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Abstract 

     In this study, entropy generation of double-diffusive mixed convection is investigated inside a 

right-angled trapezoidal cavity with a partially heated and salted bottom wall. Similar to the 

approach that assigns color to streamlines, a new coloring scheme is employed to visualize 

heatlines and masslines in a more meaningful manner. In addition, various consequential 

parameters, namely the Lewis and Richardson numbers, the buoyancy ratio, the direction of lid 

movement, and the heat source location, have been analyzed. According to the results, as the 

Lewis number increases, the average Nusselt number declines, while the total entropy generation 

augments. Furthermore, for Le = 0.1, the conduction mass transfer dominates the mass transfer 

field; hence, the masslines are virtually perpendicular to the isoconcentration lines. 
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Nomenclature 

Be Bejan number 

Br buoyancy ratio 

c species concentration (kg m-3) 

C dimensionless species concentration 

D mass diffusivity (m2 s-1) 

Gr Grashof number 

g gravitational acceleration (m s-2) 

H dimensionless heatfunction 

k thermal conductivity (W m-1 K-1) 

L enclosure length (m) 

Lh heat source distance from origin (m) 

Le Lewis number 

M dimensionless massfunction 

n unit normal vector 

Nu Nusselt number 

p pressure (N m-2) 

P dimensionless pressure 

Pr Prandtl number 

R gas constant (= 8.314 J mol-1 K-1) 

Re Reynolds number 

Ri Richardson number 

s &  volumetric rate of entropy generation (W m-3 K-1) 

S &  dimensionless volumetric rate of entropy generation 

S& dimensionless overall rate of entropy generation 

Sh Sherwood number 

T temperature (K) 

 ,u v   velocity components (m s-1) 
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 ,U V  dimensionless velocity components 

 ,x y  coordinates (m) 

 ,X Y  dimensionless coordinates 

Greek symbols 

α thermal diffusivity (m2 s-1) 

βc coefficient of solutal expansion (m3 kg-1) 

βT coefficient of thermal expansion (K-1) 

γ Angle between inclined and bottom wall 

θ dimensionless temperature 

μ dynamic viscosity (kg m-1 s-1) 

ν kinematic viscosity (m2 s-1) 

ρ density (kg m-3) 

i  irreversibility distribution ratios 

Ψ dimensionless streamfunction 

Ω computational domain 

Subscripts 

0 reference state 

av average or mean 

c cold 

h hot or high 

l low 

Superscripts 

* dimensionless 
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1. Introduction 

     As far as the world’s fossil fuel resources are limited, considerable efforts should be directed 

into designing devices and processes in engineering systems. Furthermore, in order to attain 

multi-faceted targets of an engineering system, a creative, iterative, and open-ended process 

which results in effective thermal and fluid system designing, is required. To satisfy such a need, 

the Second Law of Thermodynamics should be considered in analyzing a thermal fluid system to 

promote its energy efficiency. Moreover, the criterion to assess for energy efficiency of 

engineering devices is entropy generation which plays a significant role in clarifying the 

maximum theoretical limits of energy efficiency. It is worth mentioning that the thermal, friction, 

and other thermodynamic irreversibilities, which are responsible for inefficiencies in an 

engineering thermal fluid system, are taken into account in formulating entropy generation. 

Numerous studies were dedicated to scrutinize the entropy generation and convection heat 

transfer in enclosures over the past few years [1-11]. Baytas [12] conducted a numerical 

simulation to study entropy generation and natural convection heat transfer in an inclined square 

cavity. He observed that in low Rayleigh numbers that the effects of heat transfer irreversibility 

are more than fluid friction irreversibility. Natural convection heat transfer and entropy 

generation in a square enclosure is numerically investigated by Mahmud and Fraser [13]. Based 

on their results, the entropy generation in the center of the enclosure is lower in magnitude 

compared to near the cavity walls. In another numerical investigation, Ovando-Chacon et al. [14] 

examined entropy generation due to mixed convection heat transfer in a square cavity. They 

observed that the high entropy generation due to fluid friction irreversibility occurs near the 

vertical moving walls; and the minimum and maximum entropy generation due to heat transfer 

irreversibility takes place on the middle of the cavity walls and in the zones with large 

temperature gradients, respectively. Moreover, they demonstrated that when the Richardson 

number increases, the heat transfer irreversibility near the boundaries of the cavity increases. 

Khorasanizadeh et al. [15] utilized the finite volume method and the SIMPLER algorithm to 

explore mixed convection and entropy generation in a lid-driven square cavity. Based upon their 

results, when the Reynolds number increases, both terms of entropy generation augment; and as 

the Rayleigh number increases, the heat transfer term of entropy generation increases and 

entropy generation due to fluid friction decreases. They also demonstrated that the maximum 
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entropy generation is for low Rayleigh and high Reynolds numbers, and the minimum entropy 

generation appertains to low Rayleigh and low Reynolds numbers. Very recently, Nayak et al. 

[16] conducted a numerical investigation to explore mixed convection heat transfer and entropy 

generation in a lid-driven square enclosure. The results have shown that the entropy is generated 

mainly because of heat transfer irreversibility. They also concluded that the Bejan number 

increases as the Reynolds number increases at a constant Grashof number, but it decreases with 

increase of the Grashof number when the Reynolds number is constant. Mixed convective heat 

transfer of nanofluid and its entropy generation in a trapezoidal cavity is examined by Aghaei et 

al. [17]. They observed that in all of considered cases, the entropy generation due to fluid friction 

is negligible and entropy virtually generated due to heat transfer. They also showed that in 

Reynolds number of 1000, moving direction of the lid does not have profound effects on the total 

entropy generation and the average Nusselt number, but in Reynolds number of 30 this behavior 

is completely reversed. 

     When the buoyancy forces take place as a result of temperature and concentration gradients, 

the concept of double-diffusive natural convection appears. In other word, in order to calculate 

the density of a fluid, the effects of the temperature gradients and concentration gradients should 

be taken into account simultaneously. Double-diffusive natural convection has been encountered 

in different ranges of natural systems such as atmosphere, ocean circulation, asthenosphere 

movement within crust, pollution transportation in air, astrophysics, geology, biology, chemical 

processes, etc. The debate surrounding double-diffusive convection has witnessed many 

controversies in the last three decades [18-24]. As early as 1987, Trevisan and Bejan [25] 

numerically and analytically examined natural convection heat transfer due to the buoyancy 

effects of both temperature and concentration in a rectangular slot subjecting to uniform heat and 

mass fluxes. Double-diffusive natural convection of moist air flowing inside a square cavity with 

heat and mass diffusive walls is investigated by Costa [26] using the SIMPLER algorithm based 

on finite volume method. They obtained that buoyancy ratio has a great impact on both the 

temperature and concentration fields, parameters of both heat and mass transfer fields as well as 

the routes tracked by the heat and mass streams. Al-Amiri et al. [27] conducted a numerical 

simulation to study mixed convection heat transfer in a lid-driven square enclosure under the 

buoyancy effects of both thermal as well as solutal diffusion. Based on their results, 

characteristics of heat and mass transfer within the cavity are enhanced for low Richardson 



6 

 

numbers due to the moving lid. Moreover, they observed that Lewis number has not far-reaching 

effect on the isotherms and streamlines in small Richardson numbers. In another numerical 

investigation, Hasanuzzaman et al. [28] analyzed double-diffusive mixed convection in a right 

triangular enclosure occupied with air. They showed that as the Lewis number increases, heat 

transfer decreases for all studied parameters. They also demonstrated that when the Lewis 

number augments, the Sherwood number increases almost linearly; also, higher Sherwood 

numbers appertain to higher values of Richardson numbers. Oueslati et al. [29] carried out a 

numerical study to explore entropy generation of double-diffusive natural convection inside a 

rectangular enclosure with partial, vertical, thermal and solutal sources. They observed that by 

increasing the Lewis number, the heat and mass transfer rates significantly increases. They also 

concluded that the entropy generation is low within the enclosure with the exception of the 

vicinity of the active vertical walls, especially in the zones where there are high velocity 

gradients. Qin et al. [30] numerically investigated double-diffusive convection of a binary mixed 

fluid in a rectangular enclosure with horizontal temperature and concentration gradients.  Their 

results showed that the Sherwood number increases with the Lewis number. Very recently, Arbin 

et al. [31] numerically studied double-diffusive natural convection in an open top square cavity 

via the heatlines approach. According to their findings, higher values of Lewis number will 

decrease the heat transfer rates, but will enhance the mass transfer rates. Teamah et al. [32] 

numerically investigated the double-diffusive natural convection in the presence of magnetic 

field inside a trapezoidal cavity. The results showed that heat and mass transfer rates decline 

when the Hartmann number increases. 

     In order to gain a better physical insight about heat and mass transfer in enclosures, the 

heatlines and masslines visualization techniques have been proposed as innovative approaches 

which pave the way. In order to visualize how the energy flows through the convective heat 

transfer fields, heatlines were presented and used for the first time by Kimura and Bejan [33]. 

Subsequently, masslines were put forward by Trevisan and Bejan [25] in order to visualize 

convective mass transfer fields. Then, Costa [34] presented a thorough survey on the use of 

heatlines and masslines. As a glance at aforementioned literature, and even the new studies 

where heatlines and masslines visualization techniques are used [35-37], it is incontrovertibility 

axiomatic that the coloring scheme is not applied in most of the studies. Moreover, in only a few 

studies [31, 38] in which heatlines and masslines are presented in color, the colors are not 
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meaningful. Therefore, in this study, heatlines, masslines, and streamlines are colored in a way 

that there is a quite clear-cut distinction between the zones where the momentum, heat, and mass 

transfer are higher and those where the momentum, heat, and mass transfer are lower. 

     As evidenced by immense, well-documented, and proliferation literature pertaining to double-

diffusive convection, it is crystal clear that there has been a little focus on entropy generation of 

double-diffusive mixed convection inside a trapezoidal cavity and an in-depth analysis about it 

remains to be addressed. Also, the colored heatlines and masslines technique have never been 

used in any of these studies. Hence, in this study, double-diffusive mixed convection heat 

transfer and entropy generation in a trapezoidal enclosure is examined. The set of equations 

associated with this problem are numerically solved by employing the well-known SIMPLER 

algorithm. The convective heat and mass transfer fields are depicted using colored heatlines and 

masslines. The effects of different parameters such as the Lewis number, buoyancy ratio, 

Richardson number, direction of lid movement and the heat source location are discussed and 

assessed, and the implications of using these parameters on heat and mass transfer as well as 

entropy generation are investigated. 

2. Physical model and formulation 

2.1.Physical model and governing equations 

     The shape of the cavity is displayed in Fig. 1. It has a height of 0.5L and its lower wall has 

length L. The enclosure’s inclined wall is kept at low temperature and low concentration Tc and 

cl, respectively. Moreover, the partially heated and salted lower wall is maintained at constant 

temperature and concentration Th and ch, respectively. The heat and mass sources are coincident. 

The remaining walls of the cavity are insulated and impermeable. The top wall moves from right 

to left and vice versa with a constant speed u0. The incompressible fluid is presumed to be 

Newtonian. All of the thermo-physical properties of the fluid are considered to be constant 

except for the density variations in the buoyancy terms where the Boussinesq approximation is 

applied as follows: 

   0 c l1 T cT T c c          , (1) 
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where 0 is the fluid density at the reference temperature and concentration of  0 h c 2T T T   

and  0 h l 2c c c   ,
 
respectively.   01T c

T       and   01c T
c       are the 

thermal and solutal expansion coefficients, respectively. 

     The balance equations of mass, momentum, energy, and species concentration for the steady, 

laminar, two-dimensional mixed convection fluid flow and heat and mass transfer are as follows:  

0
u v

x y

 
 

 
 , (2) 

2 2

2 2

1u u p u u
u v

x y x x y




     
     

     
, (3) 

   
2 2

c l2 2

1
T c

v v p v v
u v g T T c c

x y y x y
  



     
                 

 , (4) 

2 2

2 2

T T T T
u v

x y x y

    

   
    

 , 

and 

(5) 

2 2

2 2

c c c c
u v D

x y x y

    
   

    
, (6) 

  

where u  and v are the velocity components in the x  and y  directions, respectively.   and  are 

the fluid density and the kinematic viscosity, respectively. Moreover, T, p, c, g,  , and D are the 

temperature, the pressure, the concentration, the gravitational acceleration, the thermal 

diffusivity, and the mass diffusivity, respectively. 

     The volumetric rate of generated entropy [39], assuming that the fluid behaves as a binary 

perfect gas mixture [40], can be calculated as follows: 

2 2 22 2

2

0 0

22

0 0

2

,

k T T u v u v
s

T x y T x y y x

RD c c RD T c T c

c x y T x x y y

                   
                  

                    

                
              

                

&

  (7) 
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where R is the gas constant which is equal to 8.314 J/mol K. 

     The set of Eqs. (2)–(6) can be changed to their dimensionless forms by replacing the main 

parameters with their corresponding dimensionless variables that are given below: 

 
 

 
  c l

0 0

, ,
, , , , , ,

x y u v T T c cp
X Y U V P C

L u u T c




 
    

 
, (8) 

  

where h cT T T    and
 h lc c c   . Using the foregoing dimensionless variables, the 

dimensionless form of the governing equations is written as: 

0
U V

X Y

 
 

 
, (9) 

2 2

2 2

1

Re

U U P U V
U V

X Y X X Y

     
     

     
, (10) 

 
2 2

2 2

1
Ri Br

Re

U U P U V
U V C

X Y X X Y


     
       

     
 , (11) 

2 2

2 2

1

RePr
U V

X Y X Y

       
   

    
 , 

and 

(12) 

2 2

2 2

1

RePrLe

C C C C
U V

X Y X Y

    
   

    
, (13) 

  

where the Reynolds, Prandtl, Lewis, Grashof and Richardson numbers, and the buoyancy ratio 

are defined, respectively, as 

3

0

2 2

Gr
Re , Pr , Le , Gr , Ri , Br

Re

cT

T

u L cg TL

D T

 

   


     


 (14) 

  

     The Prandtl and Grashof numbers, which are considered to be constant in this study, are equal 

to Pr 0.71  and 4Gr 10 , respectively. 

     The dimensionless volumetric rate of entropy generation is given by: 
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2 2 2 2 22 2

0
12

2 2

2 3 ,

2
L T C U V U V

S s
k T X Y X Y Y X

C C C C

X Y X X Y Y




 
 

                   
                    

                       

                 
                               

& &

  (15) 

  

where 1 , 2 and 3  ,which  denote the irreversibility distribution ratios, are defined as follows: 

2 2

0 0
1 2 0 3 0

0

, ,
T u RD c RD c

T T
k T kc T k T


  

      
      

      
 (16) 

  

It is to be noted that these irreversibility distribution ratios are assumed constant and equal to

4

1 10  , 1 0.5  and 2

1 10   [29, 40, 41]. 

     The corresponding non-dimensional boundary conditions for Eqs. (9)–(13) are as follows: 

0U V  , and 1C       on the sources, 

0U V  ,and 0C        at the inclined wall, 

1, 0U V   ,and 0
C

n n

 
 

    
at the top wall, 

0
C

U V
n n

 
   

      
along the remaining walls. 

(17) 

 

  

     The overall rate of entropy produced by the irreversibilities can be calculated by integrating 

the volumetric rate of irreversibilities over the entire domain as follows: 

S S d


 & &  (18) 

     The average Nusselt and Sherwood numbers along the heat and mass source on the bottom 

wall are evaluated from the following equations: 

*
h

*
h

0.5

av

0

1
Nu

0.5

L

L
Y

dX
Y






 

 , 

and 

(19) 

*
h

*
h

0.5

av

0

1
Sh

0.5

L

L
Y

C
dX

Y






 

 , (20) 
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where *

h hL L L . 

2.2.Visualization Method 

     In this study, the integration method [42] is employed to visualize streamlines, heatlines, and 

masslines. Moreover, a new coloring approach is also used for the purpose of illustrating 

heatlines and masslines in a more meaningful manner. This approach is going to be discussed 

later in this section. 

     Initially, a bird’s-eye view of the entire flow field and its main characteristics are 

demonstrated by means of the streamfunction, which is obtained from the conservation of mass 

equation. The streamfunction values can be calculated from: 

   
 

 ,

,0
, ,0

X Y

X
X Y X UdY    , (21) 

where  0 0,0   is randomly set to zero; therefore,   0,0 0X   , because 

 
0

,0 0
Y

X V X


     . 

     The conservation of energy equation can be rearranged and, similar to the streamfunction, the 

heatfunction can be defined as: 

* ,
H

U
Y X


 

 
 

 
and *H

V
X Y


 

 
  
 

, (22) 

  

where 
* 1 RePr  . Obviously, the heatfunction is able to satisfy the conservation of energy 

equation. It represents the local strength of the convective heat transfer, which is composed of 

the advective heat fluxes  ,U V  as well as the conductive or diffusive heat fluxes

 ,X Y     . In order to visualize the heatlines, the heatfunction quantities are obtained 

by integrating Eq. (22) as follows: 

   
 

 ,0
*

0,0
,0 0,0 ,

X

H X H V dX
Y


 

 
   

 


 

and 

(23) 

   
 

 ,
*

,0
, ,0

X Y

X
H X Y H X U dY

X


 

 
   

 
 , (24) 
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where  0 0,0 0H H  . 

     A similar conclusion can be drawn after the conservation of species concentration equation is 

rearranged: 

* ,
M C

UC D
Y X

 
 

 
and *M C

VC D
X Y

 
  
 

, (24) 

  

where 
* 1 RePrLeD  . The massfunction values, which consist of advective and conductive 

mass fluxes, is calculated by integrating (24) as follows: 

   
 

 ,0
*

0,0
,0 0,0 ,

X C
M X M D VC dX

Y

 
   

 


 

and

 
(25) 

   
 

 ,
*

,0
, ,0 ,

X Y

X

C
M X Y M X UC D dY

X

 
   

 
  (26) 

  

where  0 0,0 0M M  . 

     The mentioned coloring approach presents the heatlines and masslines in a way that is both 

meaningful and easier to interpret. This is analogous to the coloring of streamlines when they are 

colored by absolute values of velocity (i.e. 
2 2u v ). Thus, absolute convective values of 

heatlines and masslines are applied as coloring on the lines. In other words, streamlines, 

heatlines, and masslines are colored in each point with values of 2 2U V , 

   
2 2

H X H Y     , and    
2 2

M X M Y     , respectively. As a result, the 

coloration of heatlines and masslines shows the local intensity of energy or mass transfer rate in 

the heat or mass transfer field. Hence, it becomes easier to appreciate and analyze these fields. 

 

3. Numerical implementation 

     By using the finite volume method [43], a FORTRAN code is developed in order to solve the 

governing equations. The code was based on the SIMPLER algorithm [44], which is able to 
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handle the coupling between the pressure and velocities. The diffusive and advective terms in 

Eqs. (10)–(13) are discretized by employing the power-law differencing scheme, and the 

corresponding set of discretized equations are solved using a TDMA line-by-line solver.  

3.1.Benchmarking of the code 

     The correct modeling of the code is verified by developing a similar code to simulate the 

existing results of other studies. The geometries as well as the boundary conditions of the 

considered test cases are illustrated in Fig. 2. Comparisons between the heat transfer, the fluid 

friction irreversibilities, the total rate of entropy generation, and the local Bejan number of the 

present study code with those of Ilis et al. [45] are shown in Fig. 3 for Pr = 0.7 in Ra = 105. 

Moreover, Fig. 4 shows comparisons between the isotherms and the isoconcentration lines in the 

square enclosure using the developed code with the results of Al-Amiri et al. [27]. The results in 

this figure are for Pr = 1, Ri = 0.01, Re = 100, Br = 1 and Le = 5 and 50. Figs. 3 and 4 exhibit a 

sufficiently good agreement between the simulated results of the present code and those of Al-

Amiri et al. [27] and Ilis et al. [45], thereby guaranteeing the accuracy of the findings acquired 

by the present study. 

3.2.Finding an independent grid 

     To find a proper grid for the numerical simulations, a test of grid independency is conducted 

for the mixed convection flow at Ri = 100, Le = 10, Br = -10, and γ = 45°. The obtained average 

Nusselt number and the total entropy generation for different girds are presented in Table 1. As 

evidenced by this table, when the grid 201×101 is replaced with the grid 301×151, the maximum 

relative difference between the two grid systems becomes 1.68%, which is clearly a negligible 

change. Therefore, the grid system having 201×101 nodes is a proper grid for simulations and it 

is applied to the subsequent numerical calculation. All of the following results are obtained 

employing this grid. 

4. Results and discussion 

     The entropy generation of double-diffusive mixed convection is examined in a right-angled 

trapezoidal cavity that is partially heated and salted. The effects of different parameters such as 

the Lewis number, the buoyancy ratio, the Richardson number, the direction of the lid movement 
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and the heat source location on the flow and temperature fields are studied. The study is 

conducted for 0.01 < Ri < 100, -10 < Br < 10, 0.1 < Le < 10, Pr = 0.7, Gr = 104, and γ = 45° and 

60°. 

4.1. Isotherms, isoconcentration lines, streamlines, heatlines, masslines, and constant entropy 

generation lines  

     Fig. 5 displays the isotherms, the isoconcentration lines, the streamlines, the heatlines, the 

masslines, and the constant entropy generation lines for Le = 10, Br = 1, Ri = 0.1 and 10, γ = 45° 

and 60°, and for the two directions of the lid movement. As can be seen from this figure, when 

the lid moves toward the right side, the clockwise vortex draws the isotherm and the 

isoconcentration lines from the cold wall toward the heat source, and accumulates them on the 

heat source. Furthermore, the isotherm and isoconcentration lines are less compressed on the 

heat source for 60  o
 compared to when 45  o

 due to the fact that for 60  o
, the distance 

between the cold wall and heat source is more compared to when 45  o
. Moreover, the 

accumulation of the isotherm and the isoconcentration lines on the hot and the cold boundaries 

diminish for Ri = 10 compared to when Ri = 0.1 due to the enhanced natural convection strength. 

A close scrutiny of the streamlines, the heatlines, and the masslines reveals that the velocities 

have the maximum values near the moving wall. Moreover, the heatlines and the masslines 

emerge vertically from the heat source and after taking effect from the central vortex, 

perpendicularly reach to the cold wall. Above the right section of the heat source and upper parts 

of the cold wall, the heatlines and the masslines have the maximum density implying the 

maximum rates of heat and mass transfer in these areas, respectively. According to the lines of 

constant generated entropy, the maximum amount of local generated entropy is seen over the 

right side of the heat source and upper parts of the cold wall, and the minimum entropy 

generation takes place on the left bottom corner of the enclosure. Furthermore, when the lid 

moves toward the left side, the counterclockwise vortex stretches the isotherm and the 

isoconcentration lines from the heat source toward the cold wall. In this case, a secondary 

clockwise vortex develops in the right corner of the enclosure which becomes larger with 

increasing the Richardson number. This vortex alters the layout of the heatlines and the 

masslines in a way that a second vortex in masslines is formed on that spot. Moreover, according 
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to the lines of constant generated entropy, the generated entropy in the central part of the heat 

source decreases in this case. 

     Fig. 6 illustrates the isotherms, the isoconcentration lines, the streamlines, the heatlines, the 

masslines, and the constant entropy generation lines for Ri = 1, Br = 4, and γ = 45° and 60° and 

for different Lewis numbers. As it is observed from the isotherms and the heatlines, variations of 

the Lewis number does not have a considerable impact on these lines due to the fact that the 

Lewis number does not affect the energy equation directly. Regarding the isoconcentration lines, 

increasing the Lewis number compresses the isoconcentration lines, on the high and low 

concentration walls; while, a region with an average concentration is extended in the central part 

of the enclosure. Furthermore, high values of the Lewis number signify less mass diffusivity. 

When the mass diffusivity decreases, the solutal boundary layer becomes thinner and, therefore, 

the concentration gradient on both high and low salted walls increases resulting in mass transfer 

enhancement. It is noteworthy that for Le = 1, the diffusion characteristics of heat and mass 

transfer are identical and as results, the isotherm and isoconcentration lines, as well as the 

heatlines and the masslines are coincident. Considering the color of streamlines, as the Lewis 

number increases, the strength of the flow declines, but the structure of the streamlines is 

maintained. Regarding the masslines, for Le = 0.1, the conduction mass transfer dominates the 

mass transfer field and so, the masslines are virtually perpendicular to the isoconcentration lines; 

while by increasing the Lewis number, the masslines are more affected by the primary vortex 

due to the fact that the conductive mass flux decreases when the Lewis number augments. The 

constant generated entropy lines show that the entropy generation increases with the Lewis 

number.  

     The isotherms, the isoconcentration lines, the streamlines, the heatlines, the masslines, and the 

constant entropy generation lines for Ri = 100, Le = 0.1, γ = 45° and different buoyancy ratios 

and heat source locations are shown in Fig. 7. Regarding the isotherms, when 0hL  , the 

isotherms are drawn from the hot surface toward the cold wall for Br 10  . This behavior is 

completely reversed for Br 10  due to the change of the rotating direction of primary vortex 

from counterclockwise for Br 10   to clockwise for Br 10 . Moreover, for Br 10  , the 

downward solutal buoyancy force overwhelmingly dominates the upward thermal buoyancy 

force changing the direction of the primary vortex. For Br 0 , when the mass transfer has no 
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effect on flow field, the temperature gradient on the heat source is less than that of the other 

cases. Regarding the isoconcentration lines, by increasing the buoyancy ratio from -10 to 10, the 

concentration gradient on the mass source increases. As far as the heatlines and masslines, the 

heatlines are under the influence of the counterclockwise and clockwise circulations for 

Br 10   and Br 10 , respectively. Furthermore, the primary vortex for Br 0  does not affect 

the masslines; and the masslines are perpendicular to the isoconcentration lines. This behavior 

reveals that the conductive mass transfer regime is dominant for Le = 0.1. By considering the 

constant entropy generation lines, the maximum irreversibility takes place in the right edge of 

heat source and the upper part of the cold wall. Moreover, for h 0.25L  , as the heat source 

approaches the cold wall, both of the temperature and concentration gradients increase. 

According to the constant generated entropy lines, the local generated entropy is maximum at the 

right side of the heat source. Furthermore, for h 0.5L  , as the heat source approaches toward the 

cold wall, strong temperature and concentration gradients develop in the right corner of the 

enclosure. For Br 10  , one primary counterclockwise vortex, accompanied with two secondary 

clockwise vortices, is formed within the enclosure. For Br 0 , there is just one clockwise vortex, 

but for Br 10 , one counterclockwise vortex in the left bottom corner of the enclosure is created. 

Moreover, the heatlines directly reach to the cold wall due to the counterclockwise circulation 

for Br 10  ; whereas for Br 10 , the heatlines initially move toward the center of the enclosure 

and then, reach to the cold wall. It is worth mentioning that the buoyancy ratio does not affect the 

masslines significantly; and the maximum entropy generation occurs in the right corner of the 

enclosure.  

4.2.Temperature, concentration and velocity profiles 

     Fig. 8 displays the variations of the dimensionless temperature, concentration, and velocity 

along the vertical centerline of the enclosure for γ = 45° and for different buoyancy ratios and 

Lewis and the Richardson numbers. As can be observed from this figure, by increasing the 

buoyancy ratio, the temperature in the upper half of the enclosure augments. Moreover, as the 

Richardson number decreases, the temperature gradients on the top and bottom walls increase 

and a region with an average temperature develops in the center of the enclosure. Moreover, for 

Br 0 , the concentration decreases linearly with the height, but for Br 0 , the concentration in 

the upper parts of the enclosure at first increases and then decreases with an increases of the 
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height. Also, as the Lewis number increases due to diminishing effects of mass diffusion, the 

concentration gradient on the top and bottom wall augments and a region with an average 

concentration expands in the center of the enclosure. It should be noted that the variations of the 

Lewis number does not have significant effect on the velocity profile, and with decreasing the 

Richardson number, the velocity gradient increases.  

4.3.Mean Nusselt and Sherwood numbers, and overall entropy generation 

     Fig. 9 shows variations of the mean Nusselt and Sherwood numbers and the overall generated 

entropy with the buoyancy ratio for Ri = 10 and γ = 45° and for different Lewis numbers and two 

directions of the lid movement. In Figs. 9 a and b, the average Nusselt number decreases when 

the Lewis number increases. On the other hand, for Le = 0.1 and 1, with augmentation of the 

buoyancy ratio, the average Nusselt number initially decreases and then increases, because when

Br 0 , the buoyancy forces intensify. Furthermore, when Br 0 , the mean Nusselt number 

is larger when the lid moves toward the left compared to when it moves toward the right. This 

behavior is reversed for Br 0 . As it is observed from Figs. 9 c and d, the average Sherwood 

number decreases as the Lewis number increases. Moreover, with augmentation of the buoyancy 

ratio, the average Sherwood number initially decreases slightly and then, increases significantly. 

Similar to the average Nusselt number, for Br 0 , the average Sherwood number is high as the 

lid moves toward the left compared to when it moves toward the right; whereas, this behavior is 

reversed for Br 0 . According to Figs. 9 e and f, with increasing the Lewis number, the entropy 

generation augments for Br 0 . Moreover the entropy generation is higher when the lid moves 

toward the right compared to when it moves toward the left; while, for Br 0 , the minimum 

entropy generation belongs to Le = 1 and after that to Le = 10 and 0.1; and when the lid moves 

toward the right side, the entropy generation is less than when the lid moves toward the left side.  

     Fig. 10 illustrates how the mean Nusselt and Sherwood numbers, and the overall generated 

entropy change with the Richardson number for Br = 1, Le = 0.1 and 10, and γ = 45° and 60°. 

Generally, with increasing the Richardson number and decreasing the temperature, the 

concentration, and the velocity gradients (see Figs. 8 c, f, and i), the mean Nusselt and Sherwood 

numbers, and the overall generated entropy decrease. Furthermore, the mean Nusselt and 

Sherwood numbers, and the overall generated entropy for 45  o
 are higher than 60  o

, 
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because by decreasing  , all the gradients increase. Regarding Figs. 10 a and c, when the Lewis 

number increases, the mean Nusselt number diminishes, while the entropy generation augments. 

According to Fig. 10 b, for Le = 0.1 when the conduction mass transfer is dominant (see Fig. 6), 

changing the Richardson number does not have a significant effect on the average Sherwood 

number.  

     Variations of the average Nusselt and Sherwood numbers as well as the total entropy 

generation with the buoyancy ratio are depicted in Fig. 11 for Le = 10, γ = 45° and in different 

Richardson numbers. According to this figure, by decreasing the Richardson number, the mean 

Nusselt and Sherwood numbers, and the total generated entropy augment. Also, by reducing the 

Richardson number and diminishing the buoyancy term in Y-momentum equation, the impact of 

buoyancy ratio on the mean Nusselt and Sherwood numbers as well as the total entropy 

generation declines. Moreover, for Le = 10, when the buoyancy ratio increases, the mean Nusselt 

and Sherwood numbers, and the overall generated entropy monotonically increase for Ri 1 ; 

while for Ri 0.1 , They initially decrease and then augment. 

     In Fig. 12, variations of the mean Nusselt and Sherwood numbers and the total entropy 

generation in terms of the Richardson number are displayed for Br = 1, Le = 0.1, γ = 45° and for 

different locations of the heat source on bottom wall. As can be seen from this figure, for a 

constant buoyancy ratio, as the Richardson number increases, the average Nusselt and Sherwood 

numbers, and the total entropy generation decline. Furthermore, as *

h 0.5L  , the mean Nusselt 

and Sherwood numbers, and the total generated entropy drastically increase compared to the 

other cases. Moreover, changing the Richardson number does not have a meaningful influence 

on the average Sherwood number for Le = 0.1. 

5. Conclusion 

     In this study, the finite volume method (FVM) is employed in order to study the entropy 

generation of double-diffusive mixed convection in a right-angled trapezoidal enclosure filled 

with a binary perfect gas mixture. Also, the convective heat and mass transfer fields are depicted 

using colored heatlines and masslines, which both proved to be useful tools for interpretation as 

well as analysis. The effects of the consequential parameters such as the Lewis number, the 

buoyancy ratio, the Richardson number, the direction of the lid movement and the heat source 
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location on the heat and mass transfer as well as the entropy generation are examined. Based on 

the results, the following observations are made: 

 The mean Nusselt and Sherwood numbers, and the overall generated entropy for 45  o
 

are more than those for 60  o
 due to the fact that the gradient of the dependent 

variables increases as   is reduced. 

 For Br 0 , when the lid moves toward the left, the mean Nusselt and Sherwood 

numbers, and the overall generated entropy are more compared to the case where the lid 

moves toward the right; while, this behavior is reversed for Br 0 . 

 As the heat source approaches the cold wall, the mean Nusselt and Sherwood numbers, 

and the overall generated entropy increase, especially for *

h 0.5L   they increase 

dramatically. 

 With the increasing of the Lewis number, the mean Nusselt number decreases, while the 

entropy generation augments. 

 Variation of the Lewis number does not have a considerable impact on the isotherms and 

the heatlines, but increasing the Lewis number compresses the solutal boundary layer 

and, therefore, the concentration gradient on both high and low salted walls increases, 

resulting in mass transfer augmentation. 

 For Le = 0.1, the conduction mass transfer dominates the mass transfer field and so, the 

masslines are virtually perpendicular to the isoconcentration lines. Moreover, the 

Richardson number does not have a meaningful influence on the average Sherwood 

number for Le = 0.1.  

 With decreasing the Richardson number and the buoyancy term for the Y-momentum 

equation, the impact of the buoyancy ratio on the mean Nusselt and Sherwood numbers 

as well as the total entropy generation decline. Moreover, for Le = 10, with increasing 

the buoyancy ratio, the mean Nusselt and Sherwood numbers, and the overall generated 

entropy monotonically increase for Ri 1 ; while for Ri 0.1 , they initially decrease and 

then augment. 
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Table 1. The average Nusselt and Sherwood number, and total entropy generation in Ri = 0.01, 

Le = 10, Br = 10, and γ = 45° for different grid sizes 

Grid size Nuav Shav Ṡ 

Max. 

Rel. 

Diff. 

51×25 9.0613 18.5992 10.6140 - 

101×51 10.6015 23.3730 11.5842 25.67 

201×101 11.1811 26.0227 12.1350 11.34 

301×151 11.3495 26.4604 12.1892 1.68 
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Fig. 1. Schematic of the problem 
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(a) (b) 

 
 

Fig. 2. Domain and boundary conditions of 

(a) Al-Amiri et al. [27] study; and (b) Ilis et al. [45] study 
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Fig. 3. Comparisons between the heat transfer and fluid friction irreversibilities, the total rate of 

entropy generation, and the local Bejan number of the present study code (‒ ‒) with the results of 

Ilis et al. [45] for Pr = 0.7 for Ra = 105 
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Fig. 4. Comparisons between the isoconcentration lines and isotherms of the simulated results of 

Al-Amiri et al. [27] with those of the present study code (‒ ‒) for Pr = 1, Ri = 0.01, Re = 100, Br 

= 1, and Le = 5 and 50 
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Fig. 5. Isotherms, isoconcentration lines, streamlines, heatlines, masslines, and constant 

generated entropy lines for Le = 10, Br = 1, Ri = 0.1 and 10, γ = 45° and 60° for two directions 

of lid movement 
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Fig. 6. Isotherms, isoconcentration lines, streamlines, heatlines, masslines, and constant 

generated entropy lines for Ri = 1, Br = 4, and γ = 45° and 60° for different Lewis numbers 
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Fig. 7. Isotherms, isoconcentrations, streamlines, heatlines, masslines, and constant generated 

entropy lines for Ri = 100, Le = 0.1, γ = 45° for different buoyancy ratios and heat source places 
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Fig. 8. Variations of the dimensionless temperature, the concentration, and the velocity along 

vertical centerline of the enclosure for γ = 45° for different buoyancy ratios and Lewis and 

Richardson numbers 
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Fig. 9. Variations of the mean Nusselt and Sherwood numbers and total entropy generation 

with buoyancy ratio in Ri = 10 and γ = 45° for different Lewis numbers and two directions of 

lid movement 
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(a) (b) (c) 

   
 

Fig. 10. Variations of the mean Nusselt and Sherwood numbers and the total entropy 

generation with Richardson number for Br = 1, Le = 0.1 and 10, and γ = 45° and 60° 
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(a) (b) (c) 

   
 

Fig. 11. Variations of the mean Nusselt and Sherwood numbers and the total entropy 

generation with buoyancy ratio for Le = 10 and γ = 45° for different Richardson numbers 

 

  

Br

N
u

a
v

-10 -6 -2 2 6 10
3

4

5

6

7

8

9

10

11

12

Ri = 0.01

Ri = 0.1

Ri = 1

Ri = 10

Ri = 100

Br

S
h

a
v

-10 -6 -2 2 6 10
0

5

10

15

20

25

30

Ri = 0.01

Ri = 0.1

Ri = 1

Ri = 10

Ri = 100

Br

S

-10 -6 -2 2 6 10
2

4

6

8

10

12

14

Ri = 0.01

Ri = 0.1

Ri = 1

Ri = 10

Ri = 100.



37 

 

(a) (b) (c) 

   
 

Fig. 12. Variations of the mean Nusselt and Sherwood numbers and the total entropy 

generation with Richardson number for Br = 1, Le = 0.1, and γ = 45° for different heat source 

locations on bottom wall 
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