

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/103415

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/103415
mailto:wrap@warwick.ac.uk

Dataflow methods

in HPC, visualisation and analysis

by

John A. Biddiscombe

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Warwick Manufacturing Group

August 2017

Contents

Acknowledgments iii

Declarations iv

Abstract x

Chapter 1 Introduction 1

1.1 Dataflow . 3

1.1.1 Information in Dataflow Systems 5

1.2 In-Situ Visualisation and Computational Steering 9

1.2.1 MPI – one rank per node, one rank per process 12

1.3 Load-balancing, rendering and information 15

1.3.1 Particle data . 17

1.4 Task based programming . 17

1.4.1 Dataflow through futurization 18

1.4.2 HPX . 18

1.4.3 Task based visualisation pipelines of the future 19

1.4.4 Future work . 23

1.5 Contribution . 24

Chapter 2 Time Dependent Processing in a Parallel Pipeline Archi-

tecture 26

Chapter 3 Parallel Computational Steering for HPC Applications

using HDF5 Files in Distributed Shared Memory 35

Chapter 4 Practical parallel rendering of detailed neuron simulations 50

Chapter 5 High-Performance Mesh Partitioning and Ghost Cell Gen-

eration for Visualization Software 59

i

Chapter 6 Zero Copy Serialization using RMA in the Distributed

Task-Based HPX Runtime 70

Bibliography 79

Author Bibliography 84

ii

Acknowledgments

“Only the mediocre are always at their best”

Jean Giraudoux

The author would like to thank

CSCS, the Swiss National Supercomputing Centre

for the opportunity to work on the topics presented here.

Kurt Debattista and Alan Chalmers

for helping to prepare and supervise this work.

All of the co-authors of the papers presented in this thesis

for their valuable collaboration and input.

Mum and Dad

for everything you’ve done for me.

Olgypops

for her endless patience, cooperation and understanding

and waiting for 18 years for this thesis.

iii

Declarations

This thesis consists of work that has been conducted in collaboration with several

other authors who have given their consent to reproduce their material here.

The publication rights and copyright for each of the included papers is the

property of the journal or proceedings for each of the respective articles, a copyright

statement for each is included at the start of each chapter where the paper appears.

Statements have been made testifying to the contributions made by each

author for each paper included in the thesis, they are included in this section.

iv

v

vi

vii

viii

Written statement of attribution regarding contributions to

“Zero copy serialization using RMA in the HPX distributed task-based runtime”,

14th International Conference on Applied Computing 2017,

J. Biddiscombe, T. Heller, A. Bikineev, H. Kaiser.

In support of the application to submit a PhD by Published work by

Warwick Manufacturing Group

University of Warwick

Coventry CV4 7AL

UK

John Biddiscombe

CSCS, Swiss National Supercomputing Centre

Via Trevano 131

Lugano 6900

Switzerland

We, the undersigned, hereby acknowledge that the following information is an accurate description

of the contributions by each of the authors.

The paper describes the design of the zero-copy serialization layer in the HPX runtime;

 The serialization layer in HPX and chunk based archive design was the work of Kaiser,

Bikineev and Heller and others not included here.

 The extension of the serialization benchmarking application to include HPX and the

generation of the serialization benchmark figures was the work of Bikineev.

 The extension of the archive to support RMA chunks was the work of Biddiscombe.

 The one sided zero-copy network implementation using libfabrics was the work of

Biddiscombe, with help from Heller.

 The implementation of rma_object and rma_vector was the work of Biddiscombe.

 The principal author and editor and the creator of all the diagrams and pictures in the paper

was Biddiscombe.

ix

Abstract

The processing power available to scientists and engineers using supercomputers over
the last few decades has grown exponentially, permitting significantly more sophisticated
simulations, and as a consequence, generating proportionally larger output datasets. This
change has taken place in tandem with a gradual shift in the design and implementation
of simulation and post-processing software, with a shift from simulation as a first step and
visualisation/analysis as a second, towards in-situ on the fly methods that provide immediate
visual feedback, place less strain on file-systems and reduce overall data-movement and
copying. Concurrently, processor speed increases have dramatically slowed and multi and
many-core architectures have instead become the norm for virtually all High Performance
computing (HPC) machines. This in turn has led to a shift away from the traditional
distributed one rank per node model, to one rank per process, using multiple processes per
multicore node, and then back towards one rank per node again, using distributed and
multi-threaded frameworks combined.

This thesis consists of a series of publications that demonstrate how software de-
sign for analysis and visualisation has tracked these architectural changes and pushed the
boundaries of HPC visualisation using dataflow techniques in distributed environments. The
first publication shows how support for the time dimension in parallel pipelines can be im-
plemented, demonstrating how information flow within an application can be leveraged to
optimise performance and add features such as analysis of time-dependent flows and com-
parison of datasets at different timesteps. A method of integrating dataflow pipelines with
in-situ visualisation is subsequently presented, using asynchronous coupling of user driven
GUI controls and a live simulation running on a supercomputer. The loose coupling of anal-
ysis and simulation allows for reduced IO, immediate feedback and the ability to change
simulation parameters on the fly.

A significant drawback of parallel pipelines is the inefficiency caused by improper
load-balancing, particularly during interactive analysis where the user may select between
different features of interest, this problem is addressed in the fourth publication by integrat-
ing a high performance partitioning library into the visualization pipeline and extending the
information flow up and down the pipeline to support it. This extension is demonstrated in
the third publication (published earlier) on massive meshes with extremely high complex-
ity and shows that general purpose visualization tools such as ParaView can be made to
compete with bespoke software written for a dedicated task.

The future of software running on many-core architectures will involve task-based
runtimes, with dynamic load-balancing, asynchronous execution based on dataflow graphs,
work stealing and concurrent data sharing between simulation and analysis. The final paper
of this thesis presents an optimisation for one such runtime, in support of these future HPC
applications.

x

Chapter 1

Introduction

Visualisation and analysis go hand in hand with simulation; without graphs, images

and videos made from the results generated by scientific simulations there would be

significantly less discovery and insight in scientific computing. Unfortunately, gener-

ation of images from scientific data is not always a straightforward task, particularly

so as the size of datasets generated by scientists has been growing consistently over

the years, in line with the growing compute power that has followed Moore’s law

and in turn driven the IT and Big Data revolution that we are living through.

The problems associated with large dataset visualisation are a combination

of those that occur in distributed computing with those associated with parallel

rendering and stem from the following underlying causes:

• When datasets exceed the size of memory on a single workstation or the re-

sources required to generate a pleasing image exceed the capabilities of a single

node, it becomes necessary to process the data in parallel using multiple nodes

in a cluster or supercomputer.

• Processing data in parallel requires communication and synchronization be-

tween nodes that significantly complicates software.

• As data becomes larger, it (generally) becomes more difficult to find regions

of interest because the ratio of interesting to average numbers (or features) in

the data becomes smaller.

• To make interesting data more visible and stand out from the sea of more

mundane data, complex mapping or transformations may be required that

require special treatment when run in a distributed parallel code.

1

• Increasing data sizes place more strain on filesystems that are impacted both

by the simulation, and again by the visualisation during later post processing.

In-Situ Methods

Optimisation

Dataflow

IO

Networking

Parallel Rendering

and Visualisation

HPC

Simulation

Chapter 2

Chapter 4

Chapter 5

Computational

Steering

Chapter 3

Future

Task Based Systems

Chapter 6

Chapter 3

Chapter 6

Figure 1.1: An illustration of how the main themes of the chapters of this thesis fit
into the broader picture of simulation, visualisation and analysis. (It is not possible
to confine each chapter to a single position since they all deal with optimisation and
dataflow in some capacity).

These problem areas can be collected into broad categories as shown in figure

1.1, which illustrates how the chapters of this thesis overlap with those areas of

research.

• Networking represents the major difference between a multi-node distributed

application and a single node one; all communication between processes makes

use of the network. In the area of Parallel Rendering and Visualisation,

distributed pipelines (Chapter 2), image compositing (Chapter 4), load bal-

ancing (Chapter 5) all rely on high performance networking. Optimisation of

2

the network layer itself is the subject of Chapter 6.

• IO has become a major bottleneck in the simulation-analysis workflow; huge

datasets, saved to disk (then reloaded later), may add minutes or hours to

compute runs. In-Situ analysis (Chapter 3) is one of the solutions to the IO

problem, by analysing data at the point of creation, extracting useful infor-

mation from it and only saving that which is necessary the total time spent

on scientific discovery is dramatically reduced.

• Computational steering (Chapter 3) takes the principle of in-situ analysis

one step further by allowing changes to the simulation to be made whilst it is

still running and providing immediate feedback to the user.

• Dataflow represents the algorithmic building blocks and the connections be-

tween them, that are used when turning one piece of data into another, whether

that data be initial boundary conditions, geometric/topological descriptions

or any other methodological parameters. Dataflow represents the single bind-

ing theme of this thesis where all work intersects and it is the Optimisation

of those building blocks and how they connect that each chapter explores.

• Future computer systems will have more cores, more accelerators, and be

built with more heterogeneous components that in turn require more complex

synchronization, thread control and scheduling between algorithmic dataflow

blocks that subdivide work into Tasks that execute asynchronously. The

optimisation of task communication over the network is the subject of Chapter

6.

1.1 Dataflow

Dataflow techniques have emerged as the dominant design paradigm for visualisa-

tion software with the two best known distributed parallel applications, VisIt and

ParaView, being built upon the Visualization Toolkit (VTK, Schroeder et al. [1996]),

a dataflow based visualisation library. VTK consists of hundreds of sources (read-

ers, data generators), filters for processing datasets (slicing, contouring etc.) and

sinks (renderers, writers) that consume data, these make up a huge pool of modu-

lar algorithms and connectible components that allow data of almost any kind to

be manipulated and transformed from one type to another or rendered as images

or graphs. In the wider field of data science, other technologies that make use of

dataflow, such as MapReduce (Dean and Ghemawat [2008]), Apache Spark (Zaharia

3

et al. [2016]) and more recently Google’s Cloud Dataflow (Akidau et al. [2015]) have

been widely adopted for large scale data processing due to their flexibility and appli-

cability to a wide range of problems. In the field of AI, libraries such as TensorFlow

(Abadi et al. [2016]) are built around the concept of dataflow graphs in exactly

the same way and are revolutionising the software landscape and placing powerful

learning tools in the hands of the masses.

At the heart of the dataflow principle is the idea that many small tasks that

perform a limited or well defined function, may be chained together and combined

to solve more complex problems (see Johnston et al. [2004] for a good introduction).

One of the requirements (and great strengths) of this approach is that it encourages

the adoption of a manageably small number of well defined data types to represent

the intermediate states of the computation (graph edges) so that pipelines can be

constructed from reusable code blocks (graph nodes) and each new algorithm or

method added, increases the problem space that can be explored in a combinatorial

way. Modular design of software is not new or revolutionary and the principles

behind dataflow methods originate from the more fundamental realm of functional

programming, where every operation (cf. filter) is a transformation of some input

data/arguments and the resulting new data is produced as an output. Functional

programming itself has seen a revival in popularity over recent years, in large part

due to the changes in microprocessor architectures towards more cores per chip,

which in turn leads to stronger thread safety requirements in programs. Functional

programs should ideally have no external state – no global mutable variables –

one of the principal requirements of robust thread-safe programming, however the

adoption of thread-safe programming techniques in large libraries such as VTK has

been slow due to the size and complexity of those libraries; their design and much of

their implementation was already in place before the need for thread safety became

necessary.

When VTK was first released in the 1990’s, dual core processors were not

available (IBM’s Power-4 processor was the first dual-core general purpose CPU and

was released in 2001, AMD and Intel produced their first x86 compatible dual-core

processors in 2004 and 2005 respectively), dual socket machines were not common-

place and so multi-threaded programming was not widely used outside of the operat-

ing systems that hosted the users code and (in hardware form) in the graphics chips

that did the work of rendering their images. Initial work on laying the foundations

of multi-threading and parallel distributed operation in VTK were introduced in

(Law et al. [1999] and Ahrens et al. [2000]) and it is in these developments that the

concept of information flow into the VTK dataflow pipeline were first introduced –

4

information in this context may be considered as meta-data about the data being

processed, the following section describes why it is useful and needed.

1.1.1 Information in Dataflow Systems

The concept of dataflow is straightforward, data is taken in by some filter or func-

tion, modified in some way and exported, where it is then consumed by another filter

and the process repeats, with fan-out and fan-in of data paths producing a network

of connections that form a graph. Generally (at least in visualisation), the graphs

are acyclic and are referred to as Directed Acyclic Graphs (DAGs). In a visualisa-

tion pipeline, the sources that form the initial nodes of the graph are readers (or

in-situ data generators) and the sinks that terminate the graph are renderers (or IO

writers). Cyclic feedback loops within the graph are used frequently in AI systems

such as TensorFlow, as they allow for concepts such as memory and feedback to be

introduced, but in more traditional data-processing pipelines they introduce ambi-

guity and can trigger unwanted re-execution of the algorithms in the graph nodes if

not treated specially.

The problem with a simple graph is that all data must be transmitted along

the graph edges connecting the nodes, and the type of that data must conform to

what is expected at the inputs to that node. A contour filter (for example) may

expect a regular grid such as an image as input, but will generate an unstructured

grid/mesh as output. A second filter expecting a regular grid cannot accept the

unstructured data since the cells of the mesh in most systems will be represented

by a different type than the cells in the image – an image requires only an x and y

dimensions, origin and spacing between pixels, whereas the mesh requires explicit

connectivity array to map vertices onto coordinates – very different definitions. A

renderer may turn the mesh geometry back into a 2D image and return the type back

to a regular grid once more – such transformations are common with filter pipelines.

Within a powerful high-level programming language such as C++, the datatypes

that represent the geometric types may be part of a class hierarchy that allows one

to construct higher abstractions that hide some of these type transformations or

provide automatic conversion from one type to another, removing some restrictions

from the composability of the nodes within the graph and therefore making their

construction more straightforward. All these considerations are taken into account

in the design of a library such as VTK, but problems arise when the representation

of parameters are included, in particular, conditional parameters.

To explain why parameters cause problems, consider figure 1.2 that shows

a simple pipeline, the user may control parameters of each of the filters, or the

5

Source

(image)

Filter1

(extract region)

Filter2

(smoothing)
Renderer

User

GUI/Parameters

Request (information)

Figure 1.2: Each of the source nodes, or filters/renderers may have a large number
of parameters, which may change the input or output requirements, or even data
types. When the user interacts with a filter, information passing enables filters to
modify themselves or their behaviour accordingly.

renderer. Data (an image in this example) is loaded initially and passed to an

extract region filter that in turn crops the data and outputs a new image of smaller

size, this is passed to a second filter that applies a smoothing operation in the form

of a simple stencil. If the user sets the region of interest (ROI) on the extraction

filter to some small subregion of the whole image – should the source reader export

the whole image, or just the region that is needed for the ROI? Clearly the source

reader could be more efficient if it only read the data that was actually needed

further down the pipeline. The difficulty is that one must now pass parameters

that belong to the extraction filter to the reader so that it can modify its output

accordingly. The scenario can be made more complicated by including the smoothing

filter – the user may select a smoothing option that applies a stencil or convolution

operation requiring data from N nearest neighbours for each pixel – the ROI must

be inflated by one or more pixels and the exported source region must be expanded

accordingly. The user might even use another parameter to disable the visibility of

the smoothed image in the renderer and it is now no longer necessary to read or

process any data at all. The number of possible parameter changes that affect the

dataflow balloons as more and more filters are added and it is clearly not possible to

pass all of them to all filters and have them handle them correctly – especially if one

considers that all parameters may have different types themselves (scalars, vectors

or other structures). The solution adopted in VTK and it’s parallel distributed

implementation ParaView (Ahrens et al. [2005]) is to use information keys that are

special messages that flow up and downstream, complementing the main dataflow

and permitting a downstream filter to affect the behaviour of one upstream one by

passing information/requirements about regions, pieces, ranges etc. and each filter

6

may update/modify the information (even adding new information keys and values)

depending upon its own needs before the main data update stage. Information flow

is initiated via a request that is generated by the executors responsible for updating

the pipeline when new data is required (such as when the user refreshes the screen

to update the display).

The solution implemented in VisIt (Childs et al. [2005]) uses a contract struc-

ture that holds fields for any dataset attributes or values that might be useful to

other filters and each one may update the values in the contract prior to execution

of the pipeline. The contract system is not as trivially generalizable as the one in

ParaView that allows any key/value pair to be added to the information by any fil-

ter (or graph node) but it permits essentially the same kind of modifications to take

place in the pipeline. It is important to note that the addition of extra messages

flowing (sometimes bidirectionally) between nodes of the graph does not change the

essential structure of the graphs into cyclic or undirected graphs since the main flow

of data is unchanged – however, the communication between nodes adds tremendous

flexibility and give them the opportunity to perform optimisations (data reduction

for example) based on information supplied from others.

Chapter 2 presents the paper “Time Dependent Processing in a Parallel

Pipeline Architecture” (Biddiscombe et al. [2007]) that explores this topic in more

detail and uses the technique to extend the capabilities of ParaView to handle

time dependent datasets in a consistent manner. The developments outlined in this

paper allowed the creation of a series of filters that are still used today as part of the

backbone of the pipeline in ParaView. The ability to modify time requests, create

branches of pipelines with different timesteps and cache data between times is used

in the comparative visualisation features as well as the animation controls provided

by the ParaView front-end GUI. The implementation details of these features are

generally hidden from the user, however some of the more visible developments are

used actively – the best known of which is probably the vector field particle stream

tracer that is used worldwide by researchers on a daily basis for visualisation of time

dependent flows in areas of engineering and science from CFD to astrophysics.

The first industrial use of the time dependent pathline filter was in the visu-

alisation of flows in a Francis turbine to identify vorticity and regions of cavitation

(which damages turbine blades). The images of figure 1.3 show flow and vortex

formation in a the turbine; they were particularly difficult to generate because the

dataset consisted of over 50 individual high resolution mesh blocks representing dif-

ferent parts of the turbine, of which 34 were rotating relative to the frame of the

turbine. Handing this case required special treatment of particles that passed from

7

(a) Turbulent flow in Francis turbine (b) Close-up of vortex

Figure 1.3: Snapshots of pathlines generated in time dependent flow fields in a
Francis turbine. (a) The turbulence below the main turbine blades causes uneven
outflow that in turn reduces the efficiency of the turbine. Some particles are seeded
midway through the flow to better show the asymmetrical flow. (b) A stable vortex
forming right below the main turbine blades.

a stationary to a rotating block during an integration step and could not be done

prior to the developments of Chapter 2. No other off the shelf software available at

the time was able to produce images and videos of this kind from the datasets used.

The particle tracer was also used to create visualisations of flow in cere-

brospinal fluid (CSF) to accompany the co-authored paper (Gupta et al. [2010])

which contains many images created using the new ParaView capabilities. Figure

1.4 shows a still image of the flow of CSF around the brain that when animated re-

veals the periodic motion of the fluid, synchronized to the heart beat, that transports

chemicals around the brain and can be used in the modelling of drug delivery.

Numerous other time based filters have been developed since the time based

pipeline work was completed, one example is the implementation of a custom inter-

polation filter for SPH (smoothed particle hydrodynamics) particles that was used

in the extraction of vortex core-lines for another co-authored paper (Schindler et al.

[2009]). The use of cubic interpolation that includes the particle velocities at two

time steps as well as their positions produces a smoothly differentiable trajectory

that leads to better convergence of the vortex core-line calculation developed in

the paper. The pipeline model makes it easy to create custom filters that can be

inserted into a visualisation pipeline to perform these kind of non-standard, appli-

8

Figure 1.4: Flow visualisation of cerebrospinal fluid between the skull and brain
and in the subarachnoid space. The beating heart causes pressure changes in blood
flow and expansion/contraction of the brain tissue that triggers circulation of the
fluid, transporting metabolites and hormones in the process.

cation specific operations, figure 1.5 shows the striking difference between the linear

and hermitian interpolation scheme used.

1.2 In-Situ Visualisation and Computational Steering

The size of computer simulations in the field of HPC has been, and still is, con-

tinually growing as processors become more powerful and clusters/supercomputers

increase in capabilities correspondingly. Managing the torrent of data produced by

simulations has become one of the major challenges in the simulation community.

In-situ analysis is the term used to refer to the generation of output statistics, plots

or images that are derived from simulation results using the tools conventionally

reserved for post processing data. The central idea being to reduce IO from simula-

tion to file system, and then back again from file system to visualisation, as well as

increasing the frequency at which analysis can be performed, since IO is frequently

performed after N time steps rather than at every one to reduce IO needs. Over

time, the approaches used for in-situ analysis have become known by the terms

• Loosely coupled, denoting that the simulation generates data that is sent to

9

Figure 1.5: Illustration of cubic interpolation of particle paths. Arrows indicate
positions and velocities of all particles and show a region of air under a wave rolling
over. Red lines mark linearly interpolated paths of some of the particles, while green
curves indicate the corresponding cubically interpolated paths. (Image c© IEEE. Reprinted,

with permission)

separate nodes reserved for analysis to be further processed.

• Tightly coupled, where data remains on the same nodes on which it has been

generated and is then processed in a second stage by analysis code.

• Hybrid coupled, some data reduction or initial processing may take place on

compute nodes and the remaining data is then forwarded on to others for

further processing.

Each strategy has its own advantages and disadvantages;

• Loose coupling places a minimal burden on the simulation which can continue

unaffected – but it forces the user to make a possibly expensive copy of the

data on analysis nodes which must be allocated in addition to the compute

nodes.

• Tightly coupled methods may require the simulation to stop whilst post pro-

cessing takes place and may cause excessive memory requirement on the com-

pute nodes and impact performance through contention for system resources.

This problem is particularly notable if the analysis code does not scale as well

as the original simulation code, resulting in resources being wasted.

• Hybrid approaches may take the best, and possibly the worst of both worlds

and are the most complex to implement and deploy.

10

The first major work in this area for the HPC community was the loose coupling

framework DataStager (Abbasi et al. [2009]), it was built upon a number of other

libraries including the Adaptable IO Services (ADIOS, Lofstead et al. [2008]) that

were not used widely outside of the US national labs where they were developed.

A much more widely adopted parallel IO library is the Hierarchical Data Format,

HDF5 (The HDF Group [2000-2017]) and this was used as the basis for a loosely

coupled interface between simulation and ParaView (Biddiscombe et al. [2011]),

this paper was later extended and published as Chapter 3, “Parallel Computational

Steering for HPC Applications using HDF5 Files in Distributed Shared Memory”

(referred to as DSM henceforth) (Biddiscombe et al. [2012]) – the paper introduces

a DSM based approach to reroute file IO into memory instead of disk and expose

the memory as a file to the application. In the same year as the initial paper, the

VisIt community released a tightly coupled in-situ library libsim (Whitlock et al.

[2011]) and a few year later a tightly coupled in-situ ParaView library was released

called Catalyst (Ayachit et al. [2015]).

The work of Chapter 3 differs from libsim and Catalyst and is important for

several reasons:

• The ParaView/DSM interface is built on top of a custom HDF5 file driver

implying that any simulation that uses the HDF5 IO library can be integrated

into the in-situ visualisation framework without requiring any modifications

to the code – only relinking to a modified HDF5 lib is needed.

• Since only a linking step is needed, Fortran, C, C++ based simulation codes

can all be accommodated equally well (other languages could be supported

but have not been tested).

• The HDF5 file exposed by the DSM file driver (H5FDDSM) behaves exactly

like a high speed file on a parallel filesystem and so can be read from or written

to by either side of the communication link – this permits computational

steering as well as visualisation since commands and data can be sent back

from the ParaView GUI and read by the application.

• Custom GUI interfaces to control steerable objects or define visualisable ones

can be built for the simulation using a simple XML syntax.

The dataflow theme continues in the computational steering work of Chapter

3, when outputs from the simulation are connected to pipelines in ParaView and

these are used to generate new datasets that are returned back to the simulation for

use in subsequent time steps (direct coupling of solvers is also possible in this way).

11

DSM

Source
Filter1 ...Filters... Renderer

User

GUI/Parameters

Simulation
DSM

Writer

DSM

Figure 1.6: The DSM is a bi-directional module in the pipeline, it permits dataflow
from simulation to user, and also allows steering commands and data to be returned.

Figure 1.6 shows how the pipeline of figure 1.2 is modified by the presence of the

DSM, forming a bridge between the simulation and the conventional visualisation.

ParaView has been used as an interface for a user to control the simulation

by taking outputs from the simulation, combining them with user parameters from

controls, then generating new geometries that are fed back to the simulation to steer

it, experiments involved the steering of boats, control of wave generator geometries

and the design of turbine blades and buckets – principally using SPH solvers that are

well suited to handling adaptive/dynamic meshes. In figure 1.7 is an example of the

steering framework being used to control a pelton turbine simulation. The design of

the bucket shape is critical to minimize the splash from the water jet rebounding and

colliding with the incoming jet as this perturbs the shape and reduces momentum.

This plot shows the change in velocity and torque from the turbine as the water

flow is increased.

Several difficulties arose when controlling simulations in this way – the main

one was that the time steps output in simulation time are typically tiny, of the order

of milli or microseconds and are generated in seconds or tens of seconds of user time

– this makes it very difficult for interactive (human operated) controls to be used to

directly steer a simulation and instead it was found that connecting scripted python

routines to outputs and animating variables using the time dependent controls dis-

cussed previously gave more consistent and predicable behaviour.

1.2.1 MPI – one rank per node, one rank per process

A second problem that was found with the DSM implementation was not with

controlling simulations but with the complexity of the implementation itself which

used MPI for all communication – between two applications that were themselves

12

Figure 1.7: A snapshot of the steering system in use whilst monitoring and con-
trolling a simulation of a pelton turbine. The user increased the water discharge in
steps and measured the velocity of the turbine and torque produced.

using MPI communication internally. Allowing an entirely asynchronous shared

memory file with parallel access that can be opened and closed arbitrarily by either

simulation or analysis, required a complex (parallel) locking mechanism to ensure

that only one side of the link could modify the file contents at a time and a complex

message scheduling algorithm to distribute pieces of the file in an MxN fashion

(since the number of simulation nodes might not match the number of analysis

nodes and random access of the file is permitted and enforced by using random

or block cyclic access). This in turn required a multi-threaded design to allow

efficient handling of many messages coming from a large number of nodes in arbitrary

ordering.

The latest MPI-3 standard (MPI Forum [2012]) emphasises and encourages

the use of asynchronous non-blocking communications, one-sided transfers using

remote memory access (RMA) and improvements to multi-threaded performance in

applications where any thread may perform communication. In MPI terminology,

each rank of an application is a single process, which may consist of one or more

threads of execution. When multiple cores are available on a node, it is possible to

run multiple MPI ranks on that node where each rank is bound to a core, and the

memory used by that core is isolated from the memory used by other cores/ranks.

This has the effect of improving performance of applications due to good cache

reuse and minimized cross memory-bus traffic when multiple sockets are present.

As the number of cores on a chip is steadily increasing and memory hierarchies are

13

Node

Single core

processor

1 MPI rank

(a) 1 single-threaded rank
per node

Node

Multi-core N

processors

1 MPI rank 1 MPI rank

1 MPI rank1 MPI rank

(b) N single-threaded
ranks per node

Node

Many-cores

M processors

1 MPI rank

1 Thread 1 Thread

1 Thread 1 Thread

(c) 1 multi-threaded
rank per node

Figure 1.8: Illustration of the relationship between nodes, ranks, threads and cores.
(a) A single core node with a single MPI rank, the simplest configuration and the
dominant usage mode for older processors. (b) A multicore node may have 1 rank
assigned to each core, each rank represents a separate process with an independent
memory space. (c) A multicore node may be assigned a single rank or process with
the rank using multi-threading in a single address space shared between all threads.

becoming more complex, the trend in software design is moving away from many

ranks on a node towards a single MPI rank/process consisting of many threads of

execution on each node. This tends to increase the complexity of the software due

to thread safety issues, but allows a much easier sharing of data between cores on

the same node, where previously they would have been different ranks and had to

communicate using the MPI interface. Figure 1.8 gives a simple illustration of the

evolution from a single rank per node, to many and then back to one again.

ParaView relies on the single rank per process model - each time a user

instantiates a filter pipeline, N copies of the pipeline are created, whether they

share a node or are distributed among nodes. Each core on a node is a separate

rank in an MPI program and communicates with other ranks using MPI. A user may

create a single ParaView server on a multicore node and then a use multi-threaded

filter on that node, but so far only a small fraction of the available filters can benefit

from this. To solve this problem, a new implementation of the VTK filter design

has been created, VTK-m (Moreland et al. [2016]) that inherits most of its design

from three earlier attempts at creating multi-threaded and/or GPU enabled filters,

EAVL (Meredith et al. [2012]), DAX (Moreland et al. [2011]) and PISTON (Lo

et al. [2012]). The design of VTK-m is centred around the implementation of Data

Parallel Primitives (DPP) the use of parallel (in the sense of threads or vectorized

instructions) implementations of algorithms to decompose visualisation tasks into

high parallelisable building blocks along the original design of VTK. The discussion

14

of this topic will be revisited in the final part of this introduction and Chapter 6. The

next section looks instead at another of the problems that arise during interactive

visualisation.

1.3 Load-balancing, rendering and information

When interacting with large datasets, a common operation is to extract regions by

dragging a selection area on screen, or selecting one or more blocks of data from

many by some attribute or threshold. When this happens the data that might have

originally been well load-balanced across processes, may become wildly imbalanced

with some processes holding no data and others containing 1/N th of the data (as

originally allocated). In many cases (for example, when the number of analysis nodes

is small anyway and some wasted CPU cycles can be ignored), an imbalance is of

little consequence, however there are many occasions when maintaining load-balance

for either analysis or rendering is important. The work of Chapter 4 and Chapter

5 was motivated by these requirements. Chapter 4 presents “Practical parallel

rendering of detailed neuron simulations” that used an early implementation of the

work described in Chapter 5 “High-Performance Mesh Partitioning and Ghost Cell

Generation for Visualisation Software” most significantly, the load-balancing of very

large meshes to improve interactive visualisation particularly when transparency of

those meshes made sort-last compositing the most favourable rendering mode (the

full text of Chapter 4 discusses the trade-offs between sort-first and sort-last for

transparency).

The question in need of an answer in the paper of Chapter 4 was, “could a

general purpose visualisation tool (eg. ParaView), designed to work with almost any

data and many workflows, compete with a custom built, single-purpose visualisation

tool?” (in this case RTNeuron, Hernando et al. [2008], and Hernando [2011]): with

the secondary question being “how much effort would be required to do it?”. The

answer turned out to be “yes”, the ParaView implementation of neuron rendering

was able to perform as well as RTNeuron for most cases, though RTNeuron had

many options for neuron visualisation that were not available to ParaView (they

can be implemented if so desired).

In order to achieve good results with ParaView it was necessary to replace

the data distribution filter with a higher performance implementation based on the

Zoltan (Boman et al. [2007]) library from the Trilinos project. This produced a

huge improvement in load-balancing, but rendering still performed poorly due to

bad communication between the load-balancing modules and the rendering ones.

15

Figure 1.9: 5K neuron circuit rendered with per vertex transparency showing elec-
trical activity (in millivolts) - regions that are not active are transparent, allowing
active regions to be seen more easily through the dense mesh.

The solution to this problem was to make use of information flow in the pipeline

to pass the geometric bounding boxes of individual process pieces of data down the

rendering pipeline and then modify the rendering layer to use the information to

order the compositing of pieces and give correct transparent blending. Transparent

rendering of surfaces requires ordered (back-to-front usually) rendering, or depth

peeling of data to give the correct results, and this ordering includes the compositing

of individual images from nodes that have been rendered correctly individually.

With load balancing and compositing optimized, there remained only the

actual geometry rendering that required performance improvements – to solve this

problem, the data parallel PISTON library (mentioned in the previous section) was

used to create a data-parallel sort and render filter that could run on the GPU

instead of the CPU and then pass the generated images to the network for parallel

compositing. At the same time, the rendering filter was extended to support 4

channel RGBA values so that transparency could be added on a per vertex basis –

as required by the neuron visualisation – previously, ParaView supported only RGB

values per vertex with a single alpha transparency value per object. With these

4 major enhancements (load-balancing, compositing, rendering, transparency), the

results were comparable to RTNeuron despite the work taking around 6 months of

development, whereas RTNeuron had been in continuous development for over 5

years at the time.

16

1.3.1 Particle data

The development of the Zoltan based load-balancing filter was driven partly by the

desire to handle large neuron meshes, and also by the need to handle very large

particle based datasets. One problem was that there was no capability in ParaView

to generate ghost cells for particle data which was necessary when analysing huge

(tens of billions of cells) datasets on distributed processes. The data distribution

filter in ParaView can generate ghost cells for unstructured meshes, but not for

particle data, and this is essential when one wishes to interpolate between points to

compute resampled density, mass or other properties between particles when those

particles overlap process boundaries. Chapter 5 presents work that took the initial

implementation used for neuron rendering and made it more robust, more feature

complete and tightly integrated into the ParaView framework.

Some of the analysis operations on particle data (eg. SPH) requires finding

N nearest neighbours and computing a weighted sum of their contributions which

can be a time consuming and compute intensive task – the ability to extract regions

of interest from load-balanced data, then perform a second load-balancing step to

redistribute the new data where it can be processed in parallel by all nodes in the

job (and not just those on which the interesting data was first loaded) dramatically

increases the speed of analysis.

1.4 Task based programming

The connection between the final paper in this collection, entitled “Zero Copy Seri-

alization using RMA in the Distributed Task-Based HPX Runtime” (appearing as

Chapter 6) and the previous papers, may not seem obvious since the other papers

deal principally with visualisation enhancements and performance improvements to

ParaView. To understand the connection, consider the new VTK library, VTK-m

that is built upon data-parallel primitives: these primitives consist of basic algo-

rithms such as sort, copy, inclusive scan, exclusive scan, reduce by key, lowerbound,

upperbound and several others. The majority of these algorithms have now been

standardised as part of the C++17 extensions for parallelism [The C++ Standards

Committee, 2017, §algorithms.parallel] and so become part of the core C++ lan-

guage (under the namespace std::parallel) and can be invoked in standard code

to run algorithms on multiple cores. The remaining algorithms in VTK-m that have

not been standardised may be constructed from those that have. Also standardised

as part of the C++11 language is the asynchronous call std::async [The C++ Stan-

dards Committee, 2011, §futures.async], that allows a function to be invoked on a

17

separate thread and return a std::future that is a thread synchronisation primi-

tive for a result that has not yet been generated – enabling tasks to be spawned that

perform computations in the background, on separate threads, whilst the function

that launched it continues with other work.

1.4.1 Dataflow through futurization

Limitations in the C++11 definition of future make it difficult to use for task

based programming directly, however a number of additions have been proposed

for C++20 and beyond that extend the features of futures significantly by using

continuations; futures are monadic data structures, they can be composed together

and used to chain operations in the following manner:

future_2 = future_1.then(new_function, arg1, arg2, ...);

This permits a style of programming known as Continuation Passing Style

(CPS – Appel and Jim [1989]) where futures may be used as inputs to other func-

tions that themselves return futures. The beauty of this system is that the contin-

uations attached to futures via the future.then function are not executed until

the first future has completed, making non-blocking asynchronous multi-threaded

code straightforward and simple to write with an easy to learn syntax. A number

of other functions such as future.when, future.when_all, future.when_any, and

a shared_future, make it possible to build up arbitrary dataflow graphs from the

futures. A shared_future may be used to connect one task to several others, and

the future.when(...) constructs allow the joining of several futures into one so

that only when all required tasks have completed can the next one begin. CPS

ensures that tasks that have data dependencies do not start executing until all their

dependencies are satisfied and this approach has been shown to reduce unnecessary

waiting and avoid latency (Syme et al. [2011]).

1.4.2 HPX

Whilst the extensions to C++ futures to enable CPS are not likely to be avail-

able until the time-frame of C++20, the HPX runtime system for parallelism and

concurrency (Kaiser et al. [2017]) has already implemented them, as well as the

extensions to std::parallel algorithms, so they may be used today. HPX goes

further than the current C++ proposals, by extending the asynchronous API to

distributed operations using an Active Global Address Space (AGAS) to reference

objects on remote nodes (Kaiser et al. [2015]). AGAS works as a kind of distributed

key-value store holding Ids to objects across a global address space that permits

18

tasks to be launched on remote nodes and return future results from those nodes.

Objects may be held locally as normal C++ data structures, or may be registered

(using a unique name) with AGAS and then accessed remotely via the AGAS Ids.

This means that code designed to run on a single node using multiple threads may

easily be extended to run on multiple nodes and multiple threads using the same

API.

The VTK-m filter framework is designed in such a way that multiple imple-

mentations may be created as backends on which to execute code using a Device

Adaptor abstraction that hides implementation details of the threading layer from

the filter designer. Versions already exist for GPU execution using CUDA (Nickolls

et al. [2008]) and on the CPU using a serial implementation and multi-threaded using

Thread Building Blocks (TBB – Reinders [2007]). This author has implemented an

HPX backend that implements the Device Adaptor using the hpx:: versions of the

std::parallel algorithms and permits all visualisation filters to be executed using

the HPX runtime. However, developing high performance asynchronous distributed

VTK-m style filters in HPX that can pass datasets and pieces around, requires a

high performance network layer within HPX and this is what is presented in the

paper of Chapter 6.

Source Filter1 Filter2 Renderer

Source Filter1 Filter2 Renderer

Source Filter1 Filter2 Renderer

Client

N copies of pipeline in parallel

Figure 1.10: ParaView relies on N copies of each pipeline - one per process, syn-
chronisation is explicit and enforced at the filter level (when filters use MPI) and
all data/information requests are mirrored on all ranks.

1.4.3 Task based visualisation pipelines of the future

The traditional filter pipeline that has existed in VTK/ParaView for the last 15-

20 years (as shown in figure 1.10) is built upon N copies of the pipeline being

instantiated and coordinated by a server instance running on each rank. The client

communicates requests to each server synchronously and each server delivers the

piece of the result that it is responsible for. It has been demonstrated already that

19

there are problems with this design arising from the need to load-balance the filters

and to keep CPU/GPU resources fully occupied. One of the goals of this thesis is

to outline a design of visualisation pipelines for the next generation of software that

can address these problems.

With distributed task based visualisation filters, there is no longer any need

for N parallel pipelines with identical copies of each filter running in synchronized

steps on each node. They may instead be replaced by a single instance of each filter

that acts as a coordinator for that particular algorithmic module in the workflow.

This coordinating filter-task can spawn as many or as few sub-tasks as needed on

whichever nodes are holding the data of interest – those sub-tasks are still instances

of the filter in question, but instead of communicating with the client/server mech-

anism directly, they communicate with the master copy of the relevant filter, the

flow of information occurs through the filter-tasks of the main pipeline rather than

through all sub-tasks. An operation on a large dataset that spans all nodes can

spawn tasks on all nodes, whereas an operation on a smaller subset, needs only to

create a reduced set of sub-tasks on the nodes that have the data of interest. The

decision about how many tasks to create should be based based on the number of

pieces required (or available) to process a particular dataset and not decided up

front by the server based on the initial job size alone. In the case of an in-situ

visualisation, we can assume that every node will initially contains some data, but

the filters instantiated at later parts of the pipeline may not span all nodes if data

reduction has taken place, and dynamic redistribution may modify the nodes doing

work as the simulation progresses and changes. Most importantly, work can move

to where the data is when it is more efficient than moving the data to free resources.

The HPX AGAS system, operating as a key value store, provides a mecha-

nism to find pieces of data and send work to them, or to retrieve a piece of data and

send it as a parameter to a function located elsewhere. It also provides a mechanism

to query how much work lies in the queues of any node to see which are idle and

which are oversubscribed (see Grubel et al. [2016]), this allows dynamic load bal-

ancing based on the actual work being done rather than always using a fixed set of

nodes, as is the case in the current ParaView implementation. The only requirement

to make this possible is that each node producing data registers it with AGAS to

give it a handle (Id) that can be passed around the system and accessed by any task

on any node using the handle identifier.

Figure 1.11 illustrates an architectural view of how such a pipeline would span

nodes and make use of thread pools. The front-end GUI (or command-line, etc.)

still sees a visualisation pipeline as before, but messages and dataflow through the

20

Filters distributed unevenly across nodes

using thread pools on each node

Common thread pool on one Node

Renderer
Client

GUI

Render

tasks

Data Filter A Filter B

Filter B

tasks

Filter A

tasks

Source

tasks

Simulation

Tasks

Analysis

Tasks

Visualisation

Tasks

Rendering

Tasks

Figure 1.11: Using a task based approach, there is not necessarily any need for
a copy of the pipeline on each node. A single filter, source or renderer task can
coordinate as many or as few sub tasks as required to perform an operation. The
pipeline itself needs only to exist once and distributed operation and synchronisation
of each filter is local only to that filter. There is no need for a server to directly
coordinate all branches of the pipeline individually.

pipeline are now only communicated along a single path of principal filter-tasks that

in turn coordinate the activities of each of the sub-tasks that they are responsible

for. Placement and numbers of sub-tasks may vary for each filter depending upon

needs.

As well as providing a much more flexible approach to dataflow, a task based

design using a work-stealing runtime allows seamless integration of in-situ processing

with the simulation providing the simulation is written using the same runtime as

the analysis. Simulation tasks and analysis tasks share the same work queues and

share the same data, using reference counting of data handles to ensure that once

data has been processed it can be deleted or reused as needed. If the simulation

decides that no analysis is needed on a certain time step, references are dropped, no

analysis tasks are created and the simulation continues. If analysis is needed, then

tasks can be created, they hold onto the data they require until they are done, and

then when they complete, data references are dropped and memory is cleaned up.

Work stealing between simulation and analysis tasks that are running on the same

queues solves the problem of tightly coupled applications slowing each other down

by forcing one to wait for the other – with work stealing of tasks, simulation can

21

Figure 1.12: A plot of many different simulation tasks coded by colour. Each task
runs on a separate thread assigned to a particular core. As soon as a task completes,
the next one is taken and executed, leading to very efficient use of the CPU resources
- until (in this example) the end of an iteration, where new tasks cannot be generated
yet and blank/idle time starts to appear in the task plot. During these idle periods,
other work can be performed if it is available.

22

continue and the user may control the priority of analysis tasks to minimize their

impact.

Figure 1.12 shows an example of a task based simulation that creates many

thousands of sub-tasks on each iteration of its solver, however, at the end of each

iteration, the amount of work to be done decreases and cores begin to sit idle waiting

for additional work. during these idle moments, visualisation tasks can be spawned

to make use of the wasted resources. On each individual node, analysis tasks can

even be placed on the queues of the cores that have generated the data they require,

improving data-locality by cache reuse as well as correct placement on the desired

node.

There is a further advantage to thread aware pipelines (using an HPX style

dataflow) that interplays with the scheduling (or execution) of individual nodes of

the graph and is demonstrated very clearly in Vo et al. [2011]. A pull driven pipeline

(ie. one that executes filters by traversing from sink back to source) cannot easily

execute two branches of a fork-join graph simultaneously because the execution

trigger is made from the downstream filter to its upstream source. Since each filter

passes its execution trigger upstream to its parent, multiple threads are required

causing a race as the two triggers progress on the two paths back to the (common,

in this example) source of the pipeline where they both wait for a filter to execute

and then trigger their respective pipeline branches to execute. With a push driven

pipeline, as soon as a filter completes, it can trigger it’s downstream dependencies

directly – executing on N threads for N branches of the pipeline becomes trivial.

The HPX dataflow execution model using CPS triggering naturally follows this

pattern and can easily be integrated into thread pools and schedulers to minimize

wasted CPU waits and to steal work from idle cores as need be.

The development therefore of a high speed serialization and network layer

that can handle the passing of large datasets (using RMA), in distributed multi-

threaded pipelines with low latency information exchange for HPX is a major step

towards making this not only possible, but feasible.

1.4.4 Future work

It is clear that the vision of a task-based visualisation pipeline operating in parallel

in a distributed setting requires considerable development before it can be fulfilled.

The next steps towards this goal are

• Handling of information flow. A ParaView pipeline always has each filter in-

stantiated on each node, so information messages flowing between filters always

23

pass through shared memory within the node. Only synchronization messages

(using MPI) pass between nodes. In a distributed pipeline, these informational

messages may pass between nodes since there is no longer any guarantee that

connected filters are on the same node. The hpx::async messaging will be

used for this.

• Distributed filters. With individual filters as distributed objects, the synchro-

nization and update mechanism of the pipeline, will flow in a tree like pattern

rather than as a series of linear parallel updates. Together with the removal

of explicit synchronization between nodes participating in the pipeline, asyn-

chrony is introduced to the update phase and each connected part of the

pipeline will need to pass future objects rather than datasets directly.

• Load-balancing. Currently there do not exist any task-based counterparts to

the Zoltan partitioning software. To enable truly dynamic pipelines, this will

need to be developed.

• Compositing and rendering. Compositing of images using the HPX distributed

run time has been tested (in Biedert et al. [2017]), but does not make use of

the improved network capabilities implemented here. This work will need to

be extended and integrated with the ideas presented.

There are a great many opportunities for new research and development in

the field of task-based visualisation beyond those stated above. Whilst the VTK-m

design of filters using parallel primitives opens up the door to easy implementation

with libraries such as HPX, the filters themselves are not always optimal and can

be further improved with better task based designs.

1.5 Contribution

In this thesis, a collection of papers have been presented that demonstrate ways of

optimising the performance of dataflow based visualisation, analysis and simulation

software in the HPC community. The contributions of this work are:

• The demonstration of information (or meta-data) flow within a pipeline based

visualisation framework, to solve the problem of handling large time-dependent

datasets and the implementation of filters to enable visualisation of flows that

were not previously possible, produce comparative views of data and arbitrary

manipulations of time within the VTK/ParaView software environment.

24

• To provide an interface between information flow and a high-quality mesh

partitioning library, that can be used to improve load balancing of parallel

pipelines in the VTK/ParaView environment.

• To combine the load balancing mechanism with the rendering engine so that

high depth complexity meshes can be rendered with full transparency in par-

allel without duplicating the geometry on every node.

• To also provide a mechanism to generate ghost cells for parallel distributed

algorithms using the load balancing pipeline and leveraging the information

flow techniques.

• To show how to loosely couple a traditional visualisation pipeline with a live

simulation using in-memory files that can be implemented without changes

to the simulation software and can additionally be used to steer the software

interactively if the simulation is modified accordingly.

• To improve the speed of data transmission and remote function invocation

in a distributed dataflow based runtime using RMA and a novel serialization

strategy to minimize data duplication and movement.

The developments and contributions to ParaView that have been described

are used by researchers and engineers on a daily basis around the world and the

improvements made to the HPX library will accelerate the adoption of distributed

asynchronous task based runtimes that are seen by many as the future programming

model for extreme scale systems. The common theme running through all these

developments is the quest for efficient low overhead transfers of data and execution of

filters/algorithms between modular components of a software system. Additionally,

the foundations have been laid for a next generation analysis framework that will

integrate tightly with simulation, allow for dynamic load balancing and scheduling

to maximize performance and minimize resource usage.

25

Chapter 2

Time Dependent Processing in

a Parallel Pipeline Architecture

The following paper

Time Dependent Processing in a Parallel Pipeline Architecture

Published in

IEEE Transactions on Visualization and Computer Graphics

Volume 13 Issue 6, November 2007

c© IEEE. Reprinted, with permission

and with the authors’ consent.

26

Chapter 3

Parallel Computational Steering

for HPC Applications using

HDF5 Files in Distributed

Shared Memory

The following paper

Parallel Computational Steering for HPC Applications using HDF5

Files in Distributed Shared Memory

Published in

IEEE Transactions on Visualization and Computer Graphics

Volume: 18, Issue: 6, June 2012

c© IEEE. Reprinted, with permission

and with the authors’ consent.

35

Chapter 4

Practical parallel rendering of

detailed neuron simulations

The following paper

Practical parallel rendering of detailed neuron simulations

Published in the proceedings of the

Eurographics Symposium on Parallel Graphics and Visualization 2013

c© Eurographics Association 2013

Reproduced by kind permission of the Eurographics Association

and with the authors’ consent.

50

Chapter 5

High-Performance Mesh

Partitioning and Ghost Cell

Generation for Visualization

Software

The following paper

High-Performance Mesh Partitioning and Ghost Cell Generation for

Visualization Software

Published in the proceedings of the

Eurographics Symposium on Parallel Graphics and Visualization 2016

c© Eurographics Association 2016

Reproduced by kind permission of the Eurographics Association

and with the authors’ consent.

59

Chapter 6

Zero Copy Serialization using

RMA in the Distributed

Task-Based HPX Runtime

The following paper

Zero Copy Serialization using RMA in the Distributed Task-Based

HPX Runtime

Published in the proceedings of the

14th International Conference on Applied Computing 2017

c© IADIS – International Association for Development of the Information Society

Reprinted with permission of IADIS

and with the authors’ consent.

70

Bibliography

Thesis Introduction

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael

Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,

Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete War-

den, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system

for large-scale machine learning. In 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 16), pages 265–283, 2016. URL

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf.

Hasan Abbasi, Matthew Wolf, Greg Eisenhauer, Scott Klasky, Karsten Schwan, and

Fang Zheng. DataStager: scalable data staging services for petascale applications.

In HPDC ’09: Proceedings of the 18th ACM international symposium on High per-

formance distributed computing, pages 39–48, New York, NY, USA, 2009. ACM.

ISBN 978-1-60558-587-1. doi: http://doi.acm.org/10.1145/1551609.1551618.

James Ahrens, Charles Law, Will Schroeder, Ken Martin, Kitware Inc, and Michael

Papka. A parallel approach for efficiently visualizing extremely large, time-varying

datasets. Technical report, Los Alamos National Laboratory, 2000.

James Ahrens, Berk Geveci, and Charles Law. Paraview: An end-user tool for large

data visualization. The Visualization Handbook, 717, 2005.

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.

Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances

Perry, Eric Schmidt, and Sam Whittle. The dataflow model: A practi-

cal approach to balancing correctness, latency, and cost in massive-scale, un-

bounded, out-of-order data processing. Proc. VLDB Endow., 8(12):1792–

1803, August 2015. ISSN 2150-8097. doi: 10.14778/2824032.2824076. URL

http://dx.doi.org/10.14778/2824032.2824076.

79

A. W. Appel and T. Jim. Continuation-passing, closure-passing style. In POPL

’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 293–302, New York, NY, USA, 1989. ACM.

ISBN 0-89791-294-2.

Utkarsh Ayachit, Andrew Bauer, Berk Geveci, Patrick O’Leary, Kenneth

Moreland, Nathan Fabian, and Jeffrey Mauldin. Paraview catalyst: En-

abling in situ data analysis and visualization. In Proceedings of the First

Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis

and Visualization, ISAV2015, pages 25–29, New York, NY, USA, 2015.

ACM. ISBN 978-1-4503-4003-8. doi: 10.1145/2828612.2828624. URL

http://doi.acm.org/10.1145/2828612.2828624.

Tim Biedert, Kilian Werner, Bernd Hentschel, and Christoph Garth. A Task-Based

Parallel Rendering Component For Large-Scale Visualization Applications. In

Alexandru Telea and Janine Bennett, editors, Eurographics Symposium on Par-

allel Graphics and Visualization. The Eurographics Association, 2017. ISBN 978-

3-03868-034-5. doi: 10.2312/pgv.20171094.

Erik Boman, Karen Devine, Robert Heaphy, Bruce Hendrickson, Vitus Leung,

Lee Ann Riesen, Courtenay Vaughan, Umit Catalyurek, Doruk Bozdag, William

Mitchell, and James Teresco. Zoltan 3.0: Parallel Partitioning, Load Balancing,

and Data-Management Services; Developer’s Guide. Sandia National Laborato-

ries, Albuquerque, NM, 2007. Tech. Report SAND2007-4749W.

Hank Childs, Eric S. Brugger, Kathleen S. Bonnell, Jeremy S Meredith, Mark Miller,

Brad J Whitlock, and Nelson Max. A contract-based system for large data visu-

alization. In Proceedings of IEEE Visualization 2005, pages 190–198, 2005.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008.

P. Grubel, H. Kaiser, K. Huck, and J. Cook. Using intrinsic performance coun-

ters to assess efficiency in task-based parallel applications. In 2016 IEEE Inter-

national Parallel and Distributed Processing Symposium Workshops (IPDPSW),

pages 1692–1701, May 2016. doi: 10.1109/IPDPSW.2016.115.

Juan B. Hernando. Interactive Visualization of Detailed Large Neocortical Circuit

Simulations. PhD thesis, Facultad de Informática, Universidad Politécnica de

Madrid, 2011.

80

Juan B. Hernando, Felix Schürmann, Henry Markram, and Pedro de Miguel. RT-

Neuron, an application for interactive visualization of detailed cortical column

simulations. XVIII Jornadas de Paralelismo, Spain, 2008.

Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Ad-

vances in dataflow programming languages. ACM Comput. Surv., 36(1):1–

34, March 2004. ISSN 0360-0300. doi: 10.1145/1013208.1013209. URL

http://doi.acm.org/10.1145/1013208.1013209.

Hartmut Kaiser, Thomas Heller, Daniel Bourgeois, and Dietmar Fey. Higher-level

parallelization for local and distributed asynchronous task-based programming.

In Proceedings of the First International Workshop on Extreme Scale Program-

ming Models and Middleware, ESPM ’15, pages 29–37, New York, NY, USA,

2015. ACM. ISBN 978-1-4503-3996-4. doi: 10.1145/2832241.2832244. URL

http://doi.acm.org/10.1145/2832241.2832244.

Hartmut Kaiser, Bryce Adelstein-Lelbach, Thomas Heller, Agustin Berge, and

John Biddiscombe et.al. HPX V1.0: The C++ Standards Library for Parallelism

and Concurrency, 2017. http://dx.doi.org/10.5281/zenodo.4455628.

C. Law, W. Schroeder, and K. Martin. A multi-threaded streaming pipeline archi-

tecture for large structured data sets. In Proceedings of IEEE Visualization 1999,

pages 225–232. ACM Press, 1999.

Li-ta Lo, Christopher Sewell, and James Ahrens. PISTON: A Portable Cross-

Platform Framework for Data-Parallel Visualization Operators. In Hank Childs,

Torsten Kuhlen, and Fabio Marton, editors, Eurographics Symposium on Parallel

Graphics and Visualization. The Eurographics Association, 2012. ISBN 978-3-

905674-35-4. doi: 10.2312/EGPGV/EGPGV12/011-020.

Jay F. Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and Chen

Jin. Flexible IO and integration for scientific codes through the adaptable

IO system (ADIOS). In CLADE ’08: Proceedings of the 6th international

workshop on Challenges of large applications in distributed environments, pages

15–24, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-156-9. doi:

http://doi.acm.org/10.1145/1383529.1383533.

Jeremy S. Meredith, Sean Ahern, Dave Pugmire, and Robert Sisneros. EAVL:

The Extreme-scale Analysis and Visualization Library. In Hank Childs, Torsten

Kuhlen, and Fabio Marton, editors, Eurographics Symposium on Parallel Graphics

81

and Visualization. The Eurographics Association, 2012. ISBN 978-3-905674-35-4.

doi: 10.2312/EGPGV/EGPGV12/021-030.

K. Moreland, C. Sewell, W. Usher, L. t. Lo, J. Meredith, D. Pugmire, J. Kress,

H. Schroots, K. L. Ma, H. Childs, M. Larsen, C. M. Chen, R. Maynard, and

B. Geveci. Vtk-m: Accelerating the visualization toolkit for massively threaded

architectures. IEEE Computer Graphics and Applications, 36(3):48–58, May 2016.

ISSN 0272-1716. doi: 10.1109/MCG.2016.48.

Kenneth Moreland, Utkarsh Ayachit, Berk Geveci, and Kwan-Liu Ma. Dax toolkit:

A proposed framework for data analysis and visualization at extreme scale. In

Large Data Analysis and Visualization (LDAV), 2011 IEEE Symposium on, pages

97–104. IEEE, 2011.

MPI Forum. MPI: A Message-Passing Interface Standard. Version 3, September 4th

2012. available at: http://www.mpi-forum.org (Dec. 2009).

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scal-

able parallel programming with cuda. Queue, 6(2):40–53, March

2008. ISSN 1542-7730. doi: 10.1145/1365490.1365500. URL

http://doi.acm.org/10.1145/1365490.1365500.

James Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc.,

Sebastopol, CA, USA, first edition, 2007. ISBN 9780596514808.

W. Schroeder, K.W. Martin, and B. Lorensen. The Visualization Toolkit: An Object-

oriented Approach to 3D Graphics. The Visualization Toolkit: An Object-oriented

Approach to 3-D Graphics. Prentice Hall PTR, 1996. ISBN 9780131998377. URL

https://books.google.ch/books?id=MrCiQgAACAAJ.

Don Syme, Tomas Petricek, and Dmitry Lomov. The f# asynchronous

programming model. In Proceedings of the 13th International Conference

on Practical Aspects of Declarative Languages, PADL’11, pages 175–189,

Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-18377-5. URL

http://dl.acm.org/citation.cfm?id=1946313.1946334.

The C++ Standards Committee. ISO International Standard ISO/IEC

14882:2011, Programming Language C++. Technical report, Geneva,

Switzerland: International Organization for Standardization (ISO)., 2011.

http://www.open-std.org/jtc1/sc22/wg21.

82

The C++ Standards Committee. ISO/IEC Draft International Standard 14882,

Programming Language C++. Technical report, Geneva, Switzerland: Interna-

tional Organization for Standardization (ISO)., 2017.

The HDF Group. Hierarchical data format version 5, 2000-2017. URL

http://www.hdfgroup.org/HDF5.

H. T. Vo, J. L. D. Comba, B. Geveci, and C. T. Silva. Streaming-enabled parallel

data flow framework in the visualization toolkit. Computing in Science Engineer-

ing, 13(5):72–83, Sept 2011. ISSN 1521-9615. doi: 10.1109/MCSE.2011.88.

Brad Whitlock, Jean M. Favre, and Jeremy S. Meredith. Parallel in situ coupling of

simulation with a fully featured visualization system. In Torsten Kuhlen, Renato

Pajarola, and Kun Zhou, editors, Eurographics Symposium on Parallel Graphics

and Visualization, pages 101–109. Eurographics Association, 2011. ISBN 978-3-

905674-32-3. doi: 10.2312/EGPGV/EGPGV11/101-109.

Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Arm-

brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,

Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Sto-

ica. Apache spark: A unified engine for big data processing. Commun. ACM,

59(11):56–65, October 2016. ISSN 0001-0782. doi: 10.1145/2934664. URL

http://doi.acm.org/10.1145/2934664.

83

Author Bibliography

Journal

John Biddiscombe, Berk Geveci, Ken Martin, Kenneth Moreland,

and David S. Thompson. Time dependent processing in a par-

allel pipeline architecture. IEEE Trans. Vis. Comput. Graph.,

13(6):1376–1383, 2007. doi: 10.1109/TVCG.2007.70600. URL

http://dx.doi.org/10.1109/TVCG.2007.70600.

John Biddiscombe, David Graham, and Pierre Maruzewski. Visualization and anal-

ysis of sph data. Ercoftac Bulletin, 76(LMH-ARTICLE-2008-006):9–12, 2008.

John Biddiscombe, Jérome Soumagne, Guillaume Oger, David Guibert, and

Jean-Guillaume Piccinali. Parallel computational steering for HPC applica-

tions using HDF5 files in distributed shared memory. IEEE Trans. Vis.

Comput. Graph., 18(6):852–864, 2012. doi: 10.1109/TVCG.2012.63. URL

http://dx.doi.org/10.1109/TVCG.2012.63.

Sumeet Gupta, Michaela Soellinger, Deborah M. Grzybowski, Peter Boesiger, John

Biddiscombe, Dimos Poulikakos, and Vartan Kurtcuoglu. Cerebrospinal fluid

dynamics in the human cranial subarachnoid space: an overlooked mediator of

cerebral disease. i. computational model. Journal of The Royal Society Inter-

face, 7(49):1195–1204, 2010. ISSN 1742-5689. doi: 10.1098/rsif.2010.0033. URL

http://rsif.royalsocietypublishing.org/content/7/49/1195.

Guillaume Oger, David Le Touzé, David Guibert, Matthieu De Leffe, John Biddis-

combe, Jérome Soumagne, and Jean-Guillaume Piccinali. On distributed mem-

ory mpi-based parallelization of SPH codes in massive HPC context. Computer

Physics Communications, 200:1–14, 2016. doi: 10.1016/j.cpc.2015.08.021. URL

http://dx.doi.org/10.1016/j.cpc.2015.08.021.

R.J. Powell, A.R. Birks, W.J. Bradford, C.L. Wrench, and J. Biddiscombe.

84

Using transponders with the ers-1 and topex altimeters to measure orbit

altitude to 3 cm. Advances in Space Research, 13(5):61 – 67, 1993.

ISSN 0273-1177. doi: http://dx.doi.org/10.1016/0273-1177(93)90528-J. URL

http://www.sciencedirect.com/science/article/pii/027311779390528J.

Benjamin Schindler, Raphael Fuchs, John Biddiscombe, and Ronald Peik-

ert. Predictor-corrector schemes for visualization of smoothed particle hy-

drodynamics data. IEEE Transactions on Visualization and Computer

Graphics, 15(6):1243–1250, 2009. doi: 10.1109/TVCG.2009.173. URL

http://dx.doi.org/10.1109/TVCG.2009.173.

Refereed Conference

J. A. Biddiscombe. Modelling line of sight availability for high frequency urban radio

networks. In 1999 IEEE MTT-S International Topical Symposium on Technolo-

gies for Wireless Applications (Cat. No. 99TH8390), pages 105–110, Feb 1999.

doi: 10.1109/MTTTWA.1999.755137.

John Biddiscombe. High-Performance Mesh Partitioning and Ghost Cell Genera-

tion for Visualization Software. In Enrico Gobbetti and Wes Bethel, editors, Eu-

rographics Symposium on Parallel Graphics and Visualization. The Eurographics

Association, 2016. ISBN 978-3-03868-006-2. doi: 10.2312/pgv.20161181.

John Biddiscombe, Jérome Soumagne, Guillaume Oger, David Guibert, and Jean-

Guillaume Piccinali. Parallel computational steering and analysis for HPC ap-

plications using a paraview interface and the HDF5 DSM virtual file driver.

In Torsten Kuhlen, Renato Pajarola, and Kun Zhou, editors, Eurographics

Symposium on Parallel Graphics and Visualization, EGPGV 2011, Llandudno,

Wales, UK, 2011. Proceedings, pages 91–100. Eurographics Association, 2011.

ISBN 978-3-905674-32-3. doi: 10.2312/EGPGV/EGPGV11/091-100. URL

http://dx.doi.org/10.2312/EGPGV/EGPGV11/091-100.

John Biddiscombe, Thomas Heller, Anton Bikineev, and Hartmut Kaiser. Zero Copy

Serialization using RMA in the Distributed Task-Based HPX runtime. In 14th In-

ternational Conference on Applied Computing. IADIS, International Association

for Development of the Information Society, 2017.

K. H. Craig, M. P. M. Hall, L. R. Norbury, Y. Seville, M. J. Willis, J. A. Bid-

discombe, and T. G. Hayton. Propagation research for millimetrewave cel-

85

lular systems. In Tenth International Conference on Antennas and Propaga-

tion (Conf. Publ. No. 436), volume 2, pages 383–386 vol.2, Apr 1997. doi:

10.1049/cp:19970405.

Stefan Eilemann, Fabien Delalondre, Jon Bernard, Judit Planas, Felix Schürmann,

John Biddiscombe, Costas Bekas, Alessandro Curioni, Bernard Metzler, Peter

Kaltstein, Peter Morjan, Joachim Fenkes, Ralph Bellofatto, Lars Schneidenbach,

T. J. Christopher Ward, and Blake G. Fitch. Key/value-enabled flash mem-

ory for complex scientific workflows with on-line analysis and visualization. In

2016 IEEE International Parallel and Distributed Processing Symposium, IPDPS

2016, Chicago, IL, USA, May 23-27, 2016, pages 608–617. IEEE Computer

Society, 2016. ISBN 978-1-5090-2140-6. doi: 10.1109/IPDPS.2016.23. URL

http://dx.doi.org/10.1109/IPDPS.2016.23.

Juan Hernando, John Biddiscombe, Bidur Bohara, Stefan Eilemann, and

Felix Schürmann. Practical parallel rendering of detailed neuron simu-

lations. In Fabio Marton and Kenneth Moreland, editors, Eurograph-

ics Symposium on Parallel Graphics and Visualization, Girona, Spain,

2013. Proceedings, pages 49–56. Eurographics Association, 2013. ISBN

978-3-905674-45-3. doi: 10.2312/EGPGV/EGPGV13/049-056. URL

http://dx.doi.org/10.2312/EGPGV/EGPGV13/049-056.

Mark L. Sawley, John Biddiscombe, and Jean M. Favre. Advanced visualization

of large datasets for discrete element method simulations. In Discrete Element

Methods (DEM) ’07, Brisbane, Australia, 26-29 August 2007, 2007.

Felix Schürmann, Fabien Delalondre, Pramod S. Kumbhar, John Biddiscombe,

Miguel Gila, Davide Tacchella, Alessandro Curioni, Bernard Metzler, Peter Mor-

jan, Joachim Fenkes, Michele Franceschini, Robert S. Germain, Lars Schneiden-

bach, T. J. Christopher Ward, and Blake G. Fitch. Rebasing I/O for scientific com-

puting: Leveraging storage class memory in an IBM bluegene/q supercomputer.

In Julian Martin Kunkel, Thomas Ludwig, and Hans Werner Meuer, editors, Su-

percomputing - 29th International Conference, ISC 2014, Leipzig, Germany, June

22-26, 2014. Proceedings, volume 8488 of Lecture Notes in Computer Science,

pages 331–347. Springer, 2014. ISBN 978-3-319-07517-4. doi: 10.1007/978-3-319-

07518-1 21. URL http://dx.doi.org/10.1007/978-3-319-07518-1 21.

Jérome Soumagne and John Biddiscombe. Computational steering and paral-

lel online monitoring using RMA through the HDF5 DSM virtual file driver.

86

In Mitsuhisa Sato, Satoshi Matsuoka, Peter M. A. Sloot, G. Dick van Al-

bada, and Jack Dongarra, editors, Proceedings of the International Con-

ference on Computational Science, ICCS 2011, Nanyang Technological Uni-

versity, Singapore, 1-3 June, 2011, volume 4 of Procedia Computer Sci-

ence, pages 479–488. Elsevier, 2011. doi: 10.1016/j.procs.2011.04.050. URL

http://dx.doi.org/10.1016/j.procs.2011.04.050.

Jérome Soumagne, John Biddiscombe, and Jerry Clarke. An HDF5 MPI vir-

tual file driver for parallel in-situ post-processing. In Rainer Keller, Edgar

Gabriel, Michael M. Resch, and Jack Dongarra, editors, Recent Advances

in the Message Passing Interface - 17th European MPI Users’ Group Meet-

ing, EuroMPI 2010, Stuttgart, Germany, September 12-15, 2010. Proceedings,

volume 6305 of Lecture Notes in Computer Science, pages 62–71. Springer,

2010. ISBN 978-3-642-15645-8. doi: 10.1007/978-3-642-15646-5 7. URL

http://dx.doi.org/10.1007/978-3-642-15646-5 7.

Jérome Soumagne, John Biddiscombe, and Aurélien Esnard. Data redistribu-

tion using one-sided transfers to in-memory HDF5 files. In Yiannis Cotronis,

Anthony Danalis, Dimitrios S. Nikolopoulos, and Jack Dongarra, editors, Re-

cent Advances in the Message Passing Interface - 18th European MPI Users’

Group Meeting, EuroMPI 2011, Santorini, Greece, September 18-21, 2011. Pro-

ceedings, volume 6960 of Lecture Notes in Computer Science, pages 198–207.

Springer, 2011. ISBN 978-3-642-24448-3. doi: 10.1007/978-3-642-24449-0 23.

URL http://dx.doi.org/10.1007/978-3-642-24449-0 23.

David Le Touzé, John Biddiscombe, Andrea Colagrossi, Erwan Jacquin, Fran-

cis Leboeuf, Jean-Christophe Marongiu, Nathan J. Quinlan, Andrea Amicarelli,

Matteo Antuono, Daniel A. Barcarolo, Mihai Basa, Joelle Caro, Matthieu De

Leffe, Nicolas Grenier, Pierre-Michel Guilcher, Matthieu Kerhuel, Fang Le, Libor

Lobovský, Salvatore Marrone, Adam Marsh, Guillaume Oger, Etienne Parkinson,

and Jérome Soumagne. Next-generation multi-mechanics simulation engine in a

highly interactive environment. In Elisabeth Giacobino and Rolf Pfeifer, editors,

Proceedings of the 2nd European Future Technologies Conference and Exhibition,

FET 2011, Budapest, Hungary, May 4-6, 2011, volume 7 of Procedia Computer

Science, pages 292–293. Elsevier, 2011. doi: 10.1016/j.procs.2011.09.077. URL

http://dx.doi.org/10.1016/j.procs.2011.09.077.

87

