Original citation: Li, Maoshuai and Van Veen, Andre C. (2018) Tuning the catalytic performance of Nicatalysed dry reforming of methane and carbon deposition via Ni-CeO2-x interaction. Applied Catalysis B: Environmental, 237. pp. 641-648. doi:10.1016/j.apcatb.2018.06.032 #### **Permanent WRAP URL:** http://wrap.warwick.ac.uk/103501 #### **Copyright and reuse:** The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. #### **Publisher's statement:** © 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ #### A note on versions: The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription. For more information, please contact the WRAP Team at: wrap@warwick.ac.uk # Tuning the catalytic performance of Nicatalysed dry reforming of methane and carbon deposition via Ni-CeO_{2-x} interaction Maoshuai Li^{a, b, *}, André C. van Veen^{b, *} The published document may be accessed under (provided possessing suitable access rights) https://doi.org/10.1016/j.apcatb.2018.06.032 # **Highlights** • Dry reforming of methane to syngas was established over Ni/CeO₂. • Strong metal-oxide interaction induced support-decoration of Ni particles. • Strong bonding between Ni and CeO₂ inhibited agglomeration of Ni particles. • Higher coverage of Ni surface by ceria decreased the conversion rates. • Decoration of Ni surface suppressed carbon formation. ## **Abstract** The role of tuning metal-support interaction in determining the catalytic activity and carbon formation in dry reforming of methane to syngas was examined over CeO₂ supported Ni nanoparticles. The catalysts pre- and post-reaction were subjected to characterisation in terms of N₂ physisorption, TPR, XRD, TEM, XPS and TGA-DTG. Reduction of Ni/CeO₂ in H₂ in the temperature range (773–973 K) generated a strong bonding between Ni and CeO₂ that inhibited Ni particle sintering (8.7–9.4 nm). High-temperature (≥873 K) reduction induced decoration/encapsulation of Ni nanoparticles by a thin layer of reduced ceria support with partial coverage of Ni surface. The decoration/encapsulation effect strongly influences the catalytic properties of Ni, which enables to tune the catalytic activity of Ni/CeO₂ and carbon deposition in dry reforming of methane. ## **Graphical abstract** ## **Keywords** - Methane dry reforming; - Ni/CeO₂; - Metal-oxide interaction; - Decoration: - Carbon deposition ## 1. Introduction In supported metal catalysis, strong support (generally oxides) and metal interaction (SMSI) including electron transfer, support decoration of metal nanoparticles and cluster stabilisation can often determine catalytic reactivity and/or selectivity $[\underline{1,2}]$. Ceria is a typical case of oxide support that is facile to generate interaction with the supported metal (e.g., Pd, Ru and Rh) phase following thermal activation in H_2 $[\underline{3}]$. A number of studies have reported metal-ceria interaction serves to increase rates or control product selectivity for reactions involving redox steps (e.g., CO oxidation over Pt/CeO_2 $[\underline{4}]$, water gas shift (over Pt/CeO_2 $[\underline{5}]$, Au/CeO_2 $[\underline{6}]$) and CO_2 hydrogenation over Cu/CeO_2 $[\underline{7}]$). Dry reforming of methane to syngas, an intermediate for synthesis of methanol and Fischer-Tropsch products, is a promising route for conversion of methane to value-added chemicals/fuels and reduction of greenhouse gas (e.g., CO₂ and CH₄) emission. This reaction has been experimentally and theoretically studied over noble (Pt [8], Ru [9], Rh [10]; [11]; [12]] and Pd [13]), non-noble metal (Ni [14]; [15]; [16]; [17]] and Co [18]) and bimetallic (NiCo [19], FeNi [20], PdNi [21] and NiPt [22]) catalysts. Inexpensive Ni-based catalysts exhibited comparable activity to noble metals due to the outstanding capacity for activation/dissociation of the C-H bond of methane [23]. There is a consensus that methane activation is the rate-determining step in the dry reforming of methane [24]. Metal-support interaction is critical in determining adsorption/dissociation of methane. A search through literature found that Liu et al. [25] studying dry reforming of methane over Ni-CeO₂ (111) surfaces using in situ XPS and DFT calculation, demonstrated strong metal-support interaction can activate Ni for methane dissociation at 300 K. Higher catalytic stability of Ni/CeO₂ in dry reforming of methane (1023 K) relative to steam reforming was linked to strong metal-support interaction on the basis of in situ XAS and XANES analysis [26]. The degree of metal-support interaction can modify the characteristics of the supported metal phase and reactant adsorption. SMSI can alter the metal electronic properties via charge transfer between metal and support, stabilise small metal clusters in support surface vacancies and induce support decoration of metal surface via migration of support oxide to the metal particles [1,2]. Moreover, solid solutions can be generated via dissolution of metal in support oxide lattice. It is known that SMSI-induced decoration/encapsulation of metal nanoparticles contributes to suppression of H₂ and CO chemisorption over reducible oxides (e.g., TiO₂, CeO_2 and $CeTbO_x$) supported noble metals (e.g., Ru, Rh and Pt) [[27]; [28]; [29]; [30]]. In the reported studies up to date the influence of Ni-CeO₂ interaction on the morphology of Ni particles and activation of CH₄ and CO₂ in dry reforming have not been studied to any significant extent. In this study, we examine the impact of SMSI-induced decoration/encapsulation of Ni particles on the catalytic response in dry reforming of methane over CeO₂ supported Ni. Carbon deposition was studied as one critical consideration for the decoration/encapsulation effect on the catalyst stability. # 2. Experimental ## 2.1. Materials and catalyst preparation Commercial CeO₂ (Sigma-Aldrich) was used as received. (5% w/w) Ni on CeO₂ was prepared by wet-impregnation. CeO₂ (5 g) was added to aqueous solution of Ni(NO₃)₂ (Alfa Aesar, 98%, 9×10^{-2} M, 50 cm³) and stirred (500 rpm) at room temperature overnight. The solid was obtained by evaporation and dried in air at 393 K overnight. The resultant sample was sieved (ATM fine test sieves) to mean particle diameter = 75 µm, activated at 773–973 K in H₂ (10 cm³ min⁻¹) for 1 h, cooled to ambient temperature and passivated in 1% v/v O₂/N₂ for 1 h for *ex situ* characterisation (including N₂ physisorption, XRD and HRTEM). ## 2.2. Catalyst characterisation Nitrogen physisorption was performed on the Micromeritics ASAP 2020 system. Specific surface area (SSA) and pore volume were calculated using the standard BET method and BJH desorption, respectively. Prior to analysis, samples were vacuumed and outgassed at 573 K for 1 h. Temperature programmed reduction (TPR) was conducted in a quartz tube cell. The sample (Ni precursor on CeO₂) was heated in 84 cm³ min⁻¹ 5% v/v H₂/Ar at 10 K min⁻¹ to 1073 K. Hydrogen consumption was monitored by a thermal conductivity detector (TCD). Xray diffractograms (XRD) were recorded on a Bruker D5000 X-ray diffractometer using Cu Kα radiation. Samples were scanned at 0.01° step⁻¹ over the range $20^{\circ} \le 2\theta \le 80^{\circ}$ at ambient temperature and the diffractograms identified against the JCPDS-ICDD reference standards. Metal particle morphology (size and shape) was examined by high resolution transmission electron microscopy (HRTEM, JEOL 2100 LaB6), employing Gatan Digital Micrograph for data acquisition/manipulation. Samples for analysis were prepared by dispersion in ethanol and deposited on a holey carbon/Cu grid. Mean Ni size (d) was obtained from a count of at least 200 particles. XPS measurement of the reduced sample was performed on a Kratos Axis Ultra DLD spectrometer using a monochromated Al kα X-ray source. The Ni 2p_{3/2} and Ce 3d spectra were collected. Characteristic Ni 2p_{3/2} binding energy (BE) for metallic Ni is 852.5 ev and 856.3 ev; for NiO is 853.7 ev, 855.4 ev and 861.0 ev [31]. The BE scale was calibrated by adventitious carbon (BE = 285.0 ev). The data were analysed in CasaXPS, using Shirley backgrounds, mixed Gaussian-Lorentzian (Voigt) line shapes and asymmetry parameters where appropriate. The fixed positions of the components were similar to those reported elsewhere [31]. The peak asymmetry was defined in the form of LA (α, β, m) , where α and β refer to the spread of the tail on each side of the Lorentzian component; m is the width of the Gaussian for convolution of the Lorentzian line. The surface element composition was calculated from the peak area. Thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) of the spent Ni/CeO₂ catalysts for evaluation of carbon deposition was carried out on a thermal analyser (NETZSCH STA449). The samples (ca. 10–20 mg) were heated in 50 cm³ min⁻¹ air to 973 K (at 10 K min⁻¹). #### 2.3. Catalyst testing Dry reforming of methane was carried out at atmospheric pressure after in situ activation in a continuous flow fixed bed tubular reactor (10 mm i.d.). Reactions were conducted under operating conditions that ensured negligible mass/heat transport limitations. Isothermal conditions (± 1 K) were ensured by diluting the catalyst bed with ground glass (75 μ m); the ground glass was mixed thoroughly with catalyst before loading into the reactor. Reaction temperature was continuously monitored by a thermocouple inserted in the catalyst bed. A cocurrent flow of CO₂ (BOC, 99.99%), CH₄ (BOC, 99.99%), N₂ (BOC, 99.99%) and Ar (BOC, 99.99%) was introduced to reactor by Brooks mass flow controller (SLA5800 series) at gas hourly space velocity (GHSV) = $4.8 \times 10^4 \, h^{-1}$. 10–40% (vol.%) CH₄ was diluted in N₂ and Ar. Inlet CH₄ to CO₂ feeding rate was fixed at 1:1. 0.03 g catalyst was used in the reforming reaction. The molar Ni to inlet CH₄ feeding rate n/F_{CH4}n/FCH4 was 4.8×10^{-3} h. The reactor effluent was analysed using online gas chromatography (Shimadzu 2014) equipped with a 0.5 cm³ sampling loop, thermal conductive detector (TCD) and flame ionization detector (FID), employing serial Hayesep Q (3.0 m × 2.1 mm i.d.) and Molecular Sieve 5 A packed columns (2.0 m × 2.1 mm i.d.). Data acquisition and manipulation were performed using GCsolution Lite (Version 2.4) chromatography data system. Reactant i ($i = CH_4$ or CO_2) fractional conversion (X_i) is calculated by equation(1) Xi =F[reactant]i,in-F[reactant]i,outF[reactant]i,in Reactant (i) consumption rate (R_i, h⁻¹) was obtained from: equation(2) $$\mathbf{Ri} = \frac{\mathbf{ri} - \mathbf{F}_{\mathbf{free}} \mathbf{F}_{\mathbf{i}} - \mathbf{F}_{\mathbf{i}}}{\mathbf{n}}$$ $$\mathbf{Ri} = \mathbf{F}_{\mathbf{free}} \mathbf{F}_{\mathbf{i}} + \mathbf{F}_{\mathbf$$ where subscripts "in" and "out" refer to inlet and outlet gas streams; "n" refers to mole number of Ni; " $X_{i,s}$ " refers to steady-state conversion. The inlet fractional concentration was defined by the molar flow rate of reactant to the total flow rate. In blank tests, passage of CH_4 and CO_2 through the empty reactor or over support alone did not result in any detectable conversion. Repeated reactions delivered data reproducibility and carbon balance within 7%. ## 3. Results and discussion ## 3.1. Catalyst characterisation Ni/CeO₂ post-reduction at 773 K exhibited a SSA (11 m² g⁻¹, <u>Table 1</u>), close to that (9 m² g⁻¹) reported in the literature [32]. Reduction at higher temperature (773 \rightarrow 973 K) resulted in a loss of SSA and pore volume (Table 1), which can be linked to grain sintering and agglomeration [33]. TPR profiles of CeO₂ support and Ni precursor on CeO₂ are presented in Fig. 1. Thermal treatment of ceria (I) generated two broad peaks at 742 K and 1148 K that can be linked to surface (720–790 K) and bulk (>1059 K) reduction [34,35]. TPR analysis of Ni precursor on CeO₂(II) generated multiple signals. The sharp TPR peaks with associated temperature maxima (T_{max}) of 582 K and 587 K can be attributed to the decomposition of nickel precursor to NiO. Moraes et al. [36] studying the reducibility behaviour of Ni/CeO₂, ascribed a TPR peak ($T_{max} = 588 \text{ K}$) to the decomposition of nickel nitrate. A subsequent reduction of NiO to metallic Ni was responsible for the higher T_{max} peak (616 K) recorded in this study. Mahammadunnisa [37] and Moraes [36] have attributed reduction peaks with T_{max} in the temperature range of 588–653 K to reduction of NiO in the TPR analysis of 5–10% Ni/CeO₂ (w/w). Hydrogen consumption signals at $T_{max} = 706$ K and at the extended isothermal hold (1073 K) can be linked to surface and bulk reduction of ceria, where addition of Ni to CeO₂ lowered the requisite temperature. Structure analysis by XRD generated diffraction patterns are shown in Fig. 2. Diffraction signals at $2\theta = 44.5^{\circ}$ can be attributed to Ni (111). The peak intensity increased with increasing reduction temperature. In addition to Ni signals, diffraction peaks at $2\theta = 28.6^{\circ}$, 33.2° , 47.6° , 56.4° , 59.2° , 69.6° , 76.8° and 79.2° can be attributed to face-centred cubic CeO₂. There was no detectable phase due to Ce₂O₃. Table 1. Effect of reduction temperature on SSA and pore volume of Ni/CeO₂ pre- and post-reaction. | Sample | | | | 973 K | |---------------|------------------------------------|-------|-------|-------| | Pre-reaction | $SSA (m^2 g^{-1})$ | 11 | 8 | 8 | | | | | | | | Post-reaction | $SSA (m^2 g^{-1})$ | 21 | 10 | 8 | | | Pore volume (cm 3 g $^{-1}$) | 0.036 | 0.021 | 0.025 | XRD patterns for Ni/CeO₂ reduced at (I) 773 K, (II) 873 K and (III) 973 K (\Diamond : Ni; \blacksquare : CeO₂). The morphology of Ni nanoparticles of the activated Ni/CeO₂ catalysts was characterised by TEM. HRTEM image of Ni/CeO₂ activated at 773 K (Fig. 3(AI)) showed a number of Ni nanocrystallites with exposed (111) facet were distributed on the surface of CeO₂. A clear interface boundary was observed between Ni and CeO2 (dotted frame), suggesting strong metal-support interaction. The Ni particles were in nanoscale (3–22 nm) with a mean size of 8.7 nm (AII). Reduction of Ni/CeO₂ at higher temperature (873 K) resulted in decoration/encapsulation of Ni nanoparticles by a thin layer of ceria with a decreased exposure of Ni (111) surface (BI). A reduction of metal oxide support can cause a rupture of the oxide lattice with substoichiometric oxygen concentration that can induce migration of the reduced oxide to the top of metal surface via grain boundaries between metal and support [1,2]. It has been reported that thermal (\geq 573 K) treatment of (e.g., TiO₂ and CeO₂) supported noble metals (e.g., Rh, Ru, Au and Pt) in H₂ can induce migration of metal oxides from reduced support to the supported metal phase, generating decoration/encapsulation effect on the supported metal nanoparticles [29,30,38]. Our results present this effect also applies to reducible oxide supported non-noble metal (e.g., Ni/CeO₂), where higher thermal treatment temperature (\geq 873 K) was required. Larger Ni sizes (3–22 nm, mean = 9.2 nm) were observed over Ni/CeO₂(BII) due to slight sintering/agglomeration of Ni nanoparticles after reduction at 873 K. The Ni/CeO₂ catalyst activated at 973 K (CI) suffered severe decoration/encapsulation of Ni nanoparticles leading to a higher coverage of Ni surface by ceria. This suggests higher reduction temperature further promoted migration of ceria to Ni surface. It should be noted that Ni particle sizes (3–21 nm, mean = 9.4 nm, (CII)) were similar to that recorded over the catalyst reduced at 873 K. This can be attributed to stronger interaction between metal and support stabilised Ni nanoparticles and inhibited sintering [39]. (I) Representative HRTEM images for Ni/CeO₂ reduced at (A) 773 K, (B) 873 K and (C) 973 K with (II) associated Ni particle size distribution histograms. Ni/CeO₂ post-reduction at 773 K and 973 K as representatives was subjected to XPS analysis. Spectra over Ni $2p_{3/2}(A)$ and Ce 3d (B) BE regions are shown in Fig. 4. Ni $2p_{3/2}$ spectrum for both samples exhibited common signals at 852.5 ev, consistent with the reference metallic Ni (852.4–852.6 ev) [40]. Multi-split peaks at 853.7 ev, 855.8 ev and 861.1 ev match the characteristic Ni $2p_{3/2}$ BE of NiO (core level: 853.7 ev, 855.7 ev; satellite: 861.0 ev) [31,41]. The formation of NiO resulted from oxidation of metallic Ni when exposed to air [40]. An additional core level peak at 856.9 ev with a satellite peak at 861.7 ev, which was a contribution of Ni²⁺ species that was bonded with ceria (Ni_O_Ce) at the interface. The spectrum of Ce 3d (B) showed up to ten signal components due to various final state electron configurations [42]. The peaks (denoted ν , ν_0 , ν' , ν'' and ν''') are linked to Ce $3d_{5/2}$; while the signals (μ , μ_0 , μ' , μ'' and μ''') correspond to Ce $3d_{3/2}$. Ce⁴⁺ species generates peaks μ''' and ν''' , μ'' and ν''' , μ and ν due to Ce $3d^94f^0O2p^6$, Ce $3d^94f^1O2p^5$ and Ce $3d^94f^2O2p^4$ final state, respectively [43]. Ce^{3+} component was associated with the signals μ' and ν' corresponding to Ce3d⁹4f¹O2p⁶ state, μ_0 and ν_0 resulting from Ce3d⁹4f²O2p⁵ state [43]. Surface element composition analysis (Table 2) revealed higher reduction temperature resulted in a lower content of nickel species (Ni⁰ and Ni²⁺), a higher concentration of Ce components (Ce³⁺ and Ce⁴⁺) and of oxygen, and a lower ratio of Ni/Ce. This can be attributed to decoration/encapsulation of Ni nanoparticles by ceria layer leading to lower Ni surface exposure. In addition, larger fractions of Ce^{3+} (18.8% \rightarrow 22.2%) and metallic Ni⁰ (16.3% \rightarrow 26.4%) were observed at higher reduction temperature. XPS profile of (A) Ni $2p_{3/2}$ and (B) Ce 3d for Ni/CeO₂ reduced at (I) 773 K and (II) 973 K. Table 2. Surface element composition, Ni/Ce ratio and content of Ce³⁺, Ce⁴⁺, Ni⁰ and Ni²⁺ determined from XPS analysis for activated Ni/CeO₂. | Sample | Ce (%) | Ni (%) | O (%) | Ni/Ce | Ce^{3+} (%) | Ce ⁴⁺ (%) | Ni ⁰ (%) | Ni^{2+} (%) | |----------------------------|--------|--------|-------|-------|---------------|----------------------|---------------------|---------------| | Ni/CeO ₂ -773 K | 20.0 | 15.5 | 64.5 | 0.78 | 18.8 | 81.2 | 16.3 | 83.7 | | Ni/CeO ₂ -973 K | 25.0 | 7.1 | 67.9 | 0.28 | 22.2 | 77.8 | 26.4 | 73.6 | #### 3.2. Catalytic response Representative time on-stream conversions of CH_4 and CO_2 , and H_2/CO ratio in dry reforming of methane (773 K) over Ni/CeO_2 (using reduction temperature (T_{reduce}) = 773 K) is presented in <u>Fig. 5</u>. The catalyst exhibited stable conversion (ca. 0.30) for CH_4 ; while a temporal loss in CO_2 conversion was observed with steady state (ca. 0.42) attained after 5 h on-stream. Our conversions are higher than that X_{CH4} =0.22-0.31, X_{CO2} =0.20-0.30XCH4=0.22-0.31, X_{CO2} =0.20-0.30 reported for reaction over Ni/CeO₂ at higher temperature (823 K) and lower GHSV (3.6 × 10⁴ h⁻¹) [44]. CH₄ and CO₂ were converted to syngas with no detectable by-products (e.g., alkane and/or alkene). H₂/CO ratio was in the range of 0.70-0.76 with a value of 0.70 at the steady state. Time on-stream conversion of CH₄ (\blacksquare) and CO₂ (\bullet) and H₂/CO (\Diamond) in dry reforming of methane over Ni/CeO₂. Reaction condition: $T_{react} = 773$ K, $T_{reduce} = 773$ K, P = 1 atm, GHSV = 4.8×10^4 h⁻¹, n/F_{CH4}n/FCH4 = 4.8×10^{-3} h. To explore how Ni-CeO₂ interaction impacts on the adsorption/activation of CH₄ and CO₂, Ni/CeO₂ was reduced at different temperatures (773–973 K) and examined in dry reforming of methane (773 K). Reaction over Ni/CeO₂ (reduced at 773 K) delivered a consumption rate for CH₄ (64 h⁻¹), lower than that of CO₂ (89 h⁻¹). An increase in reduction temperature (773 → 973 K) resulted in lower conversion rates for both CH₄ and CO₂ (Fig. 6), suggesting decoration/encapsulation of Ni nanoparticles did not facilitate conversion of CH₄ and CO₂. The influence of decoration/encapsulation of Ni particles on the catalytic activity of Ni/CeO₂ in dry reforming of methane has not been studied well in the literature. But we can note Lustemberg et al. [45] investigating the effect of Ni coverage on the catalytic activity of Ni-CeO₂ (111) surfaces for CH₄ activation (300 K) observed a dramatic drop in CH₄ dissociation at coverage > 0.2 ML. Wang et al. [46] demonstrated embedding of Ir species into Ce_{0.9}Pr_{0.1}O₂ support did not favour activation of CH₄ and CO₂ in dry reforming of methane over Ir/Ce_{0.9}Pr_{0.1}O₂. It has been reported that CH₄ is activated/dissociated on active metal surface; while CO₂ binds on support and metal-support interface in dry reforming of methane over reducible oxide supported metal catalysts [24,46,47]. Higher coverage of Ni particles by ceria layer due to encapsulation effect must decrease Ni surface exposure and metal-oxide boundary perimeter for adsorption/activation of CH₄ and CO₂. Moreover, a lower content of surface Ni species (Table 2) can contribute to the decreased activity observed at higher reduction temperature. Regarding H_2/CO , the reaction using reduction temperature = 873 K delivered higher H₂/CO ratio (0.81) than that (0.72–0.76) at 773 K and 973 K. The methane decomposition (773 K) was examined over Ni/CeO₂ to further probe the effect of decoration/encapsulation of Ni nanoparticles on CH₄ activation. The variation of time onstream conversion of CH₄ with reduction temperature is presented in <u>Fig. 7</u>. Regardless of reduction temperature, a rapid loss of CH₄ conversion was observed within 3 h on-stream. An increase in reduction temperature resulted in lower conversions for CH₄, in agreement with that observed in dry reforming of methane (<u>Fig. 6</u>). This further confirmed high coverage of Ni surface by support resulting from encapsulation of Ni particles decreases the catalytic capacity of Ni/CeO₂ for CH₄ activation/dissociation. Effect of reduction temperature (773–973 K) on the reactant consumption rate (R_i ; solid: CH₄, open: CO₂) and H₂/CO (\Diamond) in dry reforming of methane over Ni/CeO₂. Reaction condition: T_{react} = 773 K, P = 1 atm, GHSV = 4.8 × 10⁴ h⁻¹, n/F_{CH4}n/FCH4 = 4.8 × 10⁻³ h. Variation of time on-stream conversion with reduction temperature (■: 773 K, •: 873 K, ▲: 973 K) in the methane decomposition over Ni/CeO₂. Reaction condition: $T_{react} = 773$ K, P = 1 atm, $GHSV = 4.8 \times 10^4$ h⁻¹, $n/F_{CH4}n/FCH4 = 4.8 \times 10^{-3}$ h. Arrhenius plots using conversion rates of CH₄ and CO₂ for dry reforming of methane over Ni/CeO₂ (reduced at 773 K, 873 K and 973 K, respectively) are presented in <u>Fig. 8</u>. An increase in reaction temperature from 673 K to 773 K resulted in higher conversion rates for CH₄ and CO₂, consistent with the nature of endothermic reaction. Reactions using higher reduction temperature delivered lower conversion rates at each reaction temperature, in agreement with that observed in <u>Fig. 6</u>. This again confirmed decoration/encapsulation of Ni nanoparticles over Ni/CeO₂ does not favour adsorption/activation of CH₄ and CO₂. Apparent activation energies for CH₄ extracted from the Arrhenius plots (<u>Fig. 8(I)</u>) were close to each other (49.0-49.8 kJ mol⁻¹). The values fall in the range (41.8–62.7 kJ mol⁻¹) reported for the reaction over (Al₂O₃, Al₂O₃-CeO₂, La₂O₃, SiO₂ and ZrO₂) supported Ni catalysts [48]. Apparent activation energies for CO₂ (50.0-50.8 kJ mol⁻¹) were higher than that of CH₄ (Fig. 8(II)). The values are in agreement with that reported for reaction over Ni/Al₂O₃ (56.1 kJ mol⁻¹) [49] and Ni/Al₂O₃-CeO₂ (46.2 kJ mol⁻¹) [50]. Arrhenius plots in terms of CH₄(I) and CO₂(II) conversion rate in dry reforming of methane over Ni/CeO₂ reduced at different temperatures (\blacksquare : 773 K, \bullet : 873 K, \blacktriangle : 973 K). Reaction condition: P = 1 atm, GHSV = 4.8 × 10⁴ h⁻¹, n/F_{CH4}n/FCH4 = 4.8 × 10⁻³ h. The effect of inlet fractional concentration of CH_4 (C [CH_4]) and CO_2 (C [CO_2]) on the conversion rate and H_2 /CO ratio in dry reforming of methane was examined over Ni/ CeO_2 . The conversion rate for CH_4 and CO_2 increased dramatically with increasing the fractional concentration up to 0.125 and followed by a slow increase at higher concentration (Fig. 9), in agreement with that reported for reaction over Ni- $La_2O_3@SiO_2$ [51]. H_2 /CO increased (0.62 \rightarrow 1.42) with an increase in CH_4 concentration, suggesting greater H_2 generated at higher CH_4 feeding; while an increase in CO_2 concentration resulted in a decrease in H_2 /CO (1.07 \rightarrow 0.50). Reaction order for CH_4 and CO_2 was estimated from the variation in conversion rates (R_i) with inlet reactant concentration. The reactant (CH_4 and CO_2) conversion rates are expressed by the semi-empirical equations (Eqs. (3) and (4)) as described elsewhere [E2]. equation(3) $R_{CH4} = k_1 [CH_4]^{\alpha 1} [CO_2]^{\beta 1} RCH4 = k_1 [CH4] \alpha 1 [CO2] \beta 1$ Variation of reaction rate (R_i ; ■: CH_4 , •: CO_2) and H_2/CO (\Diamond) as a function of inlet fractional concentration of (I) CH_4 (C [CH_4]) and (II) CO_2 (C [CO_2]) in dry reforming of methane over Ni/CeO_2 . Reaction condition: $T_{react} = 773$ K, $T_{reduce} = 773$ K, P = 1 atm, $GHSV = 4.8 \times 10^4$ h⁻¹. Scatter: experimental data, line: fitting. A calculation treatment of Eq. (3) using natural logarithm found the reaction orders for CH₄ (α 1) and CO₂ (β 1) are 0.534 and 0.373, respectively. The reaction orders in Eq. (4) for CH₄ (α 2) and CO₂ (β 2) are 0.592 and 0.471, respectively. The values are close to that reported in the existing study [51]. #### 3.3. Catalyst characterisation post-reaction Carbon deposition and Ni sintering often result in catalyst deactivation in the methane reforming reaction. To study the encapsulation effect of Ni particles on catalyst deactivation, Ni/CeO₂ catalysts post-reaction (773 K) were subjected to characterisation in terms of N₂ physisorption, XRD, TEM and TGA-DTG analysis. Ni/CeO₂ pre-reduced at 773 K and 873 K exhibited an increase in SSA and a decrease in pore volume post-reaction (Table 1), which can be attributed to carbon accumulation. The spent Ni/CeO₂ (reduced at 973 K) showed a SSA and pore volume that were close to the values recorded for the fresh catalyst (Table 1). XRD analysis for all the spent Ni/CeO₂ catalysts (Fig. 10) generated diffraction peaks corresponding to metallic Ni and cubic ceria. There was no detectable signal due to NiO, suggesting the bulk Ni phase was in metallic state during the reaction. The diffraction peaks of metallic Ni for the spent Ni/CeO₂ did not become sharper relative to that observed for the activated samples pre-reaction (Fig. 2). This demonstrated Ni particles maintained a high dispersion without severe sintering due to strong interaction between Ni and CeO₂. Analysis of carbon deposition on Ni surface was further examined by TEM with associated images presented in Fig. 11. Significant amounts of carbon whisker were formed over Ni/CeO₂ for reactions using reduction temperature of 773 K (I) and 873 K (II). A number of Ni particles were encapsulated by the end of carbon whiskers, suggesting carbon generated on Ni surface with subsequent growth to whisker. We did not observe much amount of whisker type carbon over the spent Ni/CeO₂ for the reaction using reduction temperature of 973 K (III). TGA-DTG analysis of the spent Ni/CeO₂ catalysts reduced at 773 K and 873 K (Fig. 12) revealed only one mass loss (7.3–15.4%) at ca. 875 K that can be attributed to combustion of whisker type carbon. This is in consistent with that (833–873 K) reported for the reaction over Ni/ZrO₂ [53] and Ni/CeO₂ [33]. There was no significant mass loss in the temperature range of 573–773 K that was characteristic of oxidation of amorphous or graphitic carbon. A calculation demonstrated the carbon deposition rates at 0.7–1.6 mmol_{carbon} g_{cat}. h⁻¹ for both Ni/CeO₂ catalysts. In contrast, an increase (ca. 0.8%) in weight due to oxidation of metallic Ni (Ni → NiO) was recorded over the used Ni/CeO₂ (reduced at 973 K). We can note that the amount of carbon deposition was decreased with an increase in reduction temperature, suggesting a suppression of carbon formation. In dry reforming of methane over supported Ni catalysts, a large (>2.5 nm) and free Ni surface facilitates carbon formation and particle agglomeration [54]; [55]; [56]]. In this work, SMSI induced-decoration of Ni surface by a thin layer of ceria can inhibit carbon deposition. In addition, high oxygen mobility of the ceria layer can oxidise coke on Ni surface, notably at the meal-support interface boundary, contributing to lower carbon deposit. We demonstrated decoration of Ni surface via tuning metal-support interaction as an effective tool in controlling the catalytic activity of Ni/CeO₂ and carbon deposition in dry reforming of methane. XRD analysis of the spent Ni/CeO₂ catalysts (reduction temperature: (I) 773 K, (II) 873 K and (III) 973 K; \Diamond : Ni, \blacksquare : CeO₂). Fig. 11. Representative TEM images of the spent Ni/CeO₂ catalysts (reduction temperature: (I) 773 K, (II) 873 K and (III) 973 K). (A) TGA and (B) DTG profiles of the spent Ni/CeO₂ catalysts (reduction temperature: (I) 773 K, (II) 873 K and (III) 973 K). ## 4. Conclusion We have established the influence of metal-support interaction on the catalytic activity and carbon formation in dry reforming of methane to syngas over CeO_2 supported Ni nanoparticles. Reduction of Ni/CeO₂ at higher temperature (773 \rightarrow 973 K) resulted in a loss in SSA (11 \rightarrow 8 m² g⁻¹), surface Ni concentration (15.5% \rightarrow 7.1%) and a stronger bonding between Ni and CeO₂ that inhibited severe agglomeration/sintering of Ni particles. Elevated reduction temperature (\geq 873 K) promoted migration of ceria from reduced support onto Ni surface, inducing decoration/encapsulation of Ni nanoparticles. The decoration/encapsulation effect decreased the catalyst capacity for adsorption/activation for CH₄ and CO₂ leading to lower conversion rates, but decreased carbon deposition in dry reforming of methane. # Acknowledgments This work was financially supported by European Commission 7th Framework Programme: BIOGO project (Grant No. <u>604296</u>). We thank Prof. Shanwen Tao and Mr. Lucas Tillman for their contribution to this work. ## References - [1] J.C. Matsubu, S.Y. Zhang, L. DeRita, N.S. Marinkovic, J.G.G. Chen, G.W. Graham, X.Q. Pan, P. Christopher, Nat. Chem., 9 (2017), pp. 120–127 - [2] J.A. Rodriguez, D.C. Grinter, Z.Y. Liu, R.M. Palomino, S.D. Senanayake, Chem. Soc. Rev., 46 (2017), pp. 1824–1841 - [3] M. Cargnello, V.V.T. Doan-Nguyen, T.R. Gordon, R.E. Diaz, E.A. Stach, R.J. Gorte, P. Fornasiero, C.B. Murray, Science, 341 (2013), pp. 771–773 - [4] S. Gatla, D. Aubert, G. Agostini, O. Mathon, S. Pascarelli, T. Lunkenbein, M.G. Willinger, H. Kaper, ACS Catal., 6 (2016), pp. 6151–6155 - [5] Z.J. Mei, Y. Li, M.H. Fan, L. Zhao, J. Zhao, Chem. Eng. J., 259 (2015), pp. 293-302 - [6] T. Tabakova, F.B. Boccuzzi, M. Manzoli, D. Andreeva, Appl. Catal. A: Gen., 252 (2003), pp. 385–397 - [7] J.A. Rodriguez, P. Liu, D.J. Stacchiola, S.D. Senanayake, M.G. White, J.G.G. Chen, ACS Catal., 5 (2015), pp. 6696–6706 - [8] M. García-Dieguéz, E. Finocchio, M.A. Larrubia, L.J. Alemany, G. Busca, J. Catal., 274 (2010), pp. 11–20 - [9] D.C. Carvalho, H.S.A. de Souza, J.M. Filho, A.C. Oliveira, A. Campos, E.R.C. Milet, F.F. de Sousa, E. Padron-Hernandez, A.C. Oliveira, Appl. Catal. A: Gen., 473 (2014), pp. 132–145 - [10] F. Polo-Garzon, M. He, D.A. Bruce, J. Catal., 333 (2016), pp. 59–70 - [11] F. Polo-Garzon, D. Pakhare, J.J. Spivey, D.A. Bruce, ACS Catal., 6 (2016), pp. 3826–3833 - [12] F. Polo-Garzon, J.K. Scott, D.A. Bruce, J. Catal., 340 (2016), pp. 196–204 - [13] R.K. Singha, A. Yadav, A. Shukla, M. Kumar, R. Bal, Catal. Commun., 92 (2017), pp. 19–22 - [14] X.Y. Li, D. Li, H. Tian, L. Zeng, Z.J. Zhao, J.L. Gong, Appl. Catal. B: Environ., 202 (2017), pp. 683–694 - [15] A. Löfberg, J. Guerrero-Caballero, T. Kane, A. Rubbens, L. Jalowiecki-Duhamel, Appl. Catal. B: Environ., 212 (2017), pp. 159–174 - [16] M. Shirazi, E.C. Neyts, A. Bogaerts, Appl. Catal. B: Environ., 205 (2017), pp. 605–614 - [17] A. Tsoukalou, Q. Imtiaz, S.M. Kim, P.M. Abdala, S. Yoon, C.R. Muller, J. Catal., 343 (2016), pp. 208–214 - [18] B.V. Ayodele, M.R. Khan, C.K. Cheng, Int. J. Hydrogen Energy, 41 (2016), pp. 198–207 - [19] P. Djinović, A. Pintar, Appl. Catal. B: Environ., 206 (2017), pp. 675-682 - [20] S.M. Kim, P.M. Abdala, T. Margossian, D. Hosseini, L. Foppa, A. Armutlulu, W. van Beek, A. Comas-Vives, C. Copéret, C. Muller, J. Am. Chem. Soc., 139 (2017), pp. 1937–1949 - [21] Q.X. Ma, J. Sun, X.H. Gao, J.L. Zhang, T.S. Zhao, Y. Yoneyama, N. Tsubaki, Catal. Sci. Technol., 6 (2016), pp. 6542–6550 - [22] T.D. Gould, M.M. Montemore, A.M. Lubers, L.D. Ellis, A.W. Weimer, J.L. Falconer, J.W. Medlin, Appl. Catal. A: Gen., 492 (2015), pp. 107–116 - [23] S. Kawi, Y. Kathiraser, J. Ni, U. Oemar, Z.W. Li, E.T. Saw, ChemSusChem, 8 (2015), pp. 3556–3575 - [24] D. Pakhare, J. Spivey, Chem. Soc. Rev., 43 (2014), pp. 7813–7837 - [25] Z.Y. Liu, D.C. Grinter, P.G. Lustemberg, T.D. Nguyen-Phan, Y.H. Zhou, S. Luo, I. Waluyo, E.J. Crumlin, D.J. Stacchiola, J. Zhou, J. Carrasco, H.F. Busnengo, M.V. Ganduglia-Pirovano, S.D. Senanayake, J.A. Rodriguez, Angew. Chem. Int. Ed., 55 (2016), pp. 7455–7459 - [26] V.M. Gonzalez-Dela Cruz, J.P. Holgado, R. Pereñíguez, A. Caballero, J. Catal., 257 (2008), pp. 307–314 - [27] T. Komaya, A.T. Bell, Z. Wengsieh, R. Gronsky, F. Engelke, T.S. King, M. Pruski, J. Catal., 149 (1994), pp. 142–148 - [28] W. Jochum, D. Eder, G. Kaltenhauser, R. Kramer, Top. Catal., 46 (2007), pp. 49–55 - [29] J.Y. Park, L.R. Baker, G.A. Somorjai, Chem. Rev., 115 (2015), pp. 2781–2817 - [30] S. Bernal, J.J. Calvino, M.A. Cauqui, J.M. Gatica, C.L. Cartes, J.A.P. Omil, J.M. Pintado, Catal. Today, 77 (2003), pp. 385–406 - [31] S.Y. Xiao, Z.Y. Meng, J. Chem. Soc. Faraday Trans., 90 (1994), pp. 2591–2595 - [32] N. Laosiripojana, S. Assabumrungrat, S. Charojrochkul, Appl. Catal. A: Gen., 327 (2007), pp. 180–188 - [33] H. Ay, D. Uner, Appl. Catal. B: Environ., 179 (2015), pp. 128–138 - [34] L. Katta, G. Thrimurthulu, B.M. Reddy, M. Muhler, W. Grunert, Catal. Sci. Technol., 1 (2011), pp. 1645–1652 - [35] F.J. Lin, R. Delmelle, T. Vinodkumar, B.M. Reddy, A. Wokaun, I. Alxneit, Catal. Sci. Technol., 5 (2015), pp. 3556–3567 - [36] T.S. Moraes, R.C.R. Neto, M.C. Ribeiro, L.V. Mattos, M. Kourtelesis, S. Ladas, X. Verykios, F.B. Noronha, Appl. Catal. B: Environ., 181 (2016), pp. 754–768 - [37] S. Mahammadunnisa, P.M.K. Reddy, N. Lingaiah, C. Subrahmanyam, Catal. Sci. Technol., 3 (2013), pp. 730–736 - [38] H.L. Tang, J.K. Wei, F. Liu, B.T. Qiao, X.L. Pan, L. Li, J.Y. Liu, J.H. Wang, T. Zhang, J. Am. Chem. Soc., 138 (2016), pp. 56–59 - [39] J.A. Farmer, C.T. Campbell, Science, 329 (2010), pp. 933–936 - [40] X. Chen, M. Li, J.C. Guan, X.K. Wang, C.T. Williams, C.H. Liang, Ind. Eng. Chem. Res., 51 (2012), pp. 3604–3611 - [41] V.M. Shinde, G. Madras, RSC Adv., 4 (2014), pp. 4817–4826 - [42] M. Baron, O. Bondarchuk, D. Stacchiola, S. Shaikhutdinov, H.J. Freund, J. Phys. Chem. C, 113 (2009), pp. 6042–6049 - [43] E. Beche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, Appl. Catal. B: Environ., 40 (2008), pp. 264–267 - [44] N. Wang, W.Z. Qian, W. Chu, F. Wie, Catal. Sci. Technol., 6 (2016), pp. 3594–3605 - [45] P.G. Lustemberg, P.J. Ramirez, Z.Y. Liu, R.A. Gutierrez, D.G. Grinter, J. Carrasco, S.D. Senanayake, J.A. Rodriguez, M.V. Ganduglia-Pirovano, ACS Catal., 6 (2016), pp. 8184–8191 - [46] F.G. Wang, L.L. Xu, J. Zhang, Y. Zhao, H. Li, H.X. Li, K. Wu, G.Q. Xu, W. Chen, Appl. Catal. B: Environ., 180 (2016), pp. 511–520 - [47] J.H. Bitter, K. Seshan, J.A. Lercher, J. Catal., 176 (1998), pp. 93–101 - [48] U. Oemar, Y. Kathiraser, L. Mo, X.K. Ho, S. Kawi, Catal. Sci. Technol., 6 (2016), pp. 1173–1186 - [49] S.B. Wang, G.Q. Lu, Ind. Eng. Chem. Res., 38 (1999), pp. 2615–2625 - [50] A. Nandini, K.K. Pant, S.C. Dhingra, Appl. Catal. A: Gen., 308 (2006), pp. 119–127 - [51] X.G. Zheng, S.Y. Tan, L.C. Dong, S.B. Li, H.M. Chen, Chem. Eng. J., 265 (2015), pp. 147–156 - [52] C. Pichas, P. Pomonis, D. Petrakis, A. Ladavos, Appl. Catal. A: Gen., 386 (2010), pp. 116–123 - [53] A. Wolfbeisser, O. Sophiphun, J. Bernardi, J. Wittayakun, K. Fottinger, G. Rupprechter, Catal. Today, 277 (2016), pp. 234–245 - [54] A. Rinaldi, J.P. Tessonnier, M.E. Schuster, R. Blume, F. Girgsdies, Q. Zhang, T. Jacob, S.B.A. Hamid, D.S. Su, R. Schlogl, Angew. Chem. Int. Ed., 50 (2011), pp. 3313–3317 - [55] K. Mette, S. Kuhl, A. Tarasov, M.G. Willinger, J. Krohnert, S. Wrabetz, A. Trunschke, M. Scherzer, F. Girgsdies, H. Dudder, K. Kahler, K.F. Ortega, M. Muhler, R. Schlogl, M. Behrens, T. Lunkenbein, ACS Catal., 6 (2016), pp. 7238–7248 - [56] H.S. Bengaard, J.K. Norskov, J. Sehested, B.S. Clausen, L.P. Nielsen, A.M. Molenbroek, J.R. Rostrup-Nielsen, J. Catal., 209 (2002), pp. 365–384 Corresponding authors at: School of Engineering, The University of Warwick, Coventry CV4 7AL, United Kingdom.