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Abstract

Ensuring coordination amongst individual agents in multi-agent systems (MAS)

helps to reduce clashes between them that waste resources and time and facil-

itates the capability of the agent population to solve mutually beneficial prob-

lems. Determining this coordinated behaviour is not always possible a priori

due to technical issues such as lack of access to individual agents or computa-

tional issues due to the large number of possible clashing actions. Additionally,

in systems lacking centralised authorities, dictating rules in a top-down perspec-

tive is difficult or impossible.

Conventions represent a light-weight, decentralised and emergent solution

to this problem. Acting as a socially-accepted rule on expected behaviour they

help to focus and constrain agent interactions to facilitate coordination. Un-

derstanding how these conventions emerge and how they might be encouraged

allows scalable coordination of behaviour within MAS with little computational

or logistical overhead.

In this thesis we consider how fixed strategy Intervention Agents (IAs) may

be used to encourage and direct convention emergence in MAS. We explore their

efficacy in doing so in various topologies, both static and time-varying dynamic

networks, and propose a number of methods and techniques to increase this

efficacy further. We consider how these IAs might be used to destabilise an

existing convention, replacing it with a more desirable one and highlight the

different methods required to do this. We also explore how various limitations

such as time or observability of topological structure can impact the emergence

of conventions and provide mechanisms to counteract these issues.
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1000 node González network. . . . . . . . . . . . . . . . . . . . . 241

5.9 Effect of intervention start time for staggered interventions in the

1000 node Ichinose RR network. . . . . . . . . . . . . . . . . . . 242

5.10 The effect on scale-free graphs of different numbers of IAs when

introduced for finite time. The IA strategy is shown in blue, the

dominant strategy in orange. The shaded areas represent the

standard deviation at each timestep over the runs. . . . . . . . . 244

5.11 Number of IAs vs. the minimum length of intervention to cause

destabilisation for scale-free topologies. . . . . . . . . . . . . . . . 246

5.12 Number of IAs vs. the minimum intervention cost needed to

cause destabilisation for static topologies. . . . . . . . . . . . . . 247

5.13 Number of IAs vs. the minimum intervention cost needed to
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CHAPTER 1
Introduction

Coordination is a fundamental problem in multi-agent systems, where multiple,

often independently controlled and owned, agents must interact with one an-

other to facilitate their goals and improve their own, and the group’s, welfare.

Coordination amongst these agents acts to reduce clashes and wasted resources

from agents choosing incompatible actions with one another. Finding coordi-

nated actions is often difficult however, with large action spaces available to

individuals and not necessarily any a priori knowledge about which actions will

clash and which will not. Finding ways to constrain agent action choices so as

to minimise clashes helps to maximise the potential of the system.

Designing off-line solutions to these problems is often computationally in-

feasible [Tinnemeier et al., 2010] or inapplicable in many domains where there

is no centralised control of agent populations. Instead, recent research efforts

have focused on the use of emergent, on-line behaviour where solutions are de-

veloped by the interactions between agents themselves. Conventions represent

one of these approaches, acting as self-imposed, socially-adopted constraints on

expected agent behaviour which allows coordination by restricting the likely ac-

tion choices of agents. Conventions are light-weight, requiring few assumptions

about agent architecture and have been shown to emerge unaided assuming

only agent rationality and the ability to learn from interactions [Delgado, 2002;

Walker & Wooldridge, 1995].

Directing and manipulating convention emergence in order to facilitate rapid

and robust convergence and minimise the amount of time that agents are in

conflict is a recent development. It has been shown that this is possible through

the use of small numbers of fixed strategy agents who are able to direct the
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emergent conventions of populations much larger than themselves [Griffiths &

Anand, 2012; Sen & Airiau, 2007].

In this thesis we concern ourselves with this notion of manipulating and

directing convention emergence through the use of fixed strategy Intervention

Agents (IAs) to facilitate fast and stable convergence. We explore the effect

of these IAs in manipulating conventions, both emerging and already estab-

lished, and their efficacy at causing change within the system to reach a desired

outcome.

1.1 Multi-Agent Systems

The use of multi-agent systems (MAS) to model abstract populations of indi-

viduals has seen a dramatic increase in use over recent decades as computing

power has reached levels applicable to the problems in this domain. As the

use of MAS becomes more pervasive, the need for rapid, scalable, decentralised

methods of enforcing beneficial and cooperative behaviour has become more im-

portant [Durfee, 2004; Durfee, 1999; Jennings, 1993]. As we begin to enter the

age of the Internet of Things (IoT) and MAS begin to enter more safety crit-

ical arenas such as self-driving cars, ensuring coordinated behaviour amongst

disparate and often separately controlled agents becomes paramount.

These domains present a range of different issues to contend with: decen-

tralised communication, dynamic populations and networking, heterogeneous

agent architectures and conflicting intentions and goals are all common aspects

in scenarios including agents from multiple parties. The inability to dictate,

without legal fiat, internal aspects of the agent architectures means that any

mechanism that increases coordination or cooperation must work at a high

level in order to be generalisable. Finding such a general solution remains an

ongoing area of research but finding a solution that is powerful, scalable and

domain-agnostic is difficult.

The constraints identified above mean that dictating behaviour is unlikely to
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be a viable solution to the problem of coordination in open MAS. Ensuring that

rules are properly formalised, communicated and enforced requires a number

of system-level design decisions that limit its applicability to tightly regulated

or controlled domains. Instead, allowing agents to facilitate the emergence of

mutually beneficial behaviour amongst themselves as a means to solve problems

offers a solution that fits within all of the constraints.

1.2 Conventions

Conventions fulfil the criteria outlined above, representing convergence of agent

choices to mutually beneficial actions. They do not require explicit punishment

mechanisms as the punishment for going against the established convention is

the penalty of clashing actions [Kandori, 1992; Savarimuthu et al., 2011]. They

are able to form in an entirely decentralised manner and as such are applicable

to the types of MAS likely to be encountered above. Conventions represent

“an equilibrium everyone expects in interactions that have more than one equi-

librium” [Young, 1993] and have been described as a regularity in behaviour

amongst a collection of agents.

Previous work has shown that global convention emergence amongst a popu-

lation is possible, even with minimal assumptions [Walker & Wooldridge, 1995]

and indeed many do not consider a convention to have emerged until nearly

universal adoption has taken place [Kittock, 1995]. Conventions are also self-

reinforcing, with a positive feedback loop of increased utility the more the con-

vention is being used [Boyer & Orléan, 1992]. With such high levels of usage

and their self-reinforcing nature, understanding how to remove conventions and

overcome these issues is necessary in situations where there are time-varying

notions of optimality.

They have been used to describe and quantify a number of coordinated

behaviours in fields as diverse as economics [Akerlof, 1980; Jones, 1984], mar-

keting [Delre et al., 2010] and politics [Snidal, 1985] and are widely accepted
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as good models for interactions that require a common behaviour to emerge.

Understanding how these conventions emerge, how to direct them and how to

remove undesirable conventions is an open research problem and identifying and

investigating these is the focus of this thesis.

1.3 Constraining Environments

MAS are often situated within a topology that constrains the interactions be-

tween agents to those who are neighbours within the topology. This models a

number of real-world situations including computing, communication and social

networks. They have been shown to have a dramatic effect on convention emer-

gence [Delgado, 2002; Delgado et al., 2003; Kittock, 1995] and as such modelling

their inclusion is an intrinsic part of studying convention emergence that is ap-

plicable to wider domains. These underlying topologies often exhibit complex

structural properties within themselves that modify the nature of a society of

agents placed within it [Barabási & Albert, 1999; Kleinberg, 2000a].

In particular, the notion of time-varying, dynamic networks better models

the nature of many open MAS where the population is able to change over time

as agents join and leave the network. Additionally these dynamic networks are

able to model scenarios where agents are moving in 3D space and the interac-

tions between them change because of this. These are known to have different

dynamics than similar static networks [Brandt & Sigmund, 2005] and as such

are likely to induce different dynamic within convention emergence.

Because of these features, the underlying network topology and how infor-

mation on agent influence can be tied to it forms an integral part of the study

of convention emergence in this thesis and some agents will be notably more

influential and desirable because of the local network structure. As such, in

this thesis we always assume that the agent society is situated in a connective

topology and the investigation of the effects this has, particularly the effects of

dynamic topologies, forms part of the research contained within.

4



1. Introduction

1.4 Objectives of the thesis

This thesis aims to expand the knowledge on the emergence of conventions in

MAS and to understand how they might be manipulated in order to facilitate

higher levels of coordination amongst agents with minimal effort.

More precisely, in this thesis we aim to do the following:

1. Explore how convention emergence in MAS can be influenced and manipu-

lated to ensure a rapid and robust convergence to coordinated behaviour in

scenarios with no centralised control and complex interconnecting topolo-

gies.

2. Investigate how already established conventions can be destabilised and

replaced with more desirable or optimal ones and how the force of prece-

dence that grants them stability may be counteracted.

3. Garner an understanding of the differences in convention emergence in

time-varying dynamic topologies and how their emergence may be directed

or destabilised using unique facets of the dynamic topological structure.

4. Develop techniques for fostering convention emergence and destabilisation

in scenarios where topological information is restricted, as is often the case

in unknown, real-world networks.

5. Identify the minimum level of intervention that is necessary to foster per-

manent change in a population and how this limit may be exploited to in-

crease the performance of mechanisms that support coordination in MAS.

1.5 Contributions of the thesis

In developing techniques and understanding of the nature of conventions in MAS

we identify the following main contributions that this thesis makes:

1. Introduction and analysis of the concept of destabilisation of an

existing convention and techniques to facilitate this.
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Whilst previous work has been done that explores the contribution of fixed

strategy agents to convention emergence when inserted at the start of a

simulation [Griffiths & Anand, 2012; Sen & Airiau, 2007], we consider the

case where a convention has already become established and we wish to

remove it and replace it with another.

We introduce the concept of destabilisation of an existing convention and

present techniques to manipulate and remove these convention by insert-

ing a number of fixed strategy Intervention Agents (IAs) at topologically

influential locations. We show that (i) a small proportion of the convention

population used as these IAs is enough to guarantee destabilisation and

replacement and (ii) that topological effects contribute to the effectiveness

of the destabilisation efforts and influence the number of IAs needed.

2. An exploration of convention emergence in dynamic topologies

and the creation of placement metrics to encourage convention

emergence and destabilisation in these topologies.

Dynamic networks, those that vary over time, are known to exhibit sub-

stantially different dynamics than static networks [Brandt & Sigmund,

2005; Savarimuthu et al., 2007]. Despite this, no research has focused

on how these differences manifest in convention emergence. We investi-

gate convention emergence and destabilisation in a number of dynamic

topologies and clarify the differences that exist. We introduce new place-

ment mechanisms for IAs that are specific to the time-varying nature of

dynamic networks and show their efficacy as well as an analysis of topo-

logical features unique to such networks and their impact on influential

agents.

3. Development of placement algorithms that find influential loca-

tions in topologies with restricted observability.

In the age of billion member social networks, it is no longer the case that

an entire topological network can be analysed and searched completely
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for influential locations [Avrachenkov et al., 2014; Brautbar & Kearns,

2010]. Given the importance of these locations in increasing the efficacy

of IAs we contribute algorithms that can find influential locations in both

static and dynamic topologies given finite, limited observation of the local

area of the graph. We show that these are able to closely approximate

the performance of IAs with full graph knowledge when manipulating

conventions.

4. Mechanisms for assessing minimal interventions, their costs and

an investigation into their effectiveness at manipulating conven-

tions.

The self-reinforcing nature of conventions [Boyer & Orléan, 1992; Lewis,

1969] means that the permanent inclusion of IAs to manipulate conven-

tions is unnecessary but is the only approach used so far [Airiau et al.,

2014; Franks et al., 2013]. We explore the nature of temporary interven-

tions and identify the minimum timeframes that they must be located in

a system to have the same effectiveness as permanent inclusion. We intro-

duce a number of mechanisms for assessing these minimum interventions

and explore the relationship between minimum interventions and number

of IAs. Given that the creation and maintenance of IAs is likely to have an

associated cost in real-world scenarios, we analyse the minimum interven-

tions within this framework to identify ways to minimise cost. We then

use these findings to inform design of techniques for budgeted placement

of IAs.

1.6 Structure of the thesis

The remainder of this thesis is structured as follows. Chapter 2 presents an

overview of the literature regarding coordination in MAS, the history and ne-

cessity of conventions and how fixed strategy agents may be used to direct and

encourage convention emergence. We also discuss related areas of work such as
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normative behaviour and the problem of cooperation between agents as areas

that provide solutions to similar problems. A brief overview of the game theo-

retic underpinnings that are used to model convention emergence are presented

and we analyse what features in these games make the problems amenable to

solution by convention. A summary of the network topologies in use throughout

this thesis and the network metrics that will be utilised for the identification of

influential locations concludes this chapter.

In Chapter 3 we investigate the concept of interventions in MAS, using IAs

who adhere to a singular fixed strategy in favour of all others to influence and

direct the rest of the population in convention emergence. We explore the nature

of convention emergence in both static and dynamic topologies and examine how

the different features of these affects the manner in which convention emergence

can be manipulated. We introduce the concept of destabilisation and show

how IAs can be used to remove already established conventions in multiple

paradigms.

Chapter 4 investigates the nature of convention emergence under partial

observability where access to information about the underlying topology is re-

stricted. We provide a number of tools and insights to allow the effective

placement of IAs under constraints to maximise their effectiveness at direct-

ing convention emergence. We investigate partial observability in both static

and dynamic networks and highlight the differences between them, introducing

additional tools for the latter.

In Chapter 5 we introduce the concept of a temporary intervention, includ-

ing IAs within the population for a finite time rather than permanently. We

investigate how these temporary interventions may be used to elicit the same

level of change we have seen previously and consider what how short temporary

interventions can be to still cause this. We explore the notion of the cost of an

intervention and show how this can be used to inform budgeted placement of

IAs.

Finally, in Chapter 6 we present our conclusions and highlight the research
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contributions presented as well as identifying avenues for additional future work

built on the findings of this thesis.
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CHAPTER 2
Background and Related Work

In this chapter we present a summary of the related work in the field of conven-

tion emergence, both as an underlying concept of societal interaction and as a

method for facilitating coordination in multi-agent system (MAS). Section 2.1

examines the history of conventions in the wider literature as well as its use

in recent years as a tool to foster cooperation and coordination. Section 2.3

then highlights the contributions of the use of fixed strategy (FS) agents in ef-

fecting robust convention emergence in agent-based systems whilst Section 2.4

describes the game theoretic approaches that are often used to describe agent

interaction. Section 2.5 discusses the work so far on the notion of stability in

emerged conventions. Finally, Section 2.6 describes the network topologies that

will be used throughout the rest of this thesis and Section 2.7 explores some

of the common network metrics that are used in deciding influential locations

within these topologies.

2.1 Conventions, Coordination and Normative

Behaviour

We begin with an overview of the nature of conventions: what they are, why

they are beneficial and how they can be used to solve the coordination problem

in MAS. We will distinguish them from norms and cooperation before examining

some of the ways in which they may be manipulated in order to ensure robust

and rapid convention emergence even in systems that seem resilient to it.

Conventions amongst members of a society represent unwritten rules that

govern interactions between individuals. They take the form of constraints on
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the expected behaviour that will be encountered in specific situations. In human

society they can be as simple as an expectation of what hand to use to shake

another’s or as complex as the many unwritten rules that govern the actions of

the UK Government (so called “Constitutional Conventions”). When adhered

to, conventions facilitate easy, unspoken interactions to proceed smoothly with-

out the need of formalised rules. When conventions are broken though, with

individuals going against the expected behaviour, the interactions become more

complex as the situation must now be navigated without knowledge of likely

behaviour.

Conventions can thus be thought of as socially-accepted rules in the form

of expected behaviour. They represent self-imposed restrictions over a wide,

perhaps infinite, range of possible actions down to a smaller (preferably unitary)

number such that any individual can, with some degree of certainty, know how

an interaction is likely to proceed before it even happens.

These features lend themselves well to addressing the issue of uncoordinated

action choices amongst agents in MAS [Durfee, 1999; Huhns & Stephens, 1999;

Jennings, 1993; Vylder, 2007]. Agents that lack coordination often conflict with

one another which causes wasted resources [Durfee, 2004] either in the form of

time, energy or some other cost to the agent due to incompatible action choices

being made. Shoham & Tennenholtz [1992b] argue that in MAS agents have to

agree on common rules to promote cooperative behaviour and decrease clashes

implying it is a fundamental requirement. Additionally, if the desired goal that

the system is trying to reach requires the combined efforts of multiple agents,

this lack of coordination may make it impossible for the goal to be achieved.

As Durfee notes, it is unlikely that there is a universal, always applicable coor-

dination strategy, otherwise human society could adopt it for all problems that

require a coordinated front. As such, conventions and their manipulation and

convergence are a useful abstraction that can be used to facilitate this aim.

A number of views on what constitutes a convention can be found in the

literature. The seminal work in the formalisation of convention emergence in
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the scientific sphere comes from Lewis [1969]. Lewis discusses the notion of

conventions as a way to describe the emergence of language amongst early hu-

mans. Whilst there was no formal establishment of rules (which in modern

parlance would be called a prescriptivist view of language) humans obviously

established consensuses regarding meaning and method of communication in the

form of conventions on how linguistic interactions should be governed. He shows

that a number of day-to-day interactions that we take for granted are in many

ways governed by conventional behaviour. In the words of Young [1993], Lewis

formally defined a convention as a regularity in behaviour to which “everyone

conforms, everyone expects others to conform, and everyone wants to conform

given that everyone else conforms”. Schotter [1981] prominently agrees with

Lewis calling conventions a “regularity in behaviour which is agreed to by all

members of a society”.

In his formalisation, Lewis is one of the first to take a game theoretic ap-

proach to describe the reasons why conventions emerge, the benefits of them

and how that might be explored mathematically. He explicitly highlights the

notion of coordination games in his theory of convention, contrasting it to the

previous explorations of pure conflict games where the aims and outcomes for

individuals are diametrically opposed.

Goyal & Janssen [1997] go even further, noting that conventions are, in ac-

tuality, arbitrary in their solution to the underlying social problem. That is,

several of the choices available could solve the problem equally well but indi-

viduals conform to one because they expect others to do so as well, elevating it

to a higher level of preference than the other options partly because it already

is more preferable. This positive feedback mechanism of individuals conform-

ing to a convention because others conform to it, underpins the benefits that

conventions introduce to a system. As Jennings [1993] argues: “All coordina-

tion mechanisms can ultimately be reduced to (joint) commitments and their

associated (social) conventions.”

Boyer & Orléan [1992] note that one of the essential characteristics of conven-
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tions over other forms of coordination and cooperation is their self-reinforcing

quality. The more individuals subscribing to the convention, the greater the util-

ity of choosing that convention as you are more likely to meet other users of it

than any other. Indeed, Schelling [1980] argues that there are no distinguishing

characteristics between the multiple Nash equilibria of the coordination games

often used to explore coordinated behaviour but that agents still exhibit an

“intrinsic magnetism” towards certain solutions based on common experience,

prominence or precedent.

Within the MAS community, Shoham & Tennenholtz [1997] are some of the

first to utilise the notion of conventions to solve coordination between agents.

They utilise a game-theoretic approach to describe the positive effect that agents

receive when they successfully coordinate or cooperate. They define a social

convention as a restriction on the set of actions available to the agents down to

a singular action that maximises some variable within the game. Importantly,

they note that this variable may not necessarily be optimal for an individual

agent but maximises some other utility such as the group reward. In this way

they show that conventions can be used to foster not just coordination but

cooperation; enforcing behaviour that is not necessarily rational for an individual

but aims to be “best” based on some other metric.

Kittock [1995] similarly applies the notion of games as a way to allow conven-

tions to emerge through iterated play of the coordination game and Prisoner’s

Dilemma (see Section 2.4 for more details) where agents learn through monitor-

ing the highest payoff received for each action choice and changing choice once

a better paying action has been observed. Kittock defines a convention as being

established when some threshold, usually 90%, of all agents in the population

are choosing the same action. We refer to this as the Kittock Criteria. The

distinguishing feature of the approach of Kittock compared to the others is that

Kittock does not seek to address restrictions on the actions on agents (either

explicit or implicit) but instead merely notes the emergent behaviour is one that

is being used as it represents the greatest benefit to all agents.
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In each of these definitions the fundamental property is that the value of the

convention is partially due to its self-reinforcing nature. The expectation that

others will use it makes others value it beyond what the payoff they receive from

it might be. Indeed, there is not necessarily any explicit benefit in the action

represented by the convention over other possible actions and many games often

have multiple equally valid equilibria [Myerson, 1991] Thus a convention can be

thought of as “an equilibrium everyone expects in interactions that have more

than one equilibrium” [Young, 1996]. The convention is distinguished by what

Lewis [1969] and Young [1993] identify as two major characteristics: salience and

precedence. Salience is a feature of an action choice that marks it as different in

the eyes of the agents. It is not necessarily explicit, representing a fundamental

difference in the action compared to others, but simply something that marks the

action as unique amongst equal choices. Precedence can be viewed as a special

case of a salient property and makes a certain action choice more desirable

simply because it has been observed to be chosen before. Indeed, Young [1996]

describes the “gradual accretion of precedent” as the main mechanism through

which otherwise identical equilibria can become conventions.

These special equilibria are also known as “focal points” [Schelling, 1980]

and are “equilibrium more likely to be chosen by the players because it seems

special, natural or relevant to them, although other equilibria are equally good”.

Young [1996] notes that conventions are effectively focal points evolved through

learning. Vylder [2007] formalises the notion of this different yet equal nature

of possible conventions by way of describing the convention space of a given

scenario. He delineates between flat convention spaces where there is no prefer-

ence at all between possible conventions and structured convention spaces where

there is some salient preference (for instance a convention space which consists

of possible days of the week to go to the shops is likely to exhibit an intrinsic

preference for the days of the weekend). In the work presented in this thesis

we concern ourselves only with flat convention spaces and choose games and

settings to ensure this is the case.
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Whilst the emergence of conventions, the manner in which they arise nat-

urally amongst agents in a population, is the primary target of exploration,

they have also been considered for a priori, offline generation. Shoham & Ten-

nenholtz [1995] and Shoham & Tennenholtz [1992b] were the first to address

the notion of formalizing conventions and creating them during the design of

the system. They design social laws for use by systems of robots to dictate

desirable behaviour from the very beginning of the system and include the ca-

pability of the agents to be aware of these social laws. They show that whilst

designing explicit laws is simple the general problem of predetermining rules

that will allow no need for online conflict resolution is intractable. Additionally,

offline generation limits the system as it does not allow for change over time

and would require the expensive reprogramming of the conventions within the

system [Tinnemeier et al., 2010].

2.1.1 Cooperation

Having described the prominence of conventions in solving the problem of co-

ordination we must briefly address a related but distinct problem, that of en-

couraging cooperation between agents rather than coordination. Cooperation in

many scenarios can be viewed as a subtype of coordination [Axelrod & Hamilton,

1981]. However, whilst in the coordination problem the underlying assumption

is that equilibria are choices that are maximally beneficial to each individual

agent the cooperation problem is defined by the fact that agents are incentivised

to act selfishly in order to try to maximise their own personal rewards. They

must hence be encouraged to act in a way that is mutually beneficial even if

this comes at a personal cost. This notion of cooperation introduces a num-

ber of different dynamics that convention emergence is not intrinsically suited

for as “agent benevolence” can no longer be assumed [Genesereth et al., 1986;

Ullmann-Margalit, 1977] and is most frequently described using the Prisoner’s

Dilemma game which is explored in more detail in Section 2.4. Fundamentally,

the mechanisms available to address these issues are applicable to the coordi-
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nation problem, although in many cases they may represent solutions that are

unnecessarily strict given the presence of agent benevolence.

The work of Nowak [2006] represents one of the foundational approaches to

encourage the evolution of cooperation. Nowak identifies 5 rules from amongst

the wider literature and drawing inspiration from nature that can be credited

with encouraging cooperation: kin selection, direct reciprocity, indirect reci-

procity, network reciprocity and group selection. Several of these have direct

applicability in encouraging coordination as well: direct reciprocity and indi-

rect reciprocity focus on agents learning from their interactions with others or

observing second-hand interactions. They allow agents to learn the expected be-

haviours of others and hence can inform agent decisions in their own interactions

to maximise their payoff. Network reciprocity and group selection offer justifi-

cation for alternative mechanisms that make use of the nature of those agents

connected to each other in a topology or allowed to self-organise into distinct

groups. Nowak shows that each of these mechanisms can facilitate cooperation

amongst agents. Franks [2013] uses these as the basis for informing designs

that encourage convention emergence and hence show the general applicability

of cooperation mechanisms in the coordination game.

Purvis et al. [2006] introduce the concept of monitor agents to facilitate ro-

bust cooperation. They allow agents to self-organise into different subgroups

and to include or exclude players based on their history of cooperation or defec-

tion. They show that these mechanisms cause agents to foster more cooperation

than if allowed to interact freely but that the system is still open to new mem-

bership from unproven agents. Ku lakowski & Gawroński [2009] look at the

related mechanism of allowing agents to assign reputation to each other to de-

termine how they will interact with one another. They show that this results in

substantially higher levels of cooperation than would otherwise be expected as

agents are able to more accurately predict what behaviour to expect from those

they interact with.
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2.1.2 Norms

Norms represent a stricter set of restrictions placed upon agents than those due

to the expected behaviour that is encountered within conventions. Despite this,

the terms are often used interchangeably in the literature [Mukherjee et al., 2007;

Sen & Airiau, 2007]. In this thesis we thus differentiate between conventions

and norms.

Norms typically imply an obligation (things an agent must do [Axelrod,

1986; Tuomela, 1992]) or prohibitions (things an agent must not do) on agents

with regards to a specific action often specified as explicit logical rules on what

behaviours are allowed or forbidden. Failure to adhere to norms and exhibit

the expected behaviour is often associated with punishments or sanctions [Ax-

elrod, 1986; Bicchieri et al., 1997; Kandori, 1992; Savarimuthu et al., 2011].

Alternatively, agents may be explicitly rewarded for adherence to norms. Thus,

norms generally require additional system or agent capabilities as well as in-

curring a system-level overhead for punishment/reward. Conventions can be

considered a light-weight alternative to norms, requiring little additional over-

head and emerging solely from agent-agent interactions without the requirement

of formalisation. Normative systems can also emerge amongst a population but

require additional capabilities of agents to internally represent the norms [Mah-

moud, 2013].

Tuomela [Tuomela, 1992; Tuomela, 1995] distinguishes between r-norms and

s-norms in the context of normative behaviour amongst agents. They define r-

norms (or rules) as norms created by a centralised authority which represents

the agent population and can be based on either explicit or implicit agreement-

making. By contrast, s-norms (or proper social norms) are based on mutual

belief about beneficial actions and correspond to what we and other literature

call conventions. Tuomela further divides r-norms into formal and informal

types: formal rules are specifically articulated norms with specified sanctions,

whereas informal rules, whilst still articulated, use informal, social sanctions.

Similarly, Tuomela subdivides s-norms into conventions which are relevant for
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the whole society and group-specific s-norms which only concern a group of

agents within the society.

Boella & Torre [2008] offer an alternative classification of norms between

those that are constitutive (facts about the system that can support regulative

norms), regulative (the rules that govern agent behaviour) and procedural (norms

which seek to guarantee the others, often achieved by providing agents with

the mechanisms necessary to detect and enforce violations). Mahmoud et al.

[2017] and others also consider the notion of meta-norms, “rules about rules”,

which deal with situations where norm enforcement is not guaranteed and allow

hierarchies of rules and agents who can punish those who don’t punish others.

Whilst there are differences between conventions and norms, many believe

that conventions can be subsumed into the hierarchy of norms due to the sim-

ilarities between them. In particular, when considering social norms, results

from one give insight into the other.

2.2 Conventions in Multi-Agent Systems

Having examined the literature for both coordination and cooperation and high-

lighted the differences between conventions and norms we now focus on the

exploration of convention emergence in MAS.

Many different approaches have been used to study convention emergence

in MAS, both to understand the underlying nature of conventions as well as to

provide mechanisms to encourage their emergence in agent populations. Many

different learning algorithms have been presented and analysed for their efficacy

in allowing norms or conventions to emerge [Airiau et al., 2007; Hasan, 2014;

Nudelman et al., 2004; Vu et al., 2006]. Ensuring that agents have the capability

to learn from their interactions and designing an approach that allows them to

do so well is paramount to ensuring that conventions can emerge. If agents learn

ineffectively, they may never converge to a convention. If they are too quick to

learn when presented with new information they are likely to switch strategies
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frequently and cause clashes. As Walker & Wooldridge [1995] note: “The key

problem is to design a strategy update function, representing an agent’s decision

making process, that when used by every agent in the society, will bring the

society to a global agreement as efficiently as possible”.

In this thesis we make minimal assumptions about agent capabilities, as-

suming only that agents are rational (and hence wish to maximise their payoffs

in any given interactions) and have access to, at most, a (limited) memory of

past interactions. This setting has been widely studied [Delgado et al., 2003;

Griffiths & Anand, 2012; Sen & Airiau, 2007; Walker & Wooldridge, 1995] and

is able to support effective convention emergence without requiring architectural

changes to agents in order to facilitate it.

Walker & Wooldridge [1995] were amongst the first to produce a formal

model of convention emergence with these minimal assumptions. They present

a model in which a global convention emerges where agents choose their action

based solely on observations of others. A population of agents is located on

a grid searching for food, with the aim to maximise their intake with conflict

occurring when multiple agents try to eat the same food. Each agent updates

their strategy (to give precedence to others based on their relative location on

the grid) using the simple majority (SM) mechanism where they will change to

an alternative strategy when they have observed more instances of that strategy

than their current one. Whilst simplistic in nature, and not generally applicable

in many regards, the work of Walker & Wooldridge shows that global convention

emergence is indeed possible with the given assumptions and without use of

memory.

Shoham & Tennenholtz [1992a] examine a simple coordination game where

agents are rewarded if they match on an internal value that is drawn from

the set {0, 1}. They propose a new strategy update rule, external majority

(EM), which makes use of an internal memory to the agents to monitor the

conventions encountered and to update if the other was encountered more than

your own. They show that the size of the memory available affects the speed
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of convention emergence with limited memory reducing efficiency. They also

explore the notion of larger convention spaces and show that, whilst increasing

the number of conventions reduces the likelihood of emergence it does so in a

less than logarithmic fashion. However the work does not consider the effect of

topologies with all agents able to interact with all others.

Shoham & Tennenholtz [1997] also introduce the concept of highest current

reward (HCR) as an update rule where agents monitor the payoffs they have

received for using each action and switch to that action providing the high-

est current payoff. They show that for certain classes of games using HCR

is guaranteed to converge to a convention and that a limited memory of 2 to

3 times the number of agents provides optimal performance in increasing the

speed of convention. Kittock [1995] expands on their work by exploring the

effect of network topology on convention emergence, showing that it introduces

different dynamics. In particular he shows that increasing graph diameter has a

detrimental effect on convention emergence in the coordination game. However,

Kittock only considers a ring topology with limited interaction radius; a poor

approximation of many real-world topologies.

Delgado [2002] expands on the methods of Walker and Wooldridge and intro-

duces a new variant of their update strategy, generalised simple majority (GSM),

that allows for its use with agents located in a topology. Delgado uses this and

HCR with both making use of a memory of finite size to monitor how the agent’s

choices have been rewarded previously. He shows that utilising such informa-

tion can increase the rate at which conventions emerge. However, the use of

memory places additional requirements on agent capabilities. They also explore

the effect of network topology on the speed of convention emergence finding

that complex topologies such as small-world and scale-free allow much more

rapid convention emergence than equivalent regular graphs (where all agents

are connected to all others).

Urbano et al. [2009] expand upon this further, exploring the effectiveness

of both EM and HCR in numerous graph topologies: regular graphs, random
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graphs with uniform degree distribution, scale-free and small-world. They show

that the different topologies exhibit drastically different behaviours with scale-

free and small-world networks producing more rapid convention emergence than

regular graphs in keeping with [Delgado, 2002]. They also evaluate the per-

formance of recruitment based on force with reinforcement (RFR) [Urbano &

Coelho, 2005] which makes use of “force” of a convention, a measure that in-

creases in strength every time the convention successfully causes an agent to

switch to it. They show that RFR outperforms all other update strategies in

encouraging rapid convention emergence.

Many of the previous mechanisms for convention emergence have relied upon

agents having access to a memory of interactions or having the ability to observe

the state or interactions of other agents to determine the dominant convention.

In open MAS where the agents are often controlled by multiple independent

parties, these assumptions about capabilities may not be reasonable and chang-

ing agent architecture would be difficult or impossible. Sen & Airiau [2007]

investigated the use of “social learning” for convention emergence, where agents

receive a payoff corresponding to a game from their interactions which informs

their learning (via Q-Learning [Watkins, 1989] or “Win or Learn Fast” policy

hill-climbing (WoLF-PHC) [Bowling & Veloso, 2001]). They showed that con-

vention emergence can occur even when agents have no memory of interactions

and only observe their own rewards. The payoffs directly quantify the notion

of an action clash costing resources. This approach does not rely on knowledge

of other agents and indeed does not require identification of whom the agent is

interacting with (the obliviousness property). It also allows for interactions to

be private and is particularly applicable as an approach in open MAS because

of this.

However, their model is limited in that agents are able to interact with

any other member of the population rather than being situated in a network

topology. Additionally, the convention space considered is restricted to only two

possible actions. In more realistic settings larger convention spaces and more
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restrictive connecting network topologies are likely. Airiau et al. [2014] build

upon this work, showing that a population of Q-Learning agents converges to a

convention faster than a population of WoLF-PHC agents.

Other memoryless approaches to convention emergence exist. Recently, Mi-

haylov et al. [2014] introduced another strategy update rule based on devel-

opments from game theory: Win-Stay Lose-probabilistic-Shift (WSLpS) where

agents continue to use their chosen strategy if they are being rewarded but will

change strategy with some probability, p, when they receive a negative reward.

They show that this approach outperforms other state-of-the-art coordination

mechanisms and guarantees full convergence in any topology. This highlights

the fact that convention emergence is possible simply from repeated play of the

coordination game without the need for monitoring other agents’ behaviours.

Another memoryless mechanism that has been shown to allow convention

emergence is that of imitation [Borenstein & Ruppin, 2003]. Agents mimic the

choices of others, either universally or only of those agents that they have reason

to believe are informed better than themselves. This “tit-for-tat” approach has

been shown to be highly effective at fostering cooperation [Axelrod & Hamilton,

1981] and has similar applicability in the coordination domain. Savarimuthu et

al. [2008] introduce a similar mechanism for the purposes of norm emergence.

They allow agents to select those they view as influential (so-called “role model”

agents) and to mimic their behaviours after interacting with them. They show

that the resultant set of “role model” nodes follows a power-law distribution

(even in random graphs that have no such distribution among the general pop-

ulace) and that complete norm emergence is possible under this mechanism.

As discussed above, the underlying topology has been shown to have a sig-

nificant effect on convention emergence [Delgado, 2002; Delgado et al., 2003;

Kittock, 1995; Pujol et al., 2005; Santos et al., 2006; Villatoro et al., 2009].

Much of the work investigating topology has been restricted to a small conven-

tion space (typically with just two actions). More recent work has explored the

effect of increasing the number of available actions and has shown that doing so
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typically increases the time taken for convergence [Franks et al., 2014; Griffiths

& Anand, 2012; Salazar et al., 2010].

Because of this effect of topology, [Hasan et al., 2014] introduced Topology-

Aware Convention Selection, an intelligent strategy update rule that makes use

of local information to decide the best strategy update rule to use in a given

situation. They show that this approach outperforms the individual strategy

update rules in both random and scale-free networks and this lends credence to

the idea that local information can be sufficient to effect convention emergence,

something we explore in Chapter 4.

2.3 Manipulation of Conventions

The previous section examined the work in the literature regarding the various

mechanisms that allow conventions to emerge and how the speed and quality of

convention emergence can be affected by the parameters of these mechanisms

and by the underlying topologies. Each of these approaches does not provide

an answer to one major question though: what if you want to ensure a specific

convention is the one that emerges?

The concept of manipulating convention emergence to ensure a desirable

outcome between the multiple possible equilibria is one that has seen relatively

little work dedicated to it. Kittock [1994] utilised the notion of authority, giving

some agents the ability to ignore feedback from those “beneath” them whilst

still being able to propagate feedback to them. Kittock shows that this ap-

proach dramatically changes the convention emergence within the system with

the strategy of the authoritative nodes being “pushed” to their descendent.

The use of fixed strategy agents, who always choose the same action regard-

less of others’ choices, to influence convention emergence has also been explored.

Sen & Airiau [2007] show that a small number of such agents can cause a popu-

lation to adopt the fixed strategy as a convention over other equally valid choices

with high probability. They consider the case where agents must choose which
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side of the road to drive on, modelled as a coordination game. They show that,

with a population of 3000 agents, having only 4 fixed strategy agents using the

strategy “drive on the right” causes the entire population to nearly always con-

verge to this strategy. This indicates that small numbers of such agents can

affect much larger populations.

In Sen and Airiau’s model, due to the lack of connecting topology, all agents

are identical in terms of their ability to interact with others. However, in many

domains, agent interactions may be limited to neighbours in the network. As

such, some agents will have larger sets of potential interactions than others. In

the context of static topologies, Griffiths & Anand [2012] establish that which

agents are selected and where they are in the topology is a key factor in their

effectiveness as fixed strategy agents. They show that placement by simple

metrics such as degree offers better performance than random placement and

increases the ability of the fixed strategy agents to influence the population.

Franks et al. [Franks et al., 2014; Franks et al., 2013] investigated fixed strat-

egy agents where interactions are constrained by a static network topology and

agents are exposed to a large convention space. They found that topology af-

fects the number of fixed strategy agents required to increase convergence speed.

This also expanded on the work of Griffiths & Anand [2012] by investigating

the effectiveness of placing by more advanced metrics such as eigenvector cen-

trality. They showed that, even in much larger populations and with a much

larger convention space, these Influencer Agents were able to elicit convention

emergence towards the desired convention.

The ability of these fixed strategy agents to direct and encourage convention

emergence by being placed at influential locations is the primary focus of this

thesis. The work of Sen & Airiau and Franks et al. is foundational in this

regard and the work presented here builds on much of their work, expanding

and extending it by applying fixed strategy agents to new domains and problems,

and we will revisit the importance of these works in Chapter 6. We examine

the effect of these fixed strategy agents in causing convention emergence by
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allowing them to intervene in the process. As such, we call them Intervention

Agents (IAs) from this point onwards.

2.3.1 Convention Emergence Threshold and Intervention

Agents

When including IAs in a population to elicit convention emergence, we must

consider how they affect the calculation of said emergence. In the case with no

IAs we can use the Kittock Criteria [Kittock, 1995] to establish a percentage

threshold of the population that has converged to the same action choice. When

this threshold is surpassed then we consider a convention to have emerged.

Previous work subscribes to this definition with various percentages being used

as a threshold: 90% [Delgado, 2002; Griffiths & Anand, 2012; Kittock, 1995]

and 95% [Airiau et al., 2014] are common.

However, there is seemingly no consensus on how the inclusion of IAs should

affect this calculation. As agents that will always choose the same action, regard-

less of other agents’ choices or detrimental effects, these fixed strategy agents

can either boost the proportion measured for convention emergence (if they are

using the action that matches that of the rest of the population) or reduce it (if

they are using a differing action). However, these agents are unable to change

their strategy and as such are distinct from those members of the convention

who have learnt or converted to it. On the other hand, as part of the population,

the actions used by the IAs are still choices within the system and, as far as the

traditional Kittock Criteria is concerned, represent selections.

Previous work is divided on how to consolidate these two seemingly dis-

parate ideas. Airiau et al. [2014] and Sen & Airiau [2007] continue to count

the “choices” of the fixed strategy agents as though they were actively choos-

ing when comparing to the Kittock Criteria whereas Griffiths & Anand [2012]

choose to only count the proportion of non–fixed-strategy agents adhering to the

convention. Both of these have the effect of changing the number of non–fixed-

strategy agents that must join the convention before it is considered emerged
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compared to the case with no IAs, sometimes to a significant level.

To illustrate this, we can consider a graph of 1000 nodes (n = 1000) with 100

IAs (f = 100) and the Kittock Criteria set to 90% (or K = 0.9). We consider

the three cases:

No IAs 900 agents of the population must become members of the convention.

Count the IAs as choosing their fixed strategy With 100 IAs already “in”

the convention 800 additional agents must become members.

Exclude the IAs from the proportion calculation With 900 non–fixed-strategy

agents, in order to reach 90% convention emergence, 810 of those 900 must

join the convention.

These differences, 100 and 90 fewer agents (or 10% and 9% of the population

respectively) highlight the difficulties with both approaches: they reduce the

additional number of agents that must be persuaded to join the convention.

As the research on convention emergence is concerned with how conventions

behave in populations of specific size, this artificial depression of the number

of agents that must be converted will affect the patterns and behaviours found.

In previous work this has not been a concern due to the low numbers of IAs

used but, as we seek to explore destabilisation as well as emergence, the work

presented in this thesis is likely to use numbers of IAs where the effect becomes

noticeable.

One solution is to consider IAs as additional – agents who are not part of the

base population but are instead inserted as extra agents. However, this does not

translate well to scenarios with underlying topologies (discussed below) which

are the main focus of the following chapters. Inserting additional agents into

the topologies would require making additional artificial edges and the creation

and number of these will affect the simulation.

Instead, unless noted otherwise, we address this problem by allowing those

agents who are chosen as IAs to continue to learn from their interactions with

others. When interacting they will still use the fixed strategy assigned to them
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(as the IAs in Griffiths & Anand [2012] and Sen & Airiau [2007] do) but for

the purposes of counting members of a convention we query them as we would

any other agent, finding what strategies they would choose when not exploring.

This addresses both concerns raised above: the IAs are counted as part of the

population as in the work of Kittock [1995] but will not artificially inflate the

number of agents in the convention if they don’t believe it to be the best choice.

Additionally, this in effect changes the measurement of convention emergence

from a posteriori (what did agents choose) to a priori (what would they choose,

all other constraints removed). This small distinction allows us to measure

convention emergence even in settings with high levels of exploration (selecting

what the agent considers to be a non-optimal action in order to ensure that this

consideration is true), an aspect not considered by Kittock [1995]. Additionally,

it allows the learnt behaviour from agents’ last interactions to be included in

the convention emergence evaluation, unlike the approach taken by Airiau et

al. [2014] and Sen & Airiau [2007] who measure what was chosen and do not

consider that agents’ choices may have changed because of this interaction. In

this manner we are effectively looking at what agents will do during the next

timestep rather than what they have just done. In the context of real-world

applications of convention emergence, we believe this approach is more sensible;

if a customer has been regularly using your services but is unlikely to do so

next time this is more valuable information than knowing once they’ve stopped

using it. Overall though, this change is minor due to the timescales involved

but offers much greater flexibility in approach. In particular, when we consider

the non-permanent inclusion of IAs in Chapter 5 measuring what agents wish

to do next is more important for conventions than measuring what they have

already done.

In initial intervention (using IAs to encourage convention emergence at the

start of a simulation), depending on the learning mechanism used, the behaviour

of our approach is unlikely to differ much compared to the approach of Sen &

Airiau [2007] where they explicitly count the IAs as members of the convention.
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This is because the IAs will not necessarily have had time to form opinions

about the benefits of other potential conventions and thus would only wish to

choose differently from the fixed strategy if the fixed strategy is rejected by

other agents. Given the performance attributed to IAs in the literature [Airiau

et al., 2007; Franks et al., 2013; Griffiths & Anand, 2012] this is unlikely but

our approach offers the flexibility to address it if necessary.

When we are considering destabilisation of existing conventions however, the

difference is likely to become more marked. Given the self-reinforcing nature

of conventions [Boyer & Orléan, 1992; Goyal & Janssen, 1997] we expect larger

numbers of IAs to be required and the considerations noted above become more

prominent. We hypothesise that allowing the IAs to continue to learn from the

time of creation will enable them to learn the chosen intervention strategy as

“good” due to their interactions – assuming destabilisation occurs. Additionally,

in the most extreme case, many of them may still view the original dominant

strategy as “good” due to not using it in interactions since becoming IAs. This

is a true representation of the agents’ beliefs based on their interactions and is

important to accurately reflect in the proportion calculation. If the agents were

to cease being IAs they would act on these beliefs and this is something that

may occur in dynamic networks (as we explore in Chapter 3) or if the presence

of IAs is only temporary (as we explore in Chapter 5).

This means that we would expect some of the IAs to continue to “choose” be-

tween the intervention strategy and the previously dominant one when queried.

In the case where the agent was a prominent adherent of the dominant strategy

(which is likely given the nature of dominance), we might expect it to choose be-

tween the two 50:50. As such, the number of non–fixed-strategy agents required

to convert to the intervention strategy will still be reduced, but not artificially.

The accurate measuring of agent intentions and beliefs means that this reduction

will be smaller than that described above. Returning to the previous example of

a 1000 agent population, we would expect, at any given moment, 50 of the 100

IAs to be choosing the intervention strategy. As such, 850 other agents must
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Figure 2.1: The actual proportion of agents in the population that must be
converted in order to reach 90% convention emergence when using each of the
three approaches for including IAs in the Kittock calculation.

also be members of the convention to reach the 90% threshold. This is much

closer to the actual 900 agents we would hope to treat as the threshold and, due

to the ability of the IAs to learn, actually represents 900 agents or 90% of the

population who believe in the convention.

With each of these approaches, the difference between the desired proportion

of the population that are members of the convention and the actual propor-

tion that must be reached beyond the IAs varies with the number of IAs placed

into the system. Figure 2.1 shows the actual proportion that must be reached

against the percentage of the population being used as IAs for the three dif-

ferent approaches. As can be seen, the approach we have described above has

a marked benefit over the other two. It represents a more accurate proportion

of the population and this difference only increases at higher numbers of IAs.

Whilst IAs will still affect the calculation, our approach aims to minimise this,

particularly when considering destabilisation.
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2.4 Games

The application and use of game theoretical constructs to model social in-

teractions is well established in numerous fields including economics [Akerlof,

1980; Börgers & Sarin, 1997; Boyer & Orléan, 1992], linguistics [Meara, 2006],

law [McAdams, 2008] and sociology and politics [Brams, 2011; Snidal, 1985].

Modelling potentially complex human interactions as games allows higher levels

of mathematical analysis and the abstraction from the actual interactions to

focus instead on the outcome allows these games to be generic and applicable

to numerous situations.

As Schelling [1980] argues, nearly all games can be placed somewhere on the

spectrum of pure conflict games, where one agent’s gain is another’s loss, and

pure coordination games, where agents win or lose together and equally. Within

this spectrum there are distinct notions of other types of games including those

that require cooperation, where agents must mutually make choices in order to

provide the best outcome for all, and games where coordination does not result

in equal benefit to each of the agents. In this section we provide an overview of

the different categories and types of games frequently encountered in the MAS

community and discuss the properties and distinctive features of each.

An n-action-k -person game is one played by k agents at the same time, each

of whom has n action choices available to them. Each agent makes a choice

from the n available actions and the combination of their choices (known as the

joint strategy or joint action) determines the payoffs that each agent receives.

These are generally described in a payoff matrix, an example of which is shown

in Table 2.1. In this table we are looking at a 2-person-2-action game with

both agents choosing from the set of actions {A,B}. The payoffs received are

specified in the cell that aligns with the joint action. The left hand, uppercase

letter represents the payoff of the row-player with the right hand, lowercase

letter representing that of the column-player.

As in the bulk of the literature [Delgado et al., 2003; Kittock, 1995; Shoham
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A B
A X,x U,u
B V,v Y,y

Table 2.1: General form of a 2-person-
2-choice payoff matrix

A B
A x,x u,v
B v,u y,y

Table 2.2: General form of a 2-person-
2-choice symmetric game payoff matrix

& Tennenholtz, 1997], in this thesis we focus on 2-person symmetric games

for modelling agent interactions. A symmetric game is one taking the form

shown in Table 2.2 and is thus called due to the fact that the payoff matrix

is symmetrical for the row- and column-players; the reward a player receives

from a specific joint action is not reliant on whether they are the row-player or

column-player. This aspect is important because it means there are no different

roles or identities that affect agent payoff, only their choices. This allows us

to treat agents as heterogeneous without special consideration for their role

in a given interaction and allows convention emergence in the population to

be described as convergence to a simple action choice. Whilst this may seem

limiting, requiring agents to have access to exactly the same actions, Lewis [1969]

notes that problems can often be suitably reframed such that corresponding but

not identical actions are described in such a way that these actions become

identical. This assumption is not general however with Sen & Airiau [2007]

allowing agents to learn and emerge conventions separately as both row- and

column-players. The restriction to 2-player games is borne from the expectation

that many agent populations will be situated in a network topology (this is

discussed in Section 2.6). As each edge only links two agents, interactions are

limited to this as well.

An important notion in all games that are expected to emerge consistent

behaviour, and one that underlies the problems of coordination and cooperation,

is that of Nash equilibria [Nash, 1950]. A Nash equilibrium is a joint action that

is stable in the sense that no single agent can increase their payoff by changing

actions if no other does. Thus, no agent has any reason to unilaterally change

their action without assurances of some form that others will do so too. In
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C D
C -1,-1 -3,0
D 0,-3 -2,-2

Table 2.3: Prisoner’s Dilemma payoff
matrix

S H
S 10,10 0,8
H 8,0 7,7

Table 2.4: Stag Hunt payoff matrix

scenarios where games are repeated (what Shoham & Tennenholtz [1997] call

“stochastic social games”) the Nash equilibria are particularly important as they

represent joint actions that are local optima, in terms of payoff, in the joint–

action-space. Encouraging agents to move away from these equilibria is one of

the fundamental questions of convention emergence and cooperation.

Lewis [1969] introduces an extension of Nash equilibria, what he defines as

a coordination equilibria. Whilst a Nash equilibria is a combination of actions

in which no agent would be better off if they unilaterally changed their action,

a coordination equilibria is a combination of actions in which no one would be

better off if anyone unilaterally changed their action. All coordination equilibria

are thus Nash equilibria but Nash equilibria are only coordination equilibria if

no agent could increase the payoff of themselves or another with a different

choice. This distinction, between coordination and non-coordination equilibria,

as we shall see, underlies the difference between situations and games that can

be solved purely by coordination and those which require cooperation to ensure

agents receive the best possible payoff.

A dominant strategy is one which an agent always prefers as it always gives

the best payoff possible regardless of the choices of others. Because of this

it is necessarily the case that combinations of dominant choices must be an

equilibrium by definition. However, it is not guaranteed that this will also be

a coordination equilibrium. This is best highlighted in the classic Prisoner’s

Dilemma game, the payoff matrix for which is shown in Table 2.3. In the Pris-

oner’s Dilemma the players are given two options, cooperate (with each other)

or defect. If both cooperate they will receive a small punishment. If one de-

fects and the other cooperates the one who defected will receive no punishment,
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the one who cooperated a larger punishment. If both defect, they will both

receive punishment greater than that they would have received if both cooper-

ated. The Nash equilibrium in the Prisoner’s Dilemma game is for both agents

to defect (combination < D,D >). However it is not a coordination equilib-

rium as a change in strategy for either player will result in the other player’s

payoff improving. Intuitively, this means that each agent wants their opponent

to change strategy to increase their own payoff (to the detriment of the oppo-

nent’s payoff). Indeed, it is this property, the lack of a coordination equilibria,

that distinguishes the Prisoner’s Dilemma as a game requiring cooperation to

increase agent payoff; rational agents (those which seek to maximise their own

payoff) have no joint action available to them that it is logical to choose and

that no-one would wish to change from. In order to make rational agents in the

Prisoner’s Dilemma choose < C,C > (which increases both player’s payoffs)

there needs to be cooperation amongst them, potentially in the form of exter-

nalities such as norms [Shoham & Tennenholtz, 1997], control, or incentives and

sanctioning [Villatoro et al., 2011b] of defecting players), or allowing them to

learn over time that continued use of Defect when all others are doing it will

result in worse payoffs.

The Iterated Prisoner’s Dilemma as described by Axelrod & Hamilton [1981]

highlights these issues. Axelrod shows that the best strategy is that of “tit-

for-tat with forgiveness”. Agents begin by choosing Cooperate and then simply

repeat the action taken by their opponent, treating defection with defection and

cooperation with cooperation. The aspect of “forgiveness” is necessary however

to avoid a cycle of defection and shows the difficulty of naturally converging

to pure cooperation. The work of Kittock [1995] and Shoham & Tennenholtz

[1997] also address these issues. Both make use of HCR to allow agents to

learn behaviour of multiple interactions but the conclusions of both works is

that stable convergence to the cooperate strategy is difficult and the time to do

so grows exponentially with the number of agents in the population. Ullmann-

Margalit [1977] go even further, noting that, whilst cooperation is an equilibrium
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in the Iterated Prisoner’s Dilemma it “enjoys what might be termed precarious

stability” waiting only for some agent to exploit defection. Thus the norms and

other mechanisms to enable cooperation must continue to be used within the

system.

Cooperation can also be required in games that do not exhibit the features

found in the Prisoner’s Dilemma. The game known as Stag Hunt is depicted

in Table 2.4. The Stag Hunt is often considered as similar to the Prisoner’s

Dilemma [Fang et al., 2002; McAdams, 2008; Ullmann-Margalit, 1977] as both

represent the necessity of trust and cooperation in order to maximise the payoff

for the agents. The game represents a situation of two hunters who can hunt

either hares (H) or a stag (S). A single hunter is unable to successfully hunt

the stag alone and the other can exploit his absence to hunt more hares. But

if both hunt the stag they will receive a higher payoff than they can get by

hunting hares. The primary difference between this and the Prisoner’s Dilemma

is that the cooperative strategy < S, S > is a coordination equilibrium but the

defecting strategy < H,H > is still a Nash equilibrium. The Stag Hunt game

thus highlights the problem of trust as, assuming your opponent is rational, there

is no reason that < S, S > would not be chosen. If your opponent is antagonistic

however, or untrusting, then they may not expect you to choose S and doing

so themselves would result in a worse payoff than if they choose H [Fang et al.,

2002]. In iterated interactions against differing opponents, such as we concern

ourselves with, the likelihood is increased as the agent is unaware how the

other’s previous games have gone. In this scenario, Rankin et al. [2000] found

that many players may instead tend to the “risk-dominant” equilibrium of <

H,H > which has an expected return of 7.5 if you are unsure of your opponent’s

choice compared to the “payoff-dominant” equilibrium of < S, S > which only

has an expected payoff of 5. As noted by Ullmann-Margalit [1977] the Stag

Hunt game is thus likely to still require norms to ensure that the cooperative

behaviour prevails, although to a lesser extent than the norms required to ensure

cooperative behaviour in the Prisoner’s Dilemma case.
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0 1 . . . n
0 4,4 -1,-1 . . . -1,-1
1 -1,-1 4,4 . . . -1,-1
...

...
...

...
n -1,-1 -1,-1 . . . 4,4

Table 2.5: n-action coordination game payoff matrix

The previous discussions have highlighted the requirement of cooperative

behaviour to produce the desired mutually beneficial outcomes for all agents of

a population in these games. However, for the work in this thesis we seek to

highlight how conventions can be directed by the inclusion of IAs. The nature of

both the Prisoner’s Dilemma and Stag Hunt games means that there is pressure

on the agents, that can be curbed through enforcing cooperation, to converge

to one particular solution either due to a lack of coordination equilibria or the

presence of a risk-dominant one. In order to explore scenarios where this effect is

not influencing the convention emergence we focus on pure coordination games

which inherently address a number of these issues.

A pure coordination game is one in which agents’ interests are perfectly

aligned. In game theoretic terms this means that the two payoffs are equal in

every square of the payoff matrix; each agent receives the same payoff for the

action combination, there is no situation in which one agent benefits more than

the other. An example of the 2-player-n-choice coordination game is shown in

Table 2.5.

The pure coordination game thus has a number of properties that make it

amenable to the study of convention emergence: all of its Nash equilibria are also

coordination equilibria and all of them are Pareto optimal1. This means that

there is no preference amongst the agents for which one becomes the convention,

only that one of them does. No equilibrium is risk-dominant or payoff-dominant,

all provide the same payoff to the agents. The only aspect that differentiates

which of the equilibria is of more benefit to the agents is the precedent of which

1A joint action is Pareto optimal if there is no other action combination that increases the
payoff of one agent without decreasing the payoff of another.
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Figure 2.2: Gradient Payoff matrix for a 10-action game with paymax = 4 and
paymin = −4.

is being used by other agents they interact with; there is no salient difference

between them. Thus the pure coordination game allows us to focus on the

nature of convention emergence itself rather than on underlying features of the

game. These features have made the pure coordination game prevalent amongst

the convention emergence literature [Franks, 2013; Griffiths & Anand, 2012;

Kittock, 1995; Sen & Airiau, 2007] and, unless mentioned otherwise it is what

we utilise throughout this thesis.

2.4.1 Gradient Coordination

In many real-world interactions there is unlikely to be a hard divide between

entirely compatible and entirely incompatible action choices as is the case in

the pure coordination game. Many interactions can be solved by compromise or

making use of the aspects of the action choice that are compatible and negating

or ignoring those which are not. Consider the overlap in agents choosing to speak

British English and American English language. Whilst not entirely compatible

(and hence not truly the same action) there is enough similarity that interaction

is possible. Whilst the language game [Lakkaraju & Gasser, 2008; Steels, 1998]
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can be used to address this problem, we wish to examine this notion of “similar

enough” in the context of the coordination game. To this end we extend the

notion of the pure coordination game to investigate the effect that a gradient of

payoffs has on the ability for conventions to emerge.

We define the payoff that agents receive from their joint action in the gradient

payoff as:

Gradient-Payoff(i, j, n, paymax, paymin) = paymax−
dist(i, j)

n− 1
(paymax−paymin)

(2.1)

where i is the action of player one, j is the action of player two, n is the number

of actions, paymax and paymin are the maximum payoff (same action chosen)

and minimum payoff (most different actions chosen) respectively, and dist(i, j)

is the distance between the two actions when they are ordered by similarity.

Figure 2.2 shows a representative payoff matrix created in this manner for the

10-action game with maximum and minimum payoffs of +4 and −4 respectively.

2.4.2 Other Games

A number of other games have been explored within the notion of convention

emergence that do not conform to the traditional definition of a coordination

game as proposed by Lewis [1969] and Schelling [1980].

The El Farol Bar problem is an example of a congestion problem where the

payoff that the agent receives for a particular choice is related to the number

of other agents choosing the same. The problem as originally formulated by

Arthur [1994] is that of attending a popular bar on a given night or staying

home. If the bar is not too crowded (60% of its capacity) the player enjoys

themselves more than if they had stayed at home. If the bar is too crowded the

player does not enjoy themselves and would have been better off remaining at

home. It is impossible to definitively say ahead of time how many others will

be attending the bar on the same night, all players decide whether to attend

or not at the same time. As such players must rely on their expectations (and
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higher order meta-expectations [Lewis, 1969]) on the behaviour of others in

order to deduce whether to attend or not. The optimal outcome to the El Farol

Bar problem is one of several conventions existing simultaneously with subsets

of agents (of size below the crowdedness threshold) each electing to attend on

different days. Systems naturally emerging this outcome have been shown to be

unlikely however. Cara et al. [1999] show that most initial conditions tend to

the case where agents have failed to coordinate the optimal behaviour amongst

themselves and instead perform no better than at random. Whitehead [2008]

model the El Farol Bar problem using a reinforcement learning model. They

find that the agents generally minimise their bad experiences and maximise the

good ones when learning in this manner but show that the resultant behaviour

of this is a partitioning of the agents into two distinct sets of those who always

attend and those who never attend rather than the mutually beneficial solution

of attending on disparate days. In this regard both show that the El Farol Bar

problem is another type of game that would benefit from external cooperation

or coordination.

The language coordination game (or naming game [Steels, 1998]) represents

the emergence of a communicative capability between agents using conventions

and norms. Each agent has a set of words and a set of concepts and an inter-

nal mapping between them. They attempt to communicate concepts to other

agents using the words they map to them and are rewarded if the other agent

correctly understands their communication. In this regard it is similar to the

pure coordination game; if agents both have the same mapping they are re-

warded positively, if they differ they are rewarded negatively and in both cases

the agent is able to learn from the interaction. The difference lies in the fact

that the interaction only uses a small part of the lexicon (the mapping) that the

agent has, individual parts of the lexicon are updated and changed rather than

the whole action choice. This changes the underlying dynamic and means that

multiple conventions are more likely as multiple different lexicons are present

within the system. Additionally, it introduces the concept of the quality of a
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convention, with better mappings being better quality (the case of mapping

each word to a single concept would make communication easier but be a poor

quality lexicon for instance). The game also allows for much larger numbers

of possible conventions than in other versions of the coordination game (WC

where W and C are the numbers of words and concepts respectively). Never-

theless, widespread convention adoption is possible. Salazar et al. [2010] utilise

a spreading mechanism to transfer partial information and show that this can

be used to encourage rapid convention emergence which produces high-quality

conventions regardless of noise in the system. Whilst this differs substantially

from the convention emergence approaches in other work it shows that encour-

aging conventions can happen even in large convention spaces with minimal

adjustments. Lakkaraju & Gasser [2008] similarly show that convergence can

be encouraged by using additional information to predict others lexicons. They

utilise an additional “Text Observation Game” where agents are able to hear

sentences formed using other’s lexicons and use various metrics to predict the

lexicon. However, both of these approaches require modifications to the agents

to allow them to perform these additional tasks. Franks et al. [2013] instead

take a different approach and instead insert agents with high-quality lexicons

into the system to encourage emergence to them. They show that a relatively

small number of these placed at influential locations can facilitate convention

emergence to the desired convention.

Both of these games offer a distinct and differing view at convention emer-

gence than that found from the pure coordination game. Whether the findings

of this thesis are applicable in these disparate cases is something we discuss in

Chapter 6.
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2.5 Destabilisation and Meta-Stable Subconven-

tions

Whilst the emergence of conventions in MAS has been previously well studied,

there is little to no work in the literature on the notion of destabilising and

replacing an already existing, established convention. There are numerous sce-

narios where it may be desirable for a system designer to be able to replace

existing conventions:

• The established convention has some salient difference from the convention

that is desired by the designer such that, whilst there may be no difference

in payoff, they wish to change the convention used by the system. Consider

the notion of changing a technological standard such as a communication

protocol. The system has little incentive to change if there is no direct

benefit to doing so but an external force may desire the change.

• The established convention is sub-optimal in pay-off. This situation can

arise in many games that require cooperation to most efficiently solve (see

Section 2.4). Left to their own devices, the agents of a population may

converge to a sub-optimal but consistent convention. Encouraging them

to switch away from this to the more beneficial convention will require

removal of the previously established one.

• The established convention was previously optimal but this has changed

due to external conditions. In this instance the agents may continue to use

the sub-optimal convention due to the level of precedence it has within the

system; attempting to change unilaterally is likely to be harmful to agents

who do so. Consider the scenario of changing the generally used charging

mechanism from USB 2.0 to USB C. Individuals who switch without others

doing so are likely to be hindered by a lack of compatibility between their

devices and others. Unless large numbers of the population switch then

there is a disincentive to doing so despite the fact that the new technology
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is superior.

As noted by Arrow [1974]: “It may be really true that social agreements

ultimately serve as obstacles to the achievement of desired values, even values

desired by all or by many. The problem is that agreements are typically harder to

change than individual decisions... What may be the hardest of all to change are

unconscious agreements, agreements whose very purpose is lost to our minds.”

Sugawara [2011] explores the stability of conventions in a Markov game and

show that agents which act conservatively are unable to adapt to the emergent

convention becoming undesirable.

Boyer & Orléan [1992] note that the powerful pressures to conform mean

agents, individually or even in small groups, are unlikely to bring about change

to the system by themselves. They describe a taxonomy for the limited cases

where such a shift in population preference does occur and provide insight into

how we might encourage it within MAS. They describe four ways in which a

general population change may occur:

General Collapse A situation which indirectly destroys the overall structure

of conventions throughout the system. This can take two primary forms:

the utility of the current convention falls (though remains positive), al-

lowing a small number of “mutants” to effect change; the utility of the

current convention becomes negative or zero in which case the system will

rapidly change even without mutants.

External Invasion A second population of individuals whom adhere to a dif-

ferent convention are brought into contact with the original population

and the relative proportions are enough to reduce the benefits of the orig-

inal population continuing to use their convention.

Translation If the two conventions exhibit a certain compatibility between

them then the old convention can be “translated” in terms of the new

and the population may shift because of this. They note that a series
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of cumulative transformations may lead to quite distinct original and fi-

nal conventions with intermediate steps. This is similar to our notion of

gradient that is discussed in Section 2.4.1.

Collective Agreement By intelligent and collective agreement the population

may note that the new convention is inherently better than the old and

all agree to change behaviour. This requires a central authority.

It is the second of these which is the focus of the work presented in this

thesis. We have already discussed how fixed strategy agents can be used to

encourage convention emergence to a desire strategy. Expanding on this, we

propose using similar agents in scenarios where conventions are already estab-

lished to destabilise and replace the existing conventions.

Villatoro et al. [2009] introduced the notion of meta-stable subconventions,

areas of a topology where the specific structure of the area self-reinforces a

convention different to that of the majority of the population. They identified

a number of different structures that are likely to exhibit this phenomenon in

both scale-free and fully-connected star networks and noted that these meta-

stable subconventions were persistent, hindering global convention emergence.

Toivonen et al. [2009] independently examined similar notions in random graphs

where they showed that small cliques2 of nodes would form differing conventions

to the wider population that were robust and difficult to change, what they term

“dynamical robustness against invasion”.

Meta-stable subconventions were also shown in ring topologies by Epstein

[2001]. They showed that multiple separate regions of distinct conventions were

able to emerge with little variation between their boundaries over time. As such

the entire population was unable to converge to a single convention, consisting

instead of “islands” of the two possible conventions.

Each of these cases show that these meta-stable subconventions can hinder

wider acceptance of a majority convention and highlight the need to be able to

cause a change in convention within even these parts of the system. Villatoro

2A subset of vertices such that every vertex is connected to every other in the subset.
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et al. [2011a] utilise observation and rewiring of the edges in these structures in

order to eliminate the meta-stable subconventions and show that this is effective

in multiple different scenarios. However, the ability to unilaterally change the

network topology is not consistent nor likely in many domains. Additionally,

they only concern themselves with changing the strategies of the meta-stable

subconventions. We widen the problem and look to destabilise conventions in

the wider population without making assumptions about the ability to change

topological traits. The work of Villatoro et al. here forms the basis of how

robust, self-reinforcing conventions can be altered and the work in this thesis

is a natural extension of that concept to the wider problem of destabilising

conventions throughout a population. We will revisit the work of Villatoro et

al. in Chapter 6 to discuss how the work has been expanded and utilised.

2.6 Network Topologies

Many MAS represent agent populations as being connected by an underlying

topology that limits interactions to neighbours in the graph. This better mod-

els interactions in the real-world as it is rare that all individuals in a popula-

tion know all others (for instance in social networks) or are necessarily able to

communicate with them (due to geographical limitations, lack of knowledge or

interest). Convention emergence in regular networks, those which assume total

ability to communicate, have been well studied [Sen & Airiau, 2007; Shoham &

Tennenholtz, 1992a; Walker & Wooldridge, 1995] and have been shown to have

different features than those in topologies [Delgado, 2002; Delgado et al., 2003;

Pujol et al., 2005]. As such, in this thesis we assume that MAS exist within

a topology. In this section we present the topological models we will be using,

both static and dynamic, as well as real-world datasets that provide interaction

graphs.
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2.6.1 Static Network Topologies

We utilise two types of static networks throughout: scale-free and small-world.

These have been shown to have features that are present in many real-world

networks [Lewis, 2006; Mislove et al., 2007; Travers & Milgram, 1969; Watts &

Strogatz, 1998] and hence make them good substitutes when studying conven-

tion emergence. Both types of network are generated using the Java Universal

Network/Graph Framework (JUNG)3.

Scale-free networks

Scale-free networks were first described by Barabási & Albert [1999]. The most

prominent feature of these networks is that their degree distributions follow a

power-law. That is, there are a large number of lower degree nodes and expo-

nentially fewer higher degree nodes. These high-degree nodes are often referred

to as “hubs” and are highly influential locations within the network [Brautbar &

Kearns, 2010; Maiya & Berger-Wolf, 2010]. Scale-free networks also exhibit the

feature of preferential attachment where higher degree nodes are more likely to

gain new edges than lower degree nodes, a feature which mimics real-world net-

works such as transport links (new locations are more likely to be connected to

already well-connected locations) and social networks (those with high numbers

of friends are more likely to make new ones).

The model of Barabási-Albert uses this in order to generate scale-free topolo-

gies. It takes a number of initial vertices, m0, and a number of edges to attach

to each new node, m ≤ m0. Nodes are then added to the network one at a time

and m edges are attached to them. The other endpoint of these edges is chosen

randomly from the existing nodes with probability proportional to their existing

degree. This produces a scale-free network with a power-law distribution with

γ = 3 and an average path length that increases logarithmically with the size

of the network.

3Version 2.1.1, http://jrtom.github.io/jung/

44

http://jrtom.github.io/jung/


2. Background and Related Work

Small-world networks

Inspired by the notion of “6 Degrees of Separation”[Travers & Milgram, 1969],

small-world networks are those that are characterised by high levels of local

connectivity (a node’s neighbours are likely to be neighbours of each other) and

that every node is able to reach every other in a small number of “hops”. As

found in Milgram’s experiment [Travers & Milgram, 1969], human social links

are well-modelled by this type of network as most of your immediate friends and

family are more likely to know each other but there will also be distant social

contacts that link your cluster to others.

Whilst there are several approaches to generating small-world graphs [Watts

& Strogatz, 1998], we utilise the model put forward by Kleinberg [2000a] and

Kleinberg [2000b]. In this model we start with a toroidal 2D lattice of nodes,

each node being linked to its 4 neighbours in this lattice. We then add a number,

l, of additional “long-range connections”, from each node to another outside of

these initial 4. The probability of which node the edge is connected to is inversely

proportional to the distance between them on the lattice and is controlled by a

clustering exponent, α. That is, P (u, v) ∝ D−α. When α = 2, such that the

long-range connections follow an inverse-square law, Kleinberg [2000b] showed

that a uniquely fast greedy algorithm for information propagation in the network

existed with any other value of α having asymptotically much larger delivery

times. This finding indicates that efficient navigation is only a feature for some

values of α and is something to be considered when considering the spread of a

convention.

2.6.2 Real World Networks

Whilst synthetic networks are good at generating the general features of many

real-world networks (such as scale-free or small-world properties) there are still

often failures of the synthetic networks in capturing certain aspects [Delgado,

2002]. In particular, Franks [2013] and Pujol et al. [2005] show that there
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Network Largest WCC

|V | |E| |V | |E|
CA-CondMat 23,133 93,497 21,363 91,286
Enron-Email 36,692 183,831 33,696 180,811

Twitter 81,306 1,768,149 81,306 1,342,296

Table 2.6: Original and Modified Network Sizes

are large differences in the clustering coefficients of synthetic and real-world

networks and that these differences can substantially change the behaviours

exhibited within them. To alleviate this we also include real-world networks

when considering the nature of conventions in the work of this thesis.

We make use of three real-world networks from the Stanford SNAP datasets

[Leskovec & Krevl, 2014]. These datasets represent a number of different meth-

ods of social interaction and, as such, each have different features allowing a

wide-ranging look at the effects of real-world networks on agent populations.

The three datasets chosen are: CA-CondMat [Leskovec et al., 2007], the collabo-

ration network of the arXiv COND-MAT (Condensed Matter Physics) category;

Email-Enron [Leskovec et al., 2009], the email communications between work-

ers at Enron; and Ego-Twitter [McAuley & Leskovec, 2012], a crawl of Twitter

follow relationships from public sources (for our purposes we ignore the directed

nature of the edges). These datasets are used frequently in both convention

emergence and influence spread research [Chen et al., 2014; Franks et al., 2014;

Pei et al., 2015; Wang et al., 2016] as performance benchmarks.

For the purposes of monitoring convention emergence in these networks, we

only want to examine a single, connected component. As such, all 3 networks

were reduced to their largest weakly connected component (WCC). Addition-

ally, any self-loops (edges from a node to itself) were removed as such edges

artificially inflate a node’s degree whilst not increasing its ability to influence

others. Table 2.6 shows the number of nodes and edges in each network and the

number of nodes and edges (without self-loops) in their largest WCC.
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2.6.3 Dynamic Network Topologies

Few studies have explored the notion of convention emergence in dynamic

topologies despite the fundamental differences that allowing nodes and edges

to be added and removed brings to the network dynamics. Some work has been

performed in the related field of norm emergence but is primarily concerned with

essential rather than conventional norms [Mungovan et al., 2010; Savarimuthu

et al., 2007]. Savarimuthu et al. [2007] show that norms are able to emerge un-

der a number of conditions and settings of dynamic topologies, but their work

differs from ours due to the requirements placed on agents. The interaction

model used requires agents to maintain an internal norm as well as being able

to query other agents. We make minimal assumptions about agent internals or

the information available. Additionally, our work investigates the manipulation

of convention emergence, something not considered by Savarimuthu et al. for

norms.

Mihaylov et al. [Mihaylov et al., 2014] briefly consider convention emergence

in dynamic topologies using the coordination game. However, their work focuses

on a new proposed method of learning, rather than on the emergence itself.

In particular, they do not consider fixed strategy agents, or the action that

emerges as a convention. In this thesis, we consider both convention emergence

in dynamic topologies and the use of fixed strategy agents to understand the

impact of network dynamics.

We seek to establish the performance and characteristics in dynamic net-

works compared to static ones and as such make use of two dynamic topology

generators throughout this thesis.

González model

We utilise a particle-based simulation, developed by González et al. [González et

al., 2006a; González et al., 2006b], to model dynamic network topologies with

characteristics comparable to those observed in real-world networks. Agents

are represented as colliding particles and the topology is modified by collisions
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creating links between the agents. A population of N agents, represented as a

set of particles with radius r, is placed within a 2D box with sides of length L.

Initially, all agents are distributed uniformly at random within the space and

are assigned a velocity of constant magnitude v0 and random direction.

Each timestep, agents move according to their velocity and detect collisions

with other agents. When two agents collide, an edge is added between them in

the network topology if one does not already exist. Both agents then move away

in a random direction with a speed proportional to their degree multiplied by

a speed factor, v̄ . Thus, higher degree nodes have an increased probability of

further collisions, which in turn further increases their degree. In this way, the

model exhibits preferential attachment, a characteristic found in static scale-free

networks [Barabási & Albert, 1999].

Additionally, all agents are assigned a Time-To-Live (TTL) when created.

This is drawn uniformly at random between zero and the maximum TTL, Tl.

After each timestep agents’ TTLs are decremented by one. When an agent’s

TTL = 0 the agent and all its edges are removed. A new agent is placed at

the same location within the simulation with the randomised initial properties

discussed above. In this manner, the topology is constantly changing.

Different topologies can be characterised by the value of Tl/T0 where T0 is

the characteristic time between collisions. This can be expressed as:

Tl
T0

=
2
√

2πrNv0Tl
L2

(2.2)

González et al. show that this value dictates key characteristics of the gen-

erated topology, primarily the average degree and degree distribution and in

[González et al., 2006b] they show that these are good approximations of the

actual social networks amongst students in a school.

The concept of a quasi-stationary state (QSS) is discussed by González et

al., such that a QSS emerges after a number of timesteps and is characterised

by macro-scale stability of network characteristics. Micro-scale characteristics,
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for individual agents, remain in flux. In [González et al., 2006a] it is shown that

the QSS can be described as any timestep, t, where t & 2Tl.

Ichinose model

Ichinose et al. [2013] build a dynamic network as an extension of the Barabási-

Albert model. As such it has the same useful features of that model, namely a

scale-free nature and short average path length. The presence of these features

will allow comparison between the similar static and dynamic networks in terms

of the convention emergence upon them.

The Ichinose model begins by building a Barabási-Albert graph of the re-

quested size with the same parameters, m, m0. Then, each iteration, a node is

removed and a new one inserted into the topology with the number of edges in

the system kept the same. In this manner, both the number of nodes and edges

in the topology will remain constant with only their arrangement changing.

Ichinose et al. specify 2 different methods of node removal: targeted, where

the highest degree node in the topology is removed, and random, where a node is

removed at random. The degree of the removed node is noted as n. A new node

is then created with degree m or n, whichever is lower. The edges of these nodes

are then attached to others using two other methods: preferential, where the

node is chosen with probability proportional to their degree (as in the Barabási-

Albert model) and random, where the node is chosen uniformly at random. If

the number of edges in the network is less than it was before, edges are inserted

into the system from source nodes (chosen uniformly at random) to target nodes

which are selected the same way as the new node’s edges, preferentially or at

random.

Thus there are four possible modes that the Ichinose model can operate in:

• Random removal and Random addition (RR)

• Random removal and Preferential addition (RP)

• Targeted removal and Random addition (TR)
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• Targeted removal and Preferential addition (TP)

In the paper the model is introduced they investigate the effect of their

different topologies on the robustness and stability of the cooperation in the

Prisoner’s Dilemma showing that the various modes have drastically varying

effects on the level of cooperation with targeted removal reducing cooperation

even with a low benefit to defection. They evaluate the model’s effect on numer-

ous graph metrics compared to the original Barabási-Albert topology and show

that all four reduce the degree variance in the network and shift the degree dis-

tribution with the modes of targeted removal drastically decreasing the degree

variance and maximum degree. These different behaviours highlight that the 4

settings produce dramatically different topologies and as such can be expected

to have distinct influences on convention emergence.

2.7 Network Metrics

When attempting to encourage or direct convention emergence using fixed strat-

egy agents their location within the underlying network topology is important.

Nodes that are located at influential positions, such as nodes with high centrality

scores, have been shown to drastically increase the effectiveness of fixed strategy

agents placed at those locations as discussed above [Franks et al., 2014; Grif-

fiths & Anand, 2012]. Finding these influential locations has been the subject

of wide-ranging research in the graph theory community [Borgs et al., 2012a;

Cooper et al., 2012; Lawyer, 2015] and has applications in many fields and

problems in MAS.

There are many different network metrics used to find influential nodes under

various criteria and we present a non-exhaustive selection of these below.

1. Degree Centrality (Degree) Degree centrality (more commonly referred

to simply as degree) is the size of the neighbourhood of a given node,

|N(v)|, the number of edges the node has within a topology. Degree can

be easily calculated from only local information and is intuitive in its
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measure of influence; the more nodes that v can directly interact with,

the more capability it has to propagate its views.

2. Eigenvector Centrality (EC) Also known as eigencentrality, eigenvector

centrality measures the influence of a node based on the influence of nodes

it is connected to. It assigns relative scores to each node, v, with con-

nections to higher-scoring nodes contributing more to the score of v than

connections to low-scoring nodes. Intuitively, eigencentrality assumes that

a node is important if it is connected to other important nodes. Variations

of eigencentrality include Google’s PageRank algorithm [Page et al., 1999]

and show the validity of this assumption as the effectiveness of PageRank

in determining useful web pages is well-documented.

Eigencentrality can be calculated rapidly using the adjacency matrix of

the graph in question, A = (av,u) where each entry is 1 if an edge exists

between nodes v and u and 0 otherwise. The eigencentrality score EC(v)

can thus be found as,

EC(v) =
1

λ

∑
u∈N(v)

EC(u) =
1

λ

∑
u∈G

av,u × EC(u) (2.3)

where λ is a constant.

3. Betweenness Centrality (BC) Is a centrality measure that ties influence

to the number of times a node, v, is found on shortest paths between any

two other nodes. It can be calculated as follows,

BC(v) =
∑

s6=v 6=t∈V

σst(v)

σst
(2.4)

where σst is the number of shortest paths between nodes s and t and σst(v)

is the number of these which include v. As such, betweenness centrality

thus represents how much information that flows through the shortest

paths of the network must pass through v. As the shortest paths are

the optimal ones through which to transmit said information, this gives
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vertices with high betweenness centrality increased capability to act as

“gatekeepers”, influencing the information that is passed through them.

Whilst the calculation is a simple proportion, finding the shortest paths

between all pairs of vertices in a graph is computationally expensive, re-

quiring O(V 3) time in the general case. For unweighted graphs, Brandes

[2001] have shown that it can be done in O(V E) time but this is still

exponentially larger than most other metrics.

4. Closeness Centrality (CC) The closeness centrality (or simply closeness)

of a node, v, is a measure of how “close” the node is to all others in the

graph. In other words it is a measure of the average shortest path length

between node v and all others. It was first defined by Bavelas [1950] as,

C(v) =
1∑

u∈V d(u, v)
(2.5)

where d(u, v) is the distance (the length of the shortest path) between

nodes u and v. Closeness centrality is often used as a measure of influ-

ence [Borgatti, 2005; Lawyer, 2015] due to the ability of a “close” node

to readily reach all other nodes within a network. When transmitting in-

formation along shortest paths, the maximally close node in the network

is best positioned to do so. However, due to the calculation of shortest

paths, closeness centrality is similarly computationally expensive as is the

case with betweenness centrality.

5. Highest Edge Embededdness (HEE) Edge embeddedness was proposed

by Easley & Kleinberg [2010] as a measure of how clustered the endpoints

of the edge are. That is, how many common neighbours the two endpoints

share. Edges with high edge embeddedness thus represent the most direct

path amongst many between the two nodes whilst edges with low edge

embeddedness represent pseudo-“bridges”, only one of a limited number

of paths through the local neighbourhoods of the two nodes. Formally,
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edge embeddedness is defined as,

EE(euv) = |N(u) ∩N(v)| (2.6)

where N(x) is the set of neighbours of node x in the graph.

However, as we are concerned with finding influential nodes not edges, we

must adjust the use of edge embeddedness to allow this. We follow the

approach of Franks et al. [2014] and assign to a node the highest value

of edge embeddedness found in its set of edges. We call this highest edge

embeddedness (HEE). A node with a large HEE value thus has an edge

that is well-embedded in its local cluster and represents a node that should

be able to readily influence not just the node at the other end of the edge

but those shared neighbours as it has multiple short pathways to do so.

6. Hyperlink-Induced Topic Search (HITS) Like PageRank, hyperlink-induced

topic search (HITS) is an iterative algorithm designed to exploit the na-

ture of links on the web to find influential nodes, particularly in the use

case of trying to find authoritative sources of information in web searches.

Designed by Kleinberg [1999], HITS works by iteratively learning two sets

of nodes: hubs which are well-linked directories of information but are not

necessarily authorities on said information and authorities which actually

contain the information. Hubs are ranked highly if they point to many

authorities whilst authorities are ranked highly if they are pointed to by

many hubs. The algorithm converges the two scores for each node until

a final value is reached, a combined measure of both how well-viewed as

a source of influence the node is as well as how well-linked it is to other

sources of influence. As such, well-ranked nodes in HITS should be able

to propagate information and conventions both from others and to others,

making them good candidates for focusing convention efforts.

These metrics and heuristics are but a small subset of those available when

analysing influence within graphs but we believe that they represent the most
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likely candidates for managing node influence. This is backed up by the findings

of Franks [2013] and Franks et al. [2014] who utilise these metrics amongst a

total set of 14 others. Their findings were that degree, EC, HEE and HITS were

those that were most strongly correlated with the influence of a node within the

graph.

2.7.1 Temporal Metrics

With the consideration of dynamic network topologies in addition to the static

ones, there is the additional consideration of the time-changing nature of these

graphs. A highly influential node in one timestep may not be so the next.

The notion of shortest paths also changes with the varying nature as paths

may appear or disappear as the system progresses. Numerous extensions to

the graph theoretic literature have been made in recent years to address these

concerns and extend the notions of centrality and other metrics to encompass

dynamic networks.

Kim & Anderson [2012] treat dynamic networks as special cases of static

networks that exhibit directed flows between different layers of a meta-graph,

one in which each snapshot of the dynamic graph at a particular time is treated

as a separate sub-graph with links from nodes to later versions of themselves.

Reducing the network in this way they are able to extend the notion of shortest

paths and degree to those that exist between the temporal instances of the

graph using the edges that pass between different times. They extend both

betweenness centrality and closeness centrality to make use of these temporal

shortest paths and compare them to aggregated or average versions of each

metric over the timesteps. They show that the temporal metrics may exhibit

different behaviours than the average or aggregate ones but that this is highly

dependent on the actual underlying dynamic topology.

Nicosia et al. [2013] similarly address the issues of dynamic networks and ad-

ditionally introduce the capability of finding connected components in temporal

graphs. They extend the notions of connectivity in dynamic topologies taken
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from Kempe et al. [2002] and note that time-varying graphs can be modelled

as graphs with an additional dimension, similar to Kim et al. They addition-

ally provide another variation on the centrality metrics for dynamic networks,

distinct from Kim & Anderson [2012].

Pan & Saramäki [2011] provide another model of dynamic graphs, focusing

on the time-ordered temporal paths that exist within them. They highlight

that spreading dynamic will be different because of the existence of these paths

and explore the notion of time-dependent distance between nodes. They show

that, whilst correlated to the the static distance between nodes there is large

variance in this regard and thus nodes that are close in the static network may

nevertheless utilise spreading that follows very different paths. They provide

another formulation for the notion of closeness centrality in dynamic graphs

based on the idea of temporal paths with time-cutoff.

As can be seen just from these approaches, there is still uncertainty in the

literature on how to extend the notions of graph metrics to encapsulate dynamic

topologies. Additionally, each of these approaches makes the assumption that

the graph is fully observable in its temporal aspect. That is, you can see all

timesteps of the graph and hence calculate the centrality metrics based on the

shortest paths observed therein. However, in many applications, particularly

ours, this is not the case. Convention emergence is monitored and encouraged

on a per-timestep basis with no knowledge of what future graph topologies will

look like. Because of this, we must instead focus on measures that can be

calculated given that singular timestep. Whilst we could utilise all timesteps up

until this point and disregard future changes to the graph this then becomes a

prediction problem; trying to predict which nodes will continue to exhibit high

levels of the metric in question at future times.

In this thesis, we therefore focus instead on the application of the traditional

graph metrics within the effectively static graphs created at each timestep.

Whilst we make some allowances for the time-varying nature of the metrics

(see Chapter 3) we do not attempt to find nodes with high temporal centrality
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measures explicitly.

2.7.2 Other Metrics

As well as the traditional and temporal metrics discussed above, work in other

fields that need to identify influential nodes have produced a number of variant

heuristics for finding these nodes.

Lawyer [2015] uses the notion of epidemic spreading potential to identify

influential nodes as those that have the highest expected “Force of Infection”. He

models potential epidemic spreading from each node and enumerates all possible

clusters of infected nodes after x transmission events from this start node. The

expected Force of Infection is then calculated as the entropy over each of these

possible transmission outcomes. He shows that this metric accurately quantifies

the spreading power of the target node and does so with better effect than

other node metrics. Indeed, many models of contagion spreading offer insights

in this field, even if the findings are not directly transferable. Finding which

models offer applicable knowledge and using that to influence design decisions

is a general problem, beyond the scope of this thesis however.

Chen et al. [2009] introduce the concept of Degree Discount as a way of se-

lecting multiple high-degree nodes such that their joint influence is maximised.

In the domain of the influence cascade problem, they show that selecting multi-

ple high-degree nodes that are inter-connected causes redundancy in the overall

influence capabilities of these nodes. They show that artificially discounting the

degree of nodes when their neighbours have already been selected as influencers

will ensure that overall influence in the system is maximised.

Both of these approaches are promising in that they outperform the standard

graph metrics in their respective domains. Whether they are generally applica-

ble or too heavily reliant on assumptions about the influence model being used

is unknown and beyond the scope of this thesis. However, their performance

shows that it is often possible to improve on the simplistic graph metric ap-

proach to identifying influential nodes by using specific domain knowledge, an
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approach we utilise in our extension of metrics for dynamic topologies.

Another set of metrics make use of the concept of network coverage, trying

to find a minimal set of nodes that are linked to all others to provide a vertex

cover. This problem is NP-hard, although approximation algorithms exist. One

method of approaching this is to try provide coverage by partitioning the graph

into subgraphs with minimal edges between them [Simon & Teng, 1997]. This

requires a general overview of the network topology however, an assumption we

try to avoid in this thesis. As such, we leave integration of these metrics and

approaches as future work, discussed in Section 6.2.3.

2.8 Conclusion

In this chapter we have explored the related work in the literature on convention

emergence. We have examined what a convention is, and the benefits behind

allowing them to emerge in MAS and how they can facilitate coordinated be-

haviour amongst agents that will reduce clashes and increase efficiency. We

briefly explored the related notions of cooperation and norms, highlighting the

differences between them and the aspects that have implications for convention

emergence. We discussed the notion of manipulating a convention to a desired

outcome using Intervention Agents (IAs) both to encourage initial convention

emergence and convention destabilisation. We provided an in depth account on

the nature of games that can be used to model coordination and convention

as well as other games that have been used in the modelling of conventions.

Finally, we provided a summary of the network topologies that are to be used

in the rest of this thesis and a description of the graph metrics that will be used

to place IAs.
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CHAPTER 3
Interventions and Destabilisation

In the previous chapter we presented an overview of the current state-of-the-art

with regards to studying convention emergence in multi-agent systems (MAS).

As discussed, encouraging rapid and robust convention emergence is of great

importance as it can minimise the amount of clashes and wasted resources that

agents experience due to miscoordination. Additionally, in cases where unde-

sirable conventions have already emerged, it may be beneficial to replace them

with others. In this chapter we use a model of convention emergence based

on the coordination game and attempt to manipulate both the emergence and

replacement of conventions within the system. We show that a relatively small

proportion of agents playing a fixed strategy can both elicit convention emer-

gence and remove established conventions. We apply these insights to both

static, real-world and dynamic topologies and examine the differences between

them.

3.1 Introduction

In MAS coordinated actions help to reduce the costs associated with incompat-

ible choices and increase the efficiency of a system. However, in many domains

such behaviour cannot be enforced, as there is no centralised control and a lack

of a priori knowledge of which actions clash. In practice, many systems rely on

the evolution of conventions as standards of behaviour adopted by agents with

no, or little, involvement from system designers. Understanding how these con-

ventions emerge, how they can be influenced, and how aspects such as topology

affect them is an active research area [Delgado et al., 2003; Franks et al., 2014;

Kittock, 1995; Sen & Airiau, 2007; Villatoro et al., 2009].
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Conventions have been shown to support high levels of coordination with-

out the need to dictate action choices in a top-down manner. Facilitating the

emergence of high-quality conventions in a short period of time, without re-

quiring prior computation, is of particular importance. Much work has focused

on the emergence of conventions given only agent rationality and the ability to

learn from previous choices. Small numbers of fixed strategy agents (agents who

choose the same action regardless of others’ choices) have been shown to influ-

ence the conventions that emerge and to increase the speed of adoption [Franks

et al., 2014; Griffiths & Anand, 2012; Sen & Airiau, 2007].

The ability to remove, as well as establish, conventions allows correction or

replacement of adopted actions. In domains where the desirability of actions

can change over time, being able to cause such a change is beneficial to the

system as a whole. Additionally, understanding how to cause this shift gives

insights into what makes a convention robust to outside influence.

Additionally, in many domains, the nature of the relationships between

agents is not static. Agents may leave the system, new agents can enter, and the

links between agents may change over time. These dynamic interaction topolo-

gies induce different system characteristics than those found in static networks.

Relatively little work has studied the nature of convention emergence in these

types of network.

In this chapter, we examine what is needed to elicit fast (conventions should

emerge faster than it would take to dictate action choice to each agent in turn,

i.e. less timesteps than the number of agents) and high-quality (once established

conventions should be stable unless interfered with) convention emergence. Ad-

ditionally, we investigate what allows the destabilisation of an established con-

vention. We propose temporarily inserting fixed strategy agents, known as In-

tervention Agents (IA), to facilitate these effects. For initial intervention, where

we wish to use these IAs to encourage conventions to emerge within the system,

we desire the strategy assigned to these IAs to be the one that emerges as dom-

inant. In late intervention, where we wish to destabilise an already established
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convention, we provide the IAs with strategies that differ from this established

convention to influence a population into discarding it. The insertion of IAs is

equivalent to incentivising individuals to take particular actions, for example

through continued reward or payment. We show that a small proportion of

IAs placed at targeted locations in the population are able to encourage rapid

emergence of stable conventions and can destabilise established conventions, re-

placing it with another of our choosing. We also show that conventions can be

destabilised in such a way that we are not required to select a replacement, and

instead place the system into a state that allows a new convention to emerge. We

study these effects in both static and dynamic topologies. For convention ma-

nipulation in dynamic topologies we introduce a new heuristic, Life-Degree,

to support this investigation, which considers features unique to the dynamic

nature of the system when placing fixed strategy agents. We examine the im-

portance of dynamic topology characteristics by comparing the performance of

Life-Degree against previously used heuristics based on network metrics.

The remainder of this chapter is organised as follows. In Section 3.2 we

provide a brief review of the more salient parts of the literature that apply to

this chapter. Section 3.3 introduces the model of interactions that we use to

simulate the emergence of conventions. In Section 3.4 we use this model to

study the effect of initial intervention in encouraging convention emergence in

static topologies, both synthetic and real-world. Section 3.5 does the same for

dynamic topologies and explores the nature of unaided convention emergence

within these types of networks. We then look at the effectiveness of IAs in desta-

bilising existing conventions, what we term late intervention, for both static and

dynamic topologies in Sections 3.6 and 3.7 respectively. Section 3.8 introduces

the notion of Passive Destabilisation, removing an existing convention without

necessarily replacing it, and explores this in both static and dynamic networks.

In Section 3.9 we extend previous work in the literature on how varying the

size of the convention space can affect convention emergence both for initial

and late intervention. Section 3.10 investigates the way in which varying the
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payoffs received by agents can change the nature of manipulating conventions,

and we briefly explore convention emergence in the gradient coordination game

in Section 3.11. Finally, in Section 3.12 we present our conclusions.

3.2 Background

Whilst the field of convention emergence under numerous models is relatively

well-established, there has been little work on manipulating conventions and

trying to direct their emergence to one of the several equally beneficial out-

comes or equilibria. Our hypothesis is that fixed strategy agents, or IAs, can be

used to direct conventions upon their initial emergence as well as being used to

destabilise and replace already established conventions.

Airiau et al. [2014] and Sen & Airiau [2007] have shown that fixed strategy

agents are able to direct convention emergence to a specific outcome in a popula-

tion much larger than themselves. They utilise a form of “social learning” where

agents use the payoffs they receive from playing a coordination game amongst

themselves to inform their future decisions. However, their model is limited due

to a small convention space (agents only able to choose between two differing

actions) and the lack of an underlying topology (agents are able to interact with

all others in the population). The lack of an underlying topology is particularly

restricting as this has been shown to have a large effect on convention emergence

and in real-world networks individuals are unlikely to be able to interact with

all others in the population.

Delgado [2002] is one prominent example of how the topology that agents

are situated within can have a large effect on convention emergence. He also

utilises the coordination game and shows that complex networks, such as scale-

free or small-world, emerge conventions substantially faster than more simplistic

networks such as regular graphs and ring networks. His findings indicate that

small-world networks are also slower to converge than scale-free, likely due to

the underlying degree distributions. Delgado et al. [2003] expands this work
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and also shows that increases in the population size have the effect of increasing

the amount of time taken for convergence in a sub-linear fashion. They argue

that the diameter of the network (the longest shortest path between any two

nodes) is the main driving factor in convention emergence time and this grows

logarithmically for many network types.

Griffiths & Anand [2012] build on the work of Sen & Airiau [2007] by includ-

ing an underlying network topology that limits agent interactions. They show

that where the fixed strategy agents are placed within this topology can sub-

stantially increase their efficiency at bringing about rapid convention emergence,

particularly in scale-free topologies. Their findings again indicate a difference

between small-world and scale-free graphs, but they only consider a population

of between 100 and 1000 agents.

Franks et al. [2013] explore the notion of fixed strategy agents in the language

coordination game in both small-world and scale-free networks. They show that

increases to the graph density (the number of edges compared to the number of

nodes) hastens convention emergence in scale-free networks in this domain and

that changing the clustering exponent of small-world networks has no similar

comparable effect. However, again, they only consider 1000 agent populations

and only up to 5000 edges in their comparison for scale-free networks. They

highlight that placing fixed strategy agents by degree rather than randomly

substantially increases their effectiveness.

Few studies have considered the additional effect of dynamism on network

topologies and the effect it may have on convention emergence. Savarimuthu

et al. [2007] have considered the problem for the related work of norm emergence

but make underlying assumptions about agent architecture that limit its general

applicability, although their results are among the first to show that emergence

is possible in dynamic topologies. Franks [2013] briefly considers a simple model

where otherwise static networks have small levels of population churn but this

does not include changing edges in the network, only the agents themselves and

as such is a poor approximation of many real-world dynamic networks. Their
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model also requires underlying changes to agent capabilities to allow them to

incentivise or sanction others, whilst we assume that agents are heterogeneous

in their abilities. Mungovan et al. [2010] examine norm emergence in a primarily

static network but allow each agent the ability to randomly interact with distant

neighbours each timestep, adding a dynamic element to the simulation. Their

results show that increasing the dynamic nature increases the rate of norm

emergence indicating that the unique interactions available help to increase the

spread of the norm between otherwise distant components of the network.

Overall, the current work in the literature indicates that topological arte-

facts can have a substantial effect on convention emergence and we expect the

inclusion of more accurate dynamic networks to reflect this as well.

3.3 Interaction Model & Experimental Setup

Conventions emerge as a result of agents in a population selecting the same

action and learning the best strategy (action choice) over time. We assume

that a population consists of a set of agents, Ag = {1, ..., N}, who select from

a number of actions, Σ = {σ1, σ2, ..., σn}. Each timestep each agent selects

an interaction partner at random, and both partners choose an action from

Σ. The individual payoff for each agent is determined by the combination of

action choices, the joint action. We adopt the n-action coordination game, such

that interaction partners receive a positive payoff if they select the same action

and a negative payoff if their actions differ. The 2-action coordination game is

often used in exploring convention emergence, but we expand to the n-action

coordination game to avoid restricting the number of possible conventions as

discussed above. We otherwise utilise the payoff matrix of Sen & Airiau [2007]

such that choosing the same action gives a positive payoff (+4) and choosing

differing actions results in a negative payoff (−1). Sen et al. showed that these

values were able to facilitate rapid convention emergence and as such are well-

suited for our exploration of other factors that might effect the emergence. We
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explore different values for these in Section 3.10 to examine the effect that this

asymmetry might contribute.

Each agent chooses the action that it believes will result in the highest payoff

based on its previous interactions. It does this by making use of a simplified

version of the Q-Learning algorithm [Watkins, 1989]. For each action σ ∈ Σ an

agent maintains an estimate of the payoff it expects to receive from choosing

that action in the future (a “Q-value”). The agents update the relevant value

after receiving a payoff for choosing an action, σ, in an interaction such that:

Q(σ) = (1− α)×Q(σ) + α× payoff (3.1)

where α is a variable in the range [0, 1] that controls the learning rate. For all

agents we start with Q(σ) = 0 ∀σ ∈ Σ so as not to bias any agent towards

specific action.

We also assume an element of exploration, such that with probability pexplore

agents will choose a random action from those available instead of the action

they believe to be optimal. This allows agents to avoid local optima in the

convention space and facilitates the emergence of global convention. If agents

have multiple highest Q-values they will choose randomly between them as well.

In this regard our model adopts the approach of Villatoro et al. [2009] by using

this Q-Learning algorithm for both partners in an interaction to update their

strategies. Airiau et al. [2014] show that populations of entirely Q-Learners

emerge conventions faster than the related strategy of “Win or Learn Fast”

policy hill-climbing (WoLF-PHC) or of mixed learners and so we adopt this

learning method globally.

We assume that agents are situated on a topology that restricts their interac-

tions such that agents can only interact with their neighbours (and hence select

randomly from amongst these). The particular topologies used are discussed in

each relevant section.

We establish the membership of each convention by querying each agent
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every timestep on what action they would choose if they were not exploring.

The strategy they respond with will thus be the one with the highest Q-value

for them or chosen randomly from amongst equal Q-values.

3.3.1 Intervention Agents

As discussed, fixed strategy agents, which we refer to as Intervention Agents

(IAs), have been shown to influence convention emergence when introduced at

the beginning of a simulation. Building on the work of Franks et al. [2013] and

Griffiths & Anand [2012] we propose inserting these IAs at locations within the

topology to affect convention emergence.

We generally seek to place these IAs at topologically influential locations as

determined by a number of graph metrics. This has been shown to increase

their efficacy with placement at both high-degree locations [Franks et al., 2013]

and high-betweenness–centrality locations [Griffiths & Anand, 2012] performing

better than random placement. Franks et al. [2014] additionally show that

placement by eigenvector centrality (EC), highest edge embeddedness (HEE)

and hyperlink-induced topic search (HITS) increase efficacy but only consider

the case of a single IA being positioned by these metrics.

As such, we generally utilise the following 4 metrics to place IAs in this

chapter: degree, eigenvector centrality, highest edge embeddedness and HITS.

We also consider random placement as a baseline where appropriate. These

metrics are discussed in detail in Section 2.7 and have been shown to good

indicators of agent influence [Franks et al., 2014].

We choose to exclude both betweenness centrality (BC) and closeness cen-

trality (CC) for two main reasons: (i) Franks et al. [2014] and Griffiths &

Anand [2012] have shown that they offer little if any improvement over the met-

rics chosen and (ii) they are substantially more computationally expensive than

the other metrics, being ill-suited for larger topologies or topologies where the

metrics must be recalculated often, as is the case for dynamic topologies. This

view has been previously raised in the literature. Kang et al. [2011] argue that
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these metrics were defined when large-scale networks (such as social networks

or the Internet) were uncommon and that they are inherently inappropriate for

use on large graphs as they do not consider scalability and are not amenable to

parallelisation. Pfeffer & Carley [2012] agrees, stating that both betweenness

centrality and closeness centrality are limited in applicability. They introduce

approximations based on bounded-distance shortest path calculations but these

still represent computational complexity that makes them infeasible for our use.

Additionally, both Lawyer [2015] and Šikić et al. [2013] argue that these central-

ity measures are only good indicators of influence for generally central nodes in

the network and severely underestimate the influence of more peripheral nodes.

Due to these limitations we exclude both centrality measures from our investi-

gations.

The IAs will always choose to play their assigned strategy and have no

ability to explore or deviate from this. They do however, continue to learn, via

the same Q-Learning mechanism as all other agents, whilst being used as IAs.

As they are unable to explore, they will only learn the value of their assigned

strategy but this allows them to establish how well that strategy is performing

as a convention. As mentioned in Section 2.3, we query these agents as we

would any other, meaning that what convention membership they hold may not

be that of the fixed strategy assigned to them if their assigned strategy is not

performing well.

This interaction model is the general one used throughout this chapter and

indeed throughout this thesis. Any deviations from it will be described in the

relevant section. It is our view that this model is well-understood from previous

work in the literature and will be particularly applicable to the exploration

of destabilisation as it facilitates rapid and robust convention emergence and

thus our experimentation can instead focus on the other aspects that affect

destabilisation.
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3.4 Initial Intervention in Static Networks

We begin by examining the use of IAs in effecting convention emergence within

populations where one has yet to emerge, what we define as initial intervention.

We start by exploring this in synthetic networks in Section 3.4.1 before switch-

ing to examine the nature of convention emergence in real-world networks in

Section 3.4.2.

3.4.1 Synthetic Networks

We start by investigating convention emergence in our model upon both scale-

free and small-world networks. We generate these using the Barabási-Albert

and Kleinberg models respectively, as detailed in Section 2.6 using the Java

Universal Network/Graph (JUNG) framework. Our initial study is focused on

the effect that the network generation parameters have on convention emergence

in our model, without the inclusion of IAs. Whilst the topological effects, and

the differences they cause, have been studied before these have either been

over smaller ranges of parameters [Delgado, 2002; Delgado et al., 2003] or have

involved a different model of convention emergence (Delgado [2002] and Delgado

et al. [2003] do not utilise social learning in their model and Franks et al. [2013]

make use of the language coordination game, which is substantially different).

Given that our later work will rely on the rapid emergence of conventions that

we can target for destabilisation, understanding the performance of the model

without intervention is important.

We initially look at the effect that the population size has on the speed

of convention emergence without IAs. We generate graphs with agent popu-

lations of {1000, 2000, 5000, 10000, 20000}, for both scale-free and small-world

topologies. Scale-free graphs are generated using the Barabási-Albert model

with m0 = m = 3 (m0 is the initial number of nodes, m the number of edges

to attach to each new node) whilst the small-world graphs are generated using

Kleinberg’s model with ce = 2, l = 1 (ce is the clustering exponent which in-
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Symbol Meaning Default Value

m0 Initial number of nodes in Barabási-Albert model. 3
m Number of edges to attach each round in Barabási-

Albert
3

ce Clustering exponent in Kleinberg model 2
l Number of long-range connections in Kleinberg

model
1

α Learning rate in Q-Learning 0.25
pexplore Exploration rate used alongside Q-Learning 0.25
payoff Payoff values for coordination game +4, -1

- Number of runs results are averaged over 100
- The number of actions in the coordination game 10

Table 3.1: Parameters and their default values for synthetic static networks

forms how far long-range connections will reach, l is the number of long range

connections). The settings for these models are explained further in Section 2.6.1

and a summary and the default values used are shown in Table 3.1. These pro-

duce graphs of comparable size with roughly the same number of edges in both

the scale-free and small-world topologies (|V |/|E| ≈ 3) which allows for easier

comparison. The value of ce is chosen based on the initial paper of Kleinberg

[2000b] which shows that for this value only there exists a rapid greedy method

for information transmission.

To ensure a large enough convention space, agents interact using the 10-

action coordination game. With a convention space of this size we would expect

our desired strategy, without the presence of IAs to emerge 10% of the time.

Simulations were run for either 5000 timesteps (scale-free) or 10000 timesteps

(small-world) in order to give sufficient time for conventions to emerge. We use

the 90% Kittock criteria such that we deem a convention to have emerged when

90% of agents in the population would choose that action over others.

Figure 3.1 shows the results for both topologies averaged over 100 runs with

error bars showing the standard deviation. Consistent with the findings of Del-

gado et al. [2003], the effect that increasing population size has on convention

emergence speed is sub-logarithmic with small-world topologies taking substan-

tially longer to reach convention emergence than scale-free ones. We also find
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Figure 3.1: Speed of unaided convention emergence against varying population
sizes.

that the convention emergence speed in small-world topologies is substantially

more varied than in scale-free much higher standard deviations. This indicates

that convention emergence is less consistent in small-world topologies and thus

we also expect the inclusion of IAs to increase this as they provide direction

within the population. Indeed, whilst 100% of runs on the scale-free topology

reached convention emergence (most much faster than the timestep limit) only

between 54-92% did for small-world topologies. Allowing the small-world simu-

lations to run for longer increases the number achieving convention emergence

somewhat but often still does not guarantee 100%. This is in keeping with sim-

ilar findings of Franks et al. [2013] and indicates that small-world topologies are

more likely to have multiple semi-stable conventions amongst the population.

This is most likely due to the lack of “hub” nodes that are present in scale-

free topologies and are able to influence large sections of the population. The

more localised nature of small-world topologies means they are more robust to

external invasion of competing conventions.

We can verify this by changing the clustering exponent for small-world

topologies. Using a population of size 5000 and l = 1 we vary ce with values of

{0, 1, 2, 3, 5}. We again allow 10000 timesteps for populations to converge and

otherwise use the same setup as before. Figure 3.2 shows how the convention

membership sizes of the largest convention in the small-world topologies changes
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Figure 3.2: Convention membership sizes over time for the largest convention
for varying clustering exponent in the small-world network. The shaded areas
represent the standard deviation over 100 runs.

during the simulation over the first 2000 timesteps. The values are found by

averaging the size of the largest convention each timestep over 100 runs and

the shaded areas show the standard deviations. As can be seen, the clustering

exponent has a significant and substantial effect on the way conventions emerge

within the system with lower clustering exponents facilitating much faster con-

vention emergence than higher values. This contrasts with the findings of Franks

et al. [2013] who noted that the clustering exponent had no effect on convention

emergence in the language coordination game. The substantial differences here

are thus likely due to the different coordination models being used and high-

light that different models are susceptible to different aspects of the underlying

topologies. Additionally, the assumptions of Franks et al. include a smaller net-

work size (only 1000 agents) and a differing measure of convention emergence

which is applicable only to the language coordination game. The manner in

which clustering exponent affects convention emergence is consistent with the

hypothesis of Delgado [2002], that the network diameter is the major factor
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in allowing rapid and consistent convention emergence. Decreasing ce makes

it more likely that the long-range connections will join otherwise distant parts

of the topology, decreasing the shortest paths between all nodes and allowing

conventions to spread more easily amongst the network. Conversely, increasing

ce limits the effective radius on the lattice that long-range connections will be

made to and so increases the clustered nature of the topology, making it consist

of localised areas that are resistant to outside change. The difference between

ce = 1 and ce = 2 is the most significant however, with the former causing

substantially faster convention emergence and to a higher level of consistency,

with 100% of the runs achieving convention emergence within 10000 timesteps.

The difference between ce = 1 and ce = 2 is much more so than between either

ce = 1 and ce = 0 or ce = 2 and ce = 3 indicating that there is a prominent

shift between these values, likely accounted for by the unique nature of ce = 2

as espoused by Kleinberg [2000b]. However, none of these values invalidate

the small-world feature of having a richly connected local area with a small

diameter.

Similarly, increasing the number of edges will, in general, decrease the di-

ameter of the network and so we would expect this to have a similar effect on

convention emergence. We can readily control the number of edges in both

scale-free and small-world topologies and so we vary m0 = m = {3, 5, 7, 9} and

l = {1, 3, 5, 7} to produce values of |V |/|E| ≈ {3, 5, 7, 9} in each topology. In

the small-world network, we leave ce = 2. As before, we use a population of

5000 agents and 5000 or 10000 timesteps for scale-free and small-world topolo-

gies respectively. We perform 100 runs for each setting and find the average

performance of the largest convention over time. Figures 3.3 and 3.4 show the

results of this for the small-world and scale-free graphs respectively. As can be

seen in Figure 3.3, increasing the number of edges has a dramatic effect on the

nature of convention emergence in small-world topologies. This can primarily

be attributed to the extra edges necessarily taking the form of additional long-

range connections as in the Kleinberg model the edges in the lattice are already
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Figure 3.3: Convention membership sizes over time for the largest convention
for different values of |V |/|E| in the small-world network. The shaded areas
represent the standard deviation over 100 runs.
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Figure 3.4: Convention membership sizes over time for the largest convention for
different values of |V |/|E| in the scale-free network. The shaded areas represent
the standard deviation over 100 runs.
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present. However, it again highlights that increasing the connectedness of the

local areas can dramatically affect the rate of convention emergence, with even

the increase from |V |/|E| = 3 to |V |/|E| = 5 allowing conventions to emerge

to the 80% level almost as rapidly as in scale-free topologies. The increase

from the 80% Kittock level to the 90% Kittock level is still noticeably slower

than in scale-free networks however, with wider ranging behaviour prevailing

in the small-world network (shown by the standard deviations in the shaded

areas). In contrast, Figure 3.4 shows that whilst increasing the value of |V |/|E|

does increase the convention emergence speed in scale-free networks the differ-

ence is much less marked than in small-world topologies. Additionally, there is

negligible difference between the performance at |V |/|E| = 7 and |V |/|E| = 9

indicating that there are diminishing returns of increasing the number of edges.

For the scale-free networks these findings are corroborated by Franks et al. [2013]

who found a similar relationship for scale-free networks in the language coordi-

nation game. The effect in small-world networks extends this and shows that,

for the coordination game at least, better connectedness improves convention

emergence in both topologies.

Introducing IAs

Having established that conventions can emerge naturally within our model

we now focus our attention on the role and functionality that IAs can play in

effecting convention emergence to a desired convention.

To investigate this we introduce a number of IAs into the topologies at

time t = 0. The IAs are placed at influential locations as determined by the

metrics discussed in Section 3.3.1 (degree, EC, HEE and HITS) and are placed

at the highest value locations available according to each metric. As we have no

particular preference over which strategy emerges as a convention, the strategy

is chosen uniformly at random from amongst the 10 available and assigned to

each of the IAs so that they all play the same fixed strategy. We explore the

case where IAs are assigned different strategies in Section 3.8. We utilise the
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Figure 3.5: Proportion of runs emerging the target convention for varying num-
bers of IAs in the 5000 node scale-free network.

90% Kittock criteria as before so that a convention has emerged when 90% of

agents, when queried, would all choose the same action.

We create scale-free networks with m0 = m = 3 and small-world networks

with ce = 2, l = 1, as before. Both, initially, consist of 5000 agents. The simu-

lations run for 5000 timesteps in the scale-free networks and 10000 timesteps in

the small-world networks. As previously discussed, this may prematurely stop

some small-world simulations that would otherwise have emerged conventions

but we hold that the varied nature of convention emergence speed in small-

world networks is a facet that we hope the IAs will help mitigate and speed

up. Additionally, as the average speed of unaided convention emergence is well

below this limit, we believe it will only affect some outliers and, as it is applied

consistently across all runs, does not affect the conclusions we can draw about

the relative performance of the metrics. Each setting was performed over 100

runs.

Figure 3.5 shows the proportion of runs that emerged the target convention

(that of the IAs) for increasing numbers of IAs in the scale-free network. As we

are concerned with the proportion of runs that emerge to the desired convention
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there is no averaging occurring and no standard deviations. The error bars thus

represent the standard error in proportions, SEp =
√
p(1− p)/n, to show the

level of uncertainty in the results.

The immediate thing to notice is that, apart from random placement, all

of the metrics perform nearly identically, with very little to differentiate them.

Indeed, the only point at which there is a statistically significant difference

between degree and another targeted metric is for the performance of HEE at 1

IA (two-proportion z-test, p < 0.05). We use degree as the baseline comparison

due to its previously found benefits [Franks et al., 2013; Griffiths & Anand, 2012]

and so we are primarily concerned with relative behaviour to it. Additionally,

the number of IAs needed to cause full convention emergence, where 100% of

runs converged to the desired convention is 4-5 in each of the targeted metrics.

This represents a small fraction of the agent population (shown at the top of

the chart) and shows that small numbers of targeted IAs can affect much larger

populations as was found by Griffiths & Anand [2012] and Sen & Airiau [2007].

The similar performance between each of the metrics is likely due to the strong

correlation between the metrics [Franks et al., 2014] and means they are likely

selecting nearly the same type of nodes.

Figure 3.6 shows the same type of results for the 5000 node small-world

topology and has a number of distinct characteristics compared to the scale-free

results. Firstly the number of IAs required to elicit the same level of desired

convention emergence is substantially higher in the small-world topology with

100% emergence not occurring until 30-40 IAs. Whilst this is still a small per-

centage of the overall network (<1%) it indicates that the small-world topologies

are more resilient to the effects of IAs, an aspect that can be attributed to the

resilient local clusters discussed previously. The effectiveness of the HEE metric

is also lesser here with it performing significantly worse than the degree metric

from 10-26 and 30 IAs (p < 0.05). HITS also performs worse though it is only

significant at 16, 20 and 24 IAs. Most importantly, random placement performs

comparably to all other metrics (worse than degree at 12-20 and 26, p < 0.05),
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Figure 3.6: Proportion of runs emerging the target convention for varying num-
bers of IAs in the 5000 node small-world network.

a stark departure from its performance in scale-free topologies. This is likely

due to the nature of small-world topologies, with them lacking the power-law

degree distribution that gives the “hub” nodes of the scale-free topology their

influencing power. Instead this indicates that as long as resilient clusters are

converted, the level of influence the node exhibits according to these metrics

is less important in small-world topologies at encouraging initial emergence of

conventions.

Another commonly used metric by which to evaluate convention emergence

is the speed with which the convention emerges. We consider this also for the use

of IAs to study not just how the convention emerges but how quickly. Figure 3.7

shows the effect of IAs on the speed of convention emergence in the 5000 node

scale-free network discussed previously. The time for the convention to emerge,

regardless of whether it was the desired one or not, was averaged over the 100

runs and is presented here. As can be seen, the inclusion of IAs dramatically

reduces the time taken for a convention to emerge for all targeted placement

metrics. Whilst HEE still performs worse than the others the difference is

marginal and overall shows that even a small number of IAs can help to guide
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Figure 3.7: Convention emergence time against the number of IAs in the 5000
node scale-free network.

rapid convention emergence. The relationship is one of diminishing returns

however, with larger numbers of IAs increasing the speed less and less.

Figure 3.8 shows the same for the small-world topology. It is even clearer here

that HEE performs markedly worse than the other targeted placement metrics

but the effect is otherwise the same; IAs reduce the time for the convention to

emerge. These findings corroborate those of Griffiths & Anand [2012] but the

fact that the additional metrics we study have the same effect is of interest.

Having previously shown that the population size, number of edges and, in

the case of the small-world network, clustering exponent can have a substantial

effect on convention emergence in the systems, Figures 3.9 and 3.10 show how

varying these parameters affects convention emergence when utilising IAs. For

the sake of clarity, these graphs only show the performance of degree placement

(that is, placement by the degree metric) under each setting, as it performs as

well or better than all other placement metrics. Figure 3.9 shows the results for

scale-free networks with varying population sizes and densities. We note that

there is very little difference here in the performance of IAs in eliciting the de-

sired convention emergence with ∼4-5 IAs still causing 100% of runs to converge

77



3. Interventions and Destabilisation

0 5 10 15 20 25 30 35 40
Number of Intervention Agents, n

1000

2000

3000

4000
C

on
ve

nt
io

n
E

m
er

ge
n

ce
T

im
e

Degree

Eigencentrality

HEE

HITS

Random

0.00% 0.10% 0.20% 0.30% 0.40% 0.50% 0.60% 0.70% 0.80%

Figure 3.8: Convention emergence time against the number of IAs in the 5000
node scale-free network.
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Figure 3.10: Proportion of runs emerging the target convention for varying
numbers of IAs using degree placement in small-world networks with different
parameters.

to the desired convention, regardless of network size and density. Including just

a few IAs at the correct points in scale-free networks seems to allow consistent

and robust convention emergence in a range of settings.

There is a more marked difference in the performance of degree placement

in the various types of small-world topologies, as shown in Figure 3.10. In these

topologies, increasing the number of agents changes the number of IAs required

to cause the same amount of change, with larger populations requiring more IAs.

However, even at 20000 agents, almost 100% convention emergence is achieved

using only 40 IAs, despite them representing a much smaller proportion of the

population than at 1000 or 5000 agents. This, coupled with the results for scale-

free networks, indicates that the number of IAs required to effect the desired

convention emergence is mostly independent of network size and highlights the

effectiveness of this approach. Varying the number of edges or the clustering

exponent has a much lesser effect than population size, despite the manner in

which they affected unaided convention emergence. Whilst they do change the

number of IAs required, the change is minimal compared to the base case of
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5000 agents with standard settings.

We have shown that IAs can be highly effective at producing the desired

convention to emerge rapidly over a range of graph settings and population sizes

in synthetic networks, expanding the previous scales at which these had been

examined and utilising a number of previously mostly unexplored placement

metrics.

3.4.2 Real-World Networks

We now turn our attention to using these same metrics in real-world topologies.

Real-world networks have been shown to have many different characteristics to

those generated synthetically [Franks, 2013; Pujol et al., 2005] but have been

mostly ignored in the study of convention emergence, particularly for the use of

IAs.

Franks [2013] uses a number of real-world topologies in his work but utilises

sampling of the networks, reducing them to much smaller sizes (around 1000

nodes). As we have seen, population size can have a noticeable effect on conven-

tion emergence and so reducing these networks removes some of the benefit of

studying them. Additionally, as noted by Franks and Gjoka et al. [2011], there

are a number of issues with sampling networks. Gjoka et al. note that a num-

ber of the potential sampling methods are heavily biased towards high-degree

nodes, creating samples that are unrepresentative. Whilst they explore others,

such as Metropolis Hastings Random Walk, which perform better and are able

to replicate a number of macro-scale features of the sampled topologies, they

note that there are none that replicate local structure whilst also replicating

these macro-scale features. Local structure has been shown to be important

when it comes to convention emergence [Villatoro et al., 2011a; Villatoro et al.,

2009] as well as the macro-scale features and losing either of this reduces the

generalisability of the results.

Thus, in this thesis, as Villatoro et al. do, we focus on the entirety of the

real-world networks, only reducing them to their largest weakly-connected com-
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ponent (WCC) for ease of allowing global convention emergence. This allows

us to benefit from both the macro-scale and local features of the topologies, as

well as providing an insight into population sizes beyond even those examined

in Section 3.4.1. We utilise 3 real-world networks as discussed in Section 2.6:

CondMat, Enron and Twitter.

To explore convention emergence within them we perform similar simulations

as before, locating a population of learning agents within the topologies. The

settings are as discussed in Section 3.3 although we allow the simulations to

run for 30000 timesteps due to the larger sizes of the topologies. We vary the

number of IAs introduced and place them as before, measuring their effect over

100 runs. Initial simulations showed that emergence of conventions to the 90%

Kittock criteria was unlikely, even over longer time periods and so we change to

the 80% Kittock criteria which still represents a substantial proportion of the

network adhering to a single strategy.

Figure 3.11 shows the results of these simulations for the 3 real-world topolo-

gies. In each of the topologies the percentage of the population that must be

IAs to cause full emergence to the desired convention is smaller even than in

the 5000 node scale-free topology examined before. In these topologies, 0.02%,

0.06% and 0.06% are sufficient in the CondMat, Enron and Twitter networks re-

spectively to cause full emergence to the desired convention. This lends further

credence to our hypothesis that the percentage of IAs required is nearly inde-

pendent of the population size, even in these larger and more complex networks.

The more noticeable difference between these and the synthetic networks is the

relative performance of each of the placement metrics. Whilst the 4 targeted

metrics are comparable in the CondMat network (with both HEE and HITS ac-

tually being statistically significantly better than degree or eigencentrality for 1

IA (p < 0.05)), both Enron and Twitter exhibit significantly worse performance

for these two metrics with HEE and HITS not causing a single run to change

to the desired convention in the Twitter network over the same range where

degree and eigencentrality cause 100% of runs to do so. In the Enron network
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Figure 3.11: Proportion of runs emerging the IA convention in real-world net-
works.
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these metrics are able to elicit convention emergence but at a significantly worse

performance than both degree and eigencentrality. In all topologies, degree and

eigencentrality continue to perform effectively indistinguishably from one an-

other and we believe this to be due to them selecting mostly the same nodes

given the correlation between them found by Franks et al. [2014]. These results

further our belief that degree placement is the most effective at allowing IAs to

influence convention emergence and informs later decisions on placement and

evaluation.

3.5 Initial Intervention in Dynamic Networks

Having shown that small proportions of IAs can affect convention emergence

in much larger populations for both synthetic and real static networks, we now

turn our attention to their effectiveness within dynamic topologies. These have

been shown to have different system dynamics than static topologies [Brandt &

Sigmund, 2005; Franks, 2013; Savarimuthu et al., 2007] and as such it is unclear

how effective convention emergence might occur within these topologies. We

seek to explore that notion in this section for initial interventions.

3.5.1 Interaction Model within Dynamic Networks

In the formulation proposed by Kittock [Kittock, 1995], a convention is consid-

ered to have emerged when a high proportion (90%) of the population would all

choose the same action given an open choice. Due to the dynamic nature of the

topologies in this section, whilst we adopt this definition of a convention, as we

have done previously, we must modify it to better fit within the dynamism of

the network topologies. Instead of considering the entire population, we monitor

adoption within the largest connected component. Whilst this could in theory

result in consideration of multiple, much smaller, populations than intended, de-

pending on dynamic network topology, our initial simulations show this to not

be a concern in the two models we utilise: González and Ichinose as described
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Symbol Meaning Default Value

m0 Initial number of nodes in Ichinose model 3
m Maximum number of edges to attach to new nodes

each round in Ichinose, rest rewired. During ini-
tial creation, number of edges to attach to each new
node.

3

r Radius of particles in González model. Set as part
of Tl/T0.

0.01

v0 Initial speed of particles in González model. Set as
part of Tl/T0.

0.3

v̄ Speed boost from collision of particles in González
model.

0.3

Tl Maximum life of agents in González model. Set as
part of Tl/T0.

500

L Arena size in González in model. Default calculated
based on desired |V | to ensure density of 0.625.

-

α Learning rate in Q-Learning 0.25
pexplore Exploration rate used alongside Q-Learning 0.25
payoff Payoff values for coordination game +4, -1

- Number of runs results are averaged over 100
- The number of actions in the coordination game 10

Table 3.2: Parameters and their default values for dynamic networks

in Section 2.6.3 whose default parameter values are shown in Table 3.2.

In the González model we find that in most simulations a giant cluster

consisting of nearly all agents will emerge. Agents not within this cluster are

likely to be recently created agents and, as such, should not be included in

the adoption rate calculation as they have not interacted. This is reinforced by

our simulations which showed that most agents not within the largest connected

component had degree zero. This follows the findings of both González et al. and

Savarimuthu et al. [2007]. However, whilst there is a large connected cluster, the

number of agents outside of this is not insubstantial. In order to ensure that the

population of this giant cluster is close to what we want to consider, we adjust

the size of the González model in all experiments such that the giant cluster

itself consists of roughly the right number of agents. Through experimentation

we find this adjustment to be ∼10% such that a requested population of 1000

agents will be created as a González population of 1100 so that the main cluster
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is ∼1000 agents at all times.

In the Ichinose model, due to the methods in which nodes and edges are

removed (ensuring that both remain at constant size), there is less risk of the

main population not being of the size intended. Due to the rewiring, there is a

chance that individual nodes may become isolated but we find this to be in the

order of 0.01% of the population at worst and so does not have an appreciable

effect.

IAs will be placed within the network to study the effect on convention

emergence. These agents are selected from the population rather than replaced

and as such have all the edges and knowledge they had at selection time, as was

the case in the static topologies. Such agents will all be assigned the same fixed

strategy (determined at the start of the simulation) and their placement will be

done via the relevant metric as discussed below. Unlike in static topologies, we

must consider what happens if an IA is removed from the graph. In this case,

a new IA will be selected using the same metric and assigned the same fixed

strategy as all the others.

The González model is known to require “burn-in” before the giant connected

cluster emerges and the network topology settles into what González et al.

[2006b] call a “quasi-stationary state” or QSS. This is known to occur by time

t ≈ 2Tl where Tl is the lifespan of agents in the González model and as such we

perform this many steps of graph simulation before introducing agents to the

topology. The Ichinose model has no such requirements as it is built initially as

a Barabási-Albert graph of sufficient size.

Otherwise, the interaction model is the same as in the static topologies with

agents learning via Q-Learning and only able to interact with their neighbours

in the graph.

3.5.2 Placement Heuristics

The dynamic nature of the topologies introduces a number of ways to apply the

metrics already discussed. As well as only considering the metrics with respect
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to the largest connected component we must also consider whether the metrics

will be static or updating.

Static versions of the metrics correspond to the equivalent metrics for static

networks. At the time of insertion, agents are chosen to be IAs in descending

order of the metric in question. This selection is static once chosen, only being

modified upon agent expiration as detailed above. This simplistic approach is

computationally cheap, a factor of importance in settings where gathering or

computing this information is expensive. However, this risks selected agents

potentially becoming sub-optimal choices as the simulation progresses. The

static nature of this manner of placement means that if another agent acquires

a larger value of the metric it will not be selected until one of the current IAs

expires. Depending on the model and expected lifespans of the current IAs, this

could be a substantial period.

To address this issue we propose another version of each metric: Updating.

This approach is sensitive to the dynamic nature of the topology and reselects

the IAs each timestep, based on highest current metric value. Whilst this offers

a solution to the potential sub-optimality of the Static metrics it suffers from

two problems. Firstly, the ability to acquire this information each timestep

in a timely manner may be infeasible in many domains. Secondly, there is

the potential that the IAs will not remain in a given location long enough to

influence the local area before being replaced.

The Static and Updating metrics do not fully consider the dynamic network

context. Whilst high metric agents are likely to be influential due to their ability

to interact with many others or their centrality within the network, additional

dimensions may affect their applicability. Agents close to expiring may be less

desirable than younger agents as their expected number of interactions before

replacement is lower. However, the youngest agents, those that are newly cre-

ated, cannot be guaranteed to become influential later on. Hence, the age of

an agent adds an additional consideration. We propose a new metric, Life-

Degree, that allows exploration of the effect of age in addition to degree on a
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the efficacy of an IA.

In many settings it may be impossible to know an agent’s expected lifespan.

However, we can estimate an agent’s remaining life (or their “youthfulness”) in

both the González and Ichinose models based on a comparison with the maxi-

mum age possible in the networks. In the González model this is a setting of the

graph itself and hence is easily calculable. In the Ichinose model, the expected

lifespan of an agent depends on its own degree and the mode in which the Ichi-

nose network model is operating. We can however find the current maximum

age in the network and compare all others to it. Thus, we can calculate the

expected remaining time-to-live, ErTTL, for a node n as,

ErTTL(n) = 1− age(n)

maxn′∈LCC(age(n′))
(3.2)

We can also calculate the normalised degree of a node n within the largest

connected component as:

degnorm(n) =
deg(n)

maxn′∈LCC deg(n′)
(3.3)

The Life-Degree heuristic is then defined as:

Life-Degree(n) = ω × degnorm(n) + (1− ω)× ErTTL(n) (3.4)

In this, 0 ≤ ω ≤ 1 is a weight, determining the relative contributions of

degree and expected TTL.

Life-Degree allows combination of the relevant information, normalised

against theoretical maximums, in a manner that allows exploration of the im-

portance of both. Two variations of Life-Degree will be used, Static and

Updating, to compare against the versions of the metric discussed above.
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3.5.3 Characterising Topology

We initially consider convention emergence without external manipulation in

the dynamic topologies. This gives insight into the impact of network dynamics

on convention emergence and provides a baseline. Additionally, it allows us

to quantify the point at which a stable convention will have emerged for later

experiments that focus on destabilisation.

The features of the dynamic topologies can be manipulated by varying the

parameters of the network models. Due to its uniqueness, we begin by consider-

ing convention emergence in the González model to show that it is feasible. In

the González model the combination of parameters is encapsulated in different

values of:

Tl
T0

=
2
√

2πrNv0Tl
L2

(3.5)

González et al. [2006b] show that the features of the topology thus only depend

on the ratio Tl/T0 and the density, ρ ≡ N/L2. Additionally, they show that the

average degree is a non-linear function of Tl/T0 that depends on the chosen ρ. As

such, for all experiments we use a constant ρ = 0.625 (e.g. N = 1000, L = 40)

to allow meaningful comparisons of the Tl/T0 values. This is automatically

calculated based on the chosen population size (once adjusted).

Parameter settings were chosen that generated values of Tl/T0 between 0 and

20. These were rounded to the nearest integer to combine similar Tl/T0 values,

with each bucket containing 10 randomly chosen values/settings. The average

time taken, over 30 rounds, for convention emergence to occur was measured on

the generated González topologies and the average time over the bucketed values

was then calculated. Values which did not result in convention emergence after

10000 timesteps were discounted from the second average as they were unlikely

to result in conventions emerging. Only runs with Tl/T0 . 4 are affected by

this. Simulations with a higher Tl/T0 exhibited convention emergence for all

runs. With Tl/T0 . 4 as much as 60% of the runs for a given simulation did

not result in convergence. The transition is notable and is discussed below.
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Figure 3.12: Average convention emergence time for different values of Tl/T0
with no IAs in the González network.
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of Tl/T0 with no IAs in the González network.
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It is clear that convention emergence is successful in the González topology,

and for most values of Tl/T0 there is little variation in the average time for

convention emergence as shown in Figure 3.12. Values of Tl/T0 & 5 all have a

convention emergence time of around t = 500 with little variation between runs.

However, values of Tl/T0 . 4 displayed significant variation and, in general,

much more time was required for convention emergence to occur if it occurred

at all. Higher values of Tl/T0 did not exhibit this. Figure 3.13 examines the

breakdown of convention emergence at the lower values of Tl/T0 showing the

number of settings for each value that resulted in full completion (30 out of 30

runs reaching convention emergence), partial completion (between 1 and 29 runs

reaching convention emergence) and no completion (0 runs reaching convention

emergence).

At low Tl/T0 values the topology either did not generate a giant cluster or

agents were found to expire before meaningful convention emergence could oc-

cur. This follows from the parameter settings required to give a small Tl/T0 and

means that there is a lower threshold for the González topology to experience

convention emergence. In particular, there is a minimum level of connectedness

and lifespan that must be present. Below this threshold the network will be

partially disconnected and not representative of real-world topologies. How-

ever, once this is achieved the time required for convention emergence is mostly

independent of Tl/T0. As such, we select parameter settings that are used for all

following simulations that give Tl/T0 ≈ 4.7 which was found to provide stable

convention emergence times. These are: Tl = 500, v0 = v̄ = 0.3, radius = 0.01.

The arena size, L, is calculated based on the adjusted number of agents to en-

sure that ρ ≡ N/L2 ≈ 0.625 as discussed above. For completeness, additional

Tl/T0 values in the range 20 to 200 were also examined. There was a slight

decrease in the average time at higher values, although the low variation re-

mained. As the real-world networks examined by González et al. [2006b] had

Tl/T0 values around 5-6 these results were purely to determine the impact of

high Tl/T0 values rather than to be used in actual simulations.
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Figure 3.14: Convention emergence in the Ichinose models with no IAs.

For the Ichinose models, given their resemblance to Barabási-Albert scale-

free networks, we would expect them to be quite consistent in emerging robust

conventions unaided. Figure 3.14 shows this to be the case for all 4 different

modes of the Ichinose model generated with m0 = m = 3 and |V | = 1000.

There is little variation between each of the 4 modes, despite the fundamen-

tal differences between them, indicating that the initial starting state of the

topology may be beneficial in allowing conventions to emerge. Even with the

rapid change that occurs in the TP and TR settings, a convention nearly always

emerges by t = 500 with TP and TR, on average only slightly behind RR and

RP.

3.5.4 Results

Having established that convention emergence occurs in dynamic topologies, we

now examine the effect of IAs. We start by considering the scenario where IAs

are introduced early in a system’s lifespan to manipulate convention emergence:

initial intervention.
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Figure 3.15: Legend for all metrics used in initial intervention in dynamic net-
works.

Given the large number of metrics being used (Static and Updating versions

of all placement metrics except random as well as various weightings of both

Static and Updating Life-Degree) we provide a legend that is applicable to all

runs and plots for both the González and Ichinose graphs to avoid redundancy

in the plots themselves. This is shown in Figure 3.15 and follows the general

rule that updating versions of each metric will use dashed lines whilst static

versions are solid.

We begin by considering the versions of the traditional metrics discussed in

Section 3.5.1: Static and Updating metrics. We also consider random placement

of the IAs as a baseline, which is done in a static manner. The IAs were inserted

into the system at t = 0, after any required burn-in had occurred and the

simulation allowed to run for 5000 timesteps. Prior simulations showed that

conventions always emerged well before this time even without the presence of

IAs. The number of IAs inserted into the system was varied and the proportion

of simulations in which the IA strategy emerged as the convention was monitored

over 100 runs, as in the static networks.

Figure 3.16 shows the results of this approach for the González model. As

can be seen, much as in static networks, a small proportion of the agent popu-

lation acting as IAs is able to direct the convergence to the desired convention

with nearly all metrics, static and updating, doing so by n = 10 or 1% of the
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(b) Life-Degree - Static
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Figure 3.16: Proportion of runs emerging the IA convention in the González
network.
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population. This proportion is however, much larger than that required for the

equivalent effect in the static networks, being almost a factor of 10 larger. This

is to be expected given the constantly changing nature of dynamic networks. As

links are consistently made and lost between distinct portions of the topology

we would expect other conventions to find it easier to spread and hence more

IAs are needed to counteract this.

As we can see from Figure 3.16a there is little difference between the tra-

ditional metrics with both degree and eigencentrality consistently doing well,

though not significantly better than HITS. HEE is yet again found to perform

worse than all of the other metrics being statistically significantly worse than

the equivalent degree metric at nearly all points (p < 0.05). Most importantly,

there is little difference between the static and updating versions of each metric

with none of them performing consistently better or worse than the other. This

indicates that, for initial intervention at least, whether the information is up to

date or not is of less importance. Given this, and the additional complexity and

resource requirements for calculating the Updating metrics, Static metrics are

likely sufficient in most cases.

Figures 3.16b and 3.16c show the results for the static and updating versions

of the Life-Degree metric in the González model. Overall we find that there

is little difference between the performance of Life-Degree and the equivalent

degree metric, with ω = {0.9, 0.7, 0.5} not being consistently different over the

range of n. This indicates that consideration of agent age is not enough to affect

the efficiency of the placement one way or the other. When we consider only

agent age, such that ω = 0, we find that performance is substantially worse,

doing as bad or worse than random placement. This is due to the fact that,

for this value of ω, the placement metrics are essentially trying to choose which

agents they believe will live the longest. Their poor performance highlights the

difficulty in accurately choosing agents that will become influential later on. We

include it as a comparison baseline for later runs. These results show that an

agent’s connectivity, indicated by its degree, is a much larger contributor to its
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Figure 3.17: Proportion of runs emerging the IA convention in the Ichinose RR
network.

ability to influence others than how long that agent will remain in the system.

The fact that considering age can only decrease the effectiveness of the chosen

agents indicates that agents’ short-term influence is a larger factor in convention

emergence than choosing long-term targets.

Figure 3.17 shows the equivalent plots of the Ichinose RR model where nodes

are removed at random and edges attached randomly as well upon node replace-

ment. As in the González model, there is little difference in the efficacy of most

of the metrics with the exception of HEE which performs noticeably worse. The

major difference however is that the number of IAs required to cause 100% con-

vention emergence is much lower, with nearly all metrics doing so by n = 4.

This indicates that the Ichinose RR model is easier to influence, likely a factor
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Figure 3.18: Proportion of runs emerging the IA convention in the Ichinose RP
network.

of the influential locations (high-degree nodes) not being removed as readily as

they will be in the González model where they are likely to be older and closer

to expiration.

Additionally, whilst most weightings of Life-Degree have no significant

difference between their static and updating forms, ω = 0.5 where agent age

and degree have equal weighting, performs significantly worse in this topology

than in González. As this doesn’t appear in the static Life-Degree equivalent,

this indicates that constantly using up-to-date age information is detrimental

in the Ichinose RR model. We hypothesise that this is because of the random

removal nature of topology meaning that agent age has little bearing as they

may be removed at any time. Figure 3.18 shows similar behaviour in the Ichinose
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Figure 3.19: Proportion of runs emerging the IA convention in the Ichinose TR
network.

RP model and hence adds weight to this theory as the major shared feature is

the random nature of removal.

Figure 3.19 shows the effect of IAs in the Ichinose TR model, where the

highest degree node is removed each timestep. This feature is a major differ-

ence in network dynamics between this version of the Ichinose model and the

previous two and we see the effect of this in the results. The primary differ-

ence is that the number of IAs required is closer to that of the González model

than either of the previous two Ichinose models with n = 10 being needed to

consistently cause the desired convention emergence. Due to the removal of the

high-degree node each timestep, which is likely to be ranked highly by all other

metrics, the system is constantly losing IAs that have only been placed there for
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(b) Life-Degree - Static

0 2 4 6 8 10
Number of IAs, n

0.0

0.2

0.4

0.6

0.8

1.0
E

m
er

ge
n

ce
P

ro
p

or
ti

on

0.00% 0.20% 0.40% 0.60% 0.80% 1.00%

(c) Life-Degree - Updating

Figure 3.20: Proportion of runs emerging the IA convention in the Ichinose TP
network.

a little while meaning that more IAs are required to constantly and consistently

spread the desired convention and thus counteract this. Also of interest is that

HEE performs poorly even by the previous standards, with a marked decline

in efficacy compared to the other metrics, making it nearly as poor as random

placement.

When examining the performances of Life-Degree we find that the poor

quality of ω = 5 that was present only in the updating metric in the other

Ichinose models is also present in Static Life-Degree here with performance

comparable to random placement. This is likely due to the fact that age is now

tied strongly to degree as those vertices in the graph that have been around

for longer are (i) more likely to be targeted for removal sooner and (ii) more
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likely to have accrued edges. As such, there is a redundancy in the information

contained within Life-Degree that acts to its detriment. This is corroborated

by the results of the Ichinose TP model shown in Figure 3.20 where similar

behaviours are observed. The two sets of otherwise similar behaviour (RR and

RP, TR and TP) indicate that the removal method in the Ichinose model is by

far the most prominent feature that determines network dynamics, rather than

the attachment method.

Overall, we have shown that convention emergence is possible in dynamic

topologies of various types and that, as in static networks, small proportions of

the population being used as IAs can dramatically affect this emergence, direct-

ing it to the desired outcome. We have shown that the age of the information

used to select IA locations is of little importance when considering initial inter-

vention and that consideration of agent age, choosing agents that will remain in

the system for longer, is of less benefit than simply choosing highly influential

agents and replacing them as necessary.

3.6 Late Intervention and Destabilisation in Static

Networks

Having shown that rapid and robust convention emergence is possible using IAs

in a range of networks, both static and dynamic, we now change our focus to the

matter of destabilising an existing convention and replacing it with another of

our choosing. These late interventions would allow system designers to resolve

suboptimal conventions without having to change the internals of agents and

instead focus on the use of IAs to facilitate this.

We begin by considering synthetic static networks as before. We generate

scale-free topologies of sizes 1000 and 5000 using the Barabási-Albert model with

settings m0 = m = 3 and additionally generate small-world topologies of the

same sizes with ce = 1 and l = 1. Both of these models with these settings have

been shown to allow conventions to emerge unaided within the population and
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as such allow us to focus our efforts on the destabilisation of these once they

have emerged. We utilise the same placement metrics and interaction model

as before. The work thus far in this chapter has shown that the coexistence

of multiple stable conventions under this model does not occur, with a single

strategy dominating almost the entire population. As such we do not seek to

address the nature of multiple conventions in this thesis to any great effect.

Initially we examine the effect of introducing a varying number of IAs into

the population indefinitely. In Chapter 5 we will see the effect that only in-

cluding them temporarily has on destabilisation. To establish a baseline for the

minimum number of IAs required to cause destabilisation, we introduce a set of

IAs at a time after conventions have already emerged. This was found to have

occurred by t = 1500 in the scale-free topologies and t = 2500 in the small-world

topologies. The IAs then remain in the system until the end of the simulation

which is set for 5000 timesteps after their introduction to allow comparisons

between both topologies.

For these results we use focus on what we term aggressive destabilisation

such that IAs are all assigned the same fixed strategy which is chosen uniformly

at random from all strategies that are not the current dominant convention

with the intention of causing the chosen strategy to replace the dominant con-

vention. As before, IAs are placed at influential locations as determined by the

metrics used: degree, eigencentrality, HEE and HITS. We also consider random

placement as a baseline for performance.

We start by studying the effect that late intervention has on the conven-

tion memberships within the systems. We run 100 simulations for each setting

and plot the average membership sizes for both the dominant and selected IA

strategy for each timestep. IAs are placed by degree initially.

Figure 3.21 shows these results for scale-free graphs with 1000 nodes and

different numbers of IAs. Figure 3.21a introduces 20 IAs into the system at

t = 1500 and we can see that they have an effect almost immediately. The

membership of the dominant convention falls, but more than can be accounted
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Figure 3.21: The effect of late intervention IAs on scale-free graphs. The shaded
regions represent the standard deviations.
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Figure 3.22: The effect of Intervention Agents on small-world graphs

for by the IAs themselves indicating they are successfully causing agents in their

local area to switch away from the dominant convention. However, this reduc-

tion soon stabilises with little variation between all runs, indicating that they

are unable to cause further agents to switch. Increasing the number of IAs even

slightly to 30, as in Figure 3.21b, we see a drastic shift in behaviour with widely

varying performance between runs. The destabilisation continues beyond the

initial “dip” on average with a steady decline in the average membership size

of the dominant convention and a similar climb for the IA convention, showing

that the IA convention is switching members of the dominant one away from it.

This is not guaranteed however and takes a substantial time. In comparison,

Figure 3.21c shows that insertion of 40 IAs causes the entire membership of

the dominant convention to switch, within only 1-2000 timesteps. The varia-

tion between runs is substantially reduced with the behaviour mostly consistent

across all of them. These results show that there is a minimum number of IAs

required to induce destabilisation and the relatively small range of IAs from no

permanent effect to guaranteed destabilisation indicates that there is a “critical

value”, a tipping point beyond which the number of IAs guarantees effect, much

like in initial intervention. Increasing the number of IAs beyond this minimum

was found to accelerate the destabilisation further.

Results for 1000 node small-world networks are shown in Figure 3.22. Whilst

the overall behaviour is similar, in that there is a critical number of IAs after
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Figure 3.23: Proportion of runs where the IA strategy emerges as a replacement
convention for the 1000 node scale-free network.

which destabilisation will occur, the behaviour pre-transition is less well-defined

and there are some distinctions to highlight. In particular, the characteristic

“dip” that occurs in scale-free topologies is much more variable in the small-

world topologies with the level to which the reduction occurs varying more be-

tween runs. Additionally, the number of agents required is substantially higher

with 80 agents, shown in Figure 3.22b, still not causing as rapid destabilisation

as 40 agents do in the scale-free topologies. Whilst we have previously seen

disparities in the behaviour of scale-free and small-world graphs, this highlights

that it is present for destabilisation as well and is likely primarily due to the

lack of “hub” nodes that act as highly influential individuals.

Having shown that destabilisation is possible, and that there appears to be

a sharp transition between no effect and guaranteed destabilisation in the two

topologies, we now apply these findings to the other metrics. We now place vary-

ing numbers of IAs using all the metrics previously mentioned and monitoring

the proportion of 100 runs where the IA strategy emerges as a new conven-

tion to the 90% Kittock level, hence destabilising and replacing the previously

dominant strategy.
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Figure 3.24: Proportion of runs where the IA strategy emerges as a replacement
convention for the 1000 node small-world network.

Figure 3.23 shows the results of this for the 1000 node scale-free network.

As expected, for each metric there is a sharp transition, or phase shift, be-

tween having no effect (emergent proportion = 0) and guaranteeing destabili-

sation (emergent proportion = 1), that occurs over a range of approximately

10 additional IAs for degree and eigencentrality, 16 for HITS and 24 for HEE.

Additionally, unlike in initial intervention, there are distinct performance differ-

ences between the different metrics with degree and eigencentrality performing

markedly better than HITS and even more so over HEE. This indicates the

general applicability of degree and eigencentrality in both types of intervention

with the other metrics being less so.

Figure 3.24 shows the similar results for the 1000 node small-world graph.

Though the number of IAs required is substantially larger (both in absolute and

relative terms), the same pattern emerges with transitions from no effectiveness

to full effectiveness occurring over small ranges of IAs compared to the number

required. The performance of HEE is even worse in this setting with random

placement performing better and HITS only marginally better than that. There

is a slight difference in the performance of eigencentrality and degree here though
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Figure 3.25: Proportion of runs where the IA strategy emerges as a replacement
convention for the 5000 node scale-free network.

eigencentrality is only statistically significantly better at 74, 78 and 80 IAs

(p < 0.05).

We also consider different sizes of agent population, as before. Figure 3.25

shows destabilisation in the 5000 node scale-free topology. Whilst the absolute

number of IAs required increases, unlike in initial intervention where the abso-

lute number was relatively invariant, the number of IAs as a proportion of the

population is still around 3% indicating that the relative number of IAs may

be a deciding factor in the nature of destabilisation. Degree and eigencentral-

ity continue to outperform all others with the performances of HITS and HEE

both decreasing, requiring a larger relative number of IAs than was needed in

the 1000 node graph.

Figure 3.26 shows the same for the 5000 node small-world network. Again,

the performance of both degree and eigencentrality against the relative number

of IAs is consistent with the difference between them even more marked (sta-

tistically significant between 365-395 IAs, p < 0.05). Interestingly, HITS and

random placement both maintain their relative performance as well, indicating

that in small-world topologies these placement metrics may still be effective.
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Figure 3.26: Proportion of runs where the IA strategy emerges as a replacement
convention for the 5000 node small-world network.

3.6.1 Late Intervention in Real-World Topologies

As we did for initial intervention we also consider the performance of the metrics

for eliciting destabilisation in the real-world topologies of CondMat, Enron and

Twitter. Given their differences compared to synthetic networks even for initial

intervention the complex and dense nature of their topologies is likely to induce

different performances than those just shown.

The results are shown in Figure 3.27 for the proportion emergence over 100

runs in each topology. Unlike in synthetic static or dynamic networks, our

experiments show that conventions are unlikely to emerge unaided in the real-

world topologies, even to the 80% Kittock level within any reasonable timeframe.

As such, and as we are concerned with destabilisation of existing conventions, we

artificially saturate the population using 500 IAs to induce an initial convention

emergence. This then allows us to focus on the destabilisation. Whilst this is less

preferable than allowing the conventions to emerge naturally we do not believe

there to be any salient difference between the two types. These saturation IAs

are kept in the system until an appropriate convention is guaranteed to have

emerged which occurred by timestep 500 in the Twitter and Enron networks
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Figure 3.27: Proportion of runs where the IA strategy emerges as a replacement
convention in real-world networks.
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and by timestep 1500 in the CondMat network. At this time the saturation

agents were removed and the destabilisation intervention was allowed to begin.

The simulations all ran for 15000 timesteps to ensure that likely destabilisations

would occur. As in the case with initial intervention, we use the 80% Kittock

threshold rather than the 90% due to the networks being unlikely to emerge

conventions at that level.

As can be seen in Figure 3.27, there are marked differences between desta-

bilisation in each of the networks. Both Twitter and CondMat require relative

proportions of IAs comparable to scale-free topologies, needing about 3-4% of

the population to be IAs before destabilisation is guaranteed to occur. By

comparison, the Enron network needs substantially less than all of the other

topologies, needing only 0.64% to guarantee destabilisation when placing by

degree or eigencentrality. This highlights the fact, observed in the difference

between scale-free and small-world topologies, that destabilisation is more sen-

sitive to topological particulars than initial intervention was. Underpinning this

is the stability of the convention that we are trying to destabilise and these re-

sults show that stability is directly tied to topology, as was argued by [Villatoro

et al., 2011a].

HEE and HITS both perform substantially worse in these networks with none

of the ranges of IAs investigated responding to their use. This adds additional

weight to our hypothesis that degree and eigencentrality are the best metrics of

those investigated due to their general nature. Indeed, within these topologies

we see eigencentrality clearly outperforming degree for the first time in both

the CondMat and Twitter networks, and to a larger extent in the latter. This

implies that there are not as interchangeable as initially suspected and instead

may have substantially different performances depending on topology.
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3.7 Late Intervention and Destabilisation in Dy-

namic Networks

We have thus far shown that destabilisation of existing conventions is possible

in static networks and that, whilst the absolute number of IAs required to do

so might change, the relative proportion of the population is mostly invariant

with all topologies observed so far, regardless of size and underlying differences,

requiring at most 8% in order to destabilise the convention.

We now look to investigate the nature of destabilisation in dynamic topolo-

gies. Given the fundamental differences between them and the static topologies,

we expect the system dynamics to differ here too. Due to the higher numbers

of IAs needed to cause destabilisation, the fact that they may be removed or

expire at any moment or that their ability to influence may change over time

increases in importance when considering destabilisation. Up-to-date informa-

tion on node metric values, so that a suboptimal node is not left as an IA will

be paramount.

Similar to our approach in synthetic static networks, and so that the results

are representative of the general case, we allow a convention to naturally emerge

without the use of IAs to encourage it. It was found that conventions always

emerged before timestep t = 1500 in all topologies and, as such, insertion of

IAs occurs at this time. This also means that the topology will have had longer

to stabilise. Whilst this is less likely to have an effect in the González model

due to the already required burn-in, the Ichinose models will have had more

time to diverge and so we can expect even more pronounced differences in their

behaviour than was observed in initial intervention. As before, the fixed strategy

assigned to the IAs is chosen uniformly at random from all actions excluding

the established convention and assigned to all agents. Our model is otherwise

identical to that used for initial intervention and we perform 100 runs of each

setting to calculate the proportion. Each simulation is run for 5000 timesteps

as this was found to be long enough for likely destabilisation to occur.
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Figure 3.28: Legend for all metrics used in late intervention in dynamic net-
works.

The same method of identifying the large number of different metrics is

used as before and we reproduce the supplied legend here for ease of access in

Figure 3.28.

We begin with a consideration of the effectiveness of destabilisation in the

González network as shown in Figure 3.29. As can be seen, as was found in

static networks, the number of IAs needed to cause destabilisation is much larger

than the number of IAs needed to elicit initial convention emergence. Indeed,

the relative amount is also larger than equivalently sized static networks with

even the best performing metric requiring ∼5% of the population as IAs in order

to cause destabilisation (compared to ∼3.5% in the scale-free networks). This

is despite the González model sharing a number of features with the scale-free

network such as a power-law degree distribution and preferential attachment.

We can conclude from this that it is the dynamic nature itself that requires

additional efforts to destabilise conventions, affording them additional stability.

However, it is worth noting that the transition from no effect to full effect occurs

much faster in the González model than the scale-free topology with a difference

of just 6 IAs between the two states. We can conclude that the “critical value”

of IAs needed is over a narrower range than in the static topologies.

As was found in the static networks, there is now a marked difference in the

efficacies of the various placement metrics with HEE and HITS performing much
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Figure 3.29: Proportion of runs where the dominant convention is replaced with
the IA convention in the González network.

111



3. Interventions and Destabilisation

60 65 70 75 80 85 90 95 100
Number of IAs, n

0.0

0.2

0.4

0.6

0.8

1.0

E
m

er
ge

n
ce

P
ro

p
or

ti
on

6.00% 6.50% 7.00% 7.50% 8.00% 8.50% 9.00% 9.50% 10.00%

(a) Traditional Metrics

60 65 70 75 80 85 90 95 100
Number of IAs, n

0.0

0.2

0.4

0.6

0.8

1.0

E
m

er
ge

n
ce

P
ro

p
or

ti
on

6.00% 6.50% 7.00% 7.50% 8.00% 8.50% 9.00% 9.50% 10.00%

(b) Life-Degree

Figure 3.30: Proportion of runs where the dominant convention is replaced with
the IA convention in the Ichinose RR network.
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Figure 3.31: Proportion of runs where the dominant convention is replaced with
the IA convention in the Ichinose RP network.

worse than degree or eigencentrality. Additionally, the updating versions of

each metric now perform significantly better than their static equivalents across

all metrics with updating degree/eigencentrality performing best overall. This

indicates that having up-to-date information on the level of influence a particular

agent is capable of is much more important when attempting to destabilise an

existing convention. Ensuring that the desired convention has as much reach as

possible is necessary to overcome the precedent of the existing convention and

avoid it self-reinforcing due to suboptimal agent choice.

Additionally, the Life-Degree weightings have differing levels of perfor-

mance compared to their efforts in initial intervention with ω = 0.5 performing
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Figure 3.32: Proportion of runs where the dominant convention is replaced with
the IA convention in the Ichinose TR network.

markedly worse than the other weightings which in turn only approach the

equivalent degree metric in efficacy. This indicates that consideration of agent

influence is much more important than ensuring agent longevity in our selection

and is backed up by the fact that ω = 0 performs so poorly it does not cause

any effect in the ranges shown.

Figures 3.30 and 3.31 show destabilisation in the Ichinose RR and Ichinose

RP topologies respectively. In contrast to their performances in initial inter-

vention, these two topologies exhibit noticeable differences when considering

destabilisation. Ichinose RR, with the best performing metric, requires ∼7.25%

of the population to be IAs before destabilisation is guaranteed whereas Ichinose
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Figure 3.33: Proportion of runs where the dominant convention is replaced with
the IA convention in the Ichinose TP network.

RP only requires ∼5%. Additionally, the difference between the performance of

the updating metrics compared to their static equivalents is much less substan-

tial in the Ichinose RP topology than in the Ichinose RR topology. Whilst not

important when considering initial intervention the method of edge attachment

used has a noticeable effect when it comes to destabilisation. The performance

of Life-Degree is similarly affected by these differences with performance in

RR being much better than in RP, though still offering no improvement over

the pure degree equivalent.

Similarly, Figures 3.32 and 3.33 show destabilisation within the Ichinose TR

and Ichinose TP topologies respectively. As in each of the other topologies, the
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updating metrics perform markedly better than their static equivalents, requir-

ing ∼12% fewer agents in the Ichinose TR topologies for degree and eigencentral-

ity placement. As was found in the RR and RP topologies, this improvement

is lessened in the Ichinose TP topology by comparison with updating degree

and eigencentrality requiring ∼9% fewer agents, though this difference is less

than it was in the random removal topologies. This lends further weight to the

notion that the attachment method of the Ichinose model is the primary driver

that affects the supremacy of the updating metrics. It indicates that topologies

lacking preferential attachment are more susceptible to the effects that out of

date information can have as the selected nodes are more likely to decrease in

influence in these topologies. Both TR and TP topologies require more IAs to

cause destabilisation than the equivalent RR and RP topologies, likely due to

the consistent removal of influential nodes, as discussed when considering initial

intervention.

Overall, these results show that destabilisation is possible in dynamic topolo-

gies as well as static although the proportion of IAs needed to do so is higher.

The constantly in flux nature of both the nodes and edges lend additional sta-

bility to the established convention likely due to the ability of the established

convention to “reinforce” areas of falling support as new links are made. In all

topologies we also find that having up-to-date information and selection of in-

fluential nodes is substantially more important than when trying to elicit initial

convention emergence with updating metrics performing markedly better in all

scenarios. Our findings also indicate that concerns of agent longevity, tied to

the fact that up-to-date information is preferable, are more detrimental in this

domain. Attempting to utilise agents that will be in the system for longer is

of much less importance than maximising the influence of the selected IAs. As

with the findings for destabilisation in static networks, both HEE and HITS

are substantially worse when being used as placement metrics compared to de-

gree and eigencentrality, indicating further than these are the best generally

applicable metrics to use.
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Figure 3.34: Effect of passive destabilisation on convention membership size in
the 5000 node scale-free topology.

3.8 Passive Destabilisation

Having established that destabilisation is possible and highlighted the various

factors in both dynamic and static networks that affect it, we now turn our

attention to the concept of passive destabilisation.

We can categorise destabilisation efforts into two main types: aggressive

destabilisation where we wish to cause the collapse and active replacement of

the current dominant convention, and passive destabilisation where we are not

concerned with the replacement of the dominant convention but rather only seek

to cause it to collapse. All work thus far has utilised aggressive destabilisation
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but we now explore passive destabilisation as a means to return the system to

a state where a convention can emerge naturally once more, without preference

for what they convention may be. This is of use in scenarios where the system

designer may have some equilibria they actively do not want as conventions but

otherwise do not wish to favour one over others. In order to facilitate passive

destabilisation we utilise IAs as before but instead of assigning them a uniform

strategy we instead assign fixed strategies to them uniformly at random from

the set of actions that are not the dominant one.

We begin as we did when investigating aggressive destabilisation by examin-

ing the effects of the destabilisation efforts on convention membership size and

this is shown in Figure 3.34. IAs are placed by degree and the average member-

ship size of each convention (combined by rank) at each timestep is calculated

over 100 runs. IAs are introduced at timestep t = 1500 after a dominant con-

vention has emerged and their strategies are assigned as discussed. Figure 3.34a

shows the results when 250 IAs are placed within the system. Despite being 100

IAs larger than the number required to guarantee aggressive destabilisation in

the same network, we can see that this set of IAs is insufficient to cause the dom-

inant convention to collapse, instead simply reducing the number of members.

Whilst the size of the dip indicates, as before, that the IAs are successful in

switching others away from the established convention the unfocused nature of

passive destabilisation means that the established convention is more resilient.

In particular, the decrease is very stable with little deviation after the initial

fall indicating that, as with aggressive destabilisation, there is likely a critical

number of IAs that must be reached to prevent the dominant convention from

stabilising.

Figure 3.34b shows the results when 450 IAs are placed into the same system.

Despite requiring much larger numbers of IAs we can see here that passive

destabilisation is possible with the dominant convention collapsing with little

variance in all runs. The process is slower than in aggressive destabilisation

however, as is the growth of the replacement convention that begins to emerge.
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Figure 3.35: Passive destabilisation in the 5000 node scale-free topology. The
proportion is the proportion of runs that caused the dominant convention to
fall below the 30% Kittock count.

Indeed, longer runs show that this emergent convention takes a long time to

grow and that its maximum size is much lower than that achieved by the original

convention due to the suppressing effect of the passive IAs. Similar patterns are

observed in both small-world and dynamic topologies.

Due to this, we instead focus on the number of IAs that is required to

consistently destabilise the dominant convention without concerning ourselves

with the level to which a new convention emerges afterwards. To facilitate this

we monitor the proportion of runs in which the dominant convention, after

the intervention begins, falls below the 30% Kittock level, viewing this to be

representative of a substantial collapse in the level of support for the established

convention. We refer to this as the destabilisation proportion.

Figure 3.35 shows the results of this for the 5000 node scale-free network with

the same intervention model used before: IAs are introduced at t = 1500 and we

monitor the proportion of these that cause a collapse in the dominant convention

in the 5000 timesteps following. We utilise both degree and eigencentrality

placement of the IAs as these were found to be the most effective in aggressive

destabilisation.

As can be seen in the figure, both the absolute number and hence population
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Figure 3.36: Passive destabilisation in the 5000 node small-world topologies.
The proportion is the proportion of runs that caused the dominant convention
to fall below the 30% Kittock count.

proportion of IAs needed to cause passive destabilisation is much higher than

that needed for aggressive destabilisation, requiring almost 2.5 times more IAs.

The transition between no effect and full effect is also affected with it occurring

over a range of about 1% of the population as opposed to 0.5% seen before.

Most importantly, there is a significant difference between the performance of

degree and eigencentrality placement with eigencentrality performing worse to

a statistically significant level at nearly all points of interest. Whilst degree

and eigencentrality are strongly correlated in scale-free graphs, at the number

of IAs being utilised here using one metric over the other will select different

nodes. Nodes with high eigencentrality are linked to other nodes with high

eigencentrality but are not necessarily linked to many nodes overall; being linked

to by a few, very important, other nodes will produce high eigencentrality. For

our purposes, this means there may be nodes ranked highly by eigencentrality

but who actually have a small set of other nodes they are able to influence (and

the members of that set have likely already been selected themselves). This is

less likely to have an effect at lower numbers of IAs but will be noticeable at

higher levels and this is what we see here.

Figure 3.36 shows the same but for small-world topologies. Here IAs inser-
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tion occurs at t = 2500 and we similarly monitor the destabilisation proportion

achieved by runs in the 5000 timesteps following. Passive destabilisation in

small-world topologies similarly requires ∼2.5 times as many IAs as aggressive

destabilisation which results in needing up to 22% of the population before full

effectiveness is achieved. Of most interest is that, in this setting, eigencentrality

actually outperforms degree to a significant margin requiring almost 4% less of

the population (or 200 fewer IAs) in order to cause the same level of collapse.

This shows that passive destabilisation can benefit from exploiting different as-

pects of the underlying topology more so than aggressive destabilisation and

the differences between high-degree and high-eigencentrality nodes in the small-

world topology facilitate this. The lack of hub nodes in the small-world topology

is again likely the cause of this disparity but it is still of interest that the high-

eigencentrality nodes are more effective targets due to their connections to other

high-influence nodes. This is the other side of the scenario discussed above, as

there are many nodes with the same degree (due to the lattice nature of the

small-world generation) but those well-linked individuals (those with high eigen-

centrality) act like the hub nodes in scale-free graphs. Their high eigencentrality

makes them different to the myriad of nodes with the same degree and benefits

the convention emergence by allowing links to disparate parts of the network.

The distinction between the performances of eigencentrality and degree does

not appear in the dynamic topologies and so we only plot the degree metrics in

Figure 3.37 for clarity. Figure 3.37 shows the performances of both static and

updating degree for destabilisation as the best performing metrics investigated

for all dynamic topologies. Again, a factor of ∼2.5 times as many IAs compared

to the best performing metrics for aggressive destabilisation is required in order

to cause passive destabilisation. A major difference however is that, for passive

destabilisation, it is the static metric placements that perform best in all topolo-

gies. Whilst the differences between the static and updating metrics differ in

each topology, this consistency indicates that it is more important in passive

destabilisation to leave IAs in a location consistently rather than potentially
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Figure 3.37: Passive destabilisation in dynamic topologies. The proportion is
the proportion of runs that caused the dominant convention to fall below the
30% Kittock count.
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changing them every timestep as this gives the IAs enough time to cause their

local agents to switch away from the dominant convention without the work be-

ing undone as soon as they are removed. This is highlighted by the static metrics

needing approximately twice as many IAs to elicit the same destabilisation as

in aggressive whilst the updating metrics require approximately three times as

many. This runs contrary to the requirements for aggressive destabilisation in

these topologies and highlights the differences between them.

Overall however, passive destabilisation of existing conventions has been

shown to be possible. Whilst it requires larger numbers of IAs to cause the

same level of effect, being able to destabilise an established convention without

having to actively choose a successor is of great benefit in a number of domains.

3.9 Differing Convention Spaces

The size of the convention space available is known to have marked effect on the

nature of convention emergence within MAS. Griffiths & Anand [2012] showed

that larger convention spaces slowed the rate at which conventions emerged

initially across all topologies and Franks et al. [2013] and Salazar et al. [2010],

when using the language coordination game which has a exponentially larger

convention space showed results that also exhibited slower convention emergence

than we have found here, often requiring on the order of 106 timesteps.

As such, we seek to explore the effect that larger, and smaller, convention

spaces have on both initial and late interventions in both static and dynamic

topologies. This also will show that our results are general and not expressly

tied to the 10-action coordination game. We vary the number of coordination

actions such that we can explore these effects by setting the number of actions

from {2, 5, 10, 20, 100}. This provides a range of convention space sizes across

multiple orders of magnitude. Our experimental setups are otherwise the same

as used in the previous sections and we measure the proportion of 50 runs that

come to the desired outcome. In each of the following figures, unless indicated
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Figure 3.38: The effect of convention space size on initial intervention in syn-
thetic networks. The number of actions in the coordination game is shown in
the legend.

otherwise, we show the performance of the best metric in each scenario: degree

in static networks and updating degree in the dynamic networks. Similar effects

were observed on each of the other metrics but did not change their relative

rankings. For larger convention spaces1, we find that conventions are unlikely to

emerge naturally within the system and so, when considering late intervention,

we artificially saturate these populations with a convention so that we may focus

on destabilisation. This is done using the same methodology as Section 3.6 for

the real-world networks.

Figure 3.38 shows the effect of convention space size for initial intervention

in synthetic networks. In the scale-free topologies, there is little effect with con-

ventions still being affected by roughly the same number of IAs. Whilst there

are slight increases in efficacy from 5 to 10 to 20 action choices, this increase

is one of diminishing returns with 100 indistinguishable from 20 and the differ-

ences not statistically significant at most points. It does however indicate that

the use of IAs is indifferent to the convention space size in this setting with the

agents able to direct convention emergence with low levels of IAs at all sizes.

1Convention spaces of size 100 in all topologies, and size 20 in the González, scale-free and
small-world networks.
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In contrast, small-world networks exhibit counter-intuitive and noisy changes

in efficacy with varying convention space size. The amount of IAs needed to

guarantee convention emergence is perhaps the best method of evaluating per-

formance in the small-world networks and we find that there is little difference

between the various convention space sizes with all but size 2 guaranteeing con-

vention emergence with between 0.3% and 0.6% of the population. On the other

hand, the number of IAs required to achieve smaller proportions of emergence

increases dramatically with convention size, unlike in scale-free networks. This

follows from the fact that, with larger numbers of action choices, we cannot rely

on the times where the convention emergence would have occurred anyway to

bolster the proportions and hence the effects of smaller numbers of IAs is re-

duced comparatively. For instance, whereas with a convention space of size 10

we can expect roughly 10% of runs to emerge our target convention regardless

of the presence of IAs, with size 100 this will only occur 1% of the time and

hence more IAs are needed to overcome this initial inertia. However, whilst

larger convention spaces require more IAs to elicit small proportions of runs

to emerge to the desired convention, the numbers needed to guarantee it are

relatively invariant beyond size 2, as was the case in scale-free topologies.

Figure 3.39 shows how the effectiveness of IAs when used for late interven-

tions changes with convention space size. The patterns here are more distinct

as they are not affected by the natural convention emergence that occurs in

initial intervention. In both scale-free and small world networks increasing the

size of the convention space results in more IAs being required in order to cause

destabilisation. This follows from the fact that the exposure of other agents

to the strategy of the IAs, such that they learn they will be rewarded if they

choose it, will be rarer with more action choices available for them to explore.

However, the relationship is non-linear with little difference between the number

of IAs needed at different convention space sizes; for instance in the scale-free

network an increase in convention space size from 2 to 20 only requires 17%

more IAs despite having 10 times as many options available to the population.
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Figure 3.39: The effect of convention space size on late intervention in synthetic
networks. The number of actions in the coordination game is shown in the
legend.

This indicates that the critical number of IAs needed to cause destabilisation

is not directly tied to the convention space with a large component being in-

dependent of it. Of particular note, however, is that whilst in the scale-free

network the performance with 100 possible conventions is not much worse than

with 20, in the small-world topology a size of 100 results in no destabilisation

with replacement occurring even at much higher numbers of IAs than the other

convention space sizes require. This shows that in some topologies sufficiently

large convention spaces make destabilisation much harder.

We also consider convention space size in initial intervention for dynamic net-

works. Figure 3.40 shows the effect of this for González networks. Whilst mostly

similar to the effects found for scale-free topologies, the González network shows

clearly that increasing convention space size makes initial intervention easier in

this topology with the number of IAs needed to guarantee convention emergence

decreasing with larger sizes. This does not occur continuously however, with a

convention space size of 100 actually exhibiting no convention emergence at all

over the ranges shown. Indeed, even increasing the number of IAs as high as 70,

no convention emergence to the desired convention occurs. This demonstrates
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Figure 3.40: The effect of convention space size on initial intervention in the
González network. The number of actions in the coordination game is shown in
the legend.
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Figure 3.41: The effect of convention space size on initial intervention in the
Ichinose TP network. The number of actions in the coordination game is shown
in the legend.
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that dynamic networks are more sensitive to convention space size than static

ones, with a shift from beneficial to detrimental at some point between 20 and

100. Ichinose RR and Ichinose RP exhibit broadly similar behaviour and so

aren’t shown here.

Ichinose TR and Ichinose TP exhibit differing behaviours however and so

Figure 3.41 shows an indicative example of the effects of convention space size

for these networks. Unlike González and Ichinose RR and RP, increasing conven-

tion space size is actually detrimental in these networks, although the relation-

ship is similar to that observed in small-world topologies where the number of

IAs required to guarantee convention emergence is relatively invariant and only

the lower proportion behaviours are affected. This is due to the node removal

methods in these topologies, with the high-degree nodes constantly changing.

Hence the boost in emergence proportion in smaller convention spaces, due to

the desired convention emerging more frequently due to random chance, with no

or minimal intervention, provides a greater effect here; larger convention sizes

mean that the removal of the locations frequently used by IAs results in the

“nudge” that IAs can exert, even if these locations are temporary, having less

of an effect in directing convention emergence.

Late intervention in the dynamic networks exhibits similar features to initial

intervention. Figure 3.42 shows the effect for the González network. Unlike in

static networks, there is no clear effect from increasing convention space sizes,

with 2, 5 and 10 indistinguishable from one another. A further increase to 20 is

actually beneficial requiring slightly fewer IAs to elicit destabilisation, a pattern

matching that which occurs for González models in initial intervention. These

patterns lend further support to the notion that the network dynamics play a

large part in the nature of destabilisation with González in particular benefiting

from the extra variance in agent actions that larger convention spaces bring.

However, as before, much larger convention spaces are actually detrimental,

with IAs unable to cause destabilisation with a convention space of 100 actions.

At this scale we posit that the variance in agent choices is detrimental to the
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Figure 3.42: The effect of convention space size on late intervention in the
González network. The number of actions in the coordination game is shown in
the legend.
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Figure 3.43: The effect of convention space size on initial intervention in the
Ichinose RP network. The number of actions in the coordination game is shown
in the legend.
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Figure 3.44: The effectiveness of placement metrics in a convention space of size
100 for late intervention in the Ichinose RR network.

efforts of the IAs, making them unable to get other agents to agree with them

whereas at size 20 the variance instead works against the dominant convention,

making the work of the IAs easier.

Each of the Ichinose models exhibits broadly the same features for late in-

tervention and so we only show Ichinose RP here as a representative sample.

Unlike in the González model, increasing convention spaces are never beneficial

although the performance difference is minimal requiring only a few additional

IAs to overcome. Of more importance is that the Ichinose models are able to

consistently cause destabilisation even with 100 possible conventions, in con-

trast to the González model. Whilst it requires substantially more IAs this

again highlights that the network dynamics play a large part, alongside the

interaction model, in determining the viability of destabilisation.

Of additional interest is the performance of the other metrics when consid-

ering destabilisation with a convention space of size 100 in the Ichinose models.

In particular, we find that updating Life-Degree (with ω = 0.7) outperforms

all other metrics in causing this destabilisation. Figure 3.44 shows an indicative

example of this in the Ichinose RR model but similar behaviour is observed to

varying levels in each of the Ichinose models. This only occurs with the largest

130



3. Interventions and Destabilisation

convention space but highlights that the longevity of the IAs plays a major part

in being able to destabilise the established convention under these conditions.

We have shown that the size of the convention space can have a signifi-

cant effect on both the emergence and destabilisation capabilities of IAs as well

as the natural emergence of conventions within the system. Whilst a further

exploration is beyond the scope of this thesis, this highlights the need to con-

sider the domain that the agents are working in when attempting to manipulate

convention emergence.

3.10 Alternate Payoffs

We now turn our attention to the effect the payoff matrix has on intervention

effectiveness. In particular, we examine whether the positive and negative re-

wards the agents receive (and the symmetry or asymmetry of these) changes

the relationship or relative performance of the various placement metrics when

used for IA placement.

This exploration uses 3 different variants of the normal coordination game:

(4,−1) (positive reinforcement), (1,−1) (neutral reinforcement) and (1,−4)

(negative reinforcement) where the first number represents the payoff for co-

ordinated strategy choice, the second the payoff for conflicting strategy choice.

(4,−1) is the payoff structure that has been used in all previous experiments

and represents situations where coordination is more beneficial than conflict is

harmful, or where coordination is more encouraged. For example, attempting

to find a mutual radio channel over which to communicate; whilst there is an

expenditure of time for each failure, it is not necessarily very harmful whilst

correctly communicating is very beneficial. This structure has been used in

previous work [Sen & Airiau, 2007] and has been shown to allow rapid and

thorough convention emergence. (1,−1) can instead represent situations where

there is symmetry between the benefit and harm, such as choosing which side of

a corridor to walk on; there are both minor inconveniences and minor benefits
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Figure 3.45: Effect on destabilisation of different payoff matrices in the González
network.

but neither of a larger scale than the other. Finally, (1,−4) represents situa-

tions where conflicting action choices could be very detrimental and should be

discouraged rapidly. An example of this is which side of the road to drive on

(although this is often described using a symmetric payoff); the negative effects

of a crash are substantial.

Figure 3.45 shows the effect of the different payoff matrices during late in-

tervention in the González model. The experimental settings used are the same

as in Section 3.7. The figure shows the effects on degree placement of IAs, both

static and updating, with updating being shown as dashed lines. The other

metrics were found to behave similarly, indicating that this represents a global

shift in behaviour, and as such have not been included. As can be seen, the

choice of payoff matrix can have a dramatic effect on the number of IAs that

are needed to elicit destabilisation with the (4,−1) payoff matrix requiring more

than the (1,−1) which in turn requires more than the (1,−4) payoff matrix. We

believe this to be due to the fundamental nature of what each payoff matrix is

“teaching”. With (4,−1) when an agent finds the IAs action through explo-

ration they are rewarded, teaching them this is the “correct” action. However,

due to the nature of exploration the chances of them choosing the desired ac-
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Figure 3.46: Effect on destabilisation of different payoff matrices in the Ichinose
networks.

tion is relatively small particularly in the 10-action coordination game as used

here. We are reliant on chance to enable the IAs to teach others the correct

choice. With (1,−4) by comparison agents are punished each time they make

an incorrect choice which will happen far more frequently. As such all other ac-

tions except the desired one will have low Q-values meaning that the agent will

end up selecting it. In effect, this payoff matrix is teaching agents what not to

do. The symmetry of (1,−1) represents the middle ground and is the middling

result, lending credence to this notion. Thus, when attempting to destabilise

systems, those with negative asymmetry will be easier to affect than others.
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Figure 3.46 shows the same effect in the Ichinose topologies. Of particular

interest is that the effect is nearly identical in all of the 4 models, representing

shifts of only a few agents either way, despite the differences between them

as noted when exploring late intervention. This indicates that the effect is

fundamental to the convention emergence rather than something affected by

the nuances of each individual dynamic topology.

We also explored the effect of these payoff matrices in initial interventions in

dynamic networks as well as both late and initial interventions in the synthetic

networks. However, in each of these settings there was no significant difference

in performance, indicating that (i) the effect primarily changes destabilisation

efforts as it allows focus on the contrast between the established and desired

convention and (ii) that the dynamic nature of the topology is a catalyst for

this effect, presumably due to the ability of distant nodes to interact with each

other as time changes.

Overall, changing the payoff matrix, either from positive asymmetry to neu-

tral symmetry or negative asymmetry caused no change on the relative effec-

tiveness of the various placement metrics with the same rankings as found in

Section 3.7 being found here. However, the absolute performance change, whilst

relatively small, highlights the underlying nature of the coordination game as a

model for convention emergence when we are looking to destabilise. Whether

we are showing agents the correct path or punishing them when they deviate

causes slower and faster convention destabilisation respectively.

3.11 Gradient Payoff and Convention Emergence

Finally, we now briefly consider how the gradient coordination game introduced

in Chapter 2 affects the dynamics of convention emergence. The graduated

nature of the payoffs means that conventions that are similar to one another

in terms of their distance in the ordering of action choices will still receive

high payoffs. We hypothesise that this will lead to multiple stable subsets of
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Figure 3.47: Natural convention emergence in the gradient coordination game.
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Figure 3.48: Legend for the gradient coordination game simulations.

the population adhering to “similar enough” conventions that allow them to

consistently receive high payoffs even though the actions are not identical.

To explore this gradient game we begin by investigating the nature of the

convention emergence over time. We utilise a 1000 node scale-free network with

otherwise the same settings as before. We use a 10-action gradient coordination

game with paymax = +4 and paymin = −1. However, we find that the results

shown generalise to all other networks explored thus far, showing the robustness

of the gradient coordination game.

Figure 3.47 shows the nature of convention emergence in the gradient game

without the presence of IAs and Figure 3.48 provides a legend for ease. As

can be seen, the system very rapidly converges to a stable state where multiple
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conventions coexist. These exist at 3 primary levels, what we term high, mid

and low. The high conventions are those corresponding to strategies 4 and 5 and

it is our finding that this is always the case; the system naturally stabilises to

have these as the highest conventions. Given their position in the centre of the

payoff matrix, this is to be expected as they have the shortest distances between

themselves and any other strategy and hence will maximise payoff for any agents

choosing them. Interestingly, the stability between these two conventions seems

to be intertwined with an almost sinusoidal nature to any changes in membership

number in one reflecting a contrasting change in the other before returning to

a state of equilibrium. This again is likely due to their location as any agents

exploring will naturally tend back to one or other of these strategies as the only

stable locations.

The mid level conventions represent strategies 3 and 6, the next strategies on

either side of the high-level ones. Again this is to be expected as these are the

next best strategies for maximising payoff regardless of interactions with others

and the stability of these likely represents agents whose exploration causes them

to switch to them. All other strategies (0,1,2,7,8,9) are those we consider “low”

and have membership approaching zero. These strategies are those that are

most likely to cause clashes in the gradient payoff and hence agents rapidly

learn to avoid them. The stability of the two primary conventions, with one not

winning out over the other is interesting however and represents a new aspect

of the coordination problem as we now have an issue of cooperation where it

would be maximally beneficial for all agents to use the exact same strategy but

exploration and precedence cause them to conflict.

We turn our attention to how IAs might be used to break this deadlock. We

consider the insertion of 200 IAs at time t = 0 in three different scenarios where

the strategy assigned to them is one of the high, mid or low strategies respec-

tively. These different approaches are shown in Figure 3.49. In Figure 3.49a the

IAs have been assigned strategy 4 and cause it to increase in size compared to

the unaided simulation by more than the number of IAs themselves can account
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Figure 3.49: Late intervention in the gradient coordination game by promoting
the different categories of established convention.
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for, indicating that they do influence others. However, the population still sta-

bilises with multiple conventions existing despite the number of IAs being more

than sufficient for convention supremacy in all other domains explored in this

chapter. The promotion of strategy 4 has decreased the membership size for

strategy 6 to close to zero, as the strategy is now further away and hence less

beneficial. In effect, the inclusion of IAs has shifted the “centre” of the payoff

matrix by artificially increasing the likelihood that the chosen strategy will be

used in interactions. This is a useful insight into the nature of IAs that extends

beyond this use case.

When promoting mid or low strategies we see two sets of similar effects where

the previously high strategies are both reduced in number, down to almost

zero in the case of Figure 3.49c. We also see a commensurate rise in other

strategies, those that are adjacent to the chosen IA strategy. This effect is most

noticeable when utilising a low strategy and results in an entirely different set

of conventions. However, in all these cases, the system stabilises with multiple

conventions, consisting of these closely related strategies, highlighting again

that this can be viewed as a shifting of the centre and artificially changing

the equilibria in the payoff matrix. Overall, the gradient game is resistant to

emerging a single global convention, instead allowing multiple closely related

conventions to coexist.

Figure 3.50 shows the effect of introducing IAs after the conventions have

become established. The IAs are inserted at time t = 500 and we present

the three similar cases again where the IA strategy is from high, mid or low

conventions. Whilst it is easier to see the effect to which the increase in one

strategy comes at the decrease of another, allowing us to see how the conventions

interact, the final levels and types of conventions that exist within the system

are almost identical to the case where agents were inserted at time t = 0. This

indicates that the interaction model created by the gradient coordination game

is quite distinct from the pure coordination game with the conventions that

emerge dictated strictly by the IAs presence rather than when they are placed
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Figure 3.50: Late intervention in the gradient coordination game by promoting
the different categories of established convention.
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in the system.

The gradient coordination game represents a major shift in the dynamics

of the system, actively facilitating the coexistence of multiple conventions and

providing robustness and stability even at the cost of global convention emer-

gence. Further exploration of the nature of the conventions within this system

and how they may be manipulated is left as future work.

3.12 Conclusions

The use of conventions as lightweight mechanisms to enforce and encourage co-

ordination in multi-agent systems is an ongoing area of research. Having the

ability to reduce agent clashes and wasted resources with minimal assumptions

about agent capabilities or architecture allows the efficient function of such sys-

tems even when agents are controlled by multiple distinct parties. Conventions,

as a form of self-imposed social constraints, facilitate this in a decentralised man-

ner by allowing agents to utilise expected behaviour to guide their interactions.

The rapid emergence of robust conventions is paramount in reducing the amount

of time agents are conflicting with one another. However, the decentralised man-

ner of this emergence means that suboptimal or undesirable conventions might

emerge due to their stability and precedence amongst the agents. Being able to

remove and replace conventions in this scenario is necessary for their use as a

general problem solving tool.

In this chapter we have explored the nature of convention emergence in MAS.

We have shown that small numbers of fixed strategy Intervention Agents (IAs)

can be used in a variety of topologies to facilitate convergence of the agent popu-

lation to a desired convention. We have explored the use of a number of metrics

to inform where these agents might be best placed within these topologies to

maximise their effectiveness. When placed within a system at the beginning

of a simulation these initial interventions are shown to be highly effective. A

summary of the contributions and results is shown in Table 3.3 and these are
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Result Section

Degree placement is best for initial intervention in static networks and <
1% of population as IAs is needed to ensure convention emergence.

3.4

Degree or eigencentrality placement is best for initial intervention in dy-
namic networks and < 1% of population as IAs is needed to ensure con-
vention emergence. No significant difference between Static or Updating
metrics.

3.5

Consideration of agent longevity is not as important as ability to influ-
ence more individuals. Life-Degree shows that high degree is the more
important aspect.

3.5

Degree and eigencentrality substantially outperform other metrics for
destabilisation in static networks. < 8% of the population as IAs guar-
antees destabilisation.

3.6

Degree and eigencentrality placement are best for causing destabilisation
in dynamic networks and the Updating versions of these metrics are sig-
nificantly better than the Static versions. < 8.5% of population needed to
destabilise in all examined topologies.

3.7

Passive destabilisation is best effected by degree or eigencentrality in both
static and dynamic networks and requires 2.5 times as many IAs as aggres-
sive destabilisation.

3.8

Using a Gradient Payoff matrix allows creation of a stable system where
multiple conventions exist simultaneously. This system is resilient to exter-
nal influence with IAs able to shift the effective equilibrium of the system.

3.11

Table 3.3: A summary of the major results and contributions from this chapter.
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discussed in more detail below.

We began by considering initial intervention in static topologies, both syn-

thetic and real-world. We showed that degree or eigencentrality-based place-

ment offers the most effectiveness at encouraging convention emergence and

that, across a range of network topologies and sizes, utilising substantially less

than 1% of the population as IAs was always enough to effect the desired con-

vention emergence 100% of the time. We explored the effect on convention

emergence of a number of different features of the underlying topologies and

showed that, whilst they may change the level of intervention necessary, the use

of IAs is able to cause robust convention emergence within them. We extended

previous work in the literature by considering a range of placement metrics and

showing the effectiveness of these. Our work here showed that IAs could be used

to rapidly (within a few hundred timesteps) produce high-quality conventions

that did not fluctuate once they had become established. Chapter 5 takes this

concept further and explores the stability of the established conventions when

IAs are removed.

We additionally extended this study into dynamic networks, something not

actively considered in the literature, where the nodes and edges of the topology

are able to change over time. We introduced the notion of different applications

of the traditional metrics in dynamic topologies in two forms: static and updat-

ing and showed the efficacy of these approaches in causing initial intervention

in these dynamic networks. We introduced a new metric Life-Degree which

utilises information unique to dynamic topologies and allowed us to study the

importance of agent longevity in the selection process for IAs. The results of

Life-Degree showed that, nearly universally, consideration of agent longevity

was detrimental to the effectiveness of IAs. Instead, efforts should focus on

maximising the agent’s ability to influence others, even over short time frames.

We showed that convention emergence was indeed possible in these networks

and studied the nature of convention emergence within them, establishing that

the required levels of interventions were higher here than in static networks but
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that our application of IAs is still able to facilitate it.

Having shown that convention emergence is possible in both static and dy-

namic topologies, we then introduced the notion of destabilisation; using IAs

to remove and replace an already established convention. In static networks we

showed that degree and eigencentrality substantially outperform HEE and HITS

as methods for selecting optimal locations to maximise destabilisation potential.

We showed that, across all static topologies observed, no more than 8% of the

population have to be utilised as IAs in order to guarantee the removal and

replacement of the dominant convention despite it being used and established

amongst >90% of the population.

In dynamic topologies we showed that our updating method of placing IAs

substantially outperforms the naive static approach, allowing destabilisation

with far fewer IAs. We found that, whilst more IAs were needed than in

equivalently-sized static networks, the number required still represents a small

portion of the total population but can guarantee destabilisation in dynamic

topologies as well as static.

We next introduced the notion of Passive Destabilisation, using IAs to re-

move a target convention but without specifically replacing it with another. We

showed the efficacy of our previous approaches in causing this type of destabili-

sation in both static and dynamic topologies and found that, consistently, ∼2.5

times as many IAs were needed to elicit passive destabilisation.

We then explored the effect of different sizes of convention space on both ini-

tial convention emergence and destabilisation across static and dynamic topolo-

gies. We showed that, dependent on topology, the convention space could have

a sizeable effect on the nature of conventions and the ability to destabilise them.

We followed this with an exploration on how the symmetry or asymmetry of the

payoff matrix in the coordination game could affect manipulation of conventions

highlighting the difference between positive and negative reinforcement and the

impact this has on destabilisation efforts.

Finally, we introduced the notion of a gradient coordination game and showed
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the distinctive properties that this introduces to the nature of convention emer-

gence, showing that the presence of IAs in the system can effectively shift the

equilibrium of desirable actions.

Overall, we have expanded the state-of-the-art in using fixed strategy agents

to elicit convention emergence in MAS. We have shown that destabilisation of

existing conventions is possible and explored some of the criteria that affects

the efficacy of this. In the following chapters we consider additional constraints

on the use of IAs to elicit these changes and gain a deeper understanding of how

they affect conventions within the system.
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CHAPTER 4
Interventions Under Partial Observability

In the previous chapter we have shown that both initial and late convention

emergence can be manipulated using Intervention Agents (IAs) to encourage

and direct the convergence of agent choices and destabilisation of existing con-

ventions. We showed that placing IAs in topologically influential locations aided

their ability to do this and increases their efficacy for these purposes. In this

chapter, we investigate how this knowledge can be utilised when topological

information is restricted and limited to observations of a restricted number of

individual nodes in the network. We propose two algorithms to address these

restrictions and still find topologically influential locations. We analyse the

performance and limitations of these algorithms and show their efficacy in con-

vention emergence and destabilisation. To do this we make use of the graphs

and generators discussed in Chapter 2 as well as the agent interaction model

introduced in Chapter 3.

4.1 Introduction

In many modern instantiations of multi-agent systems (MAS) the agents are

typically constrained in their ability to interact with one another by an un-

derlying network topology. These connecting networks limit and shape the

system dynamics and change how agents at the macro level interact with each

other [Delgado et al., 2003; Griffiths & Anand, 2012; Sen & Airiau, 2007]. In

particular, when trying to coordinate the actions of independent agents, these

limitations affect any potential homogeneity of agent influence and elevate some

to positions of higher influence [Easley & Kleinberg, 2010; Franks et al., 2013;

Villatoro et al., 2009].

145



4. Interventions Under Partial Observability

Previous work on convention emergence often assumes that the topology

constraining agent interactions is fully observable, allowing highly influential

locations to be found easily [Kittock, 1995; Salazar et al., 2010; Sen & Airiau,

2007; Villatoro et al., 2009]. However, in many real-world applications such

information is not always readily available. This can be due to factors such

as the problem size or external limitations such as restricted access to network

information or a network’s API as is the case with Twitter [Twitter Developers,

2017a] or Facebook [Facebook Developers, 2017b].

In this chapter we explore the effect of the restrictions placed on Intervention

Agent placement in partially observable topologies. We propose an algorithm,

PO-Place, to find influential locations within such static topologies given a

highly limited number of network queries and another, DynaPO, for dynamic

topologies. We show the effectiveness of the algorithms at finding approxi-

mations of the highest degree locations for real-world, synthetic and dynamic

topologies under a number of restrictions on available information. We then

apply the algorithms to select IAs within these networks and examine the effect

on convention emergence compared to placing with full topological knowledge.

This approach allows an interested third party, with limited access to the sys-

tem, to find the appropriate locations to target their influence efforts.

The remainder of this chapter is arranged as follows. Section 4.2 explores the

background and related work in the literature regarding finding influential nodes

with limited or local information. In Section 4.3 we introduce PO-Place and

analyse its performance in several real-world networks. Then, in Section 4.4,

we use PO-Place as a placement mechanism for initial intervention conven-

tion emergence in these real-world networks before extending and expanding our

analysis into synthetic topologies. Section 4.5 explains the design behind Dy-

naPO and then analyses its effectiveness at finding influential locations before

investigating its performance in encouraging convention emergence in dynamic

topologies. In Section 4.6 we turn our attention to using PO-Place to cause

destabilisation of existing conventions in static topologies and in Section 4.7 we
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do the same for DynaPO and dynamic topologies. Finally, in Section 4.8 we

present our conclusions and considerations for future work.

4.2 Background

As we established in the previous chapter, convention emergence can be facili-

tated by placing Intervention Agents (IAs) at highly influential locations in the

underlying network topology. However, previous work assumes full visibility of

the network topology to inform this placement. Indeed, little work on partial ob-

servability for convention emergence has been done. Related work exists in the

fields of graph algorithms and influence spread, the latter sharing many qualities

with convention emergence. For instance, Brautbar and Kearns present a novel

model [Brautbar & Kearns, 2010], Jump and Crawl, motivated by operations

commonly available in networks such as Facebook. Their model consists of two

aspects: Jump which moves to a randomly selected node in the network and

Crawl which searches all neighbours of the selected node for high-degree nodes.

They provide bounds for many different types of network but, for an arbitrary

network, finding the guaranteed highest degree node approaches O(n log n), a

large factor for even medium-sized networks. In full, they show that O(nβ log n)

steps finds an O(n1−β) multiplicative approximation of the highest degree which

is generally too inaccurate for our purposes and scale without simply observing

the whole graph.

Borgs et al. [Borgs et al., 2012a; Borgs et al., 2012b] propose a polylog-

arithmic algorithm for finding the root node (the initial node) in Preferential

Attachment topologies, a quality which is present in many real-world social net-

works. The algorithm runs in O(log4 n) and works by continuously selecting

the highest degree node from a growing fringe. However, the constant factors

associated with it are non-trivial for many network sizes. Additionally, the algo-

rithm outputs a set S of size O(log4 n) which contains the root node with high

probability. This means that most nodes in N(S) must have been examined
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to know which to select each iteration. For our purposes this means they all

must have been observed, something Borgs et al. does not allude to. Finally,

when used to find high degree nodes, their algorithm is only proven to return a

node of degree at least 1/log2(n) of the maximum degree in the graph in time

O(log4 n), a poor guarantee for our use case.

Building on this, [Avrachenkov et al., 2014] propose a simple algorithm for

rapidly finding a selection of high-degree nodes in directed graphs using only

local information. Their approach works by treating the graph as effectively bi-

partite and using a two-stage approach to find likely candidates in one partition

by randomly sampling from the other and noting which nodes have the highest

number of in-edges from the sample. They then choose the top candidates and

find their actual degree. Importantly theirs is some of the earliest and only work

that treats the number of steps as finite, explicitly calling out API limitations

as the justification. However their work is only applicable to directed graphs

and relies heavily on the graph density.

The influence maximisation problem [Chen et al., 2014; Chen et al., 2009]

attempts to find a selection of nodes such that the spread of influence (often

modelled as single chance ‘cascades’) from them is maximised. As such, this is

intrinsically tied with finding influential locations. Zhuang et al. [2013] propose

a “growing fringe” method that works in both dynamic and partially observable

topologies to maximise the influence spread. It works by constantly adding from

the set of fringe nodes the one that will increase the potential spreading area

the most. The performance of this algorithm lends further credence to the idea

that probing and expanding node sets is an applicable method for finding usable

nodes in both static and dynamic topologies.

As in this chapter, Mihara et al. [Mihara et al., 2015] assume the network is

initially unknown and show that influence maximisation effectiveness of 60-90%

with 1-10% network observation is achievable. This work also uses a ‘growing

fringe’ approach with priority based on degree estimation. As influence maximi-

sation and convention emergence are similar in aim, this indicates that results
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are achievable under partial observability constraints.

Whilst many of these approaches are similar in application, they differ in

that our investigation focuses on the often encountered scenario of limited, finite

observations. Making optimal use of these is paramount and so necessitates a

different set of considerations. The work here differs from that of Avrachenkov et

al. [2014] in that we consider undirected networks, as well as dynamic networks,

rather than only directed, bipartite networks. Additionally, we consider the

application of finding influential nodes under partial observability to the field of

convention emergence rather than for purely graph theoretic purposes.

4.3 PO-Place Algorithm

For this thesis, the partial observability problem for networks can be described

as any scenario where a network’s topology is initially unknown and is revealed

incrementally within a local neighbourhood of nodes already explored [Borgs et

al., 2012b]. As a solution to the partial observability problem for Intervention

Agent selection we propose a heuristic algorithm, PO-Place. This section

describes the function of the algorithm as well as the justification for the design

choices.

The placement strategy is presented in Algorithms 1 and 2 and has the fol-

lowing aim: Given a network, G = (V,E), a desired number of locations, n, and

a limited number of observations, o, find a selection of nodes S = {v1, ..., vn} ⊂

V such that

deg-sum(S) =
∑
v∈S

deg(v) (4.1)

is maximised. We define an observation as a query that retrieves the list of

neighbours, N(u) for a given node, u. This functionality is frequently avail-

able in real-world network APIs (such as Twitter [Twitter Developers, 2017b]

or Facebook [Facebook Developers, 2017a]) and so we assume that such infor-

mation is available. This assumption is later relaxed to allow the algorithm to

explore situations with only limited neighbour information. We assume that
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the set of nodes, V , is known but the set of edges, E, (and hence neighbours

and degree of a node) is not. Finding the highest degree nodes is desirable since

IA placement by degree consistently produces effective convention emergence

[Franks et al., 2013; Griffiths & Anand, 2012; Marchant et al., 2015a; Marchant

et al., 2015b] but without requiring computationally expensive metrics such as

betweenness centrality. The degree of nodes can be entirely derived from local

information and, as such, is an applicable heuristic within partially observable

networks.

Other heuristics and approximation algorithms exist for computing vari-

ous graph metrics using only local information. For instance, Andersen et al.

[2007] provide a technique for calculating an approximation of PageRank for

a given node (itself a variant of Eigenvector Centrality) using only the local

nodes around the target location. It requires O(1/ε) observations to produce

an ε-approximation of the PageRank score and does so in a manner that grows

out the local area, which is the approach taken below and by many similar

approaches in the literature [Brautbar & Kearns, 2010; Maiya & Berger-Wolf,

2010; Mihara et al., 2015]. However, using this approach would produce a set

of scores that are good approximations for those at the centre of the growing

area but very poor approximations for those at the fringes who have not had

their neighbours examined yet. This is likely to lead to ignoring these fringe

nodes despite them having potentially having better scores as they must wait for

their neighbours to be examined to provide a good approximation. In compar-

ison, using the degree of the node provides accurate information for all nodes

examined regardless of their position within the area being searched. Indeed

all approaches that rely on local area knowledge beyond the immediate node

will exhibit this problem including simple and entirely computable metrics such

as Average Neighbour Degree [Franks et al., 2013; Mislove et al., 2007], Lo-

cal Clustering Coefficient [Watts & Strogatz, 1998] and Edge Embeddedness

[Easley & Kleinberg, 2010]. To address this problem would require only se-

lecting nodes from within the fringe itself (effectively creating two fringes of
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Algorithm 1 Partial Observability: Placement

Symbols: G = (V,E), a graph of V vertices and E edges; n, the number of locations
to find; o, the number of observations; s, the number of concurrent starting locations;
p, the proportion of neighbours that can be retrieved in an observation; f , the number
of nodes to expand simultaneously; orem, the number of observations remaining; olocal,
the number of observations assigned to a starting location.

1: procedure PO-Place(G = (V,E), n, o, s, p, f)
2: Create empty node set, S
3: Create empty mapping, N
4: orem ← o

5: while orem > 0 ∧ |S| < |V | do
6: Select v uniformly at random from {V \ S}
7: if orem mod s 6= 0 then
8: olocal ← min(do/se, orem)
9: else

10: olocal ← min(bo/sc, orem)

11: orem ← orem − olocal
12: ounused ← Traverse(G, olocal, v, p, f , S, N)
13: orem ← orem + ounused

14: return n highest-degree nodes in S

exploration) which, given the highly limited nature of the number of observa-

tions would reduce the potential nodes substantially. Because of this (and the

fact that the potential gains from using other metrics is small at best as seen in

Chapter 3) we focus on and utilise only node degree for the purposes of choosing

influential nodes under partial observability.

The algorithm begins by creating an empty set, S, to monitor which nodes

have already been explored and an empty mapping, N , that maps a node v

to N(v), its set of neighbours. By storing this information we can avoid using

observations redundantly but this approach will need to change when consid-

ering situations where the neighbours of a node may change over time (see

Section 4.5).

Many of the other approaches [Borgs et al., 2012b; Maiya & Berger-Wolf,

2010; Mihara et al., 2015] to finding high-degree nodes select a random start-

ing node and then ‘grow’ outwards, selecting the highest degree nodes from the

neighbourhood surrounding those already explored. However, this is not desir-

able in IA placement since, with limited observations, it is likely to produce a
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single cluster of well-explored nodes. Selecting from this cluster will then mean

that all IAs are close together, making some of their influence redundant. In-

stead, we build on the notion of Jump and Crawl [Brautbar & Kearns, 2010].

We incrementally explore the local area around a given seed node (a ‘crawl’),

by making graph queries and adding the explored nodes to the set of already

queried nodes and then repeating this process using the neighbourhood around

this set. We do this for a defined amount of queries, and then ‘jump’ to another,

unexplored, location and exploring around this new point.

The use of ‘jumps’ helps to minimise the risk of overlap between high-degree

nodes, as well as ensuring that a bad initial random selection does not hinder

the final selection by counteracting the effect of local maxima. To facilitate this,

we introduce a parameter, s, which dictates the minimum number of separate

local area explorations that will take place. The observations are split, as evenly

as possible, between each of these explorations with the earlier ones receiving

any spare observations (this is achieved between Lines 7 and 10 of Algorithm 1).

This subset of observations is then passed to the local area traversal which is

presented in Algorithm 2. If any observations are unused by the local area

traversal (for instance if it finds a local maxima) they are returned to the pool

of available observations and used in later, additional local traversals.

Algorithm 2, Traverse, describes the local area traversals. It is aware of

both S and N , to avoid redundant exploration, as well as the initial start node

of the local area, v. It is also passed its own local limit of observations and

two parameters from outside, p and f , which are explained below. It maintains

a max-priority queue to determine which node(s) it should next explore by

highest degree and begins by adding v to this queue. Continuously choosing

the unexplored node with the highest degree (Line 10) allows exploration up

the gradient of higher degree nodes and has shown effectiveness in the work

of Borgs et al. Throughout Algorithm 2, observation of a node’s neighbour list

is stored in N to avoid additional queries. The algorithm then performs the

following, until either the queue is empty or all assigned observations have been
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Algorithm 2 Partial Observability: Local Area Traversal

Symbols: G = (V,E), a graph of V vertices and E edges; o, the number of observa-
tions available; v, the starting node in the graph; p, the proportion of neighbours that
can be retrieved in an observation; f , the number of nodes to expand simultaneously;
S, the set of already explored nodes; N , a map of nodes to their list of neighbours.

1: procedure Traverse(G = (V,E), o, v, p, f , S, N)
2: Create max-priority queue, Q
3: count← 0
4: if v not in N then
5: N [v]← N(v)
6: Add v to S
7: count← count + 1

8: Add (v, |N [v]|) to Q

9: while |Q| > 0 ∧ count < o do
10: Fringe← top min(f, |Q|) elements of Q
11: for all u in Fringe do
12: Avail← {N [u] \ S}
13: num← min(|Avail|,max(f, bp× |Avail|c))
14: Chosen← uniformly at random select num members of Avail
15: for all w in Chosen do
16: N [w]← N(w)
17: Add w to S
18: count← count + 1
19: if count = o then
20: return 0
21: Add (w, |N [w]|) to Q

22: return o− count

used up:

1. Take the top f (highest-degree) nodes from the queue (or all elements, if

fewer). [Line 10]

2. For each of these nodes, find the set of unexplored nodes in its neighbours.

[Line 12]

3. Choose a proportion, p, of these (or up to f if this proportion would be

less than f) uniformly at random. [Lines 13 and 14]

4. Add these nodes to the queue after finding their neighbours. [Line 15 to

Line 21]

Parameter f is the ‘fringe size’, the number of nodes that are expanded
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Network Largest WCC

|V | |E| |V | |E|
CA-CondMat 23,133 93,497 21,363 91,286
Enron-Email 36,692 183,831 33,696 180,811

Twitter 81,306 1,768,149 81,306 1,342,296

Table 4.1: Original and Largest Weakly-Connected Component Network Sizes

simultaneously before their neighbours are queued. This acts as a control over

how ‘breadth-first’ or ‘depth-first’ the local traversal approach will be. This

allows the algorithm to be avoid the pure depth-first approach of the likes of

[Borgs et al., 2012b] which may lead to undesirable local optima faster.

Parameter p is the proportion of the node’s neighbours that should be

queried. This allows the algorithm to simulate situations where a node’s full

neighbour list is either not fully available (for instance, an API that only returns

a subset) or where doing so incurs additional cost. In the latter case we seek

to explore the effect that only querying p proportion of neighbours has on the

performance of PO-Place. Whilst it is hypothesised that it will reduce the

effectiveness, establishing the extent of this reduction, and whether the results

are still close enough to degree placement, allows PO-Place to be effective over

a wider range of scenarios.

The algorithmic complexity of PO-Place is bounded by the number of

observations it can make. Each expensive query is accompanied by the use of

an observation. Assuming efficient graph representation this means that the

priority queue is the primary bound resulting in the complexity of PO-Place

being O(o log o).

4.3.1 Networks

We performed simulations of PO-Place on the real-world network previously

used in Chapter 3. As before, we concern ourselves only with the largest weakly-

connected components of the networks and the sizes of these are shown again in
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Figure 4.1: Pdeg-sum and deg-sum performance of PO-Place for varying n (#
of locations) and o (# of observations) in the real-world networks.

Table 4.1 for ease. We varied both the number of nodes (n = 5 to n = 30) being

requested as well as the number of observations provided (o = 500 to o = 5000

[o = 3500 for CondMat]). To establish an upper bound and allow comparison a

full-observability degree placement was also performed for each of the networks

with the same range of values. Each set of parameters was averaged over 30

runs.

4.3.2 PO-Place Performance

In this section we present the analysis of PO-Place and compare it to the upper

bound from degree placement. We explore the effects of the various parameters

on PO-Place at different levels of observation. We then use these findings

as insight to compare the performance of PO-Place to degree for convention

emergence when used to place FS agents into the chosen networks.

We begin by looking at the isolated algorithm output, comparing it to the

output generated by a degree placement scheme. As the aim of PO-Place is

to maximise deg-sum (Equation (4.1)) this is our primary metric by which to

evaluate PO-Place. The highest deg-sum possible in each network is that of

155



4. Interventions Under Partial Observability

the set of highest degree nodes. Establishing this as an upper bound allows eval-

uating the performance of PO-Place by comparing the deg-sum of its output

as a proportion of that of the pure degree network. We denote this as Pdeg-sum

and note that a Pdeg-sum of 1 means that the deg-sum is the same as that found

under full observability.

Whilst deg-sum describes the maximum reach of the nodes selected, another

useful metric is the size of the 1-hop neighbourhood of those nodes. This can

be defined as:

1-Hop(S,G) = {v ∈ {V \ S}|∃(u, v) ∈ E ∧ u ∈ S} (4.2)

where S is the set of nodes selected for placement and G = (V,E) is the network.

That is, the 1-Hop neighbourhood is the set of nodes that are connected to a

member of S but are not in S themselves. The 1-Hop neighbourhood offers a

slightly different measure of influence by discounting nodes that are connected

to multiple members of S. Whilst normally tied closely to deg-sum a noticeable

disparity indicates that the selected nodes are likely to be clustered close to one

another, which is undesirable. As with deg-sum we concern ourselves with the

proportionate behaviour of 1-Hop size, P|1-Hop|. Again we note that a P|1-Hop|

of 1 means that PO-Place has found a set of nodes with the same 1-Hop value

as the nodes selected under full observability.

The final metric we use to evaluate the performance is based on the Jaccard

Index which measures similarity between two sets [Jaccard, 1912]. The Jaccard

Index is defined as J(A,B) = |A ∩B|/|A ∪B|. However, in our instance, one

of the sets is static. We are trying to approximate that set with the other

(i.e. a one-way similarity), whilst the Jaccard Index is looking at the two-way

similarity between them. Instead we want to measure how close the selection

of PO-Place is to the baseline, and so we define a distance measure, DBase,

thus:

DBase(S,Base) = |S ∩Base|/|Base| (4.3)
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That is, the fraction that elements of S (the set of nodes selected for placement)

make up of the baseline set, Base. If PO-Place selects the same nodes as

placement under full observability then DBase will have a value of 1. This

metric enables evaluation of how close the actual node selection of PO-Place

is to that of degree placement, whilst the previous two measure the selection’s

features. However, it should be noted that a poor DBase score is not necessarily

indicative of poor performance. In graphs with many nodes with the same

degree we can expect that, even if PO-Place has found nodes of equal or

close deg-sum that may not be the same sets that have been selected by degree

placement. Indeed, multiple degree placements may select different sets of nodes

depending on implementation. Because of this, a high DBase score is indicative

of good PO-Place performance but a bad DBase score is not indicative of poor

performance.

These metrics offer insight into the influence and reach of the nodes selected

by PO-Place as well as allowing a direct comparison to degree-based placement

with full observability. Thus they should be good predictors of the performance

of PO-Place in the convention emergence setting.

Varying Observations

We begin by considering the base case of the algorithm where s = p = f = 1.

This allows us to study the effect of varying the number of observations and

provides a lower bound on the expected performance of PO-Place. With

these settings, PO-Place closely resembles the algorithms presented by [Borgs

et al., 2012b; Mihara et al., 2015] in how it expands the search area.

We examine the effects of varying both the number of observations available

(o) as well as the number of locations requested (n) in all three networks. For

all networks, n was varied between 5 and 30 in increments of 5 and o was

varied from 500 observations up to 3500 (for CondMat) or 5000 (for Enron and

Twitter). The results are presented in Figure 4.1.

As can be seen in Figure 4.1, all networks respond well, even with minimal
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numbers of observations. Even at o = 500, the degree sum of the nodes selected

by PO-Place is often a substantial proportion of the optimal, full observabil-

ity one. The performance varies across the three networks, with placement in

CondMat doing best where it varies from 90% (±5%) at n = 5 to 83% (±5%)

at n = 30. The algorithm similarly performs well in Enron, though to a lesser

extent. The performance in Twitter is noticeably worse, varying from 61% to

48% with larger standard deviations for both. This is to be expected, as 500

observations represents a substantially smaller proportion of the population in

Twitter than it does in CondMat or Enron (0.61%, 2.34% and 1.48% respec-

tively). Even with this, the percentage achieved in Twitter with such limitations

substantially outperforms the näıve solution of using all observations at random

locations (16% (±6%) for n = 5, o = 500, averaged over 100 runs).

Performance rapidly increases with the number of observations. For n = 30,

the worst performing value of n, in both CondMat and Twitter Pdeg-sum exceeds

90% at around 5% network observation (o = 1000 for CondMat and o = 5000

for Twitter) and Enron exceeds 90% at around 10% observation (o = 3500).

Figure 4.1 also shows that the relationship between Pdeg-sum and increasing o is

one of diminishing returns, with improvements in Pdeg-sum most noticeable at

lower values of o. This is to be expected, the relative increase in o is smaller

at higher values, but dictates that increasing the effectiveness of PO-Place at

low values of o will have the most benefit. Additionally, in each network, the

difference in performance across the values of n becomes less noticeable at higher

o. Thus, any increased performance from PO-Place will be most noticeable

early on.

The other metrics we use to evaluate PO-Place show similar behaviour

to Pdeg-sum, increasing rapidly with the number of observations. Figure 4.2

shows a representative example of the three metrics’ variation with o for the

Twitter network when requesting 20 locations. The shaded regions represent the

standard deviations. As can be seen, both the deg-sum and 1-Hop proportions

increase rapidly up until o = 2000 and then any further gains occur over larger
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spans of increases in the number of observations. The standard deviations for

each of these decrease as well, from approximately 15% at o = 500 down to

around 5% at o = 5000. This indicates that, not only is PO-Place finding

sets of nodes with higher degree, it is doing so consistently at higher numbers

of observations, a finding that is repeated across all networks and values of n.

P|1-Hop| is consistently at the same level, if not better than, Pdeg-sum. Whilst it

was expected that the two should be well-correlated, this shows that PO-Place

is not simply choosing nodes close to one another and, indeed, is often choosing

nodes that have a better neighbourhood size than the deg-sum would indicate.

The performance of PO-Place when evaluated by DBase is noticeably dif-

ferent than the other two metrics and offers an interesting insight. The same

pattern of diminishing returns is not present and DBase continues to increase

with additional observations in the range investigated. Note that, although both

the degree sum and neighbourhood size are comparable to that of pure degree

placement, the low values of DBase indicate that the nodes selected are not the

same as the actual highest degree nodes. The results in this chapter evaluate

whether this difference has a noticeable effect on convention emergence or if the

reach and influence indicated by high deg-sum and 1-Hop scores is the best

indicator of success as hypothesised.

Overall, these initial results show that PO-Place performs nearly as well

as the full observability case whilst observing only 5-10% of the network. In

comparison to other applicable approaches, it also performs well. The approach

of Borgs et al. [2012b] is difficult to quantify as they do not include the nec-

essary observations of nodes within their fringe in their calculation. Thus, the

O(log4 n) nodes in their output set must be increased to account for all other

nodes observed but not included in the output set. Assuming average degree

for all nodes in the output set the fringe could be substantially larger. Whilst

there would likely be some overlap in neighbours, this gives a rough approxima-

tion. Using this, the approach of Borgs et al. would need to observe between

14-24% of the examined networks and would only be guaranteed of finding a
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n = 30.

set of nodes which provides an O(0.01) approximation of Pdeg-sum [Borgs et al.,

2012b]. The approach of Brautbar & Kearns [2010] is substantially worse. In

order to only require the same number of observations, the multiplicative ap-

proximation for high degree nodes would be exceptionally poor. The approach

of Mihara et al. [2015], whilst different in desired outcome, is closest here but

PO-Place outperforms even this with all networks achieving 90+% by 10% ob-

servation compared to 60-90% for 1-10% observation for Mihara et al. Whether

these results can be applied to the benefit of convention emergence is explored

later in this chapter.

Varying Concurrent Searches

Having established a baseline for PO-Place and explored the effects of limited

observations we now explore the variants of the algorithm. As noted in the

previous section, at low values of o the Pdeg-sum performance of PO-Place

is consistently lower, with performance in the Twitter network as low as 48%.

With very limited observations, making the best use of them is paramount.

At the beginning of this section we hypothesised that splitting the available

observations between multiple locations in the network and exploring them in

parallel may offer improvements over crawling from a singular location.

To test this hypothesis, we varied s from 1 to 9 to determine the effect
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that these concurrent searches would have. Figure 4.3 shows a typical case

in the Enron network for n = 30. Shaded areas represent the errors of each

plot. The left-hand graph shows the effect on Pdeg-sum of varying the number

of concurrent searches, splitting the observations between them. As can be

seen, adding concurrent starting points has an immediate and noticeable effect,

especially at low numbers of observations. At o = 500 the proportion achieved

by Pdeg-sum is 10% higher when additional starting locations are introduced and

this difference becomes even more noticeable as o increases. Indeed, for most

values of o, adding additional starting locations had significant benefits in both

the Enron and Twitter networks, with the benefits becoming less marked at high

o where Pdeg-sum approaches 1.0 unaided. Whilst there is a noticeable drop-off

in effectiveness after initial parallelisation (s = 5 and s = 7, not included in the

results to aid readability, offer little improvement over s = 3 for example) the

effect at low values of s is substantial as can be seen. Concurrent starting points

enable saturation of the algorithm’s effectiveness at much lower values of o and

not only increase Pdeg-sum and P|1-Hop| (which exhibits a nearly identical pattern

of increase as Pdeg-sum) but, as shown in the right-hand figure of Figure 4.3, cause

marked improvement in DBase as well, indicating that this change facilitates

much better approximation of the degree placement.

However, it should be noted that this pattern is not present in all networks.

In the CondMat network, increasing s had little effect and in a few settings was

actually detrimental. This indicates that there is perhaps an underlying feature

of the CondMat topology that benefits from localised crawling and that splitting

the observations between multiple areas reduces the number of observations

dedicated to this effort. The results of CondMat in Figure 4.1a lend additional

weight to this hypothesis, with behaviour that is substantially different than the

other two topologies despite being of comparable size to Enron (see Table 4.1).

Overall though, increasing s by even a small amount is likely to benefit the

performance of PO-Place.
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Figure 4.5: Effect of varying f on
Pdeg-sum. Enron network, n = 30.

Partial Neighbour Lists

In many settings, retrieving the whole of a node’s neighbour list may also be

impossible. Whether this is due to a technical limitation (only being able to

retrieve a certain percentage of information) or because such information is not

publicly available and is instead reserved for ‘premium’ or ‘subscribed’ users of

such a network, ensuring that PO-Place is robust to such issues is a necessity

to make it widely viable.

To simulate these restrictions, and measure their effect on the performance

of PO-Place, the parameter, p, controls the proportion of a node’s neighbours

that may be explored. Neighbours are chosen uniformly at random from the full

list to produce the restricted list that is presented to the algorithm. Results until

this point have assumed that the full neighbour list for any agent is available

upon request (i.e. p = 1.0). p is varied between 0.3 and 0.9 to determine the

impact of this limitation. Representative results are shown in Figure 4.4 for the

Twitter network and n = 5 but are applicable across all networks and values of

o and n.

The results in Figure 4.4 show that different values of p have minimal effect

on the performance of PO-Place. For all values of p, Pdeg-sum is comparable.

Performing a 95% confidence interval Welch’s t-test against the p = 1.0 results

at each point, only p = 0.3 (o = 1500, 2000, 3500) and p = 0.5 (o = 1500, 3500)
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are significantly worse. This pattern of minimal difference is repeated in all

networks, with none seemingly more susceptible or affected by partial neigh-

bour lists. We conclude that PO-Place is robust to receiving only partial

information of this nature and is primarily unaffected by such limitations.

Breadth-First vs Depth-First Expansion

Finally, we turn our attention to the concept of breadth-first vs depth-first ex-

pansion in PO-Place. That is, when crawling the local area, should additional

current area expansion be performed before considering new additions (breadth-

first) or purely iteratively (depth-first). Where there is locally a clearly defined

degree gradient we expect the latter to perform better. However, depth-first ex-

pansion also risks expending all the observations whilst exploring a suboptimal,

locally maximal path.

Parameter f allows study of this by controlling how many of the current

highest degree nodes that PO-Place is aware of are expanded concurrently.

Experiments up until now have had f = 1 (depth-first). We now vary f from

1 to 9. Figure 4.5 presents these findings in the Enron network for n = 30. As

with the previous results, it is our finding that the patterns here are replicated

throughout the different topologies and values of n.

Similar to the findings when varying p, varying f has little absolute impact

on the capabilities of PO-Place. However, using a 95% confidence interval

Welch’s t-test, all but f = 9 are statistically significantly worse at o = 500.

This is likely due to the limited observations being focused too locally. All

are significantly better between o = 2000 and o = 3000 but there is little gain

in selecting values of f beyond 3 as the performance of PO-Place is almost

identical. Overall, PO-Place seems to gain little from considering the local

area more thoroughly before further expansion. Whether this is intrinsic in the

design or a facet of the topologies being explored is outside the scope of this

thesis but should be considered for future expansions.
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Figure 4.6: Comparison of PO-Place and degree IA placement for convention
emergence in real-world topologies. The y-axis indicates the proportion of runs
where the desired strategy emerged as the convention.

4.4 Initial Intervention with Limited Observa-

tions

In this section we use the findings of the performance of PO-Place with various

parameters and apply it to the problem of encouraging convention emergence

in the real-world topologies specified. We then expand this investigation into

synthetic graphs and examine the performance of PO-Place within these.

4.4.1 Real-World Networks

Having explored the effectiveness of PO-Place in finding high-degree loca-

tions under different real-world topologies, ensuring the algorithm is robust to
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different aspects of partial observability, we now examine how PO-Place com-

pares to degree placement for IAs in convention emergence in static networks.

Having established ranges of parameters that offer the best performance im-

provements for each topology, these will be utilised to compare the algorithm to

degree placement. Additionally, basic settings (small numbers of observations,

no concurrent placements) provide a baseline comparison of PO-Place.

For the convention emergence experiments, a population of agents is situ-

ated in the 3 real-world topologies described previously. Each timestep, each

agent chooses one of its neighbours uniformly at random to play the 10-action

coordination game [Sen & Airiau, 2007] receiving positive or negative payoffs

depending on whether their choices match. Agents use a simplified Q-Learning

algorithm to learn the most beneficial choice. We utilise the 10-action game as

used by [Marchant et al., 2015b] to avoid the issues of small convention spaces

raised in Section 4.2 and to allow comparison to previous work. They have a

chance to randomly choose their action (pexplore = 0.25) or else choose the most

beneficial one. IAs replace the agents at the chosen locations and always choose

their predetermined action.

A convention has emerged when the population has converged to have one

action as the dominant choice of agents in the network. Most work considers

this to be the case when the convention reaches 90% dominance [Griffiths &

Anand, 2012; Marchant et al., 2015a; Sen & Airiau, 2007]. However, much

of this work utilises synthetic networks rather than real-world topologies and

populations that are substantially smaller than those we consider. Preliminary

experiments show that the topologies are relatively resistant to convention emer-

gence, requiring both high numbers of IAs well as substantial time. As we are

concerned with a comparison of the performance of PO-Place against pure

degree placement we wish to find settings that are guaranteed to repeatably

experience convention emergence. As such, we consider a convention to have

emerged when the 80% Kittock criteria is met, K80% [Kittock, 1995]. That is, a

convention has emerged when 80% of the population, when not exploring, would
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choose the same action. This indicates a high level of dominance of the desired

action and allows more robust comparisons. We find that such a threshold is

reliably reached, if it is likely to be reached at all, within 10000 iterations for

the CondMat and Twitter networks and within 15000 iterations for the Enron

network. As such, we measure the proportion of runs that have converged to

the desired strategy within these time-frames across all networks.

The results are presented in Figure 4.6. We begin by varying the number of

IAs, n, and finding a range where degree placement exhibits noticeable changes

in convention emergence rates. We then utilise PO-Place across this same

range with the parameters indicated. The values of o chosen within each topol-

ogy are such that the number of observations is, at most, approximately 5% of

the agent population. All runs are performed 100 times and the proportion of

runs that produce the desired convention (strategy chosen uniformly at random

at time t = 0 and assigned to all IAs) is measured.

Figure 4.6a shows the results for the CondMat topology. As was expected,

due to the behaviour of CondMat in the PO-Place experimentation, all of the

chosen parameters produce comparable results to the pure degree placement.

Even at the worst performing parameters (o = 500, s = 1) there is no discernible

difference between the performance of degree placement and PO-Place, whilst

at higher number of observations (where PO-Place was entirely approximating

the highest-degree nodes as seen in Figure 4.1a) the performance is as expected.

Of note is the fact that, whilst it resulted in worse output of PO-Place in the

prior section, increasing s does not noticeably affect the performance here.

Within the other networks the difference in performance is more noticeable

but still indicates that PO-Place is generating close approximation of the de-

gree placement. In both Enron and Twitter (Figures 4.6b and 4.6c) the minimal

observation situation performs substantially worse than degree placement, par-

ticularly in the Twitter network. However, when given observations of only

around 5% of the network (o = 2000 for Enron, o = 5000 for Twitter), the per-

formance of PO-Place increases significantly. Whilst it still falls behind the
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performance of degree placement in both networks the difference is substantially

smaller with PO-Place performing around 50-65% as effectively on average as

degree placement in both networks (0.50±0.08 in Enron, 0.64±0.13 in Twitter).

However, when we increase s, as was found in Section 4.3.2, it improves this

substantially to 0.82± 0.11 average effectiveness compared to degree placement

in Enron and, less substantially, to 0.69 ± 0.12 in the Twitter network. We

quantify these values by comparing the emergence proportions of PO-Place

and degree at each value of n and calculating the ratio between them which we

then average. We discount values where either placement is achieving less than

a 0.1 emergence proportion to avoid noisy results influencing the measure. As

0.1 is the expected emergence proportion of our desired strategy in a convention

emergence we do not influence, we believe discounting values below this allows a

more accurate comparison between the two algorithms. In the Twitter network,

we also consider o = 2500 as the effect of increased s was more pronounced for

this value during Section 4.3.2. Whilst there is a noticeable improvement at

higher n the average compared effectiveness has a smaller difference: 0.23±0.05

for s = 1 and 0.32± 0.09 for s = 9.

Additionally, we use a one-tailed Z-Test with a 95% confidence interval to

compare the emergence proportions achieved between the s = 1 and s = 9

cases (where appropriate). We find that in the Twitter network (o = 2500) the

difference is only significant at n = 24, 34, 48, 50. By comparison the results in

the Enron network (o = 2000) are significant at n = 4− 10, 14− 40 (note that

only even values of n are included in Figure 4.6b) showing that the improvement

exhibited here is consistent and significant at nearly all tested values of n. We

conclude that concurrent searches are less effective in the Twitter network, with

o being the dominant factor, but that it makes a substantial improvement in

the Enron network.

Overall, we have shown that even when only observing a small portion of

the underlying topology, and strategically using these observations to maximise

their effect, it is possible to achieve comparable performance to degree placement
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with full network visibility using PO-Place.

4.4.2 Synthetic Networks and Limited Observations

Having established the efficacy of PO-Place in encouraging convention emer-

gence in real-world topologies we now turn our attention to using PO-Place

in synthetic graphs. Whilst it is important to test the algorithm in graphs con-

structed from real-world social data this has a number of shortcomings. Firstly,

that we are unable to vary any of the aspects of the network topology to explore

the effect that these have on the performance and robustness of PO-Place.

Unless we sample the network we cannot change the size, edge count, density

or any other topological value. Secondly, there are noticeable distinctions and

differences between synthetic and real-world networks [Leskovec et al., 2008;

Newman, 2003] that often mean they are poor approximations of one another.

Finally, that there are real-world constructed networks, in contrast to real-world

social networks, that exhibit features similar to synthetic topologies, particu-

larly in computing and telecommunication networks such as the Internet itself

[Dorogovtsev & Mendes, 2003; Lewis, 2006; Lian-Ming et al., 2011]. Because of

these differences and the capability to vary the network topology it is impor-

tant to establish the effectiveness of PO-Place in synthetic networks as well

as those already seen and to evaluate any differences that arise.

We use the Java Universal Network/Graph (JUNG) framework1 to generate

both scale-free [Barabási & Albert, 1999] and small-world [Kleinberg, 2000b]

networks upon which to test PO-Place. Both of these types of topologies

are frequently used in the literature due to having features often found in real-

world topologies [Delgado et al., 2003; Sen & Airiau, 2007]. Namely, in scale-free

networks there is a power-law distribution in degree (scale-free networks) which

results in a few high-degree “hub” nodes and a much larger number of low

degree nodes. In small-world networks the topology is characterised by a small

diameter and a well-connected local area around each node which results in the

1JUNG version 2.1.1 (http://jrtom.github.io/jung/)
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well-known Six Degrees of Separation phenomena [Travers & Milgram, 1969].

More details on these topologies and their generation can be found in Chapter 2.

Unlike previous usage of synthetic graphs in Chapter 3 initially in this section

we pre-generate synthetic graphs to allow a baseline comparison to occur. If we

were to generate a new graph for each run of PO-Place then we would be

unable to compare DBase meaningfully between runs as each would generate

a different set of high-degree nodes. Using pre-generated graphs allows us to

compare the average performance of PO-Place upon a given synthetic graph.

Additionally, this approach is the same as that taken in Section 4.4.1 where

the networks were unchanging real-world topologies. When PO-Place is used

to encourage convention emergence later in this Section this condition will be

changed as at that point we wish to establish the general performance of PO-

Place in synthetic graphs of a given type.

Experimental Setup

We begin as we did in Section 4.3.2 by establishing the performance of PO-

Place independent of its use in encouraging convention emergence. To this

end we create two synthetic networks:

Scale-free As in the previous chapter the scale-free network is generated using

the Barabási-Albert model [Barabási & Albert, 1999]. We use an initial

number of vertices, m0 = 4, with m = 3 edges being attached per iteration

of the generator. We create a graph consisting of 50000 vertices and 149988

edges.

Small-world A small-world topology is generated using Kleinberg’s model

[Kleinberg, 2000a]. As with the scale-free network it has 50000 vertices

with a clustering exponent of 2 and 1 additional long-range connection

per vertex. This produced a graph with 149932 edges.

The sizes of the graphs has been chosen to allow direct comparison to the

real-world topologies used before with 50000 vertices being between the Enron
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Figure 4.7: Pdeg-sum and deg-sum performance of PO-Place for varying n
(number of locations) and o (number of observations) in synthetic networks
with 50000 nodes.

and Twitter network sizes. This will minimise the likelihood that any differ-

ences are due to the size of the topologies and rather is likely to be from other

differences between them.

These graphs are unchanging and are used to examine the general perfor-

mance of PO-Place. Whilst there is a risk of individual aspects of these graphs

being unique to them the generic nature of the graph generation algorithms and

the size of these topologies makes this unlikely. Additionally, as when examin-

ing the performance of PO-Place on the real-world topologies, the placement

algorithms are averaged from multiple independent runs. In this instance each

setting of the algorithm parameters is run 100 times and the results averaged.
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PO-Place Performance

We begin as we did before by investigating the performance of the algorithm

with s = p = f = 1 and focusing on the difference in performance as we vary n

and o. We vary the number of locations to find, n, between 0 and 30 in steps

of 5. The number of observations, o, is varied between 100 and 2000 in steps of

100. Note that this maximum is less than even the smallest maximum used when

examining the real-world topologies (CondMat with o = 3500) and the reason for

this is presented in Figure 4.7. Figures 4.7a and 4.7b show how Pdeg-sum changes

as we vary these parameters whilst Figures 4.7c and 4.7d show the same but for

the full deg-sum. As can be seen in the top row of the figure, the performance of

PO-Place even at these levels of observation (which represents between 0.2%

and 4% of each of the networks) is substantial and, in terms of Pdeg-sum, close to

the pure degree placement. For comparison, at n = 10, o = 1000 in the Enron

network Pdeg-sum was 0.82±0.10 and in Twitter it was 0.66±0.12. In the scale-

free network (which it should be noted is larger than Enron) at these values

Pdeg-sum performance was 0.96± 0.02. This level of increased performance even

at lower percentages of network observation is seen throughout Figure 4.7a.

As can be seen in Figure 4.7b the performance in the small-world network is

noticeably different from the previous plots of both the real-world topologies and

the scale-free network with little difference in performance from 0.2% network

observation to 4% network observation. The increase in Pdeg-sum between these

number of observations is minimal with the performance plateauing around

0.8. This is in contrast to each of the other examinations thus far where the

performance has rapidly approached 1.0. The underlying features of small-

world networks, in comparison to the others, mean that there are less likely to

be the “hub” nodes which occur frequently in other topologies. As PO-Place

moves along gradients of increasing degree the absence of these will likely hinder

the algorithm. However, even with this the algorithm easily finds nodes with

approximately 80% of the degrees of the pure degree placement. Indeed, at

very low levels of observation (o / 500) PO-Place in small-world outperforms
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Figure 4.8: Performance of PO-Place as measured by Pdeg-sum, P|1-Hop| and
DBase for varying numbers of observations in scale-free and small-world net-
works for n = 20.

PO-Place in scale-free topologies.

A more in depth analysis of the PO-Place performance metrics in synthetic

networks is presented in Figure 4.8 which shows the change in Pdeg-sum, P|1-Hop|

and DBase in both networks as we vary the number of observations. For both

networks we look at the case when n = 20 but similar patterns are observed

throughout. Each of the metrics is plotted against the number of observations,

o, and the shaded areas in each plot represent the standard deviations amongst

the runs. As can be seen in Figure 4.8a the metrics in the scale-free network

follow a similar pattern of diminishing returns as was seen in Figure 4.2. How-

ever, there are a number of differences that we highlight here. Primarily, as

was seen in Figure 4.7, the performance in all metrics is substantially better

than was seen in Figure 4.2. Noting that Figure 4.2 starts at o = 500 whilst

this starts at o = 100 we see that at all points performance here is noticeably

improved. Additionally, the standard deviations seen decrease to negligible as

the observations increase, a trend not seen in Figure 4.2. This means that PO-

Place is choosing consistently better in the scale-free topologies than in the

real-world ones and this can be explained due to the gradient-climbing nature
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Figure 4.9: Pdeg-sum performance of PO-Place for varying s in scale-free and
small-world networks for n = 20.

of the algorithm once again as the scale-free nature of the real-world topologies

is likely noisier than those of the generated topologies.

In comparison, Figure 4.8b shows the performance of the metrics in the

small-world topology at n = 20. Whilst both Pdeg-sum and P|1-Hop| stay around

0.8 after initial small amounts of growth at lower levels of observations, the

performance of DBase is consistently low, barely above 0. This supports the

hypothesis that PO-Place is performing poorly in small-world networks when

it comes to traversing and locating the highest degree nodes. Whilst it is find-

ing some nodes of high degree it is not finding the same ones as pure degree

placement does and the lack of the degree gradient that PO-Place makes use

of is likely the underlying cause. However, as was mentioned in Section 4.3.2, a

poor DBase score is not necessarily indicative of poor performance when using

PO-Place for IAs.

As with the evaluation in real-world networks we also seek to establish the

effect that varying other parameters of PO-Place has on performance. These

are the number of concurrent starting locations (s), limiting the proportion of

neighbours that are available for expansion (p) and the fringe size of vertices

expanded before choosing again (f). Figure 4.9 shows the effect of varying s

between 1 and 9 in both of the synthetic networks for n = 20. In both of

them there is no significant difference in performance for any value of s. Indeed

there is no difference in performance for any value of n examined. This is in
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Figure 4.10: Effect on PO-Place in a scale-free network of varying p and f .
n = 10.

Number of Observations, o

p 100 300 500 700 900 1100 1300 1500 1700 1900

1.0 0.469 0.753 0.877 0.926 0.953 0.965 0.972 0.973 0.979 0.991
0.9 0.446 0.709 0.847 0.906 0.942 0.956 0.966 0.97 0.981 0.987
0.7 0.404 0.69 0.808 0.876 0.92 0.932 0.952 0.967 0.977 0.98
0.5 0.388 0.673 0.791 0.863 0.913 0.943 0.946 0.968 0.975 0.983
0.3 0.345 0.609 0.767 0.824 0.896 0.927 0.936 0.963 0.972 0.976
0.1 0.307 0.568 0.695 0.77 0.852 0.88 0.916 0.939 0.942 0.96

Table 4.2: Pdeg-sum scores for o and p in the 50000 node scale-free network. Val-
ues which have statistically significant difference from the p = 1.0 performance
are shown in bold.

contrast to the real-world topologies where, although it was not consistent or

for all values, there were substantial and significant increases in efficacy when

increasing s.

We also vary p and f to see the effect this has on the performance of PO-

Place. The results of this for the scale-free network are shown in Figure 4.10.

We use the results from n = 10 but similar results are found for all values of n.

We vary p from 1.0 down to 0.1 and f from 1 to 9. As seen in the figures, unlike in

the real-world topologies, there is a noticeable effect on the performance of PO-

Place when both of these are varied. Decreasing the proportion of neighbours

that is provided to the algorithm, as in Figure 4.10a decreases the effectiveness

of PO-Place as it was originally hypothesised that it would. However, even
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Number of Observations, o

f 100 300 500 700 900 1100 1300 1500 1700 1900

1 0.469 0.753 0.877 0.926 0.953 0.965 0.972 0.973 0.979 0.991
3 0.405 0.703 0.835 0.906 0.943 0.961 0.973 0.981 0.986 0.989
5 0.376 0.69 0.799 0.889 0.931 0.951 0.972 0.977 0.981 0.989
7 0.387 0.647 0.809 0.888 0.928 0.946 0.967 0.971 0.978 0.983
9 0.339 0.639 0.797 0.865 0.919 0.947 0.961 0.977 0.976 0.987

Table 4.3: Pdeg-sum scores for o and f in the 50000 node scale-free network.
Values which have statistically significant difference from the f = 1 performance
are shown in bold.

p = 0.1 only reduces the effectiveness of the algorithm slightly although it means

that only 10% of neighbours are available to the algorithm. Similarly, increasing

the fringe size as shown in Figure 4.10b has a similar detrimental effect although

less pronounced. Increasing f means that more observations are spend exploring

the immediate area rather than traversing the degree gradient so this effect is

to be expected.

To highlight these differences more the results are also presented in Tables 4.2

and 4.3. The Pdeg-sum values are shown in the table and those that are statis-

tically significant in their difference from the baseline are highlighted in bold.

These were found using a 95% confidence interval Mann-Whitney U test [Fay &

Proschan, 2010; Mann & Whitney, 1947] and highlight that the differences are

significant for nearly all values of p and f at each number of observations. The

effect of varying p is particularly negative with most scores being significantly

different even if the difference is not large in an absolute sense. However, these

small absolute differences highlight that PO-Place is robust to these variations

as well as reassuring us that a simple depth-first growth approach is the best

one in all topologies.

Figure 4.11 shows the effect of varying p and f on the performance of PO-

Place in the small-world topology. We use n = 30 as the value where differences

should be most noticeable due to the algorithm needing to find a larger number

of high-degree locations. As has been the case throughout, these results are
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Figure 4.11: Effect on PO-Place in a small-world network of varying p and f .
n = 30.

|V | |E| deg |E|/|V |
CondMat 21,363 91,286 8.546 4.273

Enron 33,696 180,811 10.732 5.366
Twitter 81,306 1,342,296 33.018 16.509

Scale-free-50k 50,000 149,988 6.000 3.000
Small-world-50k 50,000 149,932 5.997 2.999

Table 4.4: Average degrees for graphs used. Real-world networks are the largest
WCC within them.

substantially distinct from those in the scale-free topology with the changes in

parameters having no discernible effect on the algorithm. This again supports

the hypothesis that the algorithm in small-world graphs is able to find nodes of

approximately high enough degree in its local area, regardless of whether they

are the nodes that would be selected through pure degree placement. Whether

this will be enough to be of use in convention emergence tasks will be explored

later.

Varying Topology Features

Thus far we have varied the parameters of the PO-Place algorithm and seen

the effect of this on its performance in the synthetic graphs. We now consider

the effect of the underlying topology and the variations that can be generated

in the synthetic graphs themselves.
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The differences in the performance of PO-Place can be explained by the

different features of these underlying topologies with the lack of high degree

“hubs” being a prominent facet in the performance in small-world topologies.

The noisier nature of the real-world topologies in comparison to the scale-free

networks generated by the Barabási-Albert model similarly explains aspects of

this difference in performance.

One noticeable difference in the performance of PO-Place in the real-world

and synthetic networks is that varying s has no effect in the synthetic networks.

Whilst its effect was not found throughout the real-world networks (being most

prominent within the Enron topology) its lack of any effect, positive or negative,

highlights that something is distinct in the real-world networks compared to the

synthetic ones.

As noted and explored by Franks et al. [2014] the global network metrics

generated by the synthetic graphs often differ from those exhibited by real-

world networks. They highlight a number of metrics such as graph diameter and

clustering coefficient which are substantially different in the generated graphs

vs the real-world and real-world sampled graphs within their work.

One other metric they highlight is that of average degree which also differs

between real and synthetic graphs. Average degree is defined as:

deg =

∑
v∈V deg(v)

|V | =
2|E|
|V | (4.4)

The average degrees for the graphs used in this chapter are shown in Table 4.4

as well as the number of vertices and edges in each graph. The real-world net-

works are again reduced to their largest weakly-connected component. As can

be seen, the synthetic graphs have lower average degrees than even the CondMat

network (which is much smaller) and substantially lower average degrees when

compared to the Enron and Twitter networks. Whilst the number of nodes

within the synthetic networks is comparable to those in the real-world networks

other aspects such as average degree are very different.
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We now investigate the effect this has on the performance of PO-Place by

producing a number of topologies of both scale-free and small-world types and

varying the average degree within them. From this point onwards, for ease of

notation, we refer to the edge:vertex ratio, |E|/|V |, instead of average degree.

These are the same barring a constant factor (as can be seen above) and as

such we lose no finesse by doing this. These values are similarly presented in

Table 4.4. Note that we thus have already been using synthetic topologies for

|E|/|V | = 3.

We generate new graphs with |E|/|V | = 6, 9, 12, 15 to see how PO-Place is

effected. For each synthetic graph this is done by changing the graph generation

parameters associated with the topologies as follows:

Scale-free The generated graph has |E| = m(|V | −m0) and so |E|/|V | u m.

m0 = m = |E|/|V | for m = 6, 9, 12, 15.

Small-world In the Kleinberg model each node is connected to each of 4

neighbours in a lattice with l additional long-range connections. Thus

|E| = |V |(2 + l) (due to avoiding double counting). This means that

|E|/|V | = l + 2 and thus we use l = 4, 7, 10, 13.

Having already established how PO-Place in synthetic networks is affected

by varying p and f we now focus on the effect of increasing s. As an increased

s = 9 was beneficial in the real-world networks with higher |E|/|V | we use this

to evaluate our algorithm in denser synthetic networks.

For each of the networks generated above we vary the number of locations

requested and number of observations as before. Additionally we use s = 1

and s = 9 for all these values and compare the Pdeg-sum of the results. Each

combination of network, n, o and s are run 100 times and the averaged Pdeg-sum

used. As we are interested in whether the increased s setting improves the

performance of PO-Place or not, we then compare the results using the Mann-

Whitney U test at the 95% confidence interval (p < 0.05) to establish if the

difference is significant.
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(a) |E|/|V | = 3
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(b) |E|/|V | = 6
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(c) |E|/|V | = 9
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(d) |E|/|V | = 12
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(e) |E|/|V | = 15

Figure 4.12: Significant differences (p ≤ 0.05) when increasing number of start-
ing points for PO-Place in scale-free graphs of 50000 vertices at different
edge:vertex ratios.
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(a) |E|/|V | = 3
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(b) |E|/|V | = 6
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(c) |E|/|V | = 9
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(d) |E|/|V | = 12

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Observations

5
10
15
20
25
30

N
u

m
b

er
of

L
o
ca

ti
on

s
R

eq
u

es
te

d

≤ −5%

0%

≥ 5%

(e) |E|/|V | = 15

Figure 4.13: Significant differences (p ≤ 0.05) when increasing number of start-
ing points for PO-Place in small-world graphs 50000 vertices at different
edge:vertex ratios.
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The results of these evaluations are presented in Figure 4.12 for the scale-

free networks. Each combination of n and o is assigned a colour based on the

difference and significance of the results. White indicates that there was no

statistically significant difference at the 95% confidence interval between the

Pdeg-sum performance of PO-Place with s = 1 and s = 9 for these values. Red

indicates that s = 9 was statistically significantly worse than s = 1 whilst green

indicates that it was better to a statistically significant level. The saturation of

this colour is then determined by the differences in Pdeg-sum as indicated in the

colourbar, up to a maximum of +5%/ + 0.05 for solid green and −5%/ − 0.05

for solid red. For instance, if s = 9 had Pdeg-sum = 0.85 and s = 1 achieved

Pdeg-sum = 0.77 the location would be coloured solid green. Alternatively if

s = 9 produced Pdeg-sum = 0.66 and s = 1 had Pdeg-sum = 0.67 it would be

coloured pale red.

Figure 4.12 shows that the average degree (and edge:vertex ratio) has a sub-

stantial effect on the performance of PO-Place. At low average degree, as has

been the case thus far, increasing s has a mostly neutral or barely beneficial

effect, explaining the behaviour seen in Figure 4.9a. At very low numbers of

observations it causes decreases in performance of greater than 5% consistently.

This is to be expected as the algorithm is splitting an already highly limited

number of observations between multiple locations and is something that contin-

ues regardless of the density. For many other combinations of n and o increasing

s has a non-significant effect although at higher numbers of observations there

are improvements but all of these are less than 5%.

As we increase the density the performance improvement caused by s = 9

increases rapidly. At |E|/|V | = 6, comparable to the Enron network, we see

that a number of locations are now undergoing substantial Pdeg-sum increases,

particularly at the lower end of the number of observations, although the poor

performance at the lowest number of observations persists. Additionally a larger

contingent of increased performance is present in the lower to middle ranges of

observations indicating that the increased density is being exploited by PO-
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Place to better find the high degree nodes.

This pattern of increasing performance continues for higher levels of |E|/|V |

with |E|/|V | = 9 and |E|/|V | = 12 increasing the number of locations that ex-

hibit greater than 5% improvement as well as continuing to expand the number

of locations that have statistically significant improvements to lesser amounts

as well. It is worth noting however that the number of locations where per-

formance decreases substantially also increases for the lowest values of o. This

is to be expected as the increased average degree means that the algorithm is

unable to explore as far along the degree gradient before using up its available

observations due to encountered nodes generally having more neighbours that

must be explored. As the levels of observation at which this occurs are less than

0.4% of the graph this is a small fraction of the situations where PO-Place may

be applied. However, the switch between this negative effect and the positive

increases is a sharp delineation and indicates that there is a phase shift in the

effect of having multiple starting locations from which to search. Increasing the

number of observations from 0.4% of the network size to even 1% dramatically

increases the effectiveness of PO-Place in this way and overall gives credence

to the manner in which PO-Place operates.

When we reach an |E|/|V | value that is close to that exhibited by the Twit-

ter network, PO-Place is consistently and nearly universally benefiting from

an increased s except at very low numbers of observations. Although the effect

diminishes at lower numbers of locations requested or at higher numbers of ob-

servations it is not detrimental in this situations, being at worst not statistically

significant. At all other combinations of n and o the increase in starting locations

has a significant and often substantial effect. The areas where increasing s does

not benefit PO-Place are areas not where increasing s makes the algorithm

worse but rather areas where the s = 1 approach already performs well. For

lower numbers of locations requested it only has to choose the top few locations

well rather than choosing well consistently. At higher numbers of observations

provided, ensuring they are used effectively becomes less important.
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However, the effect of increased average degree in small-world networks ex-

hibits very different dynamics. As shown in Figure 4.13, after a brief but shallow

increase in Pdeg-sum performance for |E|/|V | = 6 (where any statistically signifi-

cant increases are for only a few percentage points), increasing |E|/|V | to 9 and

12 has the opposite effect, with small but statistically significant decreases in

effectiveness. Unlike in the scale-free topologies there is no consistent pattern or

range of combinations where this differences may occur and given the low level

of difference that is present it is likely to be facets of the individual topologies

rather than something intrinsic. This is supported by the performance differ-

ences shown for |E|/|V | = 15 which follow no pattern that could be inferred

from the previous levels of edge:vertex ratio. This all lends further evidence to

the theory that PO-Place in small-world networks is unable to make use of

many of the assumptions built into the algorithm and, whilst it does not per-

form poorly by the metrics employed, it does not benefit in the same way that

the real-world and scale-free topologies do.

We have shown that PO-Place performs well in synthetic topologies as well

as in real-world networks. In scale-free graphs it performs even better than with

comparable parameters in the real-world topologies and benefits from the ad-

ditional functionality of PO-Place, achieving greater than 90% performance

with only 1-2% graph observation. In small-world networks PO-Place per-

forms well, achieving approximately 80% of the pure degree performance with

1-2% network observation. However increasing beyond this is difficult due to

aspects of the underlying small-world topology.

Convention Emergence

Having established that PO-Place is applicable and effective in synthetic net-

works we now use it to select locations for IAs and examine the effectiveness of

its selection in comparison to that of pure degree placement with full network

visibility.

To evaluate the effectiveness of PO-Place in synthetic networks we perform
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the same types of simulation as in Chapter 3 as well as in Section 4.4.1. We use

two different networks, scale-free and small-world, at two different scales, 20000

and 50000 nodes, to produce four different combinations. Each of the graphs has

|E|/|V | = 9 due to its being between the values of CondMat/Enron and Twitter.

The parameters used to generate graphs with this value of |E|/|V | are the same

as in the previous section. Each individual run generates a new graph in contrast

to the approach performed for PO-Place without convention emergence. This

is to ensure that the results give a general picture of the behaviour of convention

emergence in each graph type and scale.

We create a population of agents and situate them within the topology. As

before, in each timestep each agent chooses one of its neighbours with whom to

play the 10-action coordination game and every agent uses Q-Learning [Griffiths

& Anand, 2012; Sen & Airiau, 2007] to update its knowledge based on the payoff

received. Each agent also explores a random action choice with pexplore = 0.25.

For the purposes of these simulations we consider a convention to have emerged

when the 90% Kittock Criteria, K90% is achieved rather than the K80% thresh-

old used in the real-world network evaluations. This is because the synthetic

networks have been shown to consistently achieve this level of convention even

without IAs in the system. We use both degree placement and PO-Place with

various settings derived from well-performing parameters from the previous sec-

tion to insert n IAs into the population at time t = 0. The simulations run

for 3000 timesteps which was found to be long enough for conventions to ro-

bustly emerge even without outside aid. We measure the proportion of 100 runs

that emerge the desired convention (that assigned to the IAs at t = 0, selected

uniformly at random from those actions available) within that time frame.

Figure 4.14a shows convention emergence proportions in scale-free networks

with 20000 nodes. As was found in Chapter 3 and in previous work by Griffiths

& Anand [2012] and Sen & Airiau [2007], only a few IAs are needed to affect

a population substantially larger than themselves with less than 10 being able

to consistently cause a robust convention to emerge whilst only representing
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Figure 4.14: Convention emergence using PO-Place in scale-free networks.

0.05% of the population. PO-Place performs well, keeping pace with degree

placement and being able to effect convention emergence to the same scale in

the same range of IAs with o = 200, s = 1 achieving a proportion of 0.97± 0.05

of degrees performance. Of particular note is the fact that, due to the low num-

bers of observations as well as such a small amount of locations being needed,

o = 200, s = 9 falls into the area in which PO-Place performs worse, being

significantly (p < 0.05) different at n = 3 − 6 and only achieving a proportion

of 0.93± 0.07. With o = 1000 PO-Place performs equally as well as the pure

degree placement, despite only observing 5% of the network and achieving per-

formance of above 95% with only 1% of the network observed. Figure 4.14b

shows similarly high-levels of performance in the 50000 node scale-free network

with 1% observation (o = 500) achieving an averaged proportion of 0.99±0.01 of

degree placements performance. Overall, PO-Place is exceptionally effective

in encouraging initial convention emergence in the scale-free network achieving

near perfect performance with a tiny fraction of the network observed.

Figures 4.15a and 4.15b show the performance of PO-Place for small-

world networks. As was hypothesised in the previous section, although PO-

Place struggled when it came to the performance evaluation when used to

find locations for IAs it still performs very well in small-world topologies. In

both 20000 and 50000 node topologies even just 1% network observation allows
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Figure 4.15: Convention emergence using PO-Place in small-world networks.

averaged proportional performance compared to degree of 0.92 ± 0.12 in the

20000 node graph and 0.85 ± 0.17 in the 50000 node graph, performing better

than the Pdeg-sum would indicate. Whilst larger numbers of IAs are needed than

in scale-free topologies this is to be expected and is consistent with the general

performance of convention emergence in small-world networks. As shown before,

varying s has no effect on the efficacy of PO-Place when used for convention

emergence in this domain making it neither better nor worse.

Overall we have shown that PO-Place is a powerful tool to be deployed in

synthetic networks encouraging convention emergence comparably with pure de-

gree placement whilst only observing small fractions of the underlying topology.

It performs better in the synthetic networks than in the real-world networks

and the various parameters available to the algorithm can be used to increase

its performance dependent on network density.

4.5 Limited Observations in Dynamic Networks

The issue of partial observability in dynamic networks adds a number of new

dimensions to the problem of finding highly influential nodes under these con-

straints. With the constantly changing nature of the dynamic topologies, addi-

tional consideration of how to best utilise available observations over different
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timesteps is paramount.

There are two likely use cases that we believe cover most situations with

limited observations in dynamic topologies:

1. The user is supplied a total, finite number of observations and must de-

termine how best to allocate these across the time available. For instance,

situations where the controlling/hosting party of the network allows pre-

cisely limited access to the system, perhaps in exchange for remuneration

(e.g. 5000 observations for £X).

2. The user is supplied a finite number of observations at regular intervals

throughout the lifespan of the system. This represents the typical access

limitations of many social network APIs: you may make a limited amount

of API requests per hour/day/week.

We may identify 1 as Bulk Supply and 2 as Staggered Supply . Note that this

does not cover the case where the number of observations supplied may vary at

different timesteps. However, most API limitations observed (as the primary

motivator for this research) are entirely static in nature and do not vary over

time. An exception to this is where an API may have multiple levels of rate

limiting such that, for example, you may make n observations per hour or

m observations per day, whichever occurs first. In this instance we can treat

the larger limit, m observations per day, as the actual limit of the supply of

observations without loss of general applicability.

4.5.1 Formalisation

Numerous related but unique formalisations of dynamic graphs exist in the lit-

erature with no solid consensus on how best to describe them [Kim & Anderson,

2012; Kostakos, 2009; Michail, 2015; Nicosia et al., 2013; Pan & Saramäki, 2011;

Tang et al., 2010]. Numerous approaches treat the edges as labelled with the

timesteps the edge exists in. Others devolve the temporal graph into a multi-

layered graph with connections between the vertex and itself in subsequent
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timesteps. Some treat the graphs in the individual timesteps as an ordered set

of individual static graphs. However, in each of these approaches, the set of

nodes is treated as static and unchanging. In our case, using the networks of

González et al. [2006a] and Ichinose et al. [2013] as described in Chapter 2 re-

sults in a node set that is constantly changing. With this in mind, we propose

and will use the following formalisation of dynamic graphs.

A dynamic graph, GT = (VT , ET ), consists of a set of temporal vertices,

V , and a set of temporal edges, ET , where a temporal vertex vi,j ∈ VT exists

in the graph between timesteps i and j and a temporal edge (u, v)k,l ∈ ET

exists between vertices u and v between timesteps k and l. As such, it can

alternatively be viewed as a sequence of individual static graphs at various

timesteps with vertices and edges in those graphs that exist at those particular

timesteps. That is, GT = (Gt1 = (Vt1 , Et1), . . . , Gτ = (Vτ , Eτ )) where τ is the

maximum timestep that the graph exists in.

Additionally, for the purposes of partial observability in dynamic networks

we must formalise the nature of observations and their supply in dynamic topolo-

gies. We break the timesteps of the graph up into contiguous non-overlapping

groups which we refer to as blocks. Given the number of observations supplied

in each block, O = (o1, ..., oi, ...), and the timesteps where these are supplied,

Tsupply = (to1 , ..., toi , ...) which denotes the start points of the blocks, the prob-

lem definition becomes how should these observations be best used to find highly

influential nodes amongst the population.

This formalisation is general but slightly cumbersome for the way observation

supplies work in many application domains. In particular, often the individual

blocks are defined by the number of observations supplied and the frequency

with which they are so. For instance, the rate-limited Twitter API [Twitter

Developers, 2017a] allows 15 calls every 15 minutes. As such, we can instead

denote situations such as this by using 3 parameters: osupply, the number of

observations received in each supply; fsupply, the number of timesteps between

supplies; and tstart, the timestep at which the first supply is received.
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Using these parameters, O = (osupply, osupply, . . . ) and Tsupply = (tstart, tstart+

fsupply, tstart + 2fsupply, . . . ) allowing easier specification of common setups of

observation supplies. Note that in this formalisation a Bulk Supply becomes a

special case of Staggered Supply where fsupply = ∞ and staggered supplies are

readily defined using the available parameters.

Thus, we formalise the Dynamic Partial Observability Problem as:

Given the following:

• A dynamic graph, GT = (VT , ET ).

• A finite number of timesteps, τ .

• A number of observations per supply, osupply.

• The number of timesteps between each supply, fsupply.

• The timestep of the first supply, tstart, where 0 ≤ tstart ≤ τ .

select a set of nodes of size n each timestep that maximises the deg-sum of the

selected nodes.

We also assume the following restrictions on the observations:

• the observations cannot be “stored” between supplies; when a new supply

comes in, any unused observations from the previous supply are discarded.

• a single observation will retrieve the list of neighbours (and hence degree)

of a given node. This functionality is frequently available in APIs as a

single command and hence is a good descriptor of what an “observation”

is.

Using this formalisation we can now approach the problem of using the

limited number of observations to produce a dynamic variant of PO-Place

that attempts to maximise the deg-sum of the found nodes.
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4.5.2 Design Considerations

With the addition of a dynamic component to the topologies, a number of new

considerations arise that are not present in the static version of PO-Place.

Frequency of Updates

One of the factors explored in the previous dynamic topology work is that of

how frequently the node lists should be updated. With limited observations

this becomes even more problematic. Updating the lists multiple times between

observation supplies requires spreading out the limited observations between

these updates, potentially making each individual search much weaker. Only

updating when a new supply is provided however runs the risk of the node

lists being substantially out-of-date, particularly if the observation supplies are

infrequent. The effects of these two opposing constraints must be balanced.

Observing the performance as the frequency of updates increases will indicate

the priorities that need to be addressed.

This approach will thus give rise to two new parameters: fupdate and oupdate

which dictate how frequently and with how many observations from the supply

respectively DynaPO updates should be performed.

Node Removal

Another aspect to consider is whether to update upon node removal and to

what extent. In the previous dynamic work, if one of the selected FS nodes was

removed an entire recalculation would occur to allow selecting the replacement

FS node. In partial observation however, this would mean holding some obser-

vations in reserve to facilitate this and runs into many of the same problems as

above. Three options are available to deal with this event:

No Update - do not update in this situation, instead using the (potentially

outdated) node list from the previous update, selecting the next highest

node on this list that is still present and is not already selected. This means
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no additional observations need to be used but, depending on how long

ago the last update was, the selection may be substantially suboptimal.

Partial Update - perform an update but with fewer observations than a full

update would be allowed. Specifically target likely candidate nodes for

this update. For instance, target the highest non-selected nodes on the

list from the previous update or nodes that are likely candidates for high

influence. This helps to reduce the issue of having an outdated node list

but also is conservative with using the limited supplies available.

Full Update - perform a full update, using the full number of observations

that such an update would be allowed. Whilst this will ensure that up-to-

date information about nodes is available, it runs the risk of running down

the supply long before the next one is due, particularly if node removal

happens frequently as it does in the models of González et al. [2006a] and

Ichinose et al. [2013].

These different approaches may thus introduce/change the oupdate parameter

from above into ofullUpdate and opartialUpdate which represent the number of

observations given to full updates and partial updates respectively. These may

need to be variable, functions of the state of the simulation or graph.

Exploration Targets

As observations are highly limited, trying to target nodes we believe to be good

candidates is important. Whilst certain approaches from the static algorithms

can be used (exploring high degree neighbours, growing along the gradient, etc.)

the dynamic nature can also be used to inform this process. In particular, re-

exploration of known nodes, particularly those that are likely to have shifted

or are actively being used will allow updating of the relevant rankings of nodes

with little use of observations. This in turn will allow the selection of DynaPO

to remain relevant without having to perform full updates.
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Algorithm 3 DynaPO

1: procedure DynaPO(GT , n, osup, fsup, oupd, fupd, updStyle, prex)
2: create empty list, selected
3: create empty max-priority degree queue, Q
4: create empty map, N
5: for all timesteps do
6: if first timestep or fsup timesteps since last supply then
7: obs← osup

8: if first timestep or fupd timesteps since last full update then
9: perform full update: update(min(oupd, obs))

10: else if selected node has been removed then
11: Remove node from N , Q and Selected
12: if updStyle is “full” and PerformFullUpdate? then
13: perform full update: update(min(oupd, obs))
14: else if updStyle is “partial” then
15: perform partial update: update(min(PartialObs(), obs))

16: Update obs by removing the number of observations used
17: selected← top n highest degree nodes as currently known
18: if size of selected < n then
19: add nodes selected u.a.r. from rest of graph until correct number

20: function PerformFullUpdate?
21: if time since last full update < fupd/2 then return FALSE
22: else return TRUE with prob. proportional to time since last full update’s

distance between fupd/2 and fupd

23: function PartialObs
24: return (oupd/fupd)× (time since last partial or full update)

4.5.3 Dynamic Partial Observability Algorithm: DynaPO

Taking these concerns and considerations into account, in this section we present

and describe the algorithm for influential node location detection in dynamic

partially observable networks: DynaPO.

The core of the algorithm is presented in Algorithm 3 and has many distinct

functions related to monitoring when updates should be performed, when the

supply should be updated and dealing with node removal. The algorithm takes

the following as arguments: the dynamic graph, GT , which is needed to request

neighbour lists; the number of locations to be found, n; the number of observa-

tion per supply, osup; the frequency of supplies, fsup (we assume that tstart is

when DynaPO will first be called and hence it can be omitted); the number of

observations to use per update, oupd; the frequency of full updates, fupd which
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Algorithm 4 DynaPO: Update

1: procedure UPDATE(o)
2: reExplorationObs← prexo
3: newExplorationObs← (1− prex)o

4: while known but not re-explored node exists and reExplorationObs > 0 do
5: take next not re-explored node with highest degree, v
6: NodeExplored(v)
7: reExplorationObs← reExplorationObs− 1

8: newExplorationObs← newExplorationObs + reExplorationObs
9: if |Q| = 0 and |selected| < n and newExplorationObs > 0 then

10: NodeExplored(v selected u.a.r. from unexplored part of graph)
11: newExplorationObs← newExplorationObs− 1

12: while |Q| > 0 and newExplorationObs > 0 do
13: v ← Q.pop()
14: for all w in N [v] do
15: if w not in N then
16: NodeExplored(w)
17: newExplorationObs← newExplorationObs− 1
18: if newExplorationObs = 0 then
19: add v to Q
20: return 0
21: return newExplorationObs

22: function NodeExplored(v)
23: N [v]← GT .neighbours(v)
24: add v to selected if not already
25: add v to Q

represents the maximum number of timesteps between full updates; the node

removal update style, updStyle, which is one of “Full”, “Partial” or “None”; the

re-exploration proportion, prex, which is the fraction of observations per update

that will be used for re-exploring already known nodes.

The main flow is as follows:

1. Create the list to store nodes in descending degree order, the queue of

nodes that are next to be explored and the map that stores neighbour

lists of explored nodes to avoid having to use observations each time.

2. Each timestep, check how long it has been since the last supply and update

the number of observations with the new supply if necessary (remember

that this removes the old, unused observations).

3. Check how long it has been since the last full update and if this is fupd
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perform a full update with oupd observations (or all observations remaining

in the supply if this is less).

4. If a full update is not performed but a node chosen as one of the n locations

has been removed then perform a node removal update as dictated by

updStyle.

5. After any update, remove the observations used from the remaining ob-

servations and resort the known nodes in descending order of degree to

get the new top n locations. If there are not enough nodes known, which

is most likely to occur due to no observations being available and nodes

being removed from the graph, then supplement the list up to n locations

with random nodes from the graph. The degree of these nodes remains

unknown and they will be replaced any time the list updates. This is an

undesirable situation, will negatively impact performance and should be

avoided at all costs.

The node removal update strategy dictates which of 3 different approaches,

each taking into consideration different aspects of the concerns raised in Sec-

tion 4.5.2, should be used. These are detailed below.

None DynaPO will not perform any additional exploration upon node re-

moval, instead simply removing the node from the list and shifting up

those behind it. This approach is the most conservative with observations

and relies on the full updates dictated by osup and fsup to find new nodes

and update the node list. This may mean that its information is outdated

but it should also avoid using all the observations and being forced to rely

on random placement.

Partial This approach will perform an update with fewer observations than

would be expected in a full update. Rather than specify ahead of time how

many observations should be used, DynaPO will scale the number based

on how long ago the last update was performed and the size and frequency
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of the full updates of the system. Each timestep since the last update will

accrue oupd/fupd observations. This approach should avoid the situation

where multiple updates are performed in close temporal proximity to one

another and observations are thus wasted in re-exploring recently updated

nodes and exploring new nodes when the knowledge is fairly up-to-date.

It should also avoid all observations being used up due to frequent node

removal and DynaPO then having to rely on random placement.

Full In this approach a full update is performed using the normal number of

observations, oupd. However, similar to the Partial update approach, Dy-

naPO attempts to reduce the likelihood of wasted or redundant updates

due to close temporal proximity. It does this by refusing to perform an-

other full update if we are within fupd/2 timesteps of the last one. After

fupd/2 timesteps it will only perform the full update with probability di-

rectly proportional to where the current timestep places between fupd/2

timesteps since the last update and fupd timesteps since the last update.

That is, it approaches probability 1 as we get closer and closer to when

the full update would be performed regardless. This introduces an intel-

ligent and dynamic aspect to when DynaPO performs full updates but

also helps to minimise the risk of performing too many updates due to

node removal.

The update functionality of DynaPO is shown in Algorithm 4 and shares

many similarities with PO-Place. When exploring new nodes it builds a grow-

ing fringe of nodes to explore and attempts to explore along the gradient of

higher degree nodes similar to other approaches such as [Brautbar & Kearns,

2010; Chen et al., 2009]. However the primary difference is that of node re-

exploration which is necessitated due to the changing nature of dynamic net-

works. As nodes leave and rejoin, the degrees of already explored nodes are likely

to change. In the approach of PO-Place these nodes are already marked as

explored and so would not be considered again. Indeed, allowing them to be
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fully explored again would potentially lead to an infinite loop of only looking at

the same few nodes. Instead we assign a proportion of the observations given to

the update, prex, for the purpose of re-exploring known nodes. As discussed in

Section 4.5.2 simply selecting nodes at random to re-explore would be wasteful

as many nodes are unlikely to become highly influential locations. Instead we

wish to focus on those nodes that we think are highly influential (in case they

have become not so) and those we think might become highly influential (in case

they have). To this end, DynaPO re-explores nodes in descending order of their

last known degree. This allows for both desirable aspects to be achieved and,

as only the nodes themselves are being re-explored and not their neighbours, a

small number of re-exploration observations can traverse a large number of the

high degree known nodes.

DynaPO Performance Evaluation

Having described the functionality and design of DynaPO we now seek to

investigate its efficacy at finding high degree locations. Examining which type

of node removal update style has the greatest effect and how the combinations

of oupd and fupd affect the performance will allow us to focus on these when

using DynaPO for convention emergence.

To facilitate this study we focus on examining the performance of DynaPO

in the González model [González et al., 2006a]. Due to DynaPO’s similarity

to PO-Place and the Ichinose model’s similarity to scale-free topologies we

look to investigate the performance of DynaPO on the more complex González

model and then transfer this knowledge to Ichinose for convention emergence.

We use the settings most used in the González model work in Chapter 3 and

described in Section 2.6: an arena size of 42, v0 = v̄ = 0.3, TTLmax = 500,

particle radius of 0.1 and a simulation rate of 100. We produce graphs of 1000

vertices and, as before, our González model automatically adjusts this up in

order to have a largest WCC in the underlying graph that is approximately

1000 vertices. The graph has a burn-in of 1000 timesteps.
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To evaluate the performance we use 4 different settings looking to investigate

each of the different settings and their effect on DynaPO. Unless stated other-

wise all 4 have fupd = 200, fsup = 1000 and osup = 1000. All have prex = 0.33:

None oupd = 200, updStyle = “None′′ - allows us to study the conservative

approach, evenly spaced updates between supplies and no additional ob-

servations used between updates.

Partial oupd = 100, updStyle = “Partial′′ - examines the effect of allowing

partial updates. Early simulations showed that higher oupd resulted in

the observations of osup being used up too quickly. As we are concerned

with the actual performance of partial updates we set it lower.

Full, Small oupd = 20, fupd = 20, updStyle = “Full′′ - small and consistent

full updates with little space between them for additional full updates to

use all the observations. This approach is in many ways similar to partial

updates and will be compared to it.

Full, Large oupd = 200, updStyle = “Full′′ - standard setup, fewer big up-

dates which will allow lots of full updates in between if necessary. Seeing

the effect this has is the primary purpose of this setting.

For each setting we request n = 10 locations and run each 30 times, com-

bining the results. deg-sum and 1-Hop data was collected for both degree and

DynaPO placement for every timestep from 1 to 2000. For better baseline

purposes, degree placement was run alongside DynaPO simultaneously on the

same graph so that they could be directly compared. Due to the constantly

changing nature of the topologies, DBase as a metric is not as useful and is not

monitored.

The results of this evaluation are shown in Figure 4.16 as a series of vi-

olin plots [Hintze & Nelson, 1998], one for each setting. Violin plots are an

extended form of box plot which contain the same information (values of the

median/mean, quartiles and overall range) but additionally combine it with a
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Figure 4.16: Violin Plots of Pdeg-sum ratios for DynaPO in González networks

kernel density estimate which highlights the distribution of the dataset. The

Pdeg-sum scores for every timestep in each run is combined to give a large-scale

overview of the performance and typical ranges that each approach scored in

Figure 4.16a.

As can be seen, the means for each setting are approximately the same at

just under 0.8. It is thus standard deviations and the shape of the violin plots

that indicate the differences in the performance of the settings. Full, Large

is by far the worst performing setting despite having the highest maximum

Pdeg-sum scores of the group. This setting’s worst performances look to occur

not infrequently given the shape of the kernel density plot and are substantially

worse than any other setting. This was expected as the full update style and high

value of oupd mean that the algorithm is likely to use all its observations fairly

quickly and then have to rely on random placement which will perform very

poorly in comparison. Full, Small, performs much better with a narrow range

of values and most of them clustered around the mean. Using the constant,

small, iterative approach looks to be beneficial, not detrimental and this is

supported further by the performance of Partial being comparable to Full, Small.

Both have quite pronounced clustering around their means indicating that they
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Figure 4.17: Pdeg-sum ratios over time for DynaPO in González networks show-
ing updates and node removals

reliably have Pdeg-sum scored of around 0.8. None has a similar range to Partial

and Full, Small but less clustering. Instead it is more spread out to the upper and

lower ends of its effective range, indicating less reliability but better performance

at certain points.

Figure 4.16b shows the same plots but this time limiting Pdeg-sum scores to

only those in the first 200 timesteps. This allows us to see the performance

of DynaPO at the early stages of the simulation where influencing convention

emergence is important. Whilst most of the settings performances are broadly

comparable, Full, Large performs substantially better when viewed over this pe-

riod. This is likely due to it frequently updating its data which allows reliable

location selection but causes the issues shown in Figure 4.16a once the observa-

tions have been used up because of this. Similar behaviours and relationships

are seen for P|1-Hop|.

Given this disparity with performance at the beginning of the simulation

and over the whole simulation, Figure 4.17 shows the performance of DynaPO

in typical runs for both Full and Partial update methods. As can be seen,

the peaks for Full are much higher than for Partial and the full update lines

indicate how frequently they occur in this update methodology. However in the

time span just before the new supply arrives, the performance of Full update
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drops precipitously as all observations have been used. Whether this early

performance boost is important in convention emergence will be examined in

the next section. Figures 4.17a and 4.17b both also highlight the importance

of ensuring that node removal updates do not use too many observations by

showing the frequency with which they occur.

Convention Emergence using DynaPO

Having established that the performance of DynaPO can reach good levels of

approximation for pure degree placement we now look to use this for placing

IAs and encouraging convention emergence.

To evaluate DynaPO in this domain we use the González settings from the

previous section and additionally utilise Ichinose dynamic networks [Ichinose

et al., 2013] with m0 = 4, m = 3 to test whether the good performance in the

González model is also applicable to the different dynamic nature of Ichinose

graphs.

The experimental setup for the convention emergence runs in dynamic topolo-

gies is the same as that in the real-world and synthetic topologies explored

earlier: the 10-action coordination game with pexplore = 0.25 and agents us-

ing Q-Learning. 100 runs were performed for each of the values of n for each

placement setting and the proportion of these results that emerge the desired

convention is calculated. As a baseline we also include degree placement which

is updated in a static manner (see Section 3.5).

Establishing what proportion of the graph is being observed is much harder

than in the static topologies. Simply comparing the number of observations pro-

vided to the algorithm is problematic as this is reliant on the length of the simu-

lation. Instead we must find a relative measure, one that can expressed as a per

X timesteps value. One approach is to consider the maximum possible number of

observations that DynaPO could be allowed to make use of. This would be the

use case where the algorithm was observing every node, every timestep. Given

the approximate size of the dynamic graphs that are being examined this would
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mean that, for every 1000 timesteps, the maximum number of possible observa-

tions would be 1000 timesteps× 1000 vertices = 1000000 possible observations.

As the settings we are using only supply DynaPO with 1000 observations per

1000 timesteps this would mean that DynaPO is only observing 0.1% of the

network.

However, this analysis is very liberal in its assertion of equivalent observa-

tions as the degree placement metric is not “updating” in nature (as examined

in Chapter 3) and so is not observing every node every timestep. A fairer mea-

sure would be to compare the number of “observations” that the degree metric

uses to the number of observations that DynaPO uses. In the Static approach

we are discussing, degree only updates when a node it has selected is removed.

This means that the number of node removals that should be counted as trig-

gering an update is dependent on n. Whilst having a dependency like this is not

desirable, due to not being invariant across runs, it provides the best measure

for a comparison on how many observations degree placement makes compared

to DynaPO.

To allow comparison we define the degree equivalent observations, odeg, for

a network as:

odeg = (number of node removal events)× |V | (4.5)

As each time a selected node is removed the degree placement metric is re-

calculated across the entire graph, odeg is the equivalent number of observations

that would be needed to enact the same effect. Having calculated the degree

equivalent observation for a given graph and value of n over some arbitrary time

window we can then compare the number of observations that are available to

DynaPO over that same time window and establish what percentage of the

network DynaPO is observing compared to pure degree placement.

Table 4.5 shows the average number of node removal events for the various

dynamic graphs when n = 10. As this is the largest number of IAs used in the
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Ichinose Gonzalez

RP RR TP TR

Average NRE 9.97 10.13 843.23 657.33 96.43
StdDev NRE 2.48 3.29 34.80 41.13 8.88

odeg 9,966.67 10,133.33 843,233.33 657,333.33 96,433.33
DynaPO % obs 10.03 9.87 0.12 0.15 1.04

Table 4.5: Node removal events and degree equivalent observations for dynamic
topologies when n = 10.
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Figure 4.18: Convention Emergence using DynaPO in the González Model

convention emergence runs this represents the worst-case scenario in terms of

observation percentage as the number of node removal events will be highest

as there are more nodes whose removal would trigger such an event. The num-

ber of node removal events over 1000 timesteps was monitored for 30 runs in

graphs of |V | = 1000 and the resulting average is shown in the table. We can

then calculate odeg and hence, the equivalent percentage of the network that

DynaPO observes. The low number of node removal events in Ichinose-RP

and Ichinose-RR topologies results in the observation percentage being an order

of magnitude larger for these topologies but still no higher than approximately

10%.

With a way to quantify the percentage of the network being observed we now

turn to the results of the convention emergence. Figure 4.18 shows the effective-

ness of DynaPO in encouraging convention emergence in González networks.
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The different types of DynaPO being used are similar to those explored in

Section 4.5.3 but with a few additional entries. (None, 1000, 100000) represents

a bulk supply as discussed earlier in this chapter; a single supply and immedi-

ate utilisation of available observations with no others appearing later. In this

scenario the algorithm uses all the observations at once which is equivalent to

PO-Place with basic settings being used at the beginning of the simulation

and then not updated at all. (None, 1000, 1000) is a similar approach, using

all observations at the beginning of the supply and then not updating until the

next supply. This is included to see if there are differences in efficacy between

it and (None, 1000, 100000). It appears however that finding the perfect pure

degree placement at the beginning is sufficient to counteract the lack of later

supplies.

All the settings chosen have the same number of observations per 1000

timesteps, 1000, and hence represent the same observation percentage, approx-

imately 1%. How they use those observations in that time frame is the variable

to monitor.

All settings exhibit close approximations of the pure degree placement de-

spite only observing a small fraction of the temporal network. Indeed all of

them bar one have average proportion performance, compared to the value of

degree at the same n, of higher than 90%. The only one that performs worse

and is statistically significantly worse (95% CI one-tailed z-test) than degree at

a majority of values of n is (Full, 20, 20). This is likely due to the low amounts

of observations available to it at the important early stages of convention emer-

gence.

The same settings and their effectiveness in the various Ichinose networks

is presented in Figure 4.19. Similar levels of effectiveness are found in these

topologies as well with (Full, 20, 20) again being the only setting of DynaPO

that is significantly worse than the pure degree placement. With the targeted

node removal nature of Ichinose-TP and Ichinose-TR [Ichinose et al., 2013] the

risk of DynaPO being unable to accommodate with the rapidly changing set of
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(a) Ichinose-RP
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(b) Ichinose-RR

0 2 4 6 8 10
Number of FS Agents, n

0.0

0.2

0.4

0.6

0.8

1.0

E
m

er
ge

n
ce

P
ro

p
or

ti
on

Degree

(full, 20, 20)

(full, 200, 200)

(none, 200, 200)

(none, 1000, 1000)

(none, 1000, 100000)

(partial, 200, 200)

(c) Ichinose-TP
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Figure 4.19: Convention Emergence using DynaPO in the Ichinose Models

high degree nodes was higher than in the other dynamic topologies. However,

it is able to easily keep pace with the pure degree placements whilst observing

less than 0.15% of the number of nodes that the pure degree placement strategy

must do.

We have now evaluated the performance of the potential variants of Dy-

naPO whilst purely concerned with their performance in finding locations as

well as when using DynaPO to encourage convention emergence. We have

shown that, with a very small percentage of the observations that fully-observable

degree placement requires, DynaPO exhibits the same level of performance.

This is the case for both González and Ichinose dynamic topologies and indi-

cates that DynaPO should be generally applicable for encouraging convention

emergence in partially observable dynamic networks.
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4.6 Late Interventions with Limited Observa-

tions

We have shown that it is possible to effect convention emergence under the con-

straint of partial observability in both static and dynamic networks. We have

introduced two algorithms, PO-Place and DynaPO, which are able to encour-

age convention emergence to a desired action choice to similar levels as using

placement by degree whilst observing much smaller fractions of the networks to

do so.

In this and the following section we now investigate the performance of these

two algorithms in causing destabilisation of existing conventions as we did in

Chapter 3. Being able to efficiently replace established conventions with a dif-

ferent one of the designer’s choice whilst only having to have limited knowledge

of the network allows external actors to make use of these results. The work

in Chapter 3 required and assumed full network knowledge and hence is more

applicable to those who already have high levels of access to the system.

We begin by using the settings that performed well in Section 4.4.1 to elicit

destabilisation of conventions in the real-world networks. Given the positive

effect of increasing the number of starting locations, s, in the Enron and Twitter

networks we again use both s = 1 and s = 9 at various levels of observation to

establish whether this continues to have a positive effect on the performance of

PO-Place.

As discussed before, the real-world networks are resilient to conventions

emerging compared to synthetic networks of similar size and density. They

require both larger numbers of IAs and longer periods of time to effect the same

level of convention emergence. Due to this, and our desire to simply establish

the difference in performance between the different settings of PO-Place and

degree placement, we again utilise the 80% Kittock Criterion, K80%, as the

threshold at which we consider a convention to have emerged. In this instance

we consider the dominant strategy to have been destabilised and replaced when
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another strategy achieves this level of choice amongst the population of agents.

Conventions infrequently emerge unaided within these networks, even at the

K80% level (see the proportion emerging with n = 0 in Figure 4.6). When they

do so, this also takes substantial time. Given this, and as we wish to focus

on destabilisation, we force a convention to rapidly emerge by saturating the

networks with initial IAs in the same way as occurs in initial intervention. In

each network we place 500 IAs at timestep 0 and leave them in the network long

enough to be assured that a convention has emerged to the K80% level. Initial

simulations find that this occurs by timestep 500 for the CondMat network and

timestep 1500 for the Enron and Twitter networks with probability 1 (based on

100 runs). Whilst this artificial saturation differs from our approaches in other

network types (where we let the network emerge the initial convention unaided)

it allows rapid and robust creation of the convention to be destabilised and

differs in no noticeable way from the naturally emerged conventions.

We evaluate the performance of PO-Place in late interventions using the

same agent simulation as used in all previous sections of this chapter. In each

simulation we select the 500 highest degree nodes at timestep 0 and use them

for the saturation IAs discussed above. The simulation is run for the length

discussed previously to allow the convention to emerge to the desired level. The

saturation IAs are then removed and a new intervention of the desired type,

degree or PO-Place, is used to select the IAs for destabilisation. These new IAs

are then assigned a strategy, chosen uniformly at random, from those strategies

that are not the current dominant strategy. The simulation then continues

until timestep 15000 with the levels of adherence to each strategy monitored. If

destabilisation is likely to occur it predominantly does so within this window.

For those simulations where destabilisation would have occurred given a longer

time frame, they will be marked as failures due to this cut-off. However, as

this cut-off is applied equally to all runs within a given graph, and as we are

primarily concerned with the relative performance of different approaches this

does not affect the conclusions drawn regarding algorithm performance within
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Figure 4.20: The proportion of runs switching away from the established con-
vention during late intervention in the real-world networks.

the range of values chosen and within this stated time frame. For each set of

parameters, the simulation was performed 100 times and the proportion of runs

that successfully caused the dominant strategy to be replaced by the selected

one to the K80% level was recorded. Figure 4.20 shows select performances of

PO-Place compared to pure degree placement in this regard.

As found in Chapter 3, unlike in initial intervention the real-world networks

need varying and distinct numbers of IAs to guarantee destabilisation even

when using degree placement: CondMat destabilises with ∼2.81% IAs, Enron

with ∼0.59% and Twitter with ∼3.94%.

The number of observations PO-Place requires to enact consistent desta-

bilisation is substantially higher than those required to have close to baseline

performance during initial intervention. This is primarily due to the large num-
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Graph n or o and equivalent percentage

CondMat
600 800 1000 1600 3000 5000

2.81% 3.74% 4.68% 7.49% 14.04% 23.4%

Enron
200 400 600 800 8000

0.59% 1.19% 1.78% 2.37% 23.74%

Twitter
3200 5800 9000 9200 25000 30000

3.94% 7.13% 11.07% 11.32% 30.75% 36.9%

Table 4.6: Differing numbers of nodes or observations and their percentage
equivalent for the real-world networks

bers of high-degree nodes required. Not only must PO-Place find a significant

number of nodes with limited observations in order to reach comparable perfor-

mance to its use in initial intervention, it must find a much larger number of

high degree nodes within these found nodes. For instance, with o = 5000 in the

CondMat network PO-Place requires 12% of its observations just to add the

600 highest-degree nodes required to its knowledge base, let alone actually find

them. In contrast, in initial intervention, even at o = 500 only 2% of its observa-

tions were required to actively add the highest-degree nodes if it located them.

As even pure degree placement requires high numbers of IAs in all 3 networks,

similar patterns of much larger proportions of the available observations being

needed just to be able to select these nodes, even after finding them, persist.

This contributes to the difference in performance exhibited.

However, even with this limitation, PO-Place performs well in all 3 net-

works. Whilst requiring more IAs to cause the same level of destabilisation

it does so whilst requiring observation of only a fraction of the network. The

percentages of the network that the various numbers of nodes (or observations)

are equivalent to is shown in Table 4.6 for easier parsing.

For instance, in the CondMat network, when observing 14.04% of the net-

work PO-Place requires 1600 IAs compared to degree placement’s 600 to ef-

fectively guarantee destabilisation and replacement of the dominant convention.

This represents an additional 4.68% of the CondMat network, a small percentage
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increase given the fraction of the network that has to be observed. Increasing the

percentage observed to 23.4% substantially decreases this difference, with PO-

Place requiring 1000 IAs to perform as degree placement does – an increase of

only 1.87%, a relative drop of 60%, an absolute one of 2.81%.

This trade-off, increasing the percentage of the network observed to reduce

the increase in number of IAs required, varies in effectiveness between each of

the networks. For instance, in the Twitter network an increase in observations

from 25000 to 30000 (an increase of 6.15% of the network size) allows a reduction

in number of IAs from ∼9200 to ∼5800 for the same level of performance – an

absolute reduction of 4.19%, 37% relative. This contrasts with CondMat where

the number of observations had to increase by 9.36% of network size to cause

an absolute reduction of only 2.81%. We can thus see that underlying features

of networks heavily influence the amount gained when increasing the number of

observations available. Analytically understanding this is beyond the scope of

this thesis but it is sufficient to say that this is a factor that must be considered

and expected when deciding what number of observations to supply PO-Place

for destabilisation.

In each of the topologies however, increasing the value of s has a marked

and highly beneficial effect. With s = 9 we see increases in the effectiveness

of PO-Place throughout. In particular, increased s dramatically increases the

performance of PO-Place at mid-levels of destabilisation. For instance, in

the CondMat network with o = 3000 increasing s can reduce the number of

IAs needed by up to 600 to elicit the same level of performance, 2.81% of the

network size. Similarly, in the Enron network, reductions of almost 500 IAs is

shown, 1.48% of the network size. Indeed, for Enron, this makes a substantial

difference in performance with o = 8000, s = 9 performing as well as pure degree

placement for much of the destabilisation proportions compared to a markedly

worse performance for o = 8000, s = 1. Whilst the relative differences it causes

in the Twitter network are less marked, it still exhibits improved performance

with the higher number of concurrent searches. Overall this indicates that this
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Figure 4.21: Statistically significant Pdeg-sum differences between s = 1 and
s = 9 for late intervention placement in the CondMat network.

disjoint search is beneficial for causing destabilisation in the real-world networks.

This is likely caused by two factors: (1) splitting the observations increases the

likelihood of finding high-degree nodes, or (2) splitting the areas where the nodes

are selected from into distinct sections of the graph increases the effectiveness

of the IAs in causing destabilisation.

To test both of these hypotheses we explore the pure placement perfor-

mance of PO-Place at the ranges of n and o that are causing destabilisation.

Figure 4.21 shows this for the CondMat network for values of n where the great-

est difference in performance is exhibited in Figure 4.20a and for a wider range

of o. Each square is coloured based on the difference in Pdeg-sum when s = 1 and

s = 9 for the given n and o, with white meaning that there was no statistically

significant difference (95% Mann Whitney U significance test based off of the

average Pdeg-sum of 30 runs at each point). As can be seen, for most values of

o there is little if any difference in performance. For the values of o that are

represented in Figure 4.20a however, the Pdeg-sum performance is consistently

worse with increased s. This means that option (1) from above is thus very

unlikely and instead means that the disparate nature of the nodes selected by

PO-Place is most likely the largest contributing factor.

Considering the best performing options presented in Figure 4.20 gives us

the following levels of performance for each network. In CondMat, by observing

23.4% of the network PO-Place can achieve destabilisation whilst requiring
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Figure 4.22: The proportion of runs switching away from the established conven-
tion during late intervention in scale-free networks of 20000 nodes. (a) focuses
on the area where degree placement exhibits its change whilst (b) does the same
for PO-Place.

only 0.93% more of the network as IAs than degree placement does. In Enron,

for a destabilisation probability of 95%, PO-Place requires an additional 0.6%

of the network as IAs when observing 23.74% of it. In Twitter, for a destabili-

sation probability of 95%, if able to observe 36.9% of the network, PO-Place

can elicit this probability whilst requiring an additional 3.19% of the network

as IAs.

Overall, we can state that PO-Place performs well when used to find nodes

for destabilisation in real-world topologies. Whilst these parameters are likely

not optimal, nor necessarily the best trade-offs available, we have shown that

PO-Place can provide the same level of performance as pure degree placement

by using less than 1-5% more of the network as IAs and whilst only observing

25-35% of said network.

4.6.1 Synthetic Networks

Having explored the effectiveness of PO-Place for late destabilisation in the

real-world topologies we now, as before, similarly explore the performance in

synthetic networks. We focus on generated scale-free and small-world topologies

as before and both of these are generated with |V | = 20000 and |E|/|V | = 9.
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The settings used to generate these topologies are otherwise identical to those

used in Section 4.4.2.

Unlike in real-world topologies, conventions emerge unaided with ease in the

synthetic networks and consistently reach the 90% Kittock Criterion of a con-

vention, K90%. We thus, instead of artificially saturating the network as before,

allow the conventions to emerge naturally and use this higher Kittock threshold

when establishing that conventions have emerged and when they have been re-

placed. The simulation setup is otherwise identical to that of previous sections.

We find that initial conventions have become established in the network with

near certainty by timestep 1000 and so we introduce our IAs into the system

at this point with the strategy chosen uniformly at random from those that are

not the current established convention. When monitoring the destabilisation

and replacement of these conventions we find that this happens, if it is likely

to happen at all, by timestep 10000. As with the real-world simulations, any

destabilisation that would occur after this time is marked as a failure but as we

are concerned with the relative performance of our approaches, this does not

affect the conclusions drawn in a substantive manner. All parameter settings

were run for 100 simulations and the proportion causing destabilisation and

replacement to the desired convention is noted.

We display the results of this process for scale-free networks in Figure 4.22.

The first thing to note is the high percentage of nodes required to cause desta-

bilisation even when placing by degree. As in the real-world networks, where

destabilisation occurred with at most 4% of the network as IAs, scale-free net-

works require around 6% of the network to be IAs to facilitate destabilisation,

despite being closest in size to the CondMat network which only required 2.81%.

The range over which this change occurs, from destabilisation occurring with

probability 0 to occurring with probability 1, is only 50 nodes which is 0.25%

of the network size. This narrow range during which the transition occurs indi-

cates that there is a critical “tipping point”, more noticeable here than in many

of the real-world networks.
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Figure 4.22a focuses on the range of IAs during which degree placement

undergoes this transition. In particular, and different from many of the real-

world networks particularly Enron, this figure shows that even relatively high

numbers of observations (in this case o = 10000, 50% of the network) do not

allow PO-Place to closely approximate degree placement. Whilst we start to

see change with this number of observations it is still only minor and indicates

that the scale-free network requires much larger proportions of the network to

be observed compared to the real-world networks, even those of comparable size.

This highlights the underlying differences between real and synthetic networks

as described by Franks et al. [2013].

Figure 4.22b looks at a wider range of n and shows the performance of

PO-Place using observation proportions closer to those needed in the real-

world networks. For o = 3000, representing observing 15% of the network,

destabilisation is guaranteed at approximately n = 2000, 800 more than pure

degree placement which represents 4% of the network size. o = 4000 (20%

of the network) causes destabilisation with n = 1600, an increase of 2% of

the network size compared to degree placement. This is comparable to the

performance differences exhibited in the real-world networks but the effect of

increasing observations is better than the increases seen in many of the real-

world networks. Given the performance of o = 10000, these increases are likely

ones of diminishing returns but the improvement from such a small increase

in observation percentage, whilst still being a small percentage of the network

observed overall, shows the effectiveness of PO-Place.

The major difference between the performance of PO-Place in real-world

and scale-free networks is the effect of increasing s. Whereas in the real-world

topologies increasing s from 1 to 9 always produced improvement, with the

change in both CondMat and Enron being substantial, in the scale-free network

it always causes a, however minor, decrease in performance. This occurs at all

levels of observations shown in Figure 4.22 and so is a wide-ranging effect of

PO-Place in this network.
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Figure 4.23: The statistically significant differences in Pdeg-sum performances
for the scale-free networks at scales appropriate for late intervention.

Given the notable increases that s caused in Figure 4.12 this result is counter-

intuitive. To establish how PO-Place is performing, independently of the con-

vention emergence, we evaluate the statistical differences between its Pdeg-sum

performance when s = 1 and s = 9. Figure 4.23 shows these differences and

represents the same approach as Figure 4.12 with the average of 30 runs rep-

resenting each point. Figure 4.23a shows the Pdeg-sum performance changes at

values of n and o where PO-Place exhibits change in Figure 4.22. As can

be seen, the increase in s causes worse Pdeg-sum performance nearly universally,

more so than for CondMat as seen in Figure 4.21. Unlike in CondMat and the

other real-world networks this performance deficit is not accompanied by a bet-

ter performance in destabilisation and this indicates that in scale-free networks
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having disjoint searches is less important than finding the higher degree nodes.

This is likely due to the very nature of scale-free networks with their emphasis

on preferential attachment and the power-law distribution which creates the

“hub” like structure [Barabási & Albert, 1999].

Given the positive increases found in Figure 4.12, we seek to establish at

what values of n and o this effect diminishes. Given that Figure 4.12 is the per-

formance difference in scale-free networks with 50000 nodes we wish to check

whether the equivalent area in the parameter space of that size of network

exhibits better performance. This is shown in Figure 4.23b which is the propor-

tionate area of the 50k scale-free network parameter space. That is, the ranges

of n and o used here are the same percentage of the network size as those in

Figure 4.23a. The Pdeg-sum performance difference here is very similar however,

with nearly universal detriment from increasing s, indicating that this is not a

facet of simply the size of the network but rather the scales of n and o that are

being used at this point.

However, knowing that there is a point in both 20000 and 50000 node scale-

free networks where increasing s has a substantial and significant benefit, we

seek to find where such a benefit still exists. This is shown in Figure 4.23c

which represents an area of the 50000 node scale-free network’s parameter space

closer to that shown in Figure 4.12. As can be seen, at this range of n and o

there are substantial benefits to increasing s from 1 to 9 with almost universal

improvement in the Pdeg-sum scores achieved by PO-Place. Translating this

proportionately to the 20000 node scale-free topology is shown in Figure 4.23d.

In this figure the performance is in direct contrast, with the Pdeg-sum consistently

affected negatively by the increase in s. Indeed, the level of the negative effect

is far more than in Figures 4.23a and 4.23b. This indicates that graph size is

indeed a partial factor for what ranges of n and o increasing s is beneficial but

Figures 4.23a and 4.23b show that the scales needed to cause destabilisation

are beyond where this transition takes place for both sizes of scale-free network.

Figure 4.23d further supports this theory with the values of n and o being far

215



4. Interventions Under Partial Observability

2550 2600 2650 2700 2750 2800 2850 2900
Number of FS Agents, n

0.0

0.2

0.4

0.6

0.8

1.0

E
m

er
ge

n
ce

P
ro

p
or

ti
on

Degree

o = 3000, s = 1

o = 3000, s = 9

o = 4000, s = 1

o = 4000, s = 9

Figure 4.24: The proportion of runs switching away from the established con-
vention during late intervention in small-world networks of 20000 nodes.

below those that are shown to effect destabilisation in the 20000 node scale-free

network. Overall, these findings suggest that increases to s are not a panacea

that can be applied universally to all types of network, although the detriment

of doing so is only small in Figure 4.22. It hints that there are underlying facets

of the topologies which make the application of multiple concurrent starting

locations a boon or not. Finding these features is an area that future work

should address to allow determination of how to best apply PO-Place but is

beyond the scope of this thesis.

We also utilise PO-Place for late intervention in the 20000 node small-

world network, the results of which are shown in Figure 4.24. The behaviour

here is substantially different from all other types of topology investigated in

this chapter and suggests even further benefits that might be gleaned from PO-

Place when applying it to convention emergence and destabilisation. As can

be seen, small-world networks require a much larger percentage of the graph to

be IAs in order for destabilisation to occur (only being guaranteed at n = 2900

which is 14.5% of the network) and the change occurs over a much larger range

of values than the sharp transitions of the real-world and scale-free topologies.

The most striking feature however is that PO-Place does not just match the

performance of degree placement, it substantially outperforms it over this range
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of n. As degree is well-understood to be a good measure of influence and as

this effect is not present in initial intervention or in destabilisation in other

topologies it is unlikely that PO-Place has found objectively “better” locations

in this sense. Instead, we hypothesise that the localised nature of the choices

available to PO-Place act beneficially within small-world topologies. Rather

than placing the IAs at high degree locations that are spread out and distant

from one another, the growing fringe approach of PO-Place here means that

the locations will necessarily be closer to one another, forming a localised cluster

of agents of which a high proportion have been selected. The fact that n is very

close to o further necessitates that this is the case and indicates that nearly all

agents in this cluster will be IAs. This localised cluster of agents are all forced

into the same strategy because of this and hence form a self-reinforcing region

as discussed by [Villatoro et al., 2011a]: an artificial meta-stable subconvention.

This region is able to spread its influence without risk of becoming converted

itself and hence is better at causing destabilisation than the isolated regions of

IAs created in degree placement. If this were true we would expect increasing s

to have a negative effect due to splitting this self-reinforcing region and this is

what we see for both values of o in Figure 4.24, lending further support to this

theory. Overall however, whatever the underlying reason, it is the case that,

for small-world topologies, PO-Place performs markedly better than degree

placement when attempting to destabilise established conventions.

We have now shown that PO-Place continues to be effective at facilitating

destabilisation in both types synthetic networks. In scale-free networks, when

s = 1 PO-Place performance is comparable in its achievements to its use

in real-world topologies. It is able to, with around 20% network observation,

consistently cause destabilisation of established conventions with only 2% more

of the network as IAs. However increases in s are detrimental to the performance

of PO-Place in scale-free topologies, in contrast to its effect in the real-world

networks. In small-world topologies, PO-Place is able to outperform degree

placement for the purposes of destabilisation. The underlying mechanism is
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unknown but is likely due to the features of small-world topologies, the larger

number of IAs needed to elicit destabilisation and the nature of PO-Place.

4.7 Late Interventions in Partially Observable

in Dynamic Networks

Finally, we turn our attention to destabilisation in dynamic networks under the

constraint of partial observability. Having shown that PO-Place is able to

perform well in this domain, we now seek to do the same for DynaPO.

We use the same general simulation settings as all other sections: the 10-

action coordination game, with Q-Learning. All settings are as before. As with

the synthetic networks, conventions are able to emerge without encouragement

within the dynamic networks rapidly and robustly, reaching the 90% Kittock

Criterion unaided. The time required for this to occur in the dynamic net-

works examined was found to be within 1000 timesteps consistently and so this

timestep is used for the start of the late intervention. Similarly, the length

required for destabilisation to occur was found to fall consistently within 5000

timesteps for both González and all Ichinose models and so this cut-off is used

as the threshold of time for destabilisation. The topology models used are the

same as in Section 4.5.3 to allow direct comparison and as an established set of

networks which are known to facilitate convention emergence. Each simulation

was run 100 times and the proportion which cause the desired destabilisation

and replacement calculated. Static Degree is also included and is used as a

baseline to compare against.

The results for the González runs are shown in Figure 4.25. As with the

majority of other networks, this requires ∼5% of the network to be IAs in or-

der to consistently cause destabilisation. The DynaPO runs with the same

settings as used previously are shown as well. Overall, the exhibit similar per-

formance to one another with destabilisation guaranteed between 72 and 80 IAs

regardless of settings. However, there is a clear ranking between them with
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Figure 4.25: Late intervention and destabilisation in González networks.

(Full, 20, 20), (None, 200, 200) and (None, 1000, 100000) all performing worse

than the others. This is to be expected, as we have previously shown that

having up-to-date information is important for destabilisation in dynamic net-

works and these settings lack this criteria due to either not updating enough

at a time [(Full, 20, 20)], not having up-to-date information as node removals

occur [(None, 200, 200)] or not having up-to-date information beyond the initial

search [(None, 1000, 100000)]. Each of these represent the extremes of these po-

sitions but it is interesting to note (None, 1000, 1000), which could be expected

to suffer from similar problems, outperforms the other 3 settings. A balance

between finding very good locations at the beginning of the intervention (due to

being able to effectively view the entire network at that timestep) and ensuring

that information is up-to-date seems to be reached in this setting. The settings

which encourage up-to-date information in one of two ways, (Full, 200, 200) and

(Partial, 200, 200) both outperform all of these with (Partial, 200, 200) doing

best overall likely due to the consistent need for accurate information failing in

(Full, 200, 200) towards the end of each supply due to lack of observations as

detailed in Section 4.5.3.

Overall there is little difference in the performance levels of these approaches

which is likely a factor of graph scale. However, the clear and consistent ranking

between them highlights that the approaches which optimise for continuous
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(b) Ichinose-RR
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(c) Ichinose-TP

84 87 90 93 96 99 102 105 108 111
Number of FS Agents, n

0.0

0.2

0.4

0.6

0.8

1.0

E
m

er
ge

n
ce

P
ro

p
or

ti
on

(d) Ichinose-TR
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Figure 4.26: Late intervention and destabilisation in the Ichinose models.

and intelligent information gathering are the most beneficial. Each of these

approaches still only observes a tiny fraction of the González graph compared

to what Static Degree placement must do as shown in Table 4.7. With this

in mind, DynaPO performs exceptionally well in this domain with the best

performance, (Partial, 200, 200), only requiring 17 more IAs than the Static

Degree approach or 1.7% of the network. Whilst none currently approach the

pure degree placement performance, this is not the case in either synthetic or

real-world networks either which require much larger percentages of available

observations.

Figure 4.26 shows the performance of DynaPO for late intervention in each
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of the Ichinose model variants. As is to be expected, given the underlying dy-

namic of each of them, the approaches which perform best varies between each

model. In many of the models, many of the variants perform similarly but there

are a few things to highlight. In Figure 4.26a, which represents the Ichinose-

RP model, (Full, 20, 20) performs substantially worse than all other DynaPO

variants. This is likely due to the slow update approach taken by this vari-

ant. In other models this setting benefits from the fact that it is constantly

updating, as high-degree nodes that other variants are reliant on are more likely

to be removed and (Full, 20, 20) is more resilient to this due to having con-

stantly updated information. However in Ichinose-RP this fact cannot be relied

upon as nodes are selected at random for removal, with no priority for higher

degree. We would thus also expect to see a similar effect in Ichinose-RR but

this is likely masked due to the fact that all approaches are hindered by the

lack of preferential attachment and hence degree gradient. By the same fact,

(None, 1000, 1000) does better than the other approaches in this model due to

having a full picture of the network at supply time and the high-degree nodes it

has selected not being explicitly targeted for removal. In the Ichinose-RR model

all variants perform at the same level due to these issues. The lack of a degree

gradient due to no preferential attachment hinders all approaches and although

(None, 1000, 100000) performs slightly worse at higher levels the distinction is

small and explained by the few high-degree nodes it is aware of being removed

and not being able to update.

Ichinose-TP highlights similar shortcomings in both “one-and-done” ap-

proaches: (None, 1000, 1000) and (None, 1000, 100000). Due to the targeted

and consistent removal of high-degree nodes these two approaches will perform

poorly as their information rapidly becomes outdated and they must select what

they consider low-degree nodes as the high-degree ones are removed. The other

approaches have enough up-to-date information, or are able to collect it, that

they are not influenced by these issues. Similar issues arise in Ichinose-TR where

high-degree nodes are once again targeted and removed in order. However, due
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Ichinose Gonzalez

RP RR TP TR

Average NRE 81.93 79.43 1,000.00 1,000.00 652.10
StdDev NRE 7.98 7.05 0.00 0.00 20.39

odeg 81,933.33 79,433.33 1,000,000.00 1,000,000.00 652,100.00
DynaPO % obs 12.21E-03 12.59E-03 1.00E-03 1.00E-03 1.53E-03

Table 4.7: Node removal events and degree equivalent observations for dynamic
topologies when n = 80.

to the lack of preferential attachment the other approaches suffer similarly and

the difference is thus less pronounced.

Each of the Ichinose models requires different numbers of IAs, even from

degree placement, to guarantee destabilisation. This is due to the underlying

aspects of the models and makes comparisons between them difficult. However,

in the model in which degree and DynaPO have the greatest difference in IA

number (Ichinose-TP) this is still only 15 IAs which accounts for 1.5% of the

network size. Given the percentage of observation that DynaPO makes of the

network, this difference and that found when using DynaPO in the González

model are very efficient uses of limited observations.

Overall there is no singular approach that outperforms each of the oth-

ers within the Ichinose models. Each of (Full, 200, 200), (None, 200, 200) and

(Partial, 200, 200) perform similarly to each other in each of the 4 models but

none of them outperform the other two in any model. However, they are consis-

tent with none of them ever performing poorly compared to the others. As such,

and given their performance in the González model as well, these approaches

offer consistent, robust and balanced destabilisation. Given the better perfor-

mance of (Partial, 200, 200) in the González model, this should be considered

the best option to place within an unknown dynamic network.

Thus we have shown that DynaPO can be used to efficiently effect destabil-

isation of existing conventions. Whilst performing less than 0.1% of the number

of observations that degree placement must make, DynaPO is able to achieve
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Result Section

PO-Place, with at most 10% of the network observed, is able to find a set
of high-degree nodes 90+% as well as under full observability. Increasing
the number of concurrent searches increase this effectiveness.

4.3.2

When using PO-Place to place IAs, when observing only 5% of the popu-
lation PO-Place produces convention emergence rates 70-90% as effective
as full observability.

4.4, 4.4.2

When using DynaPO for initial intervention, when only performing at
most 1% of the observations that full observability does, conventions can
be emerged with 90+% effectiveness in all topologies.

4.5

Using PO-Place for destabilisation efforts requires observing only 25-35%
of the underlying topology and recruiting 1-5% more of the network as IAs
in order to guarantee the same level of destabilisation as full observability.
In small-world networks it outperforms full observability degree placement.

4.6

DynaPO can be effectively used for destabilisation in dynamic topologies
requiring observation of only 0.1% of the possible network over time and
1-2% more of the population as IAs than full observability.

4.7

Table 4.8: A summary of the major results and contributions from this chapter.

comparable performance whilst only requiring 1-2% more of the network popu-

lation to be made into IAs. With additional observations it is highly likely that

performance equivalent to degree could be achieved. Overall, using a partial

updating methodology as espoused by DynaPO’s design is the best use of the

limited observations available and consistently performs as well if not better

than other approaches.

4.8 Conclusions

Finding influential positions within a network topology to maximise the ef-

fectiveness of fixed strategy Intervention Agents (IAs) is an ongoing area of

research in convention emergence. The problem has many facets and variations

that make it difficult to find an optimal yet general approach. In many cases,

placing the fixed strategy agents at high degree nodes provides effective conven-

tion emergence with little computational overhead. Finding high-degree nodes

in a network is trivial when the network is fully observable. In many domains,

this may not always be possible. Technical limitations such as memory con-
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straints or incomplete information and usage limitations such as finite API calls

mean that often a network topology may only be partially observable. Finding

effective placement for Intervention Agents with these restrictions adds another

level of complexity.

In this chapter we presented two placement algorithms, PO-Place and

DynaPO, that are designed for use in partially observable static and dynamic

topologies respectively. They use finite observations to find sets of high-degree

nodes and approximate the set of nodes that would be selected given full ob-

servability. Table 4.8 presents a summary of the major results from this chapter

and we examine these in more detail below.

With small proportions of the network being observable, PO-Place can

locate nodes with similar reach and influence as degree placement. We evaluate

the performance in three real-world topologies and show that the addition of

concurrent searches and splitting of observations improves the performance of

the algorithm across all metrics. With 1-10% observation the algorithm is able

to find sets of nodes with >90% of the reach and influence of degree placement.

We similarly applied PO-Place to synthetic scale-free and small-world graphs

evaluating the performance of the algorithm when applied to topologies with

different average degrees and sizes. We showed that PO-Place could achieve

similar levels of performance as in real-world topologies but whilst only ob-

serving 1-2% of synthetic graphs. This level of performance is higher than other

applicable approaches such as that of Brautbar & Kearns [2010] and Borgs et al.

[2012b] who can only offer coarse approximations of the highest degree nodes or

need to examine 14-24% of the network, respectively. The closest performance

comes from Mihara et al. [2015] but PO-Place outperforms their approach by

guaranteeing 90+% performance at similar levels of observation.

We then showed that PO-Place performs comparably to degree placement

when used to facilitate convention emergence using Intervention Agents whilst

only observing 5% of a network topology. We found that the additional as-

pects of PO-Place benefit the placement mechanism and demonstrated that
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convention emergence is easily facilitated in partially observable static networks.

We designed and analysed the dynamic placement algorithm DynaPO,

evaluating its characteristics, resilience and performance. Formulating what

it means for the partial observability problem to exist in dynamic graphs we

showed that the variations of DynaPO could achieve high levels of node selec-

tion with highly limited observations compared to dynamic degree placement.

We then showed that DynaPO could facilitate convention emergence in dy-

namic networks using less than 1% of the observations of degree placement.

Finally we turned our attention to using both algorithms to cause convention

destabilisation; removing an existing convention within a system. We showed

that both algorithms were potent in doing so and by observing between 20-

35% of static networks and 0.1% of dynamic networks were able to achieve

similar levels of performance as placement by degree with less than 5% additional

agents. In particular, performance in small-world and real-world networks was

shown to highly benefit from the approaches taken by PO-Place.

Overall we have shown that it is still possible to direct and encourage con-

vention emergence and destabilisation in a range of partially observable network

types and that our algorithms offer quick and robust methods to do so.
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CHAPTER 5
Temporary and Budgeted Interventions

Throughout this thesis thus far we have shown the effect that a small number of

Intervention Agents (IAs) can have when trying to elicit convention emergence

or destabilisation. In Chapter 3 we showed that the primary drivers for their

effectiveness were (i) the number of IAs and (ii) where they were placed in

the system. In the previous chapter we utilised this knowledge but under the

additional constraint that the network might not be fully visible. In this chapter

we consider an alternative constraint: time. We explore how long IAs must be

located in the system to cause permanent change and explore the notion of the

cost this might incur when trying to destabilise existing conventions. We then

use these findings to consider the placement of IAs in budgeted scenarios.

5.1 Introduction

Coordination is fundamental to multi-agent systems (MAS) and self-organisation

as it increases the efficiency of systems. Coordination is required as incompat-

ible actions cause conflicts or incur costs. However, it is often impossible to

constrain agents beforehand to ensure coordination. This can be due to lacking

knowledge of clashing actions or the inability or unwillingness to dictate be-

haviour. This is of particular importance in systems without centralised control

or where the range of possible actions makes pre-determination infeasible.

Hence, as seen previously, many MAS rely on the emergence of conventions,

in the form of expected behaviour adopted by agents, with minimal prior in-

volvement by system designers. As such, conventions allow coordinated actions

to emerge through self-organisation. In particular, conventions have been shown

to emerge given only agent rationality and the ability to learn from previous
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interactions.

Fixed strategy agents, that always choose the same action regardless of oth-

ers’ choices, have been shown to facilitate rapid convention emergence and to

influence the adopted action. A small number of such agents, placed suitably,

are able to influence a much larger population [Franks et al., 2014; Griffiths &

Anand, 2012; Sen & Airiau, 2007]. However, in realistic domains there is likely

to be a cost associated with inserting a fixed strategy agent, or persuading an

agent to act in a particular way, and it is desirable to minimise this cost.

Given the self-reinforcing nature of conventions [Boyer & Orléan, 1992;

Lewis, 1969], once convention convergence has begun it is likely to continue

unless an outside force acts on it. Given this, the permanent inclusion of fixed

strategy agents, what we call IAs, is unlikely a requirement to guarantee con-

vention emergence or destabilisation as desired. Giving a “nudge” and allowing

the self-reinforcing nature and force of precedence to facilitate the rest of the

change would allow the presence of IAs to be temporary within multi-agent

systems (MAS) whilst still effecting the same level of change. Additionally, in

scenarios where the recruitment of agents as IAs has such an associated cost,

finding the minimum amount of intervention needed will reduce these costs.

This chapter considers what the minimum levels of intervention are to effect

permanent change within a system. We consider the inclusion of IAs in a tem-

porary manner and study the reduction in their efficacy in order to establish the

minimum times that IAs must be present to cause such a change. We show that

in initial interventions a small proportion of IAs placed at targeted locations in

the population for a short length of time can guarantee convention emergence,

showing that the time required can be as small as a couple of hundred timesteps

to be as effective as permanent inclusion. We then consider how when an initial

intervention starts is important and show that very early stages of interactions

are formative, requiring direction early to be effective. When considering using

similarly placed IAs to destabilise an established convention, replacing it with

another of our choosing, we examine how temporary application can be effec-
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tive when left for sufficient finite time and show that there exists an exponential

relationship between the number of IAs and how short this application can be.

We also establish how the cost of these interventions varies inversely with the

number of IAs used and that this effect is replicated across different pricing

mechanisms and all topologies examined. We can then use these findings to

consider the best application of limited budgets in effecting change.

The rest of this chapter is organised as follow. In Section 5.2 we intro-

duce relevant parts of the literature that inform the decisions and design of this

chapter. In Section 5.3 we begin by exploring the nature of minimum tempo-

rary interventions when used to encourage convention emergence at the start of

a simulation. We then expand on this Section 5.4 to explore how the start time

of an intervention can affect the ability of IAs to enact change. In Section 5.5

we consider similar notions of minimum intervention when it comes to efforts to

destabilise existing conventions and examine the notion of the minimum inter-

vention required to cause destabilisation. In Section 5.6 we expand on findings

in the previous section to consider the notion of placing IAs by specific costs and

how this impacts the cost of minimum intervention. Then, in Section 5.7, we

use the findings thus far to denote the concept of a budgeted intervention and

introduce a placement heuristic, BudgetedPlacement that can maximise the

performance from a given budget to spend on IAs. Finally, in Section 5.8, we

present our conclusions and final thoughts.

5.2 Background

Little work exists in the literature concerned with the usage of fixed strategy

agents to effect convention emergence and none does so when considering the

agents as temporal and finite.

Both Griffiths & Anand [2012] and Sen & Airiau [2007] explore the use of

fixed strategy agents when placed at the beginning of a simulation to direct and

encourage convention emergence. They show that the presence of these agents
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has a marked effect on the time taken to reach convention emergence with

increasing numbers of fixed strategy agents reducing the amount of time taken.

This indicates that there is a temporal nature to convention emergence that

can be affected by the inclusion of fixed strategy agents and we expand on this

by considering how the inclusion of such agents affects the time of convention

emergence even when their presence is removed.

Both Boyer & Orléan [1992] and Lewis [1969] discuss the self-reinforcing

nature of conventions, that the force of precedence and the ease of utilisation

compared to choosing clashing actions means that conventions, through positive

reinforcement are self-sustaining. Tied into this is the belief that once one of the

equilibria represented by the possible conventions has been chosen the force of

precedence within the system will further add pressure to select this equilibria

to all agents. We thus believe that the initial direction given to the convention

emergence is the most important part with the force of precedence allowing the

system to continue to emerge the convention without additional external force.

Franks [2013] briefly considers the notion of interfering with conventions later

in their life cycles after they have emerged or whilst they are in the process of

doing so. The model used is quite distinct from our own however and allows

modification of the individual agents payoff matrices to allow additional rewards

to be granted to them. In our model we assume that agent architecture cannot

be modified in this manner. Additionally, they consider interventions at quite

distant timesteps after the start of the simulation whilst we believe the force of

precedence will be too high by that point and would transform the intervention

into destabilisation.

Previous work often assumes no restrictions when placing fixed strategy

agents into the network. We follow this assumption, but add that such an

insertion has an associated cost. In real-world domains, inserting fixed strategy

agents likely has such a cost, and understanding how to minimise this is crucial.

In this chapter, we investigate the effect of the cost of insertion and its relation

to the duration and efficacy of intervention. Delre et al. [2010], in the context of
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marketing budgets, raises the question of how best to choose which consumers

to target for viral marketing and it is in a similar vein that we consider the costs

of recruiting agents as IAs.

5.3 Temporary Initial Interventions

We begin with a consideration of temporary initial interventions, using IAs at

the beginning of a simulation to elicit and direct convention emergence. We

previously have shown this is to be effective but studied the case where the IAs

were placed at time t = 0 and left within the system for the duration. We

now wish to find the minimum amount of time that the IAs must be left in

the population in order to cause a change that is permanent enough to direct

convention emergence even without their presence. We believe that the self-

reinforcing properties of conventions and the precedence that the IAs instil to

a particular action choice will enable them to be removed quite early and still

have the desired effect. Being able to do so, and understanding what time-

frames such agents must be left in the system to guarantee it, would allow much

easier initial interventions by not requiring the permanent change of agents into

IAs.

Having already shown the minimum number of IAs needed with each place-

ment metric to guarantee convention emergence in Section 3.4.1 we investigate

the minimum amount of time they must be present by placing that number of

IAs into the system at time t = 0. We then remove them some time, tremoval,

later and allow the simulation to continue. We increase tremoval in steps starting

at 10 (as a minimum) until the presence of the IAs is once again causing 100%

of simulations to converge to the desired convention. These steps were 5 for the

scale-free graphs and 10 for the small-world graphs as we found that 10 gave

insufficient granularity of results for the scale-free graphs. We otherwise use the

same interaction model as in the previous chapters: 5000 node scale-free and

small-world graphs, constructed with m0 = m = 3 for the scale-free graphs and
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Figure 5.1: Minimum length of initial intervention in the 5000 node scale-free
network.

ce = 1, l = 1 for the small-world graphs. Each timestep each agent chooses

one of its neighbours to play the 10-action coordination game (+4,−1) with

and both update their internal knowledge using Q-Learning. We measure the

proportion, over 100 runs, that each setting emerges the IAs strategy as a global

convention, defining a convention to have emerged when 90% of agents, when

not exploring, would choose it.

Figure 5.1 shows the results of this for the scale-free network for each place-

ment metric and the number of IAs indicated in the legend. For each metric, the

relationship between the length of initial intervention and the effectiveness of the

intervention is fairly linear with longer interventions producing corresponding

increases in performance. What is most interesting however is that every metric

reaches peak performance, that achieved when the IAs were placed within the

system permanently, with a tremoval of only ∼60. This indicates that it is the

very early period in the emergence of conventions where most of the results are

decided with a small number of IAs able to enact permanent change whilst only

being present for a short time period. Beyond this initial window of influence,

the IAs can be removed from the system without the direction of convention

emergence changing; those agents they have already converted are enough for
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Figure 5.2: Minimum length of initial intervention in the 5000 node small-world
network.

the convention to be self-sustaining. Interestingly, the worse performance of

highest edge embeddedness (HEE) in eliciting convention emergence is present

here as well where, despite having enough IAs that it can guarantee convention

emergence normally, it performs statistically significantly worse than degree at

a number of points (two-tailed proportion test, p < 0.05). This indicates that

not only is HEE placement worse at causing conventions to emerge, they are

also less stable than those created when placing by other metrics, being affected

more by the removal of the IAs.

Figure 5.2 shows similar results for the 5000 node small-world network. In

this instance, given the disparity between the number of IAs needed to guar-

antee convention emergence by degree/eigencentrality and HEE or hyperlink-

induced topic search (HITS) we investigate two values for each of the latter:

the same number of IAs as needed by degree/eigencentrality and the actual

number needed for those metrics to guarantee convention emergence as shown

in Section 3.4.1. The behaviour here is slightly different than in the scale-free

topology with increases in tremoval causing performance to approach its peak in

a noticeably asymptotic manner; whilst initial increases in length have a marked

effect on performance, the extra benefit gained from increasing tremoval between
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60 and 120 have less and less impact on performance. This indicates again that

it is the initial period that is most important and that, in small-world net-

works, increases beyond this are limited in how much they affect performance.

Again, we find that, within a relatively short time frame, the presence of IAs

is no longer needed to ensure the desired convention emerges, though this is

notably longer than in scale-free networks and matches with the slower emer-

gence of conventions in general for small-world networks. The locally clustered

nature of the links in small-world topologies means they are more resilient to

change [Franks et al., 2013] and so we must include IAs longer to ensure that

change is permanent.

Of particular note is the performance of HEE with 38 IAs. Despite this being

the same criteria as for the others, namely the minimum number of IAs that

was required to guarantee convention emergence when included permanently,

its performance in this scenario is markedly better than degree/eigencentrality

with the same constraints. We can conclude from this that larger numbers of

IAs benefit temporary initial interventions, making shorter interventions more

likely to succeed with less concern for the placement metric being used. Whilst

the performance of HEE when IAs are included permanently is worse than the

other placement metrics, it is not substantially so and thus the additional IAs

still provide benefits over fewer IAs slightly better placed.

We similarly must consider the nature of minimum initial intervention in the

dynamic networks previously explored. These have been shown to have major

differences in behaviour due to the changing nature of both nodes and edges

and thus minimal initial convention emergence within them is likely to differ as

well. We consider 1000 node graphs of the González network and all 4 modes of

the Ichinose model with settings otherwise the same as these graphs in previous

chapters.

The results for minimal initial intervention in the González network are

shown in Figure 5.3 and show broadly the same effect as in the small-world

and scale-free networks, indicating that these findings are general rather than
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Figure 5.3: Minimum length of initial intervention in the 1000 node González
network.

specific to static networks. Given the more distinctive differences in performance

for the placement metrics in dynamic networks we only include degree and

eigencentrality (both static and updating) although we observe similar effects

for all metrics. As in the static networks we find that initial increases in tremoval

have commensurate effects on increasing the performance of the IAs and that

this tapers off at longer interventions as the performance approaches that of

permanent inclusion. Most markedly there is no significant difference between

the static and updating approaches indicating that up-to-date information is

not a primary concern in maximising the effect of short interventions. The

length of intervention required in the González network is comparable to those

found previously, requiring less than 150 timesteps to reach the same levels

as permanent inclusion. Given that this network is 1/5 the size of the static

networks this indicates that the dynamic networks require the IAs to be present

longer comparatively in order to generate a permanent effect and is likely due

to the changing topological nature as converting the local area is no longer as

much a guarantee that it won’t easily revert as new connections are made.

We find that the behaviours of the 4 Ichinose models are nearly identical,

leading us to conclude that the temporary initial interventions are primarily
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Figure 5.4: Minimum length of initial intervention in the 1000 node Ichinose
TP network.

unaffected by the different node removal and edge attachment rules and that

the length of the intervention is the predominant factor. Figure 5.4 shows the

results for the Ichinose TP model as a representative case. As can be seen,

the length of time that the IAs must be included to maximise the performance

is comparable to those required in the González network with the asymptotic

nature highlighting again the importance of the initial length increases in their

effect on the performance of IAs. Of particular note is the performance of static

eigencentrality which performs markedly better than the other placement met-

rics despite still having the minimum number of IAs. We attribute this, as with

the performance of HEE earlier, to the effect that additional IAs can have in

helping a convention become established in the small timeframe made available

to them. To test this hypothesis we additionally include a larger number of IAs

for another placement metric, beyond the minimum number required, with 9 IAs

and the static degree placement heuristic. This results in marked improvements

in performance, particularly at shorter lengths, than is the case when static

degree only has 7 IAs available and supports our notion that small increases in

the numbers of IAs, despite not changing the proportion when included perma-

nently, can facilitate faster initial intervention and would need to be included for
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Figure 5.5: Minimum length of initial intervention in the 5000 node scale-free
network with varying numbers of IAs

less time to enact the same level of permanent change. Whilst previous work by

Griffiths & Anand [2012] and Sen & Airiau [2007] has shown that the inclusion

of more IAs reduces the overall time for convention emergence this is the first

indication that the effects occur so early in the convention emergence and can

benefit from such a small increase in IAs.

To better quantify the effect that the increased number of IAs has on the

minimum time we consider a representative case in the scale-free network, as

shown in Figure 5.5. As can be seen, just small increases in the number of

IAs beyond the minimum needed increase the effectiveness at shorter lengths

of intervention to a statistically significant level compared to 5 IAs (two-tailed

proportion test, p < 0.05). This supports our notion that even a few more IAs

can make a meaningful impact due to their ability to influence the emerging

convention more readily. However, this increase in impact is one of diminishing

returns with the difference between higher and higher numbers of IAs becoming

less meaningful. Indeed, at the highest levels shown, they are not statistically

significantly different from one another at any point although the plot still shows

marginal increases in efficacy. Additionally, increasing the number of IAs de-

creases the minimum tremoval needed for full effectiveness from around ∼65 with
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5 IAs down to ∼30 with 15 IAs. This decrease, and the non-linear nature of it,

is something we revisit the importance of later in Section 5.5.

Overall, we find that there is indeed a minimum length of temporary initial

intervention rather than the requirement to include IAs until the convention

has emerged fully. We find that IAs need only be included in the system for a

short period of time (<150 timesteps in all the simulations above) before their

effectiveness is practically indistinguishable from the case where they are left

within the simulation. This has important implications for the nature of conven-

tion emergence as it allows those who wish to facilitate convention emergence

in MAS to not have to find a way to permanently change agents into IAs but

instead shows that such a change is only necessary for a short time.

5.4 Staggered Temporary Interventions

We have shown that there is a minimum length of time that IAs must remain in

a system to facilitate the level of desired convention emergence as caused by the

inclusion of the same number of IAs permanently. We have seen that increas-

ing the number of IAs reduces this minimum length of time and increases the

effectiveness of the IAs even when included for only short periods at the begin-

ning of a simulation. Additionally, in the previous chapters, we have seen that

the number of IAs needed for destabilisation is substantially higher than the

number needed for initial intervention. This indicates that the influence power

of the IAs is tied to when they are introduced to the simulation and that the

number of IAs sufficient to direct an undecided population towards one option

lacks the influence to go against the precedence of an already established con-

vention. Finding the speed with which this transition occurs, when the number

of IAs that can enact initial intervention become unable to change the popu-

lation consistently, will highlight the point at which intervention switches from

initial to late, when the IAs will be trying to counteract an already established

(or rapidly becoming established) convention rather than simply directing pop-
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ulation choice. This information is important for convention emergence in open

MAS as it is unlikely that all users will be present at the very start of inter-

action in such systems but may well join slightly later, after interactions have

been ongoing.

In this setting we seek to measure this effect by varying the time at which

IAs are initially placed within the system compared to the case where they are

inserted at t = 0. We call these staggered interventions and will denote the start

time of the intervention as tstart. As we are concerned with the rate at which

initial intervention ceases to be effective as a means of ensuring the desired

convention emerges, we utilise the same settings as used in the previous section.

Namely, we use the minimum number of IAs that were required to guarantee

convention emergence for a given topology and placement metric that were

found in Section 3.4.1. Whilst this will result in an unequal number of IAs for

each placement metric, even within the same topology, it unifies them in the

fact that this was what consistently allowed conventions to emerge when used

at t = 0. As we are concerned in this chapter with temporary interventions

we similarly limit the time that the IAs are placed within the system to that

shown in the previous section to allow maximum performance: 100 timesteps

in the scale-free network, 150 in the small-world, Ichinose RR and Ichinose RP

networks and 200 in the González, Ichinose TR and Ichinose TP networks. We

perform 100 simulations with each setting and find the proportion of results

that still emerge the desired convention under these constraints.

We begin by examining the effect of staggered intervention in the 5000 node

scale-free network as shown in Figure 5.6. As well as the minimum number of

IAs we also include a larger than minimum number for each placement metric

to study the effect that this increase has under staggered interventions. The

placement metric and the number of IAs is shown in the legend. As can be

seen, within the same number of IAs there is little difference in the performance

of each individual placement metric, with most not statistically significantly dif-

ferent consistently. An exception to this is HITS with 5 IAs which is worse than
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Figure 5.6: Effect of intervention start time for staggered interventions in the
5000 node scale-free network.

the runs for the other metrics with 5 IAs over an extended range of start times.

The primary observation from these results is that the start time, tstart, of a

staggered intervention has an almost immediate and drastic effect on the efficacy

of the IAs. Starting the intervention as little as 100 timesteps after the begin-

ning of the simulation reduces the effectiveness of the intervention by almost

55-60% across all metrics with 5 IAs. Whilst an increased number of IAs per-

forms marginally better it too is reduced by the same level by tstart = 150. This

highlights again the importance of early intervention with the system already

resilient to outside attempts to influence it very early on. The speed with which

this change occurs is rapid, reducing all intervention attempts to no better than

random chance by tstart = 300. The relationship between efficacy and tstart is

again asymptotic in nature with the later start times reducing the performance

by reduced amounts each time. This again highlights that it is the very start

of the simulations and interactions that determines the direction of likely con-

vention emergence and that the force of precedence and positive-reinforcement

of an emerging convention rapidly become too potent for the IAs to overcome,

requiring destabilisation efforts rather than just initial intervention.
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Figure 5.7: Effect of intervention start time for staggered interventions in the
5000 node small-world network.

Figure 5.7 shows similar results in the 5000 node small-world network. The

detrimental effects of starting intervention attempts at later times are even more

pronounced in this topology, highlighting again the resilient and self-reinforcing

nature of the local clusters present in the small-world topologies. We again in-

clude results when using more than the minimum number of IAs (shown in the

legend) but the inclusion of these additional agents has little effect on the rate at

which efficacy decreases. The initial decrease from beginning the intervention

attempts just slightly after the beginning of the simulation are more marked

here, with the minimum IA placement interventions dropping to 40% efficacy

with tstart ≈ 75 and reduction to behaviour no better than chance again occur-

ring by tstart = 300. We again find little difference between the performance of

the placement metrics with none consistently performing better or worse despite

the differing numbers of minimum IAs assigned to them. We can conclude that,

whilst beneficial in temporary initial interventions, the presence, at these levels,

of these extra IAs is insufficient to cause change in the system once another

convention has begun emerging.

We similarly explore the effect in dynamic topologies, focusing on the per-
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Figure 5.8: Effect of intervention start time for staggered interventions in the
1000 node González network.

formance of the best performing metrics from previous simulations: updating

and static eigencentrality and degree. Figure 5.8 shows the results in the 1000

node González network. As can be seen, staggered interventions in the González

network are slightly more resilient to the detrimental effects of increasing tstart

with all metrics taking until a start time ∼150-175 before efficacy is reduced to

40%, better than both the scale-free and small-world networks. The decrease is

also more linear, without the sharp decline present for small shifts in interven-

tion start time found in the static networks. This indicates that the temporary

initial interventions in the González network are less affected by the initial gap,

able to more readily overcome the emergent conventions that are becoming es-

tablished and direct convergence to the desired strategy. The topological churn,

the amount that the edges and nodes are changing, is greater in the González

network than in the Ichinose model (which only removes/reattaches a single

node and its edges each timestep) and we believe this to be to the benefit of

staggered interventions as the emergent conventions are constantly exposed to

each other, undermining the growth of each and allowing the influence of IAs to

be relevant for longer as shown by its more linear decline. However, this slight

benefit does not last forever with the performance of all metrics dropping to no
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Figure 5.9: Effect of intervention start time for staggered interventions in the
1000 node Ichinose RR network.

better than chance by tstart = 300, similar to the other topologies.

We again find that the effects in the 4 Ichinose models are almost indistin-

guishable with only slight variations in performance at any given tstart. As such

we include Figure 5.9 as a representative example of the broad features that

appear during staggered interventions in the Ichinose networks. In each of the

models, the effect of increasing tstart is closer to that of the synthetic networks

than it is to that of González with the decrease to 40% efficacy happening be-

tween tstart = 75 and tstart = 100 in each model, a steep decrease that highlights

the Ichinose models’ sensitivity to the initial period of convention emergence.

Also of note is the effect that the slightly higher number of IAs has on the

performance of the static metrics, increasing their efficacy slightly unlike in the

small-world network seen earlier. This is likely because these increases repre-

sent a much larger relative increase and, as seen in Figure 5.5, this can have a

marked effect and this notion is reinforced by the fact that no such distinction

in performance is present in the other Ichinose models where the number of IAs

assigned to static and updating is the same. However, even with this boost

in performance, the static metrics still rapidly decline in efficacy, highlighting

again the importance of initial interventions being utilised as early as possible.

242



5. Temporary and Budgeted Interventions

5.5 Temporary Interventions for Destabilisation

We have thus far shown that temporary interventions can be utilised in initial

interventions to great effect, requiring the IAs to only be present for a short

period of time to enact a self-reinforcing change within the system. We have

shown that this allows target conventions to emerge with the same frequency as

afforded by permanent inclusion of the IAs, despite the IAs only being present

for a fraction of the time needed to reach convention emergence. We have also

shown that the effectiveness of these temporary initial interventions rapidly di-

minishes when introduced later in the convention emergence life cycle, with the

force of precedence amongst already emerging conventions too great to over-

come. In this section, we explore the logical continuation of these two threads:

using temporary interventions to cause the destabilisation of an already estab-

lished convention.

5.5.1 Length of Intervention

We begin by considering the effect that temporary inclusion of IAs has on desta-

bilisation by examining the convention membership sizes over time of both the

IA strategy and the dominant one.

As a representative test-case we consider the averaged behaviour over 100

runs of temporary late intervention in the scale-free network used before. IAs

are introduced at t = 1500, being placed at high-degree locations, and left in

the system for a finite time, shown in the captions of Figure 5.10. As can be

seen in Figure 5.10a, with 200 IAs the membership size of the dominant con-

vention rapidly decreases after IAs are introduced, approaching parity with the

rising membership of the IA convention. However, upon the removal of the

IAs, the reduction in the dominant convention is mostly undone as it reclaims

nodes that had shifted convention. The removal of the IAs happens too pre-

maturely and the dominant convention, on average, remains established. This

shows that there is indeed a minimum length that IAs must be present to effect
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Figure 5.10: The effect on scale-free graphs of different numbers of IAs when
introduced for finite time. The IA strategy is shown in blue, the dominant
strategy in orange. The shaded areas represent the standard deviation at each
timestep over the runs.

the desired change, and their removal before this will allow the dominant strat-

egy to rebound. Increasing the length of the intervention further, as is done

in Figure 5.10b, shows this assertion to be true with the same number of IAs

included slightly longer guaranteeing the destabilisation. However the length

of the intervention is not the only thing we can vary and Figure 5.10c instead

shows the effect of increasing the number of IAs whilst leaving the length of

the intervention the same. In this scenario destabilisation is still guaranteed,

happening rapidly and displacing the dominant convention. We can thus con-

clude that, as we have seen in the previous sections, there is both a minimum

number of IAs and a minimum length that this number of IAs must be present

to cause destabilisation. Increasing the number of IAs reduces the minimum

length of time that they must be present in much the same way as it did for
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temporary initial interventions. Unlike in temporary initial interventions, dra-

matically increasing the number of IAs does not look to have an asymptotic

effect.

We have previously seen that there is minimum number of IAs that must

be present in order for destabilisation to occur. These initial findings indicate

that there is also a minimum length of time that they must be present in order

for them to induce destabilisation. That is, there is what we call a minimum

intervention in each topology, a minimum number of IAs (which is topology

specific) and their associated minimum length of intervention.

As indicated in Figure 5.10c, additional IAs decreases the minimum time for

effectiveness. We wish to quantify this effect in order to establish how changing

the number of IAs changes the minimum time required. To do so we vary the

number of IAs from the minimum found in Chapter 3 in steps up to 2500 IAs,

representing 50% of the 5000 node scale-free network. Whilst this upper limit

is likely to be an infeasible target in many domains due to the open nature

of many MAS, we include it for completion and to study the phenomena over

as wide a range as possible. Having set the number of IAs we then look to

find the minimum length of time these IAs must be included in order to cause

destabilisation. We do this by varying the length of inclusion upwards from 0

in steps of 5 to 50, seeking to find the lowest value where destabilisation occurs

in 100% of 30 runs. For those numbers of IAs where destabilisation does not

occur by this point (which is likely for the lower numbers of IAs) we further

increase the length in steps of 10 to 200. Similarly for any numbers of IAs

which do not consistently cause destabilisation at this length we then increase

the intervention time in steps of 50 to as high as is necessary for destabilisation

to occur. This approach allows varying levels of granularity where it matters.

Figure 5.11 shows the results of this for the 5000 node scale-free network

with degree placement of IAs. As can be seen, increasing the number of IAs

even slightly has a dramatic effect on the minimum intervention length found,

reducing it substantially. More importantly, this relationship is non-linear, with
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Figure 5.11: Number of IAs vs. the minimum length of intervention to cause
destabilisation for scale-free topologies.

increases in the number of IAs causing much larger reductions in minimum

length as we increase the number from the minimum required. Additional in-

creases beyond ∼300 agents cause much lesser reductions in minimum interven-

tion time as the system asymptotically approaches a minimum intervention of

zero; the relationship is one of rapidly diminishing returns with the most change

happening at lower numbers of IAs.

To allow us to better quantify these notions of minimum interventions and

better compare the effects at either end of the spectrum, we introduce the

concept of the cost of minimum intervention. We assume that each IA has a

cost associated with it that must be paid each timestep it is an IA in the system.

This allows us to combine both the number of IAs and the minimum length they

are required to allow comparisons between different minimum interventions in

the system with different numbers of IAs and different lengths they must be

included. We begin by considering a uniform cost, where each IA costs 1 unit

per timestep. In this instance, the cost of the intervention is simply the number

of IAs multiplied by the the length of time they are required.

In doing this we also expand the consideration of minimum intervention to

the 5000 node small-world graph as well as considering eigencentrality place-

ment in both topologies as well as degree. We find the minimum lengths of

246



5. Temporary and Budgeted Interventions

500 1000 1500 2500
Number of IAs, n

105

106

M
in

im
u

m
In

te
rv

en
ti

on
C

os
t

Scalefree - Degree

Scalefree - EC

Smallworld - Degree

Smallworld - EC

Figure 5.12: Number of IAs vs. the minimum intervention cost needed to cause
destabilisation for static topologies.

intervention as before and use these and the number of IAs to calculate the

costs of minimum interventions using each placement metric. Figure 5.12 shows

the results of this. As can be seen, eigencentrality and degree are almost indis-

tinguishable within the scale-free network, both requiring nearly the same level

of minimum intervention regardless of the number of IAs. In both cases how-

ever, additional IAs act to continuously reduce the cost of intervention although

the relationship is indeed one of diminishing returns as noted earlier with the

costs of minimum interventions with the highest number of IAs being nearly

identical. There is a marked difference in the two metrics when considering

destabilisation in small-world topologies with eigencentrality allowing markedly

lower costs of intervention than degree does for the same number of IAs. This

indicates that eigencentrality placement is better at facilitating destabilisation

than degree in small-world topologies allowing shorter temporary interventions

to cause the same level of destabilisation as longer ones with degree placement.

This difference is consistent throughout all levels of IAs, indicating this is a

generalised trend. We also see that destabilisation in scale-free topologies is

cheaper than in small-world ones at all points, highlighting again the robust-

ness of small-world topologies to external influencers meaning that IAs must be
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Figure 5.13: Number of IAs vs. the minimum intervention cost needed to cause
destabilisation in the González network.

present longer to enact the same level of change in the small-world networks.

We apply the same methodology to the dynamic networks, varying the num-

ber of IAs up to 50% of the network again and utilising both static and updating

degree and eigencentrality as the best performing metrics in each dynamic topol-

ogy as found in Chapter 3. We present these findings for the González network

in Figure 5.13. As the figure indicates, we find that the updating heuristics

consistently produce lower cost minimum interventions in comparison to their

static equivalents, across the entire range of IAs. This is to be expected as

they consistently outperformed the static metrics in destabilisation efforts with

permanent IAs inclusion but reveals that they are more efficient at nearly all

levels of intervention and create a reduction in the length of time the IAs must

be present in order to facilitate destabilisation. We find that there is little dif-

ference between degree and eigencentrality themselves however with the static

and updating versions of both performing nearly identically. We observe the

same pattern across each of the Ichinose models as well and so do not include

them here.

Our primary finding here, and one that appears consistent across all place-

ment metrics and network types, both static and dynamic, is that increasing
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the number of IAs used for destabilisation efforts nearly always produces a

more than commensurate decrease in the minimum intervention time required

meaning that the overall cost of intervention is lower. We can conclude that

attempting to maximise the number of IAs that are being used for destabilisa-

tion is the best course of action across all topologies although this relationship

is one of diminishing returns with small increases beyond the minimum number

needed to facilitate destabilisation producing the most drastic decreases in cost.

5.5.2 Cost of Intervention

We have shown that we can minimise the cost of intervention by maximising

the number of IAs. However, in the previous section we assumed that the cost

of each agent to become an IAs was uniform, namely that it was a unit cost of

1 per timestep for each IA. We find this assumption to be unrealistic in many

ways as agents with higher levels of influence are more likely to require higher

levels of remuneration, either due to their ability to influence a larger number

of people or due to their intrinsic importance in the domains being modelled.

Consider for instance the scenario of trying to hire a brand ambassador on social

media. Those with lower numbers of links will be worth less than those with

much higher numbers and will require different levels of remuneration because

of this. This is particularly true in any system where multiple individuals might

be bidding for the same agent and hence price will be driven up for the most

influential of them.

To model this we extend the previous notion of cost of minimum intervention

to the case where cost is proportional (in this case equal) to node degree as a

measure of node influence. We believe this captures the problems identified

above and will enable us to establish the generality of the findings from the

previous section.

Figure 5.14 shows the effect on minimum cost of intervention when pricing

agents this way for the static networks. Whilst mostly the same as with uni-

form pricing, there are a number of important differences to highlight. Firstly,
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Figure 5.14: Number of IAs vs. the minimum intervention cost needed to cause
destabilisation for static topologies. IAs are placed by the metrics indicated
with vertex costs equal to degree.

that, under this pricing model, the costs of intervention in scale-free and small-

world are much closer together, particularly at the larger numbers of IAs where

eigencentrality placement in the small-world topologies is practically indistin-

guishable in terms of cost to the placement mechanisms in scale-free topologies.

This disparity highlights the difference between the scale-free and small-world

topologies, that the same number of IAs selected by degree from both will have

higher total degree in the scale-free topology due to the skewed nature of the

power-law degree distribution. When considering high-degree nodes to have a

commensurate increase in cost, this means that influence is more expensive in

the scale-free networks for a given number of IAs.

Additionally, when pricing by degree, we now see a continued drop in cost

of intervention even at the highest numbers of IAs rather than the diminish-

ing returns seen with uniform pricing. The decrease in time afforded by more

IAs becomes more of an issue when high-degree nodes are more expensive per

timestep. This reinforces our previous finding, that it is better to maximise the

number of IAs within the system as this reduces the overall cost of destabilisa-

tion.

When considering the degree-based pricing mechanisms for dynamic net-
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Figure 5.15: Number of IAs vs. the minimum intervention cost needed to
cause destabilisation in the Ichinose TR network. IAs are placed by the metrics
indicated with vertex costs equal to degree.

works we must consider what the cost of an IA means for static and updating

heuristics as the cost of the agent is likely to change over time. We utilise a

mechanism where the cost of an IA is what the system believes the degree to be

at any given moment. Thus in static metric placement the cost of an IA is set

at its selection and remains that way until it is no longer an IA. We believe this

best models the situation from the placement perspective as the static metrics

work under the assumption that the value of the metric is unchanging and hence

they do not reconsider the IAs. We feel this models real-world situations where

the price is “locked-in” and subject to value fluctuations, both good and bad,

that do not affect the amount the agent is paid. We again find that the costs in

the dynamic networks are mostly identical in both range and features and so we

include Figure 5.15 as a representative case showing the effect of degree-based

cost in the Ichinose TR network. The changes in the dynamic networks are less

than those in the static networks. The same difference in performance between

the static and updating placement metrics still present indicating that the cost

benefit of these is important even across multiple pricing mechanisms. However

we see the same effect as in the static networks where, when pricing by degree,

increasing the number of IAs always causes a decrease in cost, lending support
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to the notion that this is a generalised rule applicable across many domains.

5.6 Cost-Based Placement

We have thus far shown that minimum interventions exist for given topologies

and number of IAs. We have also shown that increasing the number of IAs

reduces the cost of minimum intervention by making the presence of the IAs be

required for less time. However, our previous experiments have assumed that it

is possible to calculate the length of a minimum intervention a priori by running

multiple simulations with increasing lengths and finding the minimum that still

exhibits destabilisation. In real-world scenarios, this is impractical or in many

cases impossible as the situations where we might want to utilise destabilisation

are not amenable to multiple attempts. Instead we must consider an alternative,

on-line notion of minimum intervention that still facilitates destabilisation of the

dominant convention and allows us to know when IAs can be removed from the

system with little chance of the system rebounding.

When considering the minimum cost of intervening we examine the idea of

the minimum length of time that a given number of agents must remain in the

system in order for irreversible destabilisation to occur. To quantify this we

introduce a new measure: the crossover ratio χco. The crossover ratio is defined

as:

χco =
size of IA strategy convention membership

size of dominant strategy convention membership
(5.1)

We can thus describe minimum interventions as the minimum amount of

time that a given number of IAs must be introduced to cause χco to exceed

some threshold, γco. In this section we set γco = 1.5 such that the convention of

the IA strategy must become 50% larger than the previously dominant strategy

to be classed as destabilisation.

This notion of destabilisation is different from that which we have used

throughout the rest of this thesis and instead allows real-time evaluation of when
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Figure 5.16: Comparison of the minimum cost of intervention produced using
multiple methods of calculation in the 5000 node scale-free network. IAs are
placed by the degree with vertex costs equal to degree.

a convention is likely to be destabilised and replaced even if IAs are removed.

This allows us to monitor the minimum length of intervention knowing that

the force of precedence and the self-reinforcing nature of conventions is likely

to take the system the rest of the way and allow it to reach the 90% Kittock

criteria. By defining the threshold relative to the dominant convention, rather

than in the absolute sense of the number of agents in the population, we can be

assured that the destabilisation has occurred and that the IA strategy is already

emerging beyond it.

To quantify that this notion of minimum intervention is similar to the one

used previously we must establish whether they produce similar costs of min-

imum intervention. We consider the case for the 5000 node scale-free network

and produce minimum intervention costs for a range of IAs using both the old

a priori method and the new crossover method. For the crossover method we

monitor the χco value within the simulation at each timestep. When this ex-

ceeds γco destabilisation has occurred, the IAs are removed and the simulation

terminated. The cost up to this point represents the cost of a minimum inter-

vention. If this condition is not met by the end of the simulation then the run is

deemed unlikely to destabilise and is marked as invalid. We require 2/3 of the
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runs to be valid for the minimum interventions to be considered representative

and the average minimum cost over the valid runs is then used. In both cases

(the a priori and crossover methods) we assume placement by degree and that

nodes are priced by degree as they were above. The results of this are shown

in Figure 5.16. As can be seen, the costs of minimum intervention generated

by both methods are nearly perfectly aligned with one another, lending support

to the notion that these definitions of minimum intervention are nearly equiva-

lent. Crossover thresholding has a tendency to underestimate the cost at lower

numbers of IAs and to overestimate it at higher values but both of these are

likely exacerbated by the level of granularity available in the prior calculation

method. Overall though, this result (and similar ones in other topologies) give

us confidence that these two approaches will produce roughly similar outcomes.

In the previous sections we have also assumed that information about the

topology and agent characteristics, such as degree, is readily available. We now

consider the situation where such information is hidden, and all that is known is

an advertised cost which may or may not be indicative of an agent’s influence.

In the following experiments, IAs are placed at high cost locations, without

assuming knowledge of degree. This is similar to our work in Chapter 4 but

we assume here that there is no method that can be used to acquire accurate

information. We feel this models the unknown nature of influence in the real-

world where additional factors beyond just a node’s degree allow it to have far

more or far less influence than the metrics would imply.

We begin by considering the effect of pricing (and hence placing) agents

completely at random, to explore the nature of minimum intervention cost when

no information is available on agent influence. We assign each node a random

cost between [0, 1] and place IAs at the highest cost locations. We perform 100

runs for each number of IAs and use the crossover thresholding described above

to find the minimum cost of intervention for each, only considering the runs

valid if 66% of them exhibit the crossover.

Figure 5.17 shows the results of this in the static scale-free and small-world
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Figure 5.17: Number of IAs vs. the minimum intervention cost needed to cause
destabilisation in the static networks when IAs are placed by cost and cost is
random.

networks. The results show two main things. Firstly, that, even when placed

completely at random, increasing the number of IAs reduces the cost of min-

imum intervention. This allows us to conclude that by far the predominant

factor is the number of IAs rather than how they are placed. Whilst placing

by metrics increases the efficacy of IAs, increasing the number is the primary

driver to facilitate rapid destabilisation of established conventions. This notion

is of particular importance when considering interventions that have a fixed

budget rather than a fixed number of IAs and we explore this concept further

in Section 5.7. Secondly, that random placement is more effective in small-

world topologies than in scale-free, the latter not reaching an acceptable level

of minimum intervention until much higher numbers of IAs. This threshold of

performance indicates that metric-based placement is still beneficial, allowing

minimum interventions at ranges that purely random placement cannot.

We additionally consider high-cost placement in the dynamic topologies. As

before we must address the nature of dynamism and its effect on cost. We take

the same approach as before with degree-based costing such that the cost for

agents is not fixed but the cost that is recorded each timestep is that which

the placement approach last observed for the IA in question. Thus, for static
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Figure 5.18: The minimum cost of intervention for differing numbers of IAs
when placed at high-cost locations for the different dynamic topologies. Costs
are determined randomly.
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high-cost placement, the cost is fixed once the IA has been selected whereas

in updating high-cost placement new costs and hence IAs will be chosen every

timestep, capturing the random nature of cost in two ways. Figure 5.18 shows

the costs of minimum intervention in each of the dynamic topologies as where

IAs are selected by highest-cost in both static and updating manners. The

overall results are the same in each topology with updating high-cost placement

resulting in substantially lower costs compared to static high-cost placement.

This is likely due to the IAs being placed nearly continuously at different loca-

tions, allowing the destabilisation to spread much faster. However, the number

of IAs needed to facilitate this is generally higher with several of the topolo-

gies showing that lower numbers of IAs don’t allow updating high-cost random

placement to meet the threshold required. This is likely due to exactly the same

reason that it performs better when it does exceed the threshold; with fewer IAs

having them constantly change location gives enough chance for the dominant

convention to recover and hence destabilisation is less likely to occur. Again,

however, we find the same effect in all topologies: maximising IA numbers con-

tinuously reduces cost, decreasing the time taken for minimum interventions

even in the crossover threshold model.

Finally we examine the situation where the advertised cost of an agent is an

imperfect indication of their degree (and hence influence). This pricing mech-

anism is useful in domains where agents may be asked to estimate their own

influence or domains with unreliable information and covers the ground between

the fully random costings just explored and known, precise degree-based place-

ment. We model this by selecting each agent’s advertised cost from a Gaussian

distribution:

cost(v) = N
(
deg(v), (deg(v)× noise)2

)
(5.2)

such that higher degree nodes have a wider range of values they might report

compared to lower degree. We base this on the notion that it becomes harder and
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Figure 5.19: Number of IAs vs. the minimum intervention cost needed to
cause destabilisation in the 5000 node scale-free network when IAs are placed
by highest-cost. Cost is a noisy estimate of the degree of a node.

harder to accurately gauge influence as it increases whereas knowing the links

of a minimally connected individual allows a much more nuanced estimation on

their influence.

Figure 5.19 shows the results of IAs being placed at high-cost locations with

cost being a noisy indicator of degree. We vary the noise level between 0.1

and 0.9 in steps of 0.2 to see how the cost of minimum intervention reacts to

increasing levels of noise. We find that the behaviours shown here are the same

as in the small-world network with the same constraints and so we focus only

on the scale-free network for our discussion. As before, we measure minimum

interventions using the crossover threshold model and perform 100 runs for each

setting, presenting the averaged cost of the runs if more than 66% exhibited

crossover.

The results show that increasing noise has a marked influence on the cost

of minimum interventions with increases in noise increasing the cost similarly.

This is to be expected as the IAs are placed at high-cost locations but the

regular amounts by which the increases in cost occur shows that the noisy

nature of the cost function is not causing the destabilisation efforts of the IAs to
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change dramatically; they are still able to facilitate the removal of the dominant

convention even when placed sub-optimally at locations whose influence does

not necessarily match their advertised cost. However, this is not to say it has

no effect as at the higher levels of noise low numbers of IAs are unable to meet

the threshold required for our crossover model, indicating that at these levels

the noisy nature is causing destabilisation efforts to fail more frequently. This

effect disappears rapidly however with ∼200 IAs enough to allow destabilisation

to occur frequently again regardless of the noise level. We find that, regardless

of noise, the same general pattern exists with small increases in the number

of IAs causing dramatic decreases in the average cost of intervention. Indeed,

as IAs increase, the difference between the various levels of noise become less

and less substantial indicating that even with noisy information, more IAs are

able to overcome this and reduce the time needed for intervention. We can thus

conclude that destabilisation efforts in the static networks are resilient against

noisy or misleading information with the relationship between minimum cost

and number of IAs.

Figure 5.20 shows similar effects in the González network as a representa-

tive example of how noisy degree costing affects minimum interventions in the

dynamic networks. We find that the patterns here are repeated universally

amongst the Ichinose models and so we only include the González version here.

Static high-cost placement is fundamentally the same as in the static networks

with increases in noise causing a corresponding increase in cost but otherwise

not affecting the fundamental nature of destabilisation by minimum interven-

tion. Indeed, the dynamic networks seem more resilient to the noisy nature,

particularly at fewer numbers of IAs, with no noticeable pattern of destabilisa-

tion efforts being more or less likely to succeed; static placement with noise 0.1

has the same minimum starting IAs as with noise 0.9. However the behaviour

of updating high-cost placement is quite distinctive with a wide ranging min-

imum cost at low levels of IAs and a number of higher levels of noise causing

some numbers of IAs to be unable to facilitate destabilisation to the threshold
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Figure 5.20: Number of IAs vs. the minimum intervention cost needed to cause
destabilisation in the González network when IAs are placed by highest-cost.
Cost is a noisy estimate of the degree of a node.

level. However, as the number of IAs increases this behaviour rapidly changes,

unlike in the static placement case, with the intervention costs for all values

of noise converging together. This indicates that, beyond the initial number of

IAs updating placement is actually even more resilient to noise than the static

equivalent, likely due to the placement mechanism not being locked-in to its

decisions for long, meaning that an incorrect assessment is likely to be rapidly

balanced out. Overall however, we see again this rapid decrease in minimum

cost from even minor increases in the number of IAs. In both static and dynamic

networks the noisy nature of degree information is not enough to overcome the

benefit of utilising additional IAs to cause rapid destabilisation.
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Algorithm 5 Budgeted Placement heuristic

1: procedure BudgetedPlacement(G = (V,E), b, p)
2: degRanking← vertices ranked from highest to lowest degree
3: highDeg← first |V |/2 entries from deg ranking
4: lowDeg← reversed ordering of last |V |/2 entries from deg ranking
5: lowBudget, highBudget← p× b, (1− p)× b
6: create empty set, selected
7: for all vertices v in highDeg do
8: cost← deg(v)
9: if highBudget− cost < 0 then

10: continue
11: else
12: add v to selected
13: highBudget← highBudget− cost

14: lowBudget← lowBudget + highBudget
15: for all vertices v in lowDeg do
16: cost← deg(v)
17: if lowBudget− cost < 0 then
18: continue
19: else
20: add v to selected
21: lowBudget← lowBudget− cost

22: return selected

5.7 Budgeted Placement in Temporary Inter-

ventions

In the previous sections we have shown that the cost of intervention can be

minimised by including more agents but for a non-linear amount of shorter

time. We now seek to apply this understanding to the concept of budgeted

interventions. In a budgeted intervention, instead of being able to assign a set

number of IAs, as we have considered previously, the intervention is instead

given a set budget which it can use to acquire agents to act as IAs. As before,

each agent has a cost and we consider the case where the cost is equal to their

degree, without noise, as a good measure of the influence capabilities of each

agent.

We seek the best way to utilise the given budget to maximise the likelihood of

destabilisation of the established convention. The inclusion of the budget adds

an additional constraint from the previous section as we cannot simply add

more and more high-degree nodes but instead must consider how the inclusion
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of large numbers of cheap but lowest-degree nodes might be used to facilitate

destabilisation.

We introduce a new placement heuristic, BudgetedPlacement, which is

shown in Algorithm 5. The basic function of BudgetedPlacement is, given

a graph, G, a budget, b, and a minimum proportion of this budget that must be

spent on low degree nodes, p, select a set of nodes to act as IAs whose total cost

is less than or equal to the budget. It does this by acquiring a ranking of all

nodes by degree, splitting this list in two and then greedily adding high-degree

nodes from the first list that are within the still available budget for high-degree

nodes and doing the same but in ascending order from the low-degree list and

for the low-degree budget. These budgets are found by dividing up the total

budget, b, based on the proportion, p, and this approach ensures that there

is a maximum amount that can be spent on either type of node. Any unused

high-degree budget is additionally allocated to be spent on low-degree nodes.

BudgetedPlacement allows us to see how the overall budget affects the

ability to cause destabilisation as well as how varying the budget spending

between high-degree and low-degree nodes affects the outcome. To establish this

we vary the budget available and the proportion assigned to low-degree nodes

and utilise the IAs selected by BudgetedPlacement to attempt to destabilise

the dominant convention in both the scale-free and small-world topologies. To

allow easier comparisons, we use 1000 node variants of each of the graphs but

our experimental setup is otherwise the same as has been used throughout this

chapter. We perform 100 runs for each setting combination and measure the

proportion that result in the replacement of the dominant convention with the

one assigned to IAs. We find that, due to the large number of IAs selected at

higher values of p, when using the K90% threshold the scale-free simulations

exhibit the problem identified in Section 2.3.1 where IAs still reporting the

dominant strategy (due to being unable to unlearn it) are too numerous and

mean that 90% thresholding is impossible even if all non-IAs are members of the

new convention. As such, for those results we utilise the 80% Kittock criteria.
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Figure 5.21: Effectiveness of BudgetedPlacement when used for destabili-
sation in the 1000 node scale-free topology.

Figure 5.21 shows the effectiveness of this strategy in the 1000 node scale-free

network. The budget ranges shown represent the limits where, with p = 0.0,

destabilisation occurs not at all or is guaranteed to do so. With ∼3000 edges in

the graph (and hence a total degree of ∼6000), these budgets represent between

12.6% and 17.3% of the maximum budget possible and show that, similar to

when using a fixed number of IAs, destabilisation is possible with only small

proportions of the network being made into IAs. The change between no effect

and fully effective again occurs over a narrow range, with only an increase of 280

(or 4.6%) needed to cause it, similar to the narrow range of effectiveness change

found when targeting specific numbers of IAs. This highlights the notion of the

“critical value”, which destabilisation attempts need to exceed, and doing so by

even relatively small amounts will nearly guarantee success.

More interesting however is the effect that increasing p has. For all budgets,

even those which do not exhibit destabilisation when p = 0, increasing p to 0.5 or

beyond means that they instead cause destabilisation 100% of the time. Indeed,

for most budgets, increasing p by any amount causes a commensurate increase

in the effectiveness of BudgetedPlacement at that budget. This indicates

that our previous findings regarding the number of IAs is not limited to larger
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Figure 5.22: Effectiveness of BudgetedPlacement when used for destabili-
sation in the 1000 node small-world topology.

numbers of high-degree nodes. Including more IAs, regardless of their degree,

is beneficial in the scale-free network and makes destabilisation easier as the

desired convention spreads to other nodes more rapidly. Additionally it shows

that the ability to destabilise is not tied to simply increasing the total degree

of the IAs (represented by increasing budgets) but how the IAs are spread out,

which has major implications for convention destabilisation and gives credence

to the effectiveness of “grassroots” movements.

Figure 5.22 shows the results of using BudgetedPlacement in the 1000

node small-world network. It shows a similar transition from no effectiveness to

full effectiveness over a narrow range of budgets as in scale-free. However, the

actual budget needed to guarantee destabilisation with p = 0 is substantially

less than that needed in the scale-free networks, despite the number of edges in

both networks being ∼3000. This runs contrary to our previous destabilisation

findings where small-world topologies typically required much larger numbers of

IAs compared to scale-free in order to guarantee an effect. The greedy selection

of BudgetedPlacement allows more IAs to be selected due to the lack of a

power-law degree distribution in small-world topologies. Whilst a given budget

may allow a few high-degree nodes in scale-free distributions the same budget
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will allow many more nodes in small-world topologies due to the less skewed

degree distribution. This further reinforces the point from the scale-free network

that multiple nodes of slightly lower degree (and hence cost) are more effective

than singular high-degree nodes.

The value of p again has a major effect on the performance of Budget-

edPlacement but it is quite distinctive in small-world networks compared to

scale-free. Continuously increasing p does not produce an equivalent increase

in effectiveness. Instead, the optimal value of p peaks at between 0.4 and 0.6

for each budget with further increases detracting from the performance. In

small-world networks there is a balance between higher degree nodes and lower

degree nodes that must be found to optimise destabilisation. This again can be

attributed to the much less skewed nature of the degree distribution in small-

world networks; whereas in scale-free networks BudgetedPlacement must

choose between a few high-degree nodes or many low-degree nodes, in small-

world the choice is between many higher degree nodes or many lower degree

nodes without the necessity of extremes that comes from the power-law degree

distribution in scale-free networks. However, it still shows that a slight increase

in the minimum budget that is allocated to low-degree nodes has beneficial

effects.

We similarly apply the notion of a budgeted intervention to the dynamic

networks. The function of BudgetedPlacement is identical in this domain

except for two differences: (i) when a selected node is removed as an IA the cost

paid for it is returned to the relevant budget and a new node of the same type

(high-degree or low-degree) is selected, and (ii) any unused high-degree budget

is not added to the low-degree budget. This is to prevent the “leaking” of

budgets from one to the other over time as it is unlikely that a node of exactly

the same cost will be selected to replace one. We also consider both static

and updating BudgetedPlacement, as we have done with other dynamic

placement heuristics, where the former has its choices set as IAs until they are

removed from the graph itself whilst the latter removes all IAs each timestep
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Figure 5.23: Effectiveness of BudgetedPlacement when used for destabili-
sation in the 1000 node González, static placement.

(and hence starts the BudgetedPlacement again). We use the same dynamic

networks as have been used throughout with the IAs being introduced at t =

1500 and the simulation running for 5000 timesteps beyond this to give enough

time for destabilisation to occur and calculating the proportion of 30 runs that

emerge the desired convention.

Figure 5.23 shows the effect of BudgetedPlacement when used in a static

manner in the 1000 González model. Immediately, there are dramatic differences

between the static networks and this one, primarily the range of budgets that

exhibit change. With budgets as low as 100 (representing 0.016% of the possible

total degree) BudgetedPlacement is able to cause destabilisation with high

values of p. Indeed, we find that the range of budgets that exhibit destabilisation

when p = 0.0 is substantially higher than the range that exhibits it when p = 1.0

or even when p = 0.5 being closer to the numbers found in the static networks.

However, within the dynamic networks, including more low-degree nodes has

a significant effect even at very low budgets. Investigation reveals that this is

because there are a number of 1-2 degree nodes within the dynamic networks

due to the edge churn and nature of them that simply aren’t present in the

static networks where each node has a minimum degree of 3 (in the scale-free
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Figure 5.24: Effectiveness of BudgetedPlacement when used for destabili-
sation in the 1000 node González, updating placement.

network) and 5 (in the small-world network). The large numbers of these low

degree nodes mean that many of them can be acquired as IAs even with low

budget and, as we saw in the previous section, despite not being topologically

influential the dominating factor is their number. This highlights again the

primary finding of this chapter, that, wherever possible, you should maximise

the number of IAs in order to most readily cause destabilisation. The approach

of BudgetedPlacement as a method of selecting these IAs is best placed to

enable this aspect of destabilisation.

We also utilise BudgetedPlacement in an updating manner the results

of which are shown in Figure 5.24. As we see here, utilising BudgetedPlace-

ment in an updating manner is actually detrimental to its effectiveness with

high values of p, requiring much larger budgets to exhibit the same level of effect

as is present in the static version. This is likely due to the updating placement

heuristic constantly changing which low-degree nodes it selects as IAs and high-

lights one of the issues with low-degree nodes over high-degree nodes: they are

more readily influenced by their own environment rather than influencing it

themselves as they are connected to only 1-2 other nodes and hence limited

in their interactions. If they are unable to convert their neighbours, which is
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unlikely due to the neighbours being statistically likely to have more edges,

their influence is limited and they will tend to whatever action that neighbour

is choosing to reduce clashes. As such, for budgeted interventions it is better

to select low-degree nodes and leave them as IAs. This “multiplies” their influ-

ence due to not changing their action due to clashes, which forces their limited

neighbours to do so instead and allows them to spread the convention rapidly.

We see nearly identical behaviour in the Ichinose models, which also exhibit

very low degree nodes due to the changing connections, and hence do not in-

clude them here. The primary difference between the results for them and the

results for the González model is that the Ichinose models are require slightly

higher budgets across the board, closer to b = 200 to exhibit static placement

change and closer to b = 400 to exhibit change when using updating Budget-

edPlacement. Both of these increases are likely due to the reduced churn of

the Ichinose models which results in fewer degree 1 nodes than there are in the

González model.

Overall we have shown the effectiveness with which BudgetedPlacement

can cause destabilisation in situations where we are provided with a finite bud-

get, b. We have shown that increasing the amount of this budget that we re-

serve for low-degree nodes, p, is nearly universally beneficial and that choosing

a value of p = 0.5 should be sufficient to provide generally applicable optimal

behaviour.

5.8 Conclusions

Using IAs, agents that continuously apply a given fixed strategy regardless of

the consequences, have previously been shown to help direct and encourage

convention emergence. In Chapter 3 we had previously expanded the state-of-

the-art in using these agents to facilitate convention emergence as well as to use

them to destabilise existing conventions to enable them to be replaced.

In this chapter we expanded further on that work by considering the notion
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of how time-limited inclusion of IAs affects their ability to enact the desired

changes. We introduce the notion of temporary interventions where IAs are

only placed in the system for a finite, heavily-limited time. Being able to effect

a permanent change in the system with minimal intervention is highly desirable

and understanding temporary interventions is a necessity to this end. The

self-reinforcing nature of convention emergence and destabilisation means that

with an initial “nudge” in the right direction, even a temporaneous one, we

believe that the same level of effectiveness as when IAs are included permanently

can be achieved. Finding the thresholds and boundaries of effectiveness that

these temporary interventions have is important as it allows groups such as

campaigners and marketers to focus efforts on when these interventions would

be most effective rather than having to enact a permanent inclusion.

We began by studying temporary initial interventions; the amount of time

that IAs must be present at the start of the simulation in order to cause a

permanent shift that guarantees the emergence of the desired strategy as con-

vention. We showed that, across all topologies and network types IAs need

only be present for a very short time period (<150 timesteps) before there is

no difference in their efficacy than if they had been included permanently. We

studied the effect that additional IAs beyond the minimum required had on this

minimum inclusion time and found that increasing the number of IAs reduced

the minimum though in a manner of diminishing returns.

We then considered the effectiveness of temporary interventions when not

applied at the very beginning of the simulation, so-called staggered temporary

interventions, to establish the change in effectiveness amongst IAs when intro-

duced later. We found that IA effectiveness rapidly decreases outside of starting

at time t = 0 and surmise that the early stages of convention emergence are

amongst some of the most important as the force of precedence rapidly grows

and then will require additional effort to overcome. This lends credence to the

notion of groups being highly resistant to change once something has become

established and has implications for those seeking to change the public mindset
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over any issues, for instance political ones.

We have also shown that temporarily inserting IAs can also cause destabili-

sation, temporary late interventions, and that there exists a minimum length of

time that they must be present in order to cause this. Removing IAs prior to

this minimum duration will cause the established convention to return to near

previous levels. We showed that increasing the number of IAs even slightly has

a dramatic effect on reducing this minimum time with further increases caus-

ing a diminishing return in reduction. In systems that are closely modelled by

our approach here this means that so-called “grassroots” efforts can be highly

effective, more so than deferring to authorities within the system.

Next we considered the cost of these interventions, and show that, inde-

pendent of whether cost is uniform or linked to degree, the cost of minimum

intervention is inversely related to the number of IAs. However, the relationship

is also one of diminishing returns. As such, placing as many IAs as possible into

the system is beneficial but the additional effect generated reduces substantially

after ∼10% of the population. Wherever possible however, our findings indicate

that increasing the number of IAs causes faster and more robust destabilisation.

We then explored the effect of placing IAs by cost and monitoring desta-

bilisation in real-time. The same relationship between number of IAs and cost

was found to hold regardless of pricing/placement mechanism although higher

numbers of IAs may be needed to sufficiently guarantee destabilisation. The

effect of noise on the degree-based pricing mechanism was also considered. It

was found, for all topologies, that the effect of noise was to increase the over-

all cost of minimum interventions but to not affect the relationship between

cost, the number of IAs, and the duration of minimum intervention. We con-

clude from this that placing by advertised cost would offer reasonable results,

even with near-random pricing and that destabilisation efforts are resilient to

misinformation as long as the number of IAs is sufficient.

We then utilised our findings to investigate the best strategy for budgeted

interventions where there is no limit on the number of IAs but rather a specific
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cost associated with each node that must be accounted for within a finite bud-

get. We introduced a placement heuristic BudgetedPlacement and showed

that guaranteeing a certain proportion of the budget to be spent on low-degree

agents rather than high-degree dramatically increases the effectiveness of the

intervention by increasing the number of IAs even if they not highly-ranked

locations based on influence. We find that the number of IAs is as important if

not more so than the location they are placed and that, in scenarios where the

number of IAs is not set, maximising it is paramount.

Overall we have shown that encouraging emergence and destabilisation and

replacement of an established convention is possible and that minimum criteria

exist in order to cause this. We have also presented a number of ways of evalu-

ating how much an intervention might cost using various pricing methods and

demonstrated the relationship between the number of IAs and cost.
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CHAPTER 6
Conclusion

In this thesis we have explored a number of unique and novel aspects concern-

ing the emergence of conventions in multi-agent systems (MAS) and how this

emergence might be directed to facilitate rapid and robust convergence to coor-

dinated behaviour. We focused, broadly, on the use of Intervention Agents (IAs)

as fixed strategy agents in order to provide guidance and influence to the rest

of the population in order to encourage the system to emerge the desired con-

vention under a range of topological conditions. In this chapter we review the

contributions made by this thesis and evaluate them within the framework of

the original aims of this body of work. We then consider some of the ways

in which limitations of the work presented could be expanded upon in future

research before presenting our final thoughts.

Whilst drawing from large parts of the state-of-the-art, the work in this the-

sis builds heavily on three primary pieces of the literature: the work of Franks et

al. [2013], Sen & Airiau [2007], and Villatoro et al. [2009]. We will briefly com-

pare and contrast the work in this thesis with each of these before moving on to

the contributions in more detail. Sen & Airiau [2007] was one of, if not the, ear-

liest works utilising fixed strategy agents to inform and manipulate convention

emergence. We have extended their early work in a number of directions but the

primary difference is that of using these fixed strategy agents not just to direct

initial convention emergence but later in the convention lifecycle to manipulate

and change already established conventions, showing the differences inherent in

these two different applications. Building on the work of Sen & Airiau, Villatoro

et al. [2009] is some of the seminal work in considering the underlying network

topology and its effect on convention emergence. Their analysis is rather lim-
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ited, only using small, synthetically-generated networks, but showed the major

effect topology could have on the simulation dynamics. We have expanded and

extended this work in a number of directions, considering larger scale synthetic

networks, real-world networks and dynamic, time-varying networks that Villa-

toro et al. never touched upon. We have shown that this effect of topology

is universal and can have a dramatic effect on convention emergence but that

conventions emerge nonetheless. The work of Franks et al. [2013] comes closest

to the work of this thesis in a lot of ways, considering more metrics and different

network structures than any of the work before. We have continued in the same

vein, exploring similar metrics and their applicability to the coordination game

and extending the Influencer Agents of Franks et al. into the realm of destabil-

isation and general intervention. The exploration of dynamic networks extends

the work of Franks et al. into previously unseen domains and our findings there

have expanded the state-of-the-art.

Each of the chapters presented in this thesis has explored an important part

of our original aims for research. In Chapter 3 we extended the knowledge on

convention emergence and how it might be influenced as well as garnering an

understanding of convention stability and how they might be destabilised in a

range of static and dynamic topologies. In Chapter 4, we considered realistic

restrictions on the amount of topological knowledge available when trying to

place IAs and examined the effect this had on efficacy, providing solutions to

mitigate this problem. Finally, Chapter 5 provided insight into the minimal

nature of intervention that can be used to elicit change and how to utilise this

information to increase performance, fulfilling our final objective.

6.1 Contributions

This thesis has made a number of contributions in its exploration of conven-

tions, extending our understanding of them and how IAs may be used to ma-

nipulate them. We have shown that destabilisation is possible and how it can be
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achieved and investigated in both static and dynamic topologies. Additionally

we have considered different constraints that might be placed upon convention

emergence, such as observability and time, and explored their impact. In more

detail, this thesis makes the following contributions:

• Introduction and analysis of the concept of destabilisation of an

existing convention and techniques to facilitate this.

In Chapter 3, we introduced the notion of destabilising an existing conven-

tion, causing it to collapse in support amongst the population and to be

replaced by another. We demonstrated that established conventions are

more resilient to outside influence than those earlier in their life cycle due

to the self-reinforcing nature of conventions and the force of precedence

the dominant convention enjoys. Small proportions of the population were

utilised as IAs, successfully facilitating the emergence of a secondary con-

vention to reduce the precedence of the dominant one and persuade other

agents to switch. The results indicate that this proportion is relatively

stable even across multiple scales of network size and identified ways in

which the complex structure of the underlying topology impacts destabili-

sation efforts. We showed that where IAs are located within this topology

heavily impacts the number required to cause destabilisation and that

there is a critical number of IAs which exhibits a sharp transition between

no effectiveness and full effectiveness at causing destabilisation. An eval-

uation of the performance of IAs when placed by a number of topological

metrics was undertaken and showed that, universally, degree or eigencen-

trality performed best. From this we can conclude that these metrics offer

a strong measure of influence and act as integral locations to maximise

the disruption caused to the dominant convention. These findings were

evaluated on a range of static networks, both real and synthetic, show-

ing their general applicability. Additionally, we introduced the concept of

passive destabilisation, removing an existing convention without directly
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replacing it with another and show this is possible using IAs of multiple

different strategies. Our findings show that facilitating destabilisation in

this way requires a larger effort and proportion of the population as IAs.

The investigations from this chapter are slightly limited however, due to

the same interaction model, that of the social learning coordination game,

being used in all settings and would require validation against a wider

range of models and games.

• An exploration of convention emergence in dynamic topologies

and the creation of placement metrics to encourage convention

emergence and destabilisation in these topologies.

Additionally in Chapter 3, we introduce the usage of dynamic topologies,

where edges and nodes may change over time, to model the links between

the individual agents in the population. These are known to induce dif-

ferent system dynamics than those caused in static networks and thus we

explored the nature of convention emergence in these types of networks.

The results show that the changing nature of the edges within the graph

allows conventions to emerge rapidly, unaided within the populations as

long as minimum levels of connectivity and agent longevity are met. We

showed that these populations are able to be directed using small numbers

of IAs and that the numbers required were in general comparable to those

needed to do the same in static networks. Two methods of applying the

traditional placement metrics were developed, Static and Updating, and

the efficacy of these in influencing convention emergence was explored.

Additionally, a new heuristic, Life-Degree, was created to explore the

impact that considerations of agent longevity have on viability of agents

as IAs. This showed that longevity was not a primary concern and that

the measure of influence an agent exhibits is of higher priority in their

efficacy as IAs.

We additionally applied the concept of destabilisation to dynamic net-
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works. The results show that, in general, dynamic networks are more

resilient to destabilisation attempts, requiring a larger proportion of IAs

to elicit the same level of effect as in static networks. The updating place-

ment metrics were found to substantially outperform their static equiva-

lents indicating the importance of up-to-date measures of influence when

attempting to destabilise the established convention. Across all topolo-

gies, we showed that placement by updating degree and eigencentrality

consistently offered better performance than the näıve static placement

approach.

We explored the effect that size of convention space and payoff matrix

may have on convention emergence in dynamic networks showing that

they are sensitive to both with larger convention spaces making convention

emergence difficult. The efficacy of Life-Degree when considering the

destabilisation of conventions within these large convention spaces was

shown, highlighting the importance of agent longevity in these instances.

Our work here is limited by two key factors: (i) whilst we explore a number

of different dynamic network models, the population size is the same in all

of them (1000 nodes) to allow comparison. Larger populations must be

examined to assure ourselves of the general applicability of these findings.

(ii) the synthetic nature of the dynamic topologies may well cause them

to differ from real-world dynamic networks; establishing the applicability

of our findings in this domain is a separate problem.

• Development of placement algorithms that find influential loca-

tions in topologies with restricted observability.

In Chapter 4 we consider the impact of partial observability of the network

topology on the use of IAs for influencing convention emergence. We show

that this restriction can have a large negative impact on the efficacy of

IAs and that careful use of a limited number of observations can help

to mitigate this by identifying influential individuals based only on local
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information. A placement algorithm, PO-Place, was developed that

utilises finite observations to approximate globally important locations.

We show that PO-Place, with observations of only small proportions of

the overall network topology, is able to frequently achieve performances

comparable to those when given full graph observability. An analysis of

the effect of a number of different constraints on the performance of PO-

Place was performed and show it to be robust in a range of scenarios.

PO-Place was then utilised for placing IAs for convention emergence and

destabilisation in a range of real-world and synthetic networks and found

to elicit similar levels of convention emergence to the previous, unrestricted

case with small levels of observation.

We additionally created DynaPO to solve the equivalent limited observa-

tion problem in dynamic topologies, identifying a range of different issues

and concerns that arise when considering partial observability in these

topologies and analysing their likely effects. We showed that the poten-

tial variants of DynaPO offer different levels of impact in initial and late

intervention and analyse how DynaPO performs under a number of dif-

ferent settings. The results show that even fewer observations are needed

than in the case of PO-Place for equivalent levels of convention emer-

gence and destabilisation with only slight increases in the proportions of

IAs needed than in the fully observable case.

• Mechanisms for assessing minimal interventions, their costs and

an investigation into their effectiveness at manipulating conven-

tions.

In Chapter 5 we show that temporary rather than permanent interven-

tions using IAs are able to elicit the same level of convention emergence

and destabilisation. An exploration of the minimum time that such in-

terventions must take place in order to guarantee convention emergence

is undertaken and shows that the initial period of convention emergence
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is the most important with IAs only required for a short period to direct

the permanent change of the population. We highlight the importance of

this initial period again by exploring intervention at differing times in the

early stages of convention emergence and show a rapid decline in efficacy.

An exploration of the notion of minimum interventions for destabilisa-

tion of conventions is performed and shows that there are both minimum

numbers of IAs required to cause destabilisation and a minimum length

they must be present to prevent rebounding of the dominant convention.

The concept of the cost of an intervention is introduced and we use this

mechanism to analyse the effect of increasing IAs on the minimum length

required for destabilisation, showing that, universally, increasing the num-

ber of IAs had a more than commensurate decrease in the amount of time

taken for destabilisation. We established a real-time, on-line notion of min-

imum intervention and showed the resilience of our conclusions to noise in

the system. This knowledge of minimum interventions was then used to

develop an approach for BudgetedPlacement of IAs and showed the

effectiveness of our method at even low levels of budget.

6.2 Directions for Future Work

We have established and explored convention emergence and destabilisation in

a number of different settings and domains. However, a number of unanswered

questions still exist on aspects of convention emergence that are open to manip-

ulation, change and efficiency increases. In particular, there are considerations

along a number of different axes for methodologies that might increase the ef-

fectiveness of IAs in effecting convention emergence. We present some of these

below as potential directions for expansion of the work presented in this thesis.
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6.2.1 Discount Heuristics for Intervention Agent Place-

ment

Identifying influential locations for IAs placement can be done easily using the

degree placement metric. However, in highly connected networks, it is likely

that many high-degree nodes will share neighbours. As such, their influence is

slightly redundant in nature and in order to facilitate rapid convention emer-

gence we may be better placing IAs at diverse locations in order to maximise

the number of unique entities that they can reach. In the related work of in-

fluence spread [Kempe et al., 2003], Chen et al. [2009] identify similar concerns

regarding redundancy amongst multiple agents. They produce a degree discount

heuristic which takes this redundancy into consideration when selecting addi-

tional agents and they show that this causes a marked improvement in outcomes.

Whilst the underlying models differ substantially we believe the high-level con-

cepts may be equally applicable and may allow better maximisation of efficacy

when considering placement of a set number of IAs.

6.2.2 Predicting Influential Nodes

The use of dynamic topologies in the study of convention emergence is a par-

ticular focus of this thesis. Within these dynamic topologies the influence of a

node is able to change over time as additional edges come and go. Being able

to predict which nodes are likely to become or remain influential would facili-

tate targeting these nodes early so that they act as propagators of the desired

convention without the need to create them as IAs later and at lower cost than

doing so as well. A number of methods have been proposed for the identification

of nodes likely to reach prominence [Yang et al., 2014] but it is unclear whether

these approaches would benefit the study of convention emergence and how the

information they provide may be best utilised to reduce costs of intervention.
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6.2.3 Graph Partitioning and Community Identification

Throughout this thesis we have noted the difference and resilience of small-world

topologies to emerging conventions compared to simpler and faster convention

emergence in other topologies. This is due to the locally clustered and connected

nature of the small-world network [Franks, 2013; Kleinberg, 2000b] and high-

lights that for many topologies with local clustering, placing at highly-influential

locations outside of this community structure will have less efficacy at convert-

ing this portion of the population than placing inside the community. The

importance and identification of these community structures has been previ-

ously explored in the notion of cooperation in multi-agent systems [O’Riordan

& Sorensen, 2008] but its use to ensure convention emergence or destabilisa-

tion has not been considered. A number of techniques exist for community

identification [Danon et al., 2005] and investigating the effectiveness of these

could increase the efficacy of IAs. Related to this problem is the concept of

graph partitioning, finding subsets of the graph such that the edges between

them are minimised. This has been well-understood in parallel computing for

decades [Karypis & Kumar, 1998; Simon & Teng, 1997] but its use in identifying

subsections of the graph that are least likely to interact with each other could

be used to highlight which areas need focused effort to spread conventions to.

6.2.4 Real-world Dynamic Networks

We have used a number of dynamic networks in this thesis to investigate the

effect of dynamism of convention emergence. However all of these are synthetic

dynamic networks. Whilst efforts have been made to ensure they closely model

features from the real-world [González et al., 2006a; González et al., 2006b],

it has previously been noted that static synthetic networks differ substantially

from real-world ones [Franks, 2013; Pujol et al., 2005] and we expect similar

discrepancies are likely between synthetic dynamic networks and real ones. As

such, exploring the nature of convention emergence on these real-world dynamic
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networks is a logical extension and would provide assurances to the general

applicability of the results found in course of this work.

6.3 Final Thoughts and Remarks

In this thesis we have examined the ways in which conventions emerge amongst

agent-agent interactions in MAS and how they can be manipulated and directed

in order to support coordinated behaviour amongst agent populations. We

have extended the state-of-the-art on the theory of conventions and introduced

mechanisms and tools that can be used to manipulate conventions in the form

of Intervention Agents (IAs). We have shown these to be highly effective in the

common constraints of many forms of MAS and able to be utilised at multiple

stages in the evolution of a convention to bring about differing results as shown

by our work in Chapter 3.

Throughout this thesis, one of the most important considerations that im-

pacts convention emergence dynamics is that of the topological structure that

agents find themselves in. The form of this interconnecting topology has varied

effects from the rate of convention emergence to its stability and dramatically

changes the nature of the agent population. With the introduction of dynamic

networks we have considered an additional dimension to the topological struc-

tures and seen the considerations that such dynamism brings to the fore. In

Chapter 4 we see how the limitation of local information can significantly re-

duce the efficacy of intervention efforts and yet this is how most networks appear

to us, without a top-down overview and only able to see a few hops away from

ourselves.

Even with these additional concerns and constraints, we have shown that

it is possible to encourage rapid and robust convention emergence amongst

populations of agents. We have explored the stability of conventions and shown

how to replace them if necessary without drastic intervention in the system. We

believe these aspects to be a key step in developing a comprehensive model of
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conventions within MAS and that the work in this thesis contributes to that

goal.
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[20] Robert Boyer and André Orléan. “How do conventions evolve?” In: Jour-

nal of Evolutionary Economics 2.3 (Sept. 1992), pp. 165–177.

[21] Steven J Brams. Game theory and politics. Courier Corporation, 2011.

[22] Ulrik Brandes. “A faster algorithm for betweenness centrality”. In: Jour-

nal of mathematical sociology 25.2 (2001), pp. 163–177.

[23] Hannelore Brandt and Karl Sigmund. “Indirect reciprocity, image scor-

ing, and moral hazard”. In: Proceedings of the National Academy of Sci-

ences of the United States of America 102.7 (2005), pp. 2666–2670.

[24] Michael Brautbar and Michael J Kearns. “Local Algorithms for Finding

Interesting Individuals in Large Networks”. In: Proc. of Innovation in

Computer Science. 2010, pp. 188–199.

[25] M.A.R. de Cara, O. Pla, and F. Guinea. “Competition, efficiency and col-

lective behavior in the “El Farol” bar model”. In: The European Physical

Journal B - Condensed Matter and Complex Systems 10.1 (May 1999),

pp. 187–191.

[26] Duan-Bing Chen, Rui Xiao, and An Zeng. “Predicting the evolution of

spreading on complex networks”. In: Scientific Reports 4 (2014), p. 6108.

[27] Wei Chen, Yajun Wang, and Siyu Yang. “Efficient Influence Maximiza-

tion in Social Networks”. In: Proc. of the 15th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining. Paris,

France, 2009, pp. 199–208.

[28] Colin Cooper, Tomasz Radzik, and Yiannis Siantos. “A Fast Algorithm

to Find All High Degree Vertices in Power Law Graphs”. In: Proceedings

of the 21st International Conference on World Wide Web. WWW ’12

Companion. Lyon, France: ACM, 2012, pp. 1007–1016.

285



BIBLIOGRAPHY

[29] Leon Danon et al. “Comparing community structure identification”. In:

Journal of Statistical Mechanics: Theory and Experiment 2005.09 (2005),

P09008.

[30] Jordi Delgado. “Emergence of social conventions in complex networks”.

In: Artificial Intelligence 141.1–2 (2002), pp. 171–185.

[31] Jordi Delgado, Josep M. Pujol, and Ramón Sangüesa. “Emergence of
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