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Abstract

The Poissonian city is a model where a Poisson line process of unit intensity ⇧

is being used as a transportation network inside a disk of radius n. In order to

achieve a better understanding of this framework we first compile in chapter 1 the

main results from Stochastic Geometry and a brief summary of similar research in

the topic of transportation networks and also other possible applications for line

processes. In chapter 2 we study the asymptotic mean traffic flow at any point

q = (tn, un) inside the Poissonian city conditioning on the presence of an horizontal

line `
q

: y = un that passes through q, that is `
q

2 ⇧. Later, in chapter 3 we

use Palm Theory to compute the asymptotic mean traffic flow inside a subregion of

the Poissonian city. Then, chapter 4 compares the asymptotic mean traffic density

inside the Poissonian city with the study done by Beeching for the British railway

system. The differences between the British railway system and the theoretical model

provided by the Poissonian city motivates us to modify some of the assumptions in

our model. In chapter 5, we adapt previous results to the Poissonian city taken

place inside a variety of ellipses E

c

, where the parameter c is used to change the

eccentricity of the ellipse. Finally, chapter 6 presents a new possible generalization

for the Poissonian city and open problems related with this new approach. Also

other possible approaches are mentioned for future research.
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Chapter 1

Introduction and literature review

The history of random lines goes back to Buffon’s needle problem [19] in the 18th cen-
tury. In recent times it has found applications in the designing of effective/optimal
spatial networks where geographical location of vertices/nodes plays an important
role. By a network we understand a set of points/nodes, interpreted as cities, joined
together in pairs by lines/edges, interpreted as roads, the union of all the streets
taken to go from one city (point) to another will be call a route. Notice that the
lines can intersect each other on other points beyond the nodes that they connect.

The initial interest arose from considerations concerning what might be a good sta-
tistical measure for the performance of spatial transportation networks. When de-
signing a network, as explained by Gastner and Newman [18], it is natural to regard
its total length as a cost, especially in the case of a transportation network. This
cost can be related to the materials needed to construct the roads or rails, for exam-
ple; as well as the maintenance required to keep the network working. On the other
hand, the efficiency or benefit of a transportation network consists in the existence
of short-length routes between cities, permitting short times of transportation from
one point to another. One way to measure this benefit is to compare the shortest
route length between cities x

i

, x
j

in a given network G(x

n

), denoted by `(x
i

,x
j

),
against the Euclidean distance, d(x

i

,x
j

) = kx
i

� x

j

k
2

, between them. Another
approach, taken by Gastner and Newman [18], measures the efficiency of a network
as the excess length between the routes from all points x

i

to a root node x0, and
their corresponding Euclidean distances, that is they used

P

i

`(x
i

,x0)� d(x
i

,x0)

as an statistic for the network efficiency, where lower values corresponds to better
networks. An interesting problem regarding the design of networks is to be able to
control this trade-off between its total length, which one will like to minimize, but yet
have all the cities connected in such a way that the network still possess short-length
routes between all cities or most of them.

In 2008, Aldous and Kendall [3] constructed a network G(x

n

), to link n points,
x

n

= {x1, . . . ,xn

} in general position, inside a square of area n, bearing in mind

1



the above mentioned problem on the design of networks, which can be expressed as
follows:

(a) The excess length regarding this network and the shortest network connecting
all points (Steiner Tree [38], ST (xn

)) is O(n), that is

lim

n!1
excess length(G(x

n

))

n
= 0 , (1.1)

where excess length(G(x

n

)) = length(G(x

n

))� length(ST (xn

)).

(b) The excess distance considering the average of the difference between the short-
est route length in G(x

n

) and their straight-line distance is O(log n), i.e.

lim sup

n!1
excess distance(G(x

n

))

log n
< 1 , (1.2)

where excess distance(G(x

n

)) =

1

n(n�1)

P

i 6=j

(`(x
i

,x
j

)� d(x
i

,x
j

)) is the av-
erage excess of the shortest routes in G(x

n

) against the corresponding Eu-
clidean distances.

In order to achieve this, the main idea is to superimpose a sparse stationary and
isotropic Poisson line process over the minimum-length connected network, the Steiner
Tree. The mentioned analysis uses the notion of near-geodesics routes between start
and end points. These are paths built between pairs of points using the perimeter
of the cell containing these two points, which is constructed using only the Poisson
lines that does not separate them. These ideas will be explained in more depth in
chapter 2.

An alternative statistic for measuring the short-length routes property is also men-
tioned by Aldous and Kendall [3], called the ratio-statistic, defined as

ratio(G(x

n

)) =

1

n(n� 1)

X

i 6=j

r(x
i

,x
j

) , where r(x
i

,x
j

) =

`(x
i

,x
j

)

d(x
i

,x
j

)

� 1 .

Another approach is given by the maximum value of r(x
i

,x
j

), denoted R
max

. How-
ever, it seems too extreme to consider a network as inefficient just because it does
not have a direct route between two particular cities, e.g. the UK railway should not
necessarily be thought as inefficient just because it does not have a very direct route
between Cambridge and Oxford. Some disadvantages of these ratio statistics are
described by Aldous and Shun [4], where they proposed a new statistic to approach
this problem, denoted by R, which is an intermediate statistic between the above
mentioned ratio-statistics (average and maximum), as it combines both ideas. First
consider

⇢(d) = mean value of r(x
i

,x
j

) over city-pairs with d(x
i

,x
j

) = d ,
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and then define
R = max

0d<1
⇢(d) . (1.3)

Therefore, a value R = 0.10 means that on every scale of distance d (as we consider-
ing the maximum over all the possible distances d) the route lengths are on average
at most 10% longer than the straight-line distance.

Later on, Kendall introduced in 2011 the notion of a Poissonian City [25], that is a
random network of connections over a disk of radius n, where connections are made
by random line patterns based on a stationary and isotropic Poisson line process,
denoted by ⇧. Again, pairs of points in the disk are connected by near-geodesics,
with initial/final segments of the path formed by traveling on the opposite direction
to that of the destination/source until they hit a line that belongs to ⇧. Now, if we
consider that each pair of points in the disk generates an infinitesimal flow, shared
equally between these two near-geodesics derived from the line pattern, and we con-
dition on one of the Poisson lines passing through the origin, o, it can be shown
that the mean flow at the centre is asymptotic to 2n3. Moreover, the scaled flow
has a distribution which converges to a proper non-trivial distribution limit, i.e. the
asymptotic flow at the centre of the Poissonian City is well-behaved. Actually, this
distribution is asymptotically equivalent to a 4-volume of an unbounded region in
R4 determined by an improper anisotropic Poisson line process defined on an infinite
strip through the change of scale given by x̃ = x/n and ỹ = y/

p
n. One of the main

results in this Thesis generalizes the above mentioned result to any given point, q
on the Poissonian city conditioning on the presence of a line `

q

(✓) in the Poisson line
process ⇧ that goes through the point q and makes an angle ✓ with the x-axis.

In 2014, Kendall [27] established an alternative representation for this 4-volume in
terms of a pair of monotonic concave curves denominated seminal curves. At the
same time, this work proves that a calculation in terms of initial segments of these
seminal curves can be used to approximate the 4-volume up to an explicit L

1

-error.
This can be made as small as desired, an idea that supplies the necessary theory to
approximate and effectively simulate the 4-volume. Nevertheless, it does not make
explicit the amount of computational effort one requires to achieve stage N approx-
imations to the volume. This is a non-trivial task, since account must be taken of
the effort required to approximate each stage n = 1, 2, . . . , N . More on these ideas
was developed in [17].

In order to understand the above formulation one needs to be familiar with the idea
of a line process, which will be explained below together with some of the main line
process results in the field of Stochastic Geometry.
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1.1 Notation

Throughout we will use (⌦,F ,P) to denote a probability space. Line processes will
be denoted by ⇧ as a random set/pattern, and ⇧ = {`

1

, `
2

, . . .} will denote the
realization of ⇧, that is ⇧ = ⇧(!), represents a specific set of lines. Here `

i

will
stand for a typical line of the process; notice that one should think about ⇧ as a set
of lines instead of a list of lines, that means the order given by the list is not relevant
at all. The intensity of ⇧ will be denoted by a constant � (in the case of isotropic
homogeneity) or ⇤ (in more general cases).

A Poisson point process will be denoted by � (representing the random pattern).
Also in an abuse of notation we will denote the induced random measure by �, here
the random measure �(B) represents the amount of points from the random pattern
� that belongs to the deterministic set B. A particular realization will usually by
denoted by ' = {x1,x2, . . .}, where x

i

represents the specific location for one of
the points, in the sequence ', but their order is not relevant at all. As before, their
intensity will be written as � or ⇤, as appropriate.

As well, the Lebesgue measure in Rd, denoted by Leb

d

(·), will be used frequently.
Also, we will distinguish a point, x

i

, from its coordinates, (x
i

, y
i

). A non-random
set of points will usually be written as x

n

= {x1, . . . ,xn

}, where n refers to the
amount of points being considered; and G(x

n

) will typically denote a given network
that connects the configuration of points x

n.

Additional notation includes the ball of radius r around the point x0, B
r

(x0) =

{x 2 R
d

: kx�x0k
d

 r}, where often the centre x0 will be the origin, denoted by o.
Compact sets will usually be denoted by the letter K and the cardinality of a given
set by #.

1.2 Point Process

The mathematical definition for a point process � on Rd is a random variable that
takes values in a measurable space (S,S), where S is the family of all sets of points
' in Rd which satisfies two regularity conditions:

• The set ' is locally finite, meaning that each bounded subset of Rd must contain
only a finite number of points from '.

• The set is simple, i.e. if ' = {x
n

: n 2 N} then x
i

6= x
j

whenever i 6= j. In
other words, there never will be two points on the same location.

While, the �-field S is defined as the smallest �-field on S such that all the mappings
' ! '(B) are measurable, where B runs through the bounded Borel sets. Recall,

4



in this notation '(B) denotes the number of points, from the configuration ' 2 S,
in the set B. The �-field S contains the so-called configuration sets, often denoted
as Y or Z. For example Y

B

= {' 2 S : '(B) = 0} ✓ S, corresponds to the set of all
point sequences that have no point in a given fixed set B.

As already mentioned before, for convenience we will often used the notation ' =

{x
1

, x
2

, . . .} = {x
n

, n 2 N}. However, the order of this list is arbitrary. From now
on, every time a point process is mentioned, this will satisfies the above regularity
conditions (locally finite and simple), unless otherwise stated.

Formally a point process � is a measurable mapping from a probability space (⌦,F ,P)
into (S,S). Intuitively, that means that � is a random choice of one of the ' 2 S. It
generates a distribution on (S,S), described as the distribution P of �. An intuitive
idea for the case in R2 is to consider an abstract dice with infinitely many faces. Each
one of those faces will correspond to a realization of �, that is an specific sequence
or pattern of points on the plane, i.e. ' = �(!).

1.3 Line Process

In this section, we provide a brief summary of the line process theory described in the
book Stochastic Geometry and its Applications [13, Chapter 8] that will be required
for the remaining of this work. To begin with, we define a line process.

Definition 1.1 (Line Process). [13, p. 306]
A line process is a random collection of lines in the plane which is locally finite, that
is, only finitely many lines hit each compact planar set, K.

In the following chapters, we will focus on undirected line processes. Nevertheless, it
is easier to illustrate the basic ideas with directed line processes and the results can
be easily transferred to the undirected case.

A directed line is a line together with a preferred direction along the line. The col-
lection of all directed lines in the plane will be denoted by A⇤

(2, 1), and the family
of all undirected lines by A(2, 1). Clearly, we have a 2 : 1 correspondence between
elements of A⇤

(2, 1) and of A(2, 1), obtained by ignoring the direction. Here, A(d, k)

denotes the affine linear subspace of dimension k (for k 2 {1, 2, . . . , d � 1} in Rd,
which are also called k-flats or k-planes.

The analysis regarding basic notions of A⇤
(2, 1) can be simplified through the 1 : 1

correspondence between this set of lines and the set of points on the surface of
a cylinder in R3. To achieve that, one has to parametrize a directed planar line
` 2 A⇤

(2, 1) using a convenient set of coordinates, given by {(r, ✓) : r 2 R and ✓ 2
(0, 2⇡]}, which corresponds to: (see figure 1.1)

5



• ✓ : the angle between ` and a reference line, generally the x-axis, measured in
anti-clockwise direction.

• r : the perpendicular signed distance from ` to a reference point, which usually
lies on the reference line. In our case we take the origin, o, where the sign is
positive if o lies to the left of ` when looking in its direction.

This supplies a 1 : 1 correspondence between the directed lines in A⇤
(2, 1) and the

surface of the cylinder

C

⇤
=

�

(cos ✓, sin ✓, r) 2 R3

: r 2 R, ✓ 2 (0, 2⇡]
 

.

✓

1

r

1

o

✓

2

r

2

o

Case r < 0

Case r > 0

✓

2

r

2

r

1

✓

1

`

`

o

Figure 1.1: Illustration of the parametrization (r, ✓) at the left, together with their corre-
sponding points in C

⇤ at the right.

Therefore, since each undirected line in A(2, 1) corresponds to a pair of directed
lines, it also corresponds to a pair of points in C

⇤. Actually, these two points are
reflections of each other through the origin, as shown at the right of figure 1.1. As
representative of the undirected line, we will select the point that is in the half-
cylinder lying to one side of a fixed plane including the cylinder axis, so A(2, 1) has
a 1 : 1 correspondence with

C =

�

(cos ✓, sin ✓, r) 2 R3

: r 2 R, ✓ 2 (0,⇡]
 

.

Remark : Notice that there exists a twist as the angle ✓ approaches to 0, then its
representative point jumps from one edge of the half-cylinder to the other (where
✓ = ⇡), while the value of the coordinate r changes sign. In effect, the appropriate

6



representing space for undirected lines is a Möbius strip of infinite width.

Remark : There is an alternative parametrization which can be useful for certain
calculations, where now the coordinates are given by {(p, ˆ✓) : p 2 R and ˆ✓ 2 (0, 2⇡]},
which represents:

• ˆ✓ : the angle between ` and a reference line, generally the x-axis, measured in
anti-clockwise direction.

• p : the signed distance from the intersection point, between ` and the reference
line, and a reference point (on the reference line). In our case we take the origin,
o, as the reference point. Hence, p is the x-coordinate of the intersection of
the line ` with the horizontal y = 0.

Notice that this alternative parametrization is defective, since if ✓ = 2⇡ then there
is no intersection with the x-axis, so p is ill-defined. Nevertheless, in the special case
of invariant Poisson lines process this situation can be neglected as it is confined to
an event of probability zero.

Hence, to analyze a line process one can apply all the theory developed for point
process, one just needs to adapt it to the representation space. That is, directed
line process give rise to measures on the cylinder C

⇤. Meanwhile, undirected lines
give rise to measures on the half-cylinder C. In particular, we will focus on Poisson
line processes, for directed lines we have that those processes can be defined as
Poisson point processes on C

⇤, so their distributions are defined by their intensity
measures. Even more, since our specific case refers to a stationary and isotropic
Poisson line processes, their intensity measure should be invariant under translations
and rotations. So we have the following result, which assures us that the measure
on C

⇤, that is invariant under the translation-symmetry group induced by planar
translations, is unique up to a multiplicative factor.

Theorem 1.1 (Invariant Measures). [13, Chapter 8, Theorem 8.1]

(a) Suppose that µ is a locally finite measure on C

⇤ which is invariant under
the translation-symmetry group (plane-translation-invariant). Then µ is of the
form

µ( dr d✓ ) = Leb

1

( dr )( d✓ ) , (1.4)

for some finite measure  on (0, 2⇡], where Leb

1

denotes the one-dimensional
Lebesgue measure.

(b) Suppose that µ is a locally finite measure on C

⇤ which is invariant under the
motion-symmetry group. Then µ is a constant multiple of Lebesgue measure
on C

⇤

µ( dr d✓ ) = m dr d✓ , (1.5)
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for some constant m with 0  m < 1. If m = 1 then µ is the surface measure
on C

⇤ (regarding C

⇤ as a cylinder in R3).

The measure µ that corresponds to the multiplicative factor m = 1 is called stan-
dard invariant measure. The analogous invariant measure result holds true for A(2, 1)

through the correspondence with C, where now m = 1/2, thus µ( dr d✓ ) = 1/2 dr d✓

will be called the standard invariant measure for the undirected lines, due to the
2 : 1 correspondence between A⇤

(2, 1) and A(2, 1).

Moreover, one can derive a formula for the invariant measure of hitting sets using
geometric arguments. In order to achieve that, we first define what we mean by a
hitting set.

Definition 1.2 (Hitting-set of K). [8, p. 17]
Let K be a compact subset and ⇧ a line process, then the hitting set of K, denoted
by [K], is defined as

[K] = {` 2 ⇧ : ` * K} ,

where ` * K should be reads as “` hits K”, and means that ` \K 6= ; [23].

The hitting event expresses the idea that a random set, ` in our case, intersects a
non-random set, K, that is why we introduce the notation ` * K instead of just
using the notation ` \ K 6= ;; since one generally relates an intersection with two
non-random sets. Hence, [K] consists of the collection of lines, ` 2 ⇧, that hits the
set K, so [K] ✓ ⇧. Now, we are able to state the result that gives us an explicit
formula for the invariant measure of hitting-sets.

Theorem 1.2 (Hitting Sets Measures). [13, Chapter 8, Theorem 8.2]
If µ is a motion-symmetric measure on C

⇤, then for planar compact convex sets K,
we have that

µ([K]) = 2mL(K) , (1.6)

where L(K) denotes the perimeter of K and m is the same multiplicative factor as
in equation (1.5).

Remark : This provides an intuitive reason to take m = 1/2 as the normalization
factor for the invariant Poisson line process, since this will ensure that the number
of hits in a unit segment will be in average one.

As we can see, the analysis of line processes can be regarded as a special case of
the theory of planar point processes over the surface of the cylinder C

⇤ for directed
lines, or the half-cylinder C for undirected lines. This implies, that the definitions of
stationary (translation-invariant) and motion invariance (stationary and isotropic)
are similar to the corresponding definitions for point processes; the main difference
lies in the replacement of the usual translation and motion groups in R2 by the

8



translation-symmetry and motion-symmetry groups in C

⇤ or C, accordingly. The
general case for a translation-symmetry is given by T

(s, )

, which corresponds to a
translation through a distance s in a direction that makes an angle  with the x-axis
(reference line) in the plane, that will act on C

⇤ in the following way (see figure 1.2)

T
(s, )

(r, ✓) = (r + s sin(✓ �  ), ✓) . (1.7)

On the other hand, the general case for a motion-symmetry group is given by a
rotation of the lines by an angle  , denoted by R

 

, which will act on C

⇤ as follows
(see figure 1.2)

R
 

(r, ✓) = (r, ✓ +  ) . (1.8)

✓

r

o

`

 

s

T

(s, )

(`)

✓

✓ �  

s sin(✓ �  )

✓

r

o

`

 

✓ +  

x� axis

x� axis

x� axis

(after R

 

)

Figure 1.2: Illustration of the transformations T(s, ) and R .

Therefore one has the following definitions.

Definition 1.3 (Stationary Line Process). [13, p. 307]
A line process ⇧ = {`

1

, `
2

, . . .} is stationary if ⇧
T

= {T (`
1

), T (`
2

), . . .} has the same
distribution as a line process for every translation T

(s, )

of the plane as in (1.7), and
this is to say that, in the C

⇤ representation, the point process:

�

TC

⇤
= {(r(`

1

) + s sin(✓(`
1

)�  ), ✓(`
1

)), (r(`
2

) + s sin(✓(`
2

)�  ), ✓(`
2

)), . . . } ,

has the same distribution as

�

C

⇤
= {(r(`

1

), ✓(`
1

)), (r(`
2

), ✓(`
2

)), . . . } , (1.9)

for each s 2 R and  2 (0, 2⇡], where the additions of angles are interpreted modulo
2⇡.

Definition 1.4 (Motion Invariant Line Process). [13, p. 307]
A line process is motion-invariant if it has the stationary property and in addition
the line process ⇧

R

= {R(`
1

), R(`
2

), . . .} has the same distribution for every rotation
R
 

of the plane as in (1.8), that is, in the C

⇤ representation, the point process:

�

RC

⇤
= {(r(`

1

), ✓(`
1

) +  ), (r(`
2

), ✓(`
2

) +  ), . . . } ,
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also has the same distribution as �
C

⇤ given by (1.9) for each  2 (0, 2⇡], where again
the additions of angles are interpreted modulo 2⇡.

Now, we analyze the idea of the intensity of a line process. A directed line process
⇧, when regarded as a point process �

C

⇤ on C

⇤, yields an intensity measure ⇤
C

⇤

for all Borel sets B on C

⇤, given by:

⇤

C

⇤
(B) = E [�

C

⇤
(B)] , (1.10)

here �
C

⇤
(B) = #{(r, ✓) 2 �

C

⇤
: (r, ✓) 2 [B])} represents the amount of points from

�

C

⇤ contained in B. If ⇧ is stationary, then ⇤
C

⇤ is translation-symmetric, and if
⇤

C

⇤ is locally finite then Theorem 1.1 can be applied, were equation (1.4) yields to

⇤

C

⇤
( d(r, ✓)) = � drR( d✓) ,

where � is a constant, whose interpretation will become clear later, and R is a prob-
ability measure on (0, 2⇡], called the rose of directions of ⇧. The rose of directions
can be thought as the distribution of the direction of a typical line ` 2 ⇧.

If ⇧ is motion-invariant, then again by Theorem 1.1, but now applying formula (1.5),
we get

⇤

C

⇤
( d(r, ✓)) = � dr

d✓

2⇡
,

where the constant �/(2⇡) is then the intensity of the representing point process �
C

⇤

with respect to the standard invariant measure dr d✓.

To explain the interpretation of � in the above formulae, one requires the next
definition.

Definition 1.5 (Intensity Measure). [13, p. 307]
If the line process ⇧ is stationary, then invariance arguments can be applied to the
line length measure for all planar Borel sets B to define the intensity measure of ⇧
as follows

⇤(B) = E
"

X

`2⇧
Leb

1,`

(` \B)

#

= E

2

4

X

`2[B]

Leb

1,`

(` \B)

3

5 , (1.11)

where Leb

1,`

is the Lebesgue measure on the line `. That means that ⇤(B) represents
the mean total length of all line pieces of ⇧ that hits B.

Since ⇤ is a translation-invariant measure on R2, there exists a constant L
B

such
that for all planar Borel sets B the following formula holds

⇤(B) = L
B

Leb

2

(B) . (1.12)
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Hence, L
B

is the mean line length per unit area. The relationship between � and L
B

can be determined by applying formula (1.10) to a special set B, namely, B = B
1

(o).

First, we notice that the length of the chord in B
1

(o) of a line ` at a distance r from
the origin is 2

p
1� r2, see Figure 1.3; then using the Campbell Theorem [29, Section

3.2] we get the following relation

⇡L
B

= ⇤(B(o, 1)) = E

2

4

X

`2[B(o,1)]

Leb

1,`

(` \B(o, 1)

3

5

= E

2

4

X

(r,✓)2�C⇤ :|r|1

2

p

1� r2

3

5

= 2

Z

2⇡

0

Z

1

�1

p

1� r2⇤
C

⇤
( d(r, ✓))

= 2�

Z

1

�1

p

1� r2 dr = �⇡ .

Hence � = L
B

, that is � represents the mean line length per unit area.

Undirected line processes satisfy similar relations, but subject to replacement of
dr d✓/(2⇡) by dr d✓/⇡ and conversion of the rose of directions R into a distribution
over (0,⇡] as required.

o

r

1

p
1�

r

2

`

Figure 1.3: Illustration of the length of the chord in B1(o).

1.4 Generalizations: Flat process and Fibre process

The idea of a line process in R2 generalize naturally to the idea of a plane process
in R3 and this can be generalized to random systems of k-dimensional planes in Rd,
with k 2 {1, . . . d� 1}, such process are usually known as flat processes [42, Section
4.4]. In this context, planar line processes will refer to the particular case, where
k = 1 and d = 2, planes processes will correspond to k = 2 and d = 3. Of course, we
can also think of line processes in space, which will be the case for k = 1 and d = 3.
Furthermore, in Rd for k = 1 we talk of line processes, and for k = d � 1, of hyper-

11



plane processes. To formalize this idea one can think about a k-flat process in Rd

as a point process in the affine Grassmannian of k-dimensional subspaces, denoted
by A(d, k), where k 2 {1, . . . , d � 1}, idea already explored in the previous section
where we analyzed the family of directed and undirected lines, A⇤

(2, 1) and A(2, 1)

respectively.

Another way to generalize the idea of line processes is that of a fibre processes, which
models random collections of curves in Rd. Following, the same analogy as before,
fibre processes can lead to surface processes in R3 and this can be generalized to the
manifold processes of Mecke [32]. These are random systems of manifolds of fixed
dimension, k, embedded in Rd, which can be thought of as the solution set of some
system of equations f

1

(x) = 0, . . . , f
k

(x) = 0. To illustrate these ideas, we gave the
formal definition of a fibre and how this can lead to the idea of fibre process.

Definition 1.6 (Fibre). [13, p. 314]
A fibre � is a subset of R2 which is the image of a curve �(t) = (�

1

(t), �
2

(t)) such
that

(i) � : [0, 1] ! R2 is once continuously differentiable.

(ii) |�0(t)|2= |�0
1

(t)|2+|�0
2

(t)|2> 0 for all t.

(iii) The mapping � is one-to-one, so that a fibre does not intersect itself.

Then, a fibre system, �, is a closed subset of R2 which can be represented as a union
of countably many fibres �(i), with the property that any compact set, K, is only
intersected by a finite amount of fibres, and such that distinct fibres have no points
in common, unless these are end-points. This can be expressed as:

�(i)((0, 1)) \ �(j)((0, 1)) = ; , whenever i 6= j .

The length measure, for Borel sets B, corresponding to the fibre system � is then
defined in terms of the measures �(i)

�(B) =

X

�

(i)2�
�(i)(B) ,

where by the measures �(i) we refer to

�(i)(B) = H
1

(�(i) \B) =

Z

1

0

B

(�(i)(t))

q

�
0
(i)

1

(t)2 + �
0
(i)

2

(t)2 dt ,

in which the Hausdorff measure H
1

[13, equation 1.84] is used, so that H
1

(�(i) \B)

stands for the length of the fibre �(i) in the set B.
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The family of all planar fibre systems is denoted by D and is endowed with a �-algebra
D generated by sets of the form

{� 2 D : �(B) < x}

for planar Borel sets, B, and positive numbers, x. Therefore, one can think of a
planar fibre process � as a random variable taking values in (D,D), that is to say,
a measurable mapping from an underlying probability space (⌦,F ,P) to (D,D). As
before, the same symbol, �, is also used to denote the corresponding random length
measure. Thereby the theory of fibre process can be studied as a special part of the
theory of random measures, as well as the theory of random sets [34].

1.5 Examples of Applications

The main application for line processes that will be studied in this work concerns
how they can serve as models for traffic in spatial networks. For example:

1. Gastner and Newman [18] study spatial networks that are designed to distribute
a commodity. Hence, the efficiency of these networks are measured in terms of
the length of their routes to the root node.

2. Aldous and Kendall [3] consider a particular kind of network, given by Steiner
Trees with a superimposed sparse Poisson line process (isotropic and stationary
of unit intensity). This paper will be discussed in more detail in chapter 2.

3. Aldous et al. [2] study spatial networks as inter-city roads and conjecture the
shape of the curve R⇤

max

(L), that is the minimum possible value of R
max

for
a given (normalized) network length L, with R⇤

max

defined as max

d

r(x
i

,x
j

),
where the maximum is over all nodes whose Euclidean distance is equal to d.
Finally they compare real-world networks against this theoretical curve.

4. Aldous and Shun [4] explains why ratio statistics are not necessarily a good
summary statistic to measure the property of short-length routes in spatial
networks, especially when one studies their asymptotic behavior as n ! 1.
They propose a new statistic to achieve this goal, R.

5. Kendall [25, 26, 27] follow-up work from Aldous and Kendall [3]. Kendall
introduced the idea of a Poissonian City and analyzed some of its main features.
Furthermore, the author introduced the notion of traffic flows in this kind of
networks and some of its distribution properties. These notions will be studied
in more detail in following chapters.

6. Dujmović et al. [15] analyze the stretch factor between two vertices, that is
the ratio between the length of the shortest route in the graph G(x

n

) and
the Euclidean distance between them. But, in contrast to Aldous and Kendall
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[3], instead of finding a light network (small total length), this paper focus on
finding a sparse network (small amount of edges).

7. Winston and Mannering [46] emphasize the importance of using new technolo-
gies to improve efficiency of highway pricing, which would benefit the following
aspects: travel speeds, reliability and reduce highway expenditures. The au-
thors try to measure the cost of road congestions and to find out where to set
efficient tolls to avoid them.

The range of applications for line processes is much broader than given here, including
areas such as Stereology [9] and the reconstruction of images that can be applied to
Positron Emission Tomography (PET), where the main idea is to apply Theorem 1.2
to measure the size of organs or tumors. For example:

1. Vardi et al. [44] describe various estimation techniques for the image recon-
struction problem of PET, viewed as a statistical estimation from incomplete
data: Maximum Likelihood Estimators (using EM algorithm), least squares,
and the method of moments.

2. Johnstone and Silverman [21] provide exact minimax convergence rates of es-
timation over suitable smoothness class of functions. Since the main idea of
the PET reconstruction problem is to apply the Radon transform [31] of the
density f , that is the line integral of f along the line ` with coordinates (r, ✓)

in the detector space, where the line ` corresponds to chords that connects N

equally spaced points on the circumference of a particular disk.

3. O’Sullivan [36] studies asymptotic approximations and numerical simulations
to examine the least squares and maximum likelihood approaches for image
reconstruction in the PET problem with more details.

The planar Poisson line process and the Poisson plane process also play a relevant
role in the construction of random tessellations, see van Lieshout [43] and Chapter
9 of the book Stochastic Geometry and its Applications [13]. Finally, Poisson and
Cox line processes can be used as simple mathematical models for random systems
of long fibres with weak curvature.

1.6 Directory of results

In chapter 2 we generalize the result presented by Kendall [25, Theorem 5], regarding
the mean amount of traffic flow through the centre of the Poissonian city, conditioned
on the presence of one line passing through the centre o. This idea is generalized
to any point q = (tn, un) in the Poissonian city conditioning on the presence of an
horizontal line `

q

: y = un.
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Chapter 3 sets out the framework of Palm theory, which will be required in order to
compare the traffic behaviour in the Poissonian city with a data set from an actual
transportation network, say data regarding the British railway system considered in
British Railways Board [12]. Palm theory can be applied so that the result devel-
oped in chapter 2 provides an insight regarding the computations required to make
this comparison possible. Also, through conditional probability and Palm theory we
show that there is a direct relation between the traffic flow generated by random
points (source and destination nodes) in the Poisson line process ⇧ and the traffic
flow generated by random points in the whole disk of radius n B

n

(o). Notice that
in the second case, the source and destinations nodes almost surely will not belong
to ⇧, and that corresponds with the approach taken in chapter 2. However, the
first approach sets a more realistic framework, as the points of interest (source and
destination) do belong to the transportation network (the Poisson line Process ⇧).

Then, in chapter 4, we compare the asymptotic mean traffic distribution on the Pois-
sonian city with the data provided by British Railways Board [12], specifically figure
1 from its Appendix 1, see figure 1.4. The result developed in chapter 2 together
with the Palm theory presented in chapter 3 will allow us to compute the traffic
density across the Poissonian city. By traffic density we mean a curve that explains
how the proportion for the total traffic changes in terms of the proportion of the
network being considered. The approach to make this comparison is explained here
and implemented numerically using the R computing environment. At the same
time, we develop an analytic formulae to described the traffic density curve in the
Poissonian city.

In chapter 5, we attempt to improve the fit developed in chapter 4 by generalizing the
model for the Poissonian city. The generalization to be considered will analyse the
line process ⇧ taking place over a variety of ellipses, each one of them corresponding
to different values for the eccentricity, instead of a disk. However, numerical evidence
suggests that there is actually no change at all between the traffic density on the
original Poissonian city and any elliptic Poissonian city. The density traffic curve
studied here turns out to be related to Elliptic Integrals. The last sections of this
chapter analyse this relation more thoroughly in order to explain the invariance of
this curve in an analytic way.

Chapter 6 discusses possible future research on different approaches to generalize
the Poissonian city in order to make it a more realistic framework for transportation
networks. The main development here is how the Poissonian city will look like if
instead of considering a Poisson line process ⇧, to construct our routes, one use a
Poisson segment process ⌅, where the length of each segment is a fixed quantity,
say h. Some connections with similar research on this topic are briefly mentioned.
Finally, we summarize the results developed along this research and outline possible
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Figure 1.4: Cumulative Distribution of different types of Traffic over Route Miles in the
British Railways system, figure taken from the Appendix 1 of British Railways Board [12,
Figure 1].

directions for future research on the topic.
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Chapter 2

Traffic behaviour across the

Poissonian city

Kendall [25] introduced the notion of a Poissonian city, that is a random network
of connections based on a Poisson line process of unit intensity, ⇧, over a disk of
radius n, denoted by B

n

(o). Any two points p

� and p

+ in B
n

(o) will almost surely
not be hit by any of the lines from the Poisson line process ⇧ and will therefore
fail to be connected by ⇧. Arbitrarily let p

� be the source and p

+ the destination.
Accordingly, the movement from p

� to p

+ will be given by the semi-perimeter routing
rule [3]:

1. Consider the Poisson tessellation related to the Poisson line process ⇧. Then
construct the convex cell C(p�,p+

) containing p

� and p

+ by deleting all Pois-
son lines from ⇧ that separate p

� from p

+.

2. From the source, p�, proceed in exactly the opposite direction to the destina-
tion, p+, until one first encounters a Poisson line ` 2 ⇧. This line will be part
of the cell boundary @C(p�,p+

), denote this point by ˜

p

�.

3. Now, continue along in one or the other direction (clockwise or anti-clockwise),
proceeding along the boundary of the cell C(p�,p+

).

4. Continue along @C(p�,p+

) until one reaches the set {t(p+�p

�
)+p

�
: t � 0},

which is the ray extending from p

� and through p

+, denote this point by ˜

p

+.
From ˜

p

+ proceed down this ray to the destination p

+.

Remark : Notice that if we exchange the roles for p

� and p

+, the semi-perimeter
routing rule will be exactly the same route. The only difference will be given by the
traffic flow, which will be on the opposite direction, but still along the same route.

Depending on the choice of direction at step 3, this yields one of two possible routes.
These are defined to be the near-geodesics from p

� to p

+, see figure 2.1. These
routes are to be considered in contrast to the actual network geodesics, which will
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p

�

˜

p

�

p

+

˜

p

+

Figure 2.1: Construction of the convex cell C(p�,p+
) (yellow tile), whose boundary,

@C(p�,p+
), represents the union of the two near-geodesics from p

� to p

+. Figure based on
[24, Figure 1]

always use the shortest network path, but can only be found by solving a difficult
optimization problem. Nonetheless, Kendall [25, Section 2.3] shows that these near-
geodesics are a good approximation to the true network geodesics.

This chapter analyses the asymptotic behaviour for the mean traffic at any point q

in the Poissonian city using two different approaches: first, a direct computation re-
garding this expected value; and second, a coupling argument involving an improper
anisotropic Poisson line process, ˜

⇧.

Kendall [25, Theorem 5] showed that the mean traffic flow at the centre of the Pois-
sonian city, conditioned on the presence of one line that goes through the centre,
behaves asymptotically as 2n3. The following section will generalize the previous re-
sult to any point q = (tn, un) across the Poissonian city, conditioning on a horizontal
line, `

q

: y = un, passing through q.

2.1 Mean traffic at any particular point

Set q = (tn, un), with u 2 [�1, 1] and t 2 [�
p
1� u2,

p
1� u2], and condition on a

horizontal line `
q

: y = un being part of ⇧. Considering the (r, ✓) coordinate system
used to parametrize the line process ⇧, `

q

will be represented by (u, 0). Since the disk
has rotational symmetry, these calculations can be applied regardless of the angle
✓ from the conditioning line `

q

(✓) passing through q. To achieve this one will only
require to apply a rotation to transform the original line `

q

(✓) into an horizontal line,
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which is an implicit change of coordinates, and then applied the results that we are
going to explain below.

Consider that every p

� and p

+ from B
n

(o) generates an infinitesimal amount of
flow: dp

�
dp

+. This is divided equally between the two near-geodesics given by the
semi-perimeter routing rule. Thence, the flow through q is expressed in terms of a
4-volume, which is given by the set

Dq

n

=

�

(p

�,p+

) 2 B
n

(o)

2

: p�
1

< p+
1

, q 2 @C(p�,p+

)

 

, (2.1)

where C(p�,p+

) stands for the convex cell containing p

� and p

+ which arises by
deleting all the Poisson lines that separates p

� from p

+ as explained before. In
consequence, @C(p�,p+

) is the union of the two possible near-geodesics that can
be used to connect p

� and p

+ through the semi-perimeter routing rule. Then the
distribution of the total traffic through q is given by
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(2.2)
The following two lemmas are required to understand the asymptotic behaviour, as
n ! 1, of the mean traffic flow through q under the circumstances described above.
They focus on the performance of integrals with the following form:
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g(r, s, ✓)r dr s ds ✓ d✓ , (2.3)

here g(r, s, ✓) = exp (� 1

2

(r + s�
p
r2 + s2 + 2rs cos ✓)) is a function in terms of

r, s, ✓; and R
1

, R
2

> 0 are arbitrarily fixed values.

Lemma 2.1. [Small ✓ contribution]
Consider the function g(r, s, ✓) as before and a region of the form

A
n

= {(r, s, ✓) : 0  r  R
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n

} ,
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n
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therefore as n ! 1 one can conclude that
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Proof. First, consider the rescaled variables r = r̃n and s = s̃n. Therefore
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(2.4)

Now, rescale the variable r̃ using r̃ = r̂s̃ and then rewrite
p
r̂2 + 1 + 2r̂ cos ✓ as

p

(r̂ + 1)

2 � 2r̂(1� cos ✓). So, after factoring (r̂+1) the first integral in (2.4) satisfies
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Notice that
p
1� 2z ⇠ 1�z as z # 0, for z = r̂(1�cos ✓)/(r̂+1)

2 (which tends to zero
as ✓ # 0). In other words,

p
1� 2z  1�z for z 2 [0, 1/2] and 1�z(1+w

n

) 
p
1� 2z

for z 2 [0, 2w
n

/(1 + w
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)

2

]. In consequence, the first integral in the last expression
from (2.4) can be bounded above and below as follows
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To analyse the upper bound, consider the change of variable v = 1� cos ✓, so
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Even more, since ✓ 2 [0, w
n

] then we can approximate ✓/sin ✓ by a Taylor series
argument, say sin ✓ = ✓ � ✓3/3!+ 5/5! for some  2 (0, w

n

). In consequence,
1  ✓/sin ✓  ✓/(✓� ✓3/3! ) = 1+ ✓2/(6� ✓2)  1+w2

n

/5, for any ✓ 2 [0, w
n

]. These
inequalities implies that
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Therefore, as n ! 1, so that w
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# 0,
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Notice that the integral for v from 0 to (1 � cosw
n

) will behave asymptotically in
the same way as the integral from 0 to 1, as long as
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Therefore, as n ! 1
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Thus, asymptotically as n ! 1 it follows that:
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On the other hand, the asymptotic behaviour for the lower bound in (2.5) can be
found by following exactly the same computations as in the upper bound, since
(1 +w

n

) is just another constant for the triple integral (recall w
n

= 1/n�). That is,
first consider the change of variable v = 1� cos ✓, so
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Then, since 1  ✓/sin ✓  1 + w2
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/5 for any ✓ 2 [0, w
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], it follows that
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Moreover, as in the case for the upper bound in (2.5) the above integral for v from
0 to (1 � cosw

n

) behaves asymptotically (as n ! 1) the same way as the integral
from 0 to 1, therefore
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In conclusion

Z

wn

0

Z

R2

0

Z

R1
R2

0

exp

✓

� ns̃r̂

2(r̂ + 1)

(1� cos ✓)(1 + w
n

)

◆

r̂ dr̂ s̃3 ds ✓ d✓

⇠ 1

1 + w
n

1

3n
R

2

(R2

1

+ 2R
1

R
2

) =

n�

n� + 1

1

3n
R

2

(R2

1

+ 2R
1

R
2

) .

In consequence from (2.5) it follows that the first integral in the last expression of
(2.4) satisfies the following inequalities
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In other words, as n ! 1
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Finally, the second integral in the final expression of (2.4) can be rewritten by ex-
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changing the order of integration between r̃ and s̃ as follows
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which, by the same calculations as the first integral (just interchange the roles of R
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), leads to the following expression
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Now, to control the other region of integration on (2.3) one can apply the following
result.

Lemma 2.2. [Large ✓ contribution]
Consider the function g(r, s, ✓) as before and a region of the form

E
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for some constant R
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asymptotically as n ! 1
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Proof. As in Lemma 2.1, first use the rescaled variables r = r̃n and s = s̃n. Notice
that for this case R

1

and R
2

have the common value R
3

, thus the final two integrals
in the expression (2.4) are the same (after exchanging the order of integration of r̃
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and s̃ in the second integral). That is
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Then, following similar steps as in Lemma 2.1 rescale the variable r̃ using r̃ =
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Thus an upper bound for the desired integral can be produced as follows:
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R
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1� cosw
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2
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Finally, by Taylor expansion 1 � cosw
n

= w2

n

/2!� 4/4! for some  2 (0, 2w
n

),
equivalently w2

n

/2(1� 4w2

n

/3)  (1� cosw
n

)  w2

n

/2. Therefore
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Hence, as w
n

= 1/n� , for some � > 0 it follows

8
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⇡2 � 1

n2�

◆

4R2

3

n2+4�  8
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⇡2 � 1

n2�
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R
3

1� cosw
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◆

2
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 8⇡24R2

3

n2+4�

 

1

1� 4

3n

2�

!

2

.

In conclusion

8(⇡2 � w2

n

)

✓

R
3

1� cosw
n

◆

2

n2 ⇠ 32⇡2R2

3

n2+4� as n ! 1 .

Thus, the asymptotic behaviour of the mean traffic through q = (tn, un) is charac-
terized by the next result

Theorem 2.1. [Mean traffic flow through the point q = (tn, un) and its asymptotic
behaviour]
The mean flow through the point q = (tn, un), u 2 (�1, 1) and t 2 (�

p
1� u2,

p
1� u2),

conditioned on the existence of an horizontal line, that is `
q

2 ⇧ with `
q

: y = un, is
given by

E[T q

n

] =

1

2

ZZZZ

Dq
n,�

g(r, s,↵
1

,↵
2

)r dr s ds d↵
1

d↵
2

+

1

2

ZZZZ

Dq
n,+

g(r, s,↵
1

,↵
2

)r dr s ds d↵
1

d↵
2

. (2.6)

Here g(r, s,↵
1

,↵
2

) = exp

⇣

�1

2

(r + s�
p

r2 + s2 + 2rs cos(↵
1

+ ↵
2

))

⌘

is the proba-
bility that there are no lines from the Poisson line process ⇧ separating the points
p

�
= (r,↵

1

) and p

+

= (s,↵
2

) (in polar coordinates with q as the reference point)
simultaneously from q, where Dq

n,± are the appropriate regions of integration for
(r, s,↵

1

,↵
2

) which depends on the location of the point q. Thus

Dq

n,� = {(r, s,↵
1

,↵
2

) : r 2 [0, hq
1

(↵
1

)n], s 2 [0, hq
2

(↵
2

)n],↵
1

2 [�⇡, 0],↵
2

2 [�⇡, 0]},

(2.7)

Dq

n,+

= {(r, s,↵
1

,↵
2

) : r 2 [0, hq
1

(↵
1

)n], s 2 [0, hq
2

(↵
2

)n],↵
1

2 [0,⇡],↵
2

2 [0,⇡]}.
(2.8)

Here hq
1

(↵
1

) (respectively hq
2

(↵
2

)) is a continuous function that expresses how the
maximum allowed distance from the point p� (respectively p

+) to q changes depend-
ing on the angle ↵

1

(respectively ↵
2

). Therefore

hq
1

(↵
1

) = (x
1

+ t) sec↵
1

and hq
2

(↵
2

) = (x
2

� t) sec↵
2

,
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where x
1

(respectively x
2

) is the absolute value of the x-coordinate from the intersec-
tion point between the line y = �(x�t) tan↵

1

+u (respectively y = (x�t) tan↵
2

+u)
and the unit circle x2 + y2 = 1. This leads to the following expressions

x
1

= |
p

sec

2 ↵
1

� (u+ t tan↵
1

)

2 � tan↵
1

(u+ t tan↵
1

)| cos2 ↵
1

,

x
2

= |
p

sec

2 ↵
2

� (u� t tan↵
2

)

2 � tan↵
2

(u� t tan↵
2

)| cos2 ↵
2

.

Moreover, asymptotically as n ! 1

E[T q

n

] ⇠ 2

p

1� u2(1� u2 � t2)n3 . (2.9)

q = (tn, un)

(0, un)
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↵

2

B
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�
= (r,↵

1

)

p

+
= (s,↵

2

)

⇢ =

p
r

2

+ s

2

+ 2rs cos ✓

✓ = ↵

1

+ ↵

2

o = (0, 0)

`

q

Figure 2.2: Illustration of concepts used in Theorem 2.1.

Proof. First, the expression (2.6) can be derived by stochastic geometry arguments.
The traffic flow going from p

� to p

+ will contribute to the expected amount of traffic
through q, as long as q belongs to the semi-perimeter route, as explained above. If
p

� and p

+ are separated by the line `
q

: y = un, then there will be no contribu-
tion from the traffic flow between those points to q, because the construction of the
semi-perimeter route implies that the line `

q

will be censored / deleted for this case.
So, both p

� and p

+ must lie on the same side of the disk (both above or below the
line `

q

).

Moreover, to guarantee that q 2 @C(p�,p+

) there should be no lines from the Pois-
son line process ⇧ that separates simultaneously p

�,p+ from q. As we are dealing
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with a Poisson process the probability of this event is given by exp (�⇤(A)): here ⇤
is the intensity measure of the Poisson line process and A represents the region that
should be avoided by the Poisson line process, see figure 2.2.

One has to avoid lines that intersects the segment connecting p

� to q (with length
r), or the segment that connects p

+ to q (with length s), this can be done by
applying Kendall [26, Exercise 1.6]. The invariant measure of this ensemble of lines
is bounded above by r+s. However, there are some of these lines that should not be
considered as they do not separate p

�,p+ simultaneously from q. Those lines (that
does not belong to A) are exactly the same set of lines that also intersect the segment
that connects p

� and p

+, whose length is given by ⇢ =

p
r2 + s2 + 2rs cos ✓, here

✓ = ↵
1

+ ↵
2

. So the desired expression is

⇤(A) =

1

2

⇣

r + s�
p

r2 + s2 + 2rs cos ✓
⌘

.

Now, notice that ↵
1

,↵
2

2 [�⇡,⇡] and since p�
1

< p+
1

then it follows that ✓ =

(↵
1

+ ↵
2

) 2 [�⇡,⇡]. Therefore

E[T q

n

] =

1

2

x

E[ {(p�
,p

+
)2Dq

n}] dp
�
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+

=
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2

x
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+
)2Dq
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�
2 ,p

+
2 �un}] dp

�
dp

+

+

1

2

x

E[ {(p�
,p

+
)2Dq
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�
2 ,p

+
2 <un}] dp

�
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+

=

1

2

Z

⇡

0

Z

⇡

0

Z

h

q
2(↵2)n

0

Z

h

q
1(↵1)n

0
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✓
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2

(r + s�
p
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◆
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+

1
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Z
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q
2(↵2)n

0

Z

h

q
1(↵1)n

0

exp

✓

�1

2

(r + s�
p

r2 + s2 + 2rs cos ✓)

◆

r dr s ds d↵
1

d↵
2

.

Here hq
1

(↵
1

) is a continuous function that expresses how the maximum allowed dis-
tance from the point p

� to q changes depending on the angle it makes. Similarly,
hq
2

(↵
2

) represents the maximum allowed distance from p

+ to q in terms of ↵
2

.

All this leads to the first expression:

E[T q

n

] =

1

2

ZZZZ

Dq
n,�

g(r, s,↵
1

,↵
2

)r dr s ds d↵
1

d↵
2

+

1

2

ZZZZ

Dq
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g(r, s,↵
1

,↵
2

)r dr s ds d↵
1

d↵
2

,

with

Dq

n,� = {(r, s,↵
1

,↵
2

) : r 2 [0, hq
1

(↵
1

)n], s 2 [0, hq
2

(↵
2

)n],↵
1

2 [�⇡, 0],↵
2

2 [�⇡, 0]},
Dq

n,+

= {(r, s,↵
1

,↵
2

) : r 2 [0, hq
1

(↵
1

)n], s 2 [0, hq
2

(↵
2

)n],↵
1

2 [0,⇡],↵
2

2 [0,⇡]}.
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Here

hq
1

(↵
1

) =

⇣

(

p

sec

2 ↵
1

� (u+ t tan↵
1

)

2 � tan↵
1

(u+ t tan↵
1

)) cos

2 ↵
1

+ t
⌘

sec↵
1

,

hq
2

(↵
2

) =

⇣

(

p

sec

2 ↵
2

� (u� t tan↵
2

)

2 � tan↵
2

(u� t tan↵
2

)) cos

2 ↵
2

� t
⌘

sec↵
2

.

The asymptotic behaviour of the expected amount of traffic flow through q, con-
ditioning on the line `

q

: y = un being part to the Poisson line process ⇧ will be
analysed in three different cases:

• Case 1: q = (0, 0).

• Case 2: q = (tn, 0).

• Case 3: q = (tn, un).

The general idea is to split each region Dq

n,± in terms of the angle ✓. Consider the
region for small angles ✓ 2 [0, w

n

] for Dq

n,+

(respectively ✓ 2 [�w
n

, 0] for Dq

n,�) and
the region for big angles ✓ 2 [w

n

,⇡] (respectively ✓ 2 [�⇡,�w
n

] for Dq

n,�). Here w
n

is of the form w
n

= 1/n� for some � 2 (0, 1/4). Therefore w
n

# 0, as n ! 1, and
Lemma 2.1 and Lemma 2.2 can be applied.

• Case q = (0, 0).

First we re-express Dq

n,� and Dq

n,+

in terms of ✓ = ↵
1

+ ↵
2

and � = ↵
1

� ↵
2

. That
is from here until the end of this case we have that

Dq

n,� = {(r, s, ✓, �) : r 2 [0, hq
1

(↵
1

)], s 2 [0, hq
2

(↵
2

)], ✓ 2 [�⇡, 0], � 2 [✓,�✓]},
Dq

n,+

= {(r, s, ✓, �) : r 2 [0, hq
1

(↵
1

)], s 2 [0, hq
2

(↵
2

)], ✓ 2 [0,⇡], � 2 [�✓, ✓]}.

Notice that d↵
1

d↵
2

=

1

2

d✓ d� and that for this particular case since hq
1

(↵
1

) and
hq
2

(↵
2

) are constant functions, then we can integrate the � variable over the region
Dq
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, leading to
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◆

r dr s ds ✓ d✓ . (2.10)

Now consider ↵̂
1

= �↵
1

and ↵̂
2

= �↵
2

, since hq
1

(↵
1

) = hq
2

(↵
2

) = 1 then we can
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integrate the � variable to obtain the following relations
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here ˆ✓ = ↵̂
1

+ ↵̂
2

= �↵
1

� ↵
2

= �✓ (and �̂ = ↵̂
1

� ↵̂
2

). Therefore, as in
this case the functions hq

1

and hq
2

are equal to the constant 1, and g(r, s,�ˆ✓) =

exp (� 1

2

(r + s�
q

r2 + s2 + 2rs cos(�ˆ✓))) = g(r, s, ˆ✓) (since cos

ˆ✓ is an even func-
tion) then one obtains

1
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ˆDq
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= {(r, s, ˆ✓) : 0  r  n, 0  s  n, 0  ˆ✓  ⇡} = Dq

n,+

.

Thus, it suffices to consider the region Dq

n,+

, which can be split into two regions in
terms of the angle ✓. Take w

n

= 1/n� , then by Lemma 2.1 and Lemma 2.2 the result
follows:
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Here
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n

= {(r, s, ✓) : 0  r  n, 0  s  n, 0  ✓  w
n

} ,
Eq
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= {(r, s, ✓) : 0  r  n, 0  s  n, w
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are as in Lemma 2.1 (R
1

= R
2

= 1) and Lemma 2.2 (R
3

= 1) respectively.

• Case q = (tn, 0).

As in the previous case consider the change of variable given by ↵̂
1

= �↵
1

and
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and notice that hq
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Therefore,
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Hence, it is sufficient to analyse the integral over the region Dq

n,+

. For this case Dq

n,+

does not have constant upper bounds for the values of r and s. However, the upper
bounds for r and s in the region Dq

n,+

are given by continuous functions hq
1

(↵
1

) and
hq
2

(↵
2

) respectively. Even more, if we re-express the region in terms of ✓ and � it
can be divided into the following subregions
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. Therefore after integrating the � variable as in (2.10), we can apply
Lemma 2.2 with R

3

= 1+ t (as the function to be integrated is positive) to the new
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and Eq
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On the other hand, one can show that the functions hq
1

(↵
1

), hq
2

(↵
2

) are decreasing
and increasing on ↵

1

and ↵
2

respectively. Therefore, the region Dq

n,1

can be bounded
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above and below by the following two regions with constant upper bounds for r and
s, see figure 2.3
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Figure 2.3: How to control the integral over Dq
n,1.

Then integrate the � variable as in (2.10). After that since Aq

n,� ✓ Dq

n,1

✓ Aq

n,+

,
(without the � variable now) Lemma 2.1 over the regions Aq

n,� and Aq

n,+

yields to

hq
1

(w
n

)hq
2

(0)(hq
1

(w
n

) + hq
2

(0))n3 
y

Dq
n,1

g(r, s, ✓)r dr s ds ✓ d✓

 hq
1

(0)hq
2

(w
n

)(hq
1

(0) + hq
2

(w
n

))n3 . (2.13)

Finally, by a Taylor expansion series argument it is known that

hq
1

(w
n

) = hq
1

(0) +

(hq
1

)

0
(0)

1!

(w
n

� 0) +

(hq
1

)

00
(0)

2!

( 
1

)

2 for some  
1

2 (0, 2w
n

) ,

hq
2

(w
n

) = hq
2

(0) +

(hq
2

)

0
(0)

1!

(w
n

� 0) +

(hq
2

)

00
(0)

2!

( 
2

)

2 for some  
2

2 (0, 2w
n

) .

Notice, that for this case (hq
1

)

0
(0) = (hq

2

)

0
(0) = 0, (hq

1

)

00
(0) = �t2 and (hq

2

)

00
(0) = t2.
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This leads to the following inequalities

hq
1

(w
n

) � hq
1

(0)� t2

2

4w2

n

= hq
1

(0)� 2t2w2

n

� hq
1

(0)� 2w2

n

, (2.14)

hq
2

(w
n

)  hq
2

(0) +

t2

2

4w2

n

= hq
2

(0) + 2t2w2

n

 hq
2

(0) + 2w2

n

, (2.15)

since t 2 (�1, 1) for this case. Therefore from (2.13), (2.14) and (2.15) it follows that

(hq
1

(0)�2w2

n

)hq
2

(0)(hq
1

(0)�2w2

n

+hq
2

(0))n3

= 2(1�t2)n3�2(1�t)(3+t)w2

n

n3

+4(1�t)w4

n

n3


y

Dq
n,1

g(r, s, ✓)r dr s ds ✓ d✓ 

2(1�t2)n3�2(1+t)(3�t)w2

n

n3

+4(1+t)w4

n

n3

= hq
1

(0)(hq
2

(0)+2w2

n

)(hq
1

(0)+hq
2

(0)+2w2

n

)n3 .

Then as n ! 1 (so w
n

# 0). Thus
y

Dq
n,1

g(r, s, ✓)r dr s ds ✓ d✓ = 2(1� t2)n3

+O
⇣

n3�2�

⌘

,

which establishes the result for this case for any � 2 (0, 1/4).

• Case q = (tn, un).

For the last case, one has to analyse separately the regions Dq

n,� and Dq

n,+

as the
symmetry argument from the previous cases does not hold anymore. Although, each
region, after being re-expressed in terms of ✓ and �, can still be separated into two
subregions in terms of ✓, say

Dq

n,+,1

= {(r, s, ✓, �) : r 2 [0, hq
1

(↵
1

)n], s 2 [0, hq
2

(↵
2

)n], ✓ 2 [0, w
n

], � 2 [�✓, ✓]} ,
Dq

n,+,2

= {(r, s, ✓, �) : r 2 [0, hq
1

(↵
1

)n], s 2 [0, hq
2

(↵
2

)n], ✓ 2 [w
n

,⇡], � 2 [�✓, ✓]} .

Thus Dq

n,+

= Dq

n,+,1

[ Dq

n,+,2

. Then, as in the previous cases, the region with large
values for ✓, Dq

n,+,2

, can be bounded by a region with constant bounds for r and s,
say

Eq

n,+

=

n

(r, s, ✓, �) : r 2 [0, (1 +
p

t2 + u2)n], s 2 [0, (1 +
p

t2 + u2)n],

✓ 2 [w
n

,⇡], � 2 [�✓, ✓]
o

. (2.16)

Hence Dq

n,+,2

✓ Eq

n,+

. Therefore after integrating the � variable as in (2.10) (as the
function to be integrated is positive) Lemma 2.2 with R

3

= 1 +

p
t2 + u2 over the

region Eq

n,+

(without the � variable) )yields to the following inequality

y

Dq
n,+,2

g(r, s, ✓)r dr s ds ✓ d✓ 
y

Eq
n,+

g(r, s, ✓)r dr s ds ✓ d✓ = O
⇣

n2+4�

⌘

.
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On the other hand, the functions hq
1

(↵
1

), hq
2

(↵
2

) are decreasing on ↵
1

and ↵
2

respec-
tively (for a neighbourhood close to 0). Therefore, the region Dq

n,+,1

can be bounded
above and below by the following two regions with constant upper bounds for r and
s, see figure 2.4
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Figure 2.4: How to control the integral over Dq
n,+,1.

Then integrating the � variable as in (2.10), since Aq

n,+,� ✓ Dq

n,+,1

✓ Aq

n,+,+

, Lemma
2.1 over the regions Aq

n,+,� and Aq

n,+,+

yields to

hq
1

(w
n

)hq
2

(w
n

)(hq
1

(w
n

) + hq
2

(w
n

))n3 
y

Dq
n,+,1

g(r, s, ✓)r dr s ds ✓ d✓

 hq
1

(0)hq
2

(0)(hq
1

(0) + hq
2

(0))n3 . (2.17)

Again, by a Taylor expansion argument, recall that

hq
1

(w
n

) = hq
1

(0) +

(hq
1

)

0
(0)

1!
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1

) for some  
1
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(hq
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0
(0)

1!

( 
2

) for some  
2

2 (0, 2w
n

) .
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Now, in this case:

(hq
1

)

0
(0) = �u

✓

1 +

tp
1� u2

◆

and (hq
2

)

0
(0) = �u

✓

1� tp
1� u2

◆

.

So, it is possible to bound hq
1

(w
n

) and hq
2

(w
n

) from below as follows

hq
1

(w
n

) � hq
1

(0)� u

✓

1 +
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1� u2

◆

2w
n

� hq
1

(0)� 4uw
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(0)� 4w
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hq
2

(w
n

) � hq
2

(0)� u

✓

1� tp
1� u2

◆

2w
n

� hq
2

(0)� 4uw
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� hq
2

(0)� 4w
n

. (2.19)

Since u 2 (�1, 1) and t 2 (�
p
1� u2,

p
1� u2) implies that t/

p
1� u2 2 (�1, 1).

Therefore (2.17), (2.18) and (2.19) leads to the following inequalities:

(hq
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n

)(hq
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(0)� 4w
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)(hq
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2
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p
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p

1� u2(
p
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p

1� u2(
p
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
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g(r, s, ✓)r dr s ds ✓ d✓  2

p

1� u2(1� u2 � t2)n3 .

Thus, as n ! 1, then w
n

# 0, so
y

Dq
n,+,1

g(r, s, ✓)r dr s ds ✓ d✓ = 2

p

1� u2(1� u2 � t2)n3

+O
⇣

n3��
⌘

.

For the region Dq

n,� we will apply a similar argument. First we re-express the region
in terms of ✓ and �, then separate the whole region into two subregions in terms of
the angle ✓, say

Dq

n,�,1

= {(r, s, ✓, �) : r 2 [0, hq
1

(↵
1

)n], s 2 [0, hq
2

(↵
2

)n], ✓ 2 [�w
n

, 0], � 2 [✓,�✓]} ,
ˆDq

n,�,2

= {(r, s, ✓, �) : r 2 [0, hq
1

(↵
1

)n], s 2 [0, hq
2

(↵
2

)n], ✓ 2 [�⇡,�w
n

], � 2 [✓,�✓]}

Hence Dq

n,� = Dq

n,�,1

[ Dq

n,�,2

. Then, notice that if one considers ↵̂
1

= �↵
1

, ↵̂
2

=

�↵
2

, ˆ✓ = ↵̂
1

+ ↵̂
2

= �↵
1

� ↵
2

= �✓ and �̂ = ↵̂
1

� ↵̂
2

the regions Dq

n,�,1

and Dq

n,�,2

can be rewritten in terms of these new variables as follows

ˆDq

n,�,1

= {(r, s, ˆ✓, �̂) : r 2 [0, hq
1

(�↵̂
1

)n], s 2 [0, hq
2

(�↵̂
2

)n], ˆ✓ 2 [0, w
n

], �̂ 2 [�ˆ✓, ˆ✓]} ,
ˆDq

n,�,2

= {(r, s, ˆ✓, �̂) : r 2 [0, hq
1

(�↵̂
1

)n], s 2 [0, hq
2

(�↵̂
2

)n], ˆ✓ 2 [w
n

,⇡], �̂ 2 [�ˆ✓, ˆ✓]} .

Also, it is important to notice that g(r, s, ✓) = g(r, s,�✓). Therefore after integrating
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the � variable as in (2.10) by Lemma 2.2 (R
3

= 1 +

p
t2 + u2) it follows

y

ˆDq
n,�,2

g(r, s, ˆ✓)r dr s ds ˆ✓ dˆ✓ 
y

Eq
n,+

g(r, s, ˆ✓)r dr s ds ˆ✓ dˆ✓ = O
⇣

n2+4�

⌘

,

with Eq

n,+

as in (2.16).

For this case the functions hq
1

(�↵̂
1

), hq
2

(�↵̂
2

) are decreasing on �↵̂
1

and �↵̂
2

respec-
tively (for a neighbourhood close to 0). But still, the region ˆDq

n,�,1

can be bounded
above and below by two regions with constant upper bounds for r and s, say

ˆAq

n,�,� = {(r, s, ˆ✓, �̂) : 0  r  hq
1

(0)n, 0  s  hq
2

(0)n, 0  ˆ✓  w
n
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(�w
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2

(�w
n
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n

, �ˆ✓  �̂  ˆ✓} .

Again, integrating the � variable as in (2.10), since ˆAq

n,�,� ✓ ˆDq

n,�,1

✓ ˆAq

n,�,+

,
Lemma 2.1 over the regions ˆAq

n,�,� and ˆAq

n,�,+

(without the � variable) yields to
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(0)hq
2

(0)(hq
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Again, by a Taylor expansion argument, recall that
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(�w
n

) = hq
1

(0) +
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1!
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(0) +
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2

2 (�2w
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So, it is possible to bound hq
1

(�w
n

) and hq
2

(�w
n

) from above as follows

hq
1

(�w
n
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1
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1� u2

◆

2w
n

 hq
1

(0) + 4uw
n

 hq
1

(0) + 4w
n

, (2.21)
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(�w
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1� u2

◆

2w
n

 hq
2

(0) + 4uw
n

 hq
2

(0) + 4w
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. (2.22)

Since u 2 (�1, 1) and t 2 (�
p
1� u2,

p
1� u2) implies that t/

p
1� u2 2 (�1, 1). In
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consequence, putting (2.20) together with (2.21) and (2.22)

2

p

1� u2(1� u2 � t2)n3 
y

ˆDq
n,�,1

g(r, s, ˆ✓)r dr s ds ˆ✓ dˆ✓

 2

p

1� u2(1� u2 � t2)n3

+ 4(2

p

1� u2(
p

1� u2 � t)+

2

p

1� u2(
p

1� u2 + t) + 2(1� u2 � t2))w
n

n3

+ 96

p

1� u2w2

n

n3

+ 128w3

n

n3

= (hq
1

(0) + 4w
n

)(hq
2

(0) + 4w
n

)(hq
1

(0) + hq
2

(0) + 8w
n

)n3 .

Thus, as n ! 1, w
n

# 0, so
y

Dq
n,�,1

g(r, s, ✓)r dr s ds ✓ d✓ = 2

p

1� u2(1� u2 � t2)n3

+O
⇣

n3��
⌘

.

Therefore, putting all together we obtain the desired result

E[T q

n

] =

1

2

y

Dq
n,�

g(r, s, ✓)r dr s ds ✓ d✓ +

1

2

y

Dq
n,+

g(r, s, ✓)r dr s ds ✓ d✓

= 2

p

1� u2(1� u2 � t2)n3

+ O
⇣

n3��
⌘

+ O
⇣

n2+4�

⌘

,

which establishes the theorem for any � 2 (0, 1/4).

2.2 Improper Anisotropic Poisson line process

Another way to verify the above calculations is given in this section. This approach
provides a shorter exposition, as it depends more on conceptual ideas that arises from
the previous section. However, the results developed in this section will not provide
any information regarding the second leading term on the asymptotic behaviour for
the mean traffic at the point q = (tn, un).

The scaling limit for the distribution of traffic flow through any point, q, in the Pois-
sonian city can be represented by using an improper stationary anisotropic Poisson
line process, ˙

⇧. This section follows the ideas developed by Kendall [25, Section 3.3]
with the appropriate modifications. Again, one has to condition on the existence of
an horizontal line `

q

: y = un that passes through q = (tn, un), i.e. `
q

2 ⇧.

Recall that a line process can be parametrized in different ways. Here instead of
using the standard coordinates (r, ✓), where r represents the distance of the line `
to the origin and ✓ the angle it makes regarding an horizontal line (x-axis). We will
use (p, ˆ✓), with p being the signed distance from q to the intersection between the
given horizontal line `

q

and the line ` that is being parametrised, and ˆ✓ represents
the angle between these two lines (`

q

and `), see figure 2.5.
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Figure 2.5: Illustration for the alternative coordinates (p, ˆ✓) used to parametrise a line
process ⇧. For this particular case, p will be a negative number.

In the latter case the intersection points with the line `
q

will form a stationary
Poisson point process and the angle density is given by 1

2

sin

ˆ✓ [26, Lemma 1.1] for
ˆ✓ 2 [0,⇡]. However, there is a setback with the parametrization (p, ˆ✓) as all parallel
lines to `

q

will not be represented, since they do not intersect with `
q

. Nonetheless,
these specific lines are contained in an event of probability zero, say the set of lines
such that ✓ = 2⇡, using the first coordinates system (r, ✓).

Guided by the asymptotics obtained on Theorem 2.1 one desires to rescale the Carte-
sian coordinates (x, y) in the following way. Shrink the x-axis by a factor of 1/n and
contract the y-axis by 1/

p
n. Therefore, the new set of coordinates is given by

(x̃, ỹ) = (x/n, y/
p
n), see figure 2.6. Accordingly, the new parameters (p̃, ˜✓) for the

line process ˜

⇧ can be related with (p, ˆ✓) by the relations: p̃ = p/n and

tan

˜✓ =

ỹ

x̃
=

nyp
nx

=

p
n
y

x
=

p
n tan

ˆ✓ .

One can think as if the line process ⇧ is being transformed into another line process
˜

⇧. The intensity of ˜

⇧ can be expressed in terms of (p̃, ˜✓). The Jacobian for the
above change of coordinates, i.e. p = np̃ and ˆ✓ = arctan

⇣

1p
n

tan

˜✓
⌘

, is given by

�

�

�

�

�

@(p, ˆ✓)
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�

�

�

=

�
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�

�

�

�

0

@

n 0

0

sec

2
˜

✓

1+

1
n tan

2
˜

✓

1p
n

1

A

�

�

�

�

�

�

=

p
n

sec

2

˜✓

1 +

1

n

tan

2

˜✓
.
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Figure 2.6: Change of coordinates from (p, ˆ✓) to (p̃, ˜✓).

Also, observe that

sin

ˆ✓ = sin

✓

arctan

✓

1p
n
tan

˜✓

◆◆

=

tan

˜✓
⇣

n
⇣

1 +

1

n

tan

2

˜✓
⌘⌘

1/2

.

Therefore, the line process ˜

⇧ can be parametrized as a Poisson point process on the
(p̃, ˜✓) space with intensity

⇤( d(p̃, ˜✓) ) =

1

2

tan

˜✓ sec2 ˜✓
⇣

1 +

1

n

tan

2

˜✓
⌘

3/2

dp̃ d˜✓ .

The x̃-axis can be translated to the horizontal line ˜`
q

: y = u
p
n. Denote the new

coordinates after this translation by (ẋ, ẏ), notice that the intensity of the line process
˙

⇧ is the same as the intensity of the line process ˜

⇧; in particular we now have that
˙`
q

: y = 0. Taking the limit as n ! 1 one obtains an improper stationary anisotropic
Poisson line process with intensity ⇤( d(ṗ, ˙✓)) =

1

2

tan

˙✓ sec2 ˙✓ dṗ d ˙✓. Based on the
line process ˙

⇧ one can achieve a proper stationary isotropic Poisson line process ˜

⇧

n

at scale n by randomly thinning the lines with a retention probability that depends
monotonically on the line slope, details can be found at Kendall [25, page 31], in
such a way that after the thinning of the improper stationary anisotropic Poisson
line process we will end up with a ˜

⇧

n

with intensity

⇤

n

( d(p̃, ˜✓ )) =

1

2

tan

˜✓ sec2 ˜✓
⇣

1 +

1

n

tan

2

˜✓
⌘

3/2

dp̃ d˜✓

 1

2

tan

˙✓ sec2 ˙✓ dṗ d ˙✓ = ⇤( d(ṗ, ˙✓ )) .

Even more, the limiting improper stationary anisotropic Poisson line process may

39



be represented in a simple way by a different set of coordinates. That is, we will
represent each line in the line process by its intercepts y� and y

+

on the vertical axis
x̃ = �

p
1� u2 and x̃ =

p
1� u2, respectively, see figure 2.7. Therefore for a line

represented by (ṗ, ˙✓) one have the following relations:

y� = � tan

˙✓(
p

1� u2 + ṗ) and y
+

= tan

˙✓(
p

1� u2 � ṗ) .

ṗ

˙

`

˙

✓

(0, (1� u)

p
n)

(0,�(1 + u)

p
n)

(�
p
1� u

2

, 0)

˙

`

q

˙q = (t, 0)

o

(

p
1� u

2

, 0)

˙q = (t, 0)

ẋ
=

�
p
1�

u

2

ẋ
=

p
1
�

u

2

o

ṗ

˙

✓

(�
p
1� u

2

, y�)

(

p
1� u

2

, y

+

)

˙

`

q

˙

`

ẋ
=

�
1

ẋ
=

1

Figure 2.7: Change of coordinates from (ṗ, ˙✓) to (y�, y+).

The Jacobian for this change of coordinates is given by

�

�

�

�

�

@(ṗ, ˙✓)

@(y�, y+)

�

�

�

�

�

=

�

�

�

�

@(y�, y+)
@(ṗ, ˙✓)

�

�

�

�

�1

=

�

�

�

�

�

 

� tan

˙✓ �(

p
1� u2 + ṗ) sec2 ˙✓

� tan

˙✓ (

p
1� u2 � ṗ) sec2 ˙✓

!

�

�

�

�

�

�1

=

1

2

p
1� u2 tan ˙✓ sec2 ˙✓

.

Thus the intensity becomes

⇤( d(y�, y+) ) =

1

2

tan

˙✓ sec2 ˙✓
1

2

p
1� u2 tan ˙✓ sec2 ˙✓

dy� dy
+

=

1

4

p
1� u2

dy� dy
+

.

The above construction enable us to identify the limiting behaviour for the total traf-
fic flow through the point q = (tn, un) conditioned on the existence of an horizontal
line `

q

2 ⇧ that passes through it. To show that this limit is in agreement with the
asymptotics proven in Theorem 2.1, we first required the following result

Lemma 2.3. [Mean traffic flow at any point via an Improper Stationary Anisotropic
Poisson line Process ˜

⇧]
Consider the original Poissonian city, that is the disk of radius n intersected with an
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unit intensity Poisson line process ⇧. The asymptotic mean traffic flow at any specific
point q = (tn, un) (with u 2 (�1, 1) and t 2 �

p
1� u2,

p
1� u2) conditioning on

the presence of an horizontal line `
q

: y = un, that is `
q

2 ⇧, can be determined
via an improper stationary Anisotropic Poisson line process ˙

⇧ over the infinite band
[�1, 1]⇥ (�1,1)) with intensity given by ⇤( d(y�, y+)) = 1

4

p
1�u

2 . Even more, the
computations through this anisotropic Poisson line process are in agreement with the
asymptotics developed in Theorem 2.1, that is, in the improper anisotropic case we
have that

E[T q

] = 2

p

1� u2(1� u2 � t2). (2.23)

Proof. The traffic flow in the original Poissonian city through q = (tn, un) over the
network generated by ⇧ will correspond with the traffic at ˜

q = (t, u
p
n) over the

network generated by ˜

⇧ after shrinking the x-axis by a factor of 1/n and the y-axis
by 1/

p
n, as shown in figure 2.6. This is due to the fact that the line process ⇧ with

intensity ⇤( d(r, ✓)) = 1/2 dr d✓ can be also expressed through the set of coordinates
p and ˆ✓ as explained above; thus the intensity becomes ⇤( d(p, ˆ✓)) =

1

2

sin

ˆ✓ dp dˆ✓.
Therefore the line process ˜

⇧ has intensity given by

⇤( d(p̃, ˜✓)) =

1

2

tan

˜✓ sec2 ˜✓
⇣

1 +

1

n

tan

2

˜✓
⌘

3/2

dp̃ d˜✓ .

In the coordinate system given by (x̃, ỹ) we can translate the x̃-axis in such a way
that it coincides with the horizontal line ` : ỹ = u

p
n, denote this new set of coordi-

nates (after the aforementioned translation) by (ẋ, ẏ), i.e. ẋ = x̃ and ẏ = ỹ � u
p
n.

Notice the intensity ⇤( d(p̃, ˜✓)) remains unchanged.

Now, with this new set of coordinates, take the limit as n ! 1 and consider the
line parametrization given by y� and y

+

as explained before. Due to the analysis
developed in the proof for Theorem 2.1 we know that the asymptotic traffic flow at
q̃ will be determined by pair of points with small angles (↵

1

and ↵
2

) as their corre-
sponding polar coordinates (taking q̃ as the origin). So, we will focus only in pair
of points (�a+t, b) and (v+t, w) such that �

p
1� u2  �a+t  t  v+t 

p
1� u2.

First, let us compute the probability that the line segment from (�a+ t, z) to (v +

t, z) is not separated from the point q̇ by the improper line process ˙

⇧, here a 2
(0,

p
1� u2+ t), v 2 (0,

p
1� u2� t) and z > 0. The mean measure of the lines that

implements such kind of separation can be separated into three disjoint sets:

• A contains the separating lines hitting the upper-left gray triangle in figure 2.8.

• C arises from the separating lines hitting the upper-right gray triangles in figure
2.8.

• B is derived from the contribution of the remaining separating lines.
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q̇ = (t, 0)

(�1, 0)

(1, 0)

˙

`

q

ẋ
=

�
p
1�

u

2

ẋ
=

p
1�

u

2

(�a+ t, z)

(v + t, z)

a 2 (0,

p
1� u

2

+ t)

v 2 (0,

p
1� u

2 � t)

A

C

y = z

Figure 2.8: Calculations for the mean traffic flow at q̇ based on the improper station-
ary anisotropic line process limit in terms of the triangles A, C and the remaining set of
separating lines B.

The above contributions in terms of the intensity measure given by the (y�, y+) co-
ordinate system are measured as follows:

In the contribution A the values for y� can oscillate between (z , z(

p
1�u

2
+t)

a

). Thus,
for each fixed value y� on the aforementioned interval, the y

+

coordinate must be-
long to the interval (�

p
1�u

2�tp
1�u

2
+t

y� , y�� 2

(y��z)

p
1�u

2p
1�u

2
+t�a

) in order for the parametrized
line ` to separate the point q̇ = (t, 0) from both points (�a + t, z) and (v + t, z)

simultaneously. Therefore

⇤(A) =

1

4

p
1� u2

Z

z(
p

1�u2+t)
a

z

Z

y��2

(y��z)(
p

1�u2)p
1�u2+t�a

�
p

1�u2�tp
1�u2+t

y�

dy
+

dy� =

1

4

p
1� u2

Z

z(
p

1�u2+t)
a

z

p

1� u2
✓

2

y�p
1� u2 + t

� 2

y� � zp
1� u2 + t� a

◆

dy�

=

z2

4

 p
1� u2 + t

a2
�

p
1� u2 + t� a

a2
� 1p

1� u2 + t

!

=

z2

4

✓

1

a
� 1p

1� u2 + t

◆

.

Similarly, in the contribution C the values for y
+

must belong to the interval (z , z(

p
1�u

2�t)

v

).
Then, for each fixed value y

+

on that interval, the y� coordinate can range between
(�

p
1�u

2
+tp

1�u

2�t

y
+

, y
+

�2

(y+�z)

p
1�u

2p
1�u

2�t�v

) so the corresponding line ` separates q̇ from both
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points (�a+ t, z) and (v + t, z) simultaneously. That leads to

⇤(C) =

1

4

p
1� u2

Z

z(
p

1�u2�t)
v

z

Z

y+�2

(y+�z)
p

1�u2p
1�u2�t�v

�
p

1�u2+tp
1�u2�t

y+

dy� dy
+

=

1

4

p
1� u2

Z

z(
p

1�u2�t)
v

z

p

1� u2
✓

2

y
+p

1� u2 � t
� 2

y
+

� zp
1� u2 � t� v

◆

dy
+

=

z2

4

 p
1� u2 � t

v2
�

p
1� u2 � t� v

v2
� 1p

1� u2 � t

!

=

z2

4

✓

1

v
� 1p

1� u2 � t

◆

.

On the other hand, the lines contained on B correspond to those that have not
been covered on A or C. Thus, the y� coordinate has to range over the interval
(�

p
1�u

2
+tp

1�u

2�t

z , z). Then, for each fixed value y� on the above set, the possibilities for

y
+

are given by the interval (�
p
1�u

2�tp
1�u

2
+t

y� , z). Then

⇤(B) =

1

4

p
1� u2

Z

z

�
p

1�u2+tp
1�u2�t

z

Z

z

�
p

1�u2�tp
1�u2+t

y�

dy
+

dy�

=

1

4

p
1� u2

Z

z

�
p

1�u2+tp
1�u2�t

z

 

z +

p
1� u2 � tp
1� u2 + t

y�)

!

dy�

=

z2

4

p
1� u2

 

1 +

p
1� u2 � t

2(

p
1� u2 + t)

+

p
1� u2 + t

2(

p
1� u2 � t)

!

=

z2
p
1� u2

2(1� u2 � t2)
.

In consequence,

⇤(A [B [ C) = ⇤(A) + ⇤(B) + ⇤(C) =

z2

4

✓

1

a
� 1p

1� u2 + t

◆

+

z2
p
1� u2

2(1� u2 � t2)
+

z2

4

✓

1

v
� 1p

1� u2 � t

◆

=

z2

4

✓

1

a
+

1

v

◆

.

Since ˙

⇧ is a Poisson process, the probability of there being no lines in ˙

⇧ separating
the line segment from (�a+ t, z) to (v + t, z) from q̇ is

exp (�⇤(A [B [ C)) = exp

✓

�z2

4

✓

1

a
+

1

v

◆◆

. (2.24)

Finally, consider the special affine shear symmetries which leaves the vertical line
ẋ = t fixed. Due to this symmetry group, it follows that the probability of the line
segment from (�a + t, b) to (v + t, w) not being separated from q̇ will agree with
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(2.24) when this line segment passes through the point (t, z). This happens when
z =

bv+aw

a+v

. Moreover, if one also sets p = b� w then

�

�

�

�

@(p, z)

@(b, w)

�

�

�

�

=

�

�

�

�

�

 

1 �1

v

a+v

a

a+v

!

�

�

�

�

�

= 1 .

Notice that the mean 4-volume of the region representing the flow through q̇ should
be separated in its upper region z 2 (0,1) and its lower region z 2 (�1, 0), that is

1

2

Z

p
1�u

2
+t

0

Z

p
1�u

2�t

0

Z 1

0

Z

a+v
v z

�a+v
a z

exp

✓

�z2

4

✓

1

a
+

1

v

◆◆

dp dz dv da+

1
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Z

p
1�u

2
+t
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Z

p
1�u

2�t
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Z

0
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Z

a+v
v z

�a+v
a z

exp

✓

�z2

4

✓

1

a
+

1

v

◆◆

dp dz dv da .

However, those integrals are symmetric on the z variable. So, the second integral can
be transformed into the first one by considering the substitution ẑ = �z. Therefore,
the mean 4-volume of the region representing the flow through q̇ is given by

Z

p
1�u

2
+t

0

Z

p
1�u

2�t

0

Z 1

0

Z

a+v
v z

�a+v
a z
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✓
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dp dz dv da
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Z
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2
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Z
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2�t

0

Z 1

0

(a+ v)

✓

1

a
+

1

v

◆

exp

✓

�z2

4

✓

1

a
+

1
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z dz dv da

= 2

Z

p
1�u

2
+t

0

Z

p
1�u

2�t

0

(a+ v) dv da = 2

p

1� u2(1� u2 � t2) .

The following result can be considered as a generalization of [25, Theorem 7], were
the previous Lemma 2.3 plays an important role.

Theorem 2.2. The scaled quantity T q

n

/n3 has a limiting distribution given by the
analogous flow at the point q̇ for the limiting improper stationary anisotropic Poisson
line process.

Proof. Fixed q = (tn, un) 2 B
n

(o) and conditioned on the event that the horizon-
tal line `

q

: y = un belongs to ⇧. Set the affine shear transformation T q

n

(x̃, ỹ) :

[�(

p
1� u2+ t),

p
1� u2� t]⇥(0,1) ! [�(

p
1� u2+ t),

p
1� u2� t]⇥(0,1) given

by T q

n

(x̃, ỹ) = (nx̃,
p
n(ỹ + u

p
n)). Define for each n 2 N coupled random functions

by setting

Iq
n

: ([�(

p

1� u2 + t), 0]⇥ (0,1))⇥ ([0,
p

1� u2 � t]⇥ (0,1)) ! {0, 1} ,
Iq
n

(r̃, s̃) = {T q
n (r̃)2Bn(o)} {T q

n (s̃)2Bn(o)} {q2@C(T q
n (r̃),T q

n (s̃))} .

Therefore, Iq
n

depends implicitly on the underlying Poisson line process ˜

⇧

n

. Notice
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that if we consider Dq

n

as in (2.1) then by construction

Iq
n

(r̃, s̃) = {(T q
n (r̃),T q

n (s̃))2Dq
n} . (2.25)

Now remember that we can relate scaled finite-n instances (taking place over the
ellipses with horizontal semi-minor axis of length 1 and vertical semi-major axis
of length

p
n, see right hand side of figure 2.6) to the limiting case by a coupling

argument involving the addition of further lines in such a way that

⇤

n

( d(p̃, ˜✓ )) =
1

2

tan

˜✓ sec2 ˜✓
⇣

1 +

1

n

tan

2

˜✓
⌘

3/2

dp̃ d˜✓ % 1

2

tan

˙✓ sec2 ˙✓ dṗ d ˙✓ = ⇤( d(ṗ, ˙✓ )) .

Equivalently, we can start with the limiting improper stationary anisotropic Pois-
son line process ˙

⇧ with intensity 1

2

tan

˙✓ sec2 ˙✓ dṗ d ˙✓ and obtain a proper stationary
isotropic Poisson line process for each scale n 2 N by randomly thinning the lines in
˙

⇧ (the thinning process will be different for every n, the bigger the n the less lines we
need to thin from the line process ˙

⇧ to get ˜

⇧

n

) with retention probability depending
monotonically on the line slope [25, page 31]. That is for every m,n 2 N we can
couple different Poisson line process ˜

⇧

m

and ˜

⇧

n

, i.e. Iq
m

(r̃, s̃)(!) = 1 if and only if
(almost P-surely) Iq

n

(r̃, s̃)(!) = 1 (here (⌦,F ,P) is our underlying probability space
where the different Poisson line process {˜⇧

n

: n 2 N} takes place).

Therefore, due to this thinning process we arrange that Iq
n

(r̃, s̃) ! Iq(ṙ, ṡ) almost
surely for Lebesgue almost all r̃, s̃. Where Iq(ṙ, ṡ) is given by the analogous con-
struction for Iq

n

based on the limiting improper stationary anisotropic Poisson line
process ˙

⇧ instead of using the transformation T q

n

. In other words Iq(r̃, s̃) is the
indicator function that traffic from ṙ to ṡ will pass through the point q̇ = (t, 0) when
using the semi-perimeter routing rule.

Furthermore, one can realize T q

n

, as in (2.2), using (2.25), that is

T q

n

n3

=

1

2

x

Iq
n

(r̃, s̃) dr̃ ds̃ .

From Theorem 2.1 and Lemma 2.3, it follows that

E


1

2

x

Iq
n

(r̃, s̃) dr̃ ds̃

�

% E


1

2

x

Iq(ṙ, ṡ) dṙ dṡ

�

= 2

p

1� u2(1� u2 � t2) .

Moreover, we also have L
1

-convergence of Iq
n

to Iq. To deduce that, first restrict our
attention to the finite measure space ⌦ ⇥ ([�2, 0] ⇥ (0,K)) ⇥ ([0, 2] ⇥ (0,K)), for
any K > 0, and then use the dominated convergence theorem (valid since the indi-
cator function Iq

n

are bounded). Recall, (⌦,F ,P) is the underlying probability space.
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Finally, to deduce convergence in distribution, apply Fatou’s lemma to the nonneg-
ative functions Iq

n

and Iq to deliver L
1

-convergence on all of ⌦⇥ ([�2, 0]⇥ (0,1))⇥
([0, 2]⇥ (0,1]). Therefore

T q

n

n3

=

1

2

x

Iq
n

(r̃, s̃) dr̃ ds̃
D�! 1

2

x

Iq(r̃, s̃) dr̃ ds̃,

as a functions of ! 2 ⌦, i.e. as random variables.

In conclusion, Theorem 2.1 and Theorem 2.2 agrees on the asymptotic mean traffic at
point q = (tn, un) inside the Poissonian city as n ! 1, conditioning on the presence
of an horizontal line `

q

: y = un in the Poisson line process ⇧. However, both results
are considering that the traffic flow is being generated by any pair of points p

� and
p

+ inside the disk of radius n: B
n

(o). Almost surely p

� and p

+ will not belong to
the transportation network, i.e. the Poisson line process ⇧. In the following chapter,
we will analyse the asymptotic mean traffic at q = (tn, un), conditioning on `

q

2 ⇧,
under the assumption that the traffic flow is being generated by a pair of points x

and y that also belongs to the transportation network, in other words x 2 ⇧ and
y 2 ⇧.
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Chapter 3

Palm Theory

Consider a point process viewed as a random pattern � : (⌦,F ,P) ! (S,S). Hence
for each ! 2 ⌦, ' = �(!) denotes a specific locally finite set of points in Rd,
i.e. a realization of �. The Palm distribution Px at location x for a point process
� is closely related to the intuitive notion of conditional probability. Here, the
conditioning event is that a typical point from the point process � is located at x,
hence x 2 �. We require for events E 2 S:

Px

(E) = P[� 2 E || x 2 �] . (3.1)

Remark : The notation for Palm distribution P[ · || x], must not be confused with
the usual notation for conditional probability P[ · | B], that denotes the probability
conditioned on the set B.

However, they both share a similar motivation. One version of the theorem that
guarantees the existence of conditional probability states the following:

Theorem 3.1 (Conditional Probability). [5, Theorem 5.3.1]
Let X : (⌦,F) ! (R,B) be a random variable (B stands for the Borel �-algebra
in R), and let B be a fixed Borel set. Let P

X

be the probability induced by X, i.e.
P
X

(E) = P[{! 2 ⌦ : X(!) 2 E}], for any E 2 B. Then from the Radon-Nikodym
Theorem it follows that there exists a real-valued Borel measurable function g on
(R,B) such that for each E 2 B,

P[{X 2 E} \B] =

Z

E

g(x)P
X

( dx ) . (3.2)

Furthermore, if h is another such function then g = h P
X

-almost surely. We define
P[B | X = x] as g(x); which is essentially unique for a given B.

On the other hand, let � : (⌦,F ,P) ! (S,S) be a Poisson point process with
intensity �. The idea for the Palm distribution is to find a function that satisfies an
equation similar to (3.2). Consider an arbitrary nonnegative measurable function h
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on Rd ⇥ S , then the Palm distribution Px

(E) is such that

E
"

X

x2�
h(x,�)

#

= �

Z

Rd
E
h

h(x,�) || x
i

dx = �

Z

Rd

Z

S
h(x,')Px

( d' ) dx . (3.3)

The above remark shows that in order for this conditional probability to make sense
in general one must consider the measure theoretic framework for Radon-Nikodym
densities. We will review this ideas in order to discuss how to give meaning to the
relation (3.1) through (3.3).

3.1 Conditional Probability and Radon-Nikodym densi-
ties

The elementary definition for conditional probability for a set E with respect to
another set B is defined as

P[E |B] =

P[E \B]

P[B]

, (3.4)

as long as P[B] > 0. Nevertheless, there are examples for which the conditional set
B will have null probability, but the intuitive idea behind a conditional probability
still make sense and can not be included in the above definition.

Example 3.1 (Absolutely continuous random variables). [5, Section 5.3]
Let X and Y be random variables with joint density f : R2 ! R

+

. Namely ⌦ = R2,
F = B(R2

), X(x, y) = x and Y (x, y) = y, with probability given by

P[E] =

x

E

f(x, y) dx dy , for any E 2 F .

Here the event {Y = y} is a P-null set for any y 2 R. However, there is a reasonable
approach to the conditional probability P[X 2 E |Y = y] related with the limiting case
for the conditional probability of the event {Y 2 (y � ", y + ")} as " ! 0

+. Notice
that the event {Y 2 (y�", y+")} has a non-zero probability, therefore its conditional
probability can be defined as:

P[X 2 E | y � " < Y < y + "] =

P[X 2 E, y � " < Y < y + "]

P[X 2 R, y � " < Y < y + "]

=

R

E

R

y+"

y�" f(x, t) dt dx
R

y+"

y�"
R1
�1 f(x, t) dx dt

.

Denote by f
1

(t) =
R1
�1 f(x, t) dx, which is the density of Y . Then, taking limits as
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"! 0

+ one should expect that

P[X 2 E |Y = y] = lim

"!0

+
P[X 2 E | y � " < Y < y + "]

= lim

"!0

+

2"
R

E

f(x, y) dx

2"f
1

(y)
=

Z

E

f(x, y)

f
1

(y)
dx . (3.5)

This motivates the definition for a conditional density, namely

h(x | y) =

f(x, y)

f
1

(y)
,

that is defined as long as f
1

(y) > 0. Notice, that is in fact the case up to a P-null
set, namely S = {(x, y) : f

1

(y) = 0}. Since

P[(X,Y ) 2 S] =

Z

{f1(y)=0}

Z 1

�1
f(x, t) dx dt =

Z

{f1(y)=0}
f
1

(t) dt = 0 .

Therefore, the conditional probability P[X 2 E | Y = y] can be defined by the relation:

P[X 2 E | Y = y] =

Z

E

h(x | y) dx . (3.6)

As mentioned in Theorem 3.1, in general the existence of such a function h(x | y),
named the conditional density function for X |Y = y, is a corollary of the Radon-
Nikodym Theorem. To be explicit, under the conditions from Theorem 3.1, let
⌫(E) = P({X 2 E} \ B) for any E 2 B, then ⌫ is a finite measure on B and
is absolutely continuous with respect to P

X

, as clearly P
X

(E) = 0 implies that
⌫(E) = P({X 2 E} \B)  P

X

(E) = 0, thus the existence of the conditional proba-
bility follows from Radon-Nikodym theorem.

Similarly in (3.1), the conditioning event {x 2 �} will be a P null-set, so the ele-
mentary definition of conditional probability cannot be applied. Therefore the Palm
probability must be considered as a Radon-Nikodym density. Nevertheless, the later
situation is not exactly the same as the one regarding P[X 2 B | Y = y], since now
the conditional event {x 2 �} depends not only on the measurable space (S,B) in
question, but also in the location of x 2 Rd. This important difference, which has
already been presented at (3.3), leads us to the notion of Campbell measure.

3.2 Campbell measures

The construction of Palm distribution sketched here follows the ideas described in
Baddeley [8, Section 9.3] and Chiu et al. [13, Section 4.4]. Let (⌦,F ,P) be the
underlying probability space and (S,S) be the corresponding measurable space for
point processes in Rd. We write �(B) = #[� \B] for the random number of points
from � lying in B, as B ✓ Rd belongs to the family of Borel subsets of Rd.
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Definition 3.1 (Campbell measure). [13, Section 4.3.4]
Suppose that the intensity measure ⇤(K) = E[�(K)] exists and is finite for all com-
pact sets K ⇢ Rd. The Campbell measure is a measure on the minimal �-field of
subsets in Rd⇥S that contains all the sets of the form B⇥E, for B 2 Bd and E 2 S,
which will be denoted by �(Bd ⇥ S), and is defined by

C (B ⇥ E) = E[�(B)

E

(�)] =

Z

S
'(B)

E

(')P( d' ) ,

for all Borel sets B ✓ Rd and all events E 2 S, i.e. E is a subset of the family
of sequences of points ' in Rd that are locally finite and simple. Here we use the
convention that ' = �(!) and P( d' ) is the induced distribution from � over the
measurable space (⌦,F ,P), which could also be denote by P

�

( d! ).

Moreover, the usual measure theoretic approach to integrals of non-negative functions
leads to [13, Equation (4.48)]

Z

S

X

x2'
h(x,')P( d' ) =

Z

S
h(x,')C ( d(x,' )),

where h is any non-negative measurable function on Rd⇥S. This brings us closer to
the relation (3.3). Actually, a simplified version of (3.3) is given by:

Theorem 3.2 (Campbell Theorem). [13, Theorem 4.1]
Let � : (⌦,F ,P) ! (S,S) be a point process with intensity function ⇤, that is
⇤(B) = E[�(B)] =

R

S '( dx )P( d' ). Then for any nonnegative measurable function
f : Rd ! R

+

:

E
"

X

x2�
f(x)

#

=

Z

S

X

x2'
f(x)P( d' ) =

Z

S

Z

Rd
f(x)'( dx )P( d' )

=

Z

Rd
f(x)⇤( dx ) . (3.7)

3.3 Palm Distribution

The construction of the Palm distribution is closely related to the Campbell measure
C (· ⇥ ·). Consider a �-finite measure µ

E

on Rd defined for each fixed event E 2 S
by

µ
E

(B) = C (B ⇥ E) ,

for all bounded Borel sets B ⇢ Rd. By definition

µ
E

(B) = C (B ⇥ E) = E[�(B)

E

(�)]  E[�(B)] = ⇤(B) .

So µ
E

is absolutely continuous with respect to ⇤. Thus by the Radon-Nikodym
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Theorem there exists a density function f
E

: Rd ! R
+

such that

µ
E

(B) =

Z

B

f
E

(x)⇤( dx ) ,

for all measurable B ⇢ Rd. This defines f
E

(x) up to a ⇤-null set N
E

in x. However
a priori this null-set will depend on the choice of E 2 S. We write Px

(E) = f
E

(x)

so that

µ
E

(B) = C (B ⇥ E) = E[�(B)

E

(�)] =

Z

B

Px

(E)⇤( dx ) , (3.8)

where
Px

(E) =

E[�( dx )

E

(�)]

⇤( dx )

⇤ a. s. in x .

However, under the right conditions {Px

(E) : x 2 R} are considered to be a family
of probability measures on S. These conditions are discussed in the measure theory
framework, as part of the subject of regular conditional probabilities (see Kallenberg
[22, Chapter 5] and Billingsley [11, Section 33], for example). Basically one requires
that the space S with Borel �-algebra S has to be a complete separable metric space.

In this case S is the family of all sequences ' of points over Rd that are locally finite
and simple. So the conditions for the existence of regular conditional probabilities
are satisfied. In consequence one can think of f

E

(x) as the probability for the event
E under the Palm distribution at x, i.e. Px

(E). Therefore we may assure that the
mapping (x, E) ! Px

(E) must be a regular conditional probability kernel, that is

• For all E 2 S the function x ! Px

(E) is measurable.

• Px

(·) is a probability measure on ⌦ for ⇤-almost all x 2 Rd.

This leads to the following definition

Definition 3.2 (Palm distribution). [13, Section 4.4.3]
Set � : (⌦,F ,P) ! (S,S) to be a point process, where (S,S) is a complete separable
metric space. Suppose that the intensity measure ⇤(·) = E[�(·)] exists and is �-
finite. This implies that the Campbell measure C is also �-finite. Even more, for
any configuration set E 2 S, the measure C (· ⇥ E) is absolutely continuous with
respect to ⇤. Thus, there exists a density function, which depends on E, such that:

C (B ⇥ E) =

Z

B

Px

(E)⇤( dx ) . (3.9)

Furthermore, for a fixed x 2 R, Px

(·) can be taken as a distribution on (S,S), that
is the Palm distribution of P with respect to x.

An important consequence of this definition for the case of homogeneous Poisson
point processes is related with the Campbell Theorem 3.2 and the relation (3.3).
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Theorem 3.3 (Campbell-Mecke Theorem). [13, Theorem 4.2]
Let � : (⌦,F ,P) ! (S,S) be a Poisson point process with intensity �. Then for any
nonnegative measurable function h on Rd ⇥ S:

E
"

X

x2�
h(x,�)

#

=

Z

S

X

x2'
h(x,')P( d' ) = �

Z

Rd

Z

S
h(x,')Px

( d' ) dx .

(3.10)

Remark : Substituting h(x,') = f(x) in (3.10) gives (3.7), the simple Campbell
Theorem 3.2

There is an important Theorem, namely Slivnyak - Mecke Theorem [8, Example 26],
which states that the Palm distribution Px for Poisson point process, �, is equivalent
to the original distribution of the process modified by adding a fixed point x, i.e.

Px

(E) = P[� 2 E || x 2 �] = P[(� [ {x}) 2 E] .

This is one of the most important results that we will be applying in section 3.5, so
we will explain it in more details on the following section.

3.4 Examples

Palm theory arises as a tool for Queueing Theory, more information on this topic can
be found at Baccelli and Bremaud [6]. The main interpretation for Palm distribution
under the context of queueing theory is as an insight about how the stochastic process
is observed by a typical customer. Here the stochastic process is the queue itself
(which can be seeing as a point process �) and a typical customer represents an
specific point being part of this process, i.e. x 2 �. Palm probabilities are relevant
to queueing theory, in particular the so called Palm calculus based on Matthes’
definition and Mecke formula [28]. The main application for Palm calculus comes
as a natural framework for the study of relations between time averages and event
averages, such as

1. Little’s Theorem L = �W [6, Section 3.1], [30],

2. Brumelle’s H = �G formula [6, Section 3.2],

3. Kleinrock’s conservation law [6, Section 3.2.4] and

4. PASTA (Poisson Arrivals See Time Averages) property [6, Section 3.3.1].

However, for the purpose of this work we will focus our attention in the application
of the Palm theory to the specific cases of Poisson point processes and Poisson line
processes.
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Example 3.2 (Palm distribution for a Poisson point process, �). [13, Example
4.3]
One of the most common examples arises by the following problem: Given an ho-
mogeneous Poisson process � of intensity �, what can be said about the probability
of any event E 2 S if one conditions on the presence of a point x as part of �.
Short answer: the Palm distribution with respect to x is simply the distribution of
the original Poisson process plus the added point x. This is stated in the Slivnyak
- Mecke theorem. In mathematical language, using the notation from the previous
section this can be expressed as follows:

Px

(E) = P[� 2 E || x 2 �] = P[� [ {x} 2 E] for any E 2 S,

or
Z

S
f(') Px

( d' ) =

Z

S
f(' [ {x}) P( d' )

for all measurable non-negative functions f on (S,S).

Proof. This sketch of proof will focus on the plane, that is we are thinking in R2.
For this case the point processes � : (⌦,F) ! (S,S) will be characterized by the
configurations sets given by

Y
K

= {' 2 S : '(K) = 0} ⇢ S , (3.11)

where K is a semi-closed rectangle, that is K = [a, b)⇥ [c, d) for some real numbers
a, b, c, d. Even more, the family of such kind of configurations, say

Q = {Y
K

: K is a finite union of semi-closed rectangles} ,

is a ⇧-system, since the patterns that do not intersect K
1

and the patterns that
do not intersect K

2

are the same patterns that do not intersect K
1

[ K
2

, i.e.
Y
K1 \ Y

K2 = Y
K1[K2 .

In consequence, knowledge of P[Y
K

] for all K (finite unions of semi-closed rectangles)
will specify P on S.

To prove the above statement, notice that we can approximate '(B) for any Borel
set B ⇢ R2 by using the �-field generated by Q. The idea will be to tessellate B

by semi-rectangles that forms a tiling T
n

=

S

i2NK
i

, where the diameter of each tile
K

i

is smaller than 1/n. We can make the tiles as small as we required by taking
n ! 1. Moreover, for n large enough we will have that:

'(B) =

X

Ki2Tn
'(K

i

) .
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To show the above equality, first notice that for every n 2 N

X

Ki2Tn
{'(Ki)�1}  '(B) , (3.12)

since if we count the number of tiles K
i

with points from ', these will always be less
than the number of points in B as K

i

✓ B for all i 2 N, and it could be the case that
one tile has more than one point from '. Also the sum in (3.12) is non decreasing
in n. Thus, we need to show that

'(B) = lim

n!1
X

Ki2Tn
'(K

i

) .

Suppose the inequality in (3.12) is strict in the limit. That would imply that there
is a location x 2 B such that the corresponding tiles K

in (for different tilings T
n

as
n increases) always catches more than one point from ', i.e. '(K

in) � 2 for all n,
but in the limit this will contradict the simple property, as '(K

in) � 2 for all n 2 N
(where x 2 K

in for all n 2 N) will imply that there are two points from ' in the
exact location x. Thus the equality must hold in the limit. In consequence the �-
field S is the same than the minimal �-field of subsets in S that contains the family Q.

Therefore, if � is a Poisson point process in R2 with intensity � and we want to
condition on the event {x 2 �}, then we can analyse the Campbell measure for a
particular kind of set, say B ⇥ Y

K

, with Y
K

as in (3.11), that is

C (B ⇥ Y
K

) = E
h

�(B)

YK (�)

i

= E
"

X

x2�
{x2B} YK (�)

#

= E
"

X

x2�\B
{�\K=;}

#

= E

2

4

X

x2�\B\K
{�\K=;}

3

5 .

Recall that by definition � 2 Y
K

means that there are no points from � in the set
K. Therefore if we subtract the points from � that are in the set K we are actually
subtracting nothing, as � 2 Y

K

. Now, recall that � \K and � \Kc

= � \K are
independent for a Poisson point process, therefore

C (B ⇥ Y
K

) = E

2

4

X

x2�\B\K
1 {�\K=;}

3

5

= E
h

{�\K=;}
i

E

2

4

X

x2�\B\K
1

3

5

= P
h

� \K = ;
i

E
"

X

x2�
{x2B\K}

#

= exp (��Leb
2

(K))⇤(B \K)

=

Z

B

Px

[Y
K

]⇤( dx ) .
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Since
⇤(B) = ⇤(B \K) + ⇤(B \K) = ⇤(B \K) ,

because, by definition, under the event Y
K

we have that � do not have any points
on K, i.e. 0  ⇤(B \K)  ⇤(K) = 0 for every B ⇢ R2.

Now recall that, from definition of the Palm distribution

C (B ⇥ Y
K

) =

Z

B

Px

[Y
K

]⇤( dx ) .

Therefore for this case, we will have that:

Px

[Y
K

] =

(

0 if x 2 K ,

exp (��Leb
2

(K)) if x /2 K

which are the same void probabilities as the one corresponding to a Poisson point
process with intensity � with an extra fixed point at x, i.e. � [ {x}. From Rényi’s
Theorem [29] it is known that the family of avoidance probabilities characterizes
the Poisson point process. Therefore we have completed the proof, since Q is a ⇧-
system such that �(Q) = S and we have already identified their corresponding void
probabilities to be the same as the Poisson point process given by � [ {x}.

Example 3.3 (Palm distribution for a Poisson line process, ⇧). [13, Example 4.3]
As it has been explained before (see Section 1.3), a line process ⇧ can be identified
with a point process over the surface of a half-cylinder in R3, say

C =

�

(cos ✓, sin ✓, r) 2 R3

: r 2 R, ✓ 2 (0,⇡]
 

.

Thus, each line ` 2 ⇧ is uniquely defined by the pair of parameters (r, ✓) where
r represents the signed perpendicular distance from ` to the origin o, and ✓ is the
angle between the line ` and the x-axis. Therefore, from the above argument we can
conclude that the Palm distribution for a Poisson line process ⇧ with respect to ` is
given by

P[⇧ 2 E k ` 2 ⇧] = P[⇧ [ {`} 2 E] for any E 2 S . (3.13)

3.5 Palm Distribution on the Poissonian city

In this section we are interested in the behaviour for the mean amount of traffic flow
across the Poissonian city. It will be informative to compare the traffic distribution
throughout the Poissonian city with a specific data set, namely the one presented in
the Beeching report [12, Figure 1, Appendix 1] regarding the British Railway system.
To establish some notation:

• ⇧ is a Poisson line process of unit intensity.
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• B
an

(o) is a disk of radius an, for some a 2 [0, 1], centred at the origin o.

• H⇧

1

is the Hausdorff 1-dimensional measure [16, 39] over the line process ⇧,
defined for any Borel subset B ✓ R2 by H⇧

1

(B) = H
1

(B \ ⇧). Moreover,
since ⇧ is a locally finite line process, for any compact set K in R2 it is the
case that H⇧

1

(K) = H
1

(K \ ⇧) =

P

nK
i=1

H
1

(K \ `
i

) =

P

nK
i=1

H`i
1

(K), where
`
1

, `
2

, . . . , `
nK are the (finite number of) lines from ⇧ that hits the compact

set K and H`i
1

(K) = H
1

(K \ `
i

). A similar relation holds for any Borel subset
B ✓ R2, but the sum might be over a countable amount of lines ` 2 ⇧ if B is
non-compact.

• �
1

and �
2

are conditionally independent Cox point processes [13, Section 5.2]
governed by the random measure H⇧

1

. That is, conditioning on a particular
realization of the line process ⇧, �

1

and �
2

are independent Poisson point
processes over B

n

(o) using H⇧

1

(·) as their shared governing measure. Without
loss of generality we will consider the points x 2 �

1

to be sources nodes and
the points y 2 �

2

to be destination nodes.

The idea is to analyze the mean amount of traffic taking place over the subregion
B
an

(o) as a ranges over [0, 1]. Traffic runs from �

1

to �
2

, using the semi-perimeter
routes arising from the line process ⇧. So the mean traffic on the subregion B

an

(o)

is given by the following expression:

E

2

4

X

x2�1

X

y2�2

Z

Ban(o)

f(x,y, q;⇧)H⇧

1

( dq )

3

5 . (3.14)

Here

• f(x,y, q;⇧) = {q2@C(x,y)} : R2 ⇥ R2 ⇥ R2 ! {0, 1} is an indicator function.
It has value 1 when q 2 @C(x,y) = ��(x,y) [ �+(x,y) ✓ ⇧ (the two routes
generated by the semi-perimeter routing rule when going from x to y) and it
is 0 otherwise.

• The expectation is taken with respect to both Cox point processes �
1

and �
2

and also the line process ⇧.

In consequence, the formula in (3.14) represents the mean amount of traffic flow over
the sub-disk of radius an, concentric with B

n

(o). The above idea, regarding the
measurement for mean traffic flow for a specific subregion is illustrated in figure 3.2.

The purpose of this section is to find an equivalent expression for (3.14) in terms
of the known quantity E[T q

n

], which has been analyzed in chapter 2. Notice that
the Hausdorff 1-dimensional measure H⇧

1

over the Poisson line process ⇧ can be
decomposed as the countable sum of the Hausdorff 1-dimensional measures H`

1

over
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Captions

Source Nodes

Destination Nodes

Boundary of subregion of interest

Semi-perimeter route 1

Semi-perimeter route 2

x

y

q

Figure 3.1: An example regarding the measurement for the mean asymptotic traffic in a
specific subregion (light blue background). Here we illustrate how an specific pair of source
x (squares) and destination y (triangles) nodes, from �1 and �2 respectively, can contribute
to the mean traffic for a fixed point q inside the subregion to be considered. In this example,
by using the semi-perimeter routing rule, only the first route will pass through q. Notice that
the source and destination nodes are not necessarily contained in the subregion of interest.

each line ` 2 ⇧, i.e. H⇧

1

(·) =
P

`2⇧H`

1

(·). Thus (3.14) can be rewritten as follows

E

2

4

X

x2�1

X

y2�2

Z

Ban(o)

f(x,y, q;⇧)H⇧

1

( dq )

3

5

=

E

2

4

X

x2�1

X

y2�2

 

X

`2⇧

Z

Ban(o)

f(x,y, q;⇧)H`

1

( dq )

!

3

5 . (3.15)

Now, conditioning on a specific realization of the line process ⇧, the point processes
for the source and destination nodes, �

1

and �
2

respectively, can be viewed as
two independent Poisson point processes over B

n

(o) with common intensity measure
given by H⇧

1

(·). So we can apply the tower property for expectation to re-express
(3.15). Moreover, the Campbell-Mecke Theorem [14] can be applied to both point
processes �

1

and �
2

. Using the explicit expression for the Palm distribution of
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Poisson process the above amount can be expressed as

E

2

4

X

x2�1

X

y2�2

 

X

`2⇧

Z

Ban(o)

f(x,y, q;⇧)H`

1

( dq )

!

3

5

= E

2

4E

2

4

X

x2�1

X

y2�2

 

X

`2⇧

Z

Ban(o)

f(x,y, q;⇧)H`

1

( dq )

!

�

�

�

�

�

�

⇧

3

5

3

5

=

E
"

Z

Bn(o)

Z

Bn(o)

 

X

`2⇧

Z

Ban(o)

f(x,y, q;⇧)H`

1

( dq )

!

H⇧

1

( dy )H⇧

1

( dx )

#

.

Again, decompose the Hausdorff 1-dimensional measure H⇧

1

over the Poisson line
process ⇧ as the countable sum of the Hausdorff 1-dimensional measures H`

1

over
all lines ` 2 ⇧, that is H⇧

1

( dx ) =

P

`12⇧H`1
1

( dx ). Similarly write H⇧

1

( dy ) =

P

`22⇧H`2
1

( dy ). This leads to the following equality

E
"

Z

Bn(o)

Z

Bn(o)

 

X

`2⇧

Z

Ban(o)

f(x,y, q;⇧)H`

1

( dq )

!

H⇧

1

( dy )H⇧

1

( dx )

#

=

E

2

4

X

`12⇧

Z

Bn(o)

0

@

X

`22⇧

Z

Bn(o)

 

X

`2⇧

Z

Ban(o)

f(x,y, q;⇧)H`

1

( dq )

!

H`2
1

( dy )

1

AH`1
1

( dx )

3

5 .

(3.16)

Applying Palm theory to the line process ⇧, the relation

E
"

X

`2⇧
h(`;⇧)

#

=

Z

C
E[ h(`;⇧) || ` 2 ⇧] ⇤( d` ) (3.17)

holds for any nonnegative and measurable function h on Rd ⇥ C. Even more, if ⇧ is
a Poisson line process we know that the right hand side in the above expression is
the same as

Z

C
E[ h(`;⇧) || ` 2 ⇧] ⇤( d` ) =

Z

C
E[h(`;⇧ [ {`})] ⇤( d` ) . (3.18)

Thus, we can rearrange the last expression in (3.16). Since the summands are nonneg-
ative and all the sums are countable, Tonelli’s Theorem [11] can be used to exchange
integrals and sums. Then the above Palm result (3.18), using ` in (3.16) as our
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conditioning line, leads to

E

2

4

X

`2⇧

Z

Ban(o)

0

@

X

`12⇧

Z

Bn(o)

0

@

X

`22⇧

Z

Bn(o)

f(x,y, q;⇧)H`2
1

( dy )

1

AH`1
1

( dx )

1

AH`

1

( dq )

3

5

=

Z

C
E

2

4

Z

Ban(o)

0

@

X

`12⇧[{`}

Z

Bn(o)

0

@

X

`22⇧[{`}

Z

Bn(o)

f (x,y, q;⇧ [ {`})H`2
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(3.19)
Using Tonelli’s Theorem again, exchange the integration regarding q with the expec-
tation, since q lies on the line ` now integrated by ⇤( d` ) from the Palm argument.
This leaves a similar expression to the one in (3.18) inside the expectation. Now re-
gard ⇧[{`} as the underlying line process and `

1

as the conditioning line. Therefore
(3.18) yields
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(3.20)
Notice that strictly speaking the intensity ⇤( d`

1

) will include an atom at the line
`. Nevertheless, this becomes negligible in the asymptotic behaviour, since the con-
tribution from `

1

= ` will be of order n (as x 2 `), while the main contribution for
x 2 `

1

2 ⇧ is of order n3/2.

Finally, repeat the above argument, that is, exchange the integration regarding x

and the expectation, since x belongs to the line `
1

which is now being integrated by
⇤( d`

1

) from the above Palm argument. That yields to a similar expression to the
one in (3.18) inside the expectation, now regarding ⇧[ {`}[ {`

1

} as the underlying
line process and `

2

as our conditioning line. Therefore applying Palm theory (3.18)
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one more time yields
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(3.21)
Again, strictly speaking the intensity ⇤( d`

2

) should include two atoms: one at the
line ` and another at the line `

1

. However, each one of these becomes negligible in
the asymptotic behaviour, since the contribution from `

2

= ` and `
2

= `
1

will be of
order n each one, while the main contribution for y 2 `

2

2 ⇧ is of order n3/2.

The ultimate aim is to find an expression for (3.14) in terms of

E[T q
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)2Dq

n}] dp
�
dp

+

=
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x
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E[f(x,y, q;⇧ [ {`})] dx dy ,

where the last equality follows by re-labeling the source and destination nodes as x,
y instead of p� and p

+, respectively. Recall that `, `
1

and `
2

belong to a Poisson
line process of unit intensity, and the intensity measure of the Poisson line process
is given by ⇤( d` ) =

1

2

dr d , for r 2 [0, n] and  2 [0,⇡]. Thus, substituting
⇤( d` ) = 1

2

dr d , ⇤( d`
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1
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(3.22)
We now make a change of variables in the last expression of (3.22). At the time
we have three variables to represent each point that is lying in the corresponding
line pattern. For example, q lying in the line ` is represented by the parameters
q̃, r̃ and ˜ , where q̃ represents the signed distance from the point q to the closest
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point from the line ` to the origin, and (r̃, ˜ ) are the parameters for the line `,
which are the signed distance from ` to the origin and the angle it makes with the
x-axis, respectively (similarly with x lying in the line `

1

and y lying in the line
`
2

). Intuitively, one first draws the random line ` and then picks a random point
over this line. However, this process can be done in the opposite order, that is, first
pick a random point q with coordinates (q

1

, q
2

) inside the disk of radius n and then
draw random line ` that passes through this point. In this case, as the line must go
through q = (q

1

, q
2

), the parameter r̃ will be completely determined by the angle ˜ 

and the location of q. This idea is illustrated by the following change of variables:

˜ =  ; r̃ = |q
2

cos( )� q
1

sin( )|; q̃ = q
1

cos( ) + q
2

sin( ) .

q = (q

1

, q

2

)

`

q

( ) : y = (x� q

1

) tan + q

2

 

kqk
r̃

˜

q

Figure 3.2: Change of variables. Where we have used the formula for a distance from a
line to a point and the Pythagorean Theorem to get the values for r̃ and q̃.

To derive the above change of variables. Recall, that r̃ is the distance from `
q

( )

to the origin. Thus, to find its value in terms of q = (q
1

, q
2

) and `
q

( ) : y =

(x� q
1

) tan + q
2

we can use the formula for a distance from a line ax+ by+ c = 0

to a point (x
1

, y
1

), that is given by

|ax
1

+ by
1

+ c|p
a2 + b2

therefore r̃ =

|a(0) + b(0) + c|p
a2 + b2

,

where, in our case the point we are concerned is the origin o = (0, 0) and the co-
efficients are given by a = sin , b = � cos and c = q

2

cos � q
1

sin . Since we
can multiply the expression for `

q

( ) by cos to obtain the equivalent expression
`
q

( ) : (sin )x�(cos )y+(q
2

cos �q
1

sin ) = 0. Therefore r̃ = |q
2

cos �q
1

sin |.
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Moreover, as the triangle with sides lengths given by r̃, q̃ and kqk is a right triangle
with hypotenuse given by kqk, then it is clear that the signed distance q̃ can be found
by the Pythagorean Theorem, that is q̃ = ±

p

kqk2�r̃2 = q
1

cos + q
2

sin .

The Jacobian for the above change of coordinates (from  , q
1

, q
2

to ˜ , r̃, q̃) is 1.
Consequently d dq

1

dq
2

= dq̃ dr̃ d ˜ . Considering H`

1

( dq ) = dq̃ and dq
1

dq
2

= dq

(similarly for x and y), then (3.22) can be re rewritten as
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(3.23)
The function to be integrated is similar to the one arising in section 2.1. The dif-
ference is that the line process in question here is augmented by the lines `

1

and `
2

,
containing the source x and destination y, respectively. Furthermore, as the function
to be integrated is positive, since it is the expectation of an indicator function (i.e.
the probability of a measurable event), the order of integration can be exchanged
due to Tonelli’s Theorem. Therefore the last expression in (3.23) can be rewritten
as follows:
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(3.24)
Now, for a fixed pair of ` 2 ⇧ and q 2 R2 we focus our attention on the amount
given by

1

2
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E [f (x,y, q;⇧ [ {`} [ {`
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dy dx , (3.25)

which is to be compared with the expression on Theorem 2.1, say

E[T q

n

(`)] =

1

2

x

Bn(o)
2

E[f(x,y, q;⇧ [ {`})] dy dx . (3.26)

It turns out that as n ! 1 both quantities (3.25) and (3.26) are asymptotically
proportional to each other. That is the content of the following Theorem.

Theorem 3.4. Consider the traffic generated from the source nodes x 2 �
1

to the
destination nodes y 2 �

2

, where �
1

and �
2

are two conditionally independent Cox

62



point processes governed by the random measure H⇧

1

; here ⇧ is a Poisson line process
that will define our transportation network (a Poissonian city). Define the function
f(x,y, q;⇧) = {q2@C(x,y)}, that is f indicates if the point q = (q

1

n, q
2

n) belongs
to one of the two routes that connects x to y through the semi-perimeter routing
rule, conditioning on the existence of a line ` 2 ⇧ that passes through q and makes
an angle  with the x-axis. Then the mean amount of traffic flow on the subregion
B
an

(o) as a ranges over [0, 1] is given by expression (3.14), i.e.
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y2�2
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Ban(o)

f(x,y, q;⇧)H⇧

1

( dq )
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5 .

Moreover, we can find an expression for the asymptotic behaviour for the mean traffic
flow at a fixed q = (q

1

n, q
2

n) conditioning on ` 2 ⇧ (` passes through q), `
1

2 ⇧, a
line that passes through the source node x making an angle  

1

uniformly distributed
over (0,⇡]; and `

2

2 ⇧, a line that goes through the destination node y making an
angle  

2

with the x-axis, where  
2

is uniformly distributed over (0,⇡]. The expression
for the aforementioned asymptotic traffic flow is given by
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with u = �q
1

sin + q
2

cos and t = q
1

cos + q
2

sin .

Proof. The expression (3.14) represents the traffic over the subregion B
an

(o) as it
has been explained throughout this section. Moreover, from the above exposition it
is clear that the traffic generated by the points x 2 `

1

and y 2 `
2

for fixed q 2 ` is
given by the expression (3.25). Moreover, the indicator function f(x,y, q;⇧[ {`} [
{`

1

}[{`
2

}) can be rewritten as a product of f(x,y, q;⇧[{`}) and two other factors
that express the probabilities that neither `

1

nor `
2

separate both points x and y

simultaneously from q. For fixed x and y, if `
2

is such that it does not separate x

and y simultaneously from q then

f(x,y, q;⇧ [ {`} [ {`
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}) = f(x,y, q;⇧ [ {`} [ {`
1

}) ,

and that is achieved as long as  
2

belongs to an specific range of angles, say
E
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(x,y, q) ✓ [0,⇡]. This happens with probability

P
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(x,y, q) =
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E2(x,y,q)
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2

.

Moreover f(x,y, q;⇧[{`}[{`
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}[{`
2

}) = 0 when the angle  
2

of the line `
2

does not
belong to E

2

(x,y, q). Furthermore, from the aforementioned Palm theory it turns
out that the angles  

1

and  
2

are independent of each other. Therefore a similar
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argument can be applied to `
1

. So, if `
1

is such that it does not separate x and y

simultaneously from q then

f(x,y, q;⇧ [ {`} [ {`
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and this holds for any  
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2 E
1
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Therefore, by independence of  
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and  
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it follows that
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(x,y, q)E [f (x,y, q;⇧ [ {`})] dy dx . (3.28)

The right hand side can be related to (3.26) by rotating all the points inside the
Poissonian city clockwise by an angle  , so the line ` becomes an horizontal line after
this rotation. Thus the cartesian coordinates q = (q

1

n, q
2

n) will correspond, after
this rotation, to ˜

q = (tn, un) with t = q
1

cos +q
2

sin and u = �q
1

sin +q
2

cos ,
see figure 3.3. Thus the asymptotic behaviour of the second expression in (3.26) can
be analyzed following the same ideas used on Theorem 2.1. First, from Theorem 2.1
it follows that

⇡2
Z

Bn(o)

Z

Bn(o)

E
h

f
⇣

˜

x, ˜y, ˜q;⇧ [ {˜`}
⌘i

d

˜

y d

˜

x

= ⇡2E[T q̃

n

(

˜`)] ⇠ ⇡22
p

1� u2(1� u2 � t2)n3 .

`

q = (q

1

, q

2

)

x

y

 

˜

`

q̃ = (t, u)

x̃
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Figure 3.3: Illustration for the change of variables due to a rotation of an angle  clockwise.

So we only need to describe the effects of the factors P
1

(

˜

x, ˜y, ˜q) and P
2

(

˜

x, ˜y, ˜q) on the
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asymptotics. Following the treatment of E[T q̃

n

(

˜`)] in Theorem 2.1, we express ˜

x and
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y in polar coordinates, translating the origin to ˜

q, as (r,↵
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) and (s,↵
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) respectively.
Then, consider the auxiliary variables ✓ = ↵
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to obtain
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Here g(r, s, ✓) = exp
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�1
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(r + s�
p
r2 + s2 + 2rs cos ✓)

⌘

is the probability that there
are no lines from the Poisson line process ⇧ separating the points ˜
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) and
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). Further
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Now we may analyze each of the integrals on the right hand side of (3.29) separately.
The idea is to split each region of integration Dq̃

n,� and Dq̃

n,+

in terms of the angle
✓. For example Dq̃

n,+

can be break down into
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Then from Lemma 2.1, the behaviour of the integrals on the right hand side of (3.29)
is known for regions with constant bounds for r and s and small ✓, say
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Notice that Aq̃
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. Even more, suppose ✓ 2 [0, w
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], where
w
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! 0

+ as n ! 1, say w
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= 1/n� for some � > 0. Thus for any (
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the following inequalities holds:

1� w
n

⇡
 P

1

(r, s, ✓, ˜q)  1 ,

1� w
n

⇡
 P

2

(r, s, ✓, ˜q)  1 .

Therefore, from Lemma 2.1 we can conclude that as n ! 1

⇣

1� w
n

⇡

⌘

2

(hq̃
1

(w
n

)+hq̃
2

(w
n

))hq̃
1

(w
n

)hq̃
2

(w
n

)n3 ⇠
⇣

1� w
n

⇡

⌘

2

y

Aq̃
n,+,�

g(r, s, ✓)r dr s ds ✓ d✓


y

Dq̃
n,+,1

P
1

(r, s, ✓, ˜q)P
2

(r, s, ✓, ˜q)g(r, s, ✓)r dr s ds ✓ d✓ 

y

Aq̃
n,+,+

g(r, s, ✓)r dr s ds ✓ d✓ ⇠ 2

p

1� u2(1� u2 � t2)n3 .

Additionally, if ✓ 2 [w
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,⇡], then by Lemma 2.2, it is known that the integral over
the region E q̃
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g(r, s, ✓)r dr s ds ✓ d✓  8

(⇡2 � w2

n

)R2

3

(1� cosw
n

)

2

n2

= O
⇣

n2+4�

⌘

,

with R
3

= 1 +

p
t2 + u2. Now, since P

1

(r, s, ✓, ˜q) 2 [0, 1] and P
2

(r, s, ✓, ˜q) 2 [0, 1],
and Dq̃

n,+,2

✓ E q̃

n

then one obtains

y

Dq̃
n,+,2

P
1

(r, s, ✓, ˜q)P
2

(r, s, ✓, ˜q)g(r, s, ✓)r dr s ds ✓ d✓


y

E q̃
n

g(r, s, ✓)r dr s ds ✓ d✓  8

(⇡2 � w2

n

)R2

3

(1� cosw
n

)

2

n2

= O
⇣

n2+4�

⌘

,

with the same value for R
3

as above. Therefore

y

Dq̃
n,+

P
1

(r, s, ✓, ˜q)P
2

(r, s, ✓, ˜q)g(r, s, ✓)r dr s ds ✓ d✓ =

y

Dq̃
n,+,1

P
1

(r, s, ✓, ˜q)P
2

(r, s, ✓, ˜q)g(r, s, ✓)r dr s ds ✓ d✓

+

y

Dq̃
n,+,2

P
1

(r, s, ✓, ˜q)P
2

(r, s, ✓, ˜q)g(r, s, ✓)r dr s ds ✓ d✓ ⇠ 2

p

1� u2(1�u2�t2)n3 .
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Following exactly the same ideas for the region Dq̃

n,�, we obtain

y

Dq̃
n,�

P
1

(r, s, ✓, ˜q)P
2

(r, s, ✓, ˜q)g(r, s, ✓)r dr s ds ✓ d✓ =

y

Dq̃
n,�,1

P
1

(r, s, ✓, ˜q)P
2

(r, s, ✓, ˜q)g(r, s, ✓)r dr s ds ✓ d✓

+

y

Dq̃
n,�,2

P
1

(r, s, ✓, ˜q)P
2

(r, s, ✓, ˜q)g(r, s, ✓)r dr s ds ✓ d✓ ⇠ 2

p

1� u2(1�u2�t2)n3 .

In conclusion
Z

Bn(o)

Z

Bn(o)

Z

⇡

0

Z

⇡

0

E [f (x,y, q;⇧ [ {`} [ {`
1

} [ {`
2

})] d 
2

d 
1

dy dx

= ⇡2
Z

Bn(o)

Z

Bn(o)

P
1

(x,y, q)P
2

(x,y, q)E [f (x,y, q;⇧ [ {`})] dy dx

⇠ 2⇡2
p

1� u2(1� u2 � t2)n3 ,

with u = �q
1

sin + q
2

cos and t = q
1

cos + q
2

sin .

Theorem 3.4 will be applied in the next chapter to compare the traffic density inside
the Poissonian city with the traffic density in the British railway system as presented
by Beeching in [12].

Besides, Theorem 3.4 fixes an issue presented in the semi-perimeter routing rule, in
which one is forced to add two little line segments that do not belong to the Poisson
line process ⇧, namely the edge that connects p� with ˜

p

� and the one that joins ˜

p

+

with p

+, as shown in figure 2.1. Therefore, with this new construction the actual
mean length for the near-geodesics (provided by the semi-perimeter routing rule) is
in fact given by:

1

2

E
h

H
1

⇣

@C(p�,p+

)

⌘i

.

Here H
1

stands, as before, for the Hausdorff 1-dimensional measure. The above
amount has been widely analysed in [3, 25]; either on its own or through stochastic
geometry arguments in order to determined the mean excess length between this
near-geodesic and the corresponding Euclidean distance, see [3, Theorem 3] and [25,
Theorem 4].
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Chapter 4

Comparison with a real data set:

The British railway system

From the results developed along chapters 2 and 3 we are now able to compare the
asymptotic mean traffic distribution on the Poissonian city with the traffic flow dis-
tribution presented by Beeching on [12]. The data presented by Beeching, specifically
Figure 1 in its Appendix 1, relates the proportion of the network required in order
to get a proportion T 2 [0, 1] for the total mean traffic flow on the whole network.

From Theorem 2.1 we know an expression for the asymptotic mean flow at any
specific point q conditioned on the presence of an horizontal line `

q

that pass through
q. This idea can be easily generalized to any line `

q

(✓) passing through the point
q making an angle ✓ with the x-axis. To show this, it is enough to notice that
the disk and the line process ⇧ are rotational invariance; thus after rotating all the
points in the Poissonian city by ✓ clockwise we will end up with the same situation
described on Theorem 2.1. That is, from (2.9) it follows that for any specific point
q, the mean traffic at this point conditioned on any kind of line passing through q

is asymptotically, as n ! 1, given by the following expression:
Z

⇡

0

E[T q

n

(✓)]
1

⇡
d✓ ⇠

Z

⇡

0

(d�(✓) + d+(✓))d�(✓)d+(✓)
1

⇡
d✓ . (4.1)

Here d�(✓) and d+(✓) are the distances from q to the endpoints of `
q

(✓) (i.e. the two
intersection points between the line `

q

(✓) and the circle x2 + y2 = n2, marked as x⇤

and x

⇤ in the figure 4.1). In consequence d�(✓)+d+(✓) stands for the total length of
intersection between the line `

q

(✓) and the disk B
n

(o) = {(x, y) 2 R2

: x2+y2  n2},
see figure 4.1.
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q

`

q

(✓)

✓

x

⇤

x⇤

d

�
(✓)

d

+

(✓)

Figure 4.1: Geometric interpretation for the asymptotic mean traffic flow proved on The-
orem 2.1

4.1 Numerical approach

To compare the asymptotic mean traffic behaviour around the Poissonian city with
the traffic flow in the British railway system we required an analytic expression for
the values d�(✓) and d+(✓) for each specific point q = (tn, un) inside the Poissonian
city (the disk of radius n centre at the origin, i.e. B

n

(o)). This analytic formulae
can easily be found once we obtain the coordinates for the two intersection points
between the line `

q

(✓) that passes through the point q making an angle ✓ respect
to the x-axis and the circle given by x2 + y2 = n. Lets denote these points by
x⇤ = (x

1

, y
1

) and x

⇤
= (x

2

, y
2

). In consequence:

d�(✓) = kq � x⇤k2 ,
d+(✓) = kx⇤ � qk

2

,

d�(✓) + d+(✓) = kx⇤ � x⇤k2 .

Finally, one has to express the coordinates for x⇤ and x

⇤ in terms of q = (tn, un) and
the angle ✓. This can be done by intersecting the line `

q

(✓) : y = (x� tn) tan ✓+ un

and the circle x2 + y2 = n2. Thus we have to solve the quadratic equation given by:

x2 + ((x� tn) tan ✓ + un)2 = n2 . (4.2)
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The roots from the above equation (4.2) will correspond to x
1

and x
2

; while y
1

and y
2

can be found using the line equation for `
q

(✓), i.e. y
i

= (x
i

�tn) tan ✓+un for i = 1, 2.

Finding the roots of (4.2) is a trivial task, which can be done by using the formula
for roots of a quadratic. To this purpose rewrite (4.2) as:

(1 + tan

2 ✓)x2 + 2n(u� t tan ✓) tan ✓x+ n2

((u� t tan ✓)2 � 1) = 0 . (4.3)

Moreover, if we denote by D = u�t tan ✓, then the above expression can be simplified
further to:

(1 + tan

2 ✓)x2 + 2nD tan ✓x+ n2

(D2 � 1) = 0 , (4.4)

whose roots are given by

x
1

=

�B �
p
B2 � 4AC

2A
and x

2

=

�B +

p
B2 � 4AC

2A
. (4.5)

Where

A = 1 + tan

2 ✓ , (4.6)

B = 2nD tan ✓ , (4.7)

C = n2

(D2 � 1) . (4.8)

Finally, after some simple algebra, the roots from (4.4) can be expressed as:

x
1

=

✓

�D

A
tan ✓ � 1

A

p

A�D2

◆

n and (4.9)

x
2

=

✓

�D

A
tan ✓ +

1

A

p

A�D2

◆

n . (4.10)

Notice that x
1

and x
2

are directly proportional to n; the same will happen to y
1

and
y
2

; since y
i

= (x
i

�tn) tan ✓+un for i = 1, 2. So, an equivalent approach to the above
problem is to rescale all the above quantities by n. That is, we will work in the disk
of radius 1. Therefore we will be considering q = (t, u) instead of q = (tn, un), where
u 2 (�1, 1) and t 2 (�

p
1� u2,

p
1� u2). Similarly, we will be intersecting the line

`
q

(✓) given by the equation y = (x � t) tan ✓ + u with the unit circle x2 + y2 = 1.
From the aforementioned exposition it is clear that the two intersection points for
this problem are given by x⇤ = (x

1

, y
1

) and x

⇤
= (x

2

, y
2

), here:

x
1

= �D

A
tan ✓ � 1

A

p

A�D2 ,

y
1

= (x
1

� t) tan ✓ + u ,

x
2

= �D

A
tan ✓ +

1

A

p

A�D2 ,

y
2

= (x
2

� t) tan ✓ + u .
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Where A and D are as in (4.6) and (4.4). In consequence, the asymptotic mean
traffic flow, as n ! 1, through q conditioned on `

q

(✓) 2 ⇧ behaves as follows

E[T q

n

(✓)]

n3

⇠ kx⇤ � x⇤k2kq � x⇤k2kx⇤ � qk
2

. (4.11)

The above function can be programmed using R; see the first code segment pre-
sented in the Appendix 1, function Traffic. The idea is that given any specific
location q = (t, u) (parameter), this code creates a function in terms of the variable
✓, the angle that the line `

q

(✓) makes with the x-axis. The function represents the
asymptotic mean traffic flow through q conditioned on `

q

(✓) 2 ⇧.

Even more, we can integrate this function (Traffic) numerically in terms of ✓, from
0 to ⇡. Additionally, since the angle ✓ 2 (0,⇡] has a uniform distribution, we can
multiply the aforementioned integral by 1/⇡ in order to obtain the average (asymp-
totic mean) traffic at q. This integration can be done with the second code from
Appendix 1, function I, which returns the value of this integral as a function of the
point q, as long as the point belongs to the unit disk, otherwise it just returns the
value 0 (notice that in the border, i.e. t2 + u2 = 1, one of the quantities d�(✓) or
d+(✓) will be 0, therefore the asymptotic mean traffic is also 0).

Thus, with the above functions we can create a grid to obtain an approximation for
the asymptotic mean traffic distribution across the Poissonian city. This can be done
with the third code on the Appendix 1. In figure 4.2 we have a 3D plot regarding
the (asymptotic mean) traffic across the Poissonian city. Also, the command persp3d
in R generates an interactive 3D plot that provides a better visualization for the data.

Figure 4.2: Numerical approximation for the asymptotic mean traffic across the Poissonian
city. Plot obtained with the persp3D command in R. Here the coordinates x and y stand
for the cartesian coordinates over the Poissonian city, i.e. q = (xn, yn), while z stands for
the asymptotic amount of traffic flow at q.
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Further, as we will be comparing proportions, we can rescale the total amount of
traffic at any particular point in such a way that the maximum value will be given
by 1. A simple way to achieve this is by dividing all the (asymptotic mean) traffic
values by the maximum value achieved, which happens to be at the centre of the
disk, as expected. Then, our aim is to generate a similar plot to the Beeching plot
(see figure 1.4 taken from Figure 1 of the Appendix 1 in [12]) for the mean asymp-
totic traffic distribution on the Poissonian city. Thus, we compute the proportion of
the network with traffic per mile less than a level L. This can be approximated by
the amount of points from the grid with (asymptotic mean) traffic less or equal than
L 2 [0, 1]. These proportions corresponds to the labels for the x-axis in the Beeching
plot. Then, for each level L, we need to obtain the proportion of (asymptotic mean)
traffic T corresponding to the specified region by L. This value will be given by the
integration of the function I over the specified region, divided by the same integral
over the whole disk. One way to approximate this numerically is by adding up all
the values (for the mean asymptotic traffic) assigned to the points over the specified
region and then divide this by the sum of the (asymptotic mean) traffic over all the
points inside the disk.

In summary, given an specific level of traffic L, we first obtained the region where
the level of traffic is less or equal than L (denoted by PA/TA in the fourth R code
segment from Appendix 1). Then for that same level L we compute the proportion of
total traffic T that this region represents (PT/TF using the fourth R code segment
from Appendix 1). All this is done in the fourth R code segment from Appendix
1, where the final plot, see figure 4.3 is the one to be compared with the Beeching plot.
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Figure 4.3: Theoretical distribution for the total mean asymptotic traffic per mile on the
Poissonian city.

4.2 Analytic Approach: Elliptic Integrals

Another approach to compute the curve plotted in figure 4.3 is by an explicit cal-
culation of the aforementioned integrals. To simplify the formulae first notice that
from construction the level sets must have circular symmetry. This can be verified
with the 3D plot, where the level sets from the asymptotic mean traffic have a circle
shape. Even more, the shape of some level sets can be plotted using the fifth code
segment from Appendix 1 (notice that this code uses some objects that are defined
on the fourth code segment from Appendix 1), see figure 4.4.

Therefore, as the asymptotic mean traffic at q only depends in the distance from q

to the origin o we can obtained an analytic expression for the information plotted in
4.2 in terms of rn = kqk. For example, we can focus, without loss of generality, on
the points q along the positive x-axis, i.e. q = (rn, 0), r 2 [0, 1]. For this case, we
know that x⇤ = (x

1

n, y
1

n) and x

⇤
= (x

2

n, y
2

n) are given by:

x
1

= r sin2 ✓ � cos ✓
p

1� r2 sin2 ✓ ,

y
1

= (x
1

� r) tan ✓ ,

x
2

= r sin2 ✓ + cos ✓
p

1� r2 sin2 ✓ ,

y
2

= (x
2

� r) tan ✓ .
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Figure 4.4: An illustration of the level sets for the asymptotic mean traffic across the
Poissonian city. Outer circle corresponds to the unit disk, the middle circle is the level sets
for mean asymptotic traffic around 40% of the traffic flow at the centre and the inner circle
corresponds to level sets for mean asymptotic traffic around 80% the traffic flow at the centre
of the city.

In consequence,

kq � x⇤k2
n

=

�

�

�

cos ✓
p

1� r2 sin2 ✓ + r cos2 ✓
�

�

�

|sec ✓| ,
kx⇤ � qk

2

n
=

�

�

�

cos ✓
p

1� r2 sin2 ✓ � r cos2 ✓
�

�

�

|sec ✓| ,
kx⇤ � x⇤k2

n
= 2

p

1� r2 sin2 ✓ .

Accordingly,

E[T q

n

(✓)]

n3

⇠ kq � x⇤k2kx⇤ � qk
2

kx⇤ � x⇤k2= 2(1� r2)
p

1� r2 sin2 ✓ . (4.12)

Even more, to obtain the total flow on the whole Poissonian city we will need to
compute the following triple integral:

Z

1

0

Z

2⇡

0

Z

⇡

0

E[T q

n

(✓)]
1

⇡
d✓ d↵ dr ⇠

n3

Z

1

0

Z

2⇡

0

Z

⇡

0

2(1� r2)
p

1� r2 sin2 ✓
1

⇡
d✓ d↵ dr

= 4n4

Z

1

0

(1� r2)r

✓

Z

⇡

0

p

1� r2 sin2 ✓ d✓

◆

dr . (4.13)
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Here, q is expressed in polar coordinates as (rn,↵) with r 2 [0, 1] and ↵ 2 [0, 2⇡];
while ✓ 2 [0,⇡] represents the angle between the line `

q

(✓) and the x-axis. The last
equality follows since the integral regarding ↵ is given by 2⇡nr, as the integrated
function does not depend on ↵ at all.

Remark : The integral
R

p

1� r2 sin2 ✓ d✓ from the right hand side of (4.13) is the
well known second kind of Elliptic Integrals [1], this topic will be studied in more
depth in chapter 5.

Elliptic integrals in general are not reducible to elementary functions. However,
we can compare the Beeching plot with the theoretical curve for the proportions of
(asymptotic mean) traffic across the Poissonian city leaving all the analytic formulas
in terms of this Elliptic integral.

The 3D plot from figure 4.2 provides us with a helpful insight on how to use the
integral (4.13) in order to get an analytic expression for the curve plotted in figure
4.3. From figure 4.2 it is clear the traffic increases as one get closer to the centre.
Therefore, we are interested on the development of the integral (4.13) over the an-
nulus region comprehended between the circle of radius n and the circle of radius an
for a 2 [0, 1]. That is given by:

4n4

Z

1

a

(1� r2)r

✓

Z

⇡

0

p

1� r2 sin2 ✓ d✓

◆

dr .

On the other hand, for each fixed value of a we will have covered an area given by
A = ⇡(1 � a2)n2. Since, we are working with a unit intensity stationary isotropic
Poisson line process ⇧, we know that in average the length intersection of ⇧ with
any measurable subset B of R2 is given by Leb

2

(B), thus the mean proportion of
the network length covered by a subset B ✓ B

n

(o) is the same as the proportion
represented by the area of B regarding the area of the whole disk. In consequence, we
can express the proportions of length network and the proportions of traffic, PA/TA
and PT/TF in terms of the fourth R code segment from Appendix 1, respectively,
as follows:

PA

TA
=

⇡(1� a2)n2

⇡n2

= (1� a2) , (4.14)

PT

TF
=

R

1

a

(1� r2)r
⇣

R

⇡

0

p

1� r2 sin2 ✓ d✓
⌘

dr

R

1

0

(1� r2)r
⇣

R

⇡

0

p

1� r2 sin2 ✓ d✓
⌘

dr
. (4.15)

Finally, since our aim is to plot PT/TF in terms of PA/TA we can get rid of the
auxiliary variable a through the relation (4.14). Thus PT/TF in terms of PA/TA,
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which is denoted by A in the following formula, is given by:

PT

TF
= 1�

R

p
1�A

0

(1� r2)r
⇣

R

⇡

0

p

1� r2 sin2 ✓ d✓
⌘

dr

R

1

0

(1� r2)r
⇣

R

⇡

0

p

1� r2 sin2 ✓ d✓
⌘

dr
. (4.16)

The sixth R code segment from Appendix 1 provides an alternative way to plot the
curve shown on figure 4.3 using the relation (4.16). We now explained the ideas
behind how this R code segment works. First, the function F1 creates the function
g
1

(✓) =
p

1� r2 sin2 ✓ in terms of ✓, where r works as a fixed parameter. Then I1
integrates the function g

1

from 0 to ⇡, in terms of ✓, int1vec is used to apply I1 to
a vector of different values for r (used as a fixed parameter in I1). Now, F2 creates
the function

f
1

(r) = 4(1� r2)r

✓

Z

⇡

0

p

1� r2 sin2 ✓ d✓

◆

,

by using the already defined function I1. Then, similarly to I1, I2 integrates the
function f

1

from 0 to a, in terms of r, where a is used as a fixed parameter. Next,
int2vec applies I2 to a vector of different values for a. To conclude the function
g uses int2vec to creates the relation (4.16) for a vector of different values of the
parameter a. Thus the final line plots the desired traffic curve using the function
g and the fact that the parameter a can be rewritten as

p
1�A, where A stands

for the proportion of the length network (denoted by PA/TA in previous R code
segments).

4.3 Final comments on the comparison

To conclude this chapter we compare the theoretical curve for proportions of total
(mean asymptotic) traffic in terms of the length proportions of the network for the
Poissonian city with the Beeching plot. A simple way to achieve this is by superim-
posing the plots, as in figure 4.5.

From figure 4.5 it is clear that the curves are not the same. Nevertheless, they share
the same kind of shape. This could be explained by the construction of this curve
in the Poissonian city. That is, for any point along the curve as we move to the
right we are adding up new route miles that increase the proportion of traffic flow
with a higher value than any of the proportions (of traffic flow) considered until this
point. In other words, the differential of traffic proportion regarding the network
proportion is always increasing faster (as we are always adding up miles with higher
traffic flow) which explains the convex shape of the curve. However, in the British
railway system this differential of traffic density keeps increasing in a faster way that
the one presented in the Poissonian city.

On the other hand their difference could be explained by different factors. For ex-
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Figure 4.5: Comparison between traffic distribution on the Poissonian city and the British
railway system as provided in Figure 1 from Appendix 1 in British Railways Board [12].

ample: the shape of Great Britain is not isotropic (opposite to the design of the
Poissonian city on the disk), source and destination nodes on the British railway
system are not uniformly distributed over the whole network (one of the assump-
tions in the Poissonian city model). Also the railways have a bounded length, not
indefinite (or infinite length as in our asymptotic considerations) as the lines used in
the Poissonian city. Also, the railways are not perfectly straight lines, they could be
better approximated by fibres with small curvature. In the following chapter we will
adapt the Poissonian city model to an ellipse shape to see if that improves the fit
between the theoretical curve for traffic distribution in the Poissonian city and the
Beeching plot.
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Chapter 5

The Elliptic case

The purpose of this chapter is to generalize previous results from the original Pois-
sonian city over a disk to a modified Poissonian city over an ellipse. So, instead
of considering the line process ⇧ being intersected with a disk of radius n, here we
consider the line process taking place over a variety of ellipses by adding an extra
parameter c 2 (0, 1]. The parameter c is related to the eccentricity of the ellipse
in question. The eccentricity of an ellipse provides a measure regarding how out of
round an ellipse is and it is given by the ratio between the distance from the cen-
tre of the ellipse to one of its foci and the distance between that foci to a vertex.
In some literature, the distance between the centre of the ellipse and either of its
foci is referred as the linear eccentricity, denoted by f . Therefore, the eccentricity
of an ellipse with semi-major axis a and semi-minor axis b can be defined as the
ratio between its linear eccentricity (f =

p
a2 � b2) and its semi-major axis a, i.e.

e =
q

1� b

2

a

2 .

This motivates us to focus on the ratio between the semi-minor axis b and the semi-
major axis a. Thus if we define a = 1/c and b = c for any c 2 (0, 1] then b/a = c2.
Even more, it is clear that e =

p
1� c4. Therefore the results developed along

chapters 2, 3 and 4 will be analysed considering that the Poisson line process ⇧ is
intersected with the interior of the ellipse given by

E

c

=

⇢

(x, y) 2 R2

: (cx)2 +
⇣y

c

⌘

2

 n2

�

, for some c 2 (0, 1] .

Notice that the original Poissonian city, over a disk of radius n, is recovered when
c = 1. Along this chapter the traffic behaviour will be analysed asymptotically as
n ! 1. The motivation is to study the way in which mean traffic depends on the
geometry of the region in question. Also, we are interested in the effects this could
have in the theoretical curve for the traffic density in the Poissonian city; we wish
to see if this improves the fit with the Beeching plot regarding the traffic density on
the British railway system.
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5.1 Poissonian city over an ellipse

Consider the mean traffic at a particular point q 2 E

c

on the Poissonian city over
an ellipse E

c

conditional on `
q

(✓
0

) 2 ⇧, meaning that there is a line passing through
the point q which makes an angle ✓

0

2 (0,⇡] with the x-axis. From here on, this
will be denoted by T q

n

(✓
0

). It turns out that the geometrical interpretation of The-
orem 2.1 still applies to this case. Thus conditioning on the line process ⇧ having
an specific line `

q

(✓
0

) that goes through the point q, then the mean traffic at this
point is asymptotically given by the product of three quantities: d�

c

(✓
0

), d+
c

(✓
0

) and
(d�

c

(✓
0

) + d+
c

(✓
0

)), see figure 5.1.

As in chapter 4:

• d�
c

(✓
0

) and d+
c

(✓
0

) are the distances from q to the endpoints of `
q

(✓
0

).

• Therefore (d�
c

(✓
0

)+ d+
c

(✓
0

)) is the total length of intersection between the line
`
q

(✓
0

) and the interior of the ellipse E

c

.

q

`

q

(✓

0

)

✓

0

x

⇤
c

x

c⇤

d

�
c

(✓

0

)

d

+

c

(✓

0

)

Figure 5.1: Geometrical interpretation of Theorem 2.1 applied to an elliptic Poissonian
city.

The proof of Theorem 2.1 only has to be modified to take into account that the
functions hq

1

(↵
1

) and hq
2

(↵
2

) now represent the boundary of the ellipse E

c

instead
of the disk of radius n. However, as long as these functions are continuous and
differentiable, a Taylor series argument can still be applied to accomplish the same
result. That is the essence of the next corollary

Corollary 5.1 (Mean flow through any point q 2 E

c

). The mean traffic flow
through q 2 E

c

conditioned on `
q

(✓
0

) 2 ⇧ is asymptotically given by the following
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expression:

E[T q

n

(✓
0

)] ⇠ (d�
c

(✓
0

) + d+
c

(✓
0

))d�
c

(✓
0

)d+
c

(✓
0

) , as n ! 1 , (5.1)

where d�
c

(✓
0

) and d+
c

(✓
0

) are as in figure 5.1.

Proof. From Theorem 2.1 we know that the expected value of traffic through the
point q 2 E

c

is given by the following integrals

E[T q

n

(✓
0

)] =

1

2

y

Dq
n,�

g(r, s, ✓)r dr s ds ✓ d✓ +

1

2

y

Dq
n,+

g(r, s, ✓)r dr s ds ✓ d✓ .

(5.2)
Here g(r, s, ✓) = exp

⇣

�1

2

(r + s�
p
r2 + s2 + 2rs cos ✓)

⌘

is the probability that there
are no lines from the Poisson line process ⇧ separating the points p

�
= (r,↵

1

) and
p

+

= (s,↵
2

) (expressed in polar coordinates with q as the reference point and `
q

(✓
0

)

as the reference line for the angles) simultaneously from q, where ✓ = ↵
1

+ ↵
2

.
While Dq

n,± are the appropriate regions of integration for (r, s, ✓) which depends on
the location of the point q. Thus

Dq

n,� = {(r, s, ✓) : 0  r  hq
1

(↵
1

)n, 0  s  hq
2

(↵
2

)n, �⇡  ✓  0}, (5.3)

Dq

n,+

= {(r, s, ✓) : 0  r  hq
1

(↵
1

)n, 0  s  hq
2

(↵
2

)n, 0  ✓  ⇡} . (5.4)

Here hq
1

(↵
1

) (respectively hq
2

(↵
2

)) is a continuous function that expresses how the
maximum allowed distance from the point p

� (respectively p

+) to q changes de-
pending on the angle ↵

1

(respectively ↵
2

). Therefore

hq
1

(↵
1

) = (x
1

+ t) sec↵
1

and hq
2

(↵
2

) = (x
2

� t) sec↵
2

,

here x
1

(respectively x
2

) is the absolute value of the x-coordinate from the intersec-
tion point between the line y = �(x�t) tan↵

1

+u (respectively y = (x�t) tan↵
2

+u)
and the ellipse (cx)2 + (y/c)2 = 1. Notice that the implicit function theorem [10,
Section 41] guarantees that the functions hq

1

(↵
1

) and hq
2

(↵
2

) will be smooth, in such
a way that the proof from Theorem 2.1 still holds with the appropriate modifications
on these functions.

The above corollary provide us a way to compute the asymptotic mean traffic at any
particular point q 2 E

c

given that `
q

(✓
0

) 2 ⇧.

In section 5.3 we will develop some numerical computations for the integrated mean
traffic across the Poissonian city over ellipses with different values for the parameter
c (therefore different values of eccentricity) to analyse if the eccentricity of the region
plays a role on the asymptotic traffic flow.
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q

1
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n

), h

q

1

(0)]

h
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2
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) 2 [h

q

2

(w

n
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q

2
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y = (x� tn) tanw
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+ un
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+ un
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✓

�1

c

q

1�
�

u

c

�

2

n, un

◆

Figure 5.2: Illustration from the concepts explained along the proof for Corollary 5.1. Here
we follow the same notation as in Theorem 2.1.

5.2 Anisotropic Poisson line process, Elliptic case

The contents of this section are closely related to the work done in Kendall [25,
Section 3.3]. As in the case for the Poissonian city over a disk of radius n, there is
another approach to verify the computations regarding the asymptotic mean traf-
fic at a particular point q 2 E

c

conditioning on the presence of a line `
q

(✓
0

). An
anisotropic Poisson line process provides a shorter and more conceptual exposition.
Nevertheless, the results developed in this section will not provide any information
regarding the error of the asymptotic approximations. This error is given by the
second leading term on the asymptotics behaviour for the mean traffic at the point
q.

The main difference between this section and the ideas developed on section 2.2 is the
fact that an ellipse does not have rotational invariance. Therefore, it is not enough
to consider the case where the conditioning line `

q

(✓
0

) 2 ⇧ is an horizontal line (as
we did for the whole chapter 2). However there is a way to develop results which are
similar to those in section 2.2.

The scaling limit for the distribution of traffic flow through any point, q, in the
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Poissonian city over an ellipse can be represented by using an improper stationary
anisotropic Poisson line process, ˙

⇧. In this case one has to condition on the existence
of a line `

q

(✓
0

) 2 ⇧ that passes through q = (tn, un) and makes an angle ✓
0

2 (0,⇡]

with the x-axis.

The first step to approach this problem is to rotate our coordinate system, given by
the cartesian coordinates (x, y), in order to make the line `

q

(✓
0

) an horizontal one.
This can be done either by a clockwise rotation by ✓

0

or by an anti-clockwise rotation
by (⇡� ✓

0

). Without lost of generality we chose to make an anti-clockwise rotation,
see figure 5.3. Call the rotated coordinate system (x̂, ŷ). Also, to abbreviate some
notation we will refer to ˆ`

q

(✓
0

) by `
q

from here on.

o

ˆ

`

q

(✓

0

)

ˆq

o

`

q

(✓

0

)

q

(�n

c

, 0)

(

n

c

, 0)

(0, cn)

(0,�cn)

y

ŷ

x̂

x

✓

0

Figure 5.3: Rotation by (⇡ � ✓0) anti-clockwise.

Recall that a line process can be parametrized in different ways. So, instead of using
the standard coordinates (r, ✓), where r represents the distance of the line ` to the
origin and ✓ the angle it makes regarding an horizontal line (x-axis). We will use
(p, ˆ✓), with p being the signed distance from ˆ

q to the intersection between the given
horizontal line `

q

and the line ` that is being parametrised, and ˆ✓ represents the
angle between these two lines (`

q

and `), see figure 5.4.

In the latter case, the intersection points with the line `
q

will form a stationary Pois-
son point process and the angle density is given by 1

2

sin

ˆ✓ for ˆ✓ 2 [0,⇡]. However,
there is a setback with the parametrization (p, ˆ✓) as all parallel lines to `

q

will not be
represented, since they do not intersect with `

q

. Nonetheless, this kind of lines are
contained on a null set, say the set of lines such that ✓ = 0, using the first coordinate
system (r, ✓).

Guided by the results developed in section 2.2 we rescale the cartesian coordinates
(x̂, ŷ) in the following way: shrink the x-axis by a factor of 1/n and contract the y-axis
by 1/

p
n. Therefore, the new set of coordinates is given by (x̃, ỹ) = (x̂/n, ŷ/

p
n), see
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o

p

`

ˆ

✓

`

q

q̂ = (tn, un)

Figure 5.4: Illustration for the alternative coordinates (p, ˆ✓) used to parametrise a line
process ⇧. For this particular case, p will be a negative number.

figure 5.5. Accordingly, the new parameters for the line process (p̃, ˜✓) can be related
with (p, ˆ✓) by the relations:

p̃ = p/n and tan

˜✓ =

p
n tan

ˆ✓ .

o

p

`

ˆ

✓

`

q

q̂ = (tn, un)

o

p̃

˜

`

˜

✓

`

q

q̃ = (t, u

p
n)

Figure 5.5: Change of coordinates from (p, ˆ✓) to (p̃, ˜✓).

So, the line process ⇧ is being transformed into another line process ˜

⇧. The intensity
of ˜

⇧ can be expressed in terms of (p̃, ˜✓). The Jacobian for the above change of
coordinates, i.e. p = np̃ and ˆ✓ = arctan

⇣

1p
n

tan

˜✓
⌘

, is given by

�

�

�

�

�

@(p, ˆ✓)

@(p̃, ˜✓)

�

�

�

�

�

=

�

�

�

�

�

�

0

@

n 0

0

sec

2
˜

✓

1+

1
n tan

2
˜

✓

1p
n

1

A

�

�

�

�

�

�

=

p
n

sec

2

˜✓

1 +

1

n

tan

2

˜✓
.
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Also, observe that

sin

ˆ✓ = sin

✓

arctan

✓

1p
n
tan

˜✓

◆◆

=

tan

˜✓
⇣

n
⇣

1 +

1

n

tan

2

˜✓
⌘⌘

1/2

.

Therefore, the line process ˜

⇧ can be parametrized as a Poisson point process on the
(p̃, ˜✓) space with intensity

⇤( d(p̃, ˜✓) ) =

1

2

tan

˜✓ sec2 ˜✓
⇣

1 +

1

n

tan

2

˜✓
⌘

3/2

dp̃ d˜✓ .

The x̃-axis can be translated to the horizontal line `
q

. Denote the new coordinates
after this translation by (ẋ, ẏ), notice that intensity of the line process ˙

⇧ is the same
as the intensity of ˜

⇧. Taking the limit as n ! 1 one obtains an improper station-
ary anisotropic Poisson line process with intensity ⇤( d(ṗ, ˙✓)) = 1

2

tan

˙✓ sec2 ˙✓ dṗ d ˙✓.
Based on this line process one can achieve a proper stationary isotropic Poisson line
process at scale n by randomly thinning the lines with a retention probability that
depends monotonically on the line slope, details on this ideas can be found at Kendall
[25, page 31].

Notice that once the ẋ-axis is fixed to coincide with the horizontal line `
q

, then
eventually, as n ! 1, the only points that will be inside the tilted ellipse will be
delimited by the vertical strip comprehended between the vertical lines ẋ = �x

1

and
ẋ = x

2

. Here the values |x
1

|+t and |x
2

|�t corresponds to the distances from q to
the intersections points of the ellipse and the line `

q

(✓), which implicitly depends on
the value for the eccentricity (related with the variable c), see figure 5.6.

Remark : In the case treated in section 2.2 the values for |x
1

|+t and |x
2

|�t were
given by

p
1� u2 + t and

p
1� u2 � t, respectively. These values are relevant when

representing the asymptotic mean traffic flow at q as a 4-volume region as done in
Lemma 2.3.

Even more, the improper anisotropic Poisson line process may be represented in a
simple way by a different set of coordinates. Represent each line in the line process
by its intercepts y� and y

+

on the vertical axis ẋ = �x
1

and ẋ = x
2

, respectively, see
figure 5.6. Therefore for a line represented by (ṗ, ˙✓) one have the following relations:

y� = � tan

˙✓(|x
1

|+ṗ) and y
+

= tan

˙✓(|x
2

|�ṗ).
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ẋ

⇤
c

= (x

2

, 0)

o

˙q = (t, 0)

ẋ
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ṗ

˙

✓

(�x

1

, y�)

(x

2

, y

+

)

˙

`

q

˙

`

Figure 5.6: Change of coordinates from (ṗ, ˙✓) to (y�, y+).

The Jacobian for this change of coordinates is given by

�

�

�

�

�

@(ṗ, ˙✓)

@(y�, y+)

�

�

�

�

�

=

�

�

�

�

@(y�, y+)
@(ṗ, ˙✓)

�

�

�

�

�1

=

�

�

�

�

�

 

� tan

˙✓ �(|x
1

|+ṗ) sec2 ˙✓

� tan

˙✓ (|x
2

|�ṗ) sec2 ˙✓

!

�

�

�

�

�

�1

=

1

(|x
1

|+|x
2

|) tan ˙✓ sec2 ˙✓
.

Thus the intensity becomes

⇤( d(y�, y+) ) =

1

2

tan

˙✓ sec2 ˙✓
1

(|x
1

|+|x
2

|) tan ˙✓ sec2 ˙✓
dy� dy

+

=

1

2(|x
1

|+|x
2

|) dy� dy
+

.

The above construction enable us to identify the limiting behaviour for the asymp-
totic mean traffic flow through the point q 2 E

c

conditioned on the event that
`
q

(✓) 2 ⇧ passing through q. This could be done by applying Lemma 2.3 with the
required modifications. Notice, that main required change is to adapt the 4-volume
for the region that represents the flow through q, see figure 2.8. Therefore, in the
elliptic case the mean 4-volume of the region will be given by:

Z |x1|+t

0

Z |x2|�t

0

Z 1

0

Z

a+v
v z

�a+v
a z

exp

✓

�z2

4

✓

1

a
+

1

v

◆◆

dp dz dv da

=

Z |x1+t

0

Z |x2|�

0

Z 1

0

(a+ v)

✓

1

a
+

1

v

◆

exp

✓

�z2

4

✓

1

a
+

1

v

◆◆

z dz dv da

= 2

Z |x1|+t

0

Z |x2|�t

0

(a+ v) dv da = (|x
1

|+|x
2

|)(|x
1

|+t)(|x
2

|�t) .
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Notice that the amount (|x
1

|+|x
2

|)(|x
1

|+t)(|x
2

|�t) agrees with the geometrical in-
terpretation of Theorem 2.1, as explained in figure 5.1. Similarly, Theorem 2.2 can be
applied to the elliptic case, with its required modifications, to determine the limiting
distribution for T q

n

/n3.

5.3 Numerical computations for the traffic density in an
elliptic Poissonian city

From the contents of sections 4.1 and 4.2 together with the ideas regarding Palm
theory developed in chapter 3 we can compare the asymptotic mean traffic across
the Poissonian city over an elliptic region in a similar manner as the one used in
chapter 4. Again, our final aim for this section is to compute the traffic density
curve corresponding to the elliptic Poissonian city, that is we will relate the propor-
tion T 2 [0, 1] for the total traffic flow from the transportation network in terms of
the proportion of the length network open to traffic.

Due to corollary 5.1 we know an expression for the asymptotic mean flow at any
specific point q 2 E

c

conditioned on the presence of an specific line `
q

(✓) that passes
through q, i.e. `

q

(✓) 2 ⇧. Even more, the angle ✓ 2 [0,⇡] is distributed uniformly,
therefore the average traffic flow at q conditioned on any kind of line passing through
q is asymptotically given by the expression:

Z

⇡

0

E[T q

n

(✓)]
1

⇡
d✓ ⇠

Z

⇡

0

(d�
c

(✓) + d+
c

(✓))d�
c

(✓)d+
c

(✓)
1

⇡
d✓ , (5.5)

with d�
c

(✓) and d+
c

(✓) as illustrated in figure 5.1. Now, to find an analytic expression
for d�

c

(✓) and d+
c

(✓) we follow a similar approach to the one used in section 4.1. So,
we can express:

d�
c

(✓) = kq � x

c⇤k2 ,
d+
c

(✓) = kx⇤
c

� qk
2

,

d�
c

(✓) + d+(✓) = kx⇤
c

� x

c⇤k2 .

Here x

c⇤ = (x
1

, y
1

) and x

⇤
c

= (x
2

, y
2

) stands for the two intersection points between
the line `

q

(✓) : y = (x� tn) tan ✓+ un and the ellipse (cx)2 + (y/c)2 = n2. Thus, we
have to express the coordinates (x

1

, y
1

) and (x
2

, y
2

) in terms of c, ✓ and q = (tn, un),
where u 2 (�c, c) and t 2 (�1/c

p

1� (u/c)2, 1/c
p

1� (u/c)2). To achieve this, we
simply intersect the line y = (x� tn) tan ✓+un with the ellipse (cx)2+(y/c)2 = n2.
So, we will have to solve the following quadratic equation:

c2x2 +
((x� tn) tan ✓ + un)2

c2
= n2 , (5.6)

to obtain the values for x
1

and x
2

. Then substitute these values in the line `
q

(✓) to
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obtain the y-coordinates, that is y
i

= (x
i

� tn) tan ✓ + un for i = 1, 2.

To solve for the roots of (5.6), the equation can be rewritten as:

(c4 + tan

2 ✓)x2 + 2n(u� t tan ✓) tan ✓x+ n2

((u� t tan ✓)2 � c2) = 0 . (5.7)

Remark : When c = 1 we recover the disk case presented in equation (4.3).

Moreover, if we denote by D = u� t tan ✓, then (5.7) can be simplified further to:

(c4 + tan

2 ✓)x2 + 2nD tan ✓x+ n2

(D2 � c2) = 0 , (5.8)

whose roots are given by the quadratic formula

x
1

=

�B �
p
B2 � 4AC

2A
and x

2

=

�B +

p
B2 � 4AC

2A
. (5.9)

Where

A = c4 + tan

2 ✓ , (5.10)

B = 2nD tan ✓ , (5.11)

C = n2

(D2 � c2) . (5.12)

Finally, after some simple algebra, the roots from (5.8) can be expressed as:

x
1

=

✓

�D

A
tan ✓ � c

A

p

A� c2D2

◆

n and (5.13)

x
2

=

✓

�D

A
tan ✓ +

c

A

p

A� c2D2

◆

n . (5.14)

Notice that the values for x
1

and x
2

are directly proportional to n; the same will
happen to y

1

and y
2

, since y
i

= (x
i

� tn) tan ✓ + un for i = 1, 2. So, an equivalent
approach to the above problem will be given by rescaling all the aforementioned
quantities by n. That is, we will be working inside the ellipse ˆ

E

c

= (cx)2+(y/c)2  1.
So, we will be considering q = (t, u) 2 ˆ

E

c

instead of q = (tn, un) 2 E

c

. Thus, in
this rescale version we will be intersecting `

q

(✓) : y = (x� t) tan ✓+u with the ellipse
(cx)2+(y/c)2 = 1. From the previous exposition it is clear that the two intersection
points for this problem are given by x

c⇤ = (x
1

, y
1

) and x

⇤
c

= (x
2

, y
2

), here:

x
1

= �D

A
tan ✓ � c

A

p

A� c2D2 ,

y
1

= (x
1

� t) tan ✓ + u ,

x
2

= �D

A
tan ✓ +

c

A

p

A� c2D2 ,

y
2

= (x
2

� t) tan ✓ + u .
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Where A and D are as in (5.10) and (5.8). In consequence, the asymptotic mean
traffic flow through q conditioned on `

q

(✓) 2 ⇧ behaves as follows

E[T q

n

(✓)]

n3

⇠ kx⇤
c

� x

c⇤k2kq � x

c⇤k2kx⇤
c

� qk
2

. (5.15)

To program this function using R we can modify the code presented in Appendix
1, specifically the functions Traffic and I written in the first and second R code
segments, respectively. The required changes are presented in the Appendix 2, in
which we added the new parameter to be considered: c. In this code we used the
value c = 0.75 as an specific example. However, the code can be run for any value
of c 2 (0, 1]. Notice, that the value c = 1 is equivalent to the original code presented
in Appendix 1.

As before the function Traffic (from Appendix 2, first R code) represents the asymp-
totic mean traffic flow through q conditioned on `

q

(✓) 2 ⇧. Furthermore, we can
integrate the function (Traffic) numerically in terms of ✓, from 0 to ⇡. Additionally,
since the angle ✓ 2 (0,⇡] has a uniform distribution, we can multiply the aforemen-
tioned integral by 1/⇡ in order to obtain the average (asymptotic mean) traffic at
q. This integration can be done with the second code from Appendix 2, function
I, which returns the value of this integral as a function of the point q, as long as
the point belongs to the ellipse with eccentricity given by

p
1� c4, otherwise it just

returns the value 0 (notice that in the border, i.e. c2t2 + u2/c2 = 1, one of the
quantities d�

c

(✓) or d+
c

(✓) will be 0, therefore the asymptotic mean traffic is also 0

for any angle ✓, so its average is also 0).

Thus, with the above functions we can create a grid to obtain an approximation for
the asymptotic mean traffic distribution across the Poissonian city over an ellipse
E

c

. This can be done with the third code segment from the Appendix 2, which is
basically the same as the third R code from Appendix 1, with a slight change to
take into account the elliptic shape. Figure 5.7 presents a 3D plot regarding the
(asymptotic mean) traffic across the Poissonian city. Also, the command persp3d in
R generates an interactive 3D plot that provides a better visualization for the data.

Remark : Notice that the values for the total (asymptotic mean) traffic flow can be
higher than in the disk case. Nevertheless, we are interested in the traffic density, so
we need to work with proportions of traffic across the network.

Similarly to the analysis developed on section 4.1, since we want to compare pro-
portions, we can rescale the total amount of traffic at any particular point in such a
way that the maximum value will be given by 1. A simple way to achieve this is by
dividing all the (asymptotic mean) traffic values by the maximum value achieved,
which happens to be at the centre of the ellipse, the same way as it happened with
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Figure 5.7: Numerical approximation for the asymptotic mean traffic across the Poisso-
nian city in the ellipse E0.75. Plot obtained with the persp3D command in R. Here the
coordinates x and y stand for the cartesian coordinates over the elliptic Poissonian city, i.e.
q = (xn, yn), while z stands for the asymptotic amount of traffic flow at q.

the disk, even though with a higher value. Our aim is to generate a similar plot to
the Beeching plot (see figure 1.4 taken from Figure 1 of the Appendix 1 in British
Railways Board [12]) for the asymptotic mean traffic density on an elliptic Poissonian
city. One approach to achieve this is by computting the proportion of the network
with (asymptotic mean) traffic less than a specific value L; this can be approximated
by the amount of points from the grid with (asymptotic mean) traffic less or equal
than L 2 [0, 1]. Then, we need to obtain the proportions of (asymptotic mean)
traffic T corresponding to these regions. This value will be given by the integra-
tion of the function I over the specified region, divided by the same integral over
the whole ellipse. One way to approximate this numerically is by adding up all the
values assigned to the points over this region and then divide this by the sum of the
(asymptotic mean) traffic over all the points inside the ellipse.

In summary, given an specific level of traffic L, first we compute the region where
the level of traffic (per mile) is less or equal than L (denoted by PA/TA in the fourth
R code segment from Appendix 1). Then for that same level L we compute the pro-
portion of total traffic T that this region represents (PT/TF using the fourth R code
segment from Appendix 1). All this can be done with the fourth R code segment
from Appendix 1. The final plot is shown in figure 5.8, this curve is the one to be
compared with the Beeching plot.

Remark : Surprisingly, the curve shown in figure 5.8 is numerically identical to the
original curve, based on the disk of radius n, see figure 4.3. The same analysis can be
done in R for different values for the parameter c and we still get the same results.
The next section provides an initial analytic approach to this phenomenon, although
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Figure 5.8: Theoretical distribution for the total asymptotic mean traffic per mile on an
elliptic Poissonian city, for this plot we take c = 0.75.

a full explanation awaits further work.
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5.4 Invariance Conjecture

From the numerics presented in the previous section it seems that the traffic density
curve in the Poissonian city is invariant under changes in the eccentricity of the
ellipse E

c

. To verify this conjecture we will provide an analytic approach for the
traffic density curve sketched in the previous section. To obtain the traffic density
curve sketched in figure 5.8 we will need to compute triple integrals of the following
form:

Z

1

a

Z

2⇡

0

Z

⇡

0

E[T q

n

(✓)]
1

⇡
d✓ d↵ dr !

Z

1

a

Z

2⇡

0

Z

⇡

0

kx⇤
c

� x

c⇤k2kq � x

c⇤k2kx⇤
c

� qk
2

⇡
d✓ d↵ dr , (5.16)

here a 2 [0, 1] controls the subregion of integration (we are considering ellipse shaped
rings of width 1 � a, thus as a goes to 0 the bigger the subregion of integration
becomes) for points q = (r(↵)an,↵) 2 E

c

in polar coordinates. In consequence

r(↵) =

c
p

c4 cos2 ↵+ sin

2 ↵
n ,

to take into account that the elliptic shape. Recall x⇤
c

and x

c⇤ stands for the in-
tersection points between the ellipse c2x2 + (y2/c2) = n2 and the line `

q

(✓) : y =

(x� tn) tan ✓ + un as illustrated in figure 5.1, for the corresponding q = (tn, un) in
cartesian coordinates.

From the previous section it is natural to conjecture that the mean traffic flow across
the Poissonian city in an ellipse E

c

behaves in such a way that its level sets (con-
tours) are ellipses preserving the same eccentricity of E

c

. Notice that the rotational
symmetry that existed in chapter 4 does not hold anymore, thus there is no analytic
certainty regarding the level sets shape in this case. One way to analyzed the level
sets numerically is by changing the fifth R code segment in Appendix 1 to take into
account the elliptic shape. That is done in the fourth R code segment from Appendix
2 and the final plot is presented in figure 5.9. Recall that similar to the exposition
done in chapter 4, all the R segment codes works inside the scaled ellipse given by

ˆ

E

c

=

⇢

(x, y) 2 R2

: (cx)2 +
⇣y

c

⌘

2

 1

�

, for some c 2 (0, 1] ,

which provides the analogous object to the unit disk used in chapter 4 (this case
corresponds to the value c = 1).

Subject to this conjecture, to analyse how the integrated traffic changes in different
subregions of the Poissonian city it is enough to concentrate on the semi-major axis,
as any point inside the ellipse will have the same mean traffic flow as one of these
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Figure 5.9: An illustration of the level sets for the asymptotic mean traffic across an elliptic
Poissonian city, c = 0.75. Outer ellipse corresponds to ˆ

Ec, the middle ellipse is the level
sets for mean asymptotic traffic around 40% of the traffic flow at the centre and the inner
ellipse corresponds to level sets for mean asymptotic traffic around 80% the traffic flow at
the centre of the elliptic city.

points on the semi-major axis. Since any point on the ellipse will correspond to a
specific level set, and this level set has a unique point belonging to the semi-major
axis. In other words, without loss of generality, we are selecting the points on the
semi-major axis as the representatives for their corresponding level sets.

Thus suppose that q 2 E

c

belongs to the semi-major axis, then q = (rn, 0) for some
r 2 (0, 1/c). Moreover, if there is a line `

q

(✓) passing through q and making an angle
✓ 2 (0,⇡] with the x-axis, then the analytic expressions for d�

c

(✓) and d+
c

(✓) can be
simplified. Set

K2

c

(✓) = c2 cos2 ✓ +
sin

2 ✓

c2
. (5.17)

In order to obtain the following expressions

d�
c

(✓)

n
=

p

K2

c

(✓)� r2 sin2 ✓ � c2r cos ✓

K2

c

(✓)
,

d+
c

(✓)

n
=

p

K2

c

(✓)� r2 sin2 ✓ + c2r cos ✓

K2

c

(✓)
.

Therefore, by corollary 5.1, the average amount of traffic through q conditioning on
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`
q

(✓) will behave asymptotically, as n ! 1, as follows:

E
c

[T q

n

(`
q

(✓))]

n3

⇠ 2(1� r2c2)

p

K2

c

(✓)� r2 sin2 ✓

(K2

c

(✓))2
.

here r 2 (0, 1/c). Even more, for a fixed point q = (rn, 0) (meaning r 2 (0, 1/c) is
fixed) the above quantity can be averaged in terms of ✓. As it has been explained on
chapter 3, the distribution for the angle ✓ that the line `

q

(✓) makes with the x-axis
follows an uniform distribution between 0 and ⇡. Thus as n ! 1

Z

⇡

0

E
c

[T q

n

(`
q

(✓))]

n3

1

⇡
d✓ ⇠ 2(1� r2c2)

⇡

Z

⇡

0

p

K2

c

(✓)� r2 sin2 ✓

(K2

c

(✓))2
d✓ . (5.18)

Now, we have to weight each point on the semi-major axis according to the level set
it represents. In section 4.2 was clear that this weight is given by the perimeter of the
corresponding circle (2⇡nr, r 2 [0, 1]). Analogously, in this case the corresponding
weight for the point q = (rn, 0) will be given by the perimeter of the ellipse with
semi-major axis rn and semi-minor axis c2rn. Unfortunately, the circumference of an
ellipse does not have a simple closed formulae. Even more, this simple task provides
an insight for the second kind of elliptic integrals which we already mentioned briefly
in section 4.2. For this case our ellipse is given by c2x2+y2/c2 = r2n2. In parametric
form, the ellipse is x =

rn

c

cos↵, y = rnc sin↵, and the circumference P
c

(r) will be
given by

P
c

(r) =

Z

2⇡

0

r

r2n2

c2
cos

2 ↵+ r2n2c2 sin2 ↵ d↵

= 4rn

Z

⇡
2

0

r

1

c2
(1� sin

2 ↵) +
c4

c2
sin

2 ↵ d↵

= 4

rn

c

Z

⇡
2

0

q

1� (1� c4) sin2 ↵ d↵

= 4

rn

c

Z

⇡
2

0

p

1� e2 sin2 ↵ d↵ , (5.19)

where e =
p
1� c4 2 [0, 1) is the eccentricity of the ellipse being considered.

Consequently a simplified formulae for the right hand side of (5.16) is given by:

H
c

(a) =

Z

1
c

a

P
c

(r)
2(1� r2c2)

⇡

Z

⇡

0

p

K2

c

(✓)� r2 sin2 ✓

(K2

c

(✓))2
d✓ dr , (5.20)

with a 2 [0, 1/c]. Therefore, the sketched curve in figure 5.8, that corresponds to the
proportions of traffic (PT/TF

c

) in terms of the proportions of the network considered
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(PA/TA
c

) will be given by '(PA

TA

c

(a), PT

TF

c

(a)) for a 2 [0, 1/c], where:

PT

TF
c

(a) =

H
c

(a)

H
c

(0)

, (5.21)

PA

TA
c

(a) =

(1� a2c2)n2⇡

n2⇡
= 1� a2c2 . (5.22)

Even more, the integral regarding ✓ in (5.20) is an elliptic integral [1, 45]. Thus,
one way to verify the invariance conjecture, under the assumption of elliptic level
sets (with the same eccentricity as the original ellipse E

c

), is given by considering
the function PT

TF

c

(a) and analyse its partial derivative regarding c. To achieve this
we first simplify the expression for H

c

(a), which will be the purpose of the following
subsection.

5.4.1 Elliptic Integrals

First, as explained above, the expression for (5.19) corresponds to the second canon-
ical form of an elliptic integral. Now, (5.18) can be expressed as a linear combination
of the three canonical forms of elliptic integrals. But, first we can decomposed (5.18)
in terms of the range for ✓ as follows

Z

⇡

0

p

K2

c

(✓)� r2 sin2 ✓

(K2

c

(✓))2
d✓ =

Z

⇡/2

0

p

K2
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(✓)� r2 sin2 ✓

(K2
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(✓))2
d✓ +

Z

⇡

⇡/2

p

K2

c

(✓)� r2 sin2 ✓

(K2

c

(✓))2
d✓ .

Then, consider the substitution  = ⇡ � ✓ on the integral were ✓ range from ⇡/2 to
⇡ to obtain

Z

⇡

⇡/2

p

K2

c

(✓)� r2 sin2 ✓

(K2

c

(✓))2
d✓ =

Z

⇡/2

0

p

K2

c

( )� r2 sin2  

(K2

c

( ))2
d ,

since cos(⇡ �  ) = � cos( ) and sin(⇡ �  ) = sin( ). Thus

Z

⇡

0

p

K2

c

(✓)� r2 sin2 ✓

(K2

c

(✓))2
d✓ = 2

Z

⇡/2

0

p

K2

c

(✓)� r2 sin2 ✓

(K2

c

(✓))2
d✓ . (5.23)

Now, the right hand side integral in (5.23) can be rewritten as a general elliptic inte-
gral. By this we are saying that the function to be integrated can be expressed as a
rational algebraic function R(x,

p

Q(x)) where Q(x) is a cubic or quartic polynomial
in x with no repeated factors. Therefore, our purpose is to express

Z

p

K2

c

(✓)� r2 sin2 ✓

(K2

c

(✓))2
d✓ as

Z

R(x,
p

Q(x)) dx ,

for some rational algebraic function R(x,
p

Q(x)) with the aforementioned char-
acteristics. Then the theory of elliptic integrals can be applied to the function
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R(x,
p

Q(x)) in order to express the integral as a linear combination of the three
canonical forms of elliptic integrals [20]:

The first kind
Z

[(A
1

t2 +B
1

)(A
2

t2 +B
2

)]

�1/2

dt , (5.24)

The second kind
Z

t2[(A
1

t2 +B
1

)(A
2

t2 +B
2

)]

�1/2

dt , (5.25)

The third kind
Z

(1 +Nt2)�1

[(A
1

t2 +B
1

)(A
2

t2 +B
2

)]

�1/2

dt . (5.26)

To achieve this goal consider the change of variable given by x = tan(✓/2) (no-
tice this implies that cos(✓/2) = 1/

p
1 + x2 and sin(✓/2) = x/

p
1 + x2), there-

fore dx = sec

2

(✓/2)/2 d✓, so d✓ = 2 cos

2

(✓/2) dx = 2/(1 + x2) dx. Also recall
the trigonometric identities sin ✓ = 2 sin(✓/2) cos(✓/2) = 2x/(1 + x2) and cos ✓ =

cos

2

(✓/2)� sin

2

(✓/2) = (1�x2)/(1+x2). All this and some algebraic simplifications
leads to
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Additionally, if we denote x4 + 2(

2

c

4 � 2r

2

c

2 � 1)x2 + 1 by Q(x) and multiply both
numerator and denominator of the integrand function by

p

Q(x) the right hand side
expression can be rewritten as,

2

c3
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(1 + x2)2Q(x)
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x4 + 2

�

2

c

4 � 1

�
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�

2

[Q(x)]1/2
dx . (5.27)

Notice, that this expression can be simplified using some auxiliary variables, say:

b =
2

c4
� 2r2

c2
� 1 and ˜b =

2

c4
� 1 .

Thus, one can rewrites Q(x) as (x2 + ŷ�)(x2 + ŷ
+

), where

ŷ� = b�
p

b2 � 1, and ŷ
+
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p

b2 � 1 .

Similarly, x4 + 2

�

2

c

4 � 1

�

x2 + 1 can be rewritten as (x2 + ẑ�)(x2 + ẑ
+

), with

ẑ� =
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q
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Therefore, (5.27) is equivalent to
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dx . (5.28)
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Notice that ultimately we should be writing ŷ�(r, c), ŷ+(r, c), ẑ�(c), ẑ+(c) to empha-
size the dependance on the values of r and c. However to simplify the notation we
simply write ŷ�, ŷ+, ẑ�, ẑ+, respectively.

The rest of this section analyses the integral in (5.28) by using the elliptic integral
reduction procedure as explained in Whittaker and Watson [45]. The first step is to
apply partial fractions to the ratio of polynomials that we get on (5.28), yielding
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. (5.29)

Here, the constant coefficients (regarding the integration variable x) D
0

, . . . , D
4

can
be expressed in terms of ŷ�, ŷ+, ẑ�, ẑ+, which ultimately depend on the values of r
and c as mentioned before. The values for D

0

, . . . , D
4

can be determined with the
use of mathematical/symbolic software like Mathematica or Maple. Notice that in
(5.29) the integrals corresponding to the coefficients D

0

, D
1

and D
2

are already in a
canonical form. D

0

corresponds to an elliptic integral of the first kind, while D
1

and
D

2

corresponds to elliptic integrals of the third kind. Thus we only require an expres-
sion for the last two integrals in (5.29), i.e. the integrals with coefficients D

3

and D
4

.

Due to the symmetry on these two integrals regarding the variables ẑ� and ẑ
+

it is
enough to only analyse one of them as the other will have an equivalent expression
just substituting ẑ� with ẑ

+

accordingly. Thus from here on we will focus our
attention on the integral
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. (5.30)

As before, denote (x2 + ŷ�)(x2 + ŷ
+

) by Q(x), and consider the function

g�(x) =
x
p

Q(x)

(x2 + ẑ�)
,

Differentiating g�(x) one obtains the following relation
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. (5.31)
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Moreover (5.31) can be rewritten in such a way that the denominator of every term
contains

p

Q(x), i.e.

g
0
�(x) =

Q(x)

(x2 + ẑ�)
p

Q(x)
� 2x2Q(x)

(x2 + ẑ�)
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2
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0
(x)

(x2 + ẑ�)
p

Q(x)
. (5.32)

Finally, divide x2Q(x) by (x2 + ẑ�)2 as the first one has order 6 and the latter one
has order 4. The division leads to

x2Q(x)

(x2 + ẑ�)
= x2 + (ŷ� + ŷ

+

� 2ẑ�) +
(ŷ�ŷ � 2ŷ�ẑ� � 2ŷ
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(�ŷ�ŷẑ� + ŷ�ẑ2� + ŷ
+
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(x2 + ẑ�)2

. (5.33)

Again, we can simplify the notation with the following conventions:

K
1

(ẑ�) = K
1

(ŷ�, ŷ+, ẑ�) = ŷ� + ŷ
+

� 2ẑ� , (5.34)

K
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ẑ� + 3ẑ2� , (5.35)

K
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(ẑ�) = K
3
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ẑ2� � ẑ3� . (5.36)

In conclusion, after integrating (5.32) from 0 to 1 and substituting (5.33) accordingly
we get the following identity

p

Q(1)

1 + ẑ�
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From here, we can solve for the desired integral (5.30). Recall that Q(x) = (x2 +

ŷ�)(x2+ ŷ
+

) = x4+(ŷ�+ ŷ
+

)x2+ ŷ�ŷ+, consequently xQ
0
(x) = 4x4+2(ŷ�+ ŷ

+

)x2.
Thus, we obtain the following expression for (5.30):
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(ẑ�)

 

�1

2

 

Q(1)

1 + ẑ�
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p

Q(x)
dx

!

�K
1

(ẑ�)
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Therefore, all the integrals from the right hand side of (5.38) can be related with an
integral of the following form

Z

1

0

x2m

(x2 + ẑ�)n
p

Q(x)
dx for m = 0, 1, 2 and n = 0, 1 . (5.39)

So, as long as we can obtain expressions for all the combinations of m and n in (5.39)
in terms of the canonical elliptic integrals we will be done.
First, notice the trivial cases for (5.39):

• m = 0 and n = 0 in (5.39) represents an elliptic integral of the first kind.

• m = 0 and n = 1 in (5.39) represents an elliptic integral of the third kind.

• m = 1 and n = 0 in (5.39) represents an elliptic integral of the second kind.

Remark: Some literature provides a different expression for an elliptic integral of the
second kind, say something of the form
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However, one should notices that:
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where, clearly
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and the last term in (5.41) is just a multiple of an elliptic integral of the first kind.

For the last two cases in (5.39), observe the following:

• m = 1 and n = 1.

Z

1

0

x2

(x2 + ẑ�)
p

Q(x)
dx =

Z

1

0

x2 + ẑ�
(x2 + ẑ�)

p

Q(x)
dx� ẑ�

Z

1

0

1

(x2 + ẑ�)
p

Q(x)
dx

=

Z

1

0

1

p

Q(x)
dx� ẑ�

Z

1

0

1

(x2 + ẑ�)
p

Q(x)
dx ,

that is a linear combination of an elliptic integral of the first kind and an elliptic
integral of the third kind, respectively.

• m = 2 and n = 1.

98



Z

1

0

x4

(x2 + ẑ�)
p

Q(x)
dx =

Z

1

0

x4 � ẑ2�
(x2 + ẑ�)

p

Q(x)
dx+ ẑ2�

Z

1

0

1

(x2 + ẑ�)
p

Q(x)
dx

=

Z

1

0

(x2 � ẑ�)(x2 + ẑ�)
(x2 + ẑ�)

p

Q(x)
dx+ ẑ2�

Z

1

0

1

(x2 + ẑ�)
p

Q(x)
dx

=

Z

1

0

x2
p

Q(x)
dx� ẑ�

Z

1

0

1

p

Q(x)
dx+ ẑ2�

Z

1

0

1

(x2 + ẑ�)
p

Q(x)
dx ,

that is a linear combination of an elliptic integral of the second kind, an elliptic
integral of the first kind and an elliptic integral of the third kind, respectively.

Thus, making the appropriate substitutions in (5.38) we find out a way to express
the integral (5.30) as a linear combination from the three canonical elliptic integrals.
To achieve this we have to recall the symmetry in the last two integrals in (5.29),
so the integral corresponding to the coefficient D

4

will have a similar expression
to (5.38) substituting ẑ� by ẑ

+

. Recall that the coefficients in (5.38) are given by
(5.34), (5.35) and (5.36) which depends on the value of ẑ�. In consequence, a similar
definitions will hold for K

1

(ẑ
+

), K
2

(ẑ
+

) and K
3

(ẑ
+

), say

K
1

(ẑ
+

) = K
1

(ŷ�, ŷ+, ẑ+) = ŷ� + ŷ
+

� 2ẑ
+

, (5.42)

K
2

(ẑ
+

) = K
2

(ŷ�, ŷ+, ẑ+) = ŷ�ŷ+ � 2ŷ�ẑ+ � 2ŷ
+

ẑ� + 3ẑ2
+

, (5.43)

K
3

(ẑ
+

) = K
3

(ŷ�, ŷ+, ẑ+) = �ŷ�ŷ+ẑ+ + ŷ�ẑ2
+

+ ŷ
+

ẑ2
+

� ẑ3
+

. (5.44)

Therefore, replacing in (5.29) the two integrals that are in the from of (5.30) we find
out an expression for (5.28) as a linear combination of the three canonical elliptic
integrals. This can be done with a simplified notations as follows

2

c3

Z

1

0

(1 + x2)2(x2 + ŷ�)(x2 + ŷ
+

)

(x2 + ẑ�)2(x2 + ẑ
+

)

2

[(x2 + ŷ�)(x2 + ŷ
+

)]

1/2

dx =

M
0

+

2

c3

⇣

M
1

I
1

+M
2

I
2

+M
3

I
3

(ẑ�) +M
4

I
3

(ẑ
+

)

⌘

, (5.45)

where the elliptic integrals are denoted as folllows:

• I
1

stands for the first kind of elliptic integral, say

I
1

=

Z

1

0

1

p

Q(x)
dx .

• I
2

stands for the second kind of elliptic integral, say

I
2

=

Z

1

0

(x2 + ŷ�)1/2

(x2 + ŷ
+

)

1/2

dx .
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• I
3

(ẑ�) stands for the third kind of elliptic integral, say

I
3

(ẑ�) =

Z

1

0

1

(x2 + ẑ�)
p

Q(x)
dx .

• I
3

(ẑ
+

) stands for the third kind of elliptic integral, say

I
3

(ẑ
+

) =

Z

1

0

1

(x2 + ẑ
+

)

p

Q(x)
dx .

On the other hand, the corresponding coefficients M
0

, . . . ,M
4

can be expressed in
terms of ŷ�, ŷ+, ẑ�, ẑ+ as follows:

M
0

= � 2

c3

 

D
3

K
3

(ẑ�)

p

Q(1)

2(ẑ� + 1)

+

D
4

K
3

(ẑ
+

)

p

Q(1)

2(ẑ
+

+ 1)

!

,

M
1

= 1 +

D
3

K
3

(ẑ�)

✓

ŷ
+

+

1

2

ŷ� � 3

2

ẑ� �K
1

(ẑ�)
◆

+

D
4

K
3

(ẑ
+

)

✓

ŷ
+

+

1

2

ŷ� � 3

2

ẑ
+

�K
1

(ẑ
+

)

◆

,

M
2

=

D
3

2K
3

(ẑ�)
+

D
4

2K
3

(ẑ
+

)

,

M
3

= D
1

+

D
3

K
3

(ẑ�)

✓

3

2

ẑ2� � (ŷ� + ŷ
+

)ẑ� � (ŷ�ŷ+ � 2K
2

(ẑ�))
◆

,

M
4

= D
2

+

D
4

K
3

(ẑ
+

)

✓

3

2

ẑ2
+

� (ŷ� + ŷ
+

)ẑ
+

� (ŷ�ŷ+ � 2K
2

(ẑ
+

))

◆

.

A final step to prove the invariance conjecture for the traffic density curve will be
to obtain the values for D

0

, . . . , D
4

in terms of ŷ�, ŷ+, ẑ�, ẑ+. Then substitute these
in M

0

, . . . ,M
4

and finally recall the formulae for ŷ�, ŷ+, ẑ�, ẑ+ in terms of r and c

as given before (5.28). Finally (5.45) needs to be replace in the expression for H
c

(a)

as given by (5.20). This will be left for a future research, as it is still an extensive
algebraic work.
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Chapter 6

Final Remarks and other possible

generalizations

In this chapter we briefly explain alternative approaches to generalize the Poissonian
city model (different from the one where we have considered the Poisson line process
taking place over an ellipse, changing the eccentricity of the ellipse E

c

in question).

This chapter mainly focusses on the properties of Poisson segment processes. Thus,
the first section addresses how to define these and get an equivalent expression for
the length intensity of Poisson line processes. However, this new framework brings
new open problems, mainly the percolation of paths and the absence of a convex
hull to generate a lower bound for the excess length resulting from considering the
semi-perimeter routing rule instead of the corresponding Euclidean distance. These
problems are introduced and explained in the second section. Here we briefly discuss
related work and literature that can provide an insight to solve them. For example,
Baccelli et al. [7] studies the behaviour for a path of segments on the Delaunay
graph [43], in particular they show that the path in question is Markovian and
gave an asymptotic result regarding the excess distance of this path against the
corresponding Euclidean distance. Finally, the third section provides some final
remarks, briefly explains another possible directions for the Poissonian city and areas
for future research.

6.1 Segment line process

Consider a stationary Poisson segment line process with fixed length h. Here we
address the following problem: what intensity, ⌫h

�

(for the marked point process of
intensity � defining the segments) leads to a length intensity equivalent to the unit
intensity for a Poisson line process?

We denote by ⌅
h

the segment line process with fixed length h and intensity � with
rose of directions given by ⇢ (we measure the angles from the horizontal axis in the
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anti-clockwise direction). We seek an expression for its length intensity, given by

⌫h
�

=

E[L(⌅
h

\K)]

A(K)

=

E[Leb
1

([K])]

Leb

2

(K)

, (6.1)

for any compact convex set K ✓ R2. Here [K] stands for the hitting set, which is
defined as the set of segments of ⌅ that hit K, i.e. [K] = {⇠ 2 ⌅

h

: ⇠ * K}, where
we denoted by ⇠ * K the event “⇠ hits K”, meaning ⇠ \K 6= ;.

We can identify the segment process ⌅
h

with a marked point process �⇤ in R2⇥(0,⇡].
Here each point x of the process represents the lower-end point of the segment ⇠ (in
case of horizontal segments we chose the left-end point). Thus x = (x⇤, y⇤) where:

y⇤ = inf {y : (x, y) 2 ⇠ for some x} ,
x⇤ = inf {x : (x, y⇤) 2 ⇠} .

We can construct the Poisson segment process by requiring that the points (x⇤, y⇤)
form a Poisson point process of intensity �. Also the angular marks ✓ should be
independent of the positions x and independent of each other with identical distri-
bution given by ⇢( d✓ ). Viewed as a point process in (x⇤, y⇤, ✓) space, the intensity
mean of this point process is given by �(Leb

2

⌦⇢).

To address this question we focus in the case where the angular mark distribution
for ✓ is nonrandom. This can be done by considering the following rotation

R(⇠) = R
✓

(x, y) = (x cos ✓ + y sin ✓,�x sin ✓ + y cos ✓, 0) = (x̃, ỹ, 0) ,

for each segment ⇠ = (x, y, ✓). The rotated segments will all be horizontal. The
rotation R

✓

(x, y) moves the segment ⇠ in such a way that its reference point, x, is
still at the same distance, kxk, from the origin but it has been rotated ✓ radians in
clockwise direction so that the segment is now horizontal, see figure 6.1. This con-
verts ⌅

h

into a new segment process R(⌅

h

) for which all segments are horizontal, but
such that the length of intersection with any disk centered at the origin is unchanged.

In particular the new point process is still Poisson.

Theorem 6.1. If �⇤ is a marked Poisson point process in R2⇥(0,⇡], with intensity
� and rose of directions ⇢ then ˜

� = {(x̃, ỹ) : (x̃, ỹ, 0) = R
✓

(x, y) with (x, y, ✓) 2 �⇤}
is a Poisson point process of intensity �.

Proof. From Renyi’s Theorem [29] we know that the family of avoidance probabilities
determines the distribution of a point process. So it is enough to show that:

P[˜� \ ˜E = 0] = exp (��Leb
2

(

˜E)) ,
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⇠

✓

(x, y)

R(⇠)

R

✓

(x, y)

(x̃, ỹ)

✓

(x, y)

Figure 6.1: Illustration of the rotation R✓(x, y).

for all measurable ˜E ✓ R2.

For ˜E any measurable subset in R2, we define E ✓ R2 ⇥ (0,⇡] as follows:

E =

n

(x, y, ✓) : (x cos ✓ + y sin ✓,�x sin ✓ + y cos ✓) 2 ˜E
o

.

Therefore {˜� \ ˜E = 0} = {�⇤ \ E = 0}. By the rotation invariance of the Leb

2

measure and the fact that ⇢ is a probability measure we can compute the intensity
measure for ˜

�:

�(Leb
2

⌦⇢)(E) = �

Z

⇡

0

 

x

R2

E

(x, y, ✓) Leb
2

( dx dy )

!

⇢( d✓ )

= �

Z

⇡

0

 

x

R2

˜

E

(R
✓

(x, y)) Leb
2

( dx dy )

!

⇢( d✓ )

= �

Z

⇡

0

 

x

R2

˜

E

(x̃, ỹ) Leb
2

( dx̃ dỹ )

!

⇢( d✓ ) = �
x

R2

˜

E

(x̃, ỹ) Leb
2

( dx̃ dỹ )

= �Leb
2

(

˜E) .

Hence,

P[˜� \ ˜E = 0] = P[�⇤ \ E = 0] = exp (��(Leb
2

⌦⇢)(E)) = exp (��Leb
2

(

˜E))

as required.

Now we relate the length intensity at (6.1) to the lengths of the segments h. Due
to Theorem 6.1 we only need to consider the case where all segments are horizontal,
because if K is a disk centered at the origin we know that E[L(⌅

h

\K)] = E[L(R(⌅

h

)\
K)]. Hence, as R(⌅

h

) can be represented by �� [0, h], where � is a planar Poisson
point process of intensity �. In consequence (6.1) becomes

⌫h
�

=

E[Leb
1

([K])]

Leb

2

(K)

=

E[Leb
1

((�� [0, h]) \K)]

Leb

2

(K)

.
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However, if h
1

2 (0, h), it is clear that we can express � � [0, h] as the following
disjoint union (�� [0, h

1

]) [ (�� [h
1

, h]). So ⌫h
�

is linear in h

⌫h
�

=

E[Leb
1

((�� [0, h]) \K)]

Leb

2

(K)

=

E[Leb
1

((�� [0, h
1

]) \K)]

Leb

2

(K)

+

E[Leb
1

((�� [h
1

, h]) \K)]

Leb

2

(K)

= ⌫h1
�

(K) +

E[Leb
1

(({�+ h
1

}� [0, h� h
1

]) \K)]

Leb

2

(K)

= ⌫h1
�

+ ⌫h�h1
�

.

Here � + h
1

has the same distribution as �, since � is a stationary Poisson point
process. As a consequence we may deduce ⌫h

�

= h⌫1
�

.

But ⌫h
�

is also linear in �: apply the superposition theorem to decompose the original
Poisson point process � of intensity � into two independent Poisson point process
�

1

and �
2

with respective intensities �
1

and �
2

, such that � = �
1

+ �
2

. Therefore

⌫h
�

= ⌫h
�1

+ ⌫h
�2

.

In sum, we conclude that ⌫h
�

should be of the form k�h. We determine the value for
k = ⌫1

1

by considering the case when K is the unit square [0, 1]2. If we denote by
�(K) the amount of points from � (a Poisson point process with intensity �) that
falls in K we get (recall �(K) ⇠ Po(�Leb

2

(K)))

⌫h
�

= h⌫1
�

= h
E
⇥

Leb

1

((�� [0, 1]) \ [0, 1]2)
⇤

Leb

2

([0, 1]2)

= hE

2

4

X

⇠*[0,1]2
Leb

1

(⇠ \ [0, 1]2)

3

5

= hE

2

4

�([0,1]

2
)

X

k=1

U(0, 1) +

�([�1,0]⇥[0,1])

X

k=1

U(0, 1)

3

5

= 2hE[�([0, 1]2)]⇥ E[U(0, 1)] = h� .

Here we are using the fact that if ⇠ * [0, 1]2, then its marker point x falls either in
[0, 1]2 or in [�1, 0]⇥ [0, 1], see figure 6.2. Either way, Leb

1

(⇠ \ [0, 1]2) is distributed
according to a U [0, 1] random variable (recall the construction of the Poisson point
process where we draw �([0, 1]2) points scattered as independent and identically dis-
tributed uniformly on [0, 1]2).

Now, recalling that the unit Poisson line process ⇧ (where � = 1/2, since we are
considering undirected lines) has length intensity equal to ⇡/2. To obtain this result
notice that the length of a chord (a line at a distance r from the origin o) in B

1

(o) is
given by 2

p
1� r2, see figure 6.3. Therefore the calculations for the length intensity

104



(0, 0)

(1, 0)

(�1, 0)

(0, 1) (1, 1)(�1, 1)

x

x

⇤

Figure 6.2: Explanation for the fact that Leb1(⇠ \ [0, 1]2) has distribution 2U(0, 1). If
there is a left-end point x = (x1, y1) in the square [�1, 0] ⇥ [0, 1] then the length of the
intersection of that segment with the square [0, 1]2 is given by 1 + x1 which is Uniform on
(0, 1). Similarly, if there is a left-end point x⇤

= (x2, y2) in the square [0, 1]2 then the length
of that segment with the square [0, 1]2 is given by 1� x2 which is again Uniform (0, 1).

leads to:

⌫
�

=

E[L(⇧ \ B
1

(o))]

Leb

2

(B
1

(o))

=

�

⇡

Z

⇡

0

Z

1

�1

2

p

1� r2 dr d✓

=

2�⇡

⇡

Z

1

�1

p

1� r2 dr = �⇡ =

⇡

2

.

o

r

1

p
1�

r

2

`

Figure 6.3: Illustration of the length of the chord in B1(o).

Therefore k = ⇡/2 gives the similar desired result for segment processes. Our partic-
ular interest is with the case where ⇢ is a uniform distribution. Notice that a Poisson
segment process of length h with intensity � = 1/h has the same length intensity as
an unit Poisson line process.

6.2 Open problems for the Segment line process frame-
work

There are mainly two new open problems to be consider for future research when
working with the Poisson segment processes framework. First, when connections are
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being made through a Poisson line segment process there might not exist a continu-
ous path from one point to another. This problem can be related to the Percolation
of paths, as the length for the segment process are being fixed for this new model,
then there is a phase transition, that is for each fixed length h there will exist a
critical value for the intensity, namely �

c

, such that all points in the network will
be connected through the Poisson segment process as long as they have intensity
higher than �

c

and there will be some disconnected points from the network when
the Poisson segment process has intensity lower than �

c

. An important literature
review regarding continuum percolation is provided by Meester and Roy [33]. Be-
sides some papers that can provide some insight regarding the interaction between
percolation and stochastic geometry are Roy [40], Popov and Vachkovskaia [37] and
Roy and Tanemura [41].

Secondly, for the Poisson line process Kendall [25, Theorem 4] provides a lower
bound for the mean excess length between the route used to connect any pair of
points through the semi-perimeter routing rule and the corresponding Euclidean
distance. Along these computations, the presence of a convex hull, as the one given
by the cell C(p�,p+

) in the semi-perimeter routing rule, play an important role;
since the stochastic geometry arguments they used to measure the mean length of
these near-geodesics, given by

1

2

E
h

H
1

⇣

@C(p�,p+

)

⌘i

,

depends heavily on the convex property of this region. Nevertheless, the convexity
from the hull C(p�,p+

), in the Poisson line process framework, is a consequence of
the Poisson line process; property that is not preserved in the Poisson segment pro-
cess. Therefore, the computations in [25] can not be generalize to the new framework
of Poisson segment processes.

However, Baccelli et al. [7] provides a relevant approach that could be modified
accordingly to the Poisson segment process, as it deals with line segments of bounded
length and not infinite long lines (as the Poisson line process case). Even though, the
paths analysed by Baccelli et al. [7] are not Poisson segment processes, they do have
an important interaction with the stochastic geometry field. Mainly with random
tessellation models [43], specifically the Voronoi tessellation and its dual Dalaunay
graph [35] with respect to the vertex set �, given by a planar stationary Poisson
point process.

6.3 Final remarks

This thesis explored the mean asymptotic traffic behaviour across the Poissonian
city in more depth. The first meaningful result was presented in chapter 2, that is
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Theorem 2.1, were we generalize the result Kendall [25, Theorem 5] to any point
q = (tn, un) inside the disk of radius n B

n

(o) conditioning on the presence of an
horizontal line `

q

: y = un, that is `
q

2 ⇧. Also, along section 2.2 we verified this
result using an improper anisotropic Poisson line process, which follows the outline
presented in [25, Section 3.3] with the required modifications.

Later on, in chapter 3 we study ideas regarding Palm theory and how it can be
applied in the Poissonian city to compute the asymptotic mean traffic density across
the Poissonian city. At the same time, we provide a different version for Theorem
2.1, where the source and destination nodes belong to the disk B

n

(o), but not nec-
essarily to the transportation network ⇧, actually almost surely they will not belong
to ⇧. In contrast, Theorem 3.4 analyse the same mean asymptotic traffic with the
source and destination nodes being a Poisson point process over the transportation
network given by the Poisson line process ⇧.

Theorem 3.4 is applied in chapter 4 to make a comparison between the theoretical
(mean asymptotic) traffic density in the Poissonian city with the data compiled by
British Railways Board [12] for the British railway system. Some numerics are done
here to sketch the traffic density curve in the Poissonian city. Also, we developed
an analytic expression for the asymptotic mean traffic at any point q conditioned
on the presence of a line that goes through q, the integral in question turns out to
be an Elliptic integral. The comparison shows some evident differences between the
model (Poissonian city) and the reality (British railway system). Those differences
motivates some changes in the Poissonian city model, in order to make it a more
realistic model.

Along chapter 5, we adapted previous results from the original Poissonian city in the
disk B

n

(o) to an elliptic Poissonian city over an ellipse with eccentricity given by
e =

p
1� c4 for different values of c 2 (0, 1]. Theorem 2.1 still holds true, even more,

the proof given in Corollary 5.1 suggests that Theorem 2.1 will still hold true for any
convex region with smooth boundaries, however this could be proved in a future work.
Again, some numerics are done to sketch the traffic density curve in the Poissonian
city, unexpectedly the numerics suggests that the density curve will remain exactly
the same regardless of the eccentricity of the region. A first analytic approach was
started in section 5.4 to prove this conjecture, but the Elliptic integrals involved in
the elliptic Poissonian city still requires more work to prove this conjecture rigorously.

Finally, in chapter 6 we presented another possibility to generalize the original Pois-
sonian city which involves the use of Poisson segment processes ⌅

h

, instead of a
Poisson line processes ⇧, as the spatial transportation network to make the connec-
tions. Now, with this new framework there are new open problems that were briefly
discussed in section 6.2.
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Some future work could focus on the study of Poisson segment processes, or new
approaches to make the Poissonian city a more realistic model, at least more similar
to the British railway system. Some of this approaches could be given by a new
density function for the source and destination nodes, an intensity that decreases as
one gets far away from the city centre could provide a traffic density more similar
to the one observed in British railway system. Another generalization could be done
with fibres of small curvature, in this framework it will be interesting to see if the
geometric interpretation for Theorem 2.1 has an analogy. A final third approach
could involve a more dynamic model, in which the route each passenger takes from
the source node to the destination node depends on the traffic flow over each possible
route. Nevertheless, analytical approaches could become more complicated in these
new cases; however, numerical simulations could be done as a first attempt. Also, the
invariance conjecture regarding the traffic density curve in elliptic Poissonian cities
is left as an open and interesting problem. Finally, some generalizations to Theorem
2.1 seems to be attainable, as explained before, for convex and smooth regions.
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Appendix A

R code segments for the disk

First segment code

Traffic <- function(a,b)
{

K <- function(t)
{

A <- 1 + (tan(t))^2
D <- b - a*tan(t)
x1 <- -D/A*tan(t) - sqrt(A-D^2)/A
x2 <- -D/A*tan(t) + sqrt(A-D^2)/A
y1 <- tan(t)*(x1 - a) + b
y2 <- tan(t)*(x2 - a) + b
return(sqrt((x1 - x2)^2 + (y1 - y2)^2) *

sqrt((a - x2)^2 + (b - y2)^2)* sqrt((x1 - a)^2 + (y1 - b)^2))
}
return(K)

}

Second segment code

I <- function(a,b)
{

if(a^2 + b^2 >= 1)
{

return(0)
}
else
{

return(1/pi*integrate(Traffic(a,b),lower=0, upper=pi)$value)
}

}
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Third segment code

n <- 500
x <- seq(-1,1,1/n)
y <- x

T <- matrix(0,2*n+1,2*n+1)
for(i in 1:(2*n+1))
{

T[,i] <- sapply(x, b=y[i], I)
}

persp3d(x,y,T,col="blue")
persp3D(x,y,T)

Fourth segment code

T <- T/max(T)
L <- seq(0,1,1/n)
TA <- sum(T > 0) #Amount of points inside the disk
NP <- sum(T==0) #Amount of points outside the disk
PA <- rep(0,n+1)
#To collect the proportion of area that has less or equal
#than certain level of traffic.
for(j in 1:(n+1))
{

PA[j] <- sum(T <= L[j]) - NP
}

PT <- rep(0,n+1)
TF <- sum(T) #Total traffic flow
#To collect the proportion of traffic flow given by a region
#with traffic less or equal than certain level of traffic.
for(j in 1:(n+1))
{

PT[j] <- sum((T <= L[j])*T)
}

plot(PA/TA,PT/TF,type="l",lwd=2,col="blue",
xlab="Proportion of the Network",
ylab="Proportion of Total traffic, T",
main="Traffic per mile distribution on the Poissonian city")

Fifth segment code
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Z <- outer(x,y,function(x,y) x^2 + y^2 - 1)
Z1 <- (L[199] <= T & T <= L[203]) #40% Level set
Z2 <- (L[399] <= T & T <= L[403]) #80% Level set
contour(x,y,Z,levels=0, xlab="x - coordinate",

ylab="y - coordinate", asp=1)
#Plot unit disk
title("Level sets for the mean asymptotic traffic
in the Poissonian city")
par(new=TRUE)#To keep plot on the same window
contour(x,y,Z1,levels=1, asp=1)
#Plot of level sets around 40%
par(new=TRUE)#To keep plot on the same window
contour(x,y,Z2,levels=1, asp=1)
#Plot of level sets around 80%

Sixth segment code

x <- seq(0,pi,0.0005)
y <- seq(0,1,0.00005)
O <- rep(1, length(y))
o <- rep(0, length(y))

F1 <- function(r)
{

f1 <- function(x)
{

return((1 - (r*sin(x))^2)^(1/2))
}
return(f1)

}

I1 <- function(r)
{

return(integrate(F1(r),lower=0, upper=pi)$value)
}

int1vec <- function(t)
{

return(sapply(t,I1))
}

F2 <- function(a)
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{
f2 <- function(r)
{

return(4*r*(1 - r^2)*I1(r))
}
return(f2)

}

I2 <- function(a)
{

return(integrate(F2(a),lower=0, upper=a)$value)
}

int2vec <- function(s)
{

return(sapply(s,I2))
}

g <- function(x)
{

return(1 - int2vec(x)/int2vec(O))
}

plot(y,g(sqrt(1-y)),type="l",lwd=2,col="blue",
xlab="Proportion of the Network",
ylab="Proportion of Total traffic, T",
main="Traffic per mile distribution on the Poissonian city")

112



Appendix B

R code segments for the ellipse

First segment code

Traffic <- function(a,b)
{

K <- function(t)
{

c <- 0.75
A <- c^4 + (tan(t))^2
D <- b - a*tan(t)
x1 <- -D/A*tan(t) - c/A*(A-(c*D)^2)^(1/2)
x2 <- -D/A*tan(t) + c/A*(A-(c*D)^2)^(1/2)
y1 <- tan(t)*(x1 - a) + b
y2 <- tan(t)*(x2 - a) + b
return(sqrt((x1 - x2)^2 + (y1 - y2)^2) *

sqrt((a - x2)^2 + (b - y2)^2)* sqrt((x1 - a)^2 + (y1 - b)^2))
}
return(K)

}

Second segment code

I <- function(a,b)
{

c <- 0.75
if((c*a)^2 + (b/c)^2 >= 1)
{

return(0)
}
else
{

return(1/pi*integrate(Traffic(a,b),lower=0, upper=pi)$value)

113



}
}

Third segment code

c <- 0.75
n <- 500
x <- seq(-1,1,1/n)
y <- x/c
x <- x/c

T <- matrix(0,2*n+1,2*n+1)
for(i in 1:(2*n+1))
{

T[,i] <- sapply(x, b=y[i], I)
}

persp3d(x,y,T,col="blue")
persp3D(x,y,T)

Fourth segment code

c <- 0.75
Z <- outer(x,y,function(x,y) (c*x)^2 + (y/c)^2 - 1)
Z1 <- (L[199] <= T & T <= L[203]) #40% Level set
Z2 <- (L[399] <= T & T <= L[403]) #80% Level set
contour(x,y,Z,levels=0, xlab="x - coordinate",

ylab="y - coordinate", asp=1)
#Plot unit disk
title("Level sets for the mean asymptotic traffic
in an elliptic Poissonian city")
par(new=TRUE)#To keep plot on the same window
contour(x,y,Z1,levels=1,asp=1)
#Plot of level sets around 40%
par(new=TRUE)#To keep plot on the same window
contour(x,y,Z2,levels=1, asp=1)
#Plot of level sets around 80%
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