Pdi of 0.37 (Figure 5.9).  

 

 

 

 

 

 

 

 

 

 

5.2.2. Dispersion of Carbon Black using block copolymer 

 

The dispersion of pigment using polymers is guided by the affinity of the non-covalent 

interactions from the anchor group of the polymer with the surface of the material, 

however, many other parameters must be considered for a strong pigment affinity. All the 

range of diblock copolymers using a several classes of monomers (acrylate, methacrylate 

and styrene-alternating-maleimide) synthesised and reported in Chapters 2, 3 and 4 were 

milled with a loading of 60 % in the presence of carbon black and glass beads in similar 

conditions. The effect of the molecular weights of 10 kDa, 15 kDa and 22 kDa were tested 

in order to assess effectiveness as dispersion agents.  

Figure 5.9: Particle size distribution of CB FW200 in acetate solvent 
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Dynamic light scattering and Nanotrac analysis were also used to evaluate the 

amphiphilic block after milling and to measure the particle size distribution. An average 

particle size of between 200 nm and 400 nm is targeted to reach the optimal physical 

properties for the coating application. Transmission electronic microscopy was performed 

on all samples to confirm the data obtained by DLS. Finally, thermogravimetric analysis 

is inescapable to quantify the amount of polymer coated on the carbon black pigment 

surface. 

 

5.2.2.1. Dispersion using p(DMAEMA)x-b-p(nBA)y block copolymers 

 

The first diblock copolymer attempted, composed of DMAEMA and nBA, was tested on 

dispersion. As stated in Chapter 2, a poor control of methacrylate homopolymer using 

BMDPT leads to a bimodal distribution after addition of nBA (Ɖ  1.5). Only the presence  

if homopolymers (DMAEMA and nBA) are observed. As a control, MCTP RAFT agent 

was used in order prepare a well-defined copolymer. Using MCTP CTA gives a high 

proportion of block copolymer but some non-reinitiated pDMAEMA remains after the 

chain extension. Nevertheless, the dispersion studies of these blocks were performed in 

order to assess the importance of the polymeric structure on pigment dispersion. The 

particle size distribution was analysed by DLS and Nanotrac in butyl acetate after 16 

hours of milling of each diblock copolymer of poly(DMAEMA)-block-poly(nBA) with a 

degree of polymerisation of 55/19, 70/35 and 100/50 respectively. Particle size 

distribution of carbon black obtained by using poly(DMAEMA)-block-poly(nBA) as a 

surfactant shows a constant value of D50 (50 % of the particles have a size below D50) 

with an average value between 300 and 400 nm.  
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However, a broad distribution of D90 (90 % of the particles have a size below D90) 

indicates the presence of aggregates (Figure 5.10). The non-controlled particle size 

distribution shows the poor efficiency of the diblock copolymer. The bimodal molar mass 

distribution observed in the SEC molecular weight distribution suggests the presence of 

free poly(DMAEMA) and diblock copolymer in the polymerisation mixture. However, 

the homopolymer DMEAMA can easily cover the carbon black surface via Van der Waals 

interactions, thus competing with the diblock copolymer in solution and decreasing the 

steric stabilisation effect brought by the n-BA block to act as a stabiliser. Also, the highly 

acidic surface of the pigment allows the protonation of the tertiary amine and forms a 

strong hydrogen bound. In comparison, using a well-defined diblock copolymer obtained 

with MCTP RAFT agent allows better control over the particle size distribution with the 

value of D50 and D90 expected (Figure 5.11). Hence, this control proves the importance 

of the polymer structure on pigment dispersion. The only effect of the diblock copolymer 

in solution is to induce a perfect interaction of DMAEMA block with the pigment surface, 

and allows the n-BA block to repulse the other pigment in solution via a steric mechanism.  
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Interestingly, the degree of polymerisation does not affect the size of the particle, giving 

the opportunity to design a wide range of macromolecules.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

200

400

600

800

1000

1200

167 180 170
275 273

288

P
a

rt
ic

le
 s

iz
e 

d
is

tr
ib

u
ti

o
n

 (
n

m
)

MCTP

D50

D90

55/19 70/35 100/50

0

200

400

600

800

1000

1200

290 300

400400

540

1040

P
a

rt
ic

le
 s

iz
e 

d
is

tr
ib

u
ti

o
n

 (
n

m
)

D50

D90

BMDPT

55/19 70/35 100/50

Figure 5.10: Particle size distribution of p(DMAEMA)-b-p(BA) copolymer synthesised  

with BMDPT RAFT agent (DPn = 55/19, 70/35, 100/50) at 25 ˚C using in butyl acetate 

solvent analysed by Nanotrac instrument 

Figure 5.11: Particle size distribution of p(DMAEMA)-b-p(nBA) copolymer 

synthesised  with MCTP RAFT agent (DPn = 55/19, 70/35, 100/50) at 25 ˚C using in 

butyl acetate solvent analysed by Nanotrac instrument 
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As such, in order to use the BMDPT RAFT agent to prepare diblock copolymers, an 

alternative synthetic strategy was investigated to design a well-defined diblock 

copolymer. To this end, polymerisation of acrylates using BMDPT is relatively well-

controlled, and therefore a pure acrylate diblock copolymer was made by batch 

polymerisation. 

 

5.2.2.2. Dispersion using acrylate block copolymer 

 

 

 

 

 

The acrylic monomers are widely used due to their large commercial availability and 

good compatibility with coating systems. Auschra et al. have reported the synthesis of 

p(nBA)-block-p(DMAEA) via NMP and ATRP methods and used to disperse red 

pigments with different surface area in butyl acetate solvent. The variation of the 

anchoring block (pDMAEA) and stabilizer block p(nBA) molecular weight was studied 

and found that increasing the length of the anchoring group leads a better stabilisation 

while a the effect of the p(nBA) length can significantly change the block copolymer 

efficiency.31 Here, the structure of the both block and statistical p(nBA)n-p(DMAEA)m 

copolymer synthesied in presence of BMDPT RAFT agent via RAFT polymerisation 

technique is reported in the Figure 5.12. The statistical copolymer is used to assess the 

importance of the polymer configuration on the pigment dispersion efficiency.  

Figure 5.12: Polymeric structure of p(nBA)n-b-p(DMAEA)m versus p(nBA)n-stat-p(DMAEA)m  

copolymers 

 

versus
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Figure 5.13 gathered the physical, thermogravimetric and microscopic characterisations 

of the carbon black dispersion in presence of the polymer. The nanotrac data (Figure 5.13 

A) gives a consitant particle size distribution for the block copolymers for a targeted 

molecular weight of 10 kDa and 15 kDa while an increase of the D50 and D90 is observed 

when a higher molecular weight is targeted (22 kDa) which can be attributed to the 

interpenetration of long hydrophobic polymer chains leading to the formation of 

aggregates. In parallele, the particle size distribution is also investigated in dynamic light 

scattering (DLS) by analysing an accurate solution with a concentration of 2 mg/ml 

prepared from the milling (pigment + polymer + solvent + glass beads) mixture (Figure 

5.13 B). The particle size obtained by DLS is lower in comparsison to nanotrac analysis. 

The DLS measurement is limited to a range of size comprise between 1 nm and 1000 nm 

suggesting that the sample is compatible with DLS technique. It is worth mentioning that 

there are many parameters which should potentially affect the data such as the 

concentration of the sample, the solubility of the polymer in the solvent, the wavelength 

used…Also is the system is polydisperse, the larger particles could hide the scsttering 

from the smaller one which gives an erroneous results. Additionally, the measure of the 

dispersity is giving by the value of the PDI. Lower is the PDI (close to 0) more the system 

is monodispersed. The PDI of the block copolymers obtained being below 0.2, the system 

can be considered monodispersed. Figure 5.13 C, thermogravimetric analysis was used 

to quantify the amount of polymer coated onto the surface of the carbon black. Purified 

polymers were initially analysed to determine the thermal degradation points. As stated 

previously, the carbon black FW 200 begins to degrade around 550 ˚C, which is higher 

than polymeric materials (250 -350 ˚C).  
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Milled samples were loaded with 60 % w/w of polymer and the analysis was run under 

nitrogen at a heating rate of 10 ˚C/min from 25 to 600 ˚C. Additionally, a certain volume 

(between 0.5 mL and 1.5 mL) of the loaded mixture was centrifuged, to remove any non-

coated polymer, and left to allow the carbon black coated material to settle. The 

supernatant was removed and the sediment was washed with acetate. The thermograms 

representing the mass loss curves of carbon black coated with the well-defined diblock 

copolymers show two temperatures degradation. The first degradation was around 150 

˚C, which can be attributed to the evaporation of acetate (117 ˚C for butyl acetate and 143 

˚C for methoxypropyl acetate). Then, a full pyrolysis of the diblock copolymer is 

observed from 250 ˚C to 450 ˚C. Figure 5.13 D, an overview of the samples recorded by 

TEM at low magnification (x 12000) where a few dispersed pigments can be observed. It 

should be noted, however, that the drying process can lead to the formation of aggregates. 

Despite this, the sizes obtained correlate with the particle size distribution obtained by 

Nanotrac. As a general statement, the different polymer chain length targeted for the 

anchoring and stabiliser group did not affect the dispersion efficiency. 
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In contrast, the statistical copolymer used to disperse carbon black generates only 

aggregates and agglomerates species with high D50 (~ 500 nm) and D90 (~ 700 nm), 

indicating poor adsorption of the anchor group to the pigment surface (Figure 5.14 A). It 

is likely that the alternating structure of DMAEA and nBA does not exhibit sufficient 

interaction points, meaning that the tertiary amine is not available to interact with a carbon 

surface. The particle size distributions obtained by DLS are bimodal and the PDI is above 

0.2.  
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Figure 5.13: Block p(nBA)-b-p(DMAEA) copolymer synthesised with BMDPT RAFT agent 

(DPn = 55/19, 70/35, 100/50) characterisations. Particle size distribution analysed by Nanotrac 

instrument (A) and DLS (B). TGA graphs of CB FW200 coated with p(nBA)n-block-p(DMAEA)m 

copolymer heated up to 600 ˚C (C). TEM images conducted using a JEOL 2100 operating with a 

200 kV prepared by drying a drop of dilute sample (0.01 wt.%) on a 300 Mesh carbon coated 

grid: Scale : 100 nm (D) 
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The broader particle size distribution with a shoulder around 100 nm suggestes a 

presence of the primary particles and aggregates mixture. The main peak is around 350 

nm which is smaller in comparison to Nanotrac data (460 nm) which can be explained by 

the low concentration of the solution or the biggest particles are settled and not detected. 

The TGA profiles remain identique to the TGA recorder for the block copolymer (Figure 

5.14 C), however, the percentage of polymer coated is 43 % for the statistical while is 65 

% for the block copolymer which prove that the efficiency of the pigment dispersion is 

strongly related to the polymer configuration (i.e. diblock versus statistical). To be 

consistant, the TEM sample was prepared (0.01 w %)  and analysied (x 12 000) by using 

the same condition. Figure 5.14 D, shows clearly the formation of aggregate which 

correlates with the scattering data. 
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Figure 5.14. p(nBA)-stat-p(DMAEA) copolymer synthesised with BMDPT RAFT agent (DPn 

= 55/19, 70/35, 100/50) characterisations. Particle size distribution analysed by Nanotrac 

instrument (A) and DLS (B). TGA graphs of CB FW200 coated with p(nBA)n-stat-p(DMAEA)m 

copolymer heated up to 600 ˚C (C). TEM images conducted using a JEOL 2100 operating with 

a 200 kV prepared by drying a drop of dilute sample (0.01 wt.%) on a 300 Mesh carbon coated 

grid: Scale : 100 nm (D) 
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5.2.2.3. Dispersion using methacrylate block copolymer 

 

 

 

Figure 5.15: Polymeric structure of methacrylate block versus methacrylate statistical 

copolymers 

A third class of copolymer was studied and compared to the previous systems with respect 

to CB dispersion (Figure 5.15). The success of the methacrylate block copolymers 

prepared by a semi-batch process allowed the targeting of a large selection of molecular 

weights. Similarly to the acrylate block copolymers, a well-dispersed and a narrow 

particle size distribution is observed for block copolymers with an average size of 170 

nm and 290 nm for D50 and D90 respectively (Figure 5.16 A). A few drops of milling 

solution were charged to a vial with a certain volume of MPA solvent to determine the 

size distribution of the carbon black dispersions. An identical size of particles (130 -160 

nm) is recorded for the acrylate and methacrylate block copolymers by DLS 

measurements (Figure 5.16 B). The quantification of polymer coating is determined by 

TGA after purification via a centrifugation process. A mass between 3 and 6 mg  were 

introduced in an aluminium pan and heated from 25 to 600 ˚C under nitrogen with a 

heating rate of 10 ˚C/min. A degradation of 35 % is observed for block copolymers and 

a percentage of 62 % is determined after pyrolysis (Figure 5.16 C). The TEM of 

methacrylate block copolymer is recorder in Figure 5.16 D and shows a great dispersion 

of the pigment. Moreover, a dispersion with a narrower particle size distribution is 

achieved for methacrylate diblock copolymers in comparison to the acrylate diblock.  

versus
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It is possible that there is residual homopolymer, butyl acrylate, in the mixture with the 

diblock copolymer after purification via precipitation process. The purification was 

challenging due to the low glass transition of acrylates, which requires the precipitation 

at very low temperatures or at room temperature, depending on the molecular weight.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: Block p(BMA)-b-p(DMAEMA) copolymer synthesised with BMDPT RAFT agent 

(DPn = 55/19, 70/35, 100/50) characterisations. Particle size distribution analysed by Nanotrac 

instrument (A) and DLS (B). TGA graphs of CB FW200 coated with p(BMA)n-block-

p(DMAEMA)m copolymer heated up to 600 ˚C (C). TEM images conducted using a JEOL 2100 

operating with a 200 kV prepared by drying a drop of dilute sample (0.01 wt.%) on a 300 Mesh 

carbon coated grid: Scale : 100 nm (D) 
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In a similar way, the dispersion of the statistical copolymers obtained by feeding process 

was used a surfactant and compared to the block copolymers. As expected, the nanotrac 

and DLS data of the statistical copolymer (Figure 5.17 A and B) proved the poor 

efficiency of the statistical polymer configuration by exhibiting a heterogeneous 

dispersion with D50 - D90 (300 - 850 nm) and a high PDI (> 0.2). The thermolysis of the 

statistical copolymers shows a similar trend as the previous copolymers (Figure 5.17 C). 

All the thermograms overlapped but and early degradation is observed for the copolymer 

with the highest molecular weight (pBMA100-stat-pDMAEMA50). The percentage of the 

copolymers coated on the pigment surface is 51 %. Figure 5.17 D illustrates the aggregate 

formation recorded by TEM. 
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5.2.2.4. Dispersion using p(SMAD) block copolymer 

 

 

 

 

 

The design of the block copolymer containing styrene-alternating-maleic anhydride 

permits an easy route to modify the polymer backbone due to the highly reactive maleic 

anhydride (Scheme 5.1). Few studies using poly(SMA) as anionic, cationic or nonionic 

surfactants in pigment dispersion were reported.32,33 Hence, the use of a small equivalent 

of di(methylamino)propyl amine (DMAPAA) involves the maleic anhydride ring opening 

mechanism, leading the formation of a difunctional polymer, poly(styrene-alternating-

maleic acid) (pSMAD). In comparison to the previous amphiphilic copolymers bearing 

only a tertiary amine, this new diblock provides multi anchor groups, including an 

aromatic functionality, introducing some steric hindrance, therefore improving the 

Scheme 5.1: Ring-opening of maleic anhydride with DMAPAA to form poly(styrene-alternating 

maleic acid) 

Figure 5.17: p(BMA)-stat-p(DMAEMA) copolymer synthesised with BMDPT RAFT agent (DPn 

= 55/19, 70/35, 100/50) characterisations. Particle size distribution analysed by Nanotrac 

instrument (A) and DLS (B). TGA graphs of CB FW200 coated with p(BMA)n-stat-

p(DMAEMA)m copolymer heated up to 600 ˚C (C). TEM images conducted using a JEOL 2100 

operating with a 200 kV prepared by drying a drop of dilute sample (0.01 wt.%) on a 300 Mesh 

carbon coated grid: Scale : 50 nm (D) 
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stabilisation process, and also a tertiary amine and carboxylic acid as a pendant group for 

pigment affinity. One of the crucial condition to reach an effective dispersion of the 

pigment is the full solvability of the polymer in a giving solvent. When, the preparation 

of the milling was started, it has been noted the strong turbitity of the polymer solution 

and the partial solubility of the final block (17 kDa). As shown in Figure 5.18, the 10 

kDa polymer give rise to a partially cloudy solution while the 15 kDa is observed to be 

entirely cloudy and viscous. It was not possible to filter these samples due to the presence 

of the aggregates. Finally, the 17 kDa sample is clear, however, the polymer was nearly 

insoluble after 30 minutes of sonication and two hours of strong stirring. Dynamic light 

scattering measurement was attempted before milling reveals a monomodal and narrow 

particle size distribution for the 10 kDa and 15 kDa, whereas a broad distribution with a 

small distribution is obtained for the last block (Figure 5.18). DLS seems not to be the 

ideal technique to measure the particle size distribution. However, this preliminary test 

shows already important interaction between the solvent and the polymer which suggest 

some additional interactions when the pigment will be added. 
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In order assess the impact of the p(nBA)50-b-p(SMAD)40, a blank sample containing CB 

FW200 and solvent is compared to CB FW 200 mixed with the block copolymer in butyl 

acetate (Figure 5.19). After 10 minutes, the pigment is settled when mixed with polymer, 

meaning that the polymer does not interact with the pigment. The poor solubility of these 

diblock copolymers can be explained by the presence of the carboxylic acid which can 

form of strong hydrogen bonding with tertiary amines. Nsib et al. reported a similar work 

using the same carbon black pigment with homopolymer and diblock copolymers bearing 

carboxylic acid groups as a dispersant.34  

 

 

 

 

 

Figure 5.20 A  shows a broad particle size distribution recorded for the diblock 15 kDa 

and 17 kDa. The D50 and D90 increased as the molecular weight increased, while a low 

degree of polymerisation of p(nBA)-block-p(SMAD) leads to better control over the 

dispersion.  

Figure 5.18: Images of p(nBA)-block-p(SMAD) copolymers in acetate solution: 10 kDa (left), 

15 kDa (middle), 17 kDa (right) and particle size distribution recorded by DLS at 25 ˚C with a 

concentration of 2 mg/mL. 

Figure 5.19: Pictures of carbon black (FW 200) dispersed in butyl acetate solvent in left 

(blank) and carbon black dispersed in presence of block copolymer and butyl acetate with a 

samples concentration of 2 mg/mL and 10 min of sonication (right). 
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The milled samples were prepared under similar conditions as the acrylate and 

methacrylates samples, with 60 % w/w of polymer. A good solubility of the polymer in 

acetate offers a good wetting, and therefore a better dispersion. The first observation made 

when the samples were prepared for the milling tests was an increase of viscosity (for the 

10 kDa diblock copolymer in solution) while the 15 kDa and 17 kDa yield a more viscous 

solution and a soft gel respectively. Such an observation explained the broad particle size 

distribution obtained by light scattering, and suggests that the polymer forms a strong 

network in solution and, therefore, does not fully interact with the pigment surface. All 

the samples were analysed after milling, however, this data cannot be compared with the 

previous DLS data as the concentration of the polymer in milling sample is extremely 

high (71.5 mg/mL) compared to the concentration used for DLS measurements (2 

mg/mL). Figure 5.20 B shows a monomodal distribution and the broad distributions of 

the DP 80/40 and 100/40 indicates an accumulation of agglomerates.  

Carbon black coated with polymer was pyrolysed under nitrogen to avoid any oxidation 

of the pigment surface. The TGA graphs reported in Figure 5.20 C clearly show an early 

degradation around 100 ̊ C corresponding to water and solvent evaporation, then a second 

degradation beginning at 180 ˚C which could be attributed to the carboxylic group 

degradation, and finally a degradation from 250 ˚C to 400 ˚C which belongs to the 

polymer backbone of the diblock copolymers. With respect to surface coating, 42 % of 

polymer pyrolysis is found for the copolymer with a degree of polymerisation of 50/40 

and only 36 % of copolymer with a DP of 80/40 and 100/40. The TEM images recorded 

for poly(nBA)-block-poly(SMAD) show only the formation of aggregates for each 

copolymer and confirm the data obtained by Nanotrac and DLS (Figure 5.20 D). 
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Figure 5.20: p(nBA)-block-p(SMAD) copolymer synthesised with BMDPT RAFT agent (DPn = 

55/19, 70/35, 100/50) characterisations. Particle size distribution analysed by Nanotrac 

instrument (A) and DLS (B). TGA graphs of CB FW200 coated with p(nBA)n-block-p(SMAD)m 

copolymer heated up to 600 ˚C (C). TEM images conducted using a JEOL 2100 operating with a 

200 kV prepared by drying a drop of dilute sample (0.01 wt.%) on a 300 Mesh carbon coated 

grid: Scale : 100 nm (D) 
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5.2.2.5. Dispersion using p(SMI) block copolymer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 5.2: Ring-closing of poly(SMAD) to form poly(SMI)  
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Figure 5.21: Images of p(nBA)-block-p(SMI) copolymers in acetate solution: 10 kDa (left), 15 

kDa (middle), 17 kDa (right) and particle size distribution recorded by DLS at 25 ˚C with a 

concentration of 2 mg/mL. 

Figure 5.22: Pictures of carbon black (FW 200) dispersed in butyl acetate solvent (blank) and 

carbon black dispersed in presence of block copolymer and butyl acetate with a samples 

concentration of 2 mg/mL and 10 min of sonication. 
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 The solubility challenge of the previous diblock copolymer poly(nBA)-block-

poly(SMAD) was overcome by decreasing the polarity of the polymer chains. For that, 

the synthesis of the amphiphilic block copolymer containing a functional maleimide was 

investigated. The intermediate poly(nBA)-block-poly(SMAD) copolymer was charged to 

a conical flask in the presence of a certain volume of MPA solvent and heated to 125 ˚C 

using Dean-stark apparatus, in order to close the maleic acid ring, leading to the formation 

of the maleimide p(nBA)-block-pS(MI) (Scheme 5.2). Conversely to the intermediate 

copolymer, a homogeneous and optimal particle size distribution for all sizes of diblock 

copolymer are observed. In comparison to the previous diblock copolymers (acrylates, 

methacrylates and amido acid), the maleimide copolymer has the most homogeneous 

particle size (Figure 5.23 A). The presence of the benzyl group can enhance the 

stabilization via π-π stacking with the quinone and other aromatic groups present on the 

CB FW200 surface. The particle size distribution of the maleimide diblock copolymers 

before and after milling is presented in Figure 5.23 B. A bimodal distribution is observed 

before milling, indicating the formation of aggregates for all the diblock copolymers in 

organic solvent, which, then, are broken into a smaller particles under the shear stress 

applied during the milling process. The TGA thermograms show only one main 

degradation, beginning at 200˚ C, with 65 % of dispersant coated on the surface of the 

pigment and an additional degradation at 325 ˚C can be attributed to the polymer 

backbone degradation (Figure 5.23 C). The percentage of polymer coated between the 

maleimide and maleic acid in the diblock copolymer demonstrates the influence of the 

functional groups present on the polymer backbone.  
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Finally, the successful dispersion of CB FW200 using p(nBA)-block-pSMI diblock 

copolymers is observed in the TEM image in Figure 5.23 D, despite the presence of some 

aggregates, almost full dispersion is achieved. 

 

 

 

 

 

 

 

 

 

Figure 5.23: p(nBA)-block-p(SMI) copolymer synthesised with BMDPT RAFT agent (DPn = 

55/19, 70/35, 100/50) characterisations. Particle size distribution analysed by Nanotrac instrument 

(A) and DLS (B). TGA graphs of CB FW200 coated with p(nBA)n-block-p(SMI)m copolymer 

heated up to 600 ˚C (C). TEM images conducted using a JEOL 2100 operating with a 200 kV 

prepared by drying a drop of dilute sample (0.01 wt.%) on a 300 Mesh carbon coated grid: Scale 

: 100 nm (D) 
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5.3. Conclusion 

 

In this work, a library of copolymers synthesised via RAFT polymerisation, were used 

from the polymerisation mixture to disperse CB FW200 in organic solvent. The 

importance of the carbon black surface characterisation to understand the mechanism 

between the polymeric dispersant and the pigment was assessed. Moreover, a strong link 

between the dispersion efficiency and the polymeric architecture was reported by 

comparing a poorly controlled and well-controlled diblock copolymer. 

 A good dispersion is strongly dependant on the polymeric chain’s conformation in a 

solvent, which in the optimal case, should stabilise the primary pigment particles through 

a steric repulsion mechanism. The main advantage of working in organic solvent versus 

aqueous is to avoid solubility challenges of dispersants with a high molecular weight (> 

10 kDa), and also some potential charge interaction between the solvent and the polymer 

backbone. The versatility and a high tolerance towards the presence of impurities of the 

RAFT polymerisation allows the polymerisation of different classes of monomers 

(acrylate, methacrylate and styrene) using an industrial RAFT agent with a low purity; 

hence, the impact of several functionalities present on the polymer backbone on the 

dispersion. The tertiary amine appears to be a suitable anchoring group with a strongly 

acidic surface, whilst the carboxylic acid involves a strong electrostatic repulsion. To this 

end, a broad range of molecular weights targeted in this work does not show any major 

difference with respect to particle size distribution and the amount of polymer coated. It 

is worth noting that the particle size of pigment obtained is strongly dependant on the 

milling process used. Indeed, smaller the particle, the higher the surface area will be and 

a higher dispersant loading will be required. Consequently, depending on the size of the 
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glass bead, the milling time must be clearly defined for an optimal dispersion. In order to 

keep a monomodal particle size distribution, a glass beads with 3 mm of diameter are 

added in a slurry and mixed over 18 hours. An average particle size between 250 and 400 

nm is determined by Nanotrac analysis while an amount of 55 % of polymer adsorbed 

onto the pigment surface is determined by TGA for each diblock copolymer synthesis. 

 

 

5.4. Experimental section 

 

5.4.1. Materials and methods 

 

Carbon black FW200 (Degussa, > 90 %), butyl acetate (Chromasolv plus, 99.7 %), 

propylene glycol monoethyl ether acetate (Sigma-Aldrich, 99.5%) were purchased. 

pH measurements: 700 mg of Carbon black was dissolved in 10 mL of deionised water 

and sonicated for 10 minutes. The pH-meter was calibrated with buffers of pH 4 and 10 

before measurement.  

DLS measurements: A solution of 2 mg/mL of milling mixture in MPA solvent was 

prepared for all the samples and the measurements were performed at 25 ˚C, with a 

refractive index of 1.394 and viscosity of 1.0020 cP, using Malvern zetasizer software.  

Preparation of milling sample: The milling mixture contained 60 % wt. of copolymer 

in the presence of acetate solvent, CB FW200 and glass beads.  

For instance: 0.6 g of copolymer is firstly solubilise in a solvent, then, introduced into a 

vial with 1 g of carbon black, 8.4 g of solvent and a certain amount of glass beads. The 

vial is sealed with a cap and tape a milled for 18 h in a cold room (Figure 5.24). 
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Figure 5.24: Picture of milling sample preparation where glass beads of 3 mm of diameter, carbon 

black, polymer and solvent are mixed and milled for 18 h. 

 

Copolymers synthesis: All the syntheses are reported in Chapter 2, 3, 4 for acrylate, 

methacrylate and SMA contained copolymer. 

 

5.4.2. Characterisations 

 

 XPS analysis 

 

X-ray photoelectron spectroscopy (XPS) data were collected at the Warwick 

Photoemission Facility, University of Warwick [1]. The samples investigated in this study 

were attached to electrically-conductive carbon tape, mounted on to a sample bar and 

loaded in to a Kratos Axis Ultra DLD spectrometer, which possesses a base pressure of 2  

10-10mbar.  XPS measurements were performed in the main analysis chamber, with the 

sample being illuminated using a monochromated Al kα x-ray source. The measurements 

were conducted at room temperature and at a take-off angle of 90° with respect to the 

surface parallel.  

The core level spectra were recorded using a pass energy of 20 eV (resolution approx.  0.4 

eV), from an analysis area of 300 x 700 µm.  
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The spectrometer work function and binding energy scale were calibrated using the Fermi 

edge and 3d35 peak recorded from a polycrystalline Ag sample prior to the 

commencement of the experiments. The data were analysed in the CasaXPS package, 

using Shirley backgrounds and mixed Gaussian-Lorentzian (Voigt) lineshapes and 

asymmetry parameters where appropriate. For compositional analysis, the analyser 

transmission function has been determined using clean metallic foils to determine the 

detection efficiency across the full binding energy range. 

 BET analysis 

 

The Brunauer–Emmett–Teller (BET) specific surface area, pore volume, and average 

pore diameter were measured under nitrogen at 77 K on a Micromeritics TriStar II. A 

mass of 50 mg for CB FW200 was previously degassed under nitrogen at 150 °C 

overnight before using Micromeritics FlowPrep. 

 Raman spectroscopy 

 

Raman spectra were collected in the 400 – 2300 cm-1 range with a Raman spectrometer 

using a 20 mW laser at 532 nm and a Leica (50x) magnification objective. Spectra were 

obtained with an exposure time of 60 s. Any visual degradation was visible after 

measurement. The microscope showed that the carbon black used is mainly composed of 

spherical aggregates with an average diameter of40 -100 nm. For this sample, six Raman 

spectra were collected at different areas. 
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 Thermogravimetric analysis 

The experiments were performed to determine the thermal degradation of the diblock 

copolymer and to quantify the amount of polymer coated on the carbon black surface 

using a Mettler Toledo TGA. All the samples were run under nitrogen with a scan rate of 

10 K/min from 25 °C to 600 °C for the polymer and from 25 °C to 1000 °C for the carbon 

black.  

 Nanotrac analysis 

 

Particle size distribution was measured by using NANO-flex analyser (Microtrac, USA) 

at room temperature. A few drops of the milling sample were diluted in a certain volume 

of solvent and an external electrode was inserted for the measurement.  

 TEM analysis 

 

Studies were conducted using a JEOL 2100 operating with a 200 kV accelerating voltage 

on unstained samples, prepared by drying a drop of dilute sample (0.01 wt. %) on a 300 

Mesh carbon coated grid. 
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Chapter 6: Conclusions and Outlook 

 

 

The aims of this thesis were to design a library of amphiphilic block copolymers based 

on hydrophobic blocks, acting as a steric stabiliser, and hydrophilic blocks, bearing one 

or more functionalities having a specific pigment surface affinity that can be used to 

disperse carbon black (CB FW200) in organic media. RAFT polymerisation, being a 

powerful technique, was explored to synthesise all the diblock and multiblock copolymers 

using the BMDPT RAFT agent at industrial grade (~ 70 - 80 % of purity). Different 

classes of monomers were used to synthesise the amphiphilic diblock copolymers in a 

solution. 

The Chapter 2 describes the synthesis of acrylate diblock copolymers in both butyl acetate 

and MPA solvents. Kinetic studies were undertaken using the conditions established 

based on the temperature, ratio of [BMDPT]0 / [V601]0, and solvent optimisation 

conditions. Highly controlled polymerisations with different degrees of polymerisation 

were obtained with a quantitative monomer conversion (> 95 %), narrow molar 

distribution (Ɖ ≤ 1.25) and high livingness (L > 97 %). However, after many optimisations 

the presence of β-scission remained at low temperatures and at very low initiator 

concentrations for each acrylate homopolymerisation. In paralleled, the synthesis of 

acrylate copolymers were investigated in order to compare the efficiency of these 

dispersants on a carbon black pigment.  
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The DMAEA monomer was then substituted by DMAEMA to enhance the robustness of 

the polymers. Unfortunately, using the BMDPT RAFT agent was challenging to 

polymerise methacrylate monomers, and no controlled diblock copolymers were made. 

As such, the polymerisation of acrylate / methacrylates were performed with the MCTP 

RAFT agent, designed for methacrylate monomers. Better control over the 

polymerisation was observed, however, few homopolymer chains were reinitiated. 

  

The challenge of polymerising methacrylate with BMDPT in acetate solvents was 

investigated in Chapter 3. For this, the MCTP RAFT agent, bearing a better leaving R 

group provided better control over the methacrylate polymerisation and was used to 

understand the mechanism between the consumption of RAFT agent and the control of 

the polymerisation. Also, the chain transfer constant was determined for both BMDPT 

and MCTP using Mayo plots. The values of the chain transfer constant obtained, 0.25 and 

4 for BMDPT and MCTP respectively, confirmed the poor control over methacrylate 

polymerisation for BMDPT. The optimisation of the methacrylate polymerisation was 

assumed by using a semi-batch process, and the potential of this technique was 

demonstrated by synthesising a well-defined diblock and multiblock copolymers at large 

scale.  
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In a Chapter 4, a new class of polymeric dispersant was investigated, combining the use 

of styrene and maleic anhydride monomers to design an amphiphilic dispersant. Similarly 

to the previous chapters (2 and 3), variation of the polymer backbone was tuned by 

varying the degree of polymerisation. Interestingly, the high reactivity of maleic 

anhydride enhanced the possibility to modify the polymer backbone. Additionally, 

zwitterionic maleic amido acid and maleimide compounds were obtained after two 

modification steps. The success of the synthesis of this novel dispersant was proved by 

the industrial scale up of the process using the exact same conditions established in lab 

scale. 

 

Finally, Chapter 5 describes the dispersion Carbon Black FW200 which, having a high 

specific area, required a high loading of dispersant to achieve an acceptable dispersion. 

Also, the efficiency of dispersion using 60 % w/w of diblock copolymer, described in a 

Chapter 5 showed a well-dispersed pigment with a monomodal particle size distribution 

and D50/D90 values between 180 and 400 nm. Finally, an average value of 55 % w/w 

polymer coated on the pigment surface was determined via thermal analysis.  

 

This thesis describes the performance of diblock copolymers as a dispersant for carbon 

black. The use of the BMDPT RAFT agent allows for control of the polymer architecture, 

and the monomers selected allowed for understanding of the interaction between the 

pigment surface and the polymer. To further this work, understanding of RAFT 

mechanism for BMDPT can be expand to more complex polymeric architectures such as 
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stars, combs or graft copolymers, and then compare the efficiency on pigment dispersion. 

Interestingly, the insertion of new functionalities or a combination of different structures 

can also be envisaged to enhance the adhesion between the pigment surface and the 

polymeric dispersant.  

 

In summary, the synthesis of diblock copolymers at a large scale utilising different classes 

of monomer in the presence of BMDPT was reported in this thesis. The success of 

dispersing challenging pigments using these polymeric dispersants was demonstrated and 

can easily be extended towards any other pigment, or further investigated to look at 

different polymeric architectures/functionalities. 
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Appendix: Chapter 2 
 

 

Lubrizol Chain Transfer Agent 

 

BMDPT synthesis 

 

The Lubrizol Corporation is one of the rare of the few industrial companies which 

produced in tonnes scale the chain transfer agent (CTA) allowing the synthesis of 

complexes architectures via Reversible Addition-Fragmentation chain transfer (RAFT) 

and used for several applications such as lubricating fluids or coating.1,2 The synthesis of 

the “Butyl-2-methyl-2-[(dodecylsulfanylthiocarbonyl) sulfanyl] propionate” (BMDPT 

RAFT agent) is obtained after esterification of S-1- dodecyl-S’-(α, α’-dimethyl-α’-acetic 

acid) trithiocarbonate3,4 as shown in Scheme A.1.  
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Scheme A.1: General scheme of Lubrizol RAFT agent synthesis 
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BMDPT characterisations 

 

 1H Nuclear Magnetic Resonance 

 

 

 

 

 

 

 

 

 

 

 

Mass spectroscopy 

 

 The composition of the RAFT agent is studied by using mass spectroscopy. Several peaks 

were determined with the main peak 4 (Figure A.2) corresponding the pure BMDPT 

RAFT agent. However, few peaks remained undetermined and can be attributed to the 

impurities left over. 
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Figure A.1: 1H NMR spectrum of BMDPT industrial grade before and after purification in 

ethanol 
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Table A.1: Experimental and theoretical monoisotopic mass of industrial BMDPT RAFT agent 

obtained by MALDI-ToF 

Peak 
Monoisotopic mass 

(Experimental) 

Monoisotopic mass 

(Theoretical) 

Counter-ion 

salt 

1 301.14 301.11 Na+  , K+ 

2 311.26 NA NA 

3 337.11 337 Na+ 

4 393.3 NA NA 

5 413.28 413.22 Na+ 

6 425.23 425.32 Na+ 

7 469.32 469.32 Na+ 

8 662.32 663.25 Na+ 

9 730.49 733.29 Na+ 

10 806.69 803.33 Na+ 

 

 

Figure A.2: MALDI-ToF-MS analysis of the industrial BMDPT RAFT agent  
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Figure A.3: Stuctures of impurities present in industrial BMDPT RAFT agent based on the MALDI-

ToF spectrum 
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Thermogravimetric Analysis (TGA) 
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Figure A.4: TGA chromatogram of BMDPT RAFT degradation submitted under 

nitrogen with a heating rate of 10 oC/min from 25 °C to 1000 °C 


