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Abstract

This thesis consists of three chapters. In the first chapter, I explore a two-

period economy with a three-tier hierarchy in which the principal without

full commitment decides how and when to motivate a productive intermedi-

ary (agent one) to privately sub-contract and collaborate with another agent

(agent two) on a project with uncertain quality. The dynamic moral hazard

problem arises due to the agents’ hidden e↵ort choice and the opportunity for

future work. Besides free riding, the agent one’s exclusion and over-investment

incentives need to be considered due to his private sub-contract option. Both

the dominant incentive constraint in the optimal short term contract and the

principal’s investment decision depend on the project’s value-cost ratio, the

level of synergy in the partnership and the amount of patience. In general,

the principal under-invests and stops earlier compared to the first-best out-

come. However, there exist scenarios in which agent one always over-invests

when the individual work is motivated, and the principal might compromise

to motivate a higher e↵ort level by over-investing relative to the static game,

especially if the synergy is positive but small and the project’s value-cost ratio

is medium. In a two-tier hierarchy, the principal can be weakly better o↵,

but the ine�ciency caused by agent one’s private link to the other agent still

exists.

In the second chapter, I study how a principal motivates an uninformed

agent to learn about, and reveal, his quality through private experiments. The

principal commits to a reward scheme and she aims to assign the rewards to

correspond as closely as possible to the quality of the agent. To get a high

reward, the agent experiments privately and discloses the results selectively. I

show that the optimal reward scheme features an increasing step function: the

initial steps encourage a potential good type agent to continue experiments

vii



after early successes; the later steps are designed to deter a bad type agent

from over-experimentation after a failure, and the scheme becomes flat when

enough successes are reported. If the agent’s incentives to deviate from the

intended path of experimentation are weak, a one-step function is optimal: the

agent receives a bonus if he reports enough successes; otherwise, he only gets a

non-negative compensation. I characterise the conditions where the principal

achieves the same e�ciency level relative to a public information environment.

The third chapter is an extension of the second chapter. I consider a

situation in which an uninformed agent persuades a principal for a high reward

through costly private experimentation. I show the existence of three types of

equilibria as well as their conditions: no-experiment equilibrium, separating

equilibria with learning and pooling equilibria with learning. The participation

threshold determines the upper bound of the entire set of equilibria, and the

over-experimentation determines the boundary between the separating and

pooling equilibria with learning. As the agent’s value-cost ratio or prior belief

increases, the set of separating equilibria with learning shrinks but the set of

pooling equilibria with learning expands. Moreover, when the agent can pre-

commit to report a specific number of successes to prove his quality, he tends

to commit to a number that is as small as possible.
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Chapter 1

Motivating Partnership in R&D

Projects

1.1 Introduction

Partnering and outsourcing are prevalent when firms and experts undertake

innovative projects. According to Hagedoorn (1996, 2002) and Narula and

Hagedoorn (1999), there is significant growth in inter-firm R&D partnering

since 1960: non-equity, contractual forms, such as joint R&D pacts and joint

development agreements, have become very important, and their share in the

total of partnerships has far exceeded that of joint ventures especially in high-

tech industry. The collaboration among researchers and experts is even more

common. Collaborators can use the synergy to boost the probability of a

project’s success, and improve profitability by sharing the risk and cost bur-

dens.

An investor is willing to encourage such collaboration if the benefit

from the synergistic e↵ect is high. However, the e↵ort level of the firm or

expert is normally private, as is his network, so the investor cannot directly

contract with all of his partners. Thus, the investor doesn’t know whether

the project is conducted by the individual work or via collaboration, in which

case she might over-pay for a low level of e↵ort. As a result, the following

questions arise: How does the investor motivate the private partnership via

the grand contract? when is motivating the partnership optimal? Does the
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private partnership distort her investment decision and if so, how?

This chapter studies a simple three-tier hierarchy in a two-period econ-

omy, in which a principal without full commitment motivates agent one (inter-

mediary) to sub-contract with the other agent (agent two) and collaborate on

a risky project. The project’s quality is either good or bad which is initially

unknown, and only a good project can generate a single success with positive

probability after the agent(s) exert e↵ort. The agents make a binary e↵ort

decision, and, due to the synergy, the collaboration has a higher probability of

success relative to the individual attempt, given the project is good. There is

no direct link between the principal and the second agent, so she can only af-

fect agent one’s private decision about partnering through the grand contract

that she o↵ers.

The dynamic moral hazard problem arises due to the unobservable

choice of e↵ort and the lack of full commitment, in which the agents could po-

tentially manipulate the principal’s belief and distort e�ciency through their

private learning. Given the presence of the future opportunity to work, pro-

crastination also increases the agency cost, in which the agent(s) hold an op-

timistic belief relative to the principal. Moreover, since agent one’s partnering

decision is also private, he has more channels and a higher incentive to deviate

from the principal’s goal. In the first place when the principal motivates the

partnership, agent one (intermediary) has a free-riding incentive and an exclu-

sion incentive. In the free-riding incentive, he can shirk and free-ride on agent

two’s e↵ort and save the cost, and agent two has the same incentive. Mean-

while, in the exclusion incentive, he can deviate to exclude the other agent

and work alone, and he can enjoy the large gain alone following success, such

that he can manipulate the principal’s and agent two’s beliefs at di↵erent level

even after a failure occurs. In the second case when the principal motivates the

individual work, agent one has an over-investment incentive besides shirking.

By doing so, he can boost the probability of success and his expected gain

in the current period. If a failure occurs, agent one might reject the second

opportunity due to pessimistic belief, even if the principal is still willing to

invest.

In this chapter, I characterise the principal’s optimal short term con-

tract in each period when motivating the partnership and the individual work

2



respectively. The second period is equivalent to a static game as there is no

future opportunity to work, in which the level of synergy plays a crucial role

for determining the agent(s)’ dominant incentive. When the partnership is

motivated, agent one’s free-riding incentive dominates others for the positive

synergy case, and his exclusion incentive dominates for the small negative

synergy case1. In the first period, when the partnership is motivated, the con-

clusion is similar to the case above if the positive synergy is very large or the

synergy is negative. However, if the synergy is positive but small, in a high

enough quality project with a high value-cost ratio, the free-riding incentive

dominates only for a very impatient agent; for a su�cient patient agent, the

exclusion incentive dominates. Moreover, there exist scenarios in which agent

one’s over-investment incentive is always violated when motivating the indi-

vidual work, and it would further distort the principal’s optimal investment

decision.

The principal’s optimal investment decision in the first period depends

on both amount of synergy and her patience level. The presence of the dynamic

moral hazard problem leads the optimal stopping threshold to be earlier and

the principal to under-invest relative to the first-best scenario. To reduce

to cost of deterring potential deviations, the principal would optimally under-

invest by motivating a weakly lower e↵ort level, or even shut down the window

of investing in the first period. When the synergy is positive and very large,

she would motivate the partnership if the quality of the project is very high

or very low. If the quality is medium, only an impatient principal would

motivate the partnership; otherwise, she will withhold the investment in the

first period. When the negative synergy is small, the principal would motivate

the partnership if the quality is very high or the quality is medium and she is

very impatient; otherwise, she would only motivate the individual work if she is

su�ciently impatient, and not invest if she is very patient. When the synergy is

positive but small, a similar conclusion can be achieved in the most scenarios,

however, there also exist scenarios in which the principal compromises to a

higher e↵ort level relative to the decision in the static game. This happens

when agent one’s over-investment incentive is violated in a project with a

1In the small negative synergy case, the partnership can still achieve a higher probability
of success relative to individual work.
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medium value-cost ratio. In this case, the principal compromises to motivate

partnership if she is impatient, thus she over-invests relative to the static game,

which is where the ine�ciency arises.

In a two-tier hierarchy, the principal is better o↵, as she can directly

contract with both of the agents and the exclusion incentive can be discarded.

Due to the presence of agent one’s private option of partnering, the over-

investment relative to the static game still exists, as well as the ine�ciency

when the positive synergy is small.

The rest of the chapter is organised as follows: section 1.2 summarises

related literature; section 1.3 shows the model’s setup and first-best results;

the main results are in section 1.4, and Section 1.5 concludes. All the proofs

are in Appendix A.

1.2 Related Literature

This chapter is closely related to the literature on strategic experimentation

and financing innovation. Bergemann and Hege (2005) consider optimal invest-

ing and stopping when financing an innovation project with unknown quality,

when the bargaining power is in the hands of an agent (entrepreneur) with no

full commitment, and Hörner and Samuelson (2013) then consider the optimal

sharing rule of profit when a principal obtains the bargaining power with lim-

ited liability, given binary (fixed) investment choice from principal and e↵ort

level from the agent in each short-term contract. Compared to their work,

my work also focuses on the principal’s short-term contract, but in a scenario

with multiple agents, in which the principal cannot directly contract with both

agents and one of the agents behave as an intermediary contractor. Bonatti

and Höner (2011) consider collaboration among multiple agents who receive

constant and equal payment after success, where the e↵ort level path across

time at equilibrium path in the presence of free-riding, the opportunity to work

tomorrow, and the assistance of a deadline are discussed. In the contrast, in

this chapter as one of the agent can privately sub-contract with the other,

the exclusion incentive and over-investment incentive srise. Halac, Kartik and

Liu (2016) consider the single agent’s dynamic moral hazard problem with a

long term contract. By contrast, I consider the similar dynamic moral hazard
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problem in multiple agents without full commitment. Buisseret (2015) points

out the existence of over-investment behaviour compared to the first-best re-

sult in a single agent setting with continuous e↵ort choice. Compared to his

model, my work shows that in the multiple agents setting, the agent’s private

sub-contract option could lead to a result in which the principal might moti-

vate a higher e↵ort level compared to the static game, but still under-invests

compared to the first-best.

Since agent one plays the role of intermediary, this work is related to the

literature discussing hierarchic and decentralised contracts, where e�ciency is

mainly considered. Melumad, Mookherjee and Riechelstein (1995) confirm

the conditions for providing additional incentive in delegated contracts, Sev-

erinov (2008) compares centralized, decentralized and hierarchic structure of

contract when agents obtain private information, and concludes that the opti-

mal form depends on the degree of complementarity/substitutability between

two agentss input. Faure-Grimaud and Martimort (2001) model the one pe-

riod optimal incentive scheme with an intermediary and an agent with private

information, where there is no direct communication between principal and

agent, but they only consider the agent working on the task alone. When a

supervisor is introduced to monitor the private information of the agent, Faure-

Grimaud, La↵ont and Martimort (2003) show that acentralized and delegated

contract achieves the same outcome. In the context where intermediary work

jointly with other agents, Macho-Stadler and Pérez-Castrillo (1998), Sanchez

and Hortala-Vallve (2005) compare the e�ciency of the two-tier and three-tier

hierarchies in a moral hazard environment. These works mainly focus on static

settings, whereas my work focuses on the hidden action in dynamic settings

with belief manipulation, which is missing in their work.

There are still other relevant papers. Gomes (2005) considers a multi-

lateral contracting dynamic game with externalities where a randomly chosen

agent, at every period, o↵ers contracts to an endogenously selected group of

agents. Compared to his model, my work discusses the ratchet e↵ect due to

the short-term contract and the over-investment compared to a static setting

due to the private sub-contract option. Watson (2013) discusses the general

property of contracting institutions, but he only focuses on the static setting.
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1.3 Model

1.3.1 Setup

In a two-period economy with dates 0 and 1, there is a risky project, a risk

neutral principal and two risk neutral agents. The quality of the project is

initially unknown and is either good or bad, and the common prior belief of

being good is p0 2 (0, 1). If the project is bad, it can never be successful and

yields a return zero. In contrast, if the project is good, a single success with

positive return R > 0 can be achieved with a positive probability, and this

probability depends on two agents’ e↵ort. In each period t, if the project is

good, the probability of success is

Pr (Success|Good) = �(e1,t + e2,t + ✓e1,te2,t) (1.3.1)

Where ei,t 2 {0, 1}, � 2 (0, 1) and ✓ 2 (�1, 1�2�

�
). ei,t is the agent i’s binary

e↵ort level in period t, where i = 1, 2 and t = 0, 1. � measures the individual

contribution to the probability of success, and ✓ is the multiplier of synergy in

the partnership. A positive synergy exists when ✓ � 0, and the teamwork can

generate a higher probability of success compared to the sum of two agents’

individual contribution2. On the other hand, the synergy is negative when

�1 < ✓ < 0, but the probability is still higher in that partnership compared

to the case when only one agent works.

There is no direct link between the principal and agent two, thus she

cannot o↵er a contract to agent two directly. But agent one is linked to agent

two in his network. I assume the principal has no full commitment. In period

t, the principal publicly proposes a share of the project’s return to agent one,

!1,t 2 [0, 1]. As a prime contractor, agent one decides whether to o↵er a share

of his gain to agent two, !2,t 2 [0, 1], and this partnership and sub-contract

are not observable by the principal. If agent two accepts it, the two agents

simultaneously choose private e↵ort level ei,t; otherwise, agent one works alone.

The cost of e↵ort is C(ei,t) = cei,t, and the common discount factor is �, where

c > 0 and � 2 [0, 1]. The timeline in period t is shown in Figure 1.1.

2✓ < 1�2�
� guarantees Pr(Success|Good) < 1.
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t=0

Principal proposes

!1,t to agent one

Agent one proposes

!2,t to agent two

Agents choose

ei,t

payo↵s are

realised

t=1

Figure 1.1: Timing in period t

The history in the first period is the null history. In the second period,

t = 1, the public history is h1 = (O0,!1,0), and the agent i’s private history

is h
i

1
= (O0,!1,0,!2,0, ei,0), where O0 is the output of the project in t = 0

and O0 2 {Success,No Sucess}. The game ends if the success is achieved in

the first period, and the posterior belief about the project’s quality now is

Pr(Good|Success) = 1. On the contrary, when success is not achieved, the

principal is more pessimistic about the project’s quality, and her posterior

belief pP
1
is updated according to Bayes’ rule:

p
P

1
=

8
<

:
Pr(Good|Teamwork,No Success) = p0[1��(2+✓)]

1�p0�(2+✓)
= p1

Pr(Good|One Works,No Success) = p0(1��)

1�p0�
= p̂1

(1.3.2)

I also denote agent i’s private posterior belief by p
i

1
and p̂

i

1
respectively in the

scenarios when agent two accepts the sub-contract and when he does not. Due

to the linearity, this setting is equivalent to the one in which the principal and

agent one o↵er a wage in the contracts without loss of generality. Agent i’s

payo↵ u
i

t
(pi

t
) and the principal’s profit ⇡t(pPt ) in period t can be written as:

u
1

t
(p1

t
) = p

1

t
(1� !2,t)!1,t(e1,t + e2,t + ✓e1,te2,t)�R� ce1,t

u
2

t
(p2

t
) = p

2

t
!2,t!1,t(e1,t + e2,t + ✓e1,te2,t)�R� ce2,t

⇡t(p
P

t
) = p

P

t
(1� !1,t)(e1,t + e2,t + ✓e1,te2,t)�R

(1.3.3)

1.3.2 First-Best Policy

In the first-best case, all actions are observable and contractable. Thus neither

of the agents have a moral hazard problem, and the posteriors of the principal

and the agents are consistent, pP
t
= p

i

t
. In period t, the agent i should accept
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the contract and work if his continuation value U
i(pi

t
) is non-negative:

IRi,t : U
i

t
(pi

t
) = u

i

t
(pi

t
) + �

⇥
1� p

i

t
�(e1,t + e2,t + ✓e1,te2,t)

⇤
U

i

t+1
(pi

t+1
) � 0

(1.3.4)

Similarly, the principal would propose the grand contract if her continuation

value Vt(pPt ) is non-negative:

Vt(p
P

t
) = ⇡t(p

P

t
) + �

⇥
1� p

P

t
�(e1,t + e2,t + ✓e1,te2,t)

⇤
Vt+1(p

P

t+1
) � 0 (1.3.5)

Since the posterior belief pP
t
shrinks after the failure, the principal’s continua-

tion value shrinks as well. This implies that she would only invest in a period

when her static profit from operating the project via a “partnership” or agent

one’s “individual work” is positive:

p
P

1
�(2 + ✓)R� 2c � 0 or p

P

t
�R� c � 0 (1.3.6)

The contacts depend on the project’s the value-cost ratio and the belief about

its quality, which implies that the principal would not motivate the agent(s)

to operate the project as long as she is su�ciently pessimistic and the re-

lation in (1.3.6) breaks down. Thus the socially e�cient time to stop oper-

ating the project is reached when the posterior belief makes (1.3.6) binding,

which is denoted by P
E. The properties of the first-best’s optimal contracts

�
!
P

1,t
(pP

t
),!P

2,t
(pP

t
)
�
are characterised in Lemma 1.3.1.

Lemma 1.3.1. In the first-best, p
E = min

n
2c

(2+✓)�R
,

c

�R

o
such that, for p

P

t
�

p
E
,

1) when a partnership is motivated,
�
!
P

1,t
(pP

t
),!P

2,t
(pP

t
)
�
=
⇣

2c

(2+✓)�RpPt
,
1

2

⌘
; when

the individual work is motivated,
�
!
P

1,t
(pP

t
),!P

2,t
(pP

t
)
�
=
⇣

c

�RpPt
, 0
⌘
.

2) in the static game at t, the partnership always dominates the individual

work when the synergy is positive; when the synergy is negative, the partner-

ship dominates the individual work if
R

c
� 1

(1+✓)�RpPt
, and the individual work

dominates the partnership if
R

c
2
h

1

�pPt
,

1

(1+✓)�RpPt

⌘
.

In a partnership, the probability of success is higher when two agents

work, and the principal gains the extra benefit by p
P

t
�(1 + ✓)R. However,

the cost is also higher, and she needs to pay more to the agents with c. The
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principal would prefer the partnership only if the extra benefit can cover the

extra cost.

The static game can be considered as the period in which the principal is

not going to invest anymore if the project fails, or when the principals is myopic

with � = 0. In the static game at t, when the synergy is positive, ✓ 2
⇥
0, 1�2�

�

�
,

the principal always prefers to motivate the partnership in period t if she is not

su�ciently pessimistic, pP
t
� p

E. This also implies that the project’s value-

cost ratio is high enough, R

c
� 2

(2+✓)�pPt
. Now the principal proposes a grand

contract such that the prime contractor’s participation constraint binds. The

prime contractor, agent one, o↵ers half of his own gain to agent two to form

the partnership, and both of them work. On the other hand, when the synergy

is negative, ✓ 2
�
�1,min

�
0, 1�2�

�

 �
, the principal’s choice varies at di↵erent

beliefs. In a project with a high value-cost ratio, R

c
� 1

(1+✓)�pPt
, for the principal,

the collaboration is still more profitable compared to agent one working alone;

and she prefers to have agent one working alone if the belief shrinks such that
R

c
<

1

(1+✓)�RpPt
. The principal then proposes a share of the project’s return such

that agent one is indi↵erent between working alone and rejection. The prime

contractor would not propose a positive share to agent two. In a project with a

medium level of the value-cost ratio with R

c
2
⇣

1

�pPt
,

1

(1+✓)�pPt

i
, the partnership

is dominated by to agent one working alone, as the extra benefit from the

partnership is fairly low. Thus the principal would motivate agent one to

work alone if she is still optimistic with p
P

t
� p

E.

In the two-period economy, the principal’s optimal plan at t = 0 is af-

fected by her patience, and its properties in the first-best are characterised

in Lemma 1.3.2, in which agent i’s optimal e↵ort level at t = 0 in the

first-best scenario is denoted by e
P

i,0
. Thus

�
e
P

1,0
(p0), eP1,0(p0)

�
= (1, 1) and

�
e
P

1,0
(p0), eP1,0(p0)

�
= (1, 0) represents the partnership, and the individual work

is motivated at t = 0. In the first best scenario, since the principal would only

invest in the project if her prior belief is higher than the e�cient stopping

threshold, this Lemma only focuses on the case when p0 � p
E. This Lemma

also implies that the principal never delays the investment by withholding the

o↵er and only having the project be conducted at t = 1.

Lemma 1.3.2. In the first-best, at t=0, for p0 � p
E
,

1) when the synergy is postive,
�
e
P

1,0
(p0), eP2,0(p0)

�
= (1, 1);

9



2) when the synergy is negative,
�
e
P

1,0
(p0), eP2,0(p0)

�
= (1, 1) if R

c
� 1�2p0�(1+✓)

p0�(1+✓)[1��(2+✓)]
;

�
e
P

1,0
(p0), eP2,0(p0)

�
= (1, 0) if R

c
2
h

1

�p0
,

1

(1+✓)�p0

⌘
; if

R

c
2
h

1

(1+✓)�p0
,

1�2p0�(1+✓)

p0�(1+✓)[1��(2+✓)]

⌘
,

9�E 2 (0, 1) such that

�
e
P

1,0
(p0), e

P

2,0
(p0)

�
=

8
<

:
(1, 1) � 2

⇥
0, �E

⇤

(1, 0) � 2
�
�
E
, 1
⇤ (1.3.7)

3) in the first-best, three-tier and two-tier contracting structures achieve the

same e�ciency level.

When the partnership is formed at t = 0, the probability of success

is much higher than for the individual work, and the expected gain from the

current period is boosted. At the same time, however, once no success occurs,

the principal becomes more pessimistic, which lowers the expected gain in the

second period. Alternatively, she can withhold or invest less at beginning. By

doing so, her current expected gain now is reduced as the probability of success

is lower. However, she would not be too pessimistic after the first failure, which

leads the expected gain in the second period to be higher. Thus, the principal

would optimally make the trade-o↵ at t = 0.

Lemma 1.3.2.1) characterises the scenarios in which the principal’s de-

cision consists with her optimal choice in a static game with the same belief.

When the synergy is positive, the principal would always prefer to motivate

the collaboration at t = 0. This implies that the gain from boosting a higher

probability of success is large enough to cover the loss in the future due to a

pessimistic belief.

Lemma 1.3.2.2) shows that, if the synergy is negative and the project’s

quality is very high with R

c
� 1�2p0�(1+✓)

p0�(1+✓)[1��(2+✓)]
>

1

(1+✓)�p1
, the principal still

prefers to motivate the partnership at t = 0, which is consistent with her choice

in the static game. This is because the project’s return is very high and the

principal doesn’t want to delay or withhold the investment. When the syn-

ergy is negative and the project’s value-cost ratio is low, R

c
2
h

1

�p0
,

1

(1+✓)�p0

⌘
,

the principal would prefer to motivate the individual work at t = 0, in which

case the principal’s extra gain from the partnership is not large enough to

cover the cost of supporting a higher level of e↵ort. As a result, she com-

promises on the individual work. When the project is quality is medium,

10



R

c
2
h

1

(1+✓)�p0
,

1�2p0�(1+✓)

p0�(1+✓)[1��(2+✓)]

⌘
, the principal would only motivate the part-

nership at t = 0 when she is su�ciently patient. If the principal insists on her

best choice of a static game, the probability of success and her current static

expected profit would both be higher at t = 0. However, if a failure arrives,

her posterior belief also drops substantially, which reduces her expected profit

at t = 1. Alternatively, she can motivate the individual work at t = 0, and

would not be too pessimistic at t = 1 if a failure occurs. Her expected profit

at t = 1 now would be larger, even though she su↵ers a lower current expected

profit at t = 0. The result shows that, when the principal is patient enough,

the extra gain at t = 1 can cover her loss at t = 0 by choosing the individual

work at the beginning.

If the principal can directly propose contracts to both of the agents,

in the first-best case, two agents would accept the contract and work if their

participation constraints are satisfied. Since the moral hazard problem doesn’t

exist, the optimal shares that the principal proposes to the agents would also

be the same as those in Lemma 1.3.2, and the socially e�cient stopping time

should be the same as well. As a result, the principal’s profit level would be

the same as that in the presence of a sub-contract.

1.4 Second-Best Analysis

Now I discuss the principal’s second-best policy, in which the sub-contracting

behaviour and the agents’ e↵ort level are neither observable nor contractable.

In this situation, the principal can only use the grand contract to motivate

agent one to form a partnership with agent two. In this section, I firstly

characterise the properties of the static game, which can be treated as period

t = 1, an then move to period t = 0.

1.4.1 Static Game

The static game can be considered as the last period of this two-period econ-

omy, or a scenario in which both the principal and agents are myopic and the

discount factor is 0. Since the beliefs must be correct on the equilibrium path,

each party now has the same posterior belief pP
t
. Given the grand contract
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!1,t and the subcontract !2,t, the agents’ payo↵s in the static game at t are

shown in the Table 1.1.

i=2

Work Shirk

i=1

Work (1�!2,t)!1,tp
P
t �(2+✓)R�c, !2,t!1,tp

P
t �(2+✓)R�c (1�!2,t)!1,tp

P
t �R�c, !2,t!1,tp

P
t �R

Shirk (1�!2,t)!1,tp
P
t �R, !2,t!1,tp

P
t �R�c 0, 0

Table 1.1: Agent i’s payo↵ in the static game at t

When the partnership is desired, the free-riding incentive now arises

due to private e↵ort. To form the partnership, agent one needs to propose

a share such that agent two’s additional gain from working is weakly greater

than that from shirking and free-riding. Given that agent two works, agent

one also has the incentive to free ride on agent two’s work, thus the share in

the sub-contract also needs to satisfy that agent one is weakly better o↵ by

working. These conditions can be simplified as follows:

agent two’s gain from workingz }| {
!2,t!1,tp

P

t
�(1 + ✓)R �

gain from free-ridingz}|{
c

(1� !2,t)!1,tp
P

t
�(1 + ✓)R

| {z }
agent one’s gain from working

� c|{z}
gain from free-riding

(1.4.1)

Thus, to support the partnership, the principal can simply add up the two

constraints in (1.4.1):

!1,1p
P

t
(1 + ✓)�R � 2c (1.4.2)

Since the principal cannot observe the sub-contract, agent one has extra

incentives and more options to deviate from the principal’s desire. Firstly,

agent one could simply propose zero share to exclude agent two and work

alone. In this exclusion incentive, agent one can pocket the entire gain from

the grand contract, even if the probability of success is lower. To mitigate this

issue, the principal needs to propose a grand contract such that the agent is

weakly better o↵ by sub-contracting to agent two rather than excluding him.

It implies the following constraint:

12



!1,tp
P

t
(1 + ✓)�R

| {z }
agent one’s gain from the partnership

� 2 + ✓

1 + ✓
c

| {z }
gain from excluding agent two

(1.4.3)

Secondly, agent one has the incentive of complete outsourcing, in which

he can motivate agent two to work alone by o↵ering a share such that agent

two’s participation constraint of working alone is binding. By doing so, in

Table 1.1, it’s clear that agent one’s static payo↵ would be the same as that

when he works alone and excludes agent two. Thus agent one is indi↵erent

between these two incentives in the static game, due to the identical individ-

ual contribution � and operation cost c. In the following analysis, I assume

agent one would work alone if he were indi↵erent between working alone and

complete outsourcing.

On the other hand, when the principal motivates the individual work,

agent one may still have the incentive to subcontract to agent two. In a static

game, the principal can propose a share such that the expected gain from work-

ing alone can just cover the e↵ort cost c. Since the sub-contracting behaviour

is not observable, he can simply privately form a partnership with agent two

and work together, which potentially yields a higher surplus.To prevent such

deviation, the principal needs to make sure that the share guarantees that

(1.4.2) doesn’t hold and agent two rejects the o↵er, or (1.4.3) doesn’t hold.

Compared to the first-best, it’s now clear that the principal has to leave

a positive surplus for agent one to sustain the partnership between the two

agents, and her own surplus is reduced. Alternatively, the principal can just

propose a share such that agent one’s participation constraint from working

alone is satisfied. By doing so, the principal sustains a larger share of surplus

although the probability of success is lower. As the value-cost ratio remains

unchanged, the principal prefers the agents’ teamwork only if she is su�ciently

optimistic. The lower bound of this belief is denoted by p
T , in which the prin-

cipal is indi↵erent between the partnership and the individual work. Also, if

the cost of motivating operating the project is too high, the principal stops

proposing any grand contracts. This happens when the principal is so pes-

simistic that the share o↵ered to agent one needs to be larger than the entire
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potential profit from having the agent(s) working. This belief at the stopping

threshold is denoted by p
⇤.

Lemma 1.4.1. In the second-best, p
⇤ = min

n
2c

(1+✓)�R
,

c

�R

o
� p

E
, and p

T =

max
n

(3+✓)c

(1+✓)2�R
,

((3+2✓)c

(1+✓)3�R

o
such that, in the static game, for p

P

t
� p

⇤
,

1) if ✓ 2
⇥
0, 1�2�

�

�
, for

R

c
� max

n
2

(1+✓)�pPt
,

3+✓

(1+✓)2�pPt

o
,
�
e
S

1,t
(pP

t
), eS

2,t
(pP

t
)
�
=

(1, 1) and
�
!
S

1,t
(pP

t
),!S

2,t
(pP

t
)
�
=
⇣

2c

(1+✓)�RpPt
,
1

2

⌘
;
�
e
S

1,t
(pP

t
), eS

2,t
(pP

t
)
�
= (1, 0) and

�
!
S

1,t
(pP

t
),!S

2,t
(pP

t
)
�
=
⇣

c

�RpPt
, 0
⌘
for

R

c
2
h

1

�pPt
,

3+✓

(1+✓)2�pPt

⌘
. Specially, p

⇤ � p
T
if

✓ � 1.

2) if ✓ 2
�
�1,min

�
0, 1�2�

�

 �
, for

R

c
� 3+2✓

(1+✓)3�pPt
,
�
e
S

1,t
(pP

t
), eS

2,t
(pP

t
)
�
= (1, 1)

and
�
!
S

1,t
(pP

t
),!S

2,t
(pP

t
)
�
=
⇣

(2+✓)c

(1+✓)2�RpPt
,
1+✓

2+✓

⌘
;
�
e
S

1,t
(pP

t
), eS

2,t
(pP

t
)
�
= (1, 0) and

�
!
S

1,t
(pP

t
),!S

2,t
(pP

t
)
�
=
⇣

c

�RpPt
, 0
⌘
for

R

c
2
h

1

�pPt
,

3+2✓

(1+✓)3�pPt

⌘
.

The optimal contracts in the static game at t,
�
!
S

1,t
(pP

t
),!S

2,t
(pP

t
)
�
, are

then summarised in Lemma 1.4.1, in which e
S

i,t
(pP

t
) is the agent i’s optimal

e↵ort level at t. It shows that the level of synergy plays a crucial role for both

free-riding and exclusion incentives. When the synergy is positive, the free-

riding incentive dominates, and the principal can simply have (1.4.2) binding.

The optimal grand contract is then o↵ered such that agent one is indi↵erent

between working and shirking in the partnership, and agent one would o↵er

half of his gain to agent two. Moreover, when the positive synergy is very

large, ✓ 2
⇥
1, 1�2�

�

�
, the principal always prefers the partnership to agent

one working alone as long as operating the project is still profitable for her,

p
P

t
2
h

2c

(1+✓)�R
, 1
⌘
, which is equivalent to the case when the project has a

high value-cost ratio, R

c
� 2c

(1+✓)�RpPt
. In this case, the principal only needs to

transfer a small share to agent one which is lower than the cost of individual

work, and then agent one would form the partnership with agent two and work

hard. If the principal motivates the individual work, agent one would find it’s

always profitable to deviate to collaboration as the synergy is very strong.

On the other hand, when the synergy is positive but small, ✓ 2 [0, 1),

the principal would prefer the partnership only if she is su�ciently optimistic,

p
P

t
2
h

(3+✓)c

(1+✓)2�R
, 1
⌘
, in which case the benefit from the partnership can still

cover the cost of dealing with the free-riding problem. This also implies the

value-cost ratio is su�ciently high, R

c
� 3+✓

(1+✓)2�RpPt
. However, if the principal
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is pessimistic, pP
t
2
h

c

�R
,

(3+✓)c

(1+✓)2�R

⌘
, she would only motivate agent one to work

alone as the cost of forming the partnership is too high. In this case, the

value-cost ratio stays at the medium level, R

c
2
h

c

�RpPt
,

(3+✓)

(1+✓)2�RpPt

⌘
.

When the synergy is negative, the exclusion incentive dominates. Agent

one gains more in this deviation even if he still has the option of free-riding

on agent two’s hard work. Thus the principal needs to have (1.4.3) binding.

To form the partnership, the principal proposes a larger share in the grand

contract, and agent one would propose less than half portion in the optimal

sub-contract. This is beneficial for the principal only if she is su�ciently opti-

mistic, pP
t
2
h

(3+2✓)c

(1+✓)3�R
, 1
⌘
. If the principal is pessimistic, pP

t
2
h

c

�R
,

(3+2✓)c

(1+✓)3�R

⌘
,

it’s too costly to deal with the agent one’s exclusion incentive. Thus the prin-

cipal would only o↵er a smaller share to agent one to have him working alone.

The principal stops proposing grand contracts to support the project

when she is very pessimistic and her belief drops below the threshold p
⇤. This

is because the cost of motivating the agent(s) to work is too high and the

principal cannot gain any positive profit. Compared to the socially e�cient

stopping threshold p
E in the first-best, the principal stops earlier in the second-

best as p
⇤ � p

E. This is because the principal has to leave positive surplus

to agent one to mitigate potential incentives of deviation, and her own net

expected profit is smaller.

1.4.2 Belief Manipulation

Now move backward to the first period, t = 0. All parties now have the

same prior belief p0. In contrast with the static game, now a potential future

opportunity exists to conduct the project in period t = 1. In the environment

without full commitment, due to the unobservable sub-contracts and e↵ort

level, the agents could potentially misbehave at t = 0 to manipulate other

parties’ beliefs about the project’s quality, which a↵ects the optimal contracts

o↵ered at t = 1. Such deviation doesn’t exist once there is full commitment.

Consider agent two first. Given the principal’s belief pP
1
and agent one’s

belief p1
1
, the principal would o↵er optimally o↵er !⇤

1,1
(pP

1
) and agent one would

optimally o↵er !⇤
1,1
(p1

1
) at t = 1. Thus, given agent two’s private belief p2

1
, he

would optimally choose between rejection and acceptance at t = 1, and his
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optimal expected payo↵ would be:

û
2

1
(p2

1
; pP

1
, p

1

1
) = Max

e2,12{0,1}

�
0, p2

1
!
⇤
2,1
(p1

1
)!⇤

1,1
(pP

1
) [1 + (1 + ✓)e1,1]� e2,1c

 

(1.4.4)

When agent one works alone at t = 0, there is no room for deviation by agent

two. When the partnership is motivated at t = 0, on the equilibrium path, a

common posterior belief is obtained by all parties, pi
1
= p

P

1
= p1, and agent

two’s expected payo↵ at t = 1 is û2

1
(p1; p1, p1), which occurs with probability

1 � p0�(2 + ✓). However, he may reap more benefit by shirking at k = 0.

Similarly to the static game, agent two can save the cost c and free-ride on

agent one’s hard work to achieve a positive gain at t = 0. Moreover, by doing

so, he also has a more optimistic belief compared to other parties at t = 1 as

p̂1 > p1, and his optimal expected payo↵ would be û
2

1
(p̂1; p1, p1) with a higher

probability 1�p0�. This implies that the free-riding incentive can additionally

give agent two an additional gain at t = 1. As a result, the sub-contract should

satisfy the following incentive constraint to have agent two working at t = 0:

IC
FR

2,0
: !2,0!1,0p0�(1 + ✓)R

� c+ �
�
(1� p0�)û

2

1
(p̂; p1, p1)� [1� p0�(2 + ✓)] û2

1
(p1; p1, p1)

 
| {z }

agent two’s gain from belief manipulation by free-riding: B2
1(p̂1;p1,p1)

(1.4.5)

Compared to agent two’s free-riding incentive in the static game, the extra

terms are present on the side of shirking. It’s clear that the gain from the

belief manipulation, B2

1
(p̂1; p1, p1), is always positive3, so agent one needs to

o↵ers a larger share in the sub-contract to mitigate this free-riding problem,

compared to the case in the static game.

Agent one has similar incentive of belief manipulation at t = 0, which

can be achieved through more channels, as long as the principal continues

investing at t = 1. Given the principal’s belief pP
1
and the agent 2’s belief p2

1
,

the principal would o↵er optimally o↵er !
⇤
1,1
(pP

1
) and agent two would only

accept the sub-contract if !2,1 � !
⇤
2,1
(p2

1
) at t = 1. Thus, given agent one’s

3Since p̂1 > p1, û2
1(p̂1; p1) � û2

1(p1; p1).
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belief p1
1
, his expected payo↵ at t = 1 can be represented as:

û
1

1
(p1

1
; pP

1
, p

2

1
) =

Max
e1,12{0,1}

�
0, e1,1(p

1

1
!
⇤
1,1
(pP

1
)�R� c), p1

1
(1� !

⇤
2,1
(pP

1
))!⇤

2,1
(p2

1
)[1 + (1 + ✓)e1,1]�R� ce1,1

 

(1.4.6)

It shows that agent one would optimally choose between rejection, individual

work and the partnership, given his private belief.

Suppose the principal motivates the partnership at t = 0. At t = 1,

given the equilibrium belief p1, the principal would o↵er !
⇤
1,1
(p1) and agent

two would exert e↵ort if !2,1 � !
⇤
2,1
(p1) is o↵ered, and agent one obtains

û
1

1
(p1; p1, p1) at t = 1, which occurs with probability 1�p0�(2+✓). Similarly to

the static game, agent one can free-ride on agent two’s hard work and save the

cost. Also, if a failure occurs, agent one is more optimistic than the principal

and agent two with p̂1 > p1, and this information is private. From (1.4.6),

it’s easily to see that agent one can achieve a weakly higher expected payo↵

û
1

1
(p̂1; p1, p1), and it occurs with a even higher probability 1� p0�. Therefore,

even though agent two’s current expected payo↵ is lower, he can receive an

even higher payo↵ at t = 1 to compensate for the loss. To mitigate agent one’s

free-riding incentive at t = 0, the following incentive constraint needs to be

satisfied:

(1� !2,0)!1,0p0�(1 + ✓)R

� c+ �
�
(1� p0�)û

1

1
(p̂; p1, p1)� [1� p0�(2 + ✓)] û1

1
(p1; p1, p1)

 
| {z }

agent one’s gain from belief manipulation by free-riding: B1
1(p̂1;p1,p1)

(1.4.7)

This is the same to agent two’s free-riding incentive constraint at t = 0 in

(1.4.5). the last two terms on the right hand side of the inequality (1.4.7)

represents the gain from belief manipulation by free-riding, B1

1
(p̂1; p1, p1). To-

gether with 1.4.5, the free-riding problem at t = 0 can be tackled when the

following constraint is satisfied:

IC
FR

1,0
: !1,0p0�(1 + ✓)R � 2c+ �

⇥
B

2

1
(p̂1; p1, p1) + B

1

1
(p̂1; p1, p1)

⇤
(1.4.8)

To resolve the free-riding problem at t = 0, the principal needs to leave a

larger share to agent one, compared to that in the static game.
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Secondly, agent one can manipulate other parties’ beliefs by excluding

agent two at t = 0. After no success occurs at t = 0, the principal holds

a posterior belief pP
1

= p1, and agent two believes that p
2

1
= p̂1. Then the

principal would o↵er !
⇤
1,1
(p1) and the agent 2 would accept the sub-contract

if !2,1 � !
⇤
2,1
(p̂1) at t = 1. However, agent one’s private belief now is p

1

1
=

{p0, p̂1}, and he is still more optimistic than both of the other parties, where

his expected payo↵ at t = 1 would be û1

1
(p1

1
; p1, p̂1) with probability 1�p0�ẽ1,0,

where ẽ1,0 is agent one’s potential e↵ort choice in deviation at t = 0, and ẽ1,0 2
{0, 1}. To mitigate the agent 1’s exclusion incentive at t = 0, the principal

needs to o↵er a contract !1,0 such that the benefit from the partnership is

weakly higher than the benefit from working alone or not working at all at t =

0. This incentive concern is summarised in (1.4.9), in which I let B1

1
(p1

1
; pP

1
, p̂1)

be the agent i’s gain from belief manipulation by exclusion incentive, where

B
1

1
(p1

1
; pP

1
, p̂1) = (1� p0�ẽ1,0)û1

1
(p1

1
; p1, p̂1)� [1� p0�(2 + ✓)] û1

1
(p1; p1, p1):

IC
E

1,0
:

gain from the partnershipz }| {
!1,0p0�(2 + ✓ � ẽ1,0)R

� c(1� ẽ1,0) +
2 + ✓

1 + ✓

�
c+ �B

2

1
(p̂1; p1, p1)

�

| {z }
gain from excluding agent two

+�B
1

1
(p1

1
; p1, p̂1)

(1.4.9)

On the right hand side of agent one’s exclusion incentive constraint at t = 0,

the first term represents the saved own cost, and the second term represents

the saved cost which is paid for mitigating agent two’s free-riding and belief

manipulation incentive. Together with his own gain from belief manipulation

by exclusion incentive, B1

1
(p1

1
; pP

1
, p̂1), these imply that the principal needs to

o↵er a larger share and leave more surplus to agent one, compared to the

exclusion incentive in the static game.

Thirdly, agent one also has the option of delegating the entire work to

agent two at t = 0. However, with Lemma 1.4.2, I show that this complete

outsourcing incentive is always weakly dominated by agent one’s exclusion

incentive.

Lemma 1.4.2. Exclusion incentive weakly dominates complete outsourcing.

If agent one motivates agent two to work alone at t = 1, agent two’s

participation constraint needs to be satisfied when he is paid to cover the entire
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cost. Due to the identical individual contribution and cost, agent one makes

the same gains as in the case when he works alone. If agent two is asked to

work alone at t = 0, due to future opportunity to conduct the project again, he

has the incentive to shirk and manipulate the agent 1’s belief to gain a higher

surplus at t = 0. This implies that agent one has to pay more than the e↵ort

cost c at t = 0 to have agent two working. In contrast, he can exclude agent

two and work alone, in which case he just pays the e↵ort cost c. Therefore,

the following analysis can just be focused on the free-riding incentive and the

exclusion incentive.

Now consider the incentives in the case where the principal motivates

the individual work at t = 0. On the equilibrium path, all parties hold a

common posterior belief p̂1 after no success occurs at t = 0. Thus the princi-

pal would optimally o↵er !
⇤
1,1
(p̂1) and agent two would only accept the sub-

contract if !2,1 � !
⇤
2,1
(p̂1) at t = 1. This gives agent one the optimal expected

payo↵ û
1

1
(p̂1; p̂1, p̂1) with probability 1 � p0�. From the perspective of agent

one, he has the incentive to shirk at t = 0: by doing so, his belief remains the

same and he is more optimistic than the other two parties. Thus, his optimal

expected payo↵ at t = 1 would be û
1

1
(p0; p̂1, p̂1) with probability 1. This sug-

gests that the principal needs to o↵er a share such that agent one is weakly

better o↵ by working alone compared to shirking at t = 0:

p0!1,0�R � c+ �

B1
1(p0;p̂1,p̂1)z }| {⇥

û
1

1
(p0; p̂1, p̂1)� (1� p0�)û

1

1
(p̂1; p̂1, p̂1)

⇤
| {z }

gain from belief manipulation by shirking

(1.4.10)

Similarly to the static game, due to the unobservable sub-contract be-

haviour, agent one can deviate to collaborate with agent two at t = 0 to

extract the future value. This is agent one’s over-investment incentive. On

the one hand, agent one has to leave a share of the return to agent two to form

the partnership; on the other hand, however, he can boost the probability of

success, which leads the current expected payo↵ to be higher. By doing so,

if no success occurs, the principal still has the posterior belief p̂1 and o↵ers

!
⇤
1,1
(p̂1) at t = 1. However, agent two would have a pessimistic belief p1 if he

works at t = 0.
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Lemma 1.4.3. When the individual work is motivated at t = 0 but agent one

deviates to collaborate, he would either work alone or reject the o↵er at t = 1.

Lemma 1.4.3 suggests that agent two would not participate in the

project after such deviation at t = 0, even if the partnership is desired by

the principal. This is because both agents are more pessimistic than the prin-

cipal, and the share of the return o↵ered by the principal is not large enough

to support the cost of the partnership, and it’s possibly too small to support

an individual work. To mitigate agent one’s over-investment incentive, the

following constraint must be satisfied:

p0!1,0(1 + ✓)�R < max {M1,M2}

M1 =2c+ �
�
(1� p0�)û

1

1
(p̂1; p̂1, p1)� [1� p0�(2 + ✓)] û1

1
(p1; p̂1, p1)

 

M2 =
2 + ✓

1 + ✓
c+ �

�
(1� p0�)û

1

1
(p̂1; p̂1, p̂1)� [1� p0�(2 + ✓)] û1

1
(p1; p̂1, p1)

 

(1.4.11)

The first inequality, p0!1,0(1+ ✓)�R < M1, suggests that the principal’s grand

contract cannot be too large such that agent two accepts the sub-contract

and works in deviation. As agent one still can free-ride in the collaboration by

deviation and holds the same belief as the principal, but is more optimistic than

agent two, he gains û1

1
(p̂1; p̂1, p1) with probability 1�p0�. This is crucial when

the synergy is positive, in which case agent two would not work given agent

one shirks in the collaboration. The second inequality, p0!1,0(1 + ✓)�R < M2,

shows that agent one cannot achieve a better outcome by deviating from his

equilibrium strategy, even if agent two accepts the sub-contract and works.

The optimal grand and sub-contracts
�
!
⇤
1,t
(pP

t
),!⇤

2,t
(pP

t
)
�
when motivat-

ing the partnership and the individual work respectively are summarised in

Proposition 1.4.1. It shows that the last period of the two-period economy is

equivalent to a static game. This is obvious since there is no future opportu-

nity to conduct the project, and all parties’ beliefs must be the same on the

equilibrium path. Also, there is no room for the agent(s) to manipulate the

belief. Therefore, they would behave in the same way as for the static game.

Proposition 1.4.1. In the second-best,
�
!
⇤
1,1
(pP

1
),!⇤

2,1
(pP

1
)
�
=
�
!
S

1,1
(pP

1
),!S

2,1
(pP

1
)
�
.

�
!
⇤
1,0
(pP

0
),!⇤

2,0
(pP

0
)
�
=
�
!
S

1,0
(pP

0
),!S

2,0
(pP

0
)
�
for p̂1 < p

⇤
. For p̂1 � p

⇤
, given
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the individual work is motivated at t = 0, (1.4.11) must be satisfied and
�
!
⇤
1,0
(p0),!⇤

2,0
(p0)

�
=
⇣

c+�B
1
1(p0;p̂1,p̂1)

�Rp0
, 0
⌘
; given the partnership is motivated at

t = 0, !⇤
2,0
(p0) =

c+�B
2
1(p̂1;p1,p1)

!⇤
1,0(p0)(1+✓)�Rp0

, and

1) if ✓ 2
�
�1,min

�
0, 1�2�

�

 �
, !

⇤
1,0
(p0) =

(2+✓)c+�[(2+✓)B
2
1(p̂1;p1,p1)+(1+✓)B

1
1(p̂1;p1,p̂1)]

(1+✓)2�Rp0
;

2) if ✓ 2
⇥
1, 1�2�

�

�
, !

⇤
1,0
(p0) =

2c+�(B2
1(p̂1;p1,p1)+B

1
1(p̂1;p1,p1))

(1+✓)�Rp0
;

3) if ✓ 2
⇥
0,min

�
1, 1�2�

�

 �
, for p

T
> p1 � p

⇤
with

p̂1

p1
2
�
1, 2

1+✓

�
, !

⇤
1,0
(p0) =

2c+�(B2
1(p̂1;p1,p1)+B

1
1(p̂1;p1,p1))

(1+✓)�Rp0
; for p1 � p

T
, or p

T
> p1 � p

⇤
with

p̂1

p1
� 2

1+✓
,

9�̃ 2 (0, 1), such that:

!
⇤
1,0
(p0) =

8
<

:

2c+�(B2
1(p̂1;p1,p1)+B

1
1(p̂1;p1,p1))

(1+✓)�Rp0
� 2 [0, �̃)

(2+✓)c+�[(2+✓)B̂
2
1(p̂1;p1,p1)+(1+✓)B̂

1
1(p̂1;p1,p̂1)]

(1+✓)2�Rp0
� 2 (�̃, 1]

(1.4.12)

At t = 0, for p̂1 < p
⇤, the principal’s belief drops below the stopping

threshold after a low e↵ort level is motivated, thus she would not continue

investing at t = 1 anymore. As a result, there is also no room for the agent(s)

to manipulate the belief, and the concern of the incentives should be the same

as those in the static game. This leads that the optimal grand and sub-contract

should be the same as those in the static game.

For p̂1 � p
⇤, the incentives for belief manipulation need to be taken into

account, due to the presence of the future opportunity. Proposition 1.4.1 sug-

gests that, when motivating agent one’s individual work, the principal needs

to o↵er a share such that agent one is indi↵erent between working alone and

shirking and belief manipulation, which makes (1.4.10) binding. Compared to

the static game, the extra part �B
1
1(p0;p̂1,p̂1)

�Rp0
reflects the share which is trans-

ferred to prevent agent one from manipulating other parties’ beliefs. Then

agent one would not o↵er any sub-contracts to agent two on the equilibrium

path, !⇤
2,0
(p0) = 0. However, unlike the static game, the principal also needs

to prevent agent one from seeking a higher e↵ort level to boost the current

expected gain in this case, in which (1.4.11) needs to be satisfied. This implies

that there exist some scenarios in which the principal would fail to motivate

the individual work at t = 0, and the detail is discussed in Corollary 1.4.1.

It suggests that, if the individual work is desired by the principal, agent one

would always deviate to a higher e↵ort level by the partnership when the indi-
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vidual contribution is large, the multiplier of the synergy is su�ciently large,

and when he is very optimistic and not patient. In such a scenario, agent one

is very impatient such that he prefers to explore the project as much as possi-

ble and achieve success as early as possible, even if the principal is willing to

wait. As a result, the principal has to compromise on a sub-optimal choice by

motivating a higher e↵ort level or withholding the investment in such cases.

For p̂1 � p
⇤, given the partnership is motivated at t = 0, the optimal

sub-contract !⇤
2,0
(p0) must satisfy that agent two is indi↵erent between working

and shirking, in which (1.4.5) binds. Moreover, compared to the sub-contract

in the static game, the extra share �B
2
1(p̂1;p1,p1)

!⇤
1,0(p0)(1+✓)�Rp0

represents the surplus that

agent one sacrifices to prevent agent two from belief manipulation. Similarly, in

the grand contract !⇤
1,0
(p0), the principal needs to take care of agent one’s free-

riding and exclusion incentives, in which (1.4.8) and (1.4.9) must be satisfied.

When the synergy is negative, it shows that agent one’s exclusion incentive

dominates, and he finds that the most profitable deviation is to exclude agent

two and work alone. Thus, the extra term
�[(2+✓)B̂

2
1(p̂1;p1,p1)+(1+✓)B̂

1
1(p̂1;p1,p̂1)]

(1+✓)2�Rp0

represents the share necessary to prevent agent one from belief manipulation

by exclusion incentive. On the other hand, when the synergy is positive and

very large, ✓ 2
⇥
1, 1�2�

�

�
, agent one’s free-riding incentive dominates, in which

he prefers to free ride on agent two’s hard work among di↵erent channels of

deviation. By doing so, the cost of the sub-contract would be less than the

cost of working alone. Therefore, (1.4.8) must bind in this case, and the extra

term
�(B2

1(p̂1;p1,p1)+B
1
1(p̂1;p1,p1))

(1+✓)�Rp0
is paid to deter the belief manipulation.

The analysis is more complex when the synergy is positive but small,

in which case ✓ 2
⇥
0,min

�
1, 1�2�

�

 �
. For pT > p1 � p

⇤ with p̂1

p1
2
�
1, 2

1+✓

�
, the

incentive for free-riding at t = 0 dominates others. In this case, the principal

optimally motivates the individual work at t = 1 if no success occurs at t = 0,

and the di↵erence in the posteriors at di↵erent e↵ort levels doesn’t vary too

much. If agent one deviates, he would still stick to the individual work at

t = 1 after his deviation at t = 0. Also, in this case, there is no room for agent

two to manipulate the belief as he would not be hired at t = 1.

In all other cases at the small positive synergy, agent one still finds that

the incentive of excluding agent two and shirking is dominated, and he is made

better o↵ by ensuring that at least one unit of e↵ort is exerted. However, his
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patience level now plays a crucial role, and the share varies when deterring

agent one’s belief manipulation. When agent one is not patient, in which case

his discount factor is very small, � 2 [0, �̃), agent one’s free-riding incentive

dominates and (1.4.8) must bind. when agent one is very patient, � 2 [�̃, 1],

the exclusion incentive dominates, and the o↵er should be the same as that

in which the synergy is negative. These results also hold when the positive

synergy is very large. In this case, the loss from shirking after excluding agent

two is too large, and agent one doesn’t want to withhold e↵ort.

Corollary 1.4.1. In the second-best, at t = 0,

1) if ✓ 2
⇥
1, 1�2�

�

�
, the individual work cannot be motivated;

2) if ✓ 2
�
�1,min{1�2�

�
, 1}
�
with p̂1 � p

T
and

p̂1

p1
� max

n
2

1+✓
,

2+✓

(1+✓)2

o
, or

✓ 2
⇥
0,min{1�2�

�
, 1}
�
with p

T
> p̂1 � p

⇤
, 9�v 2 (0, 1), ✓v 2

�
�1,min

�
1, 1��

�

 �

and p
v 2 (0, 1) such that the individual work cannot be motivated when � 2

[�v, 1), ✓ 2
⇥
✓v,min

�
1�2�

�
, 1
 �

, p0 2 (0, pv) and � 2 [�v, 1], in which c +

�vB
1

1
(p0; p̂1, p̂1) = max {M1,M2}.

Given the structure of the optimal grand and sub-contracts have been

characterised, the focus shifts to the timing of motivating the partnership

and the individual work. At t = 0, the principal’s continuation value for the

partnership and individual work can be written as:

V
CO

0
(p0) = p0

�
1� !

CO

1,0
(p0)

�
�(2 + ✓)R + �[1� p0�(2 + ✓)]⇡⇤

1
(p1)

V
WA

0
(p0) = p0

�
1� !

WA

1,0
(p0)

�
�R + �(1� p0�)⇡

⇤
1
(p̂1)

(1.4.13)

Where ⇡
⇤
1
(P
1
) is her optimal profit at t = 1 given belief pP

1
, and !

CO

1,0
(p0) and

!
WA

1,0
(p0) represents the optimal grand contract when motivating the partner-

ship and the individual work respectively, which are given in Proposition 1.4.1.

Besides, the principal has the option to delay the investment, in which case she

would only o↵er the grand contract at t = 1 and the associated continuation

value would be V
D

0
(p0) = �⇡

⇤
1
(p0). By doing so, the principal can completely

deter the possibility of belief manipulation, and o↵er a smaller share in the

grand contract with a optimistic belief p0. On the other hand, she still su↵ers

a loss from her impatience due to the presence of the discount factor � 2 [0, 1],

and also wastes the chance of making a second attempt after the first failure.

The di↵erence between the principal’s continuation value for the partnership
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and the individual work at t = 0 can be represented as:

4V
CW

0
(p0) =

extra gainz }| {
p0�R(1 + ✓)�

extra cost for higher e↵ort levelz }| {
p0�R

⇥
(2 + ✓)!CO

1,0
� !

WA

1,0

⇤

� � {(1� p0�)⇡
⇤
1
(p̂1)� [1� p0�(2 + ✓)]⇡⇤

1
(p1)}| {z }

loss from the future profit

(1.4.14)

Compared to the individual work, if the principal motivates the partnership at

t = 0, she can boost the probability of success and gain the extra p0�R(1+ ✓);

on the other hand, she has to pay the extra cost p0�R[(2 + ✓)!CO

1,0
� !

WA

1,0
]

to compensate the higher e↵ort level. Also, she still su↵ers a loss in terms

of future profit. This is because she would be more pessimistic if no success

occurs after the first attempt, and has to o↵er a larger share to motivate the

agents to work at t = 1, together with a lower probability of success which

would lower the expected value. Similarly, compared to no investment at t = 0,

if the principal motivates the partnership, she can have a positive static profit

at t = 0; however, she also su↵ers a loss in the next period if the project fails,

in which she is more pessimistic and the expected profit would be even lower.

This is summarised in the expression of 4V
CN

0
(p0), where

4V
CN

0
(p0) = p0

�
1� !

CO

1,0
(p0)

�
�(2 + ✓)R

| {z }
net profit from the partnership

� � {⇡⇤
1
(p0)� [1� p0�(2 + ✓)]⇡⇤

1
(p1)}| {z }

loss in the future profit

(1.4.15)

When the individual work is compared to no investment at t = 0, the logic is

the same as that for the partnership, and the detail is shown in 4V
WN

0
(p0),

where

4V
WN

0
(p0) = p0

�
1� !

WA

1,0
(p0)

�
�R

| {z }
net profit from the individual work

� � {⇡⇤
1
(p0)� [1� p0�(2 + ✓)]⇡⇤

1
(p1)}| {z }

loss in the future profit

(1.4.16)

Therefore, the principal would motivate the partnership only if its continu-

ation value from doing so is larger than that from motivating a lower e↵ort

and by delaying the investment, in which 4V
CW

0
(p0) and 4V

CN

0
(p0) are both

positive. A similar argument would be applied if other options are optimal.

Then the principal’s optimal choice of the e↵ort level at t = 0 is demonstrated
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in Proposition 1.4.2, in which e
⇤
i,t
(pP

t
) is agent i’s optimal e↵ort level at t and

would be motivated in the optimal grand and sub-contracts given the belief

p
P

t
.

Proposition 1.4.2. In the second-best, at t = 0,

1) if ✓ 2
⇥
1, 1�2�

�

�
, 9�⇤ 2 (0, 1), such that,

1.a) for
R

c
2
h

2

p0�(1+✓)
,

2

p̂1�(1+✓)

⌘Sh
2[1�p1�(1+✓)]
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,+1

⌘
,
�
e
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1,0
, e
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2,0

�
=

(1, 1);
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R

c
2
h

2
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2[1�p1�(1+✓)]

p1�(1+✓)[1��(2+✓)]

⌘
,
�
e
⇤
1,0
, e

⇤
2,0

�
= (1, 1) when � 2
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�
e
⇤
1,0
, e

⇤
2,0

�
= (0, 0) when � 2 (�⇤, 1), in which V

CO

0
(p0)|�⇤ = V

NO

0
(p0)|�⇤.
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, 9R
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� 3+2✓
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�
e
⇤
1,0
, e

⇤
2,0

�
= (0, 0) at � 2 (�̃w, 1];

3.c) for
R
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2 S̃ =

h
max

n
2

p0�(1+✓)
,

1

p̂1�

o
,

3+✓

p0�(1+✓)2

⌘
with (1.4.11) being

violated,
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e
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1,0
, e

⇤
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�
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�
e
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1,0
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⇤
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�
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e
⇤
1,0
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⇤
2,0

�
= (0, 0) at � 2 (�̃⇤

c
, 1];

3.d) for
R

c
2 S̃ with (1.4.11) being satisfied, or

R

c
2
h

1

p0�
,

3+✓

p0�(1+✓)2

⌘
\ S̃,

�
e
⇤
1,0
, e

⇤
2,0

�
= (1, 0) at � 2 [0, �

⇤
w
], and

�
e
⇤
1,0
, e

⇤
2,0

�
= (1, 0) at � 2 (�̃⇤

w
, 1]; spe-

cially, for
R

c
2
h

1

p1�
,min

n
1

p̂1�
,

3+✓

p0�(1+✓)2

o⌘
,
�
e
⇤
1,0
, e

⇤
2,0

�
= (1, 0) and �̃

⇤
w
= 1.

In general, Proposition 1.4.2 shows that the principal would optimally

reduce the investment level and motivate a lower e↵ort level at t = 0 due

to the high cost of deterring the dynamic moral hazard problem. It follows

that the optimal e↵ort level at t = 0 would be lower than that in the static

game. However, due to the presence of the private sub-contract, when the
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positive synergy is small and the principal fails to deter agent one’s over-

investment behaviour, she would also over-invest in these scenarios, in which

the optimal e↵ort level is higher than that in the static game but still weakly

lower than that in the first-best. Compared to the first-best, the principal’s

optimal choice at t is distorted and she weakly under-invests at all levels of

the value-cost ratio, leaving positive surplus to the agent(s) due to the hidden

e↵ort and private sub-contract.

When the project’s value-cost ratio is not high enough to support the

cost of a second trial after the first failure, Proposition 1.4.2 shows that the

principal’s optimal decision at t = 0 in this two-period economy is the same

as that in the static game. This is obvious and the principal never delays

the investment, and all parties behave as myopic players. However, when the

value-cost ratio is high enough to cover the cost of the second investment after

the failure, the principal’s decision is distorted due to impatience and the fear

of belief manipulation.

Proposition 1.4.2.1) shows that, if the synergy is very large, and the

project’s value-cost ratio is very high, the principal would optimally motivate

the high e↵ort level to boost the probability of success, and the benefit is

much higher than the cost of deterring the agents’ belief manipulation by all

di↵erent channels of deviation. On the other hand, when the value-cost ratio

is medium with R

c
2
h

2

(1+✓)�p1
,

2[1�p1�(1+✓)]

p1�(1+✓)[1��(2+✓)]

⌘
, her patience plays a crucial

role. When she is very impatient, the cost of deterring the agents’ deviation

is not high from her point of view, so she would stick to motivating the high

e↵ort level through the partnership. However, when she is very patient, she

weights the future value a lot, in which case the cost of deterring the agents’

deviation is too high to be covered, and she would delay the investment at

t = 0, and only invest the partnership at t = 1. The option of the individual

work totally is excluded, in which agent one would always deviate to privately

collaborate with agent two and boost the current expected gain, even if the

principal is willing to sustain a lower e↵ort level.

Proposition 1.4.2.2) and 1.4.2.3) suggest that the principal behaves sim-

ilarly when the synergy is negative or positive but small. In both cases, when

the project’s quality is high, the principal still finds it beneficial to moti-

vate the higher e↵ort level since the cost of doing that is now comparatively
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low and could be covered by the extra gain. When the project’s quality is

medium and the synergy is positive but small, there exists a scenario where

the principal would over-invest at t = 0, specifically, pT > p0 > p̂1 � p
⇤ and

p0�(2 + ✓)R � max
n

2

1+✓
c,

2+✓

(1+✓)2

o
and (1.4.11) is violated. In this scenario,

the partnership is dominated by the individual work but is still better than no

investment in a static game. When the principal tries to motivate the individ-

ual work at t = 0, which is her best choice in a static game, agent one always

find that he’s better o↵ by deviating to collaborate with agent two. Thus, he

cannot be deterred from deviating to privately over-invest. As a result, the

principal has to compromise and distort to a higher e↵ort level to exhaust

the future possibility of investment and shut down the window of belief ma-

nipulation by the agent(s). This ine�ciency arises due to the presence of the

private sub-contract, and one example of this scenario is shown below. The

observation ceases to exist when the synergy is negative for the same quality

of the project. In the rest of the scenarios, when the project’s quality is low

or medium with (1.4.11) being satisfied, such distortion doesn’t exist, and the

principal would stick to motivating the individual work at t = 0 if she is very

impatient, which is her optimal choice in the static game; if she is su�ciently

patient, in which case she weights the cost of the deterring the dynamic moral

hazard problem very high, she would withhold the investment and only invest

at t = 1.

Example 1.4.1. R

c
= 15.5, p0 = 0.3, ✓ = 0.6, � = 0.3, � = 0.9. Thus

p̂1 = 0.2308, p1 = 0.0862, p
T = 0.3024 and p

⇤ = 0.2151. In the first-

best,
�
e
P

1,0
, e

P

2,0

�
= (1, 1). In the static game,

�
e
S

1,0
, e

S

2,0

�
= (1, 0). When the

partnership is motivated,
�
!
CO

1,0
,!

CO

2,0

�
= (0.8961, 0.5) and V

CO

0
(p0) = 0.377;

when she choose not to invest at t = 0, V
NO

0
(p0) = 0.3555. Therefore,

�
e
⇤
1,0
, e

⇤
2,0

�
= (1, 1) =

�
e
P

1,0
, e

P

2,0

�
�
�
e
S

1,0
, e

S

2,0

�
.

1.4.3 Comparisons to Two-Tier Hierarchy

Now I compare the three-tier hierarchic structure to the two-tier one, in which

the principal can directly contract with agent two. Both structures are shown

in Figure 1.2. The dynamic moral hazard problem can be partially mitigated

but still exists. For simplicity, it assumes that the principal would only hire
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agent one if she motivates the individual work4. Agent one can be considered

as the insider of a small network, and agent two is the outsider.

Principal
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Agent two
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Agent one Agent two
Sub-Contract

Figure 1.2: Links among players

In this environment, agent one’s exclusion incentive can be dropped

when motivating the collaboration. Now !
⇤
1,t

would be the total share o↵ered

to both of the agents. Since the two agents are identical, they would equally

share the gain in the contract. If the synergy is positive and very large this

change doesn’t play a role, since the exclusion incentive is dominated by the

free-riding incentive, which is the same as that in the three-tier structure.

On the other hand, if the synergy is positive but small or negative, taking

the exclusion incentive away can improve the principal’s profitability: the

exclusion-work incentive dominates and the associated constraint needs to be

binding in the three-tier structure environment. Now the principal can o↵er a

relatively smaller total share to the agents, and the stopping threshold would

be the same as that in the three-tier structure with positive synergy, as well

as the threshold in which the principal is indi↵erent between the collaboration

and the individual work.

When motivating the individual work, the private sub-contract still

matters. In the first place, if the link between two agents is dropped, the

4If this assumption is removed, the principal can randomly contract with one of the
agents when motivating the individual work. It can reduce the agent’s gain from the belief
manipulation further since he faces an uncertainty of being o↵ered a contract, which makes
the principal better o↵ compared to the situation with this assumption.
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principal is much better o↵ since she doesn’t need to worry about the agent’s

over-investment incentive and whether (1.4.11) is violated or not, so the prin-

cipal would not compromise to over-invest at t = 0. In the second place, if the

link still exists, the principal still faces exactly the same consideration as she

does in the three-tier structure with positive synergy. At t = 0, the analysis of

the principal’s optimal choice is the same as those in the three-tier structure

environment with positive synergy and the free-riding incentive dominating.

As a result, from the perspective of the principal, the two-tier structure

is weakly better than the three-tier one, and they can reach the same e�ciency

level when the synergy is positive and free-riding incentive dominates. From

the perspective of the agents, they are weakly worse o↵ since they have less

options to deviate and the surplus they can keep is also less. The conclusion

is summarised in Proposition

Proposition 1.4.3. The principal is weakly better o↵ and the agents are

weakly worse o↵ in a two-tier structure compared to a three-tier one.

1.5 Conclusion

This paper analyses the principal’s optimal contract and timing of motivating

two agents collaborating on a risky project, in which she has no direct link

to one of the agents nor full commitment. In a two-period economy with the

presence of a dynamic moral hazard problem, the e↵ect of agent one’s private

sub-contract on the principal’s optimal decision is highlighted, as well as the

comparisons between the three-tier and two-tier structure.

The principal’s optimal contract for motivating the collaboration and

the individual work in each period are fully characterised. Due to the presence

of agent one’s private sub-contract and the principal’s inability to contract with

agent two, if the principal motivates the collaboration, agent one’s exclusion

incentive dominates when the synergy is negative, or when the positive synergy

is small and he is su�ciently patient. It follows that the principal has to leave

more surplus to agent one to deter the deviation and belief manipulation.

When the positive synergy is very large, or when it’s small but agent one

is impatient, the free-riding incentive dominates and the o↵er should be the

same as that when the principal can contract directly with both agents. On
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the other hand, if motivating the individual work, besides the incentive of

shirking, the principal also needs to deter agent one from over-investing by

privately collaborating with agent two.

The principal’s choice of motivating the optimal e↵ort level in each

period is also fully characterised. Without the full commitment, to deter belief

manipulation by the agent(s), the principal tends to reduce the investment and

motivate a lower e↵ort level in this first period. Meanwhile, due to agent one’s

private sub-contract, there exist scenarios in which agent one’s over-investment

incentive cannot be deterred. It follows that the principal compromises to over-

invest by motivating an e↵ort level that exceeds her optimal choice in a static

game, and ine�ciency arises. Moreover, this result suggests that the two-tier

structure is weakly better than the three-tier one.

Even though this paper only considers a two-period economy, the key

properties of many periods have been covered. In future work, it would be

interesting to explore the properties of a general network with more agents, in

which the discussion of e�ciency would help to determine the optimal network

structure.
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Chapter 2

Optimal Contract to Reward

Private Experimentation

2.1 Introduction

Seeking and blundering are good, for it is only

by seeking and blundering we learn.

— Johann Wolfgang von Goethe, Faustus

I study an environment in which a principal motivates an uninformed agent

to learn and reveal his quality through costly and private experiments. The

principal aims to assign the rewards to correspond as closely as possible to the

quality of the agent, and she commits to a reward scheme before evidence is

acquired. However, The agent, whose quality is initially unknown, only wants

to get a high reward, and he experiments privately and discloses the results

selectively. Thus the optimality of the principal’s commitment arises as a key

question.

For instance, consider a professor who wants to deliver a fair reference

letter for an undergraduate student. Knowing that the student can privately

take many exams and internships and selectively report the results, the pro-

fessor can commit to only write a good letter if the student reports enough

successes. Is this commitment optimal?

The reward scheme that is committed to by the principal is designed

to reflect the agent’s true quality, but it also a↵ects the agent’s incentives to
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acquire and reveal the evidence. A harsh standard in the commitment might

deter the acquisition of the evidence due to a high cost of experiments, but a

relaxed one may contaminate the informativeness of the evidence.

In designing the optimal reward scheme, the principal takes into account

two options that the agent has to deviate from the intended path of experimen-

tation: early-stop and over-experimentation. The early-stop incentive occurs

when the total experimental cost is larger than the benefit from continuing ex-

periments. In this case, a potential good type stops experimenting too early,

to save experimental cost, and he doesn’t learn enough and compromises on a

lower reward level. The over-experimentation incentive emerges when he fails

after he has acquired many successes. Now the agent has learned that he is

a bad type. However, since the principal doesn’t observe any experiments or

results, the bad type agent can still continue to acquire successes and pretend

to be a good type by hiding the unfavourable results in his later report. Thus,

the bad type can still achieve a high reward level. Both incentives would cause

a mismatch between types and rewards.

Building upon these two incentives, my first main result suggests that

the optimal reward scheme is an increasing step function. When the motivated

number of successes is small and the agent’s incentives to deviate from the

intended path of experimentation are weak, a one-step function is optimal:

the agent receives the conditional expected value as a bonus if he reports

enough successes; otherwise, he only gets a non-negative compensation. As this

number increases, in which case the conditional expected value becomes higher

than the expected cost of acquiring one more success by a bad type agent, extra

steps are added after many successes have been acquired, to deter the bad

type’s over-experimentation behaviour, who only needs a few more successes

to pretend to be a good type. These steps make a bad type agent indi↵erent

between over-experimenting and stopping immediately. Furthermore, if the

failures are not verifiable, and the agent’s prior expected value cannot cover

the expected total cost of the experiments, the early-stop incentive distorts the

reward scheme at early stage, since the agent cannot prove that an experiment

has been carried out and failed. Thus the additional steps are required to

encourage a potential good type to continue the remaining experiments, which

make a potential good type agent indi↵erent between aborting experiments
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and continuing. As a result, the distortion results in that a bad type agent

is always over-paid relative to his true value. I also show that it’s always

optimal to screen the bad type agent from the potential good agent when

motivating a strictly positive number of successes. Therefore, the number

of motivated successes is the same as the number of experiments which are

conducted without failures.

My second main result shows that the optimal motivated number of

successes reported by the potential good type agent is always weakly greater

than the largest number whose expected total cost can be covered by the

agent’s prior expected value. On the one hand, the more successes that a

potential good type agent discloses, the more accurate the principal’s reward

could be. This force leads to a higher motivated number of experiments. How-

ever, on the other hand, when the motivated number is too large such that the

conditional expected value is higher than the cost of over-experimentation, or

the agent’s prior expected value cannot cover the experiments’ expected total

cost, the principal has to sacrifice and pay more to a bad type to motivate

the agent to conduct so many experiments and deter the bad type agents from

over-experimenting and contaminating the informativeness of the reported suc-

cesses. This force discourages the principal from motivating a large number of

experiments, and the optimal number is determined by the trade-o↵ between

these two forces. Moreover, when the good type agent’s value is too low or the

cost of an experiment is too high, the principal would optimally motivate no

experiments and assign the ex ante expected value to the agent.

In a public information environment where the experiments and re-

sults are publicly observed, I show that the one step function is still optimal.

Moreover, when the failures are verifiable and the agent’s value-cost ratio is

low, the private experimentation achieves the same e�ciency level as the pub-

lic environment. In this case, the agent is able to prove that he has indeed

conducted the experiment and failed, and the incentive for deviation from

over-experimenting is weak.

I explore two extensions of the model, which show the robustness of my

findings. Firstly, I introduce a small probability of bad luck in each experiment,

which is privately observed and causes a failure for both types. The results

suggest that this environment is equivalent to the scenario with unverifiable
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failures, since the failures caused by the bad luck provide no information about

the agent’s type but the incentive to stop at an earlier stage. Secondly, I

consider a scenario with finite opportunity for experimenting, and show that

the principal’s optimal reward scheme is consistent with that with infinite

opportunity.

The rest of the chapter is organised as follows. Section 2.2 summarises

related literature. Section 2.3 shows the model’s setup as well as some pre-

liminary results and the benchmark. The main analysis of the private experi-

mentation is demonstrated in section 2.4. Extensions can be found in section

2.5. Section 2.6 finally concludes. All proofs not shown in the main text are

given in Appendix B.

2.2 Literature Review

This work relates to literature about private experimentation. Henry (2009)

considers a scenario where the number of experiments is pre-determined, and

the agent is not able to stop until all experiments are conducted regardless

of their results. My work di↵ers in allowing the agent to decide whether to

continue after each experiment. Ispano (2015) shows the conditions such that

the sender optimally reveals the unverifiable bad news. My work compares the

di↵erence when failures are verifiable and when they are not. Moreover, their

work doesn’t consider the receiver’s optimal commitment from the perspective

of mechanism design, which is the key result in my work.

The closest work is by Felgenhauer and Schulte (2014). They charac-

terise the parameter range in which the persuasion equilibria with cut-o↵ rule

exists in costly private experimentation with symmetric information structure.

In their work, the receiver makes a binary decision, and the sender applies a

sanitisation strategy in which all unfavourable results are concealed. In con-

trast, my model considers an asymmetric information environment, and the

principal o↵ers a reward scheme according to di↵erent reported results, rather

than a binary approval decision. My work follows the mechanism design ap-

proach and Delgenhauer and Schulte’s does not. The cut-o↵ function in my

model is similar to their cut-o↵ approval rule, but the interpretations are dif-

ferent. Also, the cut-o↵ function is not always optimal, and the alternative
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step function is introduced, which is absent in their work. Other di↵erences

are that I use, and I show that, the sanitisation strategy is not optimal for the

agent when failures are verifiable.

There is a large literature in strategic experimentation, such as Bergmann

and Hege (2005), Halac, Kartik and Liu (2016), and Henry and Ottaviani

(2014), etc. Bergman and Hege (2005) show the optimal way to finance an

innovative project without full commitment, and Halac, Kartik and Liu (2016)

focus on the scenario with full commitment. Henry and Ottaviani (2014) show

that the principal free rides on the agent’s experiments when results are public

information. In most cases where results are private information, the principal

or the receiver can use the timing of when they observe success to determine

monetary transfer: this is a key di↵erence from the current model, which does

not include such timing.

This work also relates to literature on information disclosure and per-

suasion. Rayo and Segal (2010) and Kolotilin (2015) focus on the sender’s

optimal mechanism; Kamenica and Gentzkow (2011) find the optimal way for

the sender to design the structure of the experiment, and Bergemann, Bon-

atti and Smolin (2015) consider a monopolist who can design the experiment

and set the selling price. They all focus on public experimentation, where

experimental results can be publicly observed. In contrast, this work mainly

focuses on the private case, and compares the results to public case. Glazer

and Rubinstein (2004, 2006) and Hart, Kremer and Perry (2016) analyse how

commitment can help the principal to improve outcomes in evidence games

where the agent’s set of hard evidence is exogenously given and he cannot

generate any other evidence. By comparison, this work considers how the

optimal commitment changes if the agent can acquire hard evidence at a cost.

DeMarzo, Kremer and Skrzypacz (2017) also consider an uninformed

agent who chooses one test among many di↵erent tests and strategically re-

veals the result to the market. In their paper, the market is competitive, and

the agent has only one chance to take a test, in which the null result with

positive probability is introduced and is not verifiable. By contrast, my model

focuses on the softest test in which the good type always passes and the bad

type passes with some probability, and the agent has infinite opportunity for

experimenting. In my work, both the scenarios, when the failure is verifiable
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and not verifiable, are discussed. Also, my model focuses on the principal’s

optimal full commitment, which is absent in their paper.

This work can be compared to literature on signalling and screening, for

example Spence (1973), and Rothchild and Stiglitz (1976). In their models,

there is no learning process for the agent, and every type of agent can mimic

the behaviour of others for a price. Here, the agent would learn his own type

through experiments, and a potential good type cannot perfectly masquerade

as bad type. Additionally, in this work, the agent can only be more optimistic

that his type is good if no failure occurs, and full screening cannot be achieved.

Other literature that this work relates to includes Hörner and Skrzy-

pacz (2014) and Celik (2015) who focus on gradually revealing information,

and Hörner and Skrzypacz (2014) who show that sequential tests can help to

mitigate the hold-up problem. Kruse and Strack (2015) focuses on mechanism

design for an optimal stopping time, and a cut-o↵ rule is proposed as optimal.

2.3 Model

2.3.1 Setup

An agent (he) wants to get reward (or evaluation) from a principal (she).

Initially the agent’s type1 (value), Mi 2 {M, 0}, is unknown, but a common

prior is shared: type is good (G) with probability p0, and its value is MG = M ,

where p0 2 (0, 1) and M 2 R+ ; it’s bad (B) with probability 1�p0, and value

is MB = 0.

The agent can learn his own type through the private experiments2.

The constant cost of each experiment is c, where c 2 R+. In each experiment,

a good type agent can always succeed. However, a bad type can only succeed

with probability 1� ✓, where ✓ 2 (0, 1). ✓ can be considered as the threshold

to pass a test. The experiment has the property of the softest test, where a

good type always passes the test and a bad type fails it with some positive

probability. Since experiments are privately observed, the agent can selectively

report a subset of acquired results. Give he conducts n experiments, denote

1This setting is equivalent to that in which the agent sells a project with unkown quality.
2It can also be interpreted that there are many di↵erent tests with the same level of cost

and threshold for passing.
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the reported number of successes and failures by k
g and k

b respectively, where

n, k
g
, k

b 2 N.
Before experimentation, the principal can o↵er a reward scheme a(·) to

the agent which specifies the di↵erent reward levels corresponding to di↵erent

combinations of reported results by the agent, where a : N⇥N ! R+. Specif-

ically, a(·) = a(kg
, k

b). The principal cares about the precision and fairness of

the reward, and her payo↵ function is: �(a(kg
, k

b)�Mi)2.

The risk neutral agent only cares about the reward level, and his payo↵

function is a(kg
, k

b)� nc, given he has conducted n experiments and reported

k
g successes and k

b failures. All parameters and payo↵ functions are common

knowledge, and the timeline is shown below:

1. Principal o↵ers the reward scheme, and agent chooses whether accept or

not.

2. Agent begins to run experiments after acceptance.

3. Agent stops experiments and selectively reports to principal.

4. Payo↵s are realised.

Principal o↵ers

the reward scheme

Agent runs

experiments

Agent reports

results

Payo↵s are realised

Figure 2.1: Timeline

2.3.2 Preliminaries

This section shows some preliminary results, which can help to simplify the

future analysis. Now consider how the posterior belief is updated when dif-

ferent results are acquired. If the agent has acquired k 2 N successes without

failures, he becomes more optimistic on that his type is good, and the posterior

belief denoted by pk is updated according to Bayes’ rule:

Pr(Good|k, 0) = p0

p0 + (1� p0)(1� ✓)k
= pk (2.3.1)
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In this case, the agent has no reason to hide the successes. This is because, on

the equilibrium path, the more successes are reported the higher the posterior

belief the principal has, which leads a higher expected value. Instead, if the

agent has acquired at least one failure, he learns that he is a bad type since

only the bad type can fail with positive probability in an experiment. Thus,

no matter how many successes he has achieved before, his posterior belief now

is Pr(G|kb � 1) = 0.

Since one failure is enough for the principal to learn the agent is bad

with value MB = 0, the principal needs not to provide any incentives for the

bad type agent to reveal more than one failures. On the one hand, more

failures don’t a↵ect the belief if the principal has observed one failure, and

the precision of the reward is not a↵ected. On the other hand, If the agent

continues to experiment after the first failure, he either gets more failures or

more successes. Thus he can hide failures and report more successes to achieve

a higher reward level. Since the success is verifiable, the only way for a bad

type to pretend to be good is to over-experiment—continuing experiments to

acquire successes by luck after his first failure arrives. On expectation, a bad

type agent can achieve one more success with cost c

1�✓
. To mimic the good

type’s behaviour, the bad type agent’s selective report satisfies: k
g + k

b  k.

This is the agent’s over-experimentation incentive, which would be discussed

later in details, as well as the verifiability of failures.

Notice that the principal’s commitment always motivates the potential

good type agent, who hasn’t failed yet, to reveal a certain number of successes,

therefore, to determine the optimal commitment, the question can be decom-

posed into the following two parts: firstly, given the principal motivates the

potential good agent to reveal a arbitrary k successes, the properties of the

associated reward scheme, ak(kg
, k

b), needs to be characterised; secondly, the

optimal number k⇤ then can be found, which maximised the principal’s ex ante

expected payo↵. Thus, the optimal commitment is the optimal reward scheme

a
k
⇤
(kg

, k
b), and k

⇤ successes are motivated to be reported by the potential

good agent.

Claim 2.3.1. a0(·) = p0M .

When k = 0, no successes are motivated to be reported, and claim 2.3.1

suggests that the principal would optimally assign a single reward level to the
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agent regardless of the agent’s report, which equals the agent’s prior expected

value. The agent would not conduct any experiments on the equilibrium path,

and no further information about the agent’s quality is provided.

When k 2 N+, a single reward level cannot be optimal, otherwise the

agent can easily deviate to conduct no experiments and gain the same reward

as those who report some successes. Some features associated with the optimal

reward scheme can be summarised in Lemma 2.3.1.

Lemma 2.3.1. Given the commitment motivates the potential good agent to

report k 2 N+
successes, the optimal associated reward scheme is equivalent to

the reward scheme with: for 8kg
, k

b 2 N,
1) a

k(kg
, 1) � a

k(kg
, k

b
> 1);

2) a
k(kg � k, k

b � 1) = 0;

3) a
k(kg � k, 0) = a

k(k, 0).

Lemma 2.3.1.1) states that it is optimal to assign at most the same level

of reward to those reporting more failures, since one failure is enough for the

principal to learn that the agent is a bad type and more failures don’t a↵ect the

principal’s posterior belief on the agent’s type. Given the reported number of

successes, the principal punishes the bad type agent who has more failures by

assigning a lower reward level. Lemma 2.3.1.2) pushes the punishment to the

maximum when an agent reports more than enough successes together with

some failure(s). The principal learns the agent is bad when observing failures,

and she also learns that the bad type has over-experimented to acquire so

many successes after his first failure. This punishment is just the bad type’s

true value, which prevents such behaviour from occurring when a contract is

accepted. Thus, the bad type agent would conceal failures when pretending

to be a potential good one.

Lemma 2.3.1.3) shows that, to guarantee that an agent’s ex ante optimal

plan is to reveal enough successes k given the reward scheme from principal, the

marginal benefit from running one more trial is strictly less than the marginal

cost after continuously obtaining k successes, and it must also be true for all

numbers greater than k. If not, the agent would continue experimenting as

long as no failure occurs. For any other reward scheme satisfying such criteria,

it would lead to the same end as the one with assigning the same level of reward
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to those reporting more than enough successes without failure. Therefore, the

remaining analysis can focus on a
k(k, 0), ak(kg

< k, 0) and a
k(kg

< k, 1) only.

2.3.3 Benchmark: Public Experimentation

Before solving the main model, I discuss a benchmark to provide useful back-

ground and intuition, in which the experiments are conducted publicly and

the results are observable by both parties. If a failure occurs, the principal

learns immediately that the agent is a bad type, and any further experiments

don’t a↵ect the principal’s belief or improve the precision of the reward. The

agent cannot hide any failures, or over-experiment to pretend that failure never

occurs.

When the principal’s commitment motivates the potential good agent

to acquire k successes, the agent’s expected payo↵ is:

U
A

P
(k, p0) = �c+[p0 + (1� p0)(1� ✓)]UA

P
(k�1, p1)+(1�p0)✓a

k(0, 1) (2.3.2)

Denote by U
A

P
(k � j, pj) the agent’s continuation value of acquiring the re-

maining k � j successes with current belief pj, where j  k. After paying

the cost c in the first experiment, with probability p0 + (1 � p0)(1 � ✓), the

agent succeeds and becomes more optimistic with a posterior belief p1, and his

continuation value of acquiring the remaining k� 1 successes is UA

P
(k� 1, p1);

with probability (1� p0)✓, the agent fails, and then he learns that his type is

bad, and receives a reward level ak(0, 1). The agent’s ex ante expected payo↵

can also be simplified as:

U(k, p0) = E
�
a
k(kg

, k
b)
��k, p0

�
� k̃c, where k̃ =

kX

i=1

p0

pi�1

(2.3.3)

where k̃ is the expected number of experiments that the agent would run

after accepting the contract, and it equals to the summation of the likelihood

ratio of prior to posterior beliefs. Thus k̃c is the ex ante expected total cost3.

3In this plan, the agent only needs to continue experimenting when no failure occurs,
thus it’s easily to see the probability that no failure occurs in k experiment is p0+(1�p0)(1�
✓)k, and the probability that first failure occurs in jth experiments is (1 � p0)(1 � ✓)j�1✓.

Therefore, the expected total cost is:
⇥
p0 + (1� p0)(1� ✓)k

⇤
kc+

Pk
i=1(1�p0)(1�✓)i�1✓(i�
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Following this plan, the agent’s ex ante expected gain4 is E
�
a
k(kg

, k
b)
��k, p0

�
.

The agent would accept the contract and run experiments as long as Individual

Rationality (IR) is satisfied, and his ex-ante expected payo↵ is non-negative.

Thus the principal maximises her expected payo↵ conditional on the prior

belief and the number of experiments provided incentives to run:

Max
a(·)2R+

V (k, p0) = E
⇣
�
�
a
k(·)�Mi

�2���k, p0
⌘

s.t : IR : U
A

P
(k, p0) � 0

(2.3.4)

Proposition 2.3.1. In public experimentation:

1) Given the commitment motivates the potential good agent to report k 2 N+

successes, the optimal associated reward scheme is a one-step function at k

(OF), specifically:

OF =

8
<

:
a
k(j < k, 1) = max

n
0, k̃c� p0M

o

a
k(k, 0) = pkM +max

n
0, k̃c� p0M

o (2.3.5)

2) The optimal number k
P
satisfies k  k

P
< 1, where

k =

8
<

:
max{k 2 N : p0M � k̃c} p0M � c

0 p0M < c

Given the principal motivates the potential good agent to report k 2 N+

successes, the optimal reward scheme is a one-step function (OF), and it can

be interpreted as follows: the principal commits that the agent gets a high

reward level if reporting weakly more than k successes without failures, and

he is treated as a bad type if reporting strictly less successes with one failure.

The agent then runs experiments after accepting the contract, and reports all

results he acquires. Thus when any less than k successes are reported, there

is a failure associated.

The participation threshold k is now introduced, which is the largest

number of experiments whose expected total cost can be covered by the agent’s

1)c =
Pk

i=1

⇥
p0 + (1� p0)(1� ✓)i�1

⇤
c =

Pk
i=1

p0

pi�1
c.

4E
�
ak(kg, kb)

��k, p0
�
= [p0 + (1� p0)(1� ✓)k]ak(k, 0) +

Pk�1
i=0 (1� p0)(1� ✓)i✓ak(i, 1).
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k
g

a
k(·)

0 k

ak(k, 0)

ak(j < k, 1)

M

pkM

max
n
0, k̃c� p0M

o

Figure 2.2: OF in public experimentation

prior expected value. When the prior expected value is very low, p0M < c,

it can cover the cost for at least one experiment, in which case k = 0. When

the prior expected value is high, p0M � c, the threshold equals to the round

down of the number of experiments such that the prior expectation equals to

the expected total cost5, p0M = k̃c. When the incentivised number in the

contract is smaller than this threshold, k < k, the agent is willing to carry

out the principal’s desired plan since the prior expectation of agent’s value is

higher than the ex ante expected total cost, p0M � k̃c. Then the principal can

simply assign the bad type’s true value to those facing early failures, and the

posterior expectation, pkM , to those who have achieved the desired number

of successes without failure. These reward levels are the same as the agent’s

self evaluation after learning through experiments.

If the principal incentivises more than the participation threshold, k >

k, she needs to take care of the agent’s individual rationality, IR, to guarantee

the agent’s acceptance of her contract in the first place. Ex ante, it’s too costly

to achieve the desired number of successes without failures, k̃c > p0M . Thus

it becomes optimal to assign a positive reward level to a bad type reporting

one failure, which is just equal to the excess cost—the di↵erence between the

expected total cost and the prior expectation. This can be treated as a reward

5If k is continuous, the threshold number would be the one such that the prior expectation
just equals to the total expected cost. Due to the discreteness of experiment, the threshold
needs to be rounded down.
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for audacity, or compensation for fear of failure, even if the agent’s type turns

out to be bad. If the exact k successes are acquired without failure, the agent

gains a bonus which is equal to the posterior expectation, pkM . It captures the

feature that the principal is risk averse, and she optimally reduces the risk of

making a mistake—assigning weakly a higher level of reward to every ex post

scenario. This is equivalent to the principal paying the excess cost up front

when agent accepts the contract, and incentivise him to collect the bonus if

the desired number of successes are obtained without failure.

In the public experimentation, the principal optimally motivates the

potential good agent to report k
P successes, which is always weakly greater

than the first threshold k. On the one hand, a higher reward is closer to the

true valuation of good type, which is the gain in the ex post scenario where

the agent’s type is good; on the other hand, the loss also increases in ex post

scenarios where the agent’s type is bad. Therefore, the principal is only willing

to push k
P as large as possible if the gain can cover the loss. This k

P must

be finite, since the good type’s value is finite and increasing required successes

without failure would raise losses in every ex post scenario beyond the number

whose associated reward is closest to the good type’s value. A numeric example

is shown below.

Furthermore, Proposition 2.3.1.2) also implicitly shows that it could be

optimal for the principal to motivate no experiments and only assign the single

reward to the agent. It happens when the good agent’s value-cost ratio M

c
is

too low, in which case it’s too costly to motivate the any positive amount of

experiments: the gain from a more accurate reward for the good agent cannot

cover the loss from over-paying the bad type agent.

Example 2.3.1. When ✓ = 0.6, p = 0.4, M = 3 and c = 1, then the participa-

tion threshold number is k = 1. In public experimentation, the optimal num-

ber is kP = 2 and its associated reward scheme is CF =

8
<

:
a
2(2, 0) = 2.86

a
2(j < 2, 1) = 0.44

and the principal’s expected payo↵ is V P (2, p0) = �0.89.
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2.4 Analysis in Private Experimentation

In private experimentation, experiments and results are privately observed by

the agent, thus extra incentives must be provided in the principal’s commit-

ment.

Given j < k successes are acquired without failures in the first j exper-

iments, the agent now is more optimistic that his type is good with posterior

pj, and his continuation payo↵ of continuing experiments would be:

U(k � j, pj) = �c+
p0

pj
U(k � j � 1, pj+1) + (1� pj)✓max

�
a
k(j, 0), ak(j, 1)

 

(2.4.1)

If continuing one experiment, by paying the cost c, he gets one more success

with probability p0

pj
and his continuation payo↵ would be U(k � j � 1, pj+1);

with probability (1� pj)✓, he fails and his posterior belief of being good type

drops to 0. In this case, the bad type agent gets U (k � j, 0), where

U (k � j, 0) = max
n2N+, jnk

max
�
a
k(n, 0), ak(n, 1)

 
� (n� j)

c

1� ✓
(2.4.2)

Now the bad type agent privately learns his type is bad, which the principal

doesn’t observe. He only cares about whether the future experiments can

generate a net benefit since the cost of previous experiments is sunk. On

expectation, when paying the cost c

1�✓
, he can still acquire one more success.

Thus he can over-experiment to get more successes or even continue doing so

until k successes are acquired. Depending on the reward scheme, he decides to

reveal or not reveal the failures. This is called over-experimentation incentive.

If the bad type is doing so, the report is less informative.

After j successes without failures, if the potential good type decides

to stop, he would reveal all the successes and get a
k(j, 0) when the failure

is verifiable, or make a fake failure and get max
�
a
k(j, 0), ak(j, 1)

 
when the

failure is not verifiable. In this deviation, even though the reward is lower,

the potential good agent can save the cost of experiments. Thus the agent’s

incentive of early-stop rises. To motivate the potential good type agent to

continue and fulfil the initial plan, the reward scheme must guarantee that

the continuation payo↵ U(k � j, pj) is higher than that of early-stop, which
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demonstrates the agent’s first type of incentives constraints ICS

j
:

IC
S

j
: U(k � j, pj) �

8
<

:
a
k(k, 0) verifiable failure

max
�
a
k(j, 0), ak(j, 1)

 
unverifiable failure

(2.4.3)

Lemma 2.4.1. When motivating the potential good agent to report k 2 N+

successes, the optimal associated reward scheme satisfies: for 0  j < k,

max
�
a
k(j + 1, 1), ak(j + 1, 0)

 
�max

�
a
k(j, 1), ak(j, 0)

 
 c

1� ✓
(2.4.4)

When a bad type agent’s over-experimentation incentive is taken into

account, Lemma 2.4.1 suggests that, when motivating a positive number of

successes to be reported, the associated optimal scheme always separates the

bad type agent from the potential good type one. The principal prefers to

deliver the bad type agent a reward that is as low as possible, but it also

creates a high incentive of over-experimenting for those who just need a few

successes to pretend to be the potential good ones. Compared to a reward

scheme which makes bad type agents who fail late pooling with the potential

good type ones, the principal can always construct a profitable deviation, in

which the potential good agent receives the same as before but the bad type

agents are now at most indi↵erent between over-experimenting and not. As a

result, the principal makes strictly less loss in this deviation. The constraints in

Lemma 2.4.1 are now the second type of incentive constraints that are designed

to deter the bad type agent’s over-experimentation incentive, ICF

j
, in which

the extra gain from over-experimentation is less than the extra expected cost

of doing so. As a result, the number of motivated successes, which are reported

by the potential good agent, equals to the number of motivated experiments

that the agent needs to conduct without failures.

Given k successes are motivated to be reported by the potential good

agent, there are k � 1 early-stop incentives constraints ICS, and k � 1 over-

experimentation incentive constraints ICF . Together with IR, the principal

faces 2k � 1 constraints.
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2.4.1 Verifiable failures

The verifiability of failures plays a crucial role in determining the optimal

contract o↵ered by the principal. When it’s verifiable, it’s the hard evidence

to prove that the agent indeed has paid the cost, conducted the experiment

and failed. When it’s not verifiable, the such conducted experiment cannot be

proved, and the principal cannot distinguish the agent who fails from those

haven’t undertaken it. This section focuses on the scenario in which failures are

verifiable. The scenario with unverifiable failures is discussed later in Section

2.4.2.

Lemma 2.4.2. In private experimentation with verifiable failures, for k
g
< k,

a
k(kg

, 1) � a
k(kg

, 0) = 0 (2.4.5)

When the failures are verifiable, the agent’s must be a bad type if less

than the required number of successes are reported without failures since the

principal provides enough incentives to the potential good type to continue

experimenting after early success. A reward for honesty can be created by

assigning a weakly higher reward level to those who report a failure. As the

largest punishment to those who pretend to face a failure, the principal then

can simply assign the bad type’s true value, ak(j < k, 0) = 0, if “no failure

presented” when fewer successes are reported. Thus ICS and ICF can be

simplified as:

ICS,V

0jk�1
: U(k � j, pj) � 0

ICF,V

0j<k�1
: a

k(j + 1, 1)� a
k(j, 1)  c

1� ✓

ICF,V

k�1
: a

k(k, 0)� a
k(k � 1, 1)  c

1� ✓

(2.4.6)

Thus, this simplification shows that IR is the same as ICS,V

0
. After the success

in the first trial, the agent is more optimistic, and he is willing to carry out

the remaining experiments. Thus, as long as IR is satisfied, ICS,V

1jk�1
must

be slack, in which the early-stop incentive can be discarded.

These constraints demonstrate that the associated optimal reward scheme

must share the property of screening: a bad type would not blend into a po-
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tential good type, and the potential good type would not pretend to be bad.

However, full screening cannot be achieved here. This is because the agent

can only be more optimistic after more successes are achieved without failure

and treat himself as a potential good type, but he cannot be sure whether he

is a good type or a lucky enough bad type who hasn’t failed yet.

Proposition 2.4.1. In private experimentation with verifiable failures,

1) Given the commitment motivates the potential good type agent to report

k 2 N successes, the associated optimal reward scheme a
k(·) is:

a) CF when k  k̂, where k̂ =

8
<

:
max{k 2 N : pkM  c

1�✓
} p1M  c

1�✓

0 p1M >
c

1�✓

;

b) Type I multi-step function (MF-I) when k > k̂;

2) The optimal number k
⇤
V

satisfies k  k
⇤
V

< 1. Especially, k
⇤
V

= k
P

if

k̂ � k
P
.

Here the over-experimentation threshold k̂ is introduced, which mea-

sures the largest number of reported successes where the agent’s conditional

expected value is weakly smaller than the expected cost of a bad type achiev-

ing a success. Proposition 2.4.1.1.a) shows CF, the optimal cut-o↵ reward

scheme in public experimentation, is still optimal when the motivated number

of experiments is low, and the over-experimentation threshold k̂ determines

the scope of CF in private experimentation with verifiable failures.

The demonstration of the optimal reward scheme at di↵erent value-cost

ratio can be summarised in Figure 2.4. When the agent’s value-cost ratio is

low, M

c
2
⇥
0, 1

1�✓

⇤
, k̂ ! 1, the over-experimentation threshold k̂ doesn’t a↵ect

the optimality of CF. Now optimal commitment is exactly the same as that

in public experimentation. Intuitively, this happens when the good type is

not superior enough or the experimental cost is relatively high. Also, since

the failures are verifiable, once the commitment is made and experiments are

carried out, all reports which have less than the required level of successes

must contain a failure, and the agent would disclose all of the information he

acquires.

When the agent’s value-cost ratio is medium, M

c
2
⇣

1

1�✓
,

1

(1�✓)p1

i
, 0 <

k̂ < 1, in which case the di↵erence between the good and bad type’s values are

not too large, or the cost of a single experiment is relatively low. Now the over-
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experimentation threshold equals to the rounded down number of reported

successes where the agent’s conditional expected value equals to the expected

cost of a bad type achieving a success, pkM = c

1�✓
. When the motivated num-

ber of experiments is lower than the over-experimentation threshold, k  k̂,

and the optimal commitment in public experimentation could still be optimal

in private with verifiable failures, when the over-experimentation threshold is

su�ciently high, k̂ � k
P . However, if the motivated number of experiments

is too large, k > k̂, CF cannot be applied. Consider the following situation

when the first failure occurs at the kth experiment. If the principal still sticks

to CF, the agent would definitely over-experiment since such behaviour would

lead to an extra gain pkM which can cover the expected cost of acquiring one

more success for the bad type. As a result, the incentive constraint ICF,V

k�1
is

violated and report becomes less informative. Therefore, alternative reward

schemes need to be considered, and the optimal one among them is a type-I

multi-step function (MF-I), which is proposed in Proposition 2.4.1.1.b).

Definition 1. Type I multi-step function (MF-I) is a reward scheme such that

ICF,V

ljk�1
are all binding, where l = max{l 2 N : p0M �

P
k

i=l+1

p0

pi

c

1�✓
& 0 

l  k � 1}:

MF-I =

8
>>>>>>>><

>>>>>>>>:

a
k(j < l, 1) = max

n
0, k̃c� p0M

o

a
k(l, 1) = plM �

kX

i=l+1

pl

pi

c

1� ✓
+max

n
0, k̃c� p0M

o

a
k(l < j < k, 1) = (j � l) c

1�✓
+ a

k(l, 1)

a
k(k, 0) = (k � l) c

1�✓
+ a

k(l, 1)

(2.4.7)

The structure of MF-I demonstrates the feature of “setting blocks at the

end”: the di↵erence of rewards between rewards among a neighboured number

of reported successes cannot exceed c

1�✓
, which is the cost level of acquiring

a success for a bad type. For those failures which occurs early enough, that

is before lth experiments, it’s still too costly to over-experiment: the agent is

then happy to stop and report what he acquires, and the reward level could

be same as those in CF at the same level since failures are verifiable. Notice

that, the later the first failure occurs, the stronger the incentive for the agent

to over-experiment. Thus it’s optimal to have ICF,V

ljk�1
be all binding. As a
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result, not only are bad types overpaid, but also they are treated di↵erently

when the first failure occurs in di↵erent experiments: the later the failure, the

higher is the reward associated. Meanwhile, it’s easy to see that when the

required number of successes k are reported, the associated reward level for a

potential good type in MF-I is strictly lower than that in CF6. One example

of MF-I’s structure can be found in Figure 2.3.

k
g

a
k(·)

0 l k

ak(k, 0)

ak(k � 1, 1)

ak(l, 1)

ak(j < l, 1)

M

c
1�✓

c
1�✓

max
n
0, k̃c � p0M

o

plM �
Pk

i=l+1
pl
pi

c
1�✓

Figure 2.3: MF-I in private experimentation (Example: k > 2 and l = k � 2)

If the agent’s value-cost ratio is su�ciently high, M

c
2
⇣

1

(1�✓)p1
,1
⌘
, in

which case the good type is much better than the bad type or the cost of a

single experiment is too low, the agent would over-experiment at any positive

number of reported successes, where k̂ = 0. This leads to all ICF,V are binding.

As a result, the potential good type is still underpaid relative to the agent’s

self-evaluation, but the bad type is overpaid.

Under the optimal reward scheme, the principal still optimally motivate

the potential good type agent to report a number of successes that is higher

than the participation threshold k, even if it exceeds the over-experimentation

threshold k̂. This is because the benefit of making the reward level for a

potential good type closer to the good type’s true valuation M is su�ciently

large to cover the expected increased loss of overpayment in other ex post

scenarios where the type is bad. The lower bound of optimal amount k
⇤
V

is

the same as that in public experimentation, and the exact number depends

6When comparing the reward level to those reporting required k successes without failure

in CF and MF-I, it has pkM � (k � l) c
1�✓ �

⇣
plM �

Pk
i=l+1

pl

pi

c
1�✓

⌘
> 0.
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M

c
0

CF

CF at k  k̂

MF-I at k > k̂ MF-I

1

1�✓

1

p1(1�✓)

Figure 2.4: Optimal reward scheme with verifiable failures at di↵erent value-
cost ratio

on the parameter range, and CF and MF-I are the only possible candidates of

reward scheme. A numeric example is shown below.

Example 2.4.1. When ✓ = 0.6, p = 0.4, M = 3 and c = 1, then the partic-

ipation threshold is k = 1, and the over-experimentation threshold is k̂ = 2.

In private experimentation with verifiable failures, at k = 2, the associated

optimal reward scheme is CF =

8
<

:
a
2(2, 0) = 2.86

a
2(j < 2, 1) = 0.44

, and the principal’s

expected payo↵ is VV (2, p0) = �0.89; at k = 3, the associated optimal reward

scheme is MF-I =

8
>>><

>>>:

a
3(3, 0) = 3.65

a
3(2, 1) = 1.15

a
3(j < 2, 0) = 0.94

, and the principal’s expected pay-

o↵ is VV (3, p0) = �1.19. In the optimal contract, k⇤
V
= 2 and its associated

reward scheme is CF.

2.4.2 Unverifiable failures

The situation becomes more complicated when failures are not verifiable. This

implies that the agent can easily or cheaply lie when reporting failures, which

occurs when the hard evidence of failure is hard to find or stored or cost of

fake evidence is cheap. Thus the principal cannot tell whether the experiment

associated with the failure has been indeed carried out. If it is easy for the

agent to conceal a failure, the idea of “rewarding honesty” in public and private

experimentation with verifiable failures cannot be applied, and Lemma 2.4.2

doesn’t hold. If the principal assigns a strictly higher reward to those reporting
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failures, the potential good type agent would pretend to be a bad type if it’s

beneficial to do so. On the one hand, when pretending to be those who face an

early failure, the gain is smaller than continuing to undertake the remaining

experiments; but, on the other hand, the agent can save experimental costs.

Therefore, the best that the principal can do is to assign the same level to those

reporting less than required number of successes with and without failures, and

ICF,NV and ICS,NV can now be written as:

ICS,NV

0jk�1
: U(k � j, pj) � a

k(j, 0) = a
k(j, 1)

ICF,NV

0j<k�1
: a

k(j + 1, 1)� a
k(j, 1)  c

1� ✓

ICF,NV

k�1
: a

k(k, 0)� a
k(k � 1, 1)  c

1� ✓

(2.4.8)

With the help of incentive constraints above, the agent would disclose all of the

information acquired on the equilibrium path, and “masquerading” behaviour

is deterred: ICF,NV prevent from “pretending to be good” and ICS,NV deter

“pretending to be bad”. Together with IR, there are still 2k � 1 constraints,

whose number is the same as under private experimentation with verifiable

failures, but they are more strict. Thus it’s natural to check whether CF and

MF-I proposed before are feasible, and whether they would still be optimal

if all constraints were satisfied; otherwise, other reward schemes need to be

considered.

Proposition 2.4.2. In private experimentation with unverifiable failures,

1) Given the commitment motivates the potential good type agent to report

kN+
successes, the associated optimal reward scheme is:

a) CF when k  min
n
k̂, k

o
;

b) MF-I when k̂ < k  k;

c) Type II multi-step function (MF-II) when k < k  k̂;

d) Type III multi-step function (MF-III) when k > max
n
k̂, k

o
.

2) The optimal number k
⇤
NV

satisfies k  k
⇤
NV

< 1.

Proposition 2.4.2.1) shows that the structure of the optimal reward

scheme is determined mutually by the participation and over-experimentation

threshold. When the motivated number of experiments is smaller than both,

k < min
n
k̂, k

o
, the agent finds that, in CF, the benefit from early-stop is
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too small, and the cost of over-experimentation after failure is too high. This

happens when the value-cost ratio stays at a medium level, M

c
2
h

1

p0
,

1

(1�✓)p1

i
,

where 0 < k < 1 and k̂ > 0. Instead, when the ratio is su�ciently high or too

low, M

c
2
h
0, 1

p0

⌘
[
⇣

1

(1�✓)p1
,1
⌘
where now k̂ = 0 or k = 0, if the principal still

sticks to a CF scheme, at least one incentive constraint is violated, and the

agent then would either stop earlier without failure or over-experiment after

early failure. As a result, CF is no longer optimal in this case. The discussion

of the optimal reward scheme at di↵erent value-cost ratio when failures are

not verifiable is summarised in Figure 2.6.

Since there is no straightforward way of knowing which threshold num-

ber is larger, di↵erent scenarios need to be discussed. If the participation

threshold is relatively larger, k̂ < k, MF-I is optimal when the number of de-

sired experiments is between the two threshold numbers, k̂ < k  k. Since the

desired number of experiments is still smaller than the participation threshold,

the agent doesn’t gain from pretending to be bad by stopping early without

failure. On the other hand, however, now k > k̂ is large enough to generate a

gain from over-experimentation, specially if a failure occurs when the required

number of successes is almost achieved. Then only ICF,NV need to be attended

to, and MF-I scheme is optimal.

If the over-experimentation threshold is relatively larger, k < k̂, when

the incentivised number k is between two thresholds, the conclusions are dif-

ferent. When k < k̂, the agent is not willing to pretend to be a good type by

over-experimentation since the benefit from such behaviour cannot cover the

cost. However, when k > k, in which the prior expectation cannot cover the

ex-ante expected total cost, the agent find that it’s better to pretend to be a

bad type and receive a relatively smaller reward after accepting the principal’s

contract, among which the worst case is that the agent reports failure imme-

diately without any experiments. To deal with this, the type II step function

(MF-II) is introduced.

Definition 2. The type II multi-step function (MF-II) is a reward scheme such

that ICS,NV

0jm
are all binding, wherem = max{m 2 N : p0M 

P
k

i=m+1

p0

pi�1
c& 0 

m  k � 1}:
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1) When 0  m < k � 1,

MF-II =

8
>>>>>>>><

>>>>>>>>:

a
k(0, 0) = 0

a
k(0 < j  m, 1) =

P
j

i=1

pi

pi�1
c

a
k(m < j < k, 1) =

kX

i=m+1

pm+1

pi�1

c� pm+1M + a
k(m, 1)

a
k(k, 0) = pkM + a

k(m+ 1, 1)

(2.4.9)

2) When m = k � 1,

MF-II =

8
>>>>>>><

>>>>>>>:

a
k(0, 0) = 0

a
k(0 < j < k, 1) =

jX

i=1

pi

pi�1

c

a
k(k, 0) =

kX

i=1

pi

pi�1

c

(2.4.10)

Definition 3. The type III multi-step function (MF-III) is a reward scheme

such that ICS,NV

0jm
and ICF,NV

ljk�1
are all binding, 0  m < l  k � 1:

MF-III =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

a
k(0, 1) = 0

a
k(0 < j  m, 1) =

P
j

i=1

pi

pi�1
c

a
k(m < j < l, 1) =

kX

i=m+1

pm+1

pi�1

c� pm+1M + a
k(m, 1)

a
k(l, 1) = plM �

kX

i=l+1

pl

pi

c

1� ✓
+

kX

i=m+1

pm+1

pi�1

c� pm+1M + a
k(m, 1)

a
k(l < j < k, 1) = (j � l) c

1�✓
+ a

k(l, 1)

a
k(k, 0) = (k � l) c

1�✓
+ a

k(l, 1)

(2.4.11)

MF-II captures the feature of “building stairs at beginning”: the prin-

cipal raises the reward level for those whose first failure occurs at some early

stage to compensate for the high expected total cost, until the agent is op-
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timistic enough to carry out the remaining experiments if no failure occurs.

This implies that this reward scheme makes only the first ICS,NV

0jm
constraints

binding. Then the remaining reward levels in MF-II share the same feature as

those in CF: if the motivated number of successes k is reported, the agent can

claim a bonus pkM . If the value-cost ratio is too small, all ICS,NV are binding,

and steps are built until the very end. These stairs in MF-II have a di↵erent

e↵ect on an agent’s behaviour compared to those blocks at the end of MF-I

where the bad type is deterred from over-experimentation.

If the motivated number k is larger than both of the thresholds, k >

max
n
k̂, k

o
, the agent has an incentive to stop earlier without failures at be-

ginning and to over-experiment at the end. On the one hand, due to k > k,

the agent finds that the ex ante expected total cost is too high to follow the

planned commitment, and he would be better o↵ by stopping earlier without

failure. On the other hand, since k > k̂, even if previous incentives are solved,

the agent would over-experiment since pretending to be good type is more at-

tractive than ceasing to experiment. Therefore, both types of incentives need

to be addressed, and the type III step function (MF-III) is optimal among all

feasible alternatives.

MF-III then is the mixture of MF-I and MF-II: stairs at beginning

and blocks at the end. In this reward scheme, the first ICS,NV

0jm
and the

last ICF,NV

ljk�1
are binding. At the beginning, the principal raises the re-

ward level for those facing early failure to guarantee experiments are con-

ducted; when enough experiments have been carried out, she sets blocks by

fixing the neighboured number of reported good successes at c

1�✓
to deter over-

experimentation. Examples of MF-II’s and MF-III’s structure are shown in

Figure 2.5.

Proposition 2.4.2.2) shows that the lowest possible optimal number of

experiments motivated by the principal equals to the participation threshold,

k
⇤
NV

� k, which is consistent with public and private experimentation with

verifiable failures. One numeric example is shown below.

Example 2.4.2. When ✓ = 0.6, p = 0.4, M = 3 and c = 1, then the partic-

ipation threshold is k = 1, and the over-experimentation threshold is k̂ = 2.

In private experimentation with unverifiable failures, at k = 1, the associ-
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Figure 2.5: MF-II and MF-III in private experimentation (Example: m = 2,
l = k � 2)
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Figure 2.6: Optimal reward scheme with unverifiable failures at di↵erent value-
cost ratio

ated optimal reward scheme is , CF =

8
<

:
a
1(1, 0) = 1.88

a
2(0, 1) = 0

, and the principal’s

expected payo↵ is VNV (1, p0) = �1.35; at k = 2, the associated optimal re-

ward scheme is MF-II =

8
>>><

>>>:

a
2(2, 0) = 3.11

a
2(1, 1) = 0.69

a
2(0, 1) = 0

, and the principal’s expected

payo↵ is VNV (2, p0) = �0.9993; at k = 3, the associated optimal reward
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scheme is MF-III =

8
>>>>>><

>>>>>>:

a
3(3, 0) = 4.17

a
3(2, 1) = 1.67

a
3(1, 1) = 1.46

a
3(0, 1) = 0

, and the principal’s expected payo↵

is U
P

NV
(3, p0) = �1.68. In the ptimal contract, k⇤

NV
= 2 and its associated

reward scheme is MF-II.

2.4.3 Comparisons between Public and Private Exper-

imentation

Previous results have characterised the properties of the optimal reward scheme

given di↵erent motivated numbers of experiments, and showed that the opti-

mal number must be weakly larger than the participation threshold k, which

is the largest number of experiments whose expected total cost can be covered

by the agent’s prior expected value. However, these results don’t suggest that

it’s always optimal to motivate a positive number of experiments.

Corollary 2.4.1. There exist parameter ranges such that the principal is better

o↵ conducting no experiments and assigning a single reward level p0M to both

types.

Imagine the case when the cost of an experiment is very high, which

implies the excess cost is also prohibitively high. Thus, the principal finds it’s

too costly to incentivise a single experiment, even if a success can help improve

posterior beliefs. Following similar reasoning, when the value-cost ratio, M

c
, is

too low, the principal would not motivate the agent to run any experiments,

since the benefit from improving the precision of reward is not enough to cover

the cost of doing so.

Corollary 2.4.2. When
M

c
 1

1�✓
, private experimentation with verifiable

failures is equivalent to public experimentation.

Corollary 2.4.2 suggests that, when the value-cost level is low, the prin-

cipal’s optimal contract and the e�ciency level in private experimentation with

verifiable failures are the same as the public one. When M

c
<

1

1�✓
, k̂ ! 1,

and the over-experimentation threshold doesn’t play a role since the extra gain
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from over-experimentation is too low. As a result, in private experimentation

with verifiable failures, the principal can optimal motivate the same number

of experiments by CF as that in public information environment.

When the value-cost ratio is increasing, it shows that a good type

agent becomes relatively more valuable, or the experimental cost is relatively

cheaper. Thus the prior expectation now can cover larger numbers of exper-

iments, meaning the participation threshold k becomes larger. In the public

case, the excess cost is also getting smaller, implying the reward levels for both

types become more precise and closer to the posterior beliefs. As a result, the

principal is willing to weakly increase the optimal number of experiments,

which is the positive e↵ect.

Proposition 2.4.3. 1) as
M

c
increases, k and k

P
are increasing and k̂ is

decreasing;

2) k
⇤
V
and k

⇤
NV

are increasing as M increases.

When the value-cost ratio is getting larger, the over-experimentation

threshold k̂ becomes smaller, which leads that it becomes more attractive to

deviate for a bad type who fails when only one more success is needed to

prove he is a potential good type. Thus the bad type in such situation has the

strongest incentive to over-experiment and it’s easier to violate the original

incentive constraint. As a result, the principal needs to distort the reward

scheme at an earlier point of failure to prevent such behaviour, so that the

imprecision occurs at an earlier stage and the principal is willing to reduce the

number of experiments. This is the negative e↵ect, but it is not the only e↵ect.

Since the participation threshold also increases in the private case, it’s not

clear which e↵ect dominates. If the increasing of the value-cost is solely from

the increasing of the good type’s value M , then the positive e↵ect dominates,

and the principal is willing to raise the optimal number of experiments; if the

value-cost ratio increases only due to increase in the cost of experiments, the

result is ambiguous.

Now consider the reward levels that di↵erent types received under the

optimal reward scheme. For a bad type whose value is zero, he can achieve

a (weakly) positive reward level as long as he accepts the contract o↵ered

by the principal. In the public case, the principal pays the excess cost to
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ensure that the agent does not deviate from conducting experiments. In the

private case, bad types who fail early would receive di↵erent reward levels,

which are increasing as the early failure occurs later. As a result, even if the

agent learns his type is bad after observing an early failure, he can still receive

something from the principal, which is weakly higher than his true value.

Now both the principal and the agent have the posterior belief pk, and the

agent’s a posterior expectation is pkM . The agent can now receive the highest

reward level in the associated optimal reward scheme. In the public case, the

potential good type can receive the amount of the posterior expectation as

a bonus, on top of the excess cost. The reward level is now higher than the

posterior expectation. However, in the private case, due to the distortion from

the over-experimentation threshold, the highest reward level should cooperate

with other reward levels for the bad type to guarantee the informativeness of

reported successes, and result is ambiguous when comparing to the posterior

expectation level.

Proposition 2.4.4. 1) A bad type is always overpaid in both the public and

private cases;

2) A potential good type is overpaid in the public case, but this doesn’t always

hold in the private case.

2.5 Extensions

2.5.1 Bad Luck

Now a small probability of bad luck is introduced. In each experiment, the

bad luck occurs with a small but strictly positive probability � 2 (0, 1), in

which both types fail. It’s privately observed by the agent when bad luck

occurs. This can be considered as an exogenous negative shock which causes

the failure of both types, for instance, a bad health condition causes a capable

candidate to fail a CFA test.

When the bad luck occurs in an experiment, a failure occurs. This

negative shock provides no information about the agent’s quality, and the

principal may still want the agent to continue if not enough successes are

acquired. Thus, the principal can tolerate more failures which are caused only
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by bad luck. Also, since the bad luck may happen in every experiment, the

number of failures are uncertain before experiments are carried out. Thus the

principal optimally assigns them the same reward level,

a
k

B
(kg

, k
b
> 1) = a

k

B
(kg

, 1) and a
k

B
(k, 0) = a

k

B
(kg

, 1) (2.5.1)

Now the term “k experiments incentivised to run” in a
k

B
(kg

, k
b) means k exper-

iments which are not a↵ected by bad luck. Due to the presence of the failure

caused by the bad luck, a potential good type now can easily masquerade as a

bad type to save future cost. Thus, when bad luck arrives, the principal still

needs the agent’s expected benefit from continuing initial plan to be higher

than stopping immediately and reporting results,

ICS,B

0jk�1
: UB(k � j, pj) � a

k

B
(j, 1) � a

k

B
(j, 0) (2.5.2)

If failures are verifiable, Lemma 2.4.2 holds then a
k

B
(j < k, 0) = 0; if they are

not, then a
k

B
(j, 1) = a

k

B
(j, 0). Meanwhile, those who have already learned that

they are a bad type should be deterred from further experimentation, and the

incentives are given such that the benefit from over-experimentation to acquire

one more success is lower than its cost, where

ICF,B

0j<k�1
: a

k

B
(j + 1, 1)� a

k

B
(j, 1)  c

(1� ✓)(1� �)

ICF,B

k�1
: a

k

B
(k, 0)� a

k

B
(k � 1, 1)  c

(1� ✓)(1� �)

(2.5.3)

Then it’s easily seen that the incentives provided are the same as conditions

(2.4.8) in private experimentation with unverifiable failures and no bad luck,

in which the cost level is c

1��
. Therefore, the associated reward scheme would

be the same as that in proposition 2.4.2 at a di↵erent cost level. Also, since the

cost is higher, the ex ante expected total cost is higher, leading the threshold

number k, the number for which the prior expectation can cover the ex ante

expected total cost, to be lower. Under the optimal commitment, the agent

continues to experiment until either the first failure, which is not caused by bad

luck, occurs, or the required number of successes are achieved. Also, the agent

is indi↵erent between reporting one failure and not. Results are summarised
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in the following proposition, where all types may obtain more than one failure.

Proposition 2.5.1. When a bad luck exists with probability � 2 (0, 1) in

each experiment and is privately observed by the agent, the associated optimal

reward scheme is the same as that in private experimentation with unverifiable

failures and no bad luck at cost level
c

1��
.

2.5.2 Finite Opportunities for Experimentation

Up to this point, it has been assumed that the agent can conduct an infinite

number of experiments. Imagine now a scenario where opportunity T is finite,

T < 1. Firstly, consider the situation in which the number of experiments

provided incentives to run is k < T . The participation incentive constraints

should be the same as ICS shown previously, since these motivate the agent

to run a su�ciently number of experiments. Suppose the agent fails at the

kth experiment. To prevent the agent from pretending to be a potential good

types by over-experimentation, the following condition must be satisfied:

(1� ✓
T�k)

1� ✓

�
�c+ (1� ✓)ak

F
(k, 0)

�
+ ✓

T�k
a
k

F
(k � 1, 1)  a

k

F
(k � 1, 1)

=) � c

1� ✓
+ a

k

F
(k, 0)  a

k

F
(k � 1, 1)

(2.5.4)

Similar constraints can be obtained for j < k�1. Notice that these are exactly

the same as ICF shown previously, so the optimal reward scheme should be

the same as before.

If the incentive is to run T experiments, the constraints are slightly

di↵erent. Imagine that the agent fails for the first time in Tth experiments.

Now he has no further opportunity to continue experimenting, and the only

remaining option is to disclose results selectively. Thus the principal only

needs to motivate the agent to disclose information as her desire. For an early

first failure in jth experiments where j < T , the agent may still continue ex-

perimenting to get a higher reward level, thus ICF

0j<T�1
must be satisfied.

On the side of ICS constraints, stopping early without failure can be inter-

preted as revealing that the agent is bad type when failures are verifiable, and

a
k

F
(kg

< k, 0) = 0 would be optimal and CF scheme is optimal; when failures

are not verifiable, the principal still needs to provide incentives to prevent the

60



agent from pretending to be a bad type, which would be the same as ICS,NV

0jT�1

in (2.4.8).

Proposition 2.5.2. When the number of private experiments T is finite, given

the commitment motivates the potential good agent to report 0 < k  T exper-

iments,

1) If k < T , the associated optimal reward scheme is the same as that proposed

in T ! 1;

2) If k = T , the associated optimal reward scheme is CF when failures are

verifiable; when failures are not verifiable, CF is optimal if T  k, and MF-II

is optimal otherwise;

3) The optimal number is the same as that in the public case with T ! 1
when T is su�ciently large.

Proposition 2.5.2 shows that the reward schemes proposed in section

2.4 are still optimal at every positive number of experiments, even if the agent

cannot conduct experiments infinitely. Pushing motivated number of experi-

ments to the boundary T can mitigate incentives for misbehaving, especially

when failures are verifiable the same reward scheme in public experimenta-

tion, CF, can be applied. However, the proposition above also shows it is not

always optimal to do so. When the boundary is su�ciently loosen, in which

case T is su�ciently large, it doesn’t help to improve the principal’s benefit,

and the optimal amount stays the same as that in the scenario with infinite

opportunities, T ! 1.

2.6 Conclusion

This chapter characterises the properties of the principal’s optimal commit-

ment when the agent can privately run costly experiments and selectively

report favourable results.

The single cut-o↵ function, or one-step function, is the optimal reward

scheme in public experimentation, and it is still optimal in the private sce-

nario if the motivated number of successes reported by the potential good

agent is small and the agent’s incentives to deviate from the intended path of

experimentation are weak. When this number rises, a multi-step function is
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introduced, where a bad type agent receives a di↵erent level of rewards when

reporting di↵erent numbers of successes. These di↵erent levels feature two po-

tential types of agent’s incentives of deviation in a private environment, which

encourage a potential good type agent to continue experimenting after early

successes of block a bad type agent from over-experimentation after an early

failure. Moreover, the principal faces a trade-o↵ when determining the optimal

motivated number of successes, which is at least the largest number whose ex-

pected total cost can just be covered by the prior expectation of the good type

agent’s value. These results are robust when introducing finite opportunities

for experiments or privately observed bad luck.

There is still room to improve upon the current work, which only consid-

ers the scenario of learning from bad news. In future research, a more general

setting on information structure could be considered, and it would also be

interesting to introduce the strategic third party that designs experiments.
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Chapter 3

Private Experimentation and

Persuasion

3.1 Introduction

A candidate on the job market needs to show su�cient quality in his CV to

persuade an employer to employ him and to negotiate a good salary. The

candidate undertakes various activities to signal skills and learning. For in-

stance, he studies hard to achieve a high GPA, undertakes an internship, or

sits professional certification exams such as the CFA. The employer is usually

skeptical about the candidate’s own reporting since most of these activities

are private. The agent will disclose success to send a positive signal to the

employer but when a failure occurs, the candidate may conceal the outcome,

or the participation in the activity, or the number of attempts at the activity.

These considerations potentially undermine the informativeness of the candi-

date’s CV. The question then arises: how many achievements are su�cient for

the candidate? How does the employer interpret the candidate’s CV? when

making a salary o↵er?

When selling a new software, a technology firm needs to show that the

product has been thoroughly tested. The client doesn’t usually observe which

tests are undertaken before the firm disclose them and he is skeptical about the

results, since the firm can disclose fewer results or even retake the same tests

multiple times until the product passes. Therefore, how many test attempts
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and how many good results does the firm need to show?

This chapter considers a situation in which an uninformed agent per-

suades a principal for a high reward (evaluation) through private experimen-

tation. The agent’s type is initially unknown, and is either good or bad. The

type can be learned through experiments. The information structure of an

experiment is asymmetric: a good type agent always succeeds and a bad type

agent can fail with positive probability. The result generated in an experi-

ment is hard evidence, which can be forged. Since the experiments and results

are privately observed, the agent has infinite opportunity for experimenting

and he can selectively report the favourable results. The principal without full

commitment delivers a reward to the agent based on the disclosed results, who

cares about the precision of the evaluation.

I characterise three possible types of equilibria given the restriction on

the principal’s o↵-equilibrium path belief: no-experiment equilibrium, sepa-

rating equilibria with learning and pooling equilibria with learning. In the

first type, the agent doesn’t conduct any experiments and receives his prior

expected value as the reward. This equilibrium always exists as long as the

principal’s o↵-equilibrium path belief makes the agent worse o↵ by conducting

any positive amount of experiments. In a separating equilibrium with learn-

ing, the agent would stop experimenting either when he has acquired enough

successes without failures or when he fails before that. In this case, the bad

type agent will over-experiment since the extra benefit is less than his ex-

pected cost of doing so. Thus the disclosed successes are informative, where

the bad type agent has been separated from the potential good ones. This

type of equilibrium exists when the agent’s value-cost ratio is medium and the

number of successes reported by the potential good type is small. In a pooling

equilibrium with learning, some bad type agents would over-experiment and

report the same number of successes as the potential good ones’ when their

first failures arrive late enough. The agent’s report becomes less informative,

and the reward for the potential good type agent falls. This type of equilib-

rium exists when the agent’s value-cost ratio is not too low and the number

of successes reported by the potential good type is su�ciently high.

Moreover, I show that both the participation threshold and the over-

experimentation threshold a↵ect the set of equilibria. The participation thresh-
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old is the largest number of experiments whose expected total cost can be

covered by the agent’s prior expected value. It determines the upper bound of

the entire set of equilibria, which is the largest possible number of successes

reported by the agent on the equilibrium path. For any number of experi-

ments over this, the agent be better o↵ by deviating and not conducting any

experiments. The over-experimentation threshold measures the largest num-

ber of successes where the agent’s conditional expected value is smaller than

the expected total of acquiring one more success by a bad type agent. It is

also the boundary between the separating and pooling equilibria with learn-

ing. When the number of successes reported by the potential good type is less

than the over-experimentation threshold, a bad type agent will not continue

experimenting after a failure.

When the agent’s value-cost ratio or the prior belief increases, the agent

is willing to conduct more experiments. On the one hand, it leads the partic-

ipation threshold rises and the set of equilibria expands as well.On the other

hand, a bad type agent has stronger incentive to over-experiment after he has

failed since the extra benefit also rises. Thus the over-experimentation thresh-

old falls, which also causes that the set of separating equilibria with learning

shrinks. As a result, the principal believes that it’s easier for a bad type agent

to over-experiment, and the set of pooling equilibria with learning expands.

When the probability of succeeding for a bad type agent increases, a positive

compound e↵ect on the participation threshold also suggests that the set of

equilibria expands. However, its e↵ect on the over-experimentation threshold

is ambiguous.

When the agent can pre-commit to the number of successes he plans to

acquire to prove that he is a potential good type, I show that the agent tends

to commit to the number that is as small as possible. This is because the

fear of failure deters his willingness to experiment, and his optimal decision

would as close as possible to that in the public experimentation scenario. His

optimal commitment is also constrained by the restriction on the principal’s

o↵ equilibria path belief.

The rest of the chapter is organised as follows. Section 3.2 summarises

the related literature. The setup of the model and the benchmark are demon-

strated in section 3.3. Section 3.4 discusses the analysis of the equilibria,
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and section 3.5 considers the agent’s commitment. Section 3.6 concludes. All

proofs not shown in the main text are given in Appendix C.

3.2 Literature Review

This paper is related to the literature about private experimentation. The clos-

est work are by Felgenhauer and Schulte (2014) and Fu (2017). Felgenhauer

and Schulte (2014) characterise the parameter range in which the persuasion

equilibria with cut-o↵ rule exist in costly private experimentation with sym-

metric information structure. In their work, the receiver makes a binary deci-

sion, and the sender applies a sanitisation strategy in which all unfavourable

results are concealed. In contrast, my model considers an asymmetric infor-

mation environment, and the principal assigns the reward level according to

the disclosed information rather than a binary approval decision. The princi-

pal’s strategy on the equilibrium path shares the property of the cut-o↵ rule,

but the discussion of her o↵-equilibrium path belief is absent in their work.

Fu (2017) discusses the principal’s optimal contract for evaluating the agent

based on the reported experimental results, in which the principal can o↵er a

reward scheme before experiments are conducted. In contrast, the principal

doesn’t have full commitment in the current work, and she can only assign a

reward based on her posterior belief. Also, this work also discusses the agent’s

commitment, which is absent in the other papers.

Henry (2009) also considers a scenario in which the agent can pre-

commit to the number of experiments, and he cannot stop until all experiments

have been conducted regardless of their results. My work di↵ers in allowing

the agent to decide whether to continue after each experiment. Felgenhauer

and Loerke (2013) compares public experimentation and private experimen-

tation with symmetric information structure. Both works conclude that the

agent tends to the public experimentation as less experiments are conducted,

and Felgenhauer and Loerke (2013) also show that there is a deterrence e↵ect

which makes the principal and the agent better o↵ in private experimentation.

My work, by comparison, shows that the agent is weakly better o↵ in public

experimentation, but the deterrence e↵ect doesn’t exist due to the presence of

asymmetric information structure.
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This work relates to literature in strategic experimentation. Bergmann

and Hege (2005) shows the optimal way to finance an innovative project with-

out full commitment, Henry and Ottaviani (2014) show that the principal free

rides on the agent’s experiments when results are public information, and Ha-

lac and Kremer (2017) show that ine�ciency is increased due to the agent’s

career concern in a bad news setting. In most cases where results are private

information, the principal or the receiver can use the timing of when they ob-

serve success to determine the monetary transfer: this is a key di↵erence from

the current model, which does not include such timing.

This work also relates to literature on information disclosure and per-

suasion. Rayo and Segal (2010) and Kolotilin (2015) focus on the sender’s

optimal mechanism; Kamenica and Gentzkow (2011) finds the optimal way

for the sender to design the structure of the experiment, and Bergemann,

Bonatti and Smolin (2015) consider a monopolist who can design the exper-

iment and set the selling price. They all focus on public experimentation,

where results can be publicly observed. In contrast, My work mainly focuses

on the private case, and also compared the di↵erence between public and pri-

vate case. Glazer and Rubinstein (2004, 2006) and Hart, Kremer and Perry

(2017) analyse the commitment in evidence games where the agent’s set of

hard evidence is exogenously given. Compared to them, the agent can pri-

vately generate hard evidence given his type in my work. DeMarzo, Kremer

and Skrzypacz (2017) also consider an uninformed agent who chooses one test

among many di↵erent tests and strategically reveals the result to the market.

In their paper the market is competitive, and the agent has only one chance

to take a test, in which the null result with positive probability is introduced

and is not verifiable. The decision of the principal in my work shares the same

property as that of the competitive market. Compared to DeMarzo, Kremer

and Skrzypacz (2017), the information structure of the experiment is exoge-

nously given in my work, and it has the property of the softest test in which

the good type always succeeds but the bad type fails with positive probability.

Also, in my work, the agent has infinite opportunity for experimenting even

though the information structure of the test is fixed. My work also discusses

the agent’s optimal commitment, which is absent in theirs.

This work can be compared to literature on signalling, for example
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Spence (1973). In their models, there is no learning process for the agent, and

every type of agent can costly mimic the behaviour of others for a price. In

contrary, in my work, the agent has to learn his type first through the ex-

periments. Also, when the reported number of successes increases, it’s harder

for a potential good type agent to separate himself from the bad types as the

incentive for pooling is also increasing, and this is di↵erent from that in the

literature.

3.3 Model

3.3.1 Description of the model

A risk-neutral agent (he) wants to get a reward (or evaluation) from a principal

(she) who has no full commitment. The agent is either good (G) or bad (B),

whose type Mi is initially unknown, where Mi 2 {M, 0} and i 2 {G,B}. A

common prior is shared. With probability p0, his type is good and the value

is MG = M ; with probability 1� p0, his type is bad and the value is MB = 0.

p0 2 (0, 1) and M 2 R+.

The agent can learn and prove his type through the private experiments.

The cost of each experiment is constant c, where c 2 R+, and the number of

opportunities is infinite. In each experiment, a good type agent can always

succeed; however, a bad type can only succeed with probability 1�✓, where ✓ 2
(0, 1). The result in an experiment is hard evidence, which cannot be forged.

After the kth experiment in which the agent has acquired n
g successes and n

b

failures, he decides whether to continue experimenting, S
�
n
g
, n

b
�
= 0, or to

stop and disclose the experimental results, S
�
n
g
, n

b
�
= 1, where k, ng

, n
b 2 N,

k = n
g + n

b and S : N ⇥ N ! {0, 1}. Once the agent reveals the results,

he cannot run any further experiments. Moreover, since the experiments and

results are privately observed by the agent, he can selectively report a subset

of the acquired results which consists of kg successes and k
b failures, where

k
g
, k

b 2 N, kg  n
g and k

b  n
b.

Based on the agent’s report, the principal assigns a reward to the agent,

and the reward level is a : N⇥N ! R+. The principal has no full commitment,

and only cares about the precision of the reward. Specifically, given the reward
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a and the agent’s type Mi, her payo↵ function is: v(a,Mi) = �(a � Mi)2.

Meanwhile, the agent only cares about the reward level, and his payo↵ function

is: u(k, kg
, k

b) = a� kc. The timing of the game is shown as follows:

1. The agent runs experiments.

2. The agents selectively report the experimental results.

3. The principal gives the reward to the agent according to the report.

4. Payo↵s are realised.

Histories and Equilibrium. After the kth experiment, the agent’s private

history consists of the number of experiments he has run and the number

of successes and failures which he has acquired, h
A

k
=
�
k, n

g
, n

b
�
, and his

posterior belief is p
A

(ng ,nb)
= Pr(Mi = M |ng

, n
b). If he stops and reports

k
g success and k

b successes, his expect payo↵ is E
⇥
u(k, kg

, k
b)|nb

, n
g
, k

g
, k

b
⇤
;

instead, if he continues experimenting, he pays the experimental cost c, and

gains U

✓
p
A

(ng+1,nb)

◆
when he succeeds with probability p

A

(ng ,nb)
; however, if he

fails with probability 1� p
A

(ng+1,nb)
, he can only receive U

✓
p
A

(ng ,nb+1)

◆
. Thus

his expected payo↵ U(pA
(ng ,nb)

) after the kth experiment would be:

U

⇣
p
A

(ng ,nb)

⌘

=
⇣
1� S(ng ,nb)

⌘ h
�c+ p

A

(ng ,nb)U
⇣
p
A

(ng+1,nb)

⌘
+ (1� p

A

(ng ,nb))U
⇣
p
A

(ng ,nb+1)

⌘i

+ S(ng ,nb)E
⇥
u(k, kg

, k
b)|nb

, n
g
, k

g
, k

b
⇤

(3.3.1)

After experimental results are disclosed, the public history consists of

the number of successes and failures which the agent reports, hP =
�
k
g
, k

b
�
.

The principal’s posterior belief now is pP
(kg ,kb)

= Pr(Mi = M |kg
, k

b), and her

expected payo↵ is E
⇥
v(a,Mi)|kg

, k
b
⇤
.

I restrict attention to the set of Perfect Bayesian Equilibria (PBE) in

the pure strategy, and a candidate equilibrium can be described as a collection⇢n
S
E

ng ,nb

o

ng�0,nb�0

, (kg

E
, k

b

E
), aE, pE

�
, which satisfies the following conditions:

• Sequential Rationality : the agent’s strategy

✓n
S
E

ng ,nb

o

ng�0,nb�0

, (kg

E
, k

b

E
)

◆
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maximises U

✓
p
A

(ng ,nb)

◆
; given the agent’s report, the principal’s strategy

a
E maximises E

⇥
v(a,Mi)|kg

, k
b
⇤
;

• Belief Consistency : when
�
k, (kg

, k
b)
�
=
�
k
E
, (kg

E
, k

b

E
)
�
,
�
k, (kg

, k
b)
�
is

“on the equilibrium” and p
E

(kgE ,kbE)
= p

P

(kgE ,kbE)
, which is determined by

Bayes’ rule; otherwise, (k, (kg
, k

b) is “o↵ the equilibrium”, and it requires

p
P

(kg ,kb)
2 [0, 1].

In this paper, the o↵-equilibrium path belief is refined by the belief monotonic-

ity : given the equilibrium level of the reported failure(s) k
b

E
, the principal’s

belief weakly increases if more successes are reported with zero probability;

given the equilibrium level of the reported success(es) kg

E
, the principal’s be-

lief weakly decreases if more failures are reported with zero probability. This

refinement can simplify the conditions for the existence of equilibria, and the

conclusion would still be robust without it.

3.3.2 Benchmark: public experimentation

Consider public experimentation as a benchmark for studying the model. The

experiments and results are publicly observable in this situation, and the agent

cannot hide any unfavourable results, nor claim that he hasn’t conducted any

experiments. Thus the principal’s belief coincides with the agent’s, pP
(kg ,kb)

=

p
A

(ng ,nb)
. Claim 3.3.1 suggests that the principal optimally has the reward level

a
⇤(pP ) equal to the agent’s conditional expected value given her belief pP . This

is a standard result in the evidence game by Hart, Kremer and Perry (2017),

due to the single peakedness of the principal’s payo↵ function.

Claim 3.3.1. Given the principal’s belief p
P

(kg ,kb)
,

a
⇤ �

k
g
, k

b
�
= E

⇥
v(a,Mi)|kg

, k
b
⇤
= p

P

(kg ,kb)M

Proof. Given the principal’s belief pP , she solves the following maximisation

problem:

max
a2R+

E
⇥
� (a�Mi)

2 |kg
, k

b
⇤

=) max
a2R+

� p
P (a�M)2 � (1� p

P )a2
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Thus the optimal solution is a⇤
�
k
g
, k

b
�
= a

⇤(pP
(kg ,kb)

) = p
P

(kg ,kb)
M .

Given the agent has run k experiments and no failure occurs, both

parties are more optimistic on that the agent is a good type, and the posterior

belief is updated according to Bayes’ rule:

Pr(Mi = M |k, 0) = p0

p0 + (1� p0)(1� ✓)k
= pk (3.3.2)

In this case, the agent receives pkM as reward, and the total cost is kc. How-

ever, if the first failure occurs in j + 1th experiment, where j 2 N and j  k,

both parties learn that the agent’s type is bad as only a bad type fails in an

experiment. The agent receives zero even if he has j successes and has paid

cost jc, and he has no incentive to conduct any further experiments since the

principal has observed the failure. This implies that, if the agent plans to stop

experimenting after acquiring k successes, he would stop experimenting when

either k successes have been achieved without failure, or when a failure occurs

before that. Thus, the agent’s continuation payo↵ at beginning CU
P (p0) can

be simplified as:

CU
P (p0) = S(0,0)p0M+

�
1� S(0,0)

� ⇣
p0M � k̃c

⌘
, where k̃ =

kX

i=1

p0

pi�1

(3.3.3)

k̃ can be interpreted as the expected number of experiments that the agent

runs, which is simply equal to the sum of the ratio of the prior and posterior

beliefs.

Lemma 3.3.1. In public experimentation, the agent doesn’t run any experi-

ments and a
P (p0) = p0M .

Proof. Notice that p0M > p0M � k̃c for 8k � 1 since c > 0, thus S
P

(0,0)
= 1

and a
P (p0) = p0M .

Lemma 3.3.1 shows that the public results of the experiments deter the

learning process: the agent would never run experiments in public as long

as the cost of the experiment is positive, regardless of the prior belief. The

principal has no full commitment, thus she cannot commit to only assign a

positive reward level to those who achieves a certain amount of successes. For
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the agent, the fear of failure stops him at the outset, and he doesn’t learn

anything in this case.

3.4 Equilibrium analysis

Now consider the case where experiments and results are private. Since the

success is positive evidence of a potential good type, the agent would disclose

all of his successes, where k
g = n

g. Recall that only a bad type fails in an

experiment, thus the agent is not willing to reveal failure(s) if any. If he

does reveal the failure, the principal immediately learns that the agent is a

bad type, and would give him zero. He also cannot forge a success since it’s

hard evidence. Alternatively, the agent can claim that he hasn’t run many

experiments and achieves only successes. By doing so, he receives the at least

the same as that when disclosing the failure(s). At the stage of disclosing

evidence, these are the standard results in information disclosure literature.

Moreover, since the experiments and results are private information

before disclosure, a bad type agent can still continue conducting experiments

and collecting more successes with positive probability as many times as he

wants. This is called over-experimentation behaviour.

Lemma 3.4.1. In any equilibrium, a potential good type agent conducts weakly

more experiments than a bad type does.

Lemma 3.4.1 suggests that a potential good type always has weakly

more successes relative to a bad type agent. This is because a bad type agent

has a higher expected cost of acquiring one more success, and it’s easy for a

potential good type to separate himself from the bad type by conducting more

experiments with less cost. As a result, in general, only three possible scenarios

regarding the behaviour “on the equilibrium path” need to be considered:

• No experiment equilibrium: the agent doesn’t run any experiments.

• No over-experimentation scenario (separating equilibrium with learning):

the agent plans to run k > 0 experiments at the beginning, and stops and

discloses all the successes when he acquires k successes without failure(s)

or when he fails before that.
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• Over-experimentation scenario (pooling equilibrium with learning) : when

the first failure occurs after some early successes, he continues to exper-

iment until k successes are acquired; otherwise, he stops immediately.

In the scenarios without over-experimentation behaviour, the agent

would stop experimenting once he has learned that his type is bad on the

equilibrium path. Thus the potential good type is separated, and the bad

type would receive zero even if he might still have some successes. The exper-

imental results are informative, where p
P

(k,0)
= p

A

(k,0)
= pk. This is similar to

the separating equilibrium in a signalling game, but it’s not the same as the

agent needs to learn his type through the costly experiments.

In the scenario with over-experimentation behaviour, the experimental

results become less informative. Suppose again the first failure occurs in j+1th

experiments when the agent plans to acquire k successes at the very beginning,

where 0  j < k. If he stops and discloses the j successes that he has achieved,

the principal’s posterior belief is pP
(j,0)

and the reward level would be p
P

(j,0)
M .

Instead, if the agent continues experimenting, the expected experimental cost

to guarantee another k�j successes would be k�j

1�✓
c, and he can receive pP

(k,0)
M .

Therefore, the agent is always willing to do so if the extra benefit is larger than

the expected cost, in which case the following condition is satisfied:

�
p
P

(k,0)
� p

P

(j,0)

�
M >

k � j

1� ✓
c (3.4.1)

Assume now condition (3.4.1) is violated at j � 1. Since p
P

(j,0)
is weakly in-

creasing and the right hand of condition (3.4.1) is decreasing as j increases,

the bad type agent who fails after j + 1
th
experiment would also have the over-

experimentation incentive as condition (3.4.1) is also satisfied for him. With a

similar argument, the bad type agent who fails before the j + 1th experiment

would stop immediately as the expected net benefit from over-experimenting

is negative. As a result, the principal’s belief on the equilibrium path, pP,O
(k,0)

,
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is updated according to the Bayes’ rule:

p
P,O

(k,0)
=

p0

p0 + (1� p0)(1� ✓)k| {z }
agent hasn’t failed

+
k�1X

i=j

(1� p0)(1� ✓)i✓

| {z }
agent fails after j + 1th experiment

=
p0

p0 + (1� p0)(1� ✓)j
= pj < pk

(3.4.2)

This result implies that the principal now has a lower posterior belief on that

the agent is good when k successes are reported. Also, the informativeness

of the reported successes is less relative to the separating equilibrium with

learning. As a result, the potential good type is also worse o↵.

Lemma 3.4.2. In any equilibrium where the potential good type agent reports

k > 0 successes, a
E (kg

< k, 0) = 0.

Proof. In both of the scenarios above, only the bad type agent reports less

successes on the equilibrium path, thus p
P

(kg<k,0)
= 0 and a

E (kg
< k, 0) =

p
P

(kg<k,0)
M = 0.

Lemma 3.4.2 suggests that the number of successes reported by the po-

tential good type agent on the equilibrium path plays a role in the acceptance

threshold, in which the principal only recognises the agent as a bad type when

fewer successes are reported. Therefore, in condition (3.4.1), pP
(j,0)

= 0 on the

equilibrium path. It’s easily to see that a bad agent whose first failure occurs

in the kth experiment has the strongest incentive to over-experiment, because

he is so close to showing that his type is good, and he will do so if the ex-

tra benefit p
P

(k,0)
M is large enough to cover the cost c

1�✓
. Thus, the agent’s

expected payo↵ by stopping experiments and disclosing successes after k > 0

successes are acquired, Uk(p0), can be simplified as:

U
k(p0) =

p
P

(k,0)

pk
p0M � k̃c+

k�1X

i=0

(1� p0)(1� ✓)i✓max

⇢
0, pP

k,0
M � (k � i)c

1� ✓

�

| {z }
over-experimentation incentives

(3.4.3)

Compared to the choice of no-experiment, the agent would report k successes

if his expected payo↵ from doing so is non-negative, Uk(p0) � 0.
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Lemma 3.4.2 also concludes that experimenting forever cannot be an

equilibrium. Suppose it is. Then the principal would consider the agent as

a bad type on the equilibrium path if the agent reports any finite number

of successes. As the costly experiments and results are private information

which needs to be disclosed after the agent stops experimenting, the agent

would deviate not to run any experiments, which is a contradiction.

Before the characterisation of the equilibria, it is worth discussing the

o↵-equilibrium path belief, in which the agent reports more successes relative

to the amount on the equilibrium path. Suppose that the agent has already

acquired k � 0 successes. If he sticks to the strategy on the equilibrium path,

the reward level would be p
P

(k,0)
M . Now consider the deviations. If more suc-

cesses are reported together with some failures, as a reasonable o↵-equilibrium

belief, the principal would learn this agent is a bad type, pP
(kg>k,kb>0)

= 0, since

only a bad type agent can failure in an experiment. Alternatively, when more

successes are reported without failures, the belief monotonicity suggests that

the principal would have a weakly higher posterior belief. If so, the potential

good type agent may have the incentive to continue experimenting to acquire

more successes as his posterior belief is higher and the expected cost to guar-

antee a successes is lower. The bad type agent may also have the incentive

to deviate to continue experimenting due to the weakly higher reward o↵ the

equilibrium path.

Lemma 3.4.3. In any equilibrium where the potential good type agent reports

k � 0 successes, p
P

(kg>k,0)
satisfies that, for 8n 2 N+

,

n�1X

j=0

(1� p
P

(k,0)
)(1� ✓)j✓


max

i2{0,...,n�j}
p
P

(k+i,0)
M � ic

1� ✓

�


pk

⇣
pk+n � p

P

(k+n,0)

⌘

pk+n

M +
nX

i=1

pk

pk+i�1

c

(3.4.4)

Lemma 3.4.3 demonstrates the further restriction on the o↵-equilibrium

path belief, which guarantees that neither the bad nor the potential good type

would deviate to continue experimenting after the equilibrium number of suc-

cesses has been achieved. The left hand side in (3.4.4) is the simplified expres-

sion due to the belief monotonicity refinement, and the complete expression is
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shown in the proof in the Appendix.

Proposition 3.4.1. In private experimentation, when (3.4.4) is satisfied,

1) no-experiment equilibrium exists in which the agent doesn’t conduct any

experiments and a
E(p0) = p0M ;

2) a participation threshold k =

8
<

:
max

n
k 2 N : p0M � k̃c

o
p0M � c

0 p0M < c

and an

over-experimentation threshold k̂ =

8
<

:
max

�
k 2 N : pkM  c

1�✓

 
p1M  c

1�✓

0 p1M >
c

1�✓

exist, such that:

2.a) when
M

c
2
h
0, 1

p0

⌘
, no-experiment equilibrium is unique;

2.b) when
M

c
2
h

1

p0
,

1

p1(1�✓)

i
, separating equilibria with learning exist at

0 < k  min
n
k, k̂

o
, in which a

E(k, 0) = pkM , a
E (kg

< k, 0) = 0, and the

agent would stop and disclose all the successes when k successes are achieved

without failures or when he fails before that;

2.c) when
M

c
2
⇣
max

n
1

p0
,

1

1�✓

o
,+1

⌘
, pooling equilibria with learning

exist at k̂+1 < k  k, in which a
E(k, 0) = p

k̂+l
M , a

E (kg
< k, 0) = 0, and the

potential good type agent and the bad type agent whose first failure occurs after

k̂ + l + 1th experiment would report k successes, where 0 < l  k� k̂ such that

M

c
2
⇣
max

n
k�k̂�l

pk+l(1�✓)
,
k�k̂�l

pk̂+l�1
+
P

k̂+l

i=1

1

pi�1

o
,
k�k̂�l+1

pk+l(1�✓)

i
6= ?.

The existence for each type of equilibrium and it’s conditions can be

characterised, which are listed in Proposition 3.4.1. It shows that, given con-

dition (3.4.4) is satisfied, the existence of di↵erent types of equilibria is deter-

mined by the value-cost ratio M

c
and two thresholds: the participation thresh-

old k and the over-experimentation threshold k̂. In general, the results suggest

that the no-experiment equilibrium is unique when the value-cost ratio is too

low, and only pooling equilibria with learning survive when the value-cost ra-

tio is too high. The separating equilibria with learning only possibly exist

at the medium level of the value-cost ratio. These are discussed in detail in

the following paragraphs. Also, the existence of equilibria in di↵erent ranges

of the value-cost ratio is listed in Figure 3.1, in which yellow, cyan and grey

represents the region of existence of no-experiment equilibrium, separating

equilibria with learning and pooling equilibria with learning respectively.

76



Proposition 3.4.1.1) shows the existence of the no-experiment equilib-

rium, in which neither the agent nor the principal learns. This is obvious

when value-cost ratio is too low, M

c
<

1

p0
, in which it’s too costly for the agent

to run one experiment relative to the gain, and the principal doesn’t have

full commitment to cover the excess. Thus it’s unique in this case. The no-

experiment equilibrium also exists when the value-cost ratio is high, M

c
� 1

p0
,

but it requires a restriction on the o↵-equilibrium path belief, which are given

in (3.4.4). This restriction prevents the agent from deviating to conduct more

experiments, in which the expected extra gain is smaller than the expected

cost. It could still hold even if the principal holds “the more the better” belief

under some parameter range.

Proposition 3.4.1.2) demonstrates the conditions for the existence of

separating and pooling equilibria with learning, as well as their properties.

The results suggest that the separating or pooling equilibria with learning exist

when the reported number of successes by the potential good type is smaller

than the participation threshold k. The participation threshold is the largest

number of experiments whose expected total cost k̃c can be covered by the

agent’s prior expected value p0M . When k > k, the agent would never conduct

any positive number of experiments since the expected cost is too large and the

principal cannot commit to compensating for the excess. Thus, the agent is

better o↵ by deviating to no-experiment choice. When p0M < c, this threshold

is zero, thus the agent would not run any experiments on the equilibrium

path, so that only the no-experiment equilibrium survives. This is shown in

Proposition 3.4.1.2.a). On the other hand, when p0M � c, the participation

threshold is the rounded down number which makes U
k(p0) = 0, since the

expected payo↵ is weakly decreasing as the number of reported successes is

increasing.

In Proposition 3.4.1.2.b), to support a separating equilibrium with learn-

ing, the bad type agent must not have an incentive to over-experiment. There-

fore, the over-experimentation threshold k̂ is introduced, which is the largest

number of reported successes where conditional expected value pkM is smaller

than the bad type agent’s expected cost of acquiring one more success c

1�✓
.

When p1M >
c

1�✓
, there always exists at least one bad type agent who would

over-experiment since the extra benefit is always higher than the cost. The
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separating equilibria with learning collapse in this case as k = 0. When

p1M  c

1�✓
, the extra benefit then can be smaller than the cost of over-

experimentation if the reported number of successes is low, k  k̂. Therefore,

the possible separating equilibria with learning only exist when the number

of successes reported by the potential good type is constrained by both of

the thresholds, 0 < k  min
n
k, k̂

o
. In this case, the reported successes are

informative: only the potential good type would report enough successes, and

the principal learns that the agent must be a bad type when observing fewer

successes are reported. Also, (3.4.4) needs to be satisfied, otherwise the po-

tential good type agent would always deviate to continue experimenting after

k successes are achieved. When the value-cost ratio is at the medium level

where 1

p0
 M

c
 1

1�✓
, the concern about the over-experimentation vanishes

as k̂ ! 1, in which case the bad type agent would never over-experiment as

the extra benefit is so small. This also implies that a pooling equilibrium with

learning would not exist in this case.

Proposition 3.4.1.2.c) suggests that the pooling equilibria with learning

would only survive when the value-cost ratio is high enough, M

c
> max

n
1

1�✓
,

1

p0

o
.

Among these equilibria, the lowest possible number of successes reported by

the potential good type agent is k̂ + 2. Intuitively, on the one hand, the

lowest number must be higher than the participation threshold, otherwise

the extra benefit is not enough to support a bad type to over-experiment

on the equilibrium path; on the other hand, the reported successes now are

less informative since the principal knows at least one bad type agent over-

experiments on the equilibrium path— the one who has the strongest incen-

tive to do so as he only need one more successes to pretend to be a good

type. The less informative evidence would make the principal assign a lower

reward level to the agent, which mitigates the bad type’s over-experimentation

incentive. Specifically, suppose the equilibrium exists at k = k̂ + 1, the prin-

cipal believes that p
P

(k̂+1,0)
= p

k̂
on the equilibrium path, and would assign

a

⇣
k̂ + 1, 0

⌘
= p

k̂
M . But the conditional expected value now is lower than

the cost of over-experimenting and acquiring one more success, in which case

no bad type agents want to over-experiment. Therefore, the pooling equilibria

can be found at k̂+1 < k  k̂. In such an equilibrium, all the bad type agents

whose first failures occur after the k̂ + l + 1th experiment would continue ex-
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perimenting until k successes are acquired. This is because the extra benefit

p
k̂+l

M can maximumly cover the total expected cost of acquiring k � k̂ � l

more successes for the bad type agent, k�k̂�l+1

1�✓
c < p

k̂+l
M  k�k̂�l

1�✓
c. Mean-

while, it also requires that the agent’s expected payo↵ in his initial plan is

positive, Uk

O
(p0) = p0M �

P
k̂+l

i=1

p0

pi�1
c� p0(k�k̂�l)

pk̂+l�1
c.

M
c

0

No-experiment

Separating at

0<kmin{k,k̂}

Pooling at k̂+1<kk

1
p0

1
1�✓

1
p1(1�✓)

scenario I: p01�✓

M
c

0

No-experiment

Separating at

0<kmin{k,k̂}

Pooling at k̂+1<kk

1
1�✓

1
p0

1
p1(1�✓)

scenario II: p0>1�✓

Figure 3.1: Existence of three types of equilibria in di↵erent value-cost ratios

Proposition 3.4.2. The agent is weakly better o↵ with public experimentation,

but the principal is weakly better o↵ with private experimentation.

Compared to public experimentation, Proposition 3.4.2 suggests that

private experimentation makes the agent weakly worse o↵ but the principal

weakly better o↵. This is mainly driven by the principal’s skeptical think-

ing. When the experiments and results are public, the principal doesn’t need

to worry about the possibility of over-experimentation, as the beliefs of the

principal and the agent are aligned. However, in private experimentation, the

principal has di↵erent concerns when a certain number of successes reported.

On the one hand, the principal knows that the agent has the opportunity for

additional experiments if the cost is not too large, so she is skeptical about the

agent’s type when the number of reported successes is very small as she might

think that the agent has failed; on the other hand, when a large number of

successes is reported, she might also think that a bad type may have achieve

it by over-experimentation. This result is similar to that in Henry (2009) and

Felgenhauer and Loerke (2013). Henry (2009) discusses the scenario in which

the agent pre-commits to a number of experiments and he cannot stop until

all of the experiments have been conducted. He argued that the agent runs

strictly less experiments in the public case. In contrast, my work analyses the
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scenario where the agent chooses whether to continue or stop experimenting

after each result is realised, and the agent’s commitment would be discussed

in the next section. Felgenhauer and Loerke (2013) find that there exists a

deterrence e↵ect which causes both the principal and the agent to be better

o↵ in private experimentation with exogenous precision of the experiment, but

this result doesn’t hold in my work. An example is also given below.

Example 3.4.1. Suppose p = ✓ = 0.7, M = 3.5 and c = 1. Thus k = 2 and

k̂ = 1. In public experimentation, the agent doesn’t run experiments, thus

UP (p0) = a
P (0, 0) = p0M = 2.45, VP (p0) = �p0(1 � p0)M2 = �2.5725. In

private experimentation, in the no-experiment equilibrium given restrictions

on the principal’s o↵-equilibrium path belief (3.4.4) is satisfied, UN(p0) =

UP (p0) = p0M = 2.45 and VN(p0) = VP (p0) = �2.5725. In the separating

equilibrium with learning, pP
(1,0)

= p1 ⇡ 0.886076, aE(1, 0) = p1M ⇡ 3.10127,

a
E(0, 0) = 0, U

1

S
(p0) = p0M � c = 1.45 and V

1

S
(p0) = �p0(1 � p1)M2 ⇡

0.976899. The pooling equilibrium with learning doesn’t exist since k̂+1 = k.

Proposition 3.4.3 demonstrates how the participation threshold k and

over-experimentation threshold k̂ vary when the value-cost ratio M

c
, prior belief

p0 and the experiment’s “pass threshold” ✓ for the bad type agent.

Proposition 3.4.3. k is weakly increasing in
M

c
, p0 and ✓, and k̂ is weakly

decreasing in
M

c
and p0.

When the value-cost ratio increases, on the one hand, the agent becomes

relatively more valuable, and his prior expected value can cover more exper-

iments’ total expected cost. Thus, he is able to conduct more experiments

in his initial plan at the beginning, which leads the participation threshold

k to increase. On the other hand, the larger value-cost ratio also gives the

bad type agent stronger incentive to over-experiment, since the extra benefit

is larger than before. With the presence of skeptical thinking, the principal

believes that more bad type agents would now over-experiment. Thus the

informativeness of the reported successes is lower, which follows that the over-

experimentation threshold k̂ decreases.

When the agent’s prior belief increases, the agent’s prior expected value

is higher, which tends to raise the participation threshold. However, a higher
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prior belief also means that the expected total cost forthe same amount of

experiments is also higher, and this negative e↵ect tends to reduce the partici-

pation threshold. As a compounded e↵ect, the analysis shows that the positive

e↵ect dominates, which leads the participation threshold k to be increasing.

Meanwhile, when the agent is very optimistic on that he is a good type, he

has a stronger incentive to over-experiment after he fails. This is because his

loss from the failure is larger than that when he is pessimistic with a lower

prior belief.

When ✓ increases, it implies that it’s harder for a bad type agent to

achieve a success in an experiment. In the initial plan, the agent remains

uninformed. A higher ✓ implies that the failure arrives faster if the agent

is a bad type. Thus, if he plans to stop once a failure occurs, the expected

total cost of the given number of experiments falls. As a result, he can plan

to more experiments, which leads a higher participation threshold. However,

the compounded e↵ect of the “pass threshold” ✓ on the over-experimentation

threshold is ambiguous. On the one hand, a higher ✓ implies that the agent

learns faster when a success arrives when he hasn’t failed yet, in which the

posterior value is higher after reporting the successes. Therefore the extra

benefit of over-experimenting is larger for a bad type. On the other hand, the

agent’s expected cost of acquiring one more success, c

1�✓
, is also higher, which

mitigates the agent’s incentive to over-experiment. As a result, the two forces

acting opposite directions mean that the compounded e↵ect is ambiguous.

Notice that the upper bound of the set of equilibria is determined by

the participation threshold, thus an increasing in k also implies that the entire

set is expanding, given that the restrictions on the o↵-equilibrium path belief

are still satisfied. This result is achieved when the value-cost ratio or the

prior belief increases. However, at the same time, the over-experimentation

threshold is decreasing as it’s harder to mitigate the agent’s incentive for over-

experimenting. Thus, given that the same amount of successes are reported,

the principal tends to discount their informativeness due to skeptical thinking.

Therefore, the set of separating equilibria with learning shrinks, which exists

when the reported number of successes are less than both the participation

and over-experimentation thresholds. With the increasing k, the set of pooling

equilibria with learning expands. These results are summarised in Corollary

81



3.4.1.

Corollary 3.4.1. As M

c
or p0 increases, the set of separating equilibria with

learning shrinks but the set of pooling equilibria with learning tends to expand.

Proof. Given (3.4.4) holds, the set of separating equilibria with learning exist

at 0 < k  min
n
k, k̂

o
, and the set of pooling equilibria with learning exist

at k̂ + 1 < k  k. From Proposition 3.4.3, k increases and k̂ decreases

as M

c
or p0 increases. Thus, min

n
k, k̂

o
is decreasing as well as k̂ + 1. As

a result,
n
k 2 N : 0 < k  min

n
k, k̂

oo
shrinks, but

n
k 2 N : k̂ + 1 < k  k

o

gets larger.

3.5 The agent’s commitment

In this section, the agent now can commit to report a certain number of

successes to prove that he is a potential good type before he conducts experi-

ment(s). The timing of the game is changed as follows:

1. The agent commits to report k � 0 successes;

2. The agent runs experiments;

3. The agent selectively reports the experimental results;

4. The principal gives the reward to the agent according to the report;

5. Payo↵s are realised.

With the help of the commitment, the agent can pick a preferred equi-

librium that maximises his own expected payo↵, but the credibility of the

commitment needs to be considered. The agent can possibly commit not to

run any experiments or report any successes. In this case, the agent refuses

to learn through experiments, and he receives his prior expected value p0M

as a reward if it’s credible. However, the principal worries that the agent

might deviate and continue experimenting, in which case the commitment is

not credible. Such deviation occurs when the restriction on the o↵-equilibrium

path belief (3.4.4) is violated at k = 0. If so, the agent compromises to commit

to report a strictly positive number of successes. When committing to report

k > 0 successes, the agent also implicitly proves that he must be a bad type

when less than k successes are reported. Thus the principal’s posterior belief
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p
P

(k,0)
is updated in the same way as that in the scenario where the agent cannot

commit. In the first place, the agent would only commit to report a number

of successes which is smaller than the participation threshold k  k, otherwise

he would achieve negative expected payo↵. In the second place, the agent’s

over-experimentation incentive still a↵ects the informativeness of the evidence.

The arguments are summarised in Proposition 3.5.1, which characterises the

agent’s optimal commitment and the existence condition.

Proposition 3.5.1. In private experiment, the agent optimally commits to

report k
⇤
successes to prove that he is a potential good type, where

1) k
⇤ = min

n
k 2 N : 0  k  min

n
k, k̂

oo
if 9k such that (3.4.4) is satisfied

at 0  k  min
n
k, k̂

o
;

2) k
⇤ = kp 2 argmax

k2N, k̂+1<kk

U
k

O
(p0) if (3.4.4) is only satisfied at k̂ + 1 < k  k;

3) otherwise, k
⇤
doesn’t exist.

Proposition 3.5.1.1) suggests that the agent tends to commit to report

the smallest number of successes which satisfy the restrictions on the princi-

pal’s o↵-equilibrium path belief (3.4.4) in the region where both the participa-

tion and over-experimentation incentives are satisfied, 0 < k  min
n
k, k̂

o
. In

this case, the bad type agent doesn’t over-experiment, and the reported suc-

cesses are very informative. Therefore, his expected payo↵ would be the same

as that when the agent cannot commit, Uk

S
(p0) = p0M �

P
k

i=1

p0

pi�1
c. Since

the agent’s expected payo↵ is weakly decreasing as k increases in this case, to

maximise his own expected payo↵, the agent would optimally choose the lowest

number of successes in which (3.4.4) is still satisfied. Ideally, the agent would

only commit to report one success. However, if (3.4.4) at k = 1 is violated, the

agent would always deviate to report more, in which case such a commitment

is not credible. Therefore, the agent compromises to commit to report two

successes. Similar argument can continue until the agent find the lowest num-

ber of successes in this region which satisfied the restriction (3.4.4). In this

region, the agent’s interest contrasts with the principal’s since the principal is

strictly better o↵ when the reported number of successes increases.

If (3.4.4) fails in the previous region, the agent seeks to commit to

report k̂ + 1 < k  k successes. Proposition 3.5.1.2) shows that the agent

would commit to report the number of successes which maximise his expected
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payo↵ in this region, Uk

O
(p0). The principal learns that some bad type agents

have an incentive to over-experiment, which is the same as in the scenario when

the agent cannot commit, and the agent’s expected payo↵ would be Uk

O
(p0) =

p0M �
P

k̂+l

i=1

p0

pi�1
c � p0(k�k̂�l)

pk̂+l�1
c. Notice that, in this case, the expected total

cost is higher than that when the agent commits to report 0 < k  min
n
k, k̂

o

successes, so this region is strictly dominated, and the agent would only commit

to report a number of successes in this region when the restriction on the o↵-

equilibrium path belief (3.4.4) is violated in other regions.

Meanwhile, the expected total cost is not monotonic with respect to the

number of successes committed to report, so the agent might not always prefer

to commit to report a lower number in this region. This is because, on the

one hand, reporting a larger number of successes implies that the agent needs

to run more experiments, and the total expected cost tends to increase; on

the other hand, such a larger number also brings a weakly higher reward, and

the agent’s incentive of over-experimenting is much stronger, where more cost

from over-experimentation can be covered and the total expected cost tends

to decrease. Moreover, if the restriction (3.4.4) is not satisfied at this optimal

choice, the agent compromises to another sub-optimal choice in this region,

which maximise his expected payo↵ except the first choice. This argument

would stop until (3.4.4) is satisfied. As a result, it also implies that the agent

might commit to report the highest number k, which is most preferred by the

principal among all equilibria.

If (3.4.4) fails in the region 0  k  k, Proposition 3.5.1.3) suggests

that the agent cannot make a credible commitment. Also, there doesn’t exist

any equilibrium in private experimentation when the agent cannot commit,

which has been discussed in previous section.

3.6 Conclusion

This chapter characterises the properties of three di↵erent types of equilibria in

private experimentation as well as the conditions for their existence, in which

the experiment has an asymmetric information structure. When the restric-

tion on the principal’s o↵-equilibrium path belief is satisfied, a no-experiment

equilibrium can possibly exist regardless of the agent’s value-cost ratio, the
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separating equilibria with learning only exist at the medium level of value-cost

ratio, and pooling equilibria with learning exist when the value-cost ratio is

not too low. The participation threshold determines the upper bound of the

equilibria, and the existence of an over-experimentation threshold determines

the boundary between separating and pooling equilibria with learning. Also,

the results suggest that the agent is worse o↵ but the principal is better o↵

relative to public experimentation. When the agent can commit before exper-

imenting, he tends to optimally commit to report a small number of successes

to prove that he is a potential good type. But, constrained by the principal’s

o↵-equilibrium path belief, the agent might commit to report a lager number.

Since this project is still work in progress, there is room to improve it.

In future study, it would be interesting to extend this model to a finite multiple

stage game, in which the agent can still experiment and disclose results after

his first report.
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Appendix A

Proofs for Chapter 1

Proof of Lemma 1.3.1
The e�cient stopping threshold p

E just makes (1.3.6) binding. This

implies that: when the synergy is positive, p
E = 2c

(2+✓)�R
 c

�R
; when the

synergy is negative, pE = c

�R
<

2c

(2+✓)�R
.

In the first-best, agent(s) would accept the contract as long as the par-

ticipation constraint(s) bind(s). Thus, it can be only focused on u
i

t
(pP

t
). When

the partnership is motivated, agent two’s participation constraint must bind

in the first-best. From (1.3.4), the optimal sub-contract satisfies: !
P

2,t
(pP

t
) =

c

!P
21,t(p

P
t )(2+✓)�RpPt

. Thus, agent one’s participation constraint can be simplified

as:

p
P

t
!
P

1,t
(pP

t
)(2 + ✓)�R� 2c � 0 (A.0.1)

Having (A.0.1) binding, the optimal grand contract in the first-best would be

!
P

1,t
(pP

t
) = 2c

(2+✓)�RpPt
. Substituting it back to (A.0.1), the optimal sub-contract

in the first-best would be !
P

2,t
(pP

t
) = 1

2
. In this case, the principal’s profit at t

would be: ⇡t(pPt ,!
P

i,t
) = p

P

t
(2 + ✓)�R� 2c.

When the individual work is motivated, agent one’s participation con-

straint of working alone needs to be binding, thus !P

1,t
(P P

t
) = c

�RpPt
. Since agent

one now works alone, he o↵ers nothing to agent two, !P

2,t
(pP

t
) = 0. Therefore,

the principal’s profit at t in this case would be: ⇡t(pPt ,!
P

i,t
) = p

P

t
�R� c.

In the static game at t, the principal prefers the partnership to the

individual work if the di↵erence between the principal’s profit at t from the
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partnership and the individual work is positive:

4⇡
F

t
(pP

t
,!

P

i,t
) = p

P

t
(1+✓)�R�c � 0 , R

c

1

(1 + ✓)�pPt
, p

P

t
� c

(1 + ✓)�R
(A.0.2)

When the synergy is positive, 4⇡
P

t
(pF

t
,!

P

i,t
) � 0 since p

P

t
� p

E � c

(1+✓)�R
,

which implies that the partnership is always preferred in this case. On the

other hand, when the synergy is negative, c

(1+✓)�R
>

c

�R
= p

E. Thus, the

partnership still dominates the individual work if R

c
� 1

(1+✓)�pPt
as (A.0.2) is

still satisfied; if R

c
2
h

1

�pPt
,

1

(1+✓)�pPt

⌘
, (A.0.2) doesn’t hold and the individual

work dominates in this case.

Proof of Lemma 1.3.2
Firstly, I prove that the principal always prefers to invest in the project

at t = 0 as long as p0 � p
E. Consider when the principal sticks to the

choice in the static game at t = 0. Depending on the individual work and

the partnership is optimally motivated at t = 0 respectively, the di↵erence

between the principal’s continuation value from investing and not investing

would be:

4V
I

t
(p0) =⇡0(p

P

0
,!

P

i,0
)� �⇡0(p

P

0
,!

P

i,0
)

+ �
�
[1� p0�]⇡1(p̂1,!

P

i,1
), [1� p0(2 + ✓)�]⇡1(p1,!

P

i,1
)
 (A.0.3)

When the principal doesn’t invest at t = 0, the posterior belief equals to the

prior belief, thus her gain at t = 1 would be the same as that in the static

game, and it’s discounted due to the presence of a discount factor. This is

represented in the second term in (A.0.3). Since ⇡t(pPt ,!
P

i,t
) � 0 and � 2 (0, 1),

4V
I

t
(p0) is always positive. As a result, no-investment at t = 0 is dominated

for p0 � p
E.

Now the focus shifts to the choice between the partnership and the

individual work. At t = 0, in the first best, the principal would motivate the

partnership if the di↵erence between the principal’s continuation value from

the partnership and the individual work is positive:

4V
F

t
(p0) = 4⇡

F

0
(pP

0
,!

P

i,0
)+�[1�p0(2+✓)�]⇡1(p1,!

P

i,1
)��(1�p0�)⇡1(p̂1,!

P

i,1
) � 0

(A.0.4)
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=) 4⇡
F

0
(pP

0
,!

P

i,0
) � �(1� p0�)⇡1(p̂1,!

P

i,1
)� �[1� p0(2 + ✓)�]⇡1(p1,!

P

i,1
)

(A.0.5)

Since p̂1 > p1, ⇡1(p̂1,!P

i,1
) � ⇡1(p1,!P

i,1
). Together with ✓ > �1, the right

hand side of (A.0.5) is always positive, �(1 � p0�)⇡1(p̂1,!P

i,1
) � �[1 � p0(2 +

✓)�]⇡1(p1,!P

i,1
) � 0. Thus the right hand side reaches the maximum when

� = 1.

Consider the situation where the synergy is positive. When R

c
� 2

(2+✓)�p1
,

from Lemma 1.3.1.2), the principal would motivate the partnership at t = 1 no

matter whether the partnership or the individual work is motivated at t = 0,

and

4V
F

t
(p0) � 4⇡

F

0
(pP

0
,!

P

i,0
)� (1� p0�)⇡1(p̂1,!

P

i,1
) + [1� p0(2 + ✓)�]⇡1(p1,!

P

i,1
)

= [1� p0�(2 + ✓)]


p1�(1 + ✓)R� 1� 2p0�(1 + ✓)

1� p0�(2 + ✓)
c

�

/ p1�(1 + ✓)R� 1� 2p0�(1 + ✓)

1� p0�(2 + ✓)
c � 2 + 2✓

2 + ✓
c� 1� 2p0�(1 + ✓)

1� p0�(2 + ✓)
c

/ (2 + 2✓) [1� p0�(2 + ✓)]� (2 + ✓) [1� 2p0�(1 + ✓)] = ✓ � 0

(A.0.6)

This implies that (A.0.4) holds for 8� 2 [0, 1], thus partnership is preferred

at t = 0. When R

c
2
h

2

(2+✓)�p̂1
,

2

(2+✓)�p1

⌘
, according to Lemma 1.3.1.2), the

principal would not invest at t = 1 if the partnership is motivated at t = 0,

and

4V
F

t
(p0) � 4⇡

F

0
(pP

0
,!

P

i,0
)� (1� p0�)⇡1(p̂1,!

P

i,1
) + [1� p0(2 + ✓)�]⇡1(p1,!

P

i,1
)

= [1� p0�(2 + ✓)]


1� 2p0�

1� p0�(2 + ✓)
c� p1�R

�

/ 1� 2p0�

1� p0�(2 + ✓)
c� p1�R � 1� 2p0�

1� p0�(2 + ✓)
c� 2

2 + ✓
c

/ (2 + ✓) (1� 2p0�)� 2 [1� p0�(2 + ✓)] = ✓ � 0

(A.0.7)

This implies that (A.0.4) holds for 8� 2 [0, 1], and then the partnership is

preferred at t = 0. When R

c
2
h

2

(2+✓)�p0
,

2

(2+✓)�p̂1

⌘
, the principal never invests

at t = 1 since the posterior belief falls below the e�cient stopping threshold,

p1 < p̂1 < p
E. Thus at t = 0, the principal’s choice is the same as that in the
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static game. Since ✓ � 0, the partnership is preferred.

Consider the situation in which the synergy is negative. With Lemma

1.3.1.2), when R

c
� 1�2p0�(1+✓)

p0�(1+✓)[1��(2+✓)]
>

1

(1+✓)�p1
, the principal would motivate

the partnership at t = 1 no matter whether the partnership or the individual

work is motivated at t = 0, then

4V
F

t
(p0) � ⇡

F

0
(pP

0
,!

P

i,0
)� (1� p0�)⇡1(p̂1,!

P

i,1
) + [1� p0(2 + ✓)�]⇡1(p1,!

P

i,1
)

= p0�(1 + ✓)[1� �(2 + ✓)]R� [1� 2p0�(1 + ✓)] c

� [1� 2p0�(1 + ✓)] c� [1� 2p0�(1 + ✓)] c = 0

(A.0.8)

This implies that (A.0.8) holds for 8�[0, 1], and then the partnership is pre-

ferred at t = 0. When R

c
2
h

1

�p0
,

1

(1+✓)�p0

⌘
, 4⇡

F

0
(pP

0
,!

P

i,0
) < 0 then (A.0.5)

doesn’t hold as its right hand side is positive. Thus the principal would mo-

tivate the individual work at t = 0. When R

c
2
h

1

(1+✓)�p1
,

1�2p0�(1+✓)

p0�(1+✓)[1��(2+✓)]

⌘
,

the principal would still motivate the partnership at t = 1. Thus (A.0.4) and

(A.0.5) imply that

�  p0�(1 + ✓)R� c

p0�
2(1 + ✓)(2 + ✓)R� 2p0�(1 + ✓)c

= 1 +
p0�(1 + ✓)[1� �(2 + ✓)]R� [1� 2p0�(1 + ✓)]c

p0�
2(1 + ✓)(2 + ✓)R� 2p0�(1 + ✓)c

 1 +
[1� 2p0�(1 + ✓)]c� [1� 2p0�(1 + ✓)]c

p0�
2(1 + ✓)(2 + ✓)R� 2p0�(1 + ✓)c

= 1

(A.0.9)

Therefore, (A.0.4) holds if � 2 [0, �E), where �
E = p0�(1+✓)R�c

p0�
2(1+✓)(2+✓)R�2p0�(1+✓)c

.

When R

c
2
h

1

(1+✓)�p̂1
,

1

(1+✓)�p1

⌘
, according to Lemma 1.3.1.2), the principal

would motivate the partnership only if the individual work is motivated at

t = 0, thus (A.0.4) and (A.0.5) imply that

� 
4⇡

F

0
(pP

0
,!

P

i,0
)

(1� p0�)
h

ˆp1�(2 + ✓)R� 2c
i
� [1� p0�(2 + ✓)]max {p1�R� c, 0}

 p0�(1 + ✓)R� c

p0�(1 + ✓)R� p0�(1 + ✓)c
= 1� [1� p0�(1 + ✓)] c

p0�(1 + ✓)R� p0�(1 + ✓)c
< 1

(A.0.10)

89



As a result, (A.0.4) holds if � 2 [0, �E), where �
E = p0�(1+✓)R�c

p0�(1+✓)(�R�c)
in this case.

When R

c
2
h

1

(1+✓)�p0
,

1

(1+✓)�p̂1

⌘
, according to Lemma 1.3.1.2), the principal

would not motivate the partnership at t = 0, then (A.0.4) and (A.0.5) imply

that

� 
4⇡

F

0
(pP

0
,!

P

i,0
)

(1� p0�)( ˆp1�R� c)� [1� p0�(2 + ✓)]max {p1�R� c, 0}

 p0�(1 + ✓)R� c

p0�(1 + ✓)(�R� c)
= 1 +

p0�(1� �)(1 + ✓)R� [1� p0�(1 + ✓)]c

p0�(1 + ✓)(�R� c)

= 1 +
(1� p0�)c� [1� p0�(1 + ✓)]c

p0�(1 + ✓)(�R� c)
= 1 +

p0�✓c

p0�(1 + ✓)(�R� c)
< 1

(A.0.11)

As a result, (A.0.4) holds if � 2 [0, �E), where �
E = p0�(1+✓)R�c

p0�(1+✓)(�R�c)
in this case.

Now check the e�ciency level between the two-tier and three-tier struc-

ture in the first-best. In the two-tier structure, in which the principal can

directly o↵er contracts to both of the agents, Denote the contract o↵ered to

the agent i at t by si,t, where si,t 2 [0, 1], i = 1, 2 and t = 0, 1. Thus,

!1,t = s1,t + s2,t and !1,t!2,t = s2,t. In the first best, to motivate the agent(s)

to work, the participation constraint(s) need(s) to be binding:

U
i

t
(pi

t
) = p

i

t
si,t�(2 + ✓)R� c+ �[1� p

i

t
�(2 + ✓)]U i

t+1
(pi

t+1
) � 0

or U
i

t
(pi

t
) = p

i

t
si,t�R� c+ �(1� p

i

t
�)U i

t+1
(pi

t+1
) � 0

(A.0.12)

This is the same as that in (1.3.6). Therefore, the analysis and the conclusion

should be the same as that in the three-tier structure.

Proof of Lemma 1.4.1
When the synergy is positive, to motivate the partnership, (1.4.1),

(1.4.2) and (1.4.3) and imply that

p
P

t
!
S

1,t
(pP

t
)(1+✓)�R = max

⇢
2c,

2 + ✓

1 + ✓
c

�
and !2,t(p

P

t
) =

c

!1,t(pPt )�(1 + ✓)RpPt

(A.0.13)

Notice that 2 � 2+✓

1+✓
in this case, so

�
!
S

1,t
(pP

t
),!S

1,t
(pP

t
)
�
=
⇣

2c

(1+✓)�RpPt
,
1

2

⌘
, and

the principal’s profit at t now is ⇡(p
P

t
,!

S

1,t
(p⇤)) = p

P

t
�(2 + ✓)R � 2(2+✓)

1+✓
c. On

the other hand, to motivate the individual work, agent one’s participation con-
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straint of working alone needs to be binding as no return would be generated

if he shirks. This implies that
�
!
S

1,t
(pP

t
),!S

1,t
(pP

t
)
�
= (c, 0) and the principal’s

profit now is ⇡(p
P

t
,!

S

1,t
(p⇤)) = p

P

t
�R � c. If agent one deviates to collaborate

with agent two, from Table 1.1, it shows that agent two would accept the o↵er

if ✓ � 1. If so, the principal would always motivate the partnership as long

as the profit is positive. As as result, the optimal stopping threshold in this

case would be p
⇤ = 2c

(1+✓)�R
. If 0  ✓ < 1, the individual work can still be

motivated as agent two would reject if agent one deviates to collaborate. In

this case, the principal would only motivate the partnership if the di↵erence

between the principal’s profit from the collaboration and the individual work

is positive:

4⇡(p
P

t
,!

S

1,t
(p⇤)) = p

P

t
�(1 + ✓)R� 3 + ✓

1 + ✓
c � 0 =) R

c
� 3 + ✓

(1 + ✓)2�pPt
(A.0.14)

Then the principal is indi↵erent when p
P

t
= p

T = (3+✓)c

(1+✓)2�R
. Therefore, in this

case, the principal would motivate the partnership if R

c
� 3+✓

(1+✓)2�pPt
>

2

(1+✓)�pPt
;

and she would motivate the individual work if 1

�pPt
 R

c
<

3+✓

(1+✓)2�pPt
. As a

result, the stopping threshold is p⇤ = c

�R
.

When the synergy is negative, 2+✓

1+✓
> 2 in (A.0.13). To motivate the

partnership,
�
!
S

1,t
(pP

t
),!S

1,t
(pP

t
)
�
=
⇣

(2+✓)c

(1+✓)2�RpPt
,
1+✓

2+✓

⌘
, and the principal’s profit

is ⇡(p
P

t
,!

S

1,t
(p⇤)) = p

P

t
�(2+✓)R�

�
2+✓

1+✓

�2
c. On the other hand, to motivate the

individual work, the optimal contracts should be the same as those in which

the synergy is positive. This is because the participation constraint is the

same. It implies that
�
!
S

1,t
(pP

t
),!S

1,t
(pP

t
)
�
= (c, 0), and the principal’s profit in

this case is ⇡(p
P

t
,!

S

1,t
(p⇤)) = p

P

t
�R � c. Therefore, the principal would only

motivate the partnership if the di↵erence between the principal’s profit from

the collaboration and the individual work is positive:

4⇡(p
P

t
,!

S

1,t
(p⇤)) = p

P

t
�(1 + ✓)R� 3 + 2✓

(1 + ✓)2
c � 0 =) R

c
� 3 + 2✓

(1 + ✓)3�pPt
(A.0.15)

Then the principal is indi↵erent when p
P

t
= p

T = (3+2✓)c

(1+✓)3�R
. Notice that

(3+2✓)c

(1+✓)3�R
>

2c

(1+✓)�R
, then the principal would motivate the partnership if R

c
�

3+2✓

(1+✓)3�pPt
. Moreover, since (3+2✓)c

(1+✓)3�R
>

c

�R
, the principal would motivate the
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individual work if R

c
2
h

1

�pPt
,

3+2✓

(1+✓)3�pPt

⌘
. At last, she stops investing when

p
P

t
�R� c < 0. As a result, p⇤ = c

�R
.

Proof of Lemma 1.4.2
Consider the situation in which the individual work is motivated at

t = 0. If agent one sticks to the equilibrium strategy, his continuation value

would be:

U
1,WA

0
(p0) = p0!1,0�R� c+ �(1� p0�)û

1

1
(p̂1; p̂1, p̂1) (A.0.16)

Alternatively, if agent one deviates to delegate the entire work to agent two,

he must ensure that agent two is weakly better o↵ by working:

p0!2,0!1,1�R| {z }
gain from working

� c|{z}
gain from shirking

+�
⇥
û
2

1
(p0; p̂1, p̂1)� (1� p0�)û

2

1
(p̂1; p̂1, p̂1)

⇤
| {z }

gain from belief manipulation: B2
1(p0;p̂1;p̂1)

(A.0.17)

Thus agent one o↵ers a sub-contract such that (A.0.17) binds, and his contin-

uation value would be:

U
1,CR

0
(p0) = p0!1,0�R� c� B

2

1
(p0; p̂1; p̂1) + �(1� p0�)û

1

1
(p̂1; p̂1, p̂1)

 p0!1,0�R� c+ �(1� p0�)û
1

1
(p̂1; p̂1, p̂1) = U

1,WA

0
(p0)

(A.0.18)

This implies that agent one is weakly better o↵ by working alone rather than

complete resourcing. Now consider the other situation in which the partnership

is motivated at t = 0. If agent one deviates to work alone, his continuation

value would be:

U
1,E

0
(p0) = p0!1,0�R� c+ �(1� p0�)û

1

1
(p̂1; p1, p̂1) (A.0.19)

Alternatively, if agent one deviates to complete resourcing and delegate the

entire work to agent two, he must ensure that agent two is weakly better o↵

by working rather than shirking:

p0!2,0!1,1�R| {z }
gain from working

� c|{z}
gain from shirking

+�
⇥
û
2

1
(p0; p1, p̂1)� (1� p0�)û

2

1
(p̂1; p1, p̂1)

⇤
| {z }

gain from belief manipulation: B2
1(p0;p1;p̂1)

(A.0.20)
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Thus agent one o↵ers a sub-contract such that (A.0.20) binds, and his contin-

uation value would be:

U
1,EC

0
(p0) = p0!1,0�R� c� B

2

1
(p0; p1; p̂1) + �(1� p0�)û

1

1
(p̂1; p1, p̂1)

 p0!1,0�R� c+ �(1� p0�)û
1

1
(p̂1; p1, p̂1) = U

1,E

0
(p0)

(A.0.21)

This implies that agent one is weakly better o↵ by excluding agent two relative

to complete resourcing. To sum up, the exclusion incentive dominates complete

resourcing incentive.

Proof of Lemma 1.4.3
When the individual work is motivated at t = 0 but agent one deviates

to form the partnership, after no success occurs, the principal’s posterior belief

is p̂1 and the agents have the belief p1. At t = 1, the principal o↵ers !⇤
1,1
(pP

1
),

and agent two would accept the sub-contract if !2,1 � !
⇤
2,1
(p1). Since period

t = 1 is the last period in this economy, it’s analysis should be the same as

that in the static game. Thus, !⇤
1,1
(p̂1) = !

S

1,1
(p1) and !

⇤
2,1
(p1) = !

S

2,1
(p1).

To mitigate agent two’s free-riding problem, agent two’s free-riding incentive

constraint binds, !⇤
2,1
(p1) =

c

p1!
⇤
1,1(p̂1)(1+✓)�R

. The following discussion checks if

agent one’s free-riding incentive constraint (A.0.22) is satisfied:

p1!
⇤
1,1
(p̂1)(1 + ✓)�R � 2c (A.0.22)

If it’s satisfied, it needs to be proven that agent one’s payo↵ would be higher

by working alone or rejecting the grand contract at t = 1; If the free-riding

incentive is violated, it needs to be shown that either agent two would reject

the sub-contract or agent one’s expected payo↵ is lower by free-riding.

If p̂1 < p
⇤, the principal would not invest at t = 1, and agent one would

not accept a zero paid contract. Thus it can be focused on the case where

p̂1 � p
⇤. If p̂1 � max{p⇤, pT}, the principal would motivate the partnership at

t = 1, and o↵ers !
⇤
1,1
(p̂1) = max

n
2c

(1+✓)�Rp̂1
,

(2+✓)c

(1+✓)2�Rp̂1

o
. In the scenario with

positive synergy, (A.0.22) is not satisfied. Given agent one shirks, agent two’s

gain would be negative: 1

1+✓
c � c  0. Thus agent two would reject the sub-

contract, leaving agent one working alone. Agent one would then reject the

grand contract since his expected payo↵ from the individual work is negative,

93



p1

p̂1
c�c < 0. On the other hand, in the scenario with negative synergy, it shows

that agent one’s payo↵ from the individual work is higher than that from the

collaboration and the free-riding. As a result, agent one’s optimal payo↵ at

t = 1 would be û
1

1
(p1; p̂1, p1) = max

n
p1

p̂1

1

1+✓
c� c,

p1

p̂1

2+✓

(1+✓)2
c� c, 0

o

If p̂1 2
⇥
p
⇤
, p

T
⇤
, the principal would motivate the individual work at

t = 1, and o↵ers !⇤
1,1
(p̂1) =

c

�Rp̂1
. Then the (A.0.22) is not satisfied. When the

synergy is positive, agent two would reject the sub-contract. Agent one would

also reject the grand contract since his expected payo↵ from the individual

work is negative. When the synergy is negative, agent one still gets negative

payo↵ from free-riding, and he would still reject the grand contract.

Proof of Proposition 1.4.1
Period t = 1 is the last period in this economy, so there is no chance for

the agent(s) to manipulate the other parties’ beliefs. Therefore, the incentives

of the agents are the same as those in the static game, which implies that the

analysis should be the same. Notice that, on the equilibrium path, each party

would have the common belief pP
1

at t = 1, therefore, !⇤
i,1
(pP

1
) = !

S

i,1
(pP

1
).

For p̂1 < p
⇤, the principal would not invest at t = 1 after no success occurs

at t = 0, since the net profit would be negative if she invests. Therefore, the

incentives of the agent(s) are the same as those in the static game, which make

the optimal grand and sub-contracts are the same, !⇤
i,0
(p0) = !

S

i,0
(p0)

Now the focus shifts to the scenarios with p̂1 � p
⇤. Consider the situa-

tion in which agent one’s individual work is motivates at t = 0. This requires

that (1.4.10) binds, and !
⇤
1,0

= c+�B
1
1(p0;p̂1,p̂1)

�Rp0
. Meanwhile, (1.4.11) needs to be

satisfied, otherwise agent one would deviate.

Consider the other situation in which the partnership is motivated at

t = 0. From (1.4.5), agent two’s free-riding incentive constraint must bind.

Thus the optimal sub-contract !⇤
2,0
(p0) must satisfy:

!
⇤
2,0
(p0) =

c+ �B
2

1
(p̂1; p1, p1)

!⇤
1,0
(p0)(1 + ✓)�Rp0

(A.0.23)

Also, when (1.4.5) binds, agent one’s continuation value from the collaboration
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would be:

U
1,CO

0
(p0) =p0!1,0(2 + ✓)�R� 3 + 2✓

1 + ✓
c� 2 + ✓

1 + ✓
�B

2

1
(p̂1; p1, p1)

+ �[1� p0�(2 + ✓)]û1(p1; p1, p1)
(A.0.24)

If agent one deviates to free-ride on the agent 2’s work, his continuation value

from such deviation is:

U
1,FR

0
(p0) = p0!1,0�R� 1

1 + ✓
c� 1

1 + ✓
�B

2

1
(p̂1; p1, p1) + �(1� p0�)û1(p̂1; p1, p1)

(A.0.25)

If agent one deviates to exclude the agent 2 and indeed exerts e↵ort, his

continuation value is shown in (A.0.19). If he deviates to exclude agent two

and shirks, his continuation value would be:

U
1,ES

0
(p0) = �û1(p0; p1, p̂1) (A.0.26)

Therefore, to support the partnership, the principal needs to o↵er a grand

contract such that:

U
1,CO

0
(p0) � max

n
U

1,FR

0
(p0), U

1,E

0
(p0), U

1,ES

0
(p0)

o
(A.0.27)

This is equivalent to that (1.4.8) and (1.4.9) are satisfied.

When the synergy is negative, ✓ 2
�
�1,min

�
0, 1�2�

�

 �
, the di↵erence

between agent one’s continuation value from the free-riding and exclusion-work

is:

4U
1,FE

0
(p0) =

✓

1 + ✓
c� 1

1 + ✓
�B

2

1
(p̂1; p1, p1)+�(1�p0�) [û1(p̂1; p1, p1)� û1(p̂1; p1, p̂1)]| {z }

“<000

(A.0.28)

It’s clear that (A.0.28) is negative when ✓ < 0, in which case agent two’s

free-riding incentive is dominated by the exclusion-work incentive. Notice that

(1.4.9) represents agent one’s incentives constraints of working alone and shirk-

ing after he has excluded agent two, thus (1.4.8) and (1.4.9) can be simplified
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as:

IC
FR

1,0
: !1,0p0�R � 2

1 + ✓
c+

� (B2

1
(p̂1, p1, p1)(1 + ✓) + B

1

1
(p̂1; p1, p1))

1 + ✓

IC
EW

1,0
: !1,0p0�R � 2 + ✓

(1 + ✓)2
c+

� [(2 + ✓)B2

1
(p̂1, p1, p1) + (1 + ✓)B1

1
(p̂1; p1, p̂1)]

(1 + ✓)2

IC
ES

1,0
: !1,0p0�R � 3 + 2✓

(1 + ✓)(2 + ✓)
c+

� [(2 + ✓)B2

1
(p̂1, p1, p1) + (1 + ✓)B1

1
(p0; p1, p̂1)]

(1 + ✓)(2 + ✓)

(A.0.29)

Notice that the principal would make the !
⇤
1,0

as low as possible, then the

dominant incentive should have the largest right hand side in (A.0.29). The

dominant incentive constraint would be binding and the constraints of others

would be slack. From (A.0.29), the di↵erence between the right hand side of

IC
EW

1,0
and IC

ES

1,0
:

4RHSWS =
1� ✓ � ✓

2

(1 + ✓)2(2 + ✓)
c+�


B

2

1
(p̂; p1, p1)

(1 + ✓)2
+

B
1

1
(p̂; p1, p̂1)

1 + ✓
� B

1

1
(p0; p1, p̂1)

2 + ✓

�

(A.0.30)

It’s clear that the first term on the right hand side of (A.0.30) and B
2

1
(p̂1; p1, p1)

are positive when ✓ 2
�
�1,min

�
0, 1�2�

�

 �
. For p1 � p

T , this right hand side

can be simplified as:

4RHSWS
> �


B

2

1
(p̂; p1, p1)

(1 + ✓)2
+

B
1

1
(p̂; p1, p̂1)

1 + ✓
� B

1

1
(p0; p1, p̂1)

2 + ✓

�

� �


B

1

1
(p̂; p1, p̂1)

1 + ✓
� B

1

1
(p0; p1, p̂1)

2 + ✓

�

= �c


[1� p0�(2 + ✓)](2✓ + 3)

(1 + ✓)2(2 + ✓)
� (1� p0�)(3 + 2✓)

(1 + ✓)2
+

1

2 + ✓
+

1

1 + ✓

p0

p̂1

�

/ 1

1 + ✓

p0

p̂1
� 2 + 2✓

2 + ✓
>

1

✓
� 2 + 2✓

2 + ✓
=

�✓

(1 + ✓)(2 + ✓)
> 0

(A.0.31)

Thus agent one’s incentive constraint of working dominates the incentive of

shirking after excluding agent two, and it needs to be binding. For pT > p1 �
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p
⇤, û1(p1; p1, p1) = 0, and (A.0.30) can be simplified as:

4RHSWS
> �


B

2

1
(p̂; p1, p1)

(1 + ✓)2
+

B
1

1
(p̂; p1, p̂1)

1 + ✓
� B

1

1
(p0; p1, p̂1)

2 + ✓

�

� �


B

1

1
(p̂; p1, p̂1)

1 + ✓
� B

1

1
(p0; p1, p̂1)

2 + ✓

�

= �


1� p0�

1 + ✓
û1(p̂1; p1, p̂1)�

1

2 + ✓
û1(p0; p1, p̂1)

�
(A.0.32)

Notice that, û1(p̂1; p1, p̂1) =
p̂1(2+✓)

p1
c� 3+2✓

1+✓
c and û1(p0; p1, p̂1) =

p0(2+✓)

p1
c� c�

2+✓

1+✓

p0

p̂1
c if p̂1

p1
� 2+✓

(1+✓)2
, then in (A.0.32):

4RHSWS

>�


1� p0�

1 + ✓
û1(p̂1; p1, p̂1)�

1

2 + ✓
û1(p0; p1, p̂1)

�

/1� p0�

1 + ✓


p̂1

p1
(2 + ✓)c� 3 + 2✓

1 + ✓
c

�
� 1

2 + ✓


p0

p1
(2 + ✓)c� c� 2 + ✓

1 + ✓

p0

p̂1
c

�

/1� p0�(2 + ✓)

2 + ✓
� (1� p0�)(2 + ✓)

(1 + ✓)2
+

p0

p̂1(1 + ✓)

�p0

p̂1

(2 + ✓)(1� �)

(1 + ✓)2
� (1� p0�)(2 + ✓)

(1 + ✓)2
=

(1� p0�)(2 + ✓)

(1 + ✓)2
� (1� p0�)(2 + ✓)

(1 + ✓)2

=0

(A.0.33)

Agent one’s incentive constraint of working still dominates others in this case.

If p̂1

p1
2
⇣
1, 2+✓

(1+✓)2

⌘
, û1(p̂1; p1, p̂1) =

p̂1

p1
c� c and û1(p0; p1, p̂1) =

p0

p1
c� c, then in

(A.0.32):

4RHSWS
> �


1� p0�

1 + ✓
û1(p̂1; p1, p̂1)�

1

2 + ✓
û1(p0; p1, p̂1)

�

/ 1� p0�

1 + ✓

✓
p̂1

p1
c� c

◆
� 1

2 + ✓

✓
p0

p1
c� c

◆

/ 1� p0�(2 + ✓)

(1 + ✓)(2 + ✓)
� 1� p0�(2 + ✓)

(1 + ✓)(2 + ✓)
= 0

(A.0.34)

Again, agent one’s incentive constraint of working dominates others in this

case. To sum up, when the synergy is negative, agent one’s incentive of ex-
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cluding agent two and working alone dominates, in which case

!
⇤
1,0
(p0) =

(2 + ✓)c+ �

h
(2 + ✓)B̂2

1
(p̂1; p1, p1) + (1 + ✓)B̂1

1
(p̂1; p1, p̂1)

i

(1 + ✓)2�Rp0
.

Consider the small positive synergy scenario, ✓ 2
h
0,min

np
5�1

2
,
1�2�

�

o⌘
.

In this scenario, the first term on the right hand side of (A.0.30) is still positive.

For p1 � p
T , in (A.0.30):

4RHSWS

>
1� p0�

1 + ✓
û1(p̂1; p1, p̂1)�

�

2 + ✓
û1(p0; p1, p̂1)� �

1� p0�(2 + ✓)

(1 + ✓)(2 + ✓)
û1(p1; p1, p1)

=�c


1� p0�(2 + ✓)

(1 + ✓)2
� (1� p0�)(2 + ✓)

(1 + ✓)2
+

1

1 + ✓

p0

p̂1

�
/ 1

1 + ✓

p0

p̂1
� 1

1 + ✓

>0

(A.0.35)

Then agent one’s incentive of the shirking after excluding agent two is dom-

inated in this case. For p
T

> p1 � p
⇤, û1(p1; p1, p1) = 0. Notice that, If

p̂1

p1
� 2

1+✓
>

2+✓

(1+✓)2
, û1(p̂1; p1, p̂1) =

p̂1(2+✓)

p1
c� 3+2✓

1+✓
c and û1(p0; p1, p̂1) =

p0(2+✓)

p1
c�

c � 2+✓

1+✓

p0

p̂1
c, so the analysis would be the same as that in (A.0.33), in which

case agent one’s incentive of the shirking after excluding the agent 2 is domi-

nated. If p̂1

p1
2
⇣
1, 2+✓

(1+✓)2

⌘
, û1(p̂1; p1, p̂1) =

p̂1

p1
c� c and û1(p0; p1, p̂1) =

p0

p1
c� c,

so the analysis must be the same as that in (A.0.34). Therefore, agent one’s

incentive of the shirking after excluding agent two is dominated in all di↵erent

cases with small positive synergy. As a result, it can be only focused on the

free-riding incentive and exclusion-work incentive.

Notice that agent one’s free-riding incentive dominates if 4U
1,FE

0
(p0) is

positive,

4U
1,FE

0
(p0) =

✓c

1 + ✓
c� 1

1 + ✓
�B

2

1
(p̂1; p1, p1)

+ �(1� p0�) [û1(p̂1; p1, p1)� û1(p̂1; p1, p̂1)] � 0

=) �  ✓c

B2

1
(p̂1; p1, p1) + (1 + ✓)(1� p0�) [û1(p̂1; p1, p̂1)� û1(p̂1; p1, p1)]

(A.0.36)
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If p1 � p
T , (A.0.36) can be simplified as

�  ✓

�(1�p0)(2+✓)2

1��(2+✓)
+ p0�

=) �  ✓[1� �(2 + ✓)]

�(2 + ✓)2 � p0�[(3 + ✓)(1 + ✓) + �(2 + ✓)]

(A.0.37)

The denominator is always positive as 1 � �(2 + ✓) > 0. When the positive

synergy is less than 1, to prove that the right hand side of (A.0.37) is less than

1, I take the di↵erence between the numerator and the denominator as follows:

✓[1� �(2 + ✓)]��(2 + ✓)2 + p0�[(3 + ✓)(1 + ✓) + �(2 + ✓)]

<✓[1� �(2 + ✓)]� �(2 + ✓)2 + �[(3 + ✓)(1 + ✓) + �(2 + ✓)]

=(✓ � 1)[1� �(2 + ✓)] < 0

(A.0.38)

Therefore, the right hand side of (A.0.37) is less than 1, and it holds for

8✓ 2
⇥
0,min

�
1�2�

�
, 1
 �

. Agent one’s free-riding incentive dominates when

� 2 [0, �̃], where �̃ = ✓[1��(2+✓)]

�(2+✓)2�p0�[(3+✓)(1+✓)+�(2+✓)]
. This result holds for 8✓ 2

⇥
0,min

�
1�2�

�
, 1
 �

.

If p
T

> p1 � p
⇤, B

2

1
(p̂1; p1, p1) = 0. For p̂1

p1
� 2

1+✓
, û1(p̂1; p1, p̂1) =

(2+✓)p̂1

p1
c� 3+2✓

1+✓
c and û1(p̂1; p1, p1) =

p̂1

p1
c� c, then, from (A.0.36),

�  ✓

(1+✓)2(1��)p0

p1
� (2 + ✓)(1� p0�)

(A.0.39)

To prove that its right hand side is less than 1, the di↵erence between the

numerator and the denominator would be rewritten as:

✓ � (1 + ✓)2(1� �)p0
p1

� (2 + ✓)(1� p0�)

< ✓ � (1 + ✓)2p0
p1

+ (2 + ✓)(1� p0�) < ✓ � 2(1 + ✓) + (2 + ✓)(1� p0�)
| {z }

since
p0
p1

>
p̂1
p1

� 2
1+✓

=� (2 + ✓)p0� < 0

(A.0.40)

Therefore, agent one’s free-riding incentive dominates when � 2 [0, �̃], where
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�̃ = ✓

(1+✓)2(1��)p0
p1

�(2+✓)(1�p0�)
. For p̂1

p1
2
�
1, 2

1+✓

�
, û1(p̂1; p1, p̂1) = û1(p̂1; p1, p1) =

p̂1

p1
c � c, and then 4U

1,FE

0
(p0) in (A.0.36) is always positive, which implies

that the free-riding incentive is always dominates in this case, and it as-

sociated incentive constraint needs to be binding. As a result, !
⇤
1,0
(p0) =

2c+�(B2
1(p̂1;p1,p1)+B

1
1(p̂1;p1,p1))

(1+✓)�Rp0
. When � 2 [�̃, 1], the exclusion-work incentive dom-

inates, and the optimal grand contract should be the same as that in the

negative synergy case.

Now consider the large positive synergy, where ✓ 2
⇥
1, 1�2�

�

�
. Now

p
T � p

⇤. For p1 � p
T , To show the situation in which case the free-riding

incentive also dominates the exclusion-shirk incentive, the di↵erence of the

right hands between IC
FR

1,0
and IC

ES

1,0
in (A.0.29) also needs to be positive,

where

4RHSFS

=
1

(1 + ✓)(2 + ✓)
c+ �


✓B

2

1
(p̂1; p1, p1)

1 + ✓
+

B
1

1
(p̂1; p1, p1)

1 + ✓
� B

2

1
(p0; p1, p̂1)

2 + ✓

�

/ 1

2 + ✓
+ �


✓(2 + ✓)(1� p0)�

1� �(2 + ✓)
+ ✓p0�� �(1 + ✓)(1� p0)

(1� �)[1� �(2 + ✓)]

�

>�


✓(2 + ✓)(1� p0)�

1� �(2 + ✓)
� �(1 + ✓)(1� p0)

(1� �)[1� �(2 + ✓)]

�

/✓
2 � 1 + ✓[1� �(2 + ✓)] > 0

(A.0.41)

Then the free-riding incentive dominates the exclusion-shirk incentive in this

case. To determine the relationship between the free-riding and exclusion-work

incentives, the analysis is similar to that in which case ✓ 2
⇥
0,min

�
1, 1�2�

�

 �

and p1 � p
T . The di↵erence between the numerator and the denominator in
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(A.0.37) would be:

✓[1� �(2 + ✓)]� �(2 + ✓)2 + p0�[(3 + ✓)(1 + ✓) + �(2 + ✓)]

=✓[(2 + ✓)2 � (3 + ✓)(1 + ✓)� �(2 + ✓)]

� �
�
(2 + ✓)2 � p0[(3 + ✓)(1 + ✓) + �(2 + ✓)]

 

>✓
�
(2 + ✓)2 � p0[(3 + ✓)(1 + ✓) + �(2 + ✓)]

 

� �
�
(2 + ✓)2 � p0[(3 + ✓)(1 + ✓) + �(2 + ✓)]

 

=(✓ � �)
�
(2 + ✓)2 � p0[(3 + ✓)(1 + ✓) + �(2 + ✓)]

 
> 0

(A.0.42)

Therefore, the free-riding incentive also dominates the exclusion-work incen-

tives in this case.

Finally, consider the positive synergy is medium, in which case ✓ 2hp
5�1

2
,min

�
1, 1�2�

�

 ⌘
. For p1 � p

T , notice that the right hand side of (A.0.41)

is a linear function of the discount factor �, and 4RHSFS is positive when

� = 0. Now let � = 1, then (A.0.41) becomes

4RHSFS|�=1 /
1

2 + ✓
� (1� ✓

2)�(1� p0)

[1� �(2 + ✓)](1� �)
+

�✓(1� p0�)

1� �

>
1� �� �(2 + ✓)[✓2 � �+ (1� ✓

2)p0]

(2 + ✓)[1� �(2 + ✓)](1� �)

/ 1� �� �(2 + ✓)[✓2 � �+ (1� ✓
2)p0]

> 1� �� �(2 + ✓)(✓2 � �+ 1� ✓
2)

= (1� �)[1� �(2 + ✓)] > 0

(A.0.43)

As a result, the 4RHSFS is always positive for 8�[0, 1] in this case.

For p1 � p
T , agent one’s incentive of free-riding dominates the incentive

of exclusion-work if (A.0.37) is satisfied, which is the same as that with small

positive synergy. For pT > p1 � p
⇤, B2

1
(p̂1; p1, p1) = 0 and û1(p1; p1, p1) = 0.

If p̂1

p1
2
�
1, 2

1+✓

�
, û1(p̂1; p1, p1) =

p0

p1
c � c and û1(p0; p1, p̂1) =

p0

p1
c � c. Then, in
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(A.0.41),

4RHSFS =
1

(1 + ✓)(2 + ✓)
c+ �c


1� �(2 + ✓)

(1 + ✓)(2 + ✓)

p0

p1
� 1� p0�(2 + ✓)

(1 + ✓)(2 + ✓)

�

=
1

(1 + ✓)(2 + ✓)
c+ 0 > 0

(A.0.44)

This implies that the exclusion-shirk incentive is dominated by the free-riding

incentive in this case. If p̂1

p1
� 2

1+✓
, û1(p̂1; p1, p1) =

p0

p1
c� c and û1(p0; p1, p̂1) =

(2+✓)p0

p1
c� c� (1+✓)p0

(2+✓)p̂1
. Then, in (A.0.41),

4RHSFS

=
1

(1 + ✓)(2 + ✓)
c+ �

1� p0�

1 + ✓

✓
p̂1

p1
c� c

◆
� �

2 + ✓

✓
(2 + ✓)p0

p1
c� c� (2 + ✓)p0

(1 + ✓)p̂1
c

◆

>
�

(1 + ✓)(2 + ✓)
c+ �

1� p0�

1 + ✓

✓
p̂1

p1
c� c

◆
� �

2 + ✓

✓
(2 + ✓)p0

p1
c� c� (2 + ✓)p0

(1 + ✓)p̂1
c

◆

/ 1

(1 + ✓)(2 + ✓)
+

1� p0�

1 + ✓

✓
p̂1

p1
� 1

◆
� 1

2 + ✓

✓
(2 + ✓)p0

p1
� 1� (2 + ✓)p0

(1 + ✓)p̂1

◆

/(2� ✓) + �
2(3 + ✓) + �

2
p0(1� ✓ � ✓

2) + �p0(✓
2 + 2✓) + �(2✓2 + 3✓ � 4)

(A.0.45)

Notice that, in this case, � 2 (1
3
,
1

2
) and ✓ 2

⇣p
5�1

2
, 1
⌘
, then, from the results1

in Software “Mathematica”, (A.0.45) is always positive in this case. Therefore,

the exclusion-shirk incentive is dominated in this case. Moreover, to check

whether the free-riding incentive or the exclusion-work incentive dominates,

the analysis is the same as before and results in (A.0.40) still hold.

Proof of Corollary 1.4.1
Notice that the left hand side of the two inequalities in (1.4.11) are

the same, then it only needs to be checked wether the grand contract for

motivating the individual work satisfies the inequality with the larger right

hand side, where !
IW

1,0
(p0) = c+�B

1
1(p0;p̂1,p̂1)

�Rp0
. The di↵erence of the right hand

1The code is: Manipulate[Plot[(2�✓)+�2(3+✓)+�2p0(1�✓�✓2)+�p0(✓
2+2✓)+�(2✓2+3✓�

4),{✓,
p

5�1
2 ,1}],{�, 13 ,

1
2}{p0,0,1}]
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sides are:

4RHSIW =
✓

1 + ✓
c+ �(1� p0�)

�
û
1

1
(p̂1; p̂1, p1)� û

1

1
(p̂1; p̂1, p̂1)

�

=
✓

1 + ✓
c+ �(1� p0�)max

⇢
� ✓

1 + ✓
c, 0

� (A.0.46)

It’s clear that the right hand side of the first inequality is larger in (1.4.11)

when the synergy is positive, thus it can only be focused on whether the first

inequality is satisfied. On the other hand, when the synergy is negative, the

focus shifts to the second inequality in (1.4.11).

When ✓ �
⇥
1, 1�2�

�

�
, (1.4.11) requires:

(1 + ✓)c+ (1 + ✓)�B1

1
(p0; p̂1, p̂1) + �

1� p0�(2 + ✓)

1 + ✓
c < 2c (A.0.47)

Its left hand side is an increasing function of � and reaches the minimum at

� = 0. However, (1 + ✓)c � 2c. This implies for 8� 2 [0, 1], (1.4.11) is always

violated.

Now consider the small positive synergy, ✓ 2
⇥
0,min

�
1�2�

�
, 1
 �

. Firstly,

for p̂1 � p
T and p̂1

p1
� 2

1+✓
, (1.4.11) becomes:

�


B

1

1
(p0; p̂1, p̂1)�

(1� p0�)(1� ✓)

(1 + ✓)2
c

�
<

1� ✓

1 + ✓
c (A.0.48)

The left hand side of the inequality above is a continuous linear function of

�, and it’s always satisfied at � = 0. Now check whether it’s still satisfied at

� = 1. If it is, then it’s satisfied for 8� 2 [0, 1]; if it’s violated, according to the

intermediate value theorem, there must exist �v 2 (0, 1), such that (1.4.11) is

violated for � 2 [�v, 1], and satisfied for � 2 [0, �v). Similar argument would be

applied for the all rest of proof of Corollary 1.4.1. At � = 1, (A.0.48) requires:

B
1

1
(p0; p̂1, p̂1)�

(1� p0�)(1� ✓)

(1 + ✓)2
c� 1� ✓

1 + ✓
c < 0

=) / ✓
2 + ✓ � 2 + 2�(2 + ✓)� p0�(✓

2 + 3✓ + 2�) < 0

=) p0� >
✓
2 + ✓ � 2 + 2�(2 + ✓)

✓2 + 3✓ + 2�

(A.0.49)
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It’s clear that (A.0.49) always holds if � 2
�
0, 1�✓

2

⇤
since the numerator ✓2 +

✓ � 2 + 2�(2 + ✓) is negative in this case. Thus I focus on the scenario with

� 2
�
1�✓

2
,
1

2

�
, in which case ✓ 2

⇣p
5�1

2
, 1
⌘
. Notice that p̂1

p1
� 2

1+✓
, and it

requires:

p0�  ✓ � 1 + �(3 + ✓)

3✓ + ✓2 + (2 + ✓)(1� ✓)�
and � 2

✓
1� ✓

1 + ✓
,
1

2

◆
(A.0.50)

Since 2� > (2 + ✓)(1 � ✓)� and ✓
2 � 1 + � < 0 when � 2

�
1�✓

2
,
1

2

�
and ✓ 2⇣p

5�1

2
, 1
⌘
, it must be true that ✓

2
+✓�2+2�(2+✓)

✓2+3✓+2�
<

✓�1+�(3+✓)

3✓+✓2+(2+✓)(1�✓)�
and � 2

�
1�✓

1+✓
,
1

2

�
. Therefore, (A.0.48) doesn’t hold for p0

⇣
0, ✓

2
+✓�2+2�(2+✓)

�(✓2+3✓+2�)

i
in this

case. As a result, according to intermediate value theorem, 9�v 2 (1�✓

2
,
1

2
)

and 9✓v 2
⇣p

5�1

2
, 1
⌘
, such that (1.4.11) holds for 8p0 2 (0, 1), in which case

� 2
⇥
�v,

1

2

�
and ✓ 2

⇥
✓v,min

�
1, 1�2�

�

 �
. Thus, (A.0.48) doesn’t hold at � =

1. Therefore, (1.4.11) is violated when � 2 [�v, 1] in this case, where �v =
(1�✓

2
)c

(1+✓)2B1
1(p0;p̂1,p̂1)�(1�p0�)(1�✓)

. Aslo, it’s easily to see that (A.0.49) is violated if

p0 2 (0, pv], in which case p
v = min

n
1, ✓

2
+✓�2+2�(2+✓)

�(✓2+3✓+2�)

o
.

Secondly, for p̂1 � p
T and 1 <

p̂1

p1
<

2

1+✓
, in (1.4.11):

�

⇢
B

1

1
(p0; p̂1, p̂1)�

(1� p0�)(1� ✓)

(1 + ✓)2
c+

[1� p0�(2 + ✓)][2p1 � (1 + ✓)p̂1]

p̂1(1 + ✓)2
c

�

<
1� ✓

1 + ✓
c

(A.0.51)

By applying the same argument as the previous case, the inequality holds at

� = 0. At � = 1, it requires:

�+ ✓ � 1� p0�✓

(1 + ✓)(1� �)
< 0 =) p0� >

�+ ✓ � 1

✓
(A.0.52)

Since 1 <
p̂1

p1
<

2

1+✓
, in which p0� >

✓�1+�(3+✓)

3✓+✓2+(2+✓)(1�✓)�
, it implies that

�+ ✓ � 1

✓
� ✓ � 1 + �(3 + ✓)

3✓ + ✓2 + (2 + ✓)(1� ✓)�
/ �

2 � �� ✓ < 0 (A.0.53)

Therefore, (A.0.52) holds at � = 1. As a result, (1.4.11) is always satisfied for

8� 2 [0, 1] in this case.
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Thirdly, for pT > p̂1 � p
⇤, (1.4.11) requires

�B
1

1
(p0; p̂1, p̂1) <

1� ✓

1 + ✓
c (A.0.54)

Again, it’s satisfied at � = 0. At � = 1, it becomes:

1� p0�

1� �
c� 2

1 + ✓
c < 0 =) p0� >

✓ � 1 + 2�

1 + ✓
(A.0.55)

If 0 < ✓  1 � 2�, (A.0.55) is always satisfied as the numerator is nega-

tive. However, if ✓ 2
�
1� 2�,min{1�2�

�
, 1}
�
, it implies that 0 <

✓�1+2�

(1+✓)�
< 1.

Thus, together with p0 2
⇣
0, ✓�1+2�

(1+✓)�

i
, (A.0.55) is violated, and it follows

that (A.0.54) is violated at � = 1. As a result, for � 2
h

1�✓

(1+✓)B1
1(p0;p̂1,p̂1)

, 1
i
,

✓ 2
�
1� 2�,min{1�2�

�
, 1}
�
and p0 2

⇣
0, ✓�1+2�

(1+✓)�

i
, (1.4.11) is violated. In this

case, pv = ✓�1+2�

(1+✓)�
, �v = (1�✓)c

(1+✓)B1
1(p0;p̂1,p̂1)

, and ✓v = 1 � 2�, which are di↵erent

from previous levels of threshold.

Now consider the negative synergy, ✓ 2
�
�1,min

�
1�2�

�
, 0
 �

, in which it

only needs to be checked whether the second inequality in (1.4.11) is satisfied.

Firstly, p̂1 � p
T and p̂1

p1
� 2+✓

(1+✓)2
, (1.4.11) becomes:

�


B

1

1
(p0; p̂1, p̂1)�

(1� p0�)(1� ✓ � ✓
2)

(1 + ✓)3
c

�
<

1� ✓ � ✓
2

(1 + ✓)2
c (A.0.56)

The inequality is satisfied at � = 0. At � = 1, it can be simplified as:

✓
2 + ✓ � 1 + (2� ✓

2)� < p0�
⇥
�(1� ✓ � ✓

2) + ✓
2 + 2✓

⇤
(A.0.57)

Since p̂1

p1
� 2+✓

(1+✓)2
, it requires that p0� [�(1� ✓ � ✓

2) + ✓
2 + 2✓]  ✓

2
+✓�1+�(3+2✓)

2+✓
,

which also implies that:

✓
2 + ✓ � 1 + (2� ✓

2)� <
✓
2 + ✓ � 1 + �(3 + 2✓)

2 + ✓

=) (1� 2✓2 � ✓
3)� < (1� ✓ � ✓

2)(1 + ✓)

(A.0.58)

This inequality is always satisfied for 8� 2 (0, 1) and 8✓ 2
�
�1,min{0, 1��

�
}
�

in this case. Now it can focus on the value of p0. If it’s coe�cient is pos-

itive, [✓2 + ✓ � 1 + �(3 + ✓)]� > 0, it must be true that ✓
2 + ✓ � 1 +
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�(3 + ✓) > 0. This scenario exists at � 2
⇣

�✓(2+✓)

1�✓�✓2
, 1
⌘

and ✓ 2 (�1, ✓v0 ],

where �✓v0 (2+✓v0 )
1�✓v0�✓2

v0
=

1�✓v0�✓
2
v0

3+✓v0
. In contrast, it’s implies that (A.0.56) is vio-

lated in this case if p0 2
⇣
0, ✓

2
+✓�1+(2�✓

2
)�

�[�(1�✓�✓2)+✓2+2✓]

⌘
with � 2

⇣
1�✓�✓

2

2�✓2
, 1
⌘

and

✓ 2 (�1, ✓v0 ]. Thus (1.4.11) is violated at � = 1. As a result, (1.4.11) would

be violated at � 2
"

1�✓�✓2

(1+✓)2
c

B1
1(p0;p̂1,p̂1)�

(1�p0�)(1�✓�✓2)

(1+✓)3
c

, 1

#
, p0 2

⇣
0, ✓

2
+✓�1+(2�✓

2
)�

�[�(1�✓�✓2)+✓2+2✓]

⌘

with� 2
⇣

1�✓�✓
2

2�✓2
, 1
⌘
and ✓ 2 (�1, ✓v0 ]. On the other hand, if [✓2 + ✓ � 1 +

�(3 + ✓)]� < 0, it requires that ✓2 + ✓ � 1 + (2 � ✓
2)� < 0. Thus, (A.0.56) is

violated at p0 2
⇣

✓
2
+✓�1+(2�✓

2
)�

�[�(1�✓�✓2)+✓2+2✓]
, 1
⌘
with � 2

⇣
0, 1�✓�✓

2

3+✓

⌘
. However, since

✓
2
+✓�1+(2�✓

2
)�

�[�(1�✓�✓2)+✓2+2✓]
> 1 in this scenario, it can be discarded.

Secondly, for p̂1 � p
T and 1 <

p̂1

p1
<

2+✓

(1+✓)2
, from (1.4.11),

�

⇢
B

1

1
(p0; p̂1, p̂1) +

[1� p0�(2 + ✓)][(2 + ✓)p1 � (1 + ✓)2p̂1]

p̂1(1 + ✓)3
c

�(1� p0�)(1� ✓ � ✓
2)

(1 + ✓)3
c

�
<

1� ✓ � ✓
2

(1 + ✓)2
c

(A.0.59)

The inequality is satisfied at � = 0. At � = 1, it can be simplified as:

✓
2 + ✓ � 1

(1 + ✓)2
< 0 (A.0.60)

This implies that (A.0.59) is also satisfied at � = 1. Therefore, (1.4.11) is

always satisfied in this case.

Thirdly, for pT > p̂1 � p
⇤, from (1.4.11),

�B
1

1
(p0; p̂1, p̂1) <

1� ✓ � ✓
2

(1 + ✓)2
c (A.0.61)

The inequality is satisfied at � = 0. At � = 1, this condition can be simplified

as:

p0

p̂1
c� 2 + ✓

(1 + ✓)2
c < 0 =) p0 >

✓
2 + ✓ � 1 + (2 + ✓)�

�(1 + ✓)2
(A.0.62)

Notice that the numerator is always negative as ✓ 2 (�1, 0) and 1��(2+✓) > 0,

thus (A.0.62) is always satisfied for 8� 2 [0, 1].
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Proof of Proposition 1.4.2
If p0 � p

⇤
> p̂1, ⇡⇤

1
(p1) = ⇡

⇤
1
(p̂1) = 0. Notice that � 2 [0, 1], then the

principal would never delay the investment. When comparing the profits from

the partnership and the individual work, the analysis should be the same as

that in the static game with belief p0, so Lemma 1.4.1 can be applied. When

✓ 2
�
1, 1�2�

�

�
, it is equivalent to the case in which R

c
2
h

2

(1+✓)�p0
,

2

(1+✓)�p̂1

⌘
;

when ✓ 2
�
�1, 1�2�

�

�
, it equivalent to the case in which R

c
2
h

1

�p0
,

1

�p̂1

⌘
. The

rest of proof of Proposition 1.4.2 would focus on the scenarios in which p̂1 �
p
⇤. Moreover, notice that B

i

1
(·) is a linear function of the cost c, it can be

represented as Bi

1
(pi

1
; pP

1
, p

j

1
) = �

i

1
(pi

1
; pP

1
, p

j

1
)c, where i, j = 1, 2 and i 6= j.

Firstly, consider the large positive synergy in which case ✓ 2
⇥
1, 1�2�

�

�
.

According to Corollary 1.4.1, the principal would only choose between the

partnership and delaying the investment, and she would prefer the partnership

at t = 0 if the di↵erence between the benefit from these two choices,4V
CN

0
(p0),

is positive. When p̂1 � p
⇤ � p1, the principal would not invest at t = 1 after the

failure from the collaboration, and ⇡
⇤
1
(p1) = 0. As a result, (1.4.15) is always

positive as � 2 [0, 1], and e
⇤
i,0
(p0) = 1 = e

P

i,0
(p0). This scenario is equivalent to

R

c
2
h

2

(1+✓)�p̂1
,

2

(1+✓)�p1

⌘
. When p1 � p

⇤, ⇡⇤
1
(p1) > 0, and V

CN

0
(p0) is positive

at � = 0. This scenario is equivalent to R

c
� 2

(1+✓)�p1
. Then I check if it’s still

positive at � = 1. If it is, the partnership at t = 0 is preferred; if it’s not, then

9�⇤ 2 (0, 1), such that the partnership is preferred for � 2 [0, �⇤). The rest of

the proof would also follow the similar argument. At � = 1, V CN

0
(p0) can be

simplified as:

4V
CN

0
(p0)|�=1 =[1� p0�(2 + ✓)]p1�(2 + ✓)R

� 2(2 + ✓)

1 + ✓


1� p0�(1 + ✓) +

(2 + ✓)�(1� p0)

1� �(2 + ✓)

�
c

/p1�R� 2� 2p1�(1 + ✓)

(1 + ✓)[1� �(2 + ✓)]
c

(A.0.63)

This implies that 4V
CN

0
(p0)|�=1 � 0 if R

c
� 2[1�p1�(1+✓)]

p1�(1+✓)[1��(2+✓)]
>

2

(1+✓)p1�
. There-

fore, e⇤
i,0
(p0) = 1 when R

c
� 2[1�p1�(1+✓)]

p1�(1+✓)[1��(2+✓)]
. When R

c
2
h

2

(1+✓)p1�
,

2[1�p1�(1+✓)]

p1�(1+✓)[1��(2+✓)]

⌘
,

4V
CN

0
(p0)|�=1 < 0, thus e

⇤
i,0
(p0) = 1 for � 2 [0, �⇤], and e

⇤
i,0
(p0) = 0 for

� 2 (�⇤, 1], where 4V
CN

0
(p0)|�⇤ = 0.
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Now consider the scenarios with the negative synergy, in which case

✓ 2
�
�1,min

�
0, 1�2�

�

 �
. When all the parameters make (1.4.11) to be satis-

fied, it must be true that both 4V
CN

0
(p0) and 4V

CW

0
(p0) are positive if the

partnership is motivated, which can be simplified as:

8
<

:

R

c
� [1��p0�(2+✓)](2+✓)+�[(2+✓)�

2
1(p̂1;p1,p1)+(1+✓)�

1
1(p̂1;p1,p̂1)]

p0�(1+✓)2[1���(2+✓)]
=
⇣

R

c

⌘cn

R

c
� 2+✓

1+✓

⇣
R

c

⌘cn
� (1+✓)

2��[p0�(2+✓)
2
(1+✓)�(1+✓)

2
�
1
1(p0;p̂1,p̂1)]

p0�(1+✓)3[1���(2+✓)]
=
⇣

R

c

⌘cw

(A.0.64)

For p0 � p
T = (3+2✓)c

(1+✓)3�R
, the partnership is always preferred at � = 0 since

R

c
� 3+2✓

p0�(1+✓)3
>

2+✓

p0�(1+✓)2
. Thus, for 8� 2 [0, 1], the partnership is preferred

as long as R

c
� max

n⇣
R

c

⌘cn
|�=1,

⇣
R

c

⌘cw
|�=1,

3+2✓

p0�(1+✓)3

o
= R

c
. Such value-cost

ratio always exists as R

c
2 [0,+1). On the other hand, if (1.4.11) is not

satisfied, 4V
CW

0
(p0) can be discarded for � 2 [�v, 1] as the individual work

cannot be motivated in this case. For � 2 [0, �v], the partnership is preferred

only if R

c
� max

n⇣
R

c

⌘cn
|�=�v ,

⇣
R

c

⌘cw
|�=�v ,

3+2✓

p0�(1+✓)3

o
. Therefore, for � 2 [0, 1],

it has to be true that R

c
� max

n⇣
R

c

⌘cn
|�=1,

⇣
R

c

⌘cw
|�=�v ,

3+2✓

p0�(1+✓)3

o
. It’s clear

that such value-cost ratio still exists, which is denoted by R

c
.

For R

c
2
h

3+2✓

p0�(1+✓)3
,
R

c

⌘
, the di↵erence of the static profits are still pos-

itive, p0�(2 + ✓)R � 3+2✓

(1+✓)2
c � 0 and p0�(2 + ✓)R �

�
2+✓

1+✓

�2
c � 0. From

(A.0.64), it must be true that 9�cw 2 [0, 1] and 9�cn 2 [0, 1] such that the

partnership is preferred at � 2
⇥
0,min

�
�cw, �cn

 ⇤
when (1.4.11) is satisfied,

then �
⇤
c
= min

�
�cw, �cn

 
in this case. On the other hand, when (1.4.11) is vio-

lated and the individual work cannot be motivated at � 2 [�v, 1], the principal

would preferred to the partnership at � 2
⇥
0,max

�
min

�
�cw, �cn

 
, �v

 ⇤
, and

�
⇤
c
= max

�
min

�
�cw, �cn

 
, �v

 
in this case. The individual work is preferred

to no investment only if 4V
WN

0
(p0) is positive, which can be simplified as:

4V
WN

0
(p0) = p0�R� c � �

⇥
B

2

1
(p0; p̂1, p̂1)� (1� p0�)⇡

⇤
1
(p̂1) + ⇡

⇤
1
(p0)

⇤

(A.0.65)

Notice the left hand side is always positive, thus this inequality must hold at

� = 0. But it might be violated at � = 1. For instance, for R

c
2
h

3+2✓

p0�(1+✓)3
,

1

p1�

⌘
,

(A.0.65) is violated as B
2

1
(p0; p̂1, p̂1) = ⇡

⇤
1
(p̂1) = 0. Therefore, 9�wn 2 [0, 1]

such that the individual work is preferred to no investment at � 2 [0, �wn].
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Together with 4V
CN

0
(p0) < 0, no investment at t = 0 is preferred at � 2

�
max

�
�cn, �wn

 
, 1
⇤
when (1.4.11) is satisfied, and then �

⇤
w
= max

�
�cn, �wn

 


�
⇤
c
in this case. When (1.4.11) is violated, e⇤

i,1
= 0 at � 2

⇣
�
⇤
c
, 1
i
, in which case

�
⇤
w
= �

⇤
c
.

Consider R

c
2
h

1

p0�
,

3+2✓

p0�(1+✓)3

⌘
. For R

c
2
h

1

p0�
,min

n
1

p̂1�
,

3+2✓

p0�(1+✓)3

o⌘
,

�
e
⇤
1,0
, e

⇤
2,0

�
= (1, 0) as it’s equivalent to a static game. For R

c
2
h

1

p̂1�
,

3+2✓

p0�(1+✓)3

⌘
,

V
CW

0
(p0) can be simplified as:

V
CW

0
(p0) =p0�(1 + ✓)� 3 + 2✓

(1 + ✓)2
c� �[p0�

2(1 + ✓)R� p0�(1 + ✓)c� (
p0

p̂1
� 1)c

+
(2 + ✓)(1� p0�)c

1 + ✓
max

⇢
p̂1(2 + ✓)

p1(1 + ✓)
� 3 + ✓

1 + 2✓
,
p0

p̂1
� 1

�
]

� �


p0�

2(1 + ✓)R� p0�(1 + ✓)c� (
p0

p̂1
� 1)c� p0(2 + ✓)(1� p0�)

p̂1(1 + ✓)

�

/�


�(2 + ✓)

1� �(2 + ✓)
+

1� p0

(1� �)[1� �(2 + ✓)]

�
< 0

(A.0.66)

This implies that the collaboration is dominated by the individual work in this

case. The analysis between the individual work and no investment at t = 0

follows the same argument as that in (A.0.65). As a result, now
�
e
⇤
1,0
, e

⇤
2,0

�
=

(0, 0) at � 2 (�wn, 1] and
�
e
⇤
1,0
, e

⇤
2,0

�
= (1, 0) at � 2 [0, �wn], in which case

�
⇤
w
= �wn.

Finally, consider the small positive synergy, where ✓ 2
⇥
0,min{1�2�

�
, 1}
�
.

For p0 � p
T = (3+✓)c

(1+✓)2�R
, the argument would be the same as that in the negative

synergy scenario with p0 � p
T = (3+2✓)c

(1+✓)3�R
, thus the similar threshold R̃

c
must

exist in which case R̃

c
� 3+✓

p0�(1+✓)2�
. For R

c
2
h

3+✓

p0�(1+✓)2
,
R̃

c

⌘
, the argument would

be the same as that in the negative synergy scenario with R

c
2
h

3+2✓

p0�(1+✓)3
,
R

c

⌘
,

and then similar �̃⇤
c
and �̃

⇤
w
can be achieved.

For R

c
2
h

1

p0�
,

3+✓

p0�(1+✓)2

⌘
, 4V

CW

0
(p0) is always negative. Since the game

is equivalent to a static one for R

c
2
h

1

p0�
,min

n
1

p̂1�
,

3+✓

p0�(1+✓)2

o⌘
,
�
e
⇤
1,0
, e

⇤
2,0

�
=
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(1, 0). For R

c
2
h

1

p̂1�
,min

n
3+✓

p0�(1+✓)2
,

1

p1�

o⌘
, 4V

CN

0
(p0) can be simplified as:

4V
CN

0
(p0) = p0�(2 + ✓)R� 2(2 + ✓)

1 + ✓
c� �(p0�R� c) (A.0.67)

If R

c
2
h
max

n
2

p0�(1+✓)
,

1

p̂1�

o
,min

n
3+✓

p0�(1+✓)2
,

1

p1�

o⌘
✓ S̃, 4V

CN

0
(p0) � 0 at � =

0 and 4V
CN

0
(p0) < 0 at � = 1.Thus exists �̃cn 2 (0, 1) such that V CN

0
(p0) � 0

at � 2 [0, �̃cn]. Therefore, when (1.4.11) is violated,
�
e
⇤
1,0
, e

⇤
2,0

�
= (1, 1) at

� 2 [�v, �̃cn],
�
e
⇤
1,0
, e

⇤
2,0

�
= (0, 0) at � 2 (�̃cn, 1] and

�
e
⇤
1,0
, e

⇤
2,0

�
= (1, 0) at

� 2 [0, �v). In this case, �̃⇤
c
= �̃cn, and it’s clear that the interval [�v, �̃cn] is non-

empty when (1.4.11) is violated. When (1.4.11) is satisfied, the partnership

is dominated by the individual work as 4V
CW

0
(p0) is negative. The principal

now only compares the individual work and no investment at t = 0, and the

analysis follows the same argument as that in (A.0.65). As a result, in this

case,
�
e
⇤
1,0
, e

⇤
2,0

�
= (0, 0) at � 2 (�̃wn, 1], and

�
e
⇤
1,0
, e

⇤
2,0

�
= (1, 0) at � 2 [0, �̃wn]

and �̃
⇤
w
= �̃wn.

For R

c
2
h

1

p1�
,

3+✓

p0�(1+✓)2

⌘
, 4V

CN

0
(p0) would be:

4V
CN

0
(p0) = p0�(2 + ✓)R� (2 + ✓)2

(1 + ✓)2
c� �

⇥
p0�R(2 + ✓) + B

1

1
(p0; p̂1, p̂1)

⇤

(A.0.68)

For R

c
2
h
max

n
2+✓

p0�(1+✓)2
,

1

p1�

o
,

3+✓

p0�(1+✓)2

⌘
✓ S̃, 4V

CN

0
(p0) � 0 at � = 0, thus

exists �̃cn 2 (0, 1] such that V
CN

0
(p0) � 0 at � 2 [0, �̃cn]. Therefore, when

(1.4.11) is violated,
�
e
⇤
1,0
, e

⇤
2,0

�
= (1, 1) at � 2 [�v, �̃cn],

�
e
⇤
1,0
, e

⇤
2,0

�
= (0, 0) at

� 2 (�̃cn, 1], and
�
e
⇤
1,0
, e

⇤
2,0

�
= (1, 0) at � 2 [0, �v). In this case, �̃⇤

c
= �̃cn, and it’s

clear that the interval [�v, �̃cn] is non-empty when (1.4.11) is violated. When
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(1.4.11) is satisfied, at � 2 [0, �̃), V CW

0
(p0) can be simplified as:

V
CW

0
(p0) =p0�(1 + ✓)R� 3 + ✓

1 + ✓
c

� �


p0�

2(1 + ✓)R� p0�(1 + ✓)c� (
p0

p̂1
� 1)c� p0(2 + ✓)(1� p0�)

p̂1(1 + ✓)

�

� �


p0�

2(1 + ✓)R� p0�(1 + ✓)c� (
p0

p̂1
� 1)c� p0(2 + ✓)(1� p0�)

p̂1(1 + ✓)

�

/�


�(2 + ✓)

1� �(2 + ✓)
+

1� p0

(1� �)[1� �(2 + ✓)]

�
< 0

(A.0.69)

Similarly, at � 2 [0, �̃), V CW

0
(p0) can be simplified as:

V
CW

0
(p0) =p0�(1 + ✓)� 3 + 2✓

(1 + ✓)2
c� �[p0�

2(1 + ✓)R� p0�(1 + ✓)c� (
p0

p̂1
� 1)c

+
(2 + ✓)(1� p0�)

1 + ✓
cmax

⇢
p̂1(2 + ✓)

p1(1 + ✓)
� 3 + ✓

1 + 2✓
,
p0

p̂1
� 1

�
]

� �


p0�

2(1 + ✓)R� p0�(1 + ✓)c� (
p0

p̂1
� 1)c� p0(2 + ✓)(1� p0�)

p̂1(1 + ✓)

�

/�


�(2 + ✓)

1� �(2 + ✓)
+

1� p0

(1� �)[1� �(2 + ✓)]

�
< 0

(A.0.70)

These imply that the collaboration is dominated by the individual work in

this case. The analysis between the individual work and no investment at

t = 0 follows the same argument as that in (A.0.65). As a result, in this case,
�
e
⇤
1,0
, e

⇤
2,0

�
= (0, 0) at � 2 (�̃wn, 1], and

�
e
⇤
1,0
, e

⇤
2,0

�
= (1, 0) at � 2 [0, �̃wn] and

�̃
⇤
w
= �̃wn.

For R

c
2
h

1

p0�
,

3+✓

p0�(1+✓)2

⌘
\ S̃, the argument would be the same as that

for For R

c
2
h

1

p0�
,

3+2✓

p0�(1+✓)3

⌘
with the negative synergy, in which (1.4.11) is

always satisfied. As a result, in this case,
�
e
⇤
1,0
, e

⇤
2,0

�
= (0, 0) at � 2 (�̃⇤

w
, 1], and

�
e
⇤
1,0
, e

⇤
2,0

�
= (1, 0) at � 2 [0, �̃⇤

w
].Now �̃

⇤
w
= �̃wn if (1.4.11) is satisfied; otherwise,

�̃
⇤
w
= max

n
�̃wn, �v

o
.

Proof of Proposition 1.4.3
The notation follows that in the proof of Lemma 1.3.2.3). When mo-
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tivating the collaboration, since two agents are identical, si,t =
1

2
!1,t, and the

optimal sub-contract at t = 1 in positive synergy case is !⇤
2,t

= 1

2
. Therefore,

the free-riding incentive at t would be exactly the same as that in positive

synergy case. As a result, when the synergy is positive, both the principal’s

profit maximisation problem and the agents’ surplus are the same as those in

three-tier structure since the free-riding incentive constraint binds in both en-

vironment; when the synergy is negative, the principal is strictly better o↵ in

the two-tier one since exclusion incentive is discarded which is binding in the

three-tier one. Also, s⇤
1,t

+ s
⇤
2,t

would be exactly the same as those in Lemma

1.4.1 and Proposition 1.4.1 with ✓ � 1. This implies that agent one’s surplus

is strictly less in the negative synergy case, and agent two’s stays the same.

When motivating the individual work, both the incentive of shirking

and the over-investment incentive need to be satisfied, which are the same as

those in the three-tier structure if the link between two agents still exists. In

this case, the same contract as the three-tier one would be o↵ered and (1.4.11)

needs to be satisfied, thus the principal achieves the same profit level as the

three-tier structure. If the link doesn’t exist anymore, the principal only needs

to consider the agent’s incentive of shirking. In this case, the contract would

still be the same as that in three-tier structure. As a result, the principal’s

profit is weakly higher with less distortion. This also implies that agent one’s

surplus is less. Agent two still gets zero.

When considering the optimal choice at t = 0, the analysis should be

exactly the same as that in Proposition 1.4.2 with positive synergy if the link

between two agents still exits. The principal reaches the same profit level as

that in the three-tier structure. If the link doesn’t exist, constraint (1.4.11)

can be discarded, and the principal would never over-invest, in which case her

expected profit is strictly higher.
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Appendix B

Proofs for Chapter 2

B.0.1 Proofs for Preliminaries and Public Experimen-

tation

Proof of Claim 2.3.1
When a

0(·) is a single reward, the agent would not conduct any experiments

since the reported successes would not increase the reward. Thus, the principal

would not observe any results of experiments being reported, and she solves

the following maximisation problem:

max
a0(0,0)

� p0

�
a
0(0, 0)�M

�2 � (1� p0)
�
a
0(0, 0)

�2

The optimal solution then is a0(·) = a
0(0, 0) = p0M .

Proof of Lemma 2.3.1
Lemma 2.3.1.1): When the agent reports more than one failure, the principal

learns that the agent’s type is bad and he must have over-experimented after

his first failure. Notice that the principal wants to deter such behaviour on

the equilibrium path, thus ak(kg
, 1) � a

k(kg
, k

b
> 1) is a plausible candidate

to achieve such goal. If there exists a contract with a
k(kg

, 1) < a
k(kg

, k
b
> 1)

which can achieve the same goal, the bad type’s equilibrium path behaviour

in such contract would be the same as that with a
k(kg

, 1) � a
k(kg

, k
b
> 1).

Lemma 2.3.1.2): Suppose the principal motivates a potential good type agent

to report k successes without failures. When the agent reports kg � k successes
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with one failure, the principal learns that the agent is a bad type and he has

over-experimented. To deter such deviation from the bad type agent, the

principal would assign a
k(kg � k, 0) � a

k(kg � k, 1) � 0. Thus a
k(kg �

k, 1) = 0 is a candidate which can achieve such goal, and it’s equal to bad

type’s true value. For any other contracts with a
k(kg � k, 1) > 0 which can

achieve the same goal, the bad type’s equilibrium path behaviour would be the

same as the contract with a
k(kg � k, 1) = 0. Moreover, together with Lemma

2.3.1.1), ak(kg � k, k
b � 1) = 0.

Lemma 2.3.1.3): After achieving k successes without failures, the agent would

stop experimenting if:

[1� ✓(1� pj)]4a
k(j + 1, 0) < c, j > k (B.0.1)

where 4a
k(j + 1, 0) = a

k(j + 1, 0) � a
k(j, 0). Thus 4a

k(j + 1, 0) must be

bounded, 4a
k(j + 1, 0) 2

h
0, c

1�✓(1�pj)

⌘
. For 8k, j 2 N, 4a

k(j + 1, 0) 2 [0, c)

since 1 � ✓(1 � pj) is increasing as j increases, the same incentive can be

achieved by setting 4a
k(j + 1, 0) = 0.

Proof of Proposition 2.3.1
Given motivating the potential good type agent to report k successes,

the principal’s ex ante expected payo↵ can be represented as following:

VP (k, p0) =� p0

�
a
k(k, 0)�M

�2 � (1� p0)(1� ✓)k
�
a
k(k, 0)

�2

�
k�1X

i=0

(1� p0)(1� ✓)i✓
�
a
k(i, 1)

�2 (B.0.2)

Given a
k(·) in proposition 2.3.1.1) is committed, the expected payo↵ above

can be simplified as:

VP (a
k(·)) = �p0(1� pk)M

2 �
⇣
max

n
0, k̃c� p0M

o⌘2
(B.0.3)

Proof by contradiction then can be applied in order to achieve the con-

clusion that ak(·) in Proposition 2.3.1.1) is optimal and unique on the equilib-

rium path. Suppose not, then, given Properties in Lemma 2.3.1 are satisfied,
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there must exist another reward scheme ã
k(·):

8
<

:
ã
k(j < k, 1) = max

n
0, k̃c� p0M

o
+ ✏j

ã
k(k, 0) = pkM +max

n
0, k̃c� p0M

o
+ ✏k

(B.0.4)

where (✏k, ..., ✏0) 2 Rk and (✏k, ✏k�1, ..., ✏0) 6= 0, such that VP (ãk(·)) � VP (ak(·))
and IR constraint is still satisfied. Now the principal’s expected payo↵ can be

represented as:

VP (ã
k(·)) =� p0

⇣
pkM +max

n
0, k̃c� p0M

o
+ ✏k �M

⌘2

� (1� p0)(1� ✓)k
⇣
pkM +max

n
0, k̃c� p0M

o
+ ✏k

⌘2

�
k�1X

i=0

(1� p0)(1� ✓)i✓
⇣
max

n
0, k̃c� p0M

o
+ ✏i

⌘2

=� p0(1� pk)M
2 �

⇣
max

n
0, k̃c� p0M

o⌘2
� 2max

n
0, k̃c� p0M

o
✏

�
(
⇥
p0 + (1� p0)(1� ✓)k

⇤
✏
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓✏2
i

)

(B.0.5)

Where ✏ =
⇥
p0 + (1� p0)(1� ✓)k

⇤
✏k +

P
k�1

i=0
(1 � p0)(1 � ✓)i✓✏i. Since ã

k(·)
must satisfy IR constraint:

E(ãk(kg
, k

b)|k, p0)� k̃c � 0

=) ✏ � �max
n
0, k̃c� p0M

o
+ k̃c� p0M = min

n
k̃c� p0M, 0

o

=) max
n
0, k̃c� p0M

o
✏ � max

n
0, k̃c� p0M

o
min

n
k̃c� p0M, 0

o
� 0

(B.0.6)

Notice (✏k, ✏k�1, ..., ✏0) 6= 0:

⇥
p0 + (1� p0)(1� ✓)k

⇤
✏
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓✏2
i
> 0 (B.0.7)
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Combining from (B.0.5) to (B.0.7), the following result can be achieved:

VP (ã
k(·))� VP (a

k(·)) =�
(
⇥
p0 + (1� p0)(1� ✓)k

⇤
✏
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓✏2
i

)

� 2max
n
0, k̃c� p0M

o
✏ < 0

(B.0.8)

which contradicts to VP (ãk(·)) � VP (ak(·)). Therefore, it can concluded that

a
k(·) is uniquely optimal on the equilibrium path.

The following part focuses on the optimal motivated number of exper-

iments, kP in public experimentation. When k  k, max
n
0, k̃c� p0M

o
= 0,

from (B.0.3):

VP (a
k(·)) = �p0(1� pk)M

2 (B.0.9)

and the principal’s expected payo↵ is increasing as k increases, and this implies

k
P = k in this scenario.

When k > k, max
n
0, k̃c� p0M

o
= k̃c� p0M , (B.0.3) becomes:

VP (a
k(·)) = �p0(1� pk)M

2 �
⇣
k̃c� p0M

⌘2
(B.0.10)

the second term
⇣
k̃c� p0M

⌘2
is increasing as k increases, and it would under-

mine the benefit of exploration through experiment. Notice that when k ! 1,

VP (ak(·)) ! �1, the optimal number kP must be finite, kP
< 1.

B.0.2 Proofs for Private Experimentation

Proof of Lemma 2.4.1
Suppose, when a potential good agent is motivated to report k 2 N+

successes, in the optimal reward scheme a
k(·), there exit(s) some j 2 N and

0  j < k, such that

max
�
a
k(j + 1, 1), ak(j + 1, 0)

 
�max

�
a
k(j, 1), ak(j, 0)

 
>

c

1� ✓

To simplify the notation, I let ⇢i = max
�
a
k(i, 1), ak(i, 0)

 
for i = 0, ..., k.

Given the scheme a
k(·), I use ↵k to denote the reward that a potential good

type agent receives and use ↵0i<k to denote the reward that is actually re-
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ceived by the bad type agent whose first failure occurs in i + 1th experiment.

In each of the following steps, I construct a profitable and feasible deviation

for the principal to show the contradiction without violating ICS in (2.4.3).

Step 1. Suppose ak(k, 0)� ⇢k�1 >
c

1�✓
. A bad type agent with k� 1 successes

would over-experiment since the expected extra gain is higher than the extra

cost of doing so. Thus ↵k = ↵k�1 = a
k(k, 0) and ↵j<k�1 = ⇢n̂, where n̂ 2

max
n2N,jnk

⇢n � (n� j) c

1�✓
. The principal’s expected payo↵ now is

V (ak(·)) = �p0

�
a
k(k, 0)�M

�2�(1�p0)(1�✓)k�1
⇥
a
k(k, 0)

⇤2�
k�2X

j=1

(1�p0)(1�✓)j✓↵2

j

(B.0.11)

and the continuation payo↵ of a potential good agent with posterior belief pj

can be simplified as

U(k � j, pj) =
pj

pk
a
k(k, 0) + (1� pj)(1� ✓)k�j�1

✓


a
k(k, 0)� c

1� ✓

�

+
k�2X

i=j

(1� pj)(1� ✓)i✓U(i� j, 0)�
kX

i=j

pj

pi
c

(B.0.12)

which satisfies ICS in (2.4.3).

Now consider a di↵erent reward scheme ã
k(·), in which ã

k(k � 1, 0) =

ã
k(k � 1, 1) = a

k(k, 0) � c

1�✓
, and ã

k(i, n) = a
k(i, n) for i = 1, ..., k � 2, k and

n 2 N. The bad type agent with k � 1 successes would not over-experiment

since the extra gain of doing so equals to the expected cost. Thus ↵̃k = ↵k,

↵̃k�1 = ↵k � c

1�✓
and ⇢̃j = ⇢j for j = 0, ..., k � 2. Notice that, under ãk(·), the

continuation payo↵ of the bad type agent with j < k � 1 successes is

Ũ(k � j, 0) =

max

8
>>><

>>>:
↵̃k|{z}
=↵k

�(k � j)
c

1� ✓
, ↵̃k�1 � (k � j � 1)

c

1� ✓| {z }
>⇢k�1�(k�j�1)

c
1�✓

, max
n2N+,i<k�1

⇢n � (n� j)
c

1� ✓

9
>>>=

>>>;

� U(k � j, 0)
(B.0.13)

Thus, the continuation payo↵ of the potential good agent with posterior belief
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pj would be

Ũ(k � j, pj) =
pj

pk
a
k(k, 0) + (1� pj)(1� ✓)k�j�1

✓


a
k(k, 0)� c

1� ✓

�

+
k�2X

i=j

(1� pj)(1� ✓)i✓Ũ(i� j, 0)�
kX

i=j

pj

pi
c

�U(k � j, pj)

(B.0.14)

This inequality implies that ICS

0j<k�1
in (2.4.3) are still satisfied under the

new reward scheme ã
k(·). Notice that now the potential good agent with

posterior belief pk�1 can get ak(k, 0)� c

1�✓
if he stops immediately, then

Ũ(1, pk�1)�

a
k(k, 0)� c

1� ✓

�

=
pk�1

pk
a
k(k, 0) + (1� pk�1)✓


a
k(k, 0)� c

1� ✓

�
� c�


a
k(k, 0)� c

1� ✓

�

=
pk�1

pk

c

1� ✓
� c / 1� (1� ✓) = ✓ > 0

(B.0.15)

Therefore, ICS

k�1
is also satisfied and (B.0.13) and (B.0.15) imply that the

new scheme ã
k(·) can also motivates a potential good type agent to report k

successes on equilibrium path.

If there exits 0  j
0
< k � 1 such that ⇢k�1 � ⇢j0  (k � 1 � j

0) c

1�✓

and a
k(k, 0) � ⇢j0  (k � j

0) c

1�✓
under ak(·), they also hold under ãk(·) since

ã
k(k, 0) = a

k(k, 0), ⇢̃j0 = ⇢j0 and

⇢̃k�1 � ⇢̃j0 = a
k(k, 0)� c

1� ✓
� ⇢j0  (k� j

0)
c

1� ✓
� c

1� ✓
= (k� 1� j

0)
c

1� ✓

(B.0.16)

which implies that ↵̃j0 = ↵j0 . If there exits 0  j
00
< k�1 such that ⇢k�1�⇢j00 >

(k � 1 � j
00) c

1�✓
, this bad type agent would stop over-experimenting once he

achieves k � 1 successes under ã
k(·), which makes ↵̃j00 < ↵j00 . As a result,

↵̃j  ↵j for 0  j < k � 1.
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Under ãk(·), the principal’s expected payo↵ can be written as

V (ãk(·))

=� p0

�
a
k(k, 0)�M

�2 � (1� p0)(1� ✓)k
⇥
a
k(k, 0)

⇤2

� (1� p0)(1� ✓)k�1
✓


a
k(k, 0)� c

1� ✓

�2
�

k�2X

j=1

(1� p0)(1� ✓)j✓↵̃2

j

>� p0

�
a
k(k, 0)�M

�2 � (1� p0)(1� ✓)k�1
⇥
a
k(k, 0)

⇤2 �
k�2X

j=1

(1� p0)(1� ✓)j✓↵2

j

=V (ak(·))
(B.0.17)

This shows that the principal is strictly better o↵ by o↵ering ã
k(·) instead of

a
k(·). This contradicts to that ak(·) is optimal. As a result, ak(k, 0)� ⇢k�1 
c

1�✓
must hold.

Step 2. Suppose ⇢k�1 � ⇢k�2 >
c

1�✓
. Together with the result in step 1, a

bad type agent with k � 2 successes would over-experiment and stop when

he achieves k � 1 successes. Thus ↵k = a
k(k, 0), ↵k�1 = ↵k�2 = ⇢k�1 and

↵j<k�2 = ⇢n̂. Then principal’s expected payo↵ now is

V (ak(·)) =� p0

�
a
k(k, 0)�M

�2 � (1� p0)(1� ✓)k
⇥
a
k(k, 0)

⇤2

� (1� p0)(1� ✓)k�1 (⇢k�1)
2 � (1� p0)(1� ✓)k�1 (⇢k�1)

2

�
k�3X

j=1

(1� p0)(1� ✓)j✓↵2

j

(B.0.18)

and the continuation payo↵ of a potential good agent with posterior belief pj

is

U(k � j, pj)

=�
kX

i=j

pj

pi
c+

pj

pk
a
k(k, 0) + (1� pj)(1� ✓)k�j�1

✓⇢k�1

+ (1� pj)(1� ✓)k�j�2
✓

✓
⇢k�1 �

c

1� ✓

◆
+

k�2X

i=j

(1� pj)(1� ✓)i✓U(i� j, 0)

(B.0.19)

which satisfies ICS in (2.4.3).
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Consider another reward scheme ǎ
k(·), in which ǎ

k(k � 2, 0) = ǎ
k(k �

2, 1) = ⇢k�1 � c

1�✓
, and ǎ

k(i, n) = a
k(i, n) for i = 1, ..., k and i 6= k � 2.

Now the bad type agent with k � 2 success would not over-experiment since

the extra gain is the same as the expected cost of doing so. Thus ↵̌k = ↵k,

↵̌k�1 = ↵k�1 = ⇢k�1, ↵̌k�2 = ⇢k�1 � c

1�✓
and ⇢̌j = ⇢j for j = 0, ..., k � 3. Thus,

under ǎ
k(·), the continuation payo↵ of the bad type agent with j < k � 2

successes is

Ǔ(k � j, 0)

= max

8
>>><

>>>:
↵̌k�1|{z}
=⇢k�1

�(k � 1� j)
c

1� ✓
, ↵̌k�2 � (k � j � 2)

c

1� ✓| {z }
>⇢k�2�(k�j�2)

c
1�✓

, max
n2N+,i<k�2

⇢n � (n� j)
c

1� ✓

�

� U(k � j, 0)

(B.0.20)

which implies that ICS

0j<k�2
in (2.4.3) are still satisfied under ǎ

k(·). Since

ǎ
k(k, 0) = a

k(k, 0) and ↵̌k�1 = ↵k�1, IC
S

k�1
is also satisfied. Notice that now

the potential good type agent with posterior belief pk�2 can get ↵k�1 � c

1�✓
if

he stops immediately, then

Ǔ(2, pk�2)�
✓
⇢k�1 �

c

1� ✓

◆

=
pk�2

pk�1

2

664

�⇢k�1 from IC
S
k�1z }| {

�c+
pk�1

ppk

a
k(k, 0) + (1� pk�1)✓↵k�1

3

775

+ (1� pk�2)✓

✓
⇢k�1 �

c

1� ✓

◆
� c�

✓
⇢k�1 �

c

1� ✓

◆

�pk�2

pk�1

⇢k�1 + (1� pk�2)✓

✓
⇢k�1 �

c

1� ✓

◆
� c�

✓
⇢k�1 �

c

1� ✓

◆

=
pk�2

pk�1

c

1� ✓
� c / 1� (1� ✓) = ✓ > 0

(B.0.21)

This means that ICS

k�2
is also satisfied. Also, (B.0.20) and (B.0.21) show that

the ǎ
k(·) can also motivates a potential good type agent to report k successes
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on equilibrium path.

If there exists 0  i
0
< k � 2 such that ⇢k�2 � ⇢i0  (k � 2 � i

0) c

1�✓

and ⇢k�1 � ⇢i0  (k � 1 � i
0) c

1�✓
under ak(·), they also hold under ǎk(·) since

↵̌k�1 = ↵k�1 = ⇢k�1, ⇢̌i0 = ⇢i0 and

↵̌k�2 � ⇢̌i0 = ⇢k�1 �
c

1� ✓
� ⇢i0  (k� 1� i

0)
c

1� ✓
� c

1� ✓
= (k� 2� i

0)
c

1� ✓

(B.0.22)

This implies that ⇢̌i0 = ⇢i0 . If there exits 0  i
00
< k� 2 such that ⇢k�2� ⇢i00 >

(k � 2 � i
00) c

1�✓
, this bad type agent would stop over-experimenting once he

achieves k�2 successes under ǎk(·), which makes ↵̌i00 < ↵i00 . Therefore, ↵̌i  ↵i

for 0  i < k � 2.

Under ǎk(·), the principal’s expected payo↵ is

V (ǎk(·))

=� p0

�
a
k(k, 0)�M

�2 � (1� p0)(1� ✓)k
⇥
a
k(k, 0)

⇤2

� (1� p0)(k � 1)k�1
✓(⇢k�1)

2 � (1� p0)(1� ✓)k�2
✓

✓
⇢k�1 �

c

1� ✓

◆2

�
k�3X

j=1

(1� p0)(1� ✓)j✓↵̌2

j

>� p0

�
a
k(k, 0)�M

�2 � (1� p0)(1� ✓)k�1
⇥
a
k(k, 0)

⇤2

� (1� p0)(k � 1)k�1
✓(⇢k�1)

2

� (1� p0)(k � 1)k�2
✓(⇢k�1)

2

�
k�2X

j=1

(1� p0)(1� ✓)j✓↵2

j
= V (ak(·))

(B.0.23)

This shows that, compared to ak(·), the principal can find a profitable deviation

by o↵ering ǎ
k(·). This contradicts to that ak(·) is optimal. As a result, ⇢k�1�

⇢k�2  c

1�✓
must hold.

Step 3. Repeat the similar argument sequentially with descending order from

j = k � 3 to j = 0 and suppose ⇢j+1 � ⇢j >
c

1�✓
. I can always construct

another feasible deviation ȧ
k(·), in which ȧ

k(j, 1) = ȧ
k(j, 0) = ⇢j+1 � c

1�✓
, and

ȧ
k(i, n) = a

k(i, n) for i = 1, .., k and i 6= j. With the similar argument in step

2, ICS

i
in (2.4.3) are still satisfied for i = 0, ..., k and i 6= j. Similarly, for the
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good agent with posterior belief pj,

U̇(k � j, pj)�
✓
⇢j+1 �

c

1� ✓

◆

=
pj

pj+1

U(k � j � 1, pj+1) + (1� pj)✓

✓
⇢j+1 �

c

1� ✓

◆

� c�
✓
⇢j+1 �

c

1� ✓

◆

� pj

pj+1

⇢j+1 + (1� pj)✓

✓
⇢j+1 �

c

1� ✓

◆
� c�

✓
⇢j+1 �

c

1� ✓

◆

=
pj

pj+1

c

1� ✓
� c / ✓ > 0

(B.0.24)

Then ICS

j
is also satisfied. Furthermore, by applying the same argument as

those in step 2, it must be true that ↵̇n  ↵n for n = 0, ..., j. Therefore, the

principal now can receive

V (ȧk(·))

=� p0

�
a
k(k, 0)�M

�2 � (1� p0)(1� ✓)k
⇥
a
k(k, 0)

⇤2 �
kX

i=j+1

(1� p0)(1� ✓)i✓↵2

i

� (1� p0)(1� ✓)j✓

✓
⇢j+1 �

c

1� ✓

◆2

�
j�1X

i=1

(1� p0)(1� ✓)i✓↵̇2

i

>� p0

�
a
k(k, 0)�M

�2 � (1� p0)(1� ✓)k
⇥
a
k(k, 0)

⇤2 �
kX

i=j+1

(1� p0)(1� ✓)i✓↵2

i

� (1� p0)(1� ✓)j✓⇢2
j+1

�
j�1X

i=1

(1� p0)(1� ✓)i✓↵2

i
= V (ak(·))

(B.0.25)

This result contradicts to ⇢j+1 � ⇢j >
c

1�✓
. As a result, ⇢j+1 � ⇢j  c

1�✓
must

hold. To sum up, ⇢j+1 � ⇢j must hold for 0  j < k.

Given motivating the potential good agent to report k successes, the principal
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solves the following utility maximisation problem in private experimentation:

Max
ak(·)�0

V (k, p0) = E
⇣
�
�
a
k(·)�Mi

�2���k, p0
⌘

s.t : IR : U(k, p0) � 0

ICS : U(k � j, pj) � a
k(j, 0), 0  j < k

ICF : max
�
a
k(j + 1, 1), ak(j + 1, 0)

 

�max
�
a
k(j, 1), ak(j, 0)

 
 c

1� ✓

(B.0.26)

The Karush-Kuhn-Tucker condtion (KKT) can be applied to solve the

constrained maximisation problem above, since the feasible set under the con-

straints is convex and utility function is continuous and quasi-concave. How-

ever, it’s too tedious and not convenient to follow the logic if the details of

KKT are shown. Thus an alternative way could be adopted—proof by contra-

diction, which is similar as the proof of Proposition 2.3.1.1).

Proof of Lemma 2.4.2
Suppose 0  a

k(j < k, 1) < a
k(j, 0), the agent would never disclose

failures if any. Thus, on the equilibrium path, the principal can only observe

successes are reported, and constraints become:

IR0 :
kX

i=1

p0

pi

⇥
a
k(i, 0)� a

k(i� 1, 0)
⇤
+ a

k(0, 0) �
kX

i=1

p0

pi�1

c

ICS
0
:

kX

i=j+1

p0

pi

⇥
a
k(i, 0)� a

k(i� 1, 0)
⇤
�

kX

i=j+1

p0

pi�1

c

ICF
0
: a

k(j + 1, 0)� a
k(j, 0)  c

1� ✓
, 0  j < k

(B.0.27)

The structure of constraints is the same as that in private experimentation

with unverifiable failures. Instead, if assigning a
k(j < k, 1) � a

k(j, 0), the

principal gives the incentive to the agent to disclose all acquired realisations.

She can do so because failures are verifiable and the agent can prove himself
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that he indeed ran experiments but failed. Constrains now are:

IR :
kX

i=1

p0

pi

⇥
a
k(i, 1)� a

k(i� 1, 1)
⇤
+ a

k(0, 1) �
kX

i=1

p0

pi�1

c

ICS :
kX

i=j+1

p0

pi

⇥
a
k(i, 1)� a

k(i� 1, 1)
⇤
+

p0

pj

⇥
a
k(j, 1)� a

k(j, 0)
⇤
�

kX

i=j+1

p0

pi�1

c

ICF : a
k(j + 1, 1)� a

k(j, 1)  c

1� ✓
& a

k(k, 0)� a
k(k � 1, 1)  c

1� ✓

(B.0.28)

Notice that the feasible set in (B.0.27) is weakly smaller than that in (B.0.28),

and the latter reaches the largest when a
k(j < k, 0) = 0. Without solving

original maximisation problem, it can be concluded that the solution in sce-

nario “ak(j < k, 1) � a
k(j, 0) = 0” is weakly better than that in scenario

“0  a
k(j < k, 1) < a

k(j, 0)”. This conclusion can also be confirmed later

when the optimal reward schemes with verifiable and unverifiable failures are

compared, and this is because that the structure of solution to maximisation

problem when “0  a
k(j < k, 1) < a

k(j, 0)” is the same as that with unverifi-

able failures.

Proof of Proposition 2.4.1
Consider the optimal reward scheme CF in public experimentation.

When k  k̂, p
k
M  c

1�✓
and this implies that ICF and ICS are always

satisfied in CF. Moreover, since CF is the optimal reward scheme in public

experimentation which contains least constraints, CF must be the optimal re-

ward scheme in this current scenario as well. However, when k > k̂, pkM >
c

1�✓

and this leads the last ICF , ak(k, 0)� a
k(k � 1, 1)  c

1�✓
, to be violated.

Now proof by contradiction can be applied to check if the Type-I step

function (MF-I) proposed in Proposition 2.4.1.1.b) is optimal when k > k̂.

Suppose not, then, there must exist another reward scheme b
k(·):

8
<

:
b
k(j < k, 1) = a

k(j, 1) + ⌘j

b
k(k, 0) = a

k(k, 0) + ⌘k

(B.0.29)

where (⌘k, ..., ⌘0) 2 Rk and (⌘k, ..., ⌘0) 6= 0, such that VV

�
b
k(·)
�
� VV

�
a
k(·)
�

and all constraints are satisfied, where VV (·) is the principal’s expected payo↵
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in private experimentation with verifiable failures. The principal’s expected

payo↵ with b
k(·) then can be represented as:

VV (b
k(·))

=� p0

�
a
k(k, 0) + ⌘k �M

�2 � (1� p0)(1� ✓)k
�
a
k(k, 0) + ⌘k

�2

�
k�1X

i=0

(1� p0)(1� ✓)i✓
�
a
k(i, 1) + ⌘i

�2

=VV (a
k(·))�

(
p0

pk
⌘
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓⌘2
i

)
� 2max

n
0, k̃c� p0M

o
⌘

+ 2p0M⌘k � 2(k � l)
p0

pk

c

1� ✓
⌘k � 2

c

1� ✓

k�1X

i=l+1

(1� p0)(1� ✓)i✓(i� l)⌘i

� 2

 
plM �

kX

i=l+1

pl

pi

c

1� ✓

!"
p0

pk
⌘k +

k�1X

i=l

(1� p0)(1� ✓)i✓⌘i

#

(B.0.30)

Where ⌘ = p0

pk
⌘k +

P
k�1

i=0
(1� p0)(1� ✓)i✓⌘i. Notice b

k(·) must satisfy IR, and

it’s similar to (B.0.6):

E(bk(·)|k, p0)� k̃c � 0

=) ⌘ � �max
n
0, k̃c� p0M

o
+ k̃c� p0M = min

n
k̃c� p0M, 0

o

=) max
n
0, k̃c� p0M

o
⌘ � max

n
0, k̃c� p0M

o
min

n
k̃c� p0M, 0

o
� 0

(B.0.31)

Meanwhile, ICF,V must be satisfied:

8
>>>>>>>>><

>>>>>>>>>:

b
k(k, 0)� b

k(k � 1, 1)  c

1�✓

...

b
k(l + 1, 1)� b

k(l, 1)  c

1�✓

...

b
k(1, 1)� b

k(0, 1)  c

1�✓

=)

8
>>><

>>>:

⌘k � ⌘k�1  0

...

⌘l+1 � ⌘l  0

=) ⌘lj<k  �⌘k

(B.0.32)
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Now apply this result to Equation (B.0.30):

VV (b
k(·))

VV (a
k(·))�

(
p0

pk
⌘
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓⌘2
i

)
� 2max

n
0, k̃c� p0M

o
⌘

+ 2p0M⌘k � 2
c

1� ✓
⌘k

"
(k � l)

p0

pk
+

k�1X

i=l+1

(1� p0)(1� ✓)i✓(i� l)

#

� 2

 
plM �

kX

i=l+1

pl

pi

c

1� ✓

!"
p0

pk
+

k�1X

i=l

(1� p0)(1� ✓)i✓

#
⌘k

=VV (a
k(·))�

(
p0

pk
⌘
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓⌘2
i

)
� 2max

n
0, k̃c� p0M

o
⌘

+ 2

 
p0M �

kX

i=l+1

p0

pi

c

1� ✓

!
⌘k � 2

 
p0M �

kX

i=l+1

p0

pi

c

1� ✓

!
⌘k

=VV (a
k(·))�

(
p0

pk
⌘
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓⌘2
i

)
� 2max

n
0, k̃c� p0M

o
⌘

(B.0.33)

Since (⌘k, ..., ⌘0) 6= 0:

p0

pk
⌘
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓⌘2
i
> 0 (B.0.34)

Combing (B.0.31), (B.0.33) and (B.0.34), it can be concluded that:

VV (b
k(·))� VV (a

k(·)) �
(
p0

pk
⌘
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓⌘2
i

)

� 2max
n
0, k̃c� p0M

o
⌘ < 0

(B.0.35)

This result contradicts to VV (bk(·)) � VV (ak(·)). Therefore, the proposed

reward scheme in Proposition 2.4.1.1) is optimal.

When k̂ � k
P , CF is still feasible at level kP , thus k

P must be the

number of successes which gives the principal least expected loss for k  k̂.

On the other hand, for k > k̂, compared to CF, MF-I is the optimal reward

scheme with more constraints and it implies that the principal’s expected loss
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is higher under MF-I scheme than that under CF scheme give the same number

of experiments k. Therefore, k is dominated by k
P for 8k > k̂ in this case.

When k̂ < k
P , CF is no longer feasible at level kP , and MF-I is optimal

and the proof is the same as above. To show that the optimal number of exper-

iments in private environment is still higher than the first threshold number,

k
⇤
V
� k, it needs to be proved that principal is better o↵ as k increases when

k  k. In the case where k  k  k̂ or k < k̂ < k, the optimal reward scheme

is CF and rest of proof would be the same as that in in proof of proposition

2.4.1.2).

Notice that VV (k) is the principal’s expected payo↵ in the optimal re-

ward scheme given the incentive to run k experiments if no failure occurs, In

the case where k = k̂ < k, it needs to be shown that VV (k̂ + 1) � VV (k̂). The

di↵erence between VV (k̂ + 1) and VV (k̂) is:

VV (k̂ + 1)� VV (k̂)

=� p0


p
k̂
M +

✓
1� p

k̂

p
k̂+1

◆
c

1� ✓

�2

� (1� p0)(1� ✓)k̂+1


p
k̂
M +

✓
1� p

k̂

p
k̂+1

◆
c

1� ✓

�2

� (1� p0)(1� ✓)k̂✓

✓
p
k̂
M � p

k̂

p
k̂+1

c

1� ✓

◆2

+ p0 (1� p
k̂
)M2

=

 
2p0M � p0

p
k̂+1

c

1� ✓
+

p0pk̂

p2
k̂+1

c

1� ✓

!

| {z }
“>0” as p0M>

p0
p
k̂+1

c
1�✓

✓
1� p

k̂

p
k̂+1

◆
c

1� ✓

+ (1� p0)(1� ✓)k̂✓

✓
p
k̂

p
k̂+1

c

1� ✓

◆2

> 0

(B.0.36)

This result suggests that the principal would strictly prefer k̂+1 experiments

are conduct rather than k̂.

Consider the other case where k̂ < k  k. It needs to be proved that

the principal’s expected payo↵ is an increasing function of k in this region.

Thus the problem is equivalent to show that VV (k + 1) � VV (k) > 0 in this

region. At k+1, the “l” in Definition 1 would be l(k+1) = l or l(k+1) = l+1,

depending on the parameters. If l(k + 1) = l, then the extra expected payo↵
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that the principal can gain from increasing one more experiment is:

VV (k + 1)� VV (k) =

2p0M
c

1� ✓
� p0

pk+1

(2k � 2l + 1)

✓
c

1� ✓

◆2

+
p0

pl

2

4
 
plM �

k+1X

i=l+1

pl

pi

c

1� ✓

!2

�
 
(plM �

kX

i=l+1

pl

pi

c

1� ✓

!2
3

5

=
p0

pk+1

c

1� ✓


2pk+1M � (2k � 2l + 1)

c

1� ✓

�

� pl

pk+1

c

1� ✓

 
2p0M �

k+1X

i=l+1

p0

pi

c

1� ✓
�

kX

i=l+1

p0

pi

c

1� ✓

!

(B.0.37)

Thus,

Sign (VV (k + 1)� VV (k)) =
pk+1

p0


2p0M � p0

pk+1

(2k � 2l + 1)
c

1� ✓

�

� pl

p0

 
2p0M �

k+1X

i=l+1

p0

pi

c

1� ✓
�

kX

i=l+1

p0

pi

c

1� ✓

!

(B.0.38)

Notice that

(k � l)
p0

pk+1

<

kX

i=l+1

p0

pi
and pk+1 > pl

Together with(B.0.38), it can be achieved that (B.0.37) is strictly positive.

If l(k + 1) = l, the principal’s gain from one more experiment is:

VV (k + 1)� VV (k)

=
pl+1

p0

 
p0M �

k+1X

i=l+2

p0

pi

c

1� ✓

!2

� pl

p0

 
p0M �

kX

i=l+1

p0

pi

c

1� ✓

!2

+
k+1X

i=l+2

p0

pi
(

c

1� ✓
)2 �

kX

i=l+1

p0

pi
(

c

1� ✓
)2 � 2

p0

pk+1

(k � l)(
c

1� ✓
)2

(B.0.39)
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Notice that

(k � l)
p0

pk+1

<

k+1X

i=l+2

p0

pi
<

kX

i=l+1

p0

pi
and pl+1 > pl

thus (B.0.39) is strictly positive. Therefore, it’s always true that VV (k + 1) >

VV (k) when k̂ < k  k. As a result, if k  k, the principal is always better

o↵ by increasing the motivated number of successes in the commitment, and

it implies that k⇤
V
� k. To prove k

⇤
V
< 1, the argument is the same as that

in the proof of proposition 2.3.1.2).

Proof of Proposition 2.4.2
The arguments and steps to prove the optimality of reward scheme

proposed in Propostion 2.4.2.1) are similar to those in proof of Proposition

2.3.1.1) and 2.4.1.1), and proof by contradiction is applied.

Proposition 2.4.2.1.a): When k  min
n
k̂, k

o
, it can be seen that k̃c  p0M 

p0

pk

c

1�✓
, which implies that ICS,NV and ICF,NV are satisfied under CF scheme.

Thus CF must be the optimal reward scheme in this scenario.

Proposition 2.4.2.1.b): When k̂ < k  k, it becomes that pkM >
c

1�✓
and

p0M � k̃c. Now CF scheme leads the last ICF,NV , pkM <
c

1�✓
, to be violated.

MF-I scheme satisfies all ICF,NV and ICS,NV in this scenario, so it must be

optimal.

Proposition 2.4.2.1.c): When k < k  k̂, p0M < k̃c and pkM  c

1�✓
, it’s easy

to check that both CF scheme and MF-I scheme violate at least one ICS,NV .

Then proof by contradiction can be applied to check the optimality of MF-II in

this scenario. Suppose MF-II is not optimal, then there exists another feasible

reward scheme d
k(·):

8
<

:
d
k(j < k, 1) = a

k(j, 1) + ⌧j

d
k(k, 0) = a

k(k, 0) + ⌧k

(B.0.40)

where (⌧k, ..., ⌧0) 2 Rk and (⌧k, ..., ⌧0) 6= 0, such that VNV

�
d
k(·)
�
� VNV

�
a
k(·)
�

and all constraints are satisfied. When 0  m < k�1, the principal’s expected
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payo↵ with d
k(·) is:

VNV (d
k(·)) =� p0

�
a
k(k, 0) + ⌧k �M

�2 � (1� p0)(1� ✓)k
�
a
k(k, 0) + ⌧k

�2

�
k�1X

i=0

(1� p0)(1� ✓)i✓
�
a
k(i, 1) + !i

�2

=VNV (a
k(·))�

(
p0

pk
⌘
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓⌘2
i

)

� 2
mX

n=1

pn

pn�1

c

"
p0

pk
⌧k +

k�1X

i=n

(1� p0)(1� ✓)i✓⌧i

#

� 2

 
kX

i=m+1

pm+1

pi�1

c� pm+1M

!"
p0

pk
⌧k +

k�1X

i=m+1

(1� p0)(1� ✓)i✓⌧i

#

(B.0.41)

Since IR and all ICS,NV are satisfied, the following inequalities must be true:

8
>>>>>>>>><

>>>>>>>>>:

p0

pk
⌧k +

P
k�1

i=0
(1� p0)(1� ✓)✓⌧i � 0

p0

pk
⌧k +

P
k�1

i=1
(1� p0)(1� ✓)✓⌧i � (1� p0)(1� ✓)✓⌧0

p0

pk
⌧k +

P
k�1

i=2
(1� p0)(1� ✓)✓⌧i � (1� p0)(1� ✓)2✓⌧1

...

p0

pk
⌧k +

P
k�1

i=m+1
(1� p0)(1� ✓)✓⌧i � (1� p0)(1� ✓)m+1

✓⌧m

(B.0.42)

If ⌧0 � 0, it’s true that p0

pk
⌧k +

P
k�1

i=1
(1 � p0)(1 � ✓)✓⌧i � 0 from the

second inequality in (B.0.42); if ⌧0 < 0, it also states that p0

pk
⌧k +

P
k�1

i=1
(1 �

p0)(1 � ✓)✓⌧i � 0 from the first inequality in (B.0.42). Thus it always holds

that p0

pk
⌧k +

P
k�1

i=1
(1� p0)(1� ✓)✓⌧i � 0. Similarly, if ⌧1 � 0, p0

pk
⌧k +

P
k�1

i=2
(1�

p0)(1 � ✓)✓⌧i � 0 and this is achieved from the third equality in (B.0.42);

if ⌧1 � 0, it’s still obtained that p0

pk
⌧k +

P
k�1

i=2
(1 � p0)(1 � ✓)✓⌧i � 0 from

p0

pk
⌧k +

P
k�1

i=1
(1 � p0)(1 � ✓)✓⌧i � 0. Thus it can always hold that p0

pk
⌧k +

P
k�1

i=2
(1 � p0)(1 � ✓)✓⌧i � 0. Together with the same logic and (B.0.42), it’s

concluded that:

p0

pk
⌧k +

k�1X

i=j

(1� p0)(1� ✓)✓⌧i � 0, where 1  j  m+ 1 (B.0.43)
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Meanwhile, notice that (⌧k, ..., ⌧0) 6= 0 and
P

k

i=m+1

pm+1

pi�1
c � pm+1M � 0, in

(B.0.41):

VNV (d
k(·)) VNV (a

k(·))�
(
p0

pk
⌘
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓⌘2
i

)

<VNV (a
k(·))

(B.0.44)

This result contradicts to VNV (dk(·)) � VNV (ak(·)), therefore, MF-II scheme

is optimal in this scenario when 0  m < k � 1. When m = k � 1, similarly,

the principal’s expected payo↵ now is:

VNV (d
k(·)) =VNV (a

k(·))�
(
p0

pk
⌘
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓⌘2
i

)

� 2
k�1X

n=1

pn

pn�1

c

"
p0

pk
⌧k +

k�1X

i=n

(1� p0)(1� ✓)i✓⌧i

#
� 2

p0

pk�1

c⌧k

(B.0.45)

Together with (B.0.42), it shows that the last two terms in (B.0.44) are both

negative. Notice that the second term in (B.0.44) is strictly negative, therefore

MF-II scheme is optimal when m = k � 1. To sum up, it can be concluded

that MF-II is optimal when k < k  k̂.

Proposition 2.4.2.1.d): When k > max
n
k̂, k

o
, it states that p0

pk

c

1�✓
< p0M <

k̃c. Now CF and MF-I violate at least one ICS,NV , and MF-II violates at least

one ICF,NV . Thus consider the optimality of MF-III. Suppose MF-III is not

optimal in this scenario, then there exists another feasible reward scheme ek(·):
8
<

:
e
k(j < k, 1) = a

k(j, 1) + !j

e
k(k, 0) = a

k(k, 0) + !k

(B.0.46)

where (!k, ...,!0) 2 Rk and (!k, ...,!0) 6= 0, such that VNV

�
e
k(·)
�
� VNV

�
a
k(·)
�

and all constraints are satisfied. The principal’s expected payo↵ with e
k(·) then
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can be represented as:

VNV (e
k(·)) =� p0

�
a
k(k, 0) + !k �M

�2 � (1� p0)(1� ✓)k
�
a
k(k, 0) + !k

�2

�
k�1X

i=0

(1� p0)(1� ✓)i✓
�
a
k(i, 1) + !i

�2

=VNV (a
k(·))�

(
p0

pk
!
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓!2

i

)
+ 2p0M!k

� 2(k � l)
p0

pk

c

1� ✓
!k � 2

c

1� ✓

k�1X

i=l+1

(1� p0)(1� ✓)i✓(i� l)!i

� 2

 
plM �

kX

i=l+1

pl

pi

c

1� ✓

!"
p0

pk
!k +

k�1X

i=l

(1� p0)(1� ✓)i✓!i

#

� 2
mX

n=1

pn

pn�1

c

"
p0

pk
!k +

k�1X

i=n

(1� p0)(1� ✓)i✓!i

#

� 2

 
kX

i=m+1

pm+1

pi�1

c� pm+1M

!"
p0

pk
!k +

k�1X

i=m+1

(1� p0)(1� ✓)i✓!i

#

(B.0.47)

The rest of proof is similar to the proofs of MF-I and MF-II. Since IR and

ICS,NV are satisfied, the following inequalities can be achieved, which are sim-

ilar to (B.0.42):

8
>>>>>>>>><

>>>>>>>>>:

p0

pk
!k +

P
k�1

i=0
(1� p0)(1� ✓)✓!i � 0

p0

pk
!k +

P
k�1

i=1
(1� p0)(1� ✓)✓!i � (1� p0)(1� ✓)✓!0

p0

pk
!k +

P
k�1

i=2
(1� p0)(1� ✓)✓!i � (1� p0)(1� ✓)2✓!1

...

p0

pk
!k +

P
k�1

i=m+1
(1� p0)(1� ✓)✓!i � (1� p0)(1� ✓)m+1

✓!m

(B.0.48)

Similar to (B.0.43), the same the logic in proof of MF-II can be applied and

the following inequality can be achieved:

p0

pk
⌧k +

k�1X

i=j

(1� p0)(1� ✓)✓!i � 0, where 1  j  m+ 1 (B.0.49)

This implies that the last two terms in (B.0.47) are negative, noticing that
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p0

pk
!k +

P
k�1

i=2
(1� p0)(1� ✓)✓!i � 0.

Also, since ICF,NV are satisfied, similar to (B.0.32), the following in-

equalities are true:

8
>>><

>>>:

!k � !k�1  0

...

!l+1 � !l  0

=)

8
>>><

>>>:

�!k�1  �!k

...

�!l  �!l+1  ...  �!k

(B.0.50)

Then (B.0.47) becomes:

VNV (e
k(·)) VNV (a

k(·))�
(
p0

pk
!
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓!2

i

)

+ 2

 
p0M �

kX

i=l+1

p0

pi

c

1� ✓

!
!k � 2

 
p0M �

kX

i=l+1

p0

pi

c

1� ✓

!
!k

=VNV (a
k(·))�

(
p0

pk
!
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓!2

i

)

(B.0.51)

Again, notice (!k, ...,!0) 6= 0:

VNV (e
k(·)) VNV (a

k(·))�
(
p0

pk
!
2

k
+

k�1X

i=0

(1� p0)(1� ✓)i✓!2

i

)

<VNV (a
k(·))

(B.0.52)

This result contradicts to VNV (ek(·)) � VNV (ak(·)), therefore, MF-III scheme

must be optimal in this scenario.

Proposition 2.4.2.2): if k  k̂, for 8k  k, CF is optimal and then principal

is strictly better o↵ as k increasing, which can be obtained from the proof of

proposition 2.3.1.2); if k̂ < k, for 8k  k, optimal reward scheme is either CF

or MF-I, and the optimal amount in this region is k, which is the same proof

as that in proposition 2.4.1.2). Therefore, k⇤
NV

� k. To prove k
⇤
NV

< 1, it’s

the same argument as that in proposition 2.3.1.2).

Proof of Corollary 2.4.1
If the principal motivates the agent not to run any experiments, a sin-

gle reward scheme should be determined by the prior belief p0, regardless of
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public and private experimentation. Thus the principal’s expected payo↵ is

VNO(p0) = �p0(1 � p0)M2. In stead, given the incentive to run any positive

number of experiments k, the principal can achieve VP (ak(·)), VV (ak(·)) and

VNV (ak(·)) in public and private cases respectively, which are shown in pre-

vious proofs. It’s clear that the set of parameter ranges is not empty, which

satisfies:

VNO(p0) �
�
VP (a

k(·)), VV (a
k(·)), VNV (a

k(·))
 

Proof of Corollary 2.4.2
When M

c
 1

1�✓
, k̂ ! 1. From Proposition 2.4.1, CF is always optimal

for 8k 2 N+ in private experimentation with verifiable failures. Thus the

optimal reward scheme is always the same as that in public experimentation.

As a result, k⇤
V
= k

P and V
CF

p

�
k
P
, p0

�
= V

CF

V
(k⇤

V
, p0).

Proof of Proposition 2.4.3
For p0M � c, the participation threshold can be rewritten into k =

max{k 2 N : p0
M

c
� k̃}. When M

c
increases, the left hand side of the inequality

constraint is increasing, and it implies that this condition can hold for a larger

number of experiments. As a result, the first threshold k becomes larger. For

p0M < c, when M

c
increases, this inequality is easier to be violated, thus k

tends to become larger. To sum up, k is increasing as M

c
increases.

For p1M  c

1�✓
, the over-experimentation threshold can be rewritten

into k̂ = max{k 2 N : M

c
 1

(1�✓)pk
}. When M

c
increases, the left hand side of

the inequality constraint is increasing, and it implies that this condition would

be violated at a lower level of experiment. As a result, the second threshold

k̂ shrinks. For p1M >
c

1�✓
, k̂ stays at zero when M

c
increases. To sum up, the

participation threshold k̂ is decreasing as M

c
increases.

In the public case, kP � k, which implies that the lower bound of the

potential optimal number of experiments is increasing. Now it can focus on

the number which satisfied k > k. Firstly, take the first di↵erent between k+1

and k:

VP (k+1)�VP (k) =

"
p0(pk+1 � pk)(

M

c
)2 �

 
p0

pk
+ 2

kX

i=1

p0

pi�1

� 2p0
M

c

!
p0

pk

#
c
2

(B.0.53)
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Then the first derivate with respect to M

c
can be achieved:

@(VP (k + 1)� VP (k))

@
M

c

= 2

 
k+1X

i=1

p0

pi�1

c+
kX

i=1

p0

pi�1

c� p0M

!
p0

pk

c
2

M
> 0

(B.0.54)

This strictly positive first di↵erence for 8k > k suggests that the (local and

global) maximum point is getting larger as M

c
increases. Together with that k

is increasing as M

c
increases, it can be concluded that kP is increasing as M

c
is

increases.

Similar arguments can be applied in the private experimentation sce-

nario. In private with verifiable failures, if k < k
⇤
V
 k̂, the conclusion is the

same as (B.0.53). If k⇤
V
> max

n
k, k̂

o
, it can be focus on the di↵erence of the

principal’s expected payo↵ at k + 1 and k, for 8k > max
n
k, k̂

o
. Similar to

(B.0.37) and (B.0.39), if l(k + 1) = l, it’s first derivative with respect to M

would be

@(VV (k + 1)� VV (k))

@M
= p0

c

1� ✓

✓
2� pl

pk+1

◆
+ 2

p
2

0

pk
c > 0 (B.0.55)

Instead, if l(k + 1) = l + 1, the first derivative becomes

@(VV (k + 1)� VV (k))

@M
=2pl+1

 
p0M �

k+1X

i=l+2

pi

p0

c

1� ✓

!

� 2pl

 
p0M �

kX

i=l+1

pi

p0

c

1� ✓

!
+ 2

p
2

0

pk
c > 0

(B.0.56)

The positive signs in (B.0.55) and (B.0.56) imply the first di↵erence is in-

creasing as agent’s value M increases, and it leads the maximum point k⇤
V
to

increase together with k increasing.

In private with unverifiable failures, if k̂  k, for 8k > k, then associ-

ated optimal reward scheme is MF-III, then the first di↵erence of principal’s

expected could be obtained. From Definition 3, if m(k + 1) = m+ 1, the first
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derivative would be

@(VNV (k + 1)� VNV (k))

@M

=
@(VV (k + 1)� VV (k))

@M
+ 2(pm+2 � pm+1)

 
p0M +

kX

i=m+2

p0

pi�1

c

!

+ 2
p0

pk
(pm+2 � p0)c > 0

(B.0.57)

Instead, if m(k + 1) = m = m(k), the first derivative becomes:

@(VNV (k + 1)� VNV (k))

@M
=

@(VV (k + 1)� VV (k))

@M
+ 2

p0

pk
(pm+2 � p0)c > 0

(B.0.58)

The positive signs in (B.0.57) and (B.0.58) suggest that the first di↵erence is

increasing as M increases for 8k > k � k̂. As a result, k⇤
NV

increases due to

the same reason in private with verifiable failures.

If k̂ > k, for 8k > k̂, MF-III is still optimal and the conclusions are the

same as (B.0.57) and (B.0.58). For k < k < k̂, MF-II is optimal, and it can

focus on the first derivative of the first di↵erence of the principal’s expected

payo↵ with respect to M . From Definition 2, if m(k) = m < k � 1 and

m(k + 1) = m+ 1

@(VNV (k + 1)� VNV (k))

@M

= 2p0(pk+1 � pk)M + 2(pm+2 � pm+1)

 
p0M +

kX

i=m+2

p0

pi�1

c

!

+ 2
pm+2

pk
p0c > 0

(B.0.59)

if m(k) = m < k � 1 and m(k + 1) = m, the first derivative is

@(VNV (k + 1)� VNV (k))

@M
= 2p0(pk+1 � pk)M + 2

pm+2

pk
p0c > 0 (B.0.60)

if m(k) = k � 1, the first derivative becomes

@(VNV (k + 1)� VNV (k))

@M
= 2

pk+1

pk
p0c > 0 (B.0.61)
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From the positive signs in (B.0.59), (B.0.60) and (B.0.61), it shows that the

first di↵erence is increasing as M increases in this case. For 8k > k̂ > k,

the conclusions would be the same as (B.0.57) and (B.0.58). To sum up, it

concludes that k⇤
NV

is increasing as M increases.

Proof of Proposition 2.4.4
The bad type agent’s value is zerio if early failure occurs and he would

learn it. For the potential good type, his posterior value is pkM given he

successfully collected k successes in k experiments without failure, and he has

the posterior belief pk that his type is good. The proofs below are comparing

these values to the rewards that di↵erent types of agents can received in the

optimal contracts of public and private experimentation respectively.

In the public case, the optimal contract would deliver the bad type

agent a reward level ak
P
(k < k

P ) = max
n
0, (
P

k
P

i=1

p0

pi�1
c� p0M)2

o
� 0, and it

implies that the bad type is overpaid. For the potential good type, he would

receive the reward level ak
P
(k = k

P ) = pkPM + a
k
P
(k < k

P ) � pkPM , and it’s

clear to see that he is also overpaid.

In the private case with verifiable failures, the bad types who face a later

failure would receive a weakly higher reward. Comparing the lowest reward

among them, the bad type would receive max
n
0, (
Pk

⇤
V

i=1

p0

pi�1
c� p0M)2

o
� 0,

so it shows that all bad types are overpaid at di↵erently level of early failure.

However, for the potential good type, he would receive

(kV �l(kV ))
c

1� ✓
+pl(k⇤V )M�

k
⇤
VX

i=l(k⇤V )+1

p0

pi

c

1� ✓
+max

8
<

:0, (

k
⇤
VX

i=1

p0

pi�1

c� p0M)2

9
=

;

and it’s not clear whether it’s higher than pk⇤V
M , and it concludes that the

potential good type is not necessarily overpaid.

In the private case with unverifiable failures, the lowest possible reward

that a bad type agent receives under the optimal contract is 0, which is the

same as his true valuation. Therefore the bad type is weakly overpaid. For the

potential good type, with similar argument in private with verifiable bad ones,

the conclusion is still not clear whether he is overpaid or not, when comparing

the reward that the potential good type receives to pk⇤NV
M .
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Proof of Proposition 2.5.1
Given the agent has acquired j successes without failures, the benefit

from fulfilling the remaining experiments is:

8
<

:
UB(k � j, pj) = �c+ (1� �)UA

B
(k � j � 1, pj+1) + �U

A

B
(k � j � 1, pj)

UB(1, pk�1) = �c+ (1� �)ak
B
(k, 0) + �U

A

B
(1, pk�1)

(B.0.62)

Where 0  j < k � 1. It can be simplified as:

UB(k � j, pj) =
p0

pk
a
k(k, 0) +

kX

i=j

(1� p0)(1� ✓)j✓ak(j, 1)�
kX

i=j

p0

pi�1

c

1� �

(B.0.63)

Then condtions (2.5.2) now become

ICS,B

0jk�1
:

p0

pk
a
k(k, 0)+

kX

i=j

(1�p0)(1�✓)j✓ak(j, 1) � a
k(j, 1)+

kX

i=j

p0

pi�1

c

1� �

(B.0.64)

Conditions (B.0.64) then are the same as those in private experimentation

with unverifiable failures as well as IR constraint, and the cost level of a single

experiment is c

1��
. Also, ICF,B in (2.5.3) are the same as those in conditions

(2.4.8). Additionally, when failures are verifiable, Lemma 2.4.2 can be applied.

Therefore, the principal is maximising the expected payo↵ under the same

constraints in the scenario with unverifiable failures, and the optimal solution

should be the same.

Proof of Proposition 2.5.2
1) When k < T , the agent still has further opportunity for over-

experimenting even if the first failure occurs in the kth experiment. Thus

the condition (2.5.4) must be satisfied. Similarly, when the first failure occurs

in the j + 1th experiment, where j < k, to prevent agent from pretending to

be those whose have more successes, the following incentive constraints need
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to be satisfied:

(1� ✓
T�j�1)

1� ✓

⇥
�c+ (1� ✓)ak

F
(j + 1, 1)

⇤
+ ✓

T�j�1
a
k

F
(j, 1)  a

k

F
(j, 1)

=) � c

1� ✓
+ a

k

F
(j + 1, 0)  a

k

F
(j, 1)

(B.0.65)

These constraints together with (2.5.4) are the same as ICF in (2.4.6) and

(2.4.8). Meanwhile, to prevent agent from stopping experimenting earlier with-

out a failure, the following ICS,F constraints need to be satisfied:

ICS,F

0jk�1
: UF (k � j, pj) � a

k

F
(j, 0) (B.0.66)

These conditions are exactly the same as those ICS when failures are verifiable

and not verifiable respectively. Therefore, the principal is solving the same

maximisation problem as that in T ! 1, and the optimal solution should be

the same.

2) When k = T , the constraint (2.5.4) can be removed since the first failure

occurs in the last experiment and the agent has no chance to over-experiment.

But other constraints in (B.0.65) and (B.0.66) are still the same as those in

section 2.4.1 and 2.4.2 when failures are verifiable and unverifiable respectively.

When failures are verifiable, it can be easily show that CF scheme satisfies all

these constraints, so it has be optimal. In the other scenario where failures are

not verifiable, it can be shown that all constraints are satisfied under CF and

MF-II when T  k and T > k respectively. This is still true even if T > k̂.

3) Denote by VF (k) the principal’s expected payo↵ given the incentive

to run k experiments in finite opportunity case. In public experimentation,

CF is optimal from Proposition 2.5.2.1), thus VF,P (k) = VP (k) for 8k > 0.

Therefore, if T � k
P , the principal can just provide the incentive to run k

P

experiments if no failure occurs, and achieve the same expected payo↵ as that

in the public case with infinite opportunities.

If experiments are private and failures are verifiable, since more con-

straints are binding and the feasible set shrinks, the principal is worse o↵

relative to the private case, VV (k)  VP (k) for 8k > 0. Notice that VV (k)

and VP (k) are decreasing functions when k > k
P and k > k

⇤
V
respectively, it’s

must be true that 9kV = max {k 2 N : VP (k)  VV (k⇤
V
)} and VP (k)  VP (kV )
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for 8k � kV . From Proposition 2.5.2.2), CF is still optimal at k = T

in the case with finite opportunities, which implies that it’s still true that

VF,P (T ) = VP (T ). Notice that k⇤
V
 kV , the principal would optimally moti-

vate to agent to run k
⇤
V
< T experiments When T > kV .

If experiments are private and failures are not verifiable, the expected

payo↵ under MF-II scheme is weakly higher than that under MF-III given

the same number of experiments is motivated, VNV (k)  VV (k) for 8k >

k, according to Definition 3 and Proposition 2.4.2.1). Notice that VNV (k)

and VV (k) are decreasing function when k > k
⇤
V

and k > k
⇤
NV

respectively,

thus it’s must be true that 9kNV = max {k 2 N : VV (k)  VNV (k⇤
NV

)} and

VV (k)  VV (kNV ) for 8k � kNV . From Proposition 2.5.2.2), MF-II is optimal

at k = T > k in the case with finite opportunities, and VF,NV (T ) = VV (T ).

Notice thatk⇤
NV

 kNV , as a result, the principal would optimally motivate the

agent to run k
⇤
NV

< T experiments in the optimal contract when T > kNV .
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Appendix C

Proofs for Chapter 3

Proof of Lemma 3.4.1
I prove this Lemma by using the following claim.

Claim C.0.1. The expected cost of acquiring a success for a potential good

type agent is lower than that for a bad type, and it’s decreasing as his posterior

belief increases.

Proof. Suppose a potential good type agent has n successes without failures.

Now his posterior belief is p
A

(n,0)
= pn. If he conducts one more experiment,

he can acquire a success with probability pn + (1 � pn)(1 � ✓); if he fails

with probability (1 � pn)✓, he knows that he is actually a bad type and the

expected cost of acquiring a success becomes to c

1�✓
. Thus, the expected cost

of acquiring a success for the potential good type would be (1�pn✓)c

1�✓
<

c

1�✓
.

Moreover, when pn increases, the numerator in the expected cost is lower as

the coe�cient of pn is negative.

This claim suggests that only a bad type might have the incentive to

stop before k successes are acquired, and the potential good type agent has a

stronger incentive to conduct more experiments.

Proof of Lemma 3.4.3
I prove this lemma by using the following clam.

Claim C.0.2. Given k � 0 successes have been acquired, a potential good type

agent has a stronger incentive to continue experimenting relative to a bad type

agent.
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Proof. Suppose now the agent has k � 0 successes already, which is required

on the equilibrium path. If the agent is a potential good type who hasn’t failed

yet, his posterior belief is pA
(k,0)

= pk. To acquire another N > 0 successes, his

expected payo↵ U
n(pk) would be:

U
n

G
(pk) =

pk

pk+n

p
P

(k+n,0)
M �

nX

i=1

pk

pk+i�1

c

+
n�1X

j=0

(1� pk)(1� ✓)j✓max

⇢
max

i2{0,...,n�j}
p
P

(k+i,0)
M � ic

1� ✓
, p

P

(k,0)
M, ..., p

P

(k+j,0)
M

�

(C.0.1)

With belief monotonicity, where p
P

(k+n+1,0)
� p

P

(k+n,0)
, U

n(pk) can be

simplified as:

U
n

G
(pk) =

pk

pk+n

p
P

(k+n,0)
M �

nX

i=1

pk

pk+i�1

c

+
n�1X

j=0

(1� pk)(1� ✓)j✓


max

i2{0,...,n�j}
p
P

(k+i,0)
M � ic

1� ✓

� (C.0.2)

Similarly, if a bad type agent deviates to acquire n more successes, his

expected payo↵ would be:

U
n

B
(pA = 0) = p

P

(k+n,0)
M � nc

1� ✓
(C.0.3)
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Thus, the di↵erence of their expected payo↵ would be:

U
n

G
(pk)�U

n

B
(pA = 0)

� pk

pk+n

p
P

(k+n,0)
M � p

P

(k+n,0)
M +

nc

1� ✓

�
nX

i=1

pk

pk+i�1

c+
n�1X

j=0

(1� pk)(1� ✓)j✓


p
P

(k+n,0)
M � (n� j)c

1� ✓

�

=
nc

1� ✓
�

nX

i=1

pk

pk+i�1

c�
n�1X

j=0

(1� pk)(1� ✓)j✓
(n� j)c

1� ✓

=
nX

i=1

pk

pk+i�1

c

1� ✓
�

nX

i=1

pk

pk+i�1

c =
nX

i=1

pk

pk+i�1

✓c

1� ✓
> 0

(C.0.4)

Therefore, if Un

B
(pA = 0) � p

P

(k,0)
M , it must be true that Un

G
(pk) > p

P

(k,0)
M .

Claim C.0.2 suggests that if the principal’s posterior belief makes the

potential good type has no incentive to continue experimenting, the bad type

would also not to do so. Thus, the potential good agent would not to con-

tinue experimenting if the current payo↵ is larger than the expected payo↵ of

continuing experimenting. This implies that Un

G
(pk)  p

P

(k,0)
M is satisfied for

8n 2 N+:

n�1X

j=0

(1� p
P

(k,0)
)(1� ✓)j✓


max

i2{0,...,n�j}
p
P

(k+i,0)
M � ic

1� ✓

�


pk

⇣
pk+n � p

P

(k+n,0)

⌘

pk+n

M +
nX

i=1

pk

pk+i�1

c

(C.0.5)

If this condition is not satisfied, the potential good type would always continue

experimenting, which contradicts to an equilibrium where the potential good

type stops after k successes are acquired.

Proof of Proposition 3.4.1
Proof of 3.4.1.1). Given the agent doesn’t run any experiments, the

principal would optimally assign p
P

(0,0)
= p0, a(p0) = p0M . Consider the

deviation of the agent. Since (3.4.3) is satisfied, the agent has no incentive to
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run more experiments.

The following claim is useful when proving 3.4.1.2).

Claim C.0.3. There doesn’t exist an equilibrium with learning at k > k.

Proof. Suppose a separating equilibrium with learning exists, in which the

agent’s strategy is to run k > 0 experiments without failures, and stop once k

successes have been acquired or he faces an early failure. Thus, aE(pP
(k,0)

) =

pkM . From (3.4.3), Uk

S
(p0) = p0M � k̃c. Notice that the agent’s expected

payo↵ is decreasing as k increases, k > k implies that Uk

S
(p0) < U

k

S
(p0) < 0.

This implies that the agent would be better o↵ by deviating to stop at the

beginning. Thus the separating equilibrium with learning doesn’t exists in

this case. Suppose a pooling equilibrium with learning exists, in which the

bad type agent whose first failure occurs after j + 1
th
experiments would over-

experiment till k successes are acquired. In this case, aE(pP
(k,0)

) = pjM , and

U
k

O
(p0) = p0M � k̃c�

P
k�1

i=j
(1� p0)(1� ✓)i�1

✓(k � i)c = p0M �
P

j

i=1

p0

pi�1
c�

p0(k�j)

pj�1
c < p0M � k̃c. Thus, when k > k, Uk

O
(p0) < 0 and the agent would

always deviate. Thus the pooling equilibrium with learning also doesn’t exists

in this case.

Proof of 3.4.1.2.a). Claim C.0.3 suggests that k plays the role of participation

threshold, and all the equilibrium must satisfy that k  k. Therefore, when

p0M < c, k = 0, which implies the only equilibrium left is no-experiment

equilibrium. The following proofs would focus on the scenario when p0M � c.

Proof of 3.4.1.2.b). Consider a separating equilibrium with learning, in which

the agent’s strategy is to conduct k > 0 experiments without failures, and stop

once k successes have been acquired or he faces an early failure. In this case,

on the equilibrium path, only the potential good type agent would report k

successes, and the bad type agent would report less. This implies that the

principal’s posterior belief is the same as that of the potential good type agent

when observing k successes, pP
(k,0)

= p
A

(k,0)
= pk. Thus, aE

⇣
p
P

(k,0)

⌘
= pkM > 0

and a
E(pP

(kg<k,0)
) = 0.

The agent has no incentive to conduct more experiments since (3.4.3)

is satisfied. Consider the agent’s incentive of conducting less experiments. If

he deviates to conduct fewer experiments, the agent would be worse o↵ since
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a
E(pP

(kg<k,0)
) = 0. Now check the bad type’s over-experimentation incentive.

The bad type agent whose first failure occurs occurs in kth experiment has the

strongest incentive to over-experiment, since he only needs one more success to

pretend to be a good type. Thus, such bad type agent will not over-experiment

if the extra benefit pkM is less than it’s cost c

1�✓
by dosing so,

pkM  c

1� ✓
=) k  k̂ =

8
<

:
max

�
k 2 N : pkM  c

1�✓

 
p1M  c

1�✓

0 p1M >
c

1�✓

(C.0.6)

k̂ is the over-experimentation threshold, and k  k̂ suggests that all the bad

types would not over-experiment. Therefore, the set of separating equilib-

ria with learning would must satisfy
n
k 2 N : 0 < k  min{k̂, k}

o
. Moreover,

when M

c
>

1

p1(1�✓)
, k̂ = 0 and

n
k 2 N : 0 < k  min{k̂, k}

o
= ?. As a result,

the separating equilibria exist only when M

c
2
h

1

p0
,

1

p1(1�✓)

i
.

Now check the over-experimentation incentive. Suppose now the agent

fails in kth experiment, where the agent has the strongest incentive to over-

experiment. He receives zero If he sticks to the strategy on the equilibrium

path. Alternatively, if he continues experimenting and collects one more suc-

cess by chance, he would be treated as a potential good type agent and receive

pkM . Thus, to prevent such behaviour on the equilibrium path, the number

of experiments k must satisfy:

pkM  c

1� ✓
(C.0.7)

Where c

1�✓
is the expected cost of acquiring a success for a bad type agent.

Notice that the left hand side of (C.0.7) is increasing as k increases, the over-

experimentation threshold k̂ can be found, which is the largest number of

experiments such that the bad type agent has no incentive to over-experiment

no matter when he fails,

k̂ =

8
<

:
max

�
k 2 N : pkM  c

1�✓

 
p1M  c

1�✓

0 p1M >
c

1�✓

(C.0.8)

if M

c
2
h

1

p0
,

1

p1(1�✓)

i
, the over-experimentation threshold is strictly positive,
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therefore, in a candidate of separating equilibrium with learning, it must be

true that k  k̂. As a result, the number of successes reported by the poten-

tial good type on the equilibrium path must satisfied 0 < k  max
n
k, k̂

o
.

Moreover, once k successes have been acquired by the potential good type, he

has no incentive to continue experimenting as (3.4.4) is satisfied.

Proof of 3.4.1.2.c). In a pooling equilibrium with learning, exists bad type

agent(s) who must over-experiment on the equilibrium path, thus it must

be true that k̂ < k  k. When M

c
2
h

1

p0
,
1

✓

i
, pkM < M  c

1�✓
, and it

implies that k̂ ! 1, in which case the set of pooling equilibria is empty set.

Therefore, to guarantee that k̂ < 1, the only possible value-cost ratio would

be M

c

⇣
max

n
1

p0
,

1

1�✓

o
,+1

⌘
. The following Claim C.0.4 suggests that the

possible pooling equilibria must satisfy k̂ + 1 < k  k.

Claim C.0.4. There doesn’t exist an equilibrium with learning at k = k̂ + 1.

Proof. Previous arguments have shown that the claim holds for k  k̂. Con-

sider k̂ < k. Suppose a separating equilibrium with learning exists, the con-

tradiction is obvious since p
k̂+1

M >
c

1�✓
and the bad type agent whose first

failure occurs in k̂ + 1th experiment would deviate to over-experiment. Con-

sider a pooling equilibrium with learning. Suppose only the potential good

type and the bad type whose first failure occurs in k̂ + 1th experiment would

report k̂ + 1 successes on the equilibrium path, then p
P

(k̂+1,0)
= p

k̂
. However,

since p
k̂
M  c

1�✓
, the bad type agent would not over-experiment, which is a

contradiction.

With Claim C.0.4, there doesn’t exists pooling equilibrium if k = k̂ +

1. Therefore, the existence of the pooling equilibrium with learning can be

restricted in k̂ + 1 < k  k with k > k̂ + 1.

Suppose the only a bad type agent whose first failure occurs after

k̂ + l + 1th experiment would over-experiment on the equilibrium path, the

principal’s posterior belief would be p
P

(k,0)
= p

k̂+l
and p

P

(kg<k,0)
= 0, where

0 < l  k � k̂. Thus, aE (k, 0) = p
k̂+l

M and a
E (kg

k, 0) = 0. To support this

as an equilibrium, in the first place, k  k guarantees that the agent would

not deviate to no-experiment choice. In the second place, For the agent whose
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first failure occurs in k̂ + l + 1th, he would indeed over-experiment if the extra

benefit is larger than the expected total cost by doing so:

pk+lM >
k � k̂ � l

1� ✓
c =) M

c
>

k � k̂ � l

p
k̂+l

(1� ✓)
(C.0.9)

Meanwhile, for the bad type agent whose first failure occurs in k̂ + lth exper-

iment, he needs to have no incentive to over-experiment, which requires that

the total expected cost to do so is larger than the extra benefit:

pk+lM  k � k̂ � l+

1� ✓
c =) M

c
 k � k̂ � l + 1

p
k̂+l

(1� ✓)
(C.0.10)

Therefore, to support such pooling equilibrium, it requires the value-cost ratio

belongs to the following non-empty set:

M

c
2
 

k � k̂ � l

p
k̂+l

(1� ✓)
,
k � k̂ � l + 1

p
k̂+l

(1� ✓)

#
⇢
✓
max

⇢
1

p0
,

1

1� ✓

�
,+1

◆

Proof of Proposition 3.4.2
In public experimentation, since only the no-experiment equilibrium

exists, the agent’s expected payo↵ would be UP (p0) = p0M and the principal’s

expected payo↵ is VP (p0) = �p0(1� p0)M2.

In private experimentation, given (3.4.3) is satisfied, if the no-experiment

equilibrium survives, both the agent’s and the principal’s expected payo↵,

UN (p0) and VN (p0), would be the same as that in public experimentation,

where UN (p0) = UP (p0) = p0M and VN (p0) = VP (p0) = �p0(1� p0)M2.

When the separating equilibria with learning survive, consider the one

in which the potential good type agent reports 0 < k  min
n
k, k̂

o
suc-

cesses. The agent’s expected payo↵ would be strictly worse o↵ relative to

public experimentation: U
k

S
(p0) = p0M �

P
k

i=1

p0

pi�1
c < p0M = UP (p0).

From the perspective of the principal, she would be strictly better o↵ since

V
k

S
(p0) = �p0(1� pk)M2

> �p0(1� p0)M2 = VP (p0).

When the pooling equilibria with learning survive, consider the one

in which the potential good type reports k̂ + 1 < k  k successes and the

bad type agent whose first failure occurs after k̂ + l + 1th experiment would
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over-experiment, where 0 < l  k � k̂. In this case, the agent’s expected

payo↵ would be U
k

O
(p0) = p0M �

P
k̂+l

i=1

p0

pi�1
c � p0(k�k̂�l)

pk̂+l�1
c < p0M = UP (p0),

thus the agent is worse o↵. For the principal, her expected payo↵ would be

V
k

O
(p0) = �p0(1 � p

k̂+l
)M2

> �p0(1 � p0)M2 = VP (p0), so she is strictly

better o↵ relative to public experimentation.

Proof of Proposition 3.4.3
Consider k first. When p0M < c, k = 0. This condition can be rewritten

as p0
M

c
< 1 In this case, the change of ✓ doesn’t a↵ect the participation

threshold. As p0 or M

c
increases, p0

M

c
is getting larger, which makes the

inequality is harder to be satisfied. If it’s violated, k becomes to 1. When

p0M � c, k = max
n
k 2 N : p0

M

c
� k̃

o
. It’s easy to see that p0

M

c
is increasing

as M

c
increases, which implies a larger number of experiments whose expected

total cost can be cover. Thus k rises in this case. Now consider the marginal

e↵ect of ✓ and p0 on this condition:

@U
k(p0, ✓)

@✓
= (1� p0)

kX

i=1

(i� 1)(1� ✓)i�2
c > 0

@U
k(p0, ✓)

@p0
= M �

kX

i=1

[1� (1� ✓)i�1]c

> p0

"
M �

kX

i=1

[1� (1� ✓)i�1]c

#
>

kX

i=1

(1� ✓)i�1
c

| {z }
since p0M�

Pk
i=1[p0+(1�p0)(1�✓)i�1]c�0

� 0

(C.0.11)

These two first derivatives suggest that U
k(p0, ✓) is increasing as p0 or ✓ in-

creases, holding k constant, which implies more experiments’ expected total

cost can be covered by the prior expected value. Therefore, k is weakly in-

creasing in this case.

Now consider k̂. When M

c
>

1

p1(1�✓)
, k̂ = 0. When M

c
increases, the

participation threshold stays the same as the left hand side of the condition

increases. Now the first derivatives of 1

pk(1�✓)
with respect to p0 and ✓ can be
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calculated, where k 2 N+:

@
1

pk(1�✓)

@✓
=

p0 + (1� p0)(1� ✓)k(1� k)

p0(1� ✓)2

@
1

pk(1�✓)

@p0
= �(1� ✓)k�1

p2
0

< 0

(C.0.12)

Therefore, 1

pk(1�✓)
decreases when p0 increases at 8k � 1. When M

c
>

1

p1(1�✓)
,

1

p1(1�✓)
decreases as p0 increases. Therefore, it’s easier to have the over-

experimentation threshold staying at 0. When ✓ increases, the marginal changes

at k = 1 is positive, which implies 1

p1(1�✓)
gets larger, and it’s harder to have

the over-experimentation threshold staying at 0. When M

c
� 1

✓
, k̂ ! 1. This

condition is easier to be satisfied when M

c
or ✓ increases, but is independent

of p0. When 1

1�✓
 M

c
 c

p1(1�✓)
, k̂ is finite. Since 1

pk(1�✓)
is decreasing as p0

increases, the condition M

c
 1

pk(1�✓)
is harder to have the k̂ staying at current

level. As a result, k̂ tends to fall. When M

c
increases, it’s also hard to have

the over-experimentation threshold staying a the current level since the left

hand side of the condition increases, which leads that k̂ also tends to fall in

this case. Notice that the sign of
@

1
pk(1�✓)

@✓
varies at di↵erent k, thus it cannot

be achieved a monotonic e↵ect of ✓ on k̂.

Proof of Proposition 3.5.1
Firstly, I prove that it’s not credible when the agent commits to report

k > k successes or k = k̂ + 1 successes with k̂ < k. Suppose he commits to

report k > k successes, then the principal learns that he must be a bad type

when less than k successes are reported. If the agent doesn’t over-experiment,

his expected payo↵ would be p0M �
P

k

i=1

p0

pi�1
c < 0 as k > k. Thus, the

agent will always deviate and not to run any experiments, which implies such

commitment is not credible. Therefore, the agent would only commit to k  k.

Suppose the agent commits to report k = k̂+1 successes with k̂ < k, he receives

p
k̂
M as a reward when reporting k̂+1 successes since the principal learns that

the bad type agent who fails in k̂ + 1th experiment would over-experiment.

However, since p
k̂
M  c

1�✓
, such bad type agent would deviate and not to

over-experiment. Therefore, this commitment is also not credible.

Secondly, I prove that the agent is better o↵ by committing to report a
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number of successes at 0  k  min
n
k, k̂

o
rather than that at k̂+1 < k  k.

In the region 0  k  min
n
k, k̂

o
, when committing to report k

0 successes,

the agent receives pk0M when reporting k
0 successes since no bad type agents

would over-experiment, thus his expected payo↵ would be U
k
0

S
(p0) = p0M �

P
k
0

i=1

p0

pi�1
c, which is the same as that when the agent cannot commit. In the

region k̂+1 < k  k, the agent’s reward level would be p
k̂+l

M when reporting k

successes, since the principal knows that the bad type agent whose first failure

occurs after k̂ + l + 1th experiment has incentive to over-experiment, where 0 <

l  k�k̂�l, thus his expected payo↵ would be the same as that when the agent

cannot commit, Uk

O
(p0) = p0M �

P
k̂+l

i=1

p0

pi�1
c� p0(k�k̂�l)

pk̂+l�1
c < p0M �

P
k

i=1

p0

pi�1
c.

Since k
0
< k, Uk

O
(p0) < p0M �

P
k

i=1

p0

pi�1
c < p0M �

P
k
0

i=1

p0

pi�1
c = U

k
0

S
(p0).

Therefore, the agent strictly prefers committing to report a number of successes

at 0  k  min
n
k, k̂

o
.

Thirdly, I show that the agent prefers committing to report a smaller

number at 0  k  min
n
k, k̂

o
. In this region, the agent’s expected total

cost
P

k

i=1

p0

pi�1
c is weakly increasing as k decreases. Thus, the agent’s optimal

choice k
⇤ would be the smallest k in this region. Ideally, k⇤ = 0.

Fourthly, I show that the agent comprises to commit to report a larger

number to makes (3.4.4) being satisfied. Suppose the agent choose k = 0.

To support it’s credibility, the restrictions on the principal’s o↵-equilibrium

path belief (3.4.4) needs to be satisfied. If not, the agent would always deviate

to run at least one experiment and report the successes if any, which leads

the initial commitment to be non-credible. In this case, the agent has to

choose the second lowest number, k = 1. Now it needs to check if (3.4.4) is

violated in this case. If it’s not, k⇤ = 1. If it is, the agent seeks to the next

lowest number except the previous ones. This process would hold in the region

0  k  min
n
k, k̂

o
. Therefore, Proposition 3.5.1.1) summarises the process

above in this region.

Fifthly, I show that the expected total cost in the region k̂ + 1 < k 
k is not monotonic with respect to k. Suppose when committing to report

k successes, the bad type agent whose first failure occurs after k̂ + l + 1th

experiment has incentive to over-experiment. This requires k�k̂�l

1�✓
c < p

k̂+l
M 

k�k̂�l+1

1�✓
c. If the agent commits to report k + 1 successes, it implies that, at
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most, the bad type agent whose first failure occurs after k̂ + l + 2th experiment

would over-experiment, as p
k̂+l+1

M >
k�k̂�l

1�✓
c. In this case, his expected payo↵

would be U
k+1

O
(p0) = p0M �

P
k̂+l+1

i=1

p0

pi�1
c� p0(k�k̂�l)

pk̂+l
c. Thus,

U
k+1

O
(p0)�U

k

O
(p0) / �[p0+(1�p0)(1�✓)k̂+l

✓]+(k� k̂�l)(1�p0)(1�✓)k̂+l�1
✓

(C.0.13)

It can easily see that this di↵erence is not always negative or positive under

di↵erent parameter range. Alternatively, the agent’s optimal choice in the

region at k̂ + 1 < k  k can be rewritten as kp 2 argmax
k2N,k̂+1<kk

U
k

O
(p0). As a

result, if (3.4.4) is violated in the region 0  k  min
n
k, k̂

o
, the agent would

consider k⇤ = kp. If (3.4.4) is still violated at k⇤ = kp, the agent would choice

the sub-optimal choice in this region, which maximises Uk

O
(p0) except kp. The

process is then summarised Proposition 3.5.1.2).

Finally, if (3.4.4) is violated at 0  k  k, the agent’s commitment

would not be credible at any level in this region.
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