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Abstract 

In sheet metal forming simulation, a flow curve and a yield criterion are vital requirements for obtaining reliable 

numerical results. It is more appropriate to determine a flow curve by using biaxial stress condition tests, such as the 

hydraulic bulge test, than a uniaxial test because hardening proceeds higher strains before necking occurs. In a 

uniaxial test, higher strains are extrapolated, which might lead to incorrect results. The bulge test, coupled with the 

digital image correlation (DIC) system, is used to obtain stress–strain data. In the absence of the DIC system, 

analytical methods are used to estimate hardening. Typically, such models incorporate a correction factor to achieve 

correlation to experimental data. An example is the Chakrabarty and Alexander method, which uses a correction 

factor based on the n-value. Here, the Chakrabarty and Alexander approach was modified using a correction factor 

based on normal anisotropy. When compared with DIC data, the modified model was found to be able to better 

predict the hardening curves for the materials examined in this study. Because a biaxial flow curve is required to 

compute the biaxial yield stress, which is an essential input to advanced yield functions, the effects of the various 

approaches used to determine the biaxial stress–strain data on the shape of the BBC2005 yield loci were also 

investigated. The proposed method can accurately predict the magnitude of the biaxial yield stress, when compared 

with DIC data, for all materials investigated in this study. 
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1. Introduction 

Numerical simulation of sheet metal forming processes, such as the stamping process, plays an important 

role in the design phase [1]. The reliability of simulation depends on the accuracy of the mechanical characterization 

of the materials [2]. One of the most important items in material characterization, which has a major impact on the 

quality of the forming simulations, is the plastic flow curve [3,4]. In the field of sheet metal forming, various 

mechanical tests can be used in order to obtain stress–strain curves, such as tensile, hydraulic bulge, through-

thickness disk compression, plane strain and shear tests [5,6]. The uniaxial tensile test is the most commonly used 

such test. It provides stress–strain data up to the point of diffuse necking at very low levels of plastic strain, when 

compared with the ones attained in some forming processes [3,7,8]. However, in sheet forming processes, the level 

of plastic deformation can be higher. Therefore, it is more appropriate to use biaxial loading tests, such as the 

hydraulic bulge test, which can reach higher plastic strain levels before necking and fracture occur [9]. Another 

reason that the hydraulic bulge test is more appropriate is that the biaxial mode is the major deformation mode in 

many sheet forming processes [10,11]. Finally, the hydraulic bulge test has the advantage of providing the value of 

one of the key material parameters, namely, the biaxial yield stress, that is required to define most advanced yield 

functions [12]. 

The hydraulic bulge test, in combination with a digital image correlation (DIC) system, is the state of the 

art in the determination of biaxial stress–strain curves [8,13,14]. However, there are three occasions when it is more 

suitable to use analytical models: in the absence of a DIC system [13, 15], during high temperature testing when the 

view of the optical systems is obscured by vapor and smoke [11] and when investigating fundamental effects of 

material properties on ductility [18]. These models are becoming increasingly important with the greater adoption of 

elevated forming methods such as warm forming. 

Analytical methods establish stress and strain indirectly by identifying the instantaneous bulge radius and the 

thickness at the dome apex during a test. One of the earliest models was developed by Hill [16] who created a 

method for calculating the bulge radius through geometric considerations alone. Panknin [17] later improved on the 

model by accounting for the curvature of the sheet material around the tooling fillet radius, as this significantly 

affects the bulge of the sheet. 

Hill also introduced a model for the determination of the thickness at the pole of the bulge [16]. This was 

based on the geometry of a sheet material that is bulged under hydrostatic pressure. The shape of the material in the 
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polar region is assumed to be approximately spherical and strain relationships are derived in the circumferential and 

thickness directions However, this relationship results in sheet thickness that is uniform at each stage of the test. 

However, in reality sheet thickness is thinnest at the polar region and thickest at the equatorial regions because of 

the strain concentrating effect of the spherical geometry. To introduce the more realistic case of varying thickness. 

Chakrabarty and Alexander [18] introduced the parameter,  = 1-n, where n is the work-hardening index of the 

material, to Hill’s equation. This modification was able to better explain the polar thickness strain of soft copper 

compared to Hill’s theory.  Similar to Hill [16], Kruglov et al. [19] developed method for determining the dome 

apex thickness by considering the instantaneous geometry of the dome shell alone. Kruglov’s formulation was more 

general and accounted for the distribution in thickness from the equator to the pole. Their model was used to predict 

the thickness of titanium sheet in the superplastic deformation regime. They treated the material as isotropic and 

reported a 10% error in their calculation of polar thickness. Despite this, Koc et al. [11] concluded that the best 

approach was one that combined Kruglov’s thickness determination approach with Panknin’s polar radius method. 

Lăzărescu et al.. [13,20] subsequently made improvements to the overall accuracy of this method. The accuracy was 

improved by incorporating a correction factor related to the dome apex thickness to account for the non-uniformity 

of the strain distribution on the pole. It was observed that the accuracy of this could be improved further [7]. A 

systematic study showed that evolution of the sheet thickness is dependent of the anisotropy [21, 40]. This 

corroborates the findings of the current study. 

The other key factor in the material characterization is the yield function, which plays an important role in 

the accurate prediction of forming defects, such as thinning and splitting [22-25]. Several researchers have proposed 

advanced criteria, such as the Banabic yield criteria [26-29] and the Barlat yield criteria [30,31], to describe the 

plastic behaviour of materials accurately because they incorporate a large number of parameters. These advanced 

criteria account for the biaxial stretching regime that is the dominant regime in sheet metal forming [10,11]. It has 

been proven that these advanced models can overcome the inaccuracies of classical models, such as Hill’48 [32], by 

improving the description of the plastic behaviour of the metallic sheets. Recently, Banabic et al.. [2] presented a 

review of the most recently proposed yield criteria for describing anisotropic plastic behaviour. 

The primary objective of this paper is to explore the importance of sheet anisotropy to the evolution of 

sheet thickness during a bulge test. Although Kruglov et. al [19] demonstrated the importance of geometry to 

instantaneous sheet thickness, the relationship between anisotropy and thinning suggest that it will be a particularly 
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relevant in calculating instantaneous thickness. Our starting point is therefore to couple the Panknin correction for 

die radius [17] with the Chakrabarty and Alexander relationship for instantaneous sheet thickness at the pole [18]. 

By modifying Chakrabarty and Aleaxander’s correction factor to include the effects of anisotropy, we developed a 

relationship to test the importance of anisotropy over the work hardening ability of the material. Hydraulic bulge 

experiments were performed to test the hypothesis. Calculations for material hardening and BBC2005 yield locus 

were obtained in three ways: with the Panknin-Kuglov, Panknin-Chakrabarty and the proposed Panknin-Chakrabarty 

(modified) combinations. These were compared to a DIC-based method for calculating hardening and yield loci. The 

comparisons were repeated for 4 alloys: AA6111-T4 and AC600 aluminium alloys and DX54D, and H220BD steel 

alloys. The comparisons demonstrated the importance of anisotropy and produced a method for obtaining hardening 

and yield loci in the absence of digital image correlation equipment.   

The paper is structured as follows. In section 2, the theories and methods for stress–strain determinations 

by using the hydraulic continuous bulging test are summarized. In section 2.1, the framework for the proposed 

modification is presented. The methods for determining the biaxial yield stress and a description of the BBC2005 

are given in sections 2.3 and 2.4, respectively. In section 3, the experimental setup, materials, and analysis methods 

used in this study are described. In section 4, the analysis results are presented and discussed. Finally, conclusions 

are presented in section 5. 

 

2. Biaxial flow curve determination 

Membrane theory is a common approach used in the determination of biaxial flow curves [17,33]. Flow 

curves are determined based on the analysis of variables measured in the bulge test [8], in which a specimen is 

clamped with a blank holder, as illustrated in Fig. 1. The theory is only valid when the ratio of the sheet thickness to 

the bulge diameter is small [33]. This theory is based on the assumptions that the through thickness stress 3 is zero 

and that a relationship can be established using Laplace’s formula: 
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where 1  and 2  are the principal stresses on the material surface, 1 and 2 are the polar curvature radii, p
 
is the 

bulge pressure, and t  is the specimen thickness at the dome apex. The bulge test is considered to represent an 
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axisymmetric case; therefore, the principal stresses can be assumed to be equivalent and equal to the membrane 

stress, i.e., 1 = 2 = b . The same conclusion can be drawn for the curvature radii, i.e., 1 = 2 =  . Given these 

simplifications, the current biaxial stress or membrane stress b  is defined as follows: 

 
t

p
b

2


   (2) 

For the purpose of strain calculation, the constant volume condition of Eq. (3) is used. This assumption is 

based on the fact that the plastic deformation in metals and alloys occurs without any appreciable change in volume 

[34]. 

 321    (3) 

Therefore, the thickness strain or the biaxial strain b can be determined as follows: 

 
t

to
b ln3    (4) 

The primary assumptions considered in this study are the following: 

 The through-thickness stress is zero, 

 The principal stresses are equal to the membrane stress, 

 The principal curvature radii are equal, 

 The incompressibility condition is valid 

Assuming a balanced equi-biaxial stress state could results in a noticeable error for strongly anisotropic 

materials [7].  

 

2.1 Experimental and analytical methods 

The pressure p , polar radius  , and current thickness at the dome apex t  must be calculated to determine 

the biaxial stress–strain relationship by using Eqs. (2) and (4). The pressure p  is recorded using a sensor attached to 

the hydraulic device. However, the other quantities are not measured in a direct manner; rather, they are obtained 

from other experimental data, namely, the polar height h . Hill [16] developed a method for determining the bulge 

radius without considering the effect of the die fillet radius R . To improve the accuracy of this method, Panknin [17] 

developed the formula given in Eq. (5) for the polar radius as a function of the fillet radius. Panknin’s method yields 

a valid result for ratios of the bulge height to the radius of the die of up to 0.56 [4] or even higher [11]. 
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In Eq. (5), d  is the diameter of the die cavity, R  is the die fillet radius, and h  is the dome height. The 

parameters d  and R are constants related to the experimental device, and the parameter h  is a variable that is 

measured using a displacement sensor, e.g., a linear voltage displacement transducer (LVDT) or a DIC system 

[11,13]. 

Dome apex thickness evolution data can be derived experimentally by using data measured by a DIC 

system or calculated using various approaches. Hill [16] proposed the following relationship to predict the polar 

thickness t  at the pole:  
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Chakrabarty and Alexander [18] modified Hill’s formula by taking into account the hardening effect to 

improve the model’s accuracy. An unknown parameter  , which is a function of the strain hardening exponent of 

the material, was introduced into Hill’s formula [18]: 

 n1  (7) 

For all practical cases,   must lie between 0 and 1 to ensure that the rate of plastic work will be positive. 

Chakrabarty and Alexander proposed that the thickness strain rate at the pole be defined as follows: 
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Eq. (8) can be integrated to derive the following expression for the thickness strain b  at the dome apex:   
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Because Eq. (9) is equal to Eq. (4), 
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The thickness at the dome apex can then be expressed as follows: 
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Eq. (11) reduces to Eq. (6) when 1 . Moreover, the Ross and Prager assumptions [35] are obtained if 

0  [18]. 

Kruglov et al.. [19] developed a simple method for determining the dome apex thickness. The method 

assumes that the meridian stresses are uniformly distributed along the surface thickness [19]. The expression 

proposed by Kruglov for the thickness at the pole is as follows: 
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2.2 Proposed methodology 

Based on the constant-volume assumption, the principal strains generated during a biaxial test can be 

related to compressive thickness strain. Biaxial strain deformation is known to be sensitive to plastic anisotropy 

[33]. It is proposed that the accuracy of the polar thickness prediction obtained using the method proposed by 

Chakrabarty and Alexander [18] could be improved by considering the effect of the plastic strain ratio rather than 

the hardening effect.  

We assume that   is a function of the normal plastic anisotropy. Because the R-values for the range of 

materials tested in this study range from 0.5 to 2, we made the following assumptions concerning the relationship 

between R  and  :  
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where R  is the coefficient of normal anisotropy, which is computed as follows: 

 
4

2 90450 RRR
R


  (14) 

The term normal refers to the direction perpendicular to the sheet. The variation of the plastic properties 

along the thickness of the sheet is characterized by the R  parameter [36]. Equation (15) ensures that the condition 

concerning the rate of plastic work is not violated.  

 1)(0  R  (15) 
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For most aluminium alloys, the corresponding values of R  lie within the range of 15.0  R . Thus, the 

through-thickness logarithmic strain and dome apex thickness at the pole can be calculated using the following 

relationships: 

 )
)2(

1ln()2(
2

2

d

h
Rb   (16) 

 
R

o
dh

tt
2

2
]

))2(/(1

1
[


  (17) 

For most steel alloys, the assumption concerning   is different from the one for aluminium grades. The 

value of the normal anisotropy parameter for steels lies in the range of 1 to 2. Therefore, the polar strain and 

thickness are calculated using the following expressions: 

 )
)2(

1ln()3(
2

2

d

h
Rb   (18) 

 
R

o
dh

tt





3

2
]

))2(/(1

1
[  (19) 

For 12  R , the upper and lower bounds of the proposed method correspond to Hill’s approach [16] and 

Ross and Prager’s assumption [35], respectively. When R 2 , the opposite condition holds. 

 

2.3 Determination of the biaxial yield stress 

The method of the 0.2% offset for the initial biaxial yield stress is not reliable [37] because the biaxial flow 

curve is inaccurate at low levels of plastic strain [3]. Therefore, the principle of equivalent plastic work is used to 

calculate the average initial biaxial yield stress [3,14,37]. The principle of equivalent plastic work can be written for 

the uniaxial and biaxial stress states as follows:  

   bbbuuu dWdW   (20) 

where uW  and bW  are the plastic work per unit volume in the cases of uniaxial and biaxial stress states, 

respectively; u  and b  are the uniaxial and biaxial stresses, respectively; and ud  and bd  are the uniaxial and 

biaxial plastic strain increments, respectively. If equality prevails, then the yield stresses of the same material for the 

different stress states are identical [3,14]. In that case, the average ratio is calculated. One of the methods for 
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determining this ratio is the approach proposed by Lee et al..[37]. In this approach, for a certain strain range or 

plastic work range, the ratio between b and u is evaluated, and then the average ratio is calculated [3,37]. This 

average ratio is multiplied by the uniaxial yield stress to obtain the biaxial yield stress. Theoretically, the average 

ratio should be independent of the selected range of the plastic strain; however, such value affects the resulting 

average ratio [3]. Other methods exists and are discussed by Sigvant et al..[3]. 

 

2.4 BBC2005 

             Anisotropic yield criteria or functions are used in academia and industry to describe the onset of plastic 

deformation at different stress states [1,2]. Different methods can be used to develop anisotropic yield functions [2]. 

These methods are employed to transform existing isotropic formulations into anisotropic ones [10]. 

             One of the approaches to perform such transformation is to include new parameters or coefficients into an 

isotropic function as in the case of the BBC2005 that is used in our work. The BBC2005 yield function includes new 

plastic anisotropy parameters into Hershey’s formulation [1,29]. 

Banabic et al.. [29] proposed a yield function referred to as BBC2005 that is implemented in the 

AUTOFORM 4.1 program. This yield function can be written in the following form: 

 0 YF   (21) 

where F is the yield function,  is the BBC2005 equivalent stress, and Y is the instantaneous reference yield stress 

of the material. The BBC2005 equivalent stress can be written as follows: 
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The terms Γ, Ψ, and Λ are defined as follows: 
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where 𝑎 and b > 0 are material coefficients and 𝑘 is the exponent related to the crystal structure of the materials (3 

for steel sheets and 4 for aluminium sheets). The parameters L, M, N, P, Q, and R involved in Eq. (23) are the 

remaining plastic anisotropy parameters. These eight plastic anisotropy parameters or coefficients have to be 
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identified numerically by solving the nonlinear system associated with the BBC2005 yield function. The details of 

the system of the nonlinear equations associated with BBC2005 can be found in [1,29]. 

Each yield criterion has its own requirements. Particularly, each yield function has a certain number of 

mechanical parameters (Yield stresses, e.g. ; and R-values, e.g. ) that must be obtained from experimental tests. 

These mechanical parameters work as inputs to the yield functions [41]. The BBC2005 yield function requires the 

determination of eight mechanical parameters. Three uniaxial yield stresses and three R-values are obtained from 

three different directions ( 
90,45,0 ). The values of these six parameters are obtained using a uniaxial tensile test 

that must be complemented by other tests, such as a compression test, to compute the biaxial R-value [30], and the 

hydraulic bulge test, to determine the biaxial yield stress [14]. 

              Generally, these eight mechanical parameters are fed to a system of nonlinear equations associated with the 

yield function [41]. The roots of the nonlinear system is the plastic anisotropy coefficients, that are used to calibrate 

the yield function shape to certain experimental points as in the case of advanced models such as BB2005. The roots 

of such systems are called plastic anisotropy parameters (or coefficients or constants). These parameters are fed to 

the yield function in order to define the anisotropic locus. The roots can be identified using different numerical 

procedures such as Newton Raphson, minimisation of an error function, and genetic algorithm [41]. 

 

 

3. Experiments and materials  

As stated previously, the determination of biaxial stress–strain data requires the instantaneous measurement 

or calculation of certain variables. The experimental method and combinations of different analytical approaches 

were used in this study. The pressure was measured using a sensor. The polar radius was determined experimentally 

by using the DIC system and calculated analytically by using Panknin’s approach. The thickness at the dome apex 

was determined using the DIC system and calculated analytically by using the method proposed by Chakrabarty and 

Alexander [18], its proposed modification, and the Kruglov et al.. [19] method. Continuous hydraulic bulging 

experiments were performed to validate the proposed approach. The continuous hydraulic bulging tests were 

performed on samples with diameters of 180 mm at an equivalent strain rate of 0.002 s-1. Stochastic pattern was 

applied to the samples’ surfaces. The DIC measurement consists of two digital CCD cameras with a resolution of 

1280x1024 pixels. These cameras were used to capture many pictures at different level of deformation. The frames 
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were analysed in order to determine the 3D coordinate, principle logarithmic strains, radii of the principle 

curvatures. With the assumption of the validity of the volume consistency, the thickness strain is measured. The 

mean curvature radius, that is used in the calculation of the biaxial stress, is calculated following the equation 

recommended by the ISO procedure i.e. (ρ= 2/(1/ρ1+1/ρ2)). A spherically shaped surface near the pole was assumed 

for the calculation of the major and minor curvature radii. Biaxial flow curves were determined using four materials: 

AA6111-T4, AC600, DX54D+Z, and H220BD+Z. A summary of the approaches used in this study to determine the 

biaxial stress–strain curves is shown in Fig. 2. Furthermore, tensile tests equipped with two extensometers were 

performed in the three directions ( 
90,45,0 ). The data obtained from the tensile tests are the uniaxial flow curves, 

yield stresses, and plastic strain ratios. The uniaxial data were used to compute the biaxial yield stresses and yield 

loci. To calculate the biaxial plastic anisotropy parameter, which is required to calculate the yield loci, compression 

tests were performed on samples with diameters of 10 mm at an equivalent strain rate of 0.001 s-1. Sheep suet, 

provided by Erichsen GmbH & Co. KG, Germany, was used as a lubricant in the compression tests. The method for 

determining the biaxial R-value (Rb=εTD/εRD) has been presented elsewhere [30]. 

A summary of the material properties derived from the tensile and compression tests is presented in Table 

1. The initial thicknesses were measured with a micrometre. 

 

Table 1 Average mechanical properties of the materials 

Material 0t  

[mm] 

0YS  

[MPa] 

45YS  

 [MPa] 

90YS  

[MPa] 

0R  

[-] 

45R  

[-] 

90R  

[-] 

bR  

[-] 

R  
[-] 

AA6111-T4 0.92 138 128 126 0.699 0.539 0.509 1.299 0.572 

AC600 0.90 144 141 142 0.615 0.399 0.658 0.962 0.518 

DX54D+Z 0.74 162 168 165 2.007 1.699 2.370 0.902 1.944 

H220BD+Z 0.69 248 260 259 1.666 1.544 2.107 0.871 1.715 

 

4. Results and discussion 

4.1 Polar thickness vs. dome height 

The polar thickness was measured using the DIC software and compared with the predictions obtained 

using the Chakrabarty and Alexander, Kruglov, and modified Chakrabarty and Alexander equations, i.e. Eq. (11), 

Eq. (12), Eq. (17), and Eq. (19). Fig. 3 illustrates the polar thickness as a function of the dome height for different 

materials. The proposed method (P-C-M) accurately predicts the polar thickness as measured by the DIC system for 
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all of the materials investigated in this study. Kruglov’s approach also leads to the same conclusion, except for the 

H220BD+Z material. For this material, Kruglov’s prediction gradually diverges with increasing dome height. The 

predicted value tends to be greater than the corresponding experimental value. In contrast, Chakrabarty and 

Alexander’s prediction gradually diverges with increasing apex height, and the predicted value tends to be lower 

than the experimental value. It should be noted that height measurements up to 24 mm and 28 mm were used in the 

calculations of the polar thickness for the aluminium and steel alloys, respectively. 

 

4.2 Pressure vs. polar strain 

The relation between the polar strain and the pressure is illustrated in Fig. 4. The strain is calculated from 

Eq. (4), using thickness data measured with the ARAMIS software. Strains determined from the continuous bulging 

experiment were compared with strains predicted using the Chakrabarty and Alexander method (Eq. 9), the Kruglov 

method (Eq. 4, Eq. 12), and the modified Chakrabarty and Alexander method (Eq. 16, Eq. 18). The Panknin–

Chakrabarty & Alexander (P-C) model under predicted the experimental values, whereas the Panknin–Kruglov (P-

K) method overestimated the experimental values. Conversely, the modified method (P-C-M) tended to predict the 

magnitudes and trends of the experimental data well. 

 

4.3 Biaxial flow curves 

Finally, the biaxial stress–strain curves were calculated and compared with the measured flow curves 

provided by the DIC system. The results are plotted in Fig. 5a-d for AA6111-T4, AC600, DX54D+Z, and 

H220BD+Z, respectively. Overall, the predictions obtained with the proposed method (P-C-M) capture the trends 

and magnitudes of the experimental data well. In contrast, the P-C model approximates the magnitude of the data 

but does not predict the trend as well as the P-C-M model does. The predictions obtained with the P-K method 

tended to be accurate for the steel grades. The plotted data for the aluminium alloys and steel grades were 

approximated using Voce and power law-type equations, respectively. One bulge test for each material was used and 

fitted. The tensile test results for all of the materials are illustrated in Fig. 5. The presented uniaxial tensile tests are 

for sheets tested along the rolling direction. 
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The flow stress curves shown in Fig. 5 for the aluminium alloys were fitted to Voce’s equation [38] form. 

The hardening constants (A, B, and C) obtained are listed in Table 2. 

 

Table 2 Hardening parameters for Voce type hardening equation (𝜎 = 𝐴 − 𝐵 exp (−𝐶𝜀)) 

Approach 
AA6111-T4 AC600 

A B C A B C 

DIC 376.1 269.3 6.99 338.3 243.7 8.145 

P-C 470.5 352.1 3.233 421.6 309.8 3.685 

P-K 342 223 9.217 312.6 200.9 10.69 

P-C-M 369 251.4 6.803 322.3 212.3 9.312 

T 372 231.9 10.04 320.3 177.5 11.72 

 

The flow stress curves shown in Fig. 5 for the steel alloys were fitted to Hollomon’s [39] equation form. 

The strength coefficient (K) and strain hardening exponent (n) values obtained are listed in Table 3. The fitting of 

the aluminium and steel flow stress curves to these model forms was performed for potential use in future research. 

Tables 2 and 3 presented the biaxial flow curves obtained from hydraulic bulge tests. These were measured using the 

DIC data and calculated using the Panknin model coupled with the Chakrabarty and Alexander (P-C), Kruglov (P-

K), and modified Chakrabarty and Alexander (P-C-M) methods. These tables also presented the uniaxial tensile test 

data (T) for sheets tested along the rolling direction. As expected, the tensile flow curve fails at a lower elongation 

than the biaxial flow curves. Should flow stress be required for longer elongations, the biaxial flow curve may be 

extrapolated using either the Hollomon or Voce equations. 

 

Table 3 Hardening coefficients in Hollomon’s equation (𝜎 = 𝐾𝜀𝑛) 

Approach 
DX54D+Z H220BD+Z 

 
K n K n 

DIC 688.9 0.3066 713 0.2367 

P-C 705.4 0.3504 770.5 0.3018 

P-K 651.3 0.2707 688.8 0.219 

P-C-M 663.7 0.2865 719.7 0.2524 

T 546.21 0.2466 560 0.169 
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4.4 Stress ratios 

For each material, the biaxial flow curves obtained from hydraulic bulge tests were measured using the DIC 

data (A) and calculated using the Chakrabarty and Alexander (P-C), Kruglov (P-K), and modified Chakrabarty and 

Alexander (P-C-M) methods. Therefore, for each material, four different biaxial flow curves were obtained. The 

numbers of samples used in the hydraulic bulge and uniaxial tests that were employed to derive the stress ratios are 

shown in Fig. 6. For instance, for the AA6111-T4 alloy, three uniaxial flow curves and five biaxial flow curves 

measured with the DIC were used to obtain 15 variations in the ub  / ratio. As Fig. 6 shows, for certain strain 

ranges or plastic work ranges, the average of the variations between b and u was evaluated for each method, and 

the average ratio was then calculated ( ub  / Avg.). The average ratio multiplied by the uniaxial yield stress 0YS is 

the biaxial yield stress bYS  as summarized in Tables 4 and 5. It must be stated that the utilised uniaxial tensile data 

are for sheets tested along the rolling direction. Moreover, the results shown in Fig. 6 correspond to the average of 

15, 15, 20, and 20 calculated variations for AA6111-T4, AC600, DX54D+Z, and H220BD+Z respectively.  

 

Table 4 The average ratios (σb/σu Avg.) and uniaxial yield stresses (YS0) for different materials with various 

approaches 

Approach 

Materials 

AA6111-T4 AC600 DX54D+Z H220BD+Z 

σb/σu 

Avg. 

YS0 
[MPa] 

σb/σu 

Avg. 

YS0 
[MPa] 

σb/σu 

Avg. 

YS0 
[MPa] 

σb/σu 

Avg. 

YS0 
[MPa] 

A 0.918 

138 

0.956 

144 

1.143 

162 

1.116 

248 
P-C 0.865 0.903 1.063 1.047 

P-K 0.9115 0.954 1.120 1.105 

P-C-M 0.906 0.951 1.117 1.093 

 

Table 5 The biaxial yield stresses (𝐘𝐒𝐛) for all the materials determined by various methods 

Approach 

Materials 

YSb −AA6111-T4 

[MPa] 

YSb −AC600 

[MPa] 

YSb −DX54D+Z 

[MPa] 

YSb −H220BD+Z 

[MPa] 

A 126.68 137.68 184.97 278.15 

P-C 119.41 130.10 172.33 259.71 

P-K 125.79 137.47 182.52 273.60 
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P-C-M 125.06 137.03 182.04 271.11 

 

4.5 Yield loci 

To study the effect of the approach used for biaxial stress–strain curve determination on the shape of the 

BBC2005 yield locus, using the four different sheet alloys, the flow curves for the materials were first determined 

using the DIC technique in conjunction with three combinations of models, for the determination of the thickness 

and polar curvature at the dome apex. These experimentally measured and calculated flow curves were used to 

compute the biaxial yield stresses for the different approaches, for all of the materials considered in this study. This 

was done by adopting the approach proposed by Lee et al..[34], which is based on the principle of equivalent plastic 

work. To compute the biaxial yield stress, the raw biaxial flow curves for any used approach, together with the 

uniaxial tests for the same material are employed (see section 4.4). 

Fig. 7 illustrates the yield loci for the materials considered in this study. The results are plotted in Fig. 7 a-d 

for AA6111-T4, AC600, DX54D+Z, and H220BD+Z, respectively. Overall, the proposed method (P-C-M) predicts 

the biaxial yield stress well when compared to the one determined using the DIC technique. In contrast, the P-C 

model underestimates the biaxial yield stress. The P-K method predicts the biaxial yield stress with accuracy similar 

to that of the P-C-M method for all of the material grades. These conclusions can be taken from Table 5.  

Tables 6-9 present the material coefficients a, b, L, M, N, P, Q, and R calculated using a Newton solver for 

the materials examined in this study. 

 

Table 6 BBC2005 anisotropy coefficients for the aluminium alloy AA6111-T4 

Approach 

Material constants 

a b L M N P Q R 

A 1.480789 0.606917 0.426028 0.525034 0.462843 0.466455 0.493022 0.549261 

P-C 0.798241 0.685386 0.49554 0.594287 0.458535 0.465789 0.490753 0.553323 

P-K 1.380706 0.616569 0.433598 0.5326 0.4624 0.466365 0.492567 0.549836 

P-C-M 1.303193 0.62438 0.439905 0.538899 0.462025 0.466293 0.492235 0.550285 

 

Table 7 BBC2005 anisotropy coefficients for the aluminium alloy AC600 

Approach 

Material constants 

a b L M N P Q R 

A 1.043736 0.316884 0.469887 0.484009 0.465538 0.46074 0.560136 0.585803 

P-C 0.577512 0.371103 0.535313 0.551638 0.463799 0.457495 0.553768 0.579774 

P-K 1.028116 0.318392 0.471491 0.485663 0.465494 0.460662 0.559923 0.585590 
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P-C-M 0.996282 0.321516 0.474849 0.489125 0.465401 0.460499 0.55949 0.585157 

 

Table 8 BBC2005 anisotropy coefficients for the aluminium alloy DX54D+Z 

Approach 

Material constants 

a b L M N P Q R 

A 0.431829 0.48905 0.463888 0.433533 0.501546 0.498695 0.547105 0.53948 

P-C 0.241193 0.514689 0.543878 0.517541 0.50318 0.49716 0.544893 0.537786 

P-K 0.389268 0.49406 0.477531 0.447828 0.501794 0.498467 0.546748 0.539047 

P-C-M 0.381273 0.495037 0.480292 0.450722 0.501845 0.498419 0.546675 0.538968 

 

Table 9 BBC2005 anisotropy coefficients for the aluminium alloy H220BD+Z 

Approach 

Material constants 

a b L M N P Q R 

A 0.368627 0.447045 0.494265 0.44379 0.508937 0.506312 0.548284 0.512384 

P-C 0.20526 0.47114 0.57665 0.530911 0.511548 0.504868 0.546016 0.510827 

P-K 0.322588 0.45302 0.512286 0.4628 0.509461 0.506052 0.547869 0.51186 

P-C-M 0.299114 0.456269 0.522687 0.473779 0.509774 0.505888 0.547607 0.51161 

 

4.6 Evaluation of the analytical methods 

The analytical calculations were compared to the DIC-based calculations to evaluate their accuracy. Figures 3 to 

7 show that the Panknin-Chakrabarty (P-C) method does not lead to accurate calculations of sheet thickness (Fig.3), 

pressure vs. strain curves (Fig.4), plastic work (Fig.6) and yield loci (Fig.7). It does however, provide reasonable 

agreement for flow curves (Fig.5). The Panknin-Kruglov (P-K) and the modified Panknin-Chakrabarty (P-C-M) 

matched the DIC-based method calculations more closely. To assess the accuracy of the P-K and the P-C-M 

calculations, values from Figs. 3 to 7 were extracted and compared in Table 10. 

 

Table 10 Comparison of the P-K and the P-C-M methods against the DIC method 

 

  a) A6111 b) AC600 c) DX54 d) H220 

Fig. 3 (Sheet thickness) at 20mm height in mm 

P-K 0.823 0.775 0.651 0.596 

P-C-M 0.802 0.768 0.632 0.569 

DIC 0.807 0.752 0.628 0.579 

P-K error 2.0% 3.1% 3.7% 2.9% 

P-C-M error -0.6% 2.1% 0.6% -1.7% 

         

Fig.4 (Pressure vs. strain) at 0.2 strain in MPa 

P-K 6.488 5.954 7.428 7.72 

P-C-M 5.935 5.874 6.848 6.93 

DIC 5.966 5.463 6.726 6.99 

P-K error 8.7% 9.0% 10.4% 10.4% 
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P-C-M error -0.5% 7.5% 1.8% -0.9% 

         

Fig.5 (Flow curve) at 0.5 strain in MPa 

P-K 340 311 541 590 

P-C-M 360 320 545 604 

DIC 368 334 559 605 

P-K error -7.6% -6.9% -3.2% -2.5% 

P-C-M error -2.2% -4.2% -2.5% -0.2% 

 

Table 10 shows that for the calculation of sheet thickness, the pressure vs. strain curves and the subsequent 

derivation of flow curves, the Panknin-Chakrabarty (modified) method was, in all cases, closer to the DIC-based 

method. No discernible error could be identified in the identification of normalised stress ratio with respect to plastic 

work (Fig.6) because of the noise in the data. Little difference was detected in the initial yielding of the materials 

(Fig.7) because negligible thinning occurs at this point. With increasing deformation, the flow curve comparison at 

0.5 strain (Table 10) shows that the Panknin-Chakrabarty (modified) method becomes increasingly more accurate 

than the Panknin-Kruglov method. The Panknin-Chakrabarty (modified) method will, therefore, produce flow 

curves more suitable for modelling hot forming processes and some cold forming ones such as tyre tub components 

that can reach strains up to 0.5 strain. No consistent patterns were detected on the accuracy of the calculations based 

on material type. 

5. Conclusions 

This paper demonstrates the importance of anisotropy to the thinning of material during the bulge test. This 

was done by modifying the Chakrabarty and Alexander equation to incorporate the effects of anisotropy. When 

compared Kruglov’s thinning solution, the modified Chakrabarty and Alexander equation showed that anisotropy 

becomes more important with increasing strain. As a result, thinning and flow curves were better predicted (Table 1) 

with the modified equation for two aluminium and 2 steel sheet materials. In the absence of a continuous and in-line 

thickness measurement system, the proposed method, coupled with the Panknin method, was found to be a reliable 

way to determine the biaxial flow curve and hence the biaxial yield stress compared to ones obtained using the DIC 

technique.  
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Figure captions 

Fig. 1 Geometry of the bulge test (R = 6 mm, d = 100 mm) 

Fig. 2 Methodologies used in the study for the biaxial flow curve determination 

Fig. 3 Variation of polar thickness with dome height for (a) AA6111-T4; (b) AC600; (c) DX54D+Z; and (d) 

H220BD+Z. (A: ARAMIS, P-C: Panknin–Chakrabarty & Alexander, P-K: Panknin–Kruglov, and P-C-M: Proposed 

model) 

Fig. 4 Variation of oil pressure with polar strain for (a) AA6111-T4, (b) AC600, (c) DX54D+Z, and (d) H220BD+Z. 

(A: ARAMIS, P-C: Panknin–Chakrabarty & Alexander, P-K: Panknin–Kruglov, and P-C-M: Proposed model) 

Fig. 5 The uniaxial curve vs. biaxial flow curves obtained with different methods: (a) AA6111-T4, (b) AC600, (c) 

DX54D+Z, and (d) H220BD+Z. (A: ARAMIS, P-C: Panknin–Chakrabarty, P-K: Panknin–Kruglov, P-C-M: 

Proposed model, and T: Rolling direction flow curve) 

Fig. 6 The σb/σu ratio as a function of plastic strain for different methodologies: (a) AA6111-T4, (b) AC600, (c) 

DX54D+Z, and (d) H220BD+Z. (A: ARAMIS, P-C: Panknin–Chakrabarty and Alexander, P-K: Panknin–Kruglov, 

and P-C-M: Proposed model) 

Fig. 7 Yield loci obtained with different methodologies: (a) AA6111-T4, (b) AC600, (c) DX54D+Z, and (d) 

H220BD+Z 

  



25 

 

 


