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The problem of how staple yarns transmit tension is addressed within abstract models in which the
Amontons-Coulomb friction laws yield a linear programing (LP) problem for the tensions in the fiber
elements. We find there is a percolation transition such that above the percolation threshold the transmitted
tension is in principle unbounded. We determine that the mean slack in the LP constraints is a suitable order
parameter to characterize this supercritical state. We argue the mechanism is generic, and in practical terms,
it corresponds to a switch from a ductile to a brittle failure mode accompanied by a significant increase in
mechanical strength.
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In his celebrated Dialogues Concerning Two New
Sciences, Galileo identified a fascinating puzzle in the
mechanics of ropes [1]. His fictitious discussant Salviati
asks: “How are fibers, each not more than two or three
cubits in length, so tightly bound together in the case of a
rope one hundred cubits long that great force is required to
break it?” Galileo’s answer to this is to assert that “the very
act of twisting causes the threads to bind one another in
such a way that when the rope is stretched…the fibers
break rather than separate from each other.” From a modern
perspective, we would say that the mechanical integrity of
ropes derives from frictional contacts between fibers, and
Galileo’s rope problem is but one exemplar of a host of
related frictional phenomena in fiber assemblies, of which
perhaps the canonical case is the “staple” yarn [2–4]. Spun
from fibers only 2–3 cm long [5], such a yarn is never-
theless patently capable of transmitting tension over indefi-
nite distances. Accompanying these seemingly innocuous
puzzles is an even more existential question: why don’t
clothes fall apart? After all, like Galileo’s rope and the
staple yarn, woven fabrics and sewn garments are only held
together by friction.
A typical yarn (Fig. 1) is∼100 fibers in cross section, and

there are likely several frictional contacts per pitch length
(∼100 μm), per fiber; hence, we estimate ≳50 contacts per
fiber and an overall contact density 103–104 cm−1. Clearly,
the problem of tension transmission in such a structure is a

problem in statistical physics. Here, we introduce and
explore a class of abstract yarn models that isolate the
key frictional ingredients of such a problem. Our analysis
supports the idea that given sufficient friction and contact
points, a random fiber assembly can in principle transmit an
indefinitely large tension, by means of a collective friction
locking mechanism that resembles a percolation transition.
The underlying premise is that normal forces acting

between pairs of fibers facilitate tension transfer between
fibers. The Amontons-Coulomb friction laws [6] then
imply there is an upper bound on the tension ΔT that
can be transferred before slip occurs. Away from the fiber
ends, the fibers are in a tension-dominated regime even
under models loads [7]; hence, the tension transfer “cap”
can be expressed as jΔTj ≤ λTm, where Tm is the mean
tension in the notionally overwrapped fiber [8] and λ is

FIG. 1. A Gütermann cotton sewing thread. The composite
3-ply structure prevents untwisting under load. One ply (yarn) has
been artificially tinted to emphasize the structure. Note the halo of
stray fiber ends. Main image: SEM (Hitachi S-3400N); inset:
flatbed scanner (Canon LiDE 220).

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 120, 158001 (2018)

0031-9007=18=120(15)=158001(5) 158001-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.158001&domain=pdf&date_stamp=2018-04-13
https://doi.org/10.1103/PhysRevLett.120.158001
https://doi.org/10.1103/PhysRevLett.120.158001
https://doi.org/10.1103/PhysRevLett.120.158001
https://doi.org/10.1103/PhysRevLett.120.158001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


what we term a tension transfer coefficient. In the spirit of
the approach, we shall take the transfer coefficients from a
random distribution to reflect the quenched disorder rather
than attempting to solve the “inner” elastic problem [9]
for each pair of fibers. The key insight is that if hλi is large
enough, this mechanism “bootstraps” a percolation tran-
sition for tension transmission.
We accommodate the remnant yet singular effect of

bending stiffness in a lower bound to the tension in the fiber
ends, which we estimate as T� ≲ 1 mN [10]. This is
illustrated in Fig. 3(a), where the tension in each section
of fiber between frictional contacts is shown building from
zero at the free end. What T� means in practice is that we
expect the percolation transition to correspond to a switch
from a “ductile” failure mode where the yarn fails by fiber
slippage, at around T� per fiber, cf. [11], to a “brittle”
failure modewhere the failure mechanism is fiber breakage,
at T‡ ≈ 20–130 mN per fiber [12]. As we shall argue,
twisting fibers together (in the manner of Galileo) pushes
the assembly over the percolation threshold, resulting in
perhaps a 100-fold increase in the tensile strength. Note that
the scale separation between T� and T‡ means there is a
significant loading regime, of practical relevance, where
tension can only be carried by the percolation mechanism
identified in the present work.
Given the transfer coefficients, the problem of computing

the set of tensions Ti in the fiber elements translates into a
systemof linear inequalities that can be solved by techniques
imported from linear programing (LP). From this perspec-
tive, the question of whether the yarn transmits an arbitrarily
large tension becomes a linear satisfiability problem. In this
form it is fairly easy to show that T� is “irrelevant,” in the
language of renormalization group theory [13], and as such,
we can carry out all our calculations settingT� ¼ 0 [14]. Our
approach shares elements with Bayman’s “theory of
hitches” [15], although in our model, a yarn is more akin
to a random continuous splice comprised of many short
fibers, rather than single-rope hitches.
To explain the above, we introduce a “toy” model of an

actual splice, shown in Fig. 2. Suppose that the tensions in
the various elements are as in Fig. 2(b), and the transfer
coefficients are λ1 and λ2. Then,

jT1 − T0j ≤
1

2
λ1ðT0 þ T1Þ; T0 ¼ T1 þ T2; ð1aÞ

jT2 − T3j ≤
1

2
λ2ðT2 þ T3Þ; T1 þ T2 ¼ T3; ð1bÞ

where the inequalities are the tension transfer caps, and the
equalities are force balance constraints. As mentioned, we
simplify by assuming tension-free fiber ends, and in this
particular, we case make a judicious choice for the over-
wrapping direction (otherwise, the splice would unravel).
We define the LP objective function z ¼ P

Ti, and
determine the percolation threshold by requiring z > 0.

This, together with Eqs. (1) and the constraints Ti ≥ 0,
specifies the LP problem.
This case can be solved by hand. Defining x ¼ T1=T0

and 1 − x ¼ T2=T0, with 0 ≤ x ≤ 1, the caps yield x ≥
ð1 − 1

2
λ1Þ=ð1þ 1

2
λ1Þ and x ≤ λ2=ð1þ 1

2
λ2Þ. A solution thus

requires ð1 − 1
2
λ1Þ=ð1þ 1

2
λ1Þ ≤ λ2=ð1þ 1

2
λ2Þ, or λ1 þ λ2þ

3
2
λ1λ2 ≥ 2. If this inequality is satisfied, one is in a “locked”

state where there are unbounded solutions with z → ∞.
Intuitively [Fig. 2(c)], such solutions exist in the high-
friction region. Determining the value of x (i.e., the
individual tensions) in the supercritical locked state is
complex; it may depend on the history of loading, forces
beyond static friction, or the frictional contacts may adapt
to the load, altering the transfer coefficients.
We now describe the abstract yarn model that captures

the essential features of load transmission in fiber bundles
by this mechanism. Shown in Fig. 3(a), it treats a yarn as a
collection of randomly overlapped near-parallel fibers, each
of finite length N, in units of the number of frictional
contacts (pinning points). The structure comprises m rows
each of r fibers, with a random longitudinal offset in each
row, and it repeats periodically in the transverse and
longitudinal directions [in Fig. 3(a), m ¼ 6, N ¼ 8, and
r ¼ 2]. The pinning assignments in each column shown in
Fig. 3(a) are randomly shuffled to mimic the random
meandering of fibers through the structure. In the model,
there are ðN þ 1Þmr tensions Ti ≥ 0 and 3

2
Nmr constraints

coming from 1
2
Nmr pinning points. Thus, for N > 2, the

problem is potentially overconstrained, and solutions withP
Ti > 0 are possible only if there is sufficient “slack” in

the tension transfer caps. As mentioned, the tension transfer
coefficients λi are independent and identically distributed
random variables, with mean hλi and distribution relative
width σ. For each structure, we solve numerically for the
onset of linear satisfiability as hλi increases, then average
over 103–104 samples. Figure 3(b) shows the dependence
of the critical Nhλi on the fiber length N. In this repre-
sentation, the results are insensitive to the model details,
verifying our claim that for sufficiently long fibers there is a
generic percolation transition in this model. Solving for
the Ti, just above the threshold, yields insight into the

(a)

(b)

(c)

FIG. 2. (a) A “short” splice between two laid ropes [16]. (b) A
schematic “toy” model of splice with labeled tensions (the ∨ and
∧ shapes indicate the pinning direction). (c) A state space
showing region (shaded) where tension can be transmitted.
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percolating system of forces. Thus, Fig. 4 shows how
tension in a fiber builds from zero at the free ends, attaining
a maximum in the middle, and the inset shows the
distribution of tensions in individual fiber elements.
ForN ≳ 30, the percolation threshold is roughly constant

at Nhλi ≈ 7.3� 0.2. In the tension-dominated regime, and
in the limit of a small turning angle θ, the transfer coef-
ficient λ ≈ μθ, where μ is the fiber-fiber friction coefficient.
If the critical hλi ∼ N−1, this suggests that for N ≫ 1 one
can interpret the percolation threshold as a lower bound to
the total fiber turning angle, specifically μhΘi≳ 7 where
Θ≡ Nθ. This quantifies Galileo’s assertion about ropes,
since twisting fibers together builds Θ, and it parentheti-
cally explains why spinning is such an essential part of the
manufacturing process for yarns. As a sanity check for
cotton, μ ≈ 0.3–0.4 [4,5], and thus, hΘi ≳ 20. Table I
estimates the total fiber turning angle for fibers in the

yarns in Fig. 1, and it seems that this constraint is indeed
comfortably met.
If we interpret tension transmission as a phase transition,

it is natural to seek an order parameter. The load will not do,
as the problem as specified is homogeneous in the tensions.
Instead, for each contact, we use the mean tension Tm
introduced previously to define the slack, S ¼ λTm − jΔTj,
as the amount by which the tension transferred undershoots
the friction limit [18]. The system-wide mean slack hSi is
an order parameter. In the supercritical state, there is
generally not a unique set of tensions (cf. selection of x
in the splice toy model), rather there is a feasible solution
space, which in this case is an open polytope: a convex,
high-dimensional cone in the positive hyper-quadrant of the
space of fiber element tensions. To compute hSi, we select a
random edge of the solution cone and average over such
edges. The results (Fig. 5) support the notion of a second-
order phase transition in the limit of long fibers [19],
although there are significant finite-size effects.
To understand the nature of the percolation transition, we

now develop a mean field theory for the tension TðsÞ in a
fiber as a continuous function of fractional arc length s. We

(a)

(b)

(c)

FIG. 3. (a) A fiber meandering through the yarn structure
accumulates tension by means of frictional contacts (angles are
exaggerated in this schematic). (b) An abstract yarn model in the
notation of Fig. 2(b). For the baseline model the pinning
assignments are randomly shuffled in each vertical column.
(c) The critical value of Nhλi as a function of fiber length N,
for different values ofm, r, and the width σ of the tension transfer
coefficient distribution. We also considered a “uniform” version
without random vertical shuffling (but with random pinning
directions), and a “symmetrized” version in which Tm is the mean
tension in all fiber elements participating in a frictional contact.

FIG. 4. The mean tension as a function of distance along a fiber,
for a baseline parameter set, computed just above the percolation
transition. The theoretical curve is the solution to Eq. (2) at
Λ ¼ Λc. The inset shows the distribution of tensions in individual
fiber elements (i.e., between pinning points).

TABLE I. The diameter and pitch (10–90 percentile ranges) of
3-ply Gütermann sewing thread from imaging (cf. Fig. 1 inset).
A proxy estimate for the fiber turning angle is Θ ≈ κl. The yarn
curvature κ is estimated by modeling the ply centerline as a helix
with diameter d=2 and pitch length 3λ [17].

Diameter d 0.23–0.27 mm
Apparent pitch λ 0.30–0.39 mm
Yarn curvature κ 1.7–2.5 mm−1

Fiber length [5] l 20–30 mm
Fiber turning angle Θ 30–70 radians
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assume N ≫ 1, and correspondingly, the tension transfer
coefficient λ ≪ 1. The centerpiece of the theory is the
bidimensional function ψðs; s0Þ, which gives the actual
tension transfer between fibers in contact at s and s0, i.e., as
ΔT ¼ ψλTm with jψ j ≤ 1. In these terms, TðsÞ satisfies the
integro-differential equation

dT
ds

¼ Λ
Z

1

0

ds0½ψðs; s0ÞTðs0Þ − ψðs0; sÞTðsÞ�; ð2Þ

where Λ ¼ 1
2
Nλ, noting that on average there are 1

2
N

frictional contacts of each type per fiber. We additionally
require Tð0Þ ¼ Tð1Þ ¼ 0. The mean slack is given by
NhSi ¼ Λ

R
ds

R
ds0ð1 − jψ jÞTðsÞ, where the integral is

over the square domain ðs; s0Þ ∈ ½0; 1� × ½0; 1�.
Load bearing is enhanced by transferring tension to

the fiber with longer to go, so for s < s0, we transfer from s0
to s and vice versa, and at criticality, we must maximize
this opportunity. Thus, as an ansatz, we choose ψðs; s0Þ ¼
sgnðs0 − sÞ (and concomitantly, hSi ¼ 0). Equation
(2) becomes dT=ds ¼ Λc

R
1
0 ds0sgnðs0 − sÞ½TðsÞ þ Tðs0Þ�.

The resulting Sturm-Liouville-like problem can be solved,
with a normalized solution TðsÞ ¼ 2x20½1 − 2xFðxÞ�, where
x ¼ x0ð2s − 1Þ, FðxÞ ¼ R

x
0 dy exp ðy2 − x2Þ (Dawson’s

integral [20]), and x0 ≈ 0.924 solves 2x0Fðx0Þ ¼ 1. The
critical value Λc ¼ 4x20 ≈ 3.416. For the tension profiles in
Fig. 4, a precise agreement with the numerical results is

observed; we speculate that the theory becomes exact in the
limit of long fibers. The critical value yields Nλc ≈ 6.83, in
good agreement with Fig. 3(b), for long fibers.
Turning now to the supercritical behavior, states with

slack are under determined by the friction constraints alone.
The challenge is to determine the fractional tension transfer
ψðs; s0Þ in Eq. (2) within the friction constraint that jψ j ≤ 1.
The results are dependent on the choice of physics in the
supercritical state. Here we sketch the main results [21]. For
example, maximizing the slack selects ψðs; s0Þ ¼ 0 in a
diagonal band js0 − sj < w, while retaining the critical form
ψðs; s0Þ ¼ sgnðs0 − sÞ outside this. Treating the band as a
perturbation (w ≪ 1) recovers the critical Sturm-Liouville-
like problem with Λc replaced by Λ=ð1þ Λw2Þ. As a
result, the latter expression must match Λc, leading to
1=Λþ w2 ¼ 1=Λc. For this form of ψ we readily find

NhSi ¼ 2wΛhTi ¼ 2hTi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΛ=ΛcÞðΛ − ΛcÞ

p
: ð3Þ

To test this, we used linear programing to solve the max-
slack condition for a single, long fiber transferring tension
to itself. The result (Fig. 5) shows good agreement with the
theoretical curve in Eq. (3) over six decades [22].
A more physical model is to presume that as we load the

sample, contact points displace affinely where they can
within a “core” region js − 1

2
j < w, and they otherwise slide

under locally critical conditions (a “stretch-and-slip”model
[4b]). This means that all contacts associated with the
“tails” (i.e., js − 1

2
j ≥ w) are at their sliding condition with

ψðs; s0Þ ¼ sgnðs0 − sÞ, including their contacts with points
s0 in the core. For points s in the core, we have affine
deformation, so we anticipate a uniform strain leading to
uniform tension. This turns out to be exactly compatible
with Eq. (2), choosing ψðs; s0Þ ¼ 0 when both s and s0 are
in the core, and noting that the contributions to dT=ds in
the core from left and right tails cancel each other out. This
leads to a second curve shown in Fig. 5.
Yet another possible scenario is to postulate that all

supercritical states within the allowed solution cone
are equally likely (a “max-entropy” model), akin to the
microcanonical ensemble in statistical mechanics, or the
Edwards’ conjecture in granular packings [23]. A numeri-
cal investigation of this case is also shown in Fig. 5.
These possibilities lead to different values for the critical

exponent in hSi ∼ ðΛ − ΛcÞβ, ranging from β ¼ 1=2 for the
max-slack model, Eq. (3), to β ≈ 0.75� 0.05 for the max-
entropy case (fitting to a power law). The near-critical
behavior of the stretch-and-slip model is w ∝ ðΛ − ΛcÞ1=3
and hSi ∝ w2, leading to the intermediate value β ¼ 2=3.
To summarize, we propose a generic percolation tran-

sition as the explanation for how staple yarns, woven
fabrics, sewn garments, and Galileo’s rope transmit tension
over arbitrary distances. Our assertion is supported by the
appearance of a transition in abstract models, where the
friction laws are recast as a linear satisfiability problem.

FIG. 5. Normalized slack per fiber versus the departure from
criticality. The “max slack” data points are numerical results from
three samples each with one self-coupled fiber N ¼ 2000; the
matching theoretical curve is Eq. (3) with no adjustable param-
eters. The lower dashed line is for the more physical stretch-and-
slip scenario. The common asymptote at large Λ is trivially
NhSi ¼ ΛhTi. The max-entropy data points show the slack
averaged over the microcanonical ensemble of all admissible
tensions at fixed hTi ¼ 1, for two samples of a single self-
coupled fiber with N ¼ 2000. The lassoed rainbow data sets are
from the yarn models of Fig. 3, averaged over edges of their
solution cone: these are consistent with approaching the max-
entropy results at large N.
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This transition appears to be second order, although the
critical exponents are dependent on physics beyond simple
static friction. The abstract model may be generalized and
applied in various ways. For example one can investigate
fiber blends, with applications to optimizing the properties
of functionalized sewing threads. In another direction,
failure could be modeled by iteratively breaking the most
highly loaded fiber elements (Fig. 4 inset), cf. elastic fiber
bundle models [24]. More generally, the LP approach to
Amontons-Coulomb friction problems may have applica-
tions in stress transmission in granular media, such as sand
piles and grain silos.
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