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ABSTRACT 

Reticulons are a large family of integral membrane proteins that are ubiquitous in 

eukaryotes and play a key role in functional remodelling of the endoplasmic reticulum 

membrane.  The reticulon family is especially large in plants, with the Arabidopsis thaliana 

genome containing twenty-one isoforms. Reticulons vary in length but all contain a conserved C-

terminal reticulon homology domain (RHD) that associates with membranes. An understanding 

of the structure and membrane interactions of RHDs is key to unlocking their mechanism of 

function, however no three-dimensional structure has been solved. We believe that this is, in 

part, due to difficulties in obtaining reticulon proteins in yields sufficient for structural study.  To 

address this, we report here the first bacterial overexpression, purification, and biophysical 

investigation of a reticulon protein from plants, the RTNLB13 protein from A. thaliana. 

RTNLB13 is the smallest plant reticulon and is made up of a single RHD. We used circular 

dichroism, SDS-PAGE and analytical ultracentrifugation to reveal that RTNLB13 is 45% α-

helical in a number of detergent environments, monomeric at low concentrations, and capable of 

self-association at higher concentrations. We used solution-state NMR to screen the effect of 

detergent type on the fold of isotopically-enriched RTNLB13, and found that ~60% of the 

expected protein peaks were broadened due to slow dynamics. This broadening points toward a 

large network of protein-membrane interactions throughout the sequence. We have interpreted 

our results in light of current literature and suggest a preliminary description of RTNLB13 

structure and topology. 

KEYWORDS 

Reticulon; plant; Arabidopsis thaliana; bacterial expression; transmembrane domain; nuclear 

magnetic resonance spectroscopy; circular dichroism  
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INTRODUCTION 

The endoplasmic reticulum (ER) is the entry of point of the secretory pathway in eukaryotic 

cells 1. It is a very dynamic, polymorphic network of membrane sheets and tubules 2, which is 

anchored to the cytoskeleton and undergoes constant remodelling 3. In plants, the ER is the key 

site of synthesis of storage proteins and lipids. In some species, the ER itself serves as a protein 

storage compartment 4. The unique morphology of the ER depends on proteins that can shape its 

membrane into tubules or sheets 5.  

Reticulons are a large family of integral membrane proteins that have been demonstrated to 

be both necessary and sufficient to induce the formation of ER tubules, both in vivo 6, 7 and in 

vitro 8. Reticulons have been shown to be a requirement for embryonic viability in 

Caenorhabditis elegans 9, and are ubiquitous in eukaryotes, suggesting a general requirement for 

reticulons. In higher eukaryotes, including humans, reticulons appear to have a role in 

neurological disorders with the best studied example, RTN4-A or Nogo, re-igniting interest in 

this protein family twelve years ago 10, 11. They have also been implicated in apoptosis, neurite 

growth and interacting with the BACE enzymes in mammalian systems 12. Recently, GTPases 

such as RHD3 and atlastins were shown to interact with the reticulons and to further contribute 

to ER network formation 8.  The reticulon gene family is remarkably large in higher plants 10, 

referred to as reticulon-like proteins family B (RTNLB).  Indeed there appear to be many more 

isoforms in plants than are found in mammalian or yeast systems, with the Arabidopsis thaliana 

genome containing at least 21 reticulon isoforms 5 as compared to four in mammalian systems 

(RTN1-4)11 and two in yeast. When overexpressed in plant cells, reticulons are able to remodel 

the ER membrane by introducing constrictions in the tubular ER network, which limit diffusion 

of soluble proteins in its lumen 6, 13 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 4

Reticulons vary considerably in length (from 200–1200 residues), but share a conserved C-

terminal region called the reticulon homology domain (RHD) which facilitates association with 

the membrane via two large hydrophobic regions 10. The shortest plant reticulon isoform, 

RTNLB13 from A. thaliana (206 amino acids), is composed almost exclusively of a single RHD 

and has been shown to remodel large ER cisternae into tubules in vivo 14. While the topology of 

the RHD has been the subject of some debate (i.e. whether it forms a two transmembrane (TM) 

domain V-shape vs. a four TM domain W-shape in the membrane, Fig. 1A), in vivo data suggest 

that five reticulon isoforms (including RTNLB13) from A. thaliana each contain four TM 

domains within the RHD, forming a W shape in the ER membrane and placing the N- and C- 

termini and the loop between TM domains 2 and 3 in the cytosol 13.  This topology has been 

further supported in a recent structural study by Brady and co-workers of the RHD-containing 

Yop1p protein from Saccharomyces cerevisiae 15.    

The tubule-forming activity of reticulons has been proposed to derive from a combination of 

wedging – i.e. the ability of reticulons to cause higher displacement of the outer leaflet of the ER 

membrane – and scaffolding, which is caused by several wedge-shaped reticulons forming low-

mobility oligomeric assemblies within the membrane 9. The wedging property of reticulons 

seems to be a function of both their topology and the unusual length of their TM regions. Both 

shortening the TM domains of a plant reticulon 14 and lengthening the TM domains of a 

mammalian reticulon 16 lead to a loss of both tubule-forming function and the capacity of these 

proteins to oligomerise. The general conclusion from these experiments is that the length and 

number of the TM domains is crucial to reticulon function.  

Despite these studies, as yet there is no three-dimensional structure elucidating the exact TM 

toplogy of reticulons or their mode of function. This is in part due to the significant challenges of 
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protein production. Indeed, over the past 10 years very few laboratories have been able to 

demonstrate successful overexpression, purification and reconstitution of recombinant RHDs in 

yields suitable for structural or functional measurements, with only two reports in E. coli 15, 17 

and two in yeast 7, 8.  The few high-resolution structural studies reported have focussed primarily 

on the soluble loops and N- and C-termini of mammalian isoforms, specifically human RTN1-C 

18, human RTN3 19 and human RTN4 (also known as the neurite outgrowth inhibitor or Nogo) 20-

22.  These studies have revealed metal-binding properties of the C-terminus of RTN1-C 18, the 

intrinsic disorder of the N- and C-terminal tails of human RTN3 and RTN419, 21 (proposed to 

confer multi-functionality) and the stable folding of the extracellular loop of human RTN4 

(called Nogo-66) on the surface of membrane mimetics 20, 22. Only twice have high-resolution 

structural analyses been reported for the entire RHD (i.e. including TM domains): the first was 

for human RTN1-C 17 and more recently the Yop1p RHD from S. cerevisiae was investigated 15. 

In both studies, the RHDs were shown to contain significant α-helical content and form 

oligomers. Brady and coworkers went further to suggest a structural model for Yop1p RHD 

based on NMR chemical shift and relaxation measurements 15 which included a putative C-

terminal amphipathic helix thought to play a key role in tubule formation in vitro.  Such an 

amphipathic helix has also been proposed at the C-terminus of the plant reticulon RTNLB13 23.  

As RTNLB13 is both the smallest and best-studied plant reticulon isoform, it is an ideal 

candidate for further structural investigation of the RHD. Toward this end, we report here the 

first bacterial overexpression, purification, and preliminary biophysical characterization of 

RTNLB13. We have optimized expression of this protein in yields suitable for structural 

characterization, developed a protocol for reconstitution in a range of membrane mimetic 

environments, and have used circular dichroism and analytical ultracentrifugation to characterize 
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the secondary structure and oligomeric state of the protein. We have also used solution NMR to 

screen the effect of detergent type on the quality of NMR spectra for isotopically-enriched 

RTNLB13 samples in order to identify conditions for future structural investigations. Our results 

suggest common features between RHDs from plants, yeast and mammals (despite very low 

sequence conservation) and propose a preliminary model to describe RTNLB13 structure and 

topology. 

 

EXPERIMENTAL METHODS 

Protein expression and membrane harvesting.  

The A. thaliana RTNLB13 gene was codon optimized for E. coli and an N-terminal 

octahistidine tag was added at the N-terminus. The optimized His8-RTNLB13 gene was 

synthesized by Genscript (Piscataway, NJ), amplified using PCR and digested with NcoI and 

BamHI. The digested PCR product was ligated into a similarly digested pET28a vector 

(Novagen) and transformed into E. coli expression strains BL21 (DE3), C41 (DE3) or C43 

(DE3).  Cells expressing unlabeled protein were grown at 37°C to OD600 = 0.6–0.7 before 

induction with 0.4 mM isopropyl β -D-1-thiogalactopyranoside (IPTG), at which point the 

temperature was reduced to 30°C and overexpression was carried out for 4–6 hours. To prepare 

15N-labelled protein, cells were grown at 37 °C to OD600 = 0.6–0.7.  Cells were then harvested 

gently by centrifugation (1500 × g), washed twice with 1 × M9 minimal salts medium (0.4% D-

glucose, 0.1% NH4Cl, 50 mM Na2HPO4 .7H20 , 50 mM KH2PO4, 5 mM NaCl and 10 mM 

MgSO4), and resuspended in M9 containing 2 g/L glucose, 1 g/L 15N ammonium chloride, 1 × 

Basal Medium Eagle (BME) vitamins, and 100 µM iron (III) chloride. The resuspension volume 

was either half or one quarter of the Luria broth (LB) volume to achieve a two-fold (or four-fold) 
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concentration in cell density according to a method published by Marley and coworkers 24. Cells 

were then incubated for 1 hour at 20°C, induced with 1 mM IPTG, and overexpression was 

carried out over 24 hours at 180 rpm. Triply (13C, 15N, and 2H) labeled protein was prepared as 

above with the addition of uniformly 13C-labelled glucose (4 g/L) to the M9 media and 

substitution of 100% deuterium oxide for water. Expression levels were monitored by Western 

blotting against the His8 tag, and a band near the theoretical molecular weight of the His8-

RTNLB13 product (24.9 kDa) indicated protein expression.  

Cell pellets from 1 L of culture were resuspended in lysis buffer (20 mg/mL phosphate 

buffer or 50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 1 mg/mL lysozyme, 5 ul DNAse (2 U/ul), 1 × 

protease inhibitor cocktail tablet (Roche, UK)) and incubated on ice for 30 minutes. The cells 

were lysed by sonication, and unbroken cells and cell debris were isolated from buoyant 

membrane fragments by a low speed centrifugation step (15,000 × g, 12 min., 4°C).  

Ultracentrifugation (150,000 × g, 45 mins.) was used to pellet the cell membranes from the 

supernatant. The membrane pellet was resuspended in phosphate buffered saline (25 mM 

Na2HPO4, 137 mM NaCl, pH 7.3) containing 10% glycerol and 1% n-dodecyl-β-d-

maltopyranoside (DDM) detergent, and rotated overnight at 4°C. Insoluble membranes were 

pelleted by ultracentrifugation at 150,000 × g.  The supernatant and the pellet were then analyzed 

by SDS-PAGE and immunoblotting against the His8 tag. The resulting bands were analyzed 

using ImageJ 25 to quantify the fraction of protein solubilized.  

 

Purification of RTNLB13 from membranes. 

Purification was performed using immobilized metal affinity chromatography (IMAC) by 

incubating 1 mg/mL Talon cobalt resin (BD Biosciences, UK) with clarified, DDM-solubilized 
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membranes for 30 minutes at 4°C. Resin was separated by centrifugation (700 × g, 5 min.), 

resuspended in 5 mL 50 mM Na2HPO4, 300 mM NaCl, 0.1% detergent, pH 7.0 (wash buffer), 

and loaded into a 5 mL disposable column (Thermo Scientific Pierce, UK). The wash and elution 

steps were performed at 4°C in buffer containing 0.1 % w/v detergent and either 10 mM or 150 

mM imidazole, respectively, according to the manufacturer’s instructions. Fractions containing 

protein were pooled and concentrated using an Amicon Ultra centrifugal filter unit (Millipore) 

with a molecular weight cutoff (MWCO) of 5–10 kDa to a final volume 500 µl. A second 

purification step and detergent exchange into one of a panel of detergents was carried out using 

size exclusion chromatography (SEC), specifically a Superdex 200 10/300 GL gel filtration 

column connected to an Akta purification system (GE Healthcare/Amersham Biosciences, UK), 

equilibrated with 25 mM Na2HPO4, 150 mM NaCl, 0.05% detergent, pH 7.0. The panel of 

detergents consisted of 1,2-diheptanoyl-sn-glycero-3-phosphocholine (C7-DHPC), 1,2-

dihexanoyl-sn-glycero-3-phosphocholine (C6-DHPC), sodium-n-dodecyl-sulphate (SDS), 

dodecylphosphocholine (DPC), 14:0 lyso-phosphatidylglycerol (LMPG), and 16:0 lyso-

phosphatidylglycerol (LPPG) (all obtained from Sigma Aldrich and Avanti Polar lipids). 

Following SEC, His-RTNLB13 was concentrated using a 30 kDa MWCO Amicon concentrator 

unit. The identity and purity of the protein was confirmed by peptide mass fingerprinting 

analyses carried out at the School of Life Sciences, University of Warwick using electrospray 

ionization mass spectrometry (ESI-MS). Protein concentration estimation was performed using 

either the bicinchoninic acid (BCA) assay or UV-Vis absorbance at 280 nm and the theoretical 

extinction  coefficient of RTNLB13 (ε280 = 50,085 M–1 cm–1).   
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Sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE)  

The purity of all protein fractions at each stage of preparation was assessed using SDS-

PAGE (visualized using both Coomasie Blue R250 and silver nitrate) and immunoblotting 

against the His8 tag. SDS-PAGE gels (12%) were prepared according to the Laemmli protocol 26. 

Pre-cast 12% NuPAGE Bis-Tris gels (Invitrogen, UK) were also used according to the 

manufacturer’s instructions. Samples for SDS-PAGE were prepared by mixing RTNLB13 

samples with SDS-PAGE loading buffer (125 mM pH 6.8, 20% glycerol, 4% SDS, 0.02 % 

bromophenol blue, 5 mM dithiothreitol (DTT)) or NuPAGE LDS sample buffer (Invitrogen) and 

heating at 37°C for 10 minutes or 70°C for 10 minutes, and were run alongside See blue Plus 2 

(Invitrogen, UK) or Color-plus 7-175 kDa (New England Biolabs, UK) prestained markers.  

 

Circular Dichroism 

CD spectra were collected on Jasco J-815 or J-720 spectropolarimeters (Jasco UK, Great 

Dunmow, UK) equipped with Peltier temperature control and xenon light sources. Samples 

typically contained 0.14–0.24 mg/mL (6–10 µM) His8-RTNLB13, 20 mM sodium phosphate 

(pH 7.0), 50 mM NaCl, and the detergent of interest at concentrations ranging from 15–20 mM.  

Spectra were recorded between 190 nm and 280 nm, with a bandwidth of 2 nm and a data pitch 

of 0.2 nm. Buffer spectra were also recorded for baseline subtraction. Protein concentrations 

were approximated via the Beer Lambert law using absorbance of the protein at 280 nm (A280). 

The machine units of mdeg were converted to mean residue ellipticity (MRE) to normalize to 

protein concentration. CD data were evaluated using a self-organizing map algorithm, Secondary 

Structure Neural Network (SSNN), which provided a prediction of the protein’s secondary 

structure and an independent estimate of the samples’ concentration 27. Data below 196 nm were 
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excluded as the quality of the spectra in this region was less reliable and would negatively impact 

the accuracy of structure predictions. SSNN was retrained for this work using parameters 

according to the developer’s instructions 28, and CD data were fit using the newly trained neural 

network after applying scaling factors from 0.05–0.8 in steps of 0.05 or 0.01 to account for 

inaccurate protein concentration estimates. The best fit of the experimental data was selected 

based on the root mean squared deviation and visual evaluation.  

  

Analytical Ultracentrifugation 

Analytical ultracentrifugation was performed on a Beckman XL-I ultracentrifuge fitted 

with interference and absorbance optics, at the School of Biological Sciences, University of 

Birmingham. Three protein concentrations (8–20 µM), corresponding to A280 values of 1.0, 0.7 

and 0.4, were prepared in 50 mM Tris HCl (pH 7.2) containing 100 mM NaCl, 15 mM DPC, and 

52.5% D2O. These samples were loaded into a 6 cell center-piece outfitted with sapphire 

windows alongside buffer reference blanks, and centrifuged at 20,000, 28,000, and 35,000 rpm 

for 36 hours at 4°C. Absorbance data were analysed and processed with WinReed and 

WinMatch, before fitting in WinNonlin 29 as described previously 30.  

 

Nuclear magnetic resonance experiments 

Samples for NMR analyses were prepared by concentrating purified protein to 180 µL 

with an Amicon concentrator, either with a 3 or 10 kDa cutoff. If required, detergent was added 

to the sample following removal from the concentrator unit and sonicated for 5 minutes. The 

sample pH was checked and, if needed, adjusted with 0.5 M acetic acid, prior to pipetting the 

sample into a 3 mm NMR tube. Typical protein concentrations were 0.1–0.2 mM; at pH values 
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between 6–7, the buffer used was 10–20 mM Na2HPO4, 40 mM NaCl, 90% H2O, 10% D2O, with 

the required concentration of detergent. For experiments performed between pH 5−6, 20 mM 

sodium acetate buffer, containing 40 mM NaCl, 90% H2O, 10% D2O was used. NMR spectra 

were recorded with 2048 × 128 data points or 2048 × 256 data points on either an Avance 700 

MHz spectrometer or an Avance 600 MHz spectrometer (Bruker Biospin), the former equipped 

with a triple resonance inverse cryoprobe with Z-gradients. The 600 MHz instrument was fitted 

with a TBI inverse, room temperature, triple resonance probe with Z-gradients. Data was 

processed in Topspin 2.1 (Bruker Biospin).  

 

RESULTS AND DISCUSSION 

E.coli expression, purification, and characterization of RTNLB13 from A. thaliana 

Three E.coli strains were tested for expression levels of His8-RTNLB13, namely 

BL21(DE3), and the C41 and C43 strains optimized for membrane protein expression and 

referred to as the Walker strains31. As shown in Fig. 1B, upon testing two expression 

temperatures and two IPTG concentrations, the BL21 (DE3) strain was found to produce the 

largest amount of protein when grown in LB medium. Western blotting revealed two intense 

bands migrating at the expected monomeric and dimeric molecular weights (predicted 

monomeric MW = 23.8 kDa), and also showed evidence of aggregated protein in the wells of the 

gel. Differential centrifugation indicated that the bulk of His8-RTNLB13 was located in the 

membranes (Fig. 1C). When the medium was changed to M9 minimal medium, containing 15N 

ammonium chloride (1 g/L) as the primary nitrogen source and glucose (2 g/L) as the sole carbon 

source, protein expression levels fell below detection. Because low levels of trace metals can 

substantially affect cell health, and it has been shown that addition of 100 µM iron can increase 
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expression to similar levels achieved when a ‘full’ trace metal mixture was utilized 32, 100 µM 

iron (III) chloride was added to the media. As shown in Fig. 1D, expression was restored upon 

addition of iron and 1 mM IPTG. The glucose concentration was also varied, however had a 

negligible effect on expression levels of singly 15N-labelled protein and was therefore maintained 

at 2 g/L. The glucose concentration was increased to 4 g/L (or even 8 g/L) to express doubly 

(13C/15N) and triply (13C/15N/2H) labeled His8-RTNLB13, although His8-RTNLB13 expression 

levels were severely diminished upon addition of 13C glucose and deuterium oxide (data not 

shown) making further investigation of the doubly and triply labeled protein intractable. 

Subsequent analyses were carried out on the uniformly 15N-labeled protein.    

Dodecyl-β-D-maltoside (DDM) detergent was used to extract His8-RTNLB13 from cell 

membranes. DDM demonstrated good efficiency in solubilizing His8-RTNLB13 and is 

considered to be a “mild” detergent that is commonly used in membrane protein studies and 

thought to maintain protein structure during purification. Furthermore, DDM does not interfere 

with charged binding interfaces as employed by IMAC-based technologies, preventing a 

reduction in recovery. His8-RTNLB13 was initially purified by application of DDM-solubilized 

membranes to cobalt-charged NTA resin followed by elution with imidazole into a 0.1% w/v 

detergent solution. SDS-PAGE and immunoblotting were used to monitor binding and elution 

(Fig. 1E). Protein bands were only visible upon Western blotting against the poly-His tag: 

Coomassie blue staining (see upper panel of Fig. 1E) was consistently ineffective at detecting 

His8-RTNLB13. To resolve these detection issues, silver staining was used, however silver 

nitrate was also unable to bind to His8-RTNLB13. This behavior has been reported in the past, 

for example Newstead and coworkers 33 were only able to detect overexpression of some 

membrane protein-GFP fusions through fluorescence detection because Coomassie staining was 
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not effective. For His8-RTNLB13, the cause of this poor staining is unknown, but is not due to a 

lack of basic residues (Coomassie primarily binds to arginine, lysine and histidine) since there 

are 30 such residues in the protein.  Nevertheless, we were able to use a combination of 

Coomassie staining and Western blotting to confirm the presence and purity of overexpressed 

His8-RTNLB13. 

 

Identification of optimal detergent for structural analyses of RTNLB13 

 As demonstrated previously for the yeast reticulon-like protein Yop1p15, NMR has the 

potential to shed new light on the topology and three-dimensional structure of RHD-containing 

proteins in membrane mimetics such as detergent micelles. However, while DDM is a suitable 

detergent for purification, the micelles formed by this non-ionic detergent are very large (50–70 

kDa) and intractable for solution-state NMR studies. The current lack of a ‘universal’ detergent 

that optimally solubilizes all membrane proteins and has properties suitable for solution NMR 

structural studies means that empirical studies must be carried out to ascertain which detergents 

yield well-folded and concentrated membrane protein samples.  To this end, we screened a panel 

of detergents for their ability to solubilize NMR-viable concentrations of His8-RTNLB13 in a 

folded state. To select detergents for testing, solution NMR-based structural studies curated on 

the Membrane Protein NMR Database [http://www.drorlist.com/nmr/MPNMR] were analyzed, 

revealing that membrane protein structures have been successfully solved in DPC, C6- and C7-

DHPC, LMPG, LPPG and SDS. Therefore, these detergents were investigated here for their 

ability to solubilize and stabilize His8-RTNLB13. The properties of these detergents are 

summarized in Table 1 and demonstrate that all of the detergents tested (apart from LPPG) have 

a small micelle size (micellar molecular weights (MWmic) ≤ 26 kDa) and either zwitterionic or 
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charged head groups.  They have a variety of critical micelle concentrations (CMC = 18 µM – 14 

mM) and acyl chain lengths (6 – 16 carbons in length), but all detergents tested have fully 

saturated acyl chains.  

Because DPC and LMPG are the detergents in which the largest number of membrane 

protein structures have been solved in solution, His8-RTNLB13 was initially exchanged from 

DDM into each of these detergents on a size exclusion chromatography (SEC) column, 

equilibrated with the appropriate buffer and detergent. This also acted as a further purification 

step producing highly pure protein.   

 

Effect of detergent concentration, temperature, and pH on His8-RTNLB13 NMR spectra 

His8-RTNLB13 was reconstituted into both DPC and LMPG at a variety of detergent 

concentrations to investigate the role of this parameter in the quality of solution state NMR 

spectra (i.e. peak number, intensity, width, and chemical shift dispersion). All spectra were 

acquired with 128 × 2048 data points and 40 scans for samples containing 0.1 − 0.13 mM His8-

RTNLB13. We selected detergent concentrations that yielded micelle : protein (M/P) molar 

ratios of 1, 8, 16 and 32, calculated using the values for aggregation number and CMC given in 

Table 134-40. As shown in the 1H-15N HSQC spectra of DPC-solubilized His8-RTNLB13 in Figs. 

2A-C, increasing the detergent concentration from 10 mM (M/P = 1) to 200 mM (M/P = 32), at 

pH 6.8 and 25°C, did not lead to a large increase in the number of peaks observed (provided in 

parentheses) but did lead to sharpening of the peaks and more consistency in peak intensities 

across the spectrum. A similar improvement of the spectrum was observed in LMPG from 

concentrations between 60 mM (M/P = 8) and 230 mM (M/P = 32) (see Fig. S1), except that in 

this detergent the number of protein peaks did increase with detergent concentration. 
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The temperature at which NMR spectra are collected can also affect the number and 

width of observed peaks. Often a high temperature (> 37°C) results in improvement of the 

spectrum due to an increase in the tumbling rate of the membrane protein – micelle complex and 

subsequent sharpening of the peaks. In this study spectra were acquired for His8-RTNLB13 

solubilized in either 200 mM DPC or 230 mM LMPG at temperatures ranging from 25-45°C. 

Comparison of Fig. 2C and 2D demonstrates that several new peaks (we estimate seven) were 

observed in the DPC-solubilized His-RTNLB13 spectrum upon increasing the temperature from 

25°C to 37°C. This effect was observed in both detergents (although data is only shown for 

DPC), however further increases in temperature (40-45°C) lead to protein precipitation and / or 

aggregation. Therefore 37°C was selected as the optimal temperature for further analyses.  

Finally, the effect of solution pH on NMR spectra was investigated as this parameter can 

have a large impact on the quality of the spectrum.  Reducing the pH below physiological pH is 

beneficial as it reduces the amide proton exchange rate and leads to sharpening of amide peaks. 

Therefore, pH values as low as pH 4.0 are regularly used for structure determination by NMR. 

1H-15N HSQC spectra of His8-RTNLB13 solubilized in either 200 mM DPC or 230 mM LMPG 

were acquired at pH 6.8 and pH 5.0 (37°C), and the results are shown in Figs. 2E (DPC) and S1 

(LMPG). In both detergents, the widths of the observed peaks were not significantly affected by 

changing the pH, nor was there a noticeable increase in chemical shift dispersion. However, the 

intensity and number of peaks observed in the HSQC spectrum increased by 20-30% as the pH 

was decreased to 5.0.   
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Detergent screen using optimized detergent concentration, pH and temperature 

 To extend the number of detergents tested to include the six major detergents used thus 

far to solve membrane protein solution structures, His8-RTNLB13 was also reconstituted in C6- 

and C7-DHPC, SDS, and LPPG in addition to DPC and LMPG. All samples were prepared using 

the optimal conditions determined from the experiments described above, i.e. detergent 

concentrations at or above 100 mM, a low pH (pH 5.0) and a temperature of 37°C, and 1H-15N 

HSQC spectra were acquired with 128 × 2048 data points and 40 scans.  The one exception was 

the sample prepared in SDS, in which precipitation was observed at low pH therefore the sample 

was prepared at pH 6.8 and the spectrum was acquired at 15°C.   

The resulting HSQC spectra are shown in Fig. 3 and the number of observed NMR peaks 

in each is summarized in Table 1. Spectra acquired in C6- and C7-DHPC yielded very few peaks 

(38 and 26, respectively), and had the lowest signal-to-noise ratio of all the data collected.  This 

is likely due to the low stability of His8-RTNLB13 in these detergents. Indeed, protein 

precipitation was observed in these samples over days (not weeks) suggesting slow protein 

aggregation. This may be linked to the short acyl chain length in these detergents (Table 1) 

failing to fully solubilize the protein.  SDS yielded a slightly improved spectrum in terms of 

signal-to-noise ratio and number of observable peaks (48 peaks), but poor chemical shift 

dispersion (likely caused by the denaturing effects of this anionic detergent) eliminated this 

sample as a candidate for further study. The spectrum acquired in LPPG yielded 65 peaks, 

equivalent to that observed in DPC and LMPG, but the variable intensity of peaks in this 

spectrum appeared more pronounced. Therefore, our results suggest that DPC and LMPG yield 

the most stable samples and the highest quality NMR spectra.  With this in mind, we acquired 

HSQC spectra with a larger number of points (2048 × 256) and scans (ns = 160) to increase the 
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signal to noise ratio, and the number of observable NMR peaks increased to 107 in 200 mM DPC 

and 114 in 230 mM LMPG (see values in parentheses in Table 1).  

 

Oligomerization of His-RTNLB13 in detergent micelles 

The maximum number of peaks (114 peaks) observed in the HSQC spectrum of His8-

RTNLB13 accounted for only 40% of the number of peaks predicted from the amino acid 

sequence of His8-RTNLB13 (214 backbone peaks and 70 side chain = 284 peaks). The greatly 

reduced number of observable NMR peaks prevented assignment of the protein, and could be 

due to oligomerization of His8-RTNLB13 and subsequent relaxation broadening of protein 

signals. The immunoblot shown in Fig. 1E (bottom panel) indicated the formation of SDS-

resistant dimers and higher-order His-RTNLB13 oligomers. The elution fraction containing the 

highest concentration of His8-RTNLB13 (elution fraction 3) yielded bands at the monomeric 

molecular weight (band labeled M at ~25 kDa), dimeric molecular weight (band labeled D at ~50 

kDa) and higher molecular weights (band labeled n at > 64 kDa). This oligomerization is 

unsurprising as RTNLB13 has been reported to self-associate in vivo 9, 13. To further investigate 

the strength of RTNLB13 oligomerization, sedimentation equilibrium analytical 

ultracentrifugation experiments were performed for the His8-RTNLB13 protein solubilized in the 

detergent DPC. DPC is highly amenable to AUC measurements and has been used several times 

in the past for membrane protein analyses 30, 41, 42. Samples contained 8 − 20 µM His8-RTNLB13 

and 15 mM DPC to achieve micelle: protein molar ratios similar to those used in NMR analyses 

(M/P = 9 − 24). The concentration versus radial distance profiles collected for His8-RTNLB13 at 

three protein concentrations and three speeds are shown in Fig. 4. Data were initially fit to a 

monomer model as well as models of higher oligomer formation (e.g monomer-dimer), and the 
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resulting variance and residuals of the fit were used as a measure of the goodness-of-fit of a 

given model. Surprisingly, the model which best represented the DPC-solubilized His8-

RTNLB13 data was the simple monomer model, and the fit curve is shown with the experimental 

data in Fig. 4. Addition of higher order oligomeric states to the model resulted in a poor fit of the 

data and obvious trends in the residuals. Thus the higher order oligomers observed in Western 

bolts were not observed using analytical ultracentrifugation. These results do not rule out 

formation of RTNLB13 oligomers in vivo (indeed, we see oligomers of the protein consistently 

on gels), but do suggest that the protein is predominantly monomeric under NMR conditions and 

the absence of NMR peaks is not likely due to protein oligomerization.   

 

Secondary structure of His-RTNLB13 in various detergents using CD 

The secondary structure content of RTNLB13 has not yet been reported, and may shed 

light on the structure and topology of the protein and complement the level of information 

available from NMR. With this in mind, we used both theoretical and experimental tools to study 

the secondary structure of RTNLB13. The Jpred3 43 and Psipred 44 algorithms were used initially 

to predict the secondary structure content from the primary sequence, and yielded very similar 

values ( ~ 68% α-helical/5% β-sheet, with predicted helical regions shown in Fig. 5A). CD was 

then used to estimate the secondary structure content of purified His8-RTNLB13 in the panel of 

detergents studied here. Because of the poor NMR spectra obtained in C6- and C7-DHPC, these 

detergents were not included in this analysis. Fig. 5B shows the resulting CD spectra upon 

solubilization of 6–10 µM His8-RTNLB13 in a variety of detergent types (typically at a 

concentration of 15–20 mM). All spectra contain negative maxima at 210 nm and 222 nm, and a 

positive peak at 197 nm, suggesting the protein has significant α-helical content in each detergent 
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tested. Data below 195 nm were not considered due to light scattering and high absorbance 

reducing the quality of the data. The CD data were fit using the SSNN method 27, 28 (see Fig. S2 

for fits) in order to estimate the secondary structure content in each detergent environment, and 

the results are summarized in Fig. 5C. DPC, LMPG, and SDS-solubilized His8-RTNLB13 

yielded very similar secondary structure content, with between 44–46% α-helix, 9–12% β-sheet, 

and 13–20% turns, suggesting the protein is well-solubilized and adopts a similar fold in these 

detergents. DDM-solubilized His8-RTNLB13 had a slightly higher helical content (54%) while 

LPPG yielded the lowest helical content (31%). Broadly speaking, the CD data suggested a 

helical content for reconstituted His8-RTNLB13 that was much lower than the estimates obtained 

from the primary sequence (i.e. Jpred3 and Psipred).  However, when protein topology was used 

as an estimate of helical content, predicted and experimental values were in much closer 

agreement.  Here we used a panel of seven topology-prediction algorithms44-51 to analyze the 

primary sequence of RTNLB13. The majority suggested that the protein contains four TM 

regions of approximately 18–24 residues each (Fig. 6A), with an average of 85 residues 

embedded in the membrane. If one assumes that all of the predicted membrane-spanning residues 

are present as α-helices, this would suggest a helical content of approximately 40% (see bar 

labeled “predicted”, Fig. 5C) for the 214-residue His8-RTNLB13. This range is in good 

agreement with the experimental results from CD, which indicated 44–46% α-helical content for 

RTNLB13 solubilized in LMPG, DPC or SDS.  

 

CONCLUSIONS 

We report here the first heterologous expression of a plant reticulon, RTNLB13 from A. 

thaliana, in E. coli for biophysical and structural analyses. Protein expression was achieved 
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without a fusion partner, and the resulting protein was readily soluble in detergent micelles. The 

CD, SDS-PAGE and AUC results demonstrated that our recombinant RTNLB13 protein was 

highly α-helical and capable of forming oligomers, but predominantly monomeric under NMR 

conditions making it a suitable candidate for further study using high-resolution NMR methods. 

We carried out an initial optimization of sample conditions for NMR studies, screening a number 

of detergent concentrations and types, as well as pH and temperature. There was little correlation 

between physical properties of the detergent (e.g. chain length, head group polarity, CMC) and 

the ability to solubilize RTNLB13, further highlighting the requirement to test a range of 

detergents when working with membrane proteins. Although steady improvement in the quality 

of the NMR spectrum was achieved, the dynamics of His8-RTNLB13 in detergent micelles lead 

to severe broadening of over 60% of the expected peaks thus impeding attempts at assignment. 

Further work is required to establish solution conditions amenable to full backbone assignment.  

 Apart from demonstration of methods for efficient bacterial overexpression and 

reconstitution of RTNLB13 for further structural analysis, we sought to shed light on the 

structure, membrane interactions and topology of this plant reticulon. Topology prediction and 

secondary structure estimates from CD data lead us to suggest there are likely four TM regions in 

His8-RTNLB13 (and scope for additional helical structure, which will be discussed later).  The 

residues spanning the membrane bilayer (or detergent micelle, in this case) will be highly 

structured and will reorient more slowly in solution than residues present in the soluble regions 

of the protein. The reduced dynamics of the TM residues would lead to broad, undetectable 

signals in solution NMR experiments while the signals from the more mobile, soluble protein 

regions are easily detectable. This phenomenon has been exploited in the past to map the location 

of membrane-spanning regions for a variety of membrane proteins 52, and offers a potential 
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explanation for the reduced number of peaks observed in the HSQC spectra of His8-RTNLB13 

described here. The topology prediction analyses of His8-RTNLB13 suggested that an average of 

129 residues comprise the soluble (i.e. non-TM) regions of the protein such as the loops and C- 

and N-terminal tails. The 114 observed peaks in the optimized HSQC spectrum are therefore 

likely due to residues in these soluble regions, but still cannot account fully for the number of 

residues predicted in these regions.   

The reduced number of NMR signals obtained suggests that other residues in His8-

RTNLB13, apart from those in the TM domains, display reduced dynamics in the presence of 

detergent micelles leading to a disappearance of peaks in the NMR spectrum. This reduction in 

dynamics may be due to association of other regions of RTNLB13 with the membrane mimetic. 

We have recently proposed the presence of a 16-residue membrane-bound amphipathic helix 

(APH) in RTNLB13 spanning residues E160-K175 
23, similar to that found in the RHD-containing 

protein Yop1p 15.   If we assume that the 16 residues in this APH are highly helical, this would 

increase the total predicted helical content to 47%, a value that agrees closely with the 44-46% 

range estimated from CD data.  Likewise, if we assume that the 16 APH residues display slow 

dynamics due to association with the micelle, as was shown for the Yop1p APH 15, the total 

number of observable peaks estimated in the HSQC spectrum would decrease to 113, a value that 

is very close to the maximum number of observed peaks in this study (114).  Together, our 

preliminary CD and NMR data point toward a surprisingly self-consistent model for the protein 

that is shown in Fig. 6B. This model is highly speculative, but accounts for the helical content 

observed here as well as the reduced dynamics of 60% of the residues as would be expected for a 

predominantly membrane embedded/associated protein. This is in keeping with the very poor 

staining of RTNLB13 by Coomassie and silver nitrate reported here, which also indicates that 
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the bulk of the protein is inaccessible, and supports the W-shape topology for reticulons 

proposed in the literature.  

The data reported here support results obtained in vivo regarding the transmembrane 

topology of RTNLB13, and extend our understanding to regions outside the TM domains. 

Specifically, our results are in agreement with recent reports indicating that nearly all members 

of the reticulon family carry an amphipathic helix distally from the RHD 15, 23. Given that the 

length of the transmembrane domains seems to be a crucial feature for the tubule-forming 

function of reticulons, it will be interesting to test whether the APH also plays a role in 

stabilizing ER tubule curvature in vivo. 
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TABLES 

 

Table 1: Properties of the detergents tested in this study and resulting number of 1H-15N 

HSQC NMR peaks observed for 15N-labelled His8-RTNLB13.  Published values for the 

aggregation number (NA) and critical micelle concentration (CMC) have been taken from the 

literature for DDM37, DPC33, C6- and C7-DHPC38, 39, SDS35, LMPG36 and LPPG34, 36.  The final 

column lists the number of His8-RTNLB13 peaks observed in each detergent in spectra acquired 

with 2048 × 128 data points and 40 scans per plane (the number of observable peaks upon 

increasing the number of points to 2048 × 256 and the number of scans to 160-180 is shown in 

parentheses).   

 

Detergent Chain 
length 

MW (Da) Charge NA MWmic   
(kDa) 

CMC 
(mM) 

NMR 
peaks 

DDM 12 511 nonionic 140 71.5 0.17 n/d 
DPC 12 351 zwitterionic 70-80 24.6 1.5 65 (107) 
C7-DHPC 7 482 zwitterionic 25 12.1 1.5 26 
C6-DHPC 6 453 zwitterionic 35 15.9 14 38 
SDS 12 288 anionic 50 14.4 8 48 
LMPG 14 478 anionic 55 26.3 0.16 67 (114) 
LPPG 16 507 anionic 125 63.4 0.018 65 
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FIGURE LEGENDS 

Figure 1. Bacterial overexpression of His8-RTNLB13. A. Proposed topologies for the 

reticulon homology domain. B. Anti-His Western blot of His8-RTNLB13 expression in three 

strains of E. coli, namely BL21, C41 and C43.  Two temperatures (15°C and 30°C) and two 

IPTG concentrations (0.05 and 0.5 mM) were tested, and expression was carried out in LB 

medium.  Induction was carried out for 24 and 48 hours at 15°C, however bands for His8-

RTNLB13 (at approximately 20 and 40 kDa) were observed only in BL21 after 48 hours (no 

protein expression was observed in C41 or C43). At 30°C, induction was carried out for 4 hours 

and expression was observed in all three strains.  The highest expression levels were seen in 

BL21. Uninduced controls are shown for comparison.  C. Anti-his immunoblots of soluble and 

insoluble fractions obtained after harvesting membranes by ultracentrifugation, demonstrating 

that the bulk of overexpressed His8-RTNLB13 is localized to the membranes. D. Expression in 

M9 minimal medium (E. coli strain BL21) required the addition of 100 µM Iron (III) chloride 

and 1 mM IPTG to restore expression. E. Coomassie-stained SDS-PAGE gel (upper panel) and 

an anti-His Western blot (lower panel) are shown for fractions from the purification of His8-

RTNLB13 using Talon cobalt resin. Membranes containing His8-RTNLB13 were solubilized in 

0.1% DDM (lane S) and incubated with resin for 30 minutes before loading into a column. The 

flow-through (FT) was analyzed, as was the eluent after washing the column with DDM-

containing buffer + 10 mM imidazole (W).  The protein was eluted after addition of 150 mM 

imidazole (elution fractions are shown in lanes 1-9).   Protein is only visible in Western blots as 

Coomassie repeatedly failed to stain His8-RTNLB13.  Molecular weight marker is shown in lane 

M.  Monomer (M), dimer (D), and higher order oligomer (n) bands are shown.  
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Figure 2. Effect of detergent concentration, temperature and solution pH on NMR data. 

1H-15N HSQC spectra of 180 µM 15N-labelled His8-RTNLB13 solubilized in (A.) 10 mM, (B.) 

100 mM and (C.) 200 mM DPC detergent. All three samples were prepared in 20 mM Na2HPO4, 

40 mM NaCl, 90% H2O, and 10% D2O at pH 6.8, and spectra were collected at 25°C.  A steady 

improvement in peak shape and a reduction in variable peak intensities was observed as DPC 

concentration was increased. The number of observable peaks is given in parentheses. D. 1H-15N 

HSQC spectrum of sample shown in C. measured at 37°C, in which a number of new peaks 

become visible. E. The sample analysed in D. was prepared at pH 5.0, substituting sodium 

phosphate buffer for 20 mM sodium acetate buffer and holding all other conditions constant, and 

the spectrum was measured at 37°C.  All spectra are shown at a contour level at which baseline 

noise is just becoming visible. Samples prepared in LMPG show a similar trend (Fig. S1). 

 

Figure 3. Effect of detergent type on His8-RTNLB13 NMR spectrum.  1H-15N HSQC spectra 

of (from top left to bottom right): 110 µM His8-RTNLB13 solubilized in 100 mM C6-DHPC; 110 

µM His8-RTNLB13 solubilized in 100 mM C7-DHPC; 100 µM His8-RTNLB13 solubilized in 

100 mM SDS; 95 µM His8-RTNLB13 solubilized in 100 mM LPPG; 180 µM His8-RTNLB13 

solubilized in 200 mM DPC; 130 µM His8-RTNLB13 solubilized in 230 mM LMPG.  All 

protein samples were 15N-labeled and prepared at pH 5.0, and all spectra were recorded at 37°C 

with the exception of the sample containing SDS, which was prepared at pH 6.8 and analyzed at 

15°C.  All spectra shown were acquired with 2048 × 128 data points for ease of comparison. 

  

Figure 4. Analytical ultracentrifugation analyses of His8-RTNLB13 oligomerization.  

Sedimentation equilibrium data obtained for His8-RTNLB13 protein reconstituted into 15 mM 
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DPC and density matched with 52% D2O.  Data were collected at three speeds (■ 20,000, ○ 

28,000 and ● 35,000 r.p.m.) and three protein concentrations ranging from 8-20 µM. In the upper 

panel, symbols represent experimental data and solid curves display the best fit upon global 

analysis of all nine data sets, in the case of His8-RTNLB13 the data were well represented by a 

monomeric fit.  Below each plot are the residuals of the fitting process. 

 

Figure 5. Secondary structure of detergent-solubilized His8-RTNLB13. A. Schematic 

depicting the results of secondary structure prediction from the RTNLB13 sequence using 

Psipred and Jpred3 algorithms. Regions predicted to be primarily α-helical are shaded. B. 

Circular dichroism spectra of His8-RTNLB13 (6-10 µM) dissolved in a range of detergent 

micelles (15-20 mM). Data are given in units of mean residue ellipticity (MRE, mdeg cm2 dmol-

1). C.  His8-RTNLB13 secondary structure content as estimated from CD data in each of the 

detergents tested, as well as from topology prediction algorithms (bar labeled “predicted”).   

 

Figure 6. Sequence analyses combined with experimental data yields putative model. A. 

The primary sequence of His8-RTNLB13 was analyzed using a variety of programs that predict 

membrane protein topology from sequence.  The residues predicted to lie in each TM domain are 

listed, with all but two algorithms predicting four TM domains. The average values for the 

beginning and end of each TM domain are shown in the diagram (only values from 4 TM 

predictions were used to calculate the average). B. Preliminary structural model of RTNLB13 

based on topology prediction, NMR, and CD data. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure S1. Effect of LMPG detergent concentration, temperature and solution pH on NMR 

data. 1H-15N HSQC spectra of 130 µM 15N-labeled His-RTNLB13 solubilized in phosphate 

buffer (20 mM Na2HPO4, 40 mM NaCl, 90% H2O, 10% D2O, pH 6.8) containing either 63 mM 

LMPG (blue spectrum) or 230 mM LMPG (red spectrum) and collected at 25°C.  Increasing the 

detergent concentration increased the number of observable peaks from 46 (blue spectrum) to 56 

(red spectrum). A further increase in the number of observable peaks (to 67 peaks) was achieved 

upon reducing the pH to 5.0 and increasing the temperature to 37°C for the sample containing 

230 mM LMPG (black spectrum).    
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Figure S2. CD data fitting to obtain estimates of secondary structure content. Shown below 

are the original CD spectra (solid lines) obtained in (A) DPC, (B) LMPG, (C) SDS, (D) DDM, 

and (E) LPPG.  Also shown are the best fits of the data using the SSNN software (dashed lines) 

after application of scaling factors (sf) to obtain optimal fit and provide an independent measure 

of protein concentration.  The fit residuals are shown (dotted lines) as well as the resulting 

NRMSD of each fit. 
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HIGHLIGHTS 

• First heterologous expression of a plant reticulon, RTNLB13 from A. thaliana, in E. coli.  

• Structure of detergent-solubilized protein consistent with current models in literature. 

• Demonstrate a detergent concentration-dependent ability to oligomerize. 


